WO2011108699A1 - Gene related to the action of isoflavones - Google Patents

Gene related to the action of isoflavones Download PDF

Info

Publication number
WO2011108699A1
WO2011108699A1 PCT/JP2011/055057 JP2011055057W WO2011108699A1 WO 2011108699 A1 WO2011108699 A1 WO 2011108699A1 JP 2011055057 W JP2011055057 W JP 2011055057W WO 2011108699 A1 WO2011108699 A1 WO 2011108699A1
Authority
WO
WIPO (PCT)
Prior art keywords
papd5
equol
cells
expression
cancer
Prior art date
Application number
PCT/JP2011/055057
Other languages
French (fr)
Japanese (ja)
Inventor
立花 宏文
Original Assignee
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学 filed Critical 国立大学法人九州大学
Publication of WO2011108699A1 publication Critical patent/WO2011108699A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/106Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Definitions

  • the present invention relates to a gene on which isoflavones, particularly equol, depend upon acting on a subject. More particularly, the present invention relates to Papd5. According to the present invention, Papd5 or a product thereof can be used as a biomarker related to cancer. The present invention is useful in the fields of medicine, alternative medicine, and research and development of pharmaceuticals, foods and cosmetics.
  • Isoflavones are a kind of flavonoid contained in soybean, mainly soybean germ, and there are three kinds of genistein, daidzein and glycitein.
  • soybean fermented foods such as miso and natto, these are contained in large amounts as aglycones, but in most foods, they are contained in the state of glycosides.
  • Glycosides are hydrolyzed by digestive enzymes and ⁇ -glucosidase of enteric bacteria to produce aglycones.
  • Daidzein is also metabolized to equol by certain intestinal bacteria. About half of the Japanese and about 20% of Westerners are said to have enteric bacteria that convert daidzein to equol.
  • Isoflavones have a variety of physiological functions and have been reported to improve menopause and osteoporosis (non-patent document 4) in postmenopausal women. For cancer, it is widely known that it exhibits anticancer activity against hormone-dependent cancers such as breast cancer (Non-patent document 5) and prostate cancer (Non-patent document 6). It has been. Isoflavones are similar in structure to estrogen, which is a type of steroid hormone, and therefore, when they bind to estrogen-receptor (ER) in vivo, they exhibit estrogen-like action or antagonize estrogen and exert antiestrogenic action. It is considered.
  • estrogen estrogen-receptor
  • Non-patent Document 7 genistein exhibits an anticancer action against hormone-independent cancers such as gastric cancer, melanoma, and pancreatic cancer by inhibiting tyrosine kinase and topoisomerase.
  • Non-patent Document 8 a part of its action is an ER-independent action.
  • Non-Patent Document 9 an antiallergic function
  • Non-Patent Document 10 a vascular relaxation function
  • Non-patent Document 5 As an in vitro report on isoflavones, it has been reported to induce apoptosis and inhibit growth of human cancer cells (Non-Patent Document 5), while suggesting an effect of promoting carcinogenesis (Non-Patent Document 11). ). In in vivo animal experiments, some organs have been reported to have a carcinogenic promoting effect (Non-patent Documents 12 and 13).
  • Soy isoflavone genistein modulates cell cycle progression and induces apoptosis in HER-2 / neu oncogene expressing human breast epithelial cells.
  • 67 kDa laminin receptor (67 LR) as a gene (EGCG sensing gene) expressed on the side of cancer cells indispensable for its anticancer activity.
  • 67 LR 67 kDa laminin receptor
  • the present inventor found that equol, a kind of isoflavones, suppresses the growth of the prostate cancer cell line PC-3 and the human cervical cancer cell line HeLa.
  • the present invention provides the following.
  • detecting the biomarker according to [1] including oligonucleotide, peptide, antibody, for PCR, DNA array, ELISA, protein array, mass spectrometry, or immunochromatography , Product.
  • a method for screening for an effective treatment for cancer comprising a step of detecting whether the amount of transcription or expression of Papd5 changes.
  • FIG. 1 is a graph showing the cell growth inhibitory activity and ER dependence of equol against various cancer cells.
  • Human cervical cancer cell line HeLa or human prostate cancer cell line PC-3 was seeded in a 24-well culture plate at 2 ⁇ 10 4 cells / mL and pre-cultured for 24 hours. After treatment with a medium supplemented with 1 mM of ICI182,780, which is an ER antagonist, for 30 minutes, equol was added and cultured for 72 hours, and the number of cells was counted.
  • FIG. 2 is a graph showing the cytostatic activity of equol against mouse melanoma cell line B16.
  • FIG. 3 is a graph showing the effect of ICI on the equol sensitivity of B16 cells.
  • B16 cells were seeded in a 24-well plate at 2 ⁇ 10 4 cells / mL, pretreated for 30 minutes with a medium supplemented with ICI182,780 at a final concentration of 1 mM, and equol at each concentration was then added. After culturing for 72 hours, the number of cells was measured.
  • ICI ER inhibitor ICI182,780 FIG.
  • FIG. 4 is a graph showing the involvement of Papd5 expression on the equol sensitivity of HeLa cells.
  • b) HeLa cells transfected with Scramble-shRNA or Papd5-shRNA expression vector were seeded in a 24-well culture plate at 2 x 10 4 cells / mL, and cultured for 72 hours in a medium supplemented with each concentration of equol. It was measured.
  • FIG. 5 is a graph showing the involvement of Papd5 expression on the equol sensitivity of B16 cells. a) RNA was collected from Scramble-shRNA expression vector-introduced B16 cells or Papd5-shRNA expression vector-introduced B16 cells, and after cDNA synthesis, the expression level of Papd5 mRNA was examined by RT-PCR.
  • FIG. 6 is a graph showing the involvement of Papd5 expression in the cancer cell growth inhibitory action of functional food factors. Each concentration of equol, genistein, zedaidzein, and EGCG was added to HeLa cells into which Scramble-shRNA or Papd5-shRNA expression vector was introduced, and the number of cells was measured after culturing for 72 hours.
  • FIG. 6 is a graph showing the involvement of Papd5 expression in the cancer cell growth inhibitory action of functional food factors. Each concentration of equol, genistein, zedaidzein, and EGCG was added to HeLa cells into which Scramble-shRNA or Papd5-shRNA expression vector was introduced, and the number of cells was measured after culturing for 72 hours.
  • FIG. 7 is a graph showing the effect of oral intake of equol on tumors knocked down by Papd5 expression. Cancer was transplanted by subcutaneously injecting cells into which the Papd5-shRNA5- expression vector had been introduced into the back of the mouse, and then equal was orally administered, and the change in tumor volume over time was measured.
  • FIG. 8 is a graph showing the cell growth promoting effect of equol on cancer cells knocked down by Papd5pd expression. Each concentration of equal was added to B16 cells (siPapd5) introduced with Papd5-shRNA expression vector or B16 cells (scramble) introduced with Scramble-shRNA, and the number of cells was counted.
  • FIG. 1 is a graph showing the effect of oral intake of equol on tumors knocked down by Papd5 expression. Cancer was transplanted by subcutaneously injecting cells into which the Papd5-shRNA5- expression vector had been introduced into the back of the mouse,
  • FIG. 9A is a view showing nucleotide sequences and amino acid sequences related to the present invention.
  • FIG. 9B shows the nucleotide sequence and amino acid sequence related to the present invention.
  • FIG. 9C is a view showing a nucleotide sequence and an amino acid sequence related to the present invention.
  • the present invention is a biomarker for diagnosing the effectiveness of Papd5 or a product thereof in a subject of an anticancer substance selected from the group consisting of equol, daidzein and analogs thereof. Regarding use.
  • Papd5 is used in the meaning of the Papd5 gene unless otherwise specified.
  • the polynucleotide comprising the nucleotide sequence represented as SEQ ID NO: 1, 3 or 5 in the sequence listing, the polynucleotide encoding the amino acid sequence of SEQ ID NO: 2, 4 or 6, or any of them refers to a homolog. More specifically, it is one of the following (a), (b), (c), (d), (e) or (f).
  • A a polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1, 3 or 5 (more specifically, DNA);
  • B a polynucleotide that hybridizes with a polynucleotide comprising a sequence complementary to the polynucleotide of (a) under stringent conditions and can exhibit cytostatic activity in the presence of equol or daidzein (more specific Then DNA);
  • C a polynucleotide (more specifically, DNA) having high sequence identity with the polynucleotide of (a) and capable of exhibiting cytostatic activity in the presence of equol or daidzein;
  • D a polynucleotide encoding the amino acid sequence of SEQ ID NO: 2, 4, or 6 (more specifically, DNA);
  • E The amino acid sequence of SEQ ID NO: 2, 4 or 6 encodes an amino acid sequence in which one or more amino acids are substituted, deleted, inserted, and / or added, and inhibit
  • nucleotide sequence of human Papd5 is shown as SEQ ID NO: 1
  • amino acid sequence of human Papd5 protein is shown as SEQ ID NO: 2.
  • SEQ ID NO: 3 nucleotide sequence of mouse Papd5, as SEQ ID NO: 4, amino acid sequence of mouse Papd5 protein, as SEQ ID NO: 5, as nucleotide sequence of rat Papd5, as SEQ ID NO: 6, as rat The amino acid sequence of Papd5 protein is shown.
  • Papd5 is preferably derived from a mammal, more preferably from a human.
  • the term “product” of Papd5 refers to an antibody that specifically recognizes the above-mentioned Papd5 transcription product (mRNA), expression product (protein), or any one of them unless otherwise specified. .
  • mRNA consisting of the nucleotide sequence represented as SEQ ID NO: 1, 3 or 5 or a homologue thereof. However, in SEQ ID NO: 1, 3, or 5, t is replaced with u.
  • SEQ ID NO: 1, 3, or 5 the same applies to SEQ ID NO: 1, 3, or 5 as the mRNA sequence.
  • mRNA or a homologue thereof is any of the following (a ′), (b ′), (c ′), (d ′), (e ′), or (f ′).
  • a ′ a polynucleotide consisting of the nucleotide sequence of SEQ ID NO: 1, 3, or 5 (more specifically, RNA);
  • B ′ a polynucleotide that hybridizes with a polynucleotide comprising a sequence complementary to the polynucleotide of (a ′) under stringent conditions and can exhibit cell growth inhibitory activity in the presence of equol or daidzein ( More specifically, RNA);
  • C ′ a polynucleotide (more specifically, RNA) having high sequence identity with the polynucleotide of (a ′) and capable of exhibiting cytostatic activity in the presence of equol or daidzein;
  • D ′ a polynucleotide encoding the amino acid sequence of SEQ ID NO: 2, 4, or 6 (more specifically, RNA);
  • E ′ encoding an amino acid sequence in which one or more amino acids are substituted, deleted, inserted and /
  • a product is a protein consisting of 2, 4 or 6 amino acid sequences or a homologue thereof. Specifically, it is one of the following (d ′′), (e ′′) or (f ′′).
  • (D ′′) a protein consisting of the amino acid sequence of SEQ ID NO: 2, 4 or 6;
  • E ′′) an amino acid sequence in which one or more amino acids are substituted, deleted, inserted, and / or added in the amino acid sequence of SEQ ID NO: 2, 4 or 6, and cell growth inhibitory activity in the presence of equol or daidzein
  • stringent conditions refers to the conditions of 6M urea, 0.4% SDS, 0.5 ⁇ SSC or a hybridization condition equivalent thereto, unless otherwise specified. May be applied under conditions of higher stringency, for example, 6M urea, 0.4% SDS, 0.1 ⁇ SSC or equivalent hybridization conditions. Under each condition, the temperature can be about 40 ° C. or higher, and if higher stringency conditions are required, for example, about 50 ° C. or about 65 ° C. may be used.
  • the number of amino acids to be substituted when “one or more amino acids are substituted, deleted, inserted, and / or added” is the number of amino acids to be replaced or the protein encoding the protein.
  • the nucleotide is not particularly limited as long as it has a desired function, but it is about 1 to 9 or 1 to 4.
  • Means for preparing a polynucleotide according to such an amino acid sequence include, for example, the site-directed mutagenesis method (Kramer W & Fritz H-J: Methods Enzymol 154: 350, 1987).
  • nucleotides when “identity” is “high”, it means sequence identity of at least 80% or more, preferably 90% or more, more preferably 95% or more.
  • identity when referring to amino acid sequences, identity refers to sequence identity of at least 80% or more, preferably 90% or more, more preferably 95% or more. Nucleotide or amino acid sequence identity is determined using the algorithm BLAST by Carlin and Arthur (Proc. Natl. Acad. Sci. USA 87: 2264-2268, 1990, Proc Natl Acad Sci USA 90: 5873, 1993) it can.
  • polynucleotide refers to DNA or RNA unless otherwise specified. Which one is indicated will be clear to the skilled person from the context. DNA can be single-stranded or double-stranded.
  • Biomarker is objectively measured as an index of a pharmacological response to a normal biological process, pathological process, or therapeutic intervention, unless otherwise specified. It is used to refer to a substance (tangible) that can be evaluated.
  • a biomarker comprising Papd5 or a product thereof includes not only the whole (full length) of Papd5 or a product thereof but also a part thereof, unless otherwise specified. This “part” is a part that is long enough that the presence of Papd5 or its product can be inferred.
  • Papd5 or a product thereof is referred to as “use as a biomarker”, not only when all of Papd5 or a product thereof is used, but also a part of Papd5 or a product thereof, and Papd5 or a product thereof. It also includes the case where a part having such a length that the existence of the above can be estimated is used.
  • use as a biomarker includes use for detection of SNP, use for detection of gene mutation, use for detection of localization change.
  • Anti-cancer substances equal, daidzein
  • Compounds used in or related to the present invention include the following:
  • genistein and EGCG inhibit the growth of HeLa cells in the same way as equol.
  • the effect was not affected by the decrease in Papd5 expression.
  • the cell growth inhibitory action of daidzein was inhibited in the cells in which the expression of Papd5 was reduced, like equol (Example and FIG. 6).
  • the term “anticancer substance” means a general component effective for the treatment of cancer, unless otherwise specified.
  • the anticancer substance may be a food component or a medicine (anticancer agent).
  • an anticancer substance selected from the group consisting of equol, daidzein and analogs thereof is used. “These analogs” have anti-cancer activity (more specifically, cancer cell growth-inhibitory activity) similar to that of daidzein glycosides, equol or daidzein, but the effect is due to decreased expression of Papd5. Substances that are inhibited are included. Such substances may act in an ER-independent manner.
  • the human cervical cancer cell line HeLa and the human prostate cancer cell line PC-3 were inhibited by equol and treated with ER antagonist ICI182,780 (ICI). Even in the case of the action, the action was not inhibited. From this, it can be said that equol exhibits cytostatic activity against these cancer cell lines by an action mechanism independent of ER (FIG. 1).
  • estrogen receptor has the ability to bind to estrogen (estrone (E1), estradiol (E2) and estriol (E3)), unless otherwise specified, and accepts steroids.
  • estrogen estrone
  • E2 estradiol
  • E3 estriol
  • the estrogen receptor has two isoforms, ER ⁇ (NR3A1, 595 amino acid residues) and ER ⁇ (NR3A2, 530 residues).
  • Estrogens have the function of promoting the formation of reproductive functions and cell proliferation.
  • ER-independent or “ER-independent” means acting on a target without depending on ER, unless otherwise specified. Whether or not the action of a substance is “ER-independent” can be appropriately determined by those skilled in the art. For example, due to the presence of an antagonist of ER, the effect to be exerted is unaffected or can be neglected (eg, effects within ⁇ 30% compared to the effect in the absence) Can be judged using the index of For more detailed conditions, reference can be made to the description of the examples in the present specification.
  • a disease or condition that is improved by the action of equol or daidzein unless otherwise specified, cancer, particularly cervical cancer, endometrial cancer, prostate cancer; stomach cancer, melanoma, Pancreatic cancer (Non-patent document 7); Thymic hypertrophy or atrophy (Non-patent document 8); Allergy (Non-patent document 9), vascular stenosis or relaxation (Non-patent document 10).
  • cancer is cancer.
  • treatment when “treatment” is concerned with cancer, unless otherwise specified, it prevents cancer, reduces the risk of developing cancer, treats cancer, and suppresses progression of cancer. Including doing.
  • oligonucleotides, peptides, antibodies, PCR (RT-PCR, real-time PCR), DNA array, ELISA, protein array, or immunochromatography Products (kits, etc.) for graphy are provided.
  • Such products specifically amplify all or part of the appropriate length of the oligonucleotide probe, Papd5 or its transcript, which can be detected by specifically hybridizing with Papd5 or its transcript.
  • An antibody (which can be expressed in Escherichia coli) and may contain an oligonucleotide primer of an appropriate length that can specifically recognize Papd5, its transcription product or its expression product.
  • a Papd5-specific antibody can be obtained by immunization with a highly antigenic peptide derived from Papd5), and may contain a SELEX product or the like.
  • SELEX product or the like.
  • the product including the above-described primers can be a PCR kit, a DNA chip (microarray), or a protein array.
  • a group consisting of equol or daidzein and analogs thereof comprising a step of detecting transcription or expression of Papd5 in a subject or a sample collected from the subject (usually not assumed to be returned to the subject).
  • Methods for determining the effectiveness of a more selected anticancer substance in a subject are provided.
  • the method used is preferably a PCR method, a DNA array method, an ELISA method, a protein array method, or an immunochromatography method.
  • the effectiveness of the anticancer substance selected from the group consisting of equol or daidzein and their analogs is low or ineffective It can be judged.
  • anything assumed as a cause of suppression of gene transcription or expression is considered to affect the transcription or expression of Papd5.
  • disease risk factors such as congenital factors, oxidative stress, genetic mutations due to carcinogenic factors, diet, lifestyle (smoking, alcohol consumption, exercise, etc.)
  • obesity hypertension, hyperglycemia and hyperlipidemia
  • Papd5 Transcription or expression can be suppressed.
  • the term “subject” refers to cancer animals, healthy animals, cancers, unless otherwise specified. Includes patients and healthy individuals.
  • the term “subject” when it is ⁇ applied '' with respect to anticancer substances and natural products that are candidates for anticancer substances, in addition to testing on samples, administration of pharmaceuticals to individuals, intake of food, This includes applying cosmetics, including when it is done for others.
  • the “medicine” referred to in the present invention includes animal drugs in addition to drugs for humans, unless otherwise specified, and the “food” referred to in the present invention includes not only solid foods, unless otherwise specified. Including beverages and for humans as well as for animals, such as pet food, feed.
  • the “cosmetics” as used in the present invention refers to those used for the purpose of cosmetics, which are not intended for treatment of illness, except when specifically described.
  • the screening method of the present invention may comprise the following steps: 1) A step of applying a test product which is a natural product, food, cosmetic, pharmaceutical product or compound to a subject, a sample collected from the subject or a cell having Papd5 and capable of transcription or expression of Papd5; 2) detecting whether or not the amount of transcription or expression of Papd5 in the subject or sample changes; and 3) if the amount of transcription or expression increases, the test substance is effective for treating cancer.
  • the process of selecting as a simple thing.
  • the screening method of the present invention is particularly suitable for screening an object suitable for application to a subject in combination with equol, daidzein or an analog thereof.
  • the presence or absence of mutation of Papd5, or the amount of transcription or expression, as an index, according to the individuality of the subject, a pharmaceutical, food or cosmetic for treatment of a disease or condition improved by the action of equol or daidzein, Or the application plan can be designed.
  • a pharmaceutical, food or cosmetic for treatment of a disease or condition improved by the action of equol or daidzein Or the application plan can be designed.
  • the effect of the anticancer drug camptothecin is reduced (Non-patent Document 14), but it seems that the action of equol or daidzein can be expected.
  • Implementation of the present invention including actions such as “treatment”, “application”, and “design” includes medical actions by doctors and actions that do not rely on doctors. *
  • experiments using human-derived cells 1, 5 and 6 are genes and sequences that cause transcription of a polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1 in the sequence listing (mRNA of human Papd5).
  • the human cervical cancer cell line HeLa used for the measurement of equol's cytostatic activity and ER-dependent cell count on various human cancer cells is DMEM medium supplemented with 10% fetal bovine serum (FCS) (BIOLOGICAL).
  • FCS fetal bovine serum
  • the human prostate cancer cell line PC-3 was subcultured and maintained in RPMI1640 medium supplemented with 10% FCS at 37 ° C. under 5% CO 2 with water vapor saturation. Cells were maintained in culture in the logarithmic growth phase.
  • the DMEM medium used for the culture was Dulbecco's MEM medium (Cosmo Bio Co., Ltd.) 13.38 g per 1 L of dH 2 O, 5.958 g of HEPES (Wako Pure Chemical Industries, Ltd.), 200,000 units of penicillin G for injection (Meiji Seika Co., Ltd.) Company) 0.5 vial, 1 g of streptomycin sulfate for injection (Meiji Seika Co., Ltd.) 0.1 vial, NaHCO 3 (nacalai tesque) 3.7 g were suspended and then sterilized with a 0.22 ⁇ m filter.
  • RPMI-1640 medium is 10.4 g of RPMI-1640 medium (Nissui Pharmaceutical) per 1 L of dH 2 O, 2.38 g of 2- [4- (2-hydroxyethyl) -1-piperazinyl] ethane sulfonic acid (HEPES), 100 U / penicillin. mL, streptomycin 100 mg / L, and NaHCO 3 (Wako Pure Chemical Industries, Ltd.) 2.0 g were suspended, and the pH was adjusted to 6.8 to 7.4 by blowing carbon dioxide, and then sterilized by filtration through a 0.22 ⁇ m filter. Then, 10% of fetal calf serum (FCS) was added and used for cell culture.
  • FCS fetal calf serum
  • PBS suspends 8.0 g of NaCl (nacalai tesque) per 1 L of dH 2 O, 0.2 g of KCl (nacalai tesque), 1.15 g of Na 2 HPO 4 (Wako Pure Chemical Industries, Ltd.), 0.2 g of KH 2 PO 4 (nacalai tesque).
  • the trypsin solution was prepared by suspending 0.05 g of EDTA ⁇ 2Na (Wako Pure Chemical Industries, Ltd.) and 0.02 g of trypsin (nacalai tesque) per 100 mL of PBS, and sterilizing the filter.
  • Equol (Funakoshi)
  • Daidzein (Funakoshi)
  • Genistein (Funakoshi)
  • DMSO nacalai tesque
  • ICI182,780 invitrogen was dissolved in DMSO to a concentration of 10 mM and stored at ⁇ 80 ° C.
  • each cell was adjusted to 2 ⁇ 10 4 cells / mL, seeded in a 24-well plate (nunc TM ), and precultured in a medium containing 10% FCS for 24 hours. Thereafter, the medium was replaced with 2% FCS-containing medium supplemented with ICI182,780 to 1 ⁇ M, treated for 30 minutes, and equol (LC Labolatories) was added to each concentration. After culturing for 72 hours, the number of cells was counted with a cell counter. Student's t test was used for statistical processing of the experimental results.
  • mouse melanoma cell line B16 American Type Culture Collection
  • the mouse melanoma cell line B16 used for the measurement of the cell proliferation inhibitory activity cell number and cell viability of equol against the mouse melanoma cell line B16 was 5% FCS-added DMEM medium at 37 ° C with water vapor saturation. Passaged and maintained under% CO 2 conditions. Cells were maintained in culture in the logarithmic growth phase.
  • mouse melanoma cell line B16 was adjusted to 2 ⁇ 10 4 cells / mL, seeded in a 24-well plate, and pre-cultured in DMEM medium containing 5% FCS for 24 hours.
  • the cells were counted for 72 hours or 24, 48, 72, 96 hours in a 2% FCS-containing DMEM medium containing equol having a final concentration of 0, 1, 5, 10, 25, 50 ⁇ M, and the number of cells was counted using a cell counter. Student's t test was used for statistical processing of the experimental results.
  • B16 cells were adjusted to 2 ⁇ 10 4 cells / mL, seeded in 24-well plates, and pre-cultured in DMEM medium containing 5% FCS for 24 hours. After treatment with 2% FCS-containing DMEM medium containing ICI 182,780 at a final concentration of 1 ⁇ M for 30 minutes, equol was added to a final concentration of 0, 1, 5, 10, 25 ⁇ M. After culturing for 72 hours, the number of cells was counted with a cell counter. Student's t test was used for statistical processing of the experimental results.
  • Mouse Embryo cDNA library ML8000BB (Clontech, Mountain View, CA) was fragmented with restriction enzymes EcoRI and Sph I, and introduced into pLPCX-modified retroviral vector FGS library (MFL-ESP) (1.0 ⁇ g / ⁇ L) 3 ⁇ L, pVSV-G vector (Takara Bio Inc.) (1.0 ⁇ g / ⁇ L) 3 ⁇ L and FuGENE 6 Transfection Reagent (Roche) 6 ⁇ L were mixed and introduced into each packaging cell.
  • MFL-ESP pLPCX-modified retroviral vector FGS library
  • pVSV-G vector (Takara Bio Inc.)
  • FuGENE 6 Transfection Reagent (Roche) 6 ⁇ L were mixed and introduced into each packaging cell.
  • the packaging cell culture supernatant is passed through a filter (0.22 ⁇ m), and polybrene (Hexadimethrine bromide) (SIGMA-ALDRICH) is added to a final concentration of 8 ⁇ g / mL, and then adjusted to 1 ⁇ 10 4 cells / mL the previous day. Then, the cells were seeded in a 5 mL dish and sprinkled on B16 cells that had been cultured in a DMEM medium containing 5% FCS to infect the virus in the culture supernatant. To the packaging cells, a fresh 10% FCS-containing DMEM medium was added, and the culture was continued. This operation was performed four times every 12 hours.
  • polybrene Hexadimethrine bromide
  • the infected B16 cells were adjusted to 1 ⁇ 10 4 cells / mL, seeded in a 96-well plate (nunc TM ), and recovered for 24 hours in 2% FCS-containing DMEM medium. After recovery culture, the cells were cultured in a DMEM medium containing 1% FCS in a medium containing 80 ⁇ M equol to obtain equol-resistant B16 cells.
  • pLPCX-S (5'-GAT CCG CTA GCG CTA CCG GAC TCA GAT-3 ', SEQ ID NO: 7) and pLPCX-A (5'-CTT TCA TTC CCC CCT TTT TCT GGA GAC-3 ', And the primer set of SEQ ID NO: 8) was used by adjusting to 20 ⁇ M with TE buffer (10 mM Tris (nacalai tesque) -HCl, 1 mM EDTA, pH 8.0). The same applies to the primers used in the following PCR.
  • the introduced cDNA fragment was amplified by PCR using TE buffer.
  • TGRADIENT Biometra (registered trademark ) , Germany) or PC320 (ASTEC, Fukuoka) was used.
  • PCR is 0.5 ⁇ L of each primer (sense primer and antisense primer) per sample, dNTP mix 1 ⁇ L, 10 x buffer 1 ⁇ L, Ex taq 0.1 ⁇ L and dH 2 O 5.9 ⁇ L purchased from Takara Bio Inc. (Shiga) 1 ⁇ L of the template was suspended, initial denaturation at 94 ° C. for 2 minutes, denaturation reaction at 94 ° C. for 30 seconds, annealing at 67.1 ° C.
  • the agarose gel was prepared by dissolving Agarose S (Wako Pure Chemical Industries, Ltd.) at a concentration of 1 to 1.5% in TAE buffer.
  • TAE buffer 242 g of Tris (nacalaitesque) -HCl per 1 L, 37.2 g of EDTA 2Na, 57.1 mL of glacial acetic acid (nacalai tesque) are dissolved in dH 2 O, adjusted to pH 8.5, and then filled up to 1 L with dH 2 O.
  • the mixture was sterilized by autoclaving to prepare a 50 ⁇ TAE buffer, which was diluted 50 times with dH 2 O and used.
  • GelMate (TOYOBO) was used for the electrophoresis tank.
  • SOB is 3.0 g of Bacto Tryptone (Wako Pure Chemical Industries, Ltd.), 0.75 g of Bacto Yeast Extract (Wako Pure Chemical Industries, Ltd.), 0.078 g of NaCl, 0.027 g of KCl, and dH 2 O per 150 ml. Added to 148.5 ml. After cooling the solution to room temperature autoclaved, which 2M Mg 2+ solution separately autoclaved and (12.324g MgSO 4 ⁇ 7H 2 O of (Wako Pure Chemical Industries, Ltd.) + 10.165g of MgCl 2 ⁇ 6H 2 1.5 ml of O (nacalai tesque) was mixed with water to make 50 ml and sterilized by autoclaving).
  • TB is mixed with 0.3 g of PIPES (Wako Pure Chemical Industries, Ltd.), 0.22 g of CaCl 2 (Wako Pure Chemical Industries, Ltd.) and 1.86 g of KCl in 100 ml of water per 100 ml, and then the pH is adjusted to KOH (nacalai tesque) adjusted to 6.7. After adding 1.09 g of MnCl 2 .4H 2 O (Wako Pure Chemical Industries, Ltd.), the total amount was adjusted to 100 ml, filter sterilized (0.22 ⁇ m), and stored at 4 ° C. E. coli was cultured using ampicillin-containing liquid LB medium or ampicillin-containing LB plates.
  • Ampicillin-containing liquid LB medium was filled with 1 g of Bacto Tryptone 10 g, Bacto Yeast Extract 5 g, and NaCl 10 g to 1 L with dH 2 O to a pH of 7.0, and autoclaved. Before use, 150 mg / ml ampicillin was added at a 1000-fold dilution.
  • the LB plate was added with 2 g of Bacto Tryptone, 1 g of Bacto Yeast Extract, 2 g of NaCl, and 5 g of Bacto Agar (Wako Pure Chemical Industries, Ltd.) per 200 ml, filled up to 200 ml with dH2O and sterilized by autoclave.
  • SOC 100 mL SOB per 100 mL, 1 mL of 2M glucose solution (18.016 g mixed in water and autoclaved to 50 mL), dispensed, and stored at room temperature or 4 ° C. It was centrifuged (1000 ⁇ g) for 5 minutes at room temperature to remove 900 ⁇ L of supernatant.
  • the Escherichia coli was applied to an ampicillin-containing LB plate and cultured at 37 ° C. overnight, and the colonies that had risen were applied to an ampicillin-containing LB plate coated with x-gal and IPTG for blue-white determination.
  • the plate was used by applying 25 ⁇ L of 20 mg / ml X-gal and 25 ⁇ L of 0.1M IPTG to an LB plate containing ampicillin.
  • 20 mg / ml X-gal 100 mg of X-gal was dissolved in 5 ml of NN-dimethyl-formamide (Wako Pure Chemical Industries, Ltd.) and stored at -20 ° C.
  • IPTG For 0.1M IPTG, 1 g of IPTG (Wako Pure Chemical Industries, Ltd.) was dissolved in 4.2 ml of dH 2 O and stored at ⁇ 20 ° C. After overnight culture at 37 ° C, a white colony that has risen as a template, 0.5 ⁇ L each of primer set of pLPCX-S and pLPCX-A, 2.5 mM dNTP mix 1 ⁇ L, 25 mM MgCl 2 purchased from Fermentas UAB 1 ⁇ L of 10 ⁇ buffer with (NH 4 ) 2 SO 4 , 0.1 ⁇ L of Taq DNA Polymerase (Recombinant) and 4.9 ⁇ L of dH 2 O were suspended in appropriate amounts.
  • PCR was performed at an initial denaturation of 94 ° C. for 2 minutes, a denaturation reaction at 94 ° C. for 30 seconds, an annealing at 67.1 ° C. for 30 seconds, an extension reaction at 72 ° C. for 2 minutes, and a denaturation reaction, annealing, and extension reaction were performed for 30 cycles. After PCR, 1 ⁇ L of BPB was added to each sample, and electrophoresis was performed on a 1.5% agarose gel.
  • Plasmid DNA was recovered from the clones in which the insert was confirmed using LaboPass TM Mini (LaboPass) and suspended in TE buffer. Using the recovered plasmid DNA as a template, an extension reaction for sequencing was performed. The reaction was performed using the BigDye Terminator v3.1Cycle Sequencing Kit according to the Big Dye Terminator cycle sequencing protocol. The reaction solution was mixed with 3.5 ⁇ L of buffer, 3.2 pmol of primer, appropriate amount of template, 1.0 ⁇ L of BigDye Terminator v3.1Cycle Sequencing Kit (premix), and adjusted to 20 ⁇ L with dH 2 O. The reaction was performed at initial denaturation 96 ° C. for 1 minute, denaturation reaction 96 ° C.
  • T7 (5'-CTA ATA CGA CTC ACT ATA GGG C-3 ', SEQ ID NO: 9)
  • LacZ (5'-AGA TAT GAC CAT GAT TAC GCC-3', SEQ ID NO: 10) are used as primers.
  • the buffer was adjusted to 1.0 pmol / ⁇ L before use. Thereafter, the base sequence was determined with an ABI3130xl DNA sequencer. The equol resistance causative gene was identified from the nucleotide sequence information.
  • HeLa cells in which expression of Papd5 was knocked down Construction of human cervical cancer cell line HeLa in which Papd5 was knocked down was performed as follows.
  • a vector shPapd5-RNA
  • a pLKO.1-puro vector SIGMA-ALDRICH
  • SIGMA-ALDRICH 5′-GCCACATATAGAGATTGGATA-3
  • a vector was added to the cell, and the cell was collected 48 hours later, seeded in a 96-well plate, and selected with puromycin (invivogen).
  • the reagents used were those prepared at the time of identification of equol's anticancer activity-related gene. 1 mL of TRIzol® Reagent was added to the cells and left at room temperature for 5 minutes. Next, 200 ⁇ L of chloroform was added and stirred, allowed to stand at room temperature for 3 minutes, and then centrifuged (12000 ⁇ g) at 4 ° C. for 15 minutes.
  • a primer for amplifying Papd5, Papd5-F (5'-CACAAAGTCGCAGATGAGGA-3 ', SEQ ID NO: 12), Papd5-R (5'-TGGACTGTGTGGCAGAAGAG-3', SEQ ID NO: 13) becomes 10 mM.
  • a solution diluted with TE buffer was used. 2 ⁇ L of the prepared cDNA, 1 ⁇ L of each primer, and 12.5 ⁇ L of SYBR Premix Ex Taq II (2 ⁇ , SYBR PrimerScript RT-PCR Kit II) were mixed and set in the Thermal Cycler Dice Real Time System for reaction. PCR conditions were initial denaturation at 95 ° C. for 10 seconds, then 95 ° C. for 5 seconds and 60 ° C. for 20 seconds. Similarly, the expression level of GAPDH as an internal standard was examined in the same manner as before.
  • HeLa cells into which a control vector (scramble-shRNA) was constantly introduced were also prepared.
  • Papd5-shRNA-introduced HeLa cells and scramble-shRNA-introduced HeLa cells created in 5 of Papd5 on equol sensitivity of HeLa cells are subcultured and maintained in the same manner as WildType HeLa cells in DMEM medium containing 10% FCS. did.
  • HeLa cells were seeded in a 24-well plate at 2 ⁇ 10 4 cells / mL and pre-cultured in DMEM medium containing 10% FCS for 24 hours. Thereafter, the cells were replaced with 10% FCS-containing DMEM medium containing equol having a final concentration of 1,5,10,25 ⁇ M, cultured for 72 hours, and the number of cells was counted with a cell counter. Student's t test was used for statistical processing of the experimental results.
  • B16 cells in which expression of Papd5 was knocked down were performed as follows.
  • a vector for knocking down the expression of Papd5
  • a pLKO.1-puro vector SIGMA-ALDRICH
  • SIGMA-ALDRICH 5′-CTGACGAGGATTCCGTGAAAG-3 ′
  • B16 cells were seeded at 2 ⁇ 10 4 cells / mL, 24 hours later, 2 ⁇ g of vector and 6 ⁇ L of Fugene 6 were mixed with DMEM to a total volume of 200 ⁇ L and added to the cells.
  • a vector was added to the cell, and the cell was collected 48 hours later, seeded in a 96-well plate, and selected with puromycin (invivogen).
  • puromycin invivogen
  • knockdown of Papd5 was confirmed as follows.
  • the reagents used were those prepared at the time of identification of equol's anticancer activity-related gene. 1 mL of TRIzol (Registered Trademark) Reagent was added to the cells and left at room temperature for 5 minutes. Next, 200 ⁇ L of chloroform was added and stirred, allowed to stand at room temperature for 3 minutes, and then centrifuged (12000 ⁇ g) at 4 ° C. for 15 minutes.
  • RT-PCR is 10 mM of primers that amplify Papd5, Papd5-F (5′-GGAGGTAGTGAGCAGGATCG-3 ′, SEQ ID NO: 15), Papd5-R (5′-ATCCTCGTCAGCGACTTTGT-3 ′, SEQ ID NO: 16).
  • a solution diluted with TE buffer was used.
  • PCR was performed at an initial denaturation of 94 ° C. for 2 minutes, a denaturation reaction at 94 ° C. for 1 minute, an annealing at 60 ° C. for 1 minute, an extension reaction at 72 ° C. for 1 minute, and a denaturation reaction, annealing, and extension reaction were performed for 35 cycles.
  • ⁇ -Actin as an internal standard was examined in the same manner as before. After PCR, 1 ⁇ L of BPB was added, and electrophoresis was performed on a 1.5% agarose gel to which EtBr Solution (Wako Pure Chemical Industries, Ltd.) was added at a 10,000-fold dilution.
  • B16 cells into which a control vector (scramble-shRNA) was constantly introduced were also prepared.
  • B16 cells were seeded on a 24-well plate at 2 ⁇ 10 4 cells / mL and pre-cultured in DMEM medium containing 5% FCS for 24 hours. Thereafter, the medium was replaced with 2% FCS-containing DMEM medium containing equol having a final concentration of 10 ⁇ M and cultured for 72 hours, and the number of cells was counted with a cell counter. Student's t test was used for statistical processing of experimental results.
  • Functional food factors equol, genistein (Tokyo Kasei Kogyo), daidzein (Tokyo Kasei Kogyo), EGCG
  • Papd5-shRNA-introduced HeLa cells created in Papd5's involvement 5 on the cell growth inhibitory action of functional food factors The effect of was examined. Equol, genistein and daidzein were dissolved in DMSO to 100 mM and stored at -30 ° C.
  • EGCG Teavigo
  • HeLa cells were seeded on a 24-well plate at 2 ⁇ 10 4 cells / mL and pre-cultured in DMEM medium containing 10% FCS for 24 hours. Thereafter, the cells were replaced with 2% FCS-containing DMEM medium containing each sample at final concentrations of 1, 5, 10, and 20 ⁇ M, cultured for 72 hours, and the number of cells was counted with a cell counter. Student's t test was used for statistical processing of the experimental results.
  • GSE gene suppressor elements
  • the mouse melanoma cell line B16 was seeded on a 24-well culture plate at 2 ⁇ 10 4 cells / mL and cultured for 72 hours in a medium supplemented with equol or the number of cells was measured every 24 hours (FIG. 2).
  • this cell line was found to be a cancer cell line to which the GSE method can be applied because its growth was remarkably suppressed by equol (FIG. 2).
  • Papd5-shRNA Papd5-specific shRNA expression vector
  • scramble-shRNA human cervical cancer cell line HeLa into which expression was constantly introduced
  • HeLa cells introduced with Papd5-shRNA or scramble-shRNA were seeded in a 24-well culture plate at 2 x 10 4 cells / mL, cultured for 72 hours in a medium supplemented with equol of each concentration, the number of cells was measured, and equol The sensitivity to was investigated. As a result, HeLa cells into which scramble-shRNA had been introduced were inhibited by equol. On the other hand, the sensitivity to equol completely disappeared in HeLa cells in which Papd5-shRNA was introduced to reduce the amount of Papd5 expression (FIG. 4b).
  • B16 cells transfected with Papd5-shRNA or scramble-shRNA were seeded in a 24-well culture plate at 2 x 10 4 cells / mL, cultured for 72 hours in a medium supplemented with equol of each concentration, the number of cells was measured, and equol The sensitivity to was investigated. As a result, B16 cells into which scramble-shRNA had been introduced were inhibited by equol. On the other hand, in B16 cells in which Papd5-shRNA was introduced and the expression level of Papd5 was reduced, the sensitivity to equol completely disappeared (FIG. 5b).
  • Equol was found to suppress cell growth of human cervical cancer cell line HeLa, human prostate cancer cell line PC-3, and mouse melanoma cell line B16. Furthermore, it was revealed that ER is not involved in these cell growth inhibitory activities.
  • Papd5 was identified as a gene candidate responsible for equol's cytostatic activity from B16 cells, where Equol exhibits ER-independent growth-suppressing activity. Papd5 is a gene involved in functional expression of ER-independent equol. It was thought that. When the expression of Papd5 in B16 cells and HeLa cells was specifically reduced using RNA interference, the sensitivity of equol to cytostatic activity disappeared from both cancer cell lines.
  • Papd5 is an essential gene for functional expression of ER independent of equol. It was also revealed that Papd5 is an essential gene in the anticancer activity of daidzein, the precursor of equol.
  • a mouse melanoma cell line B16 cell in which expression of Papd5 was knocked down was obtained by introducing the Papd5-shRNA expression vector, and 5 x 10 5 cells / 100 mL PBS per mouse was added to C57BL. Cancer was transplanted by subcutaneous injection into the back of / 6J mice (male, 6 weeks old). Thereafter, equol 0.8 mg dissolved in 400 mL of 1% DMSO-H 2 O per mouse was forcibly orally administered once every two days, and changes in tumor volume over time were measured. On day 24 after cancer transplantation, the mice were sacrificed and the tumor weight was measured. The control group received 1% DMSO-H 2 O as a solvent.
  • Equal cell growth-promoting action on cancer cells knocked down in Papd5 expression In the same manner as in the previous example, a mouse melanoma cell line B16 cell or Scramble in which Papd5-shRNA expression vector was introduced and Papd5 expression was knocked down was introduced. -Equal concentrations of each concentration were added to shRNA-introduced B16 cells and cultured for 72 hours, and the number of cells was counted. The test group to which only the equal solvent (DMSO) was added was used as a control, and the relative fine number (%) was calculated with the number of control cells as 100%.
  • DMSO equal solvent

Abstract

Disclosed is a gene (or product thereof), "Pap associated domain containing 5" (Papd5), identified as a gene necessary for equol to exhibit anticancer activity, for use as a biomarker for diagnosing the effectiveness, in a subject, of an anticancer substance selected from a group comprising equol, daidzein, and analogs thereof. Also disclosed is a product for detecting a biomarker using PCR, a DNA array, ELISA, a protein array, mass spectrometry, or immunochromatography. Further disclosed is a method for determining the effectiveness, in a subject, of an anticancer substance selected from a group comprising equol, daidzein, and analogs thereof. Said method includes a step for detecting the transcription or expression of Papd5 in a sample taken from the subject.

Description

イソフラボン類の作用に関連する遺伝子Genes related to the action of isoflavones
 本発明は、イソフラボン類、特にエクオールが、対象に作用する際に依拠する遺伝子に関する。より特定すれば、本発明はPapd5に関する。本発明により、Papd5又はその産物は、がんに関連したバイオマーカーとして利用することができる。本発明は、医療、代替医療、並びに医薬品、食品及び化粧品の研究開発の分野で有用である。 The present invention relates to a gene on which isoflavones, particularly equol, depend upon acting on a subject. More particularly, the present invention relates to Papd5. According to the present invention, Papd5 or a product thereof can be used as a biomarker related to cancer. The present invention is useful in the fields of medicine, alternative medicine, and research and development of pharmaceuticals, foods and cosmetics.
 がんは1981年以降、わが国の死因第1位の疾患であり、その数は年々増加の一途をたどっている。現在、がんに対する有効な治療法はまだ確立されていないと言える。こうした中、我々は、がんの予防や治療に役立つ物質として食品成分に着目している。がんに有効な食品については現在までに多くの報告がなされている。肉や卵に含まれるConjugatedLinoleic Acid (CLA)や緑茶葉中の主要成分であるEpigallocatechin-3-O-gallate(EGCG)に抗がん作用が報告されている(非特許文献1、2)。また、イソフラボン類であるgenisteinやdaidzeinにも抗がん作用が報告されている(非特許文献3)。 Cancer has been the number one cause of death in Japan since 1981, and the number of cancers has been increasing year by year. It can be said that an effective treatment for cancer has not been established yet. Under these circumstances, we are focusing on food ingredients as substances useful for the prevention and treatment of cancer. There have been many reports on foods effective for cancer. Anti-cancer activity has been reported to Conjugated Linoleic Acid (CLA) contained in meat and eggs and Epigallocatechin-3-O-gallate (EGCG), which is a major component in green tea leaves (Non-patent Documents 1 and 2). In addition, anticancer activity has been reported to isoflavones such as genistein and daidzein (Non-patent Document 3).
 イソフラボン類は大豆、主に大豆胚芽に多く含まれるフラボノイドの一種であり、genistein、daidzein、glyciteinの3種類が存在する。味噌、納豆等の大豆発酵食品中にはこれらがアグリコンとして多く含まれるが、ほとんどの食品中では配糖体の状態で含まれる。配糖体は、消化酵素や腸内細菌の持つβ-グルコシダーゼにより加水分解され、アグリコンが生成される。また、daidzeinはある種の腸内細菌によってequolへ代謝される。日本人の約半分、西洋人の約20%が、daidzeinをequolへと変換する腸内細菌を有していると言われている。 Isoflavones are a kind of flavonoid contained in soybean, mainly soybean germ, and there are three kinds of genistein, daidzein and glycitein. In soybean fermented foods such as miso and natto, these are contained in large amounts as aglycones, but in most foods, they are contained in the state of glycosides. Glycosides are hydrolyzed by digestive enzymes and β-glucosidase of enteric bacteria to produce aglycones. Daidzein is also metabolized to equol by certain intestinal bacteria. About half of the Japanese and about 20% of Westerners are said to have enteric bacteria that convert daidzein to equol.
 イソフラボン類は、多彩な生理機能を有しており、閉経後の女性において更年期障害の改善作用や骨粗鬆症改善効果(非特許文献4)等が報告されている。がんに対しては、乳がん(非特許文献5)や前立線がん(非特許文献6)のようにホルモン依存性のがんに対して、抗がん作用を発揮することが広く知られている。イソフラボン類は、分子構造がステロイドホルモンの一種であるestrogenに類似しているため、生体内でestrogen receptor(ER)に結合してエストロゲン様作用を、又はエストロゲンと拮抗して抗エストロゲン作用を発揮すると考えられている。 Isoflavones have a variety of physiological functions and have been reported to improve menopause and osteoporosis (non-patent document 4) in postmenopausal women. For cancer, it is widely known that it exhibits anticancer activity against hormone-dependent cancers such as breast cancer (Non-patent document 5) and prostate cancer (Non-patent document 6). It has been. Isoflavones are similar in structure to estrogen, which is a type of steroid hormone, and therefore, when they bind to estrogen-receptor (ER) in vivo, they exhibit estrogen-like action or antagonize estrogen and exert antiestrogenic action. It is considered.
 一方において、イソフラボン類のER非依存的作用の存在が注目されている。例えば、genisteinは、チロシンキナーゼやトポイソメラーゼを阻害することにより、胃がん、メラノーマ、膵臓がん等のホルモン非依存性のがんに対して抗がん作用を発揮する(非特許文献7)。また、genisteinは胸腺を委縮させるが、その作用の一部はER非依存的な作用であることが報告されている(非特許文献8)。一方、equolの機能として抗アレルギー機能(非特許文献9)や血管弛緩機能(非特許文献10)もER非依存性の作用であることが明らかとなっている。しかしながら、こうしたER非依存的作用のメカニズムについては不明である。 On the other hand, the existence of ER-independent action of isoflavones has been attracting attention. For example, genistein exhibits an anticancer action against hormone-independent cancers such as gastric cancer, melanoma, and pancreatic cancer by inhibiting tyrosine kinase and topoisomerase (Non-patent Document 7). Moreover, although genistein contracts the thymus, it is reported that a part of its action is an ER-independent action (Non-patent Document 8). On the other hand, it has been clarified that an antiallergic function (Non-Patent Document 9) and a vascular relaxation function (Non-Patent Document 10) are ER-independent actions as equol functions. However, the mechanism of such ER-independent action is unclear.
 抗がん作用を示す食品因子をがんの予防、治療、再発予防などの代替医療の手段として利用する試みがあるが、一方でがんの増悪化を招く可能性などの弊害が指摘されている。イソフラボン類に関するin vitroの報告として、ヒトがん細胞に対してアポトーシスの誘導や増殖抑制作用(前掲非特許文献5)を示す一方、発がん促進を示唆する作用が報告されている(非特許文献11)。またin vivo動物実験において、臓器によっては発がん促進作用を示す等の報告がある(非特許文献12及び13)。 Attempts have been made to use food factors that exhibit anticancer effects as alternative medicines such as cancer prevention, treatment, and recurrence prevention, but adverse effects such as the possibility of cancer progression have been pointed out. Yes. As an in vitro report on isoflavones, it has been reported to induce apoptosis and inhibit growth of human cancer cells (Non-Patent Document 5), while suggesting an effect of promoting carcinogenesis (Non-Patent Document 11). ). In in vivo animal experiments, some organs have been reported to have a carcinogenic promoting effect (Non-patent Documents 12 and 13).
 他方、遺伝子Pap associated domain containing 5(Papd5)については、トポイソメラーゼをターゲットにした抗がん剤であるカンプトテシンの効果が、このPapd5の存在により低下することが報告されているに過ぎない(非特許文献14)。 On the other hand, for the gene Pap associated domain containing 5 (Papd5), the effect of camptothecin, an anticancer agent targeting topoisomerase, has only been reported to be reduced by the presence of Papd5 (Non-patent literature). 14).
 イソフラボン類をがん予防・治療剤として安全かつ効果的に活用するためには、イソフラボン類が抗がん作用を示すがんを個別に見極める必要がある。一方、機能性食品因子の生理作用に対する感受性には、医薬品同様、個人差や臓器差があると認識されつつあるが、その差が何に起因するのか多くの場合不明である。この原因の一つは、食品因子の機能性発現を担う生体側の遺伝子 (食品因子感知遺伝子)がほとんど明らかにされていないことである。 In order to use isoflavones safely and effectively as cancer preventive / therapeutic agents, it is necessary to individually identify cancers for which isoflavones exhibit anticancer effects. On the other hand, the sensitivity to the physiological effects of functional food factors is being recognized as being different between individuals and organs, as is the case with pharmaceuticals, but in many cases it is unclear what causes these differences. One of the causes is that almost no gene gene (food factor-sensing gene) on the living body responsible for the functional expression of food factors has been clarified.
 本発明者らは、緑茶カテキン EGCG の場合、その抗がん作用が発揮されるために不可欠ながん細胞側に発現する遺伝子(EGCG感知遺伝子)として67 kDa laminin receptor (67 LR) を同定してきた(Tachibana H, Koga K, Fujimura Y, Yamada K.  A receptor for green tea polyphenol EGCG.  Nat Struct Mol Biol. 11, 380-381 (2004))。今般、equol のER 非依存的な抗がん作用が発揮されるために必須である遺伝子を同定すべく、鋭意研究した。まず、本発明者は、イソフラボン類の一種であるequolが、前立線がん細胞株 PC-3 やヒト子宮頸がん細胞株 HeLaの増殖を抑制することを見出した。さらにエストロゲン受容体(ER)アンタゴニストであるICI 182,780存在下でも、このequolの細胞増殖抑制作用が阻害されないことから、この作用がER非依存性であることを明らかにした(実施例及び図1)。さらにgenetic suppressor elements (GSE) 法を用いて、equolのがん細胞増殖抑制活性や細胞致死活性の発現を担う遺伝子の同定を試みた。その結果、equolのがん細胞増殖抑制活性が発揮されるために必須である遺伝子として、Pap associated domain containing 5(Papd5)を同定し、本発明を完成した。 In the case of green tea catechin EGCG, the present inventors have identified 67 kDa laminin receptor (67 LR) as a gene (EGCG sensing gene) expressed on the side of cancer cells indispensable for its anticancer activity. (Tachibana H, Koga K, Fujimura Y, Yamada K. A receptor for green tea polyphenol EGCG. Nat Struct Mol Biol. 11, 380-381 (2004)). Recently, intensive research was conducted to identify genes essential for equolequ to exert its ER independent anticancer activity. First, the present inventor found that equol, a kind of isoflavones, suppresses the growth of the prostate cancer cell line PC-3 and the human cervical cancer cell line HeLa. Furthermore, even in the presence of ICI 182,780, an estrogen receptor (ER) antagonist, the cell growth inhibitory effect of this equol was not inhibited, so it was clarified that this effect is ER-independent (Example and FIG. 1) . Furthermore, we attempted to identify genes responsible for the expression of equol's cancer cell growth-inhibiting activity and cell-killing activity using the genetic-suppressor-elements- (GSE) method. As a result, Pap associated domain containing 5 (Papd5) was identified as a gene essential for equol to exert its cancer cell proliferation inhibitory activity, and the present invention was completed.
 本発明は、以下を提供する。
[1] エクオール(equol)、ダイゼイン(daidzein)及びそれらの類縁体からなる群より選択される抗がん物質の、対象における有効性を診断するためのバイオマーカーであって、Papd5又はその産物からなるバイオマーカー。
[2] 対象から採取した試料におけるPapd5の転写又は発現を検出する工程を含む、エクオール、ダイゼイン及びそれらの類縁体からなる群より選択される抗がん物質の対象における有効性の判定方法。
[3] [1]に記載のバイオマーカーを検出するための、オリゴヌクレオチド、ペプチド、抗体を含む、PCR用、DNAアレイ用、ELISA用、プロテインアレイ用、質量分析用、又は免疫クロマトグラフィー用の、製品。
[4] Papd5の転写又は発現の検出を、 PCR法、DNAアレイ法、ELISA法、プロテインアレイ法、質量分析法、又は免疫クロマトグラフィー法により行う、[2]に記載の方法。
[5] 対象におけるPapd5の変異の有無、又は転写若しくは発現の検出を指標とした、エクオール又はダイゼインにより改善する疾患又は状態の処置のための、医薬品、食品若しくは化粧品の、又はその適用計画の、設計方法。
[6] 天然物、食品、化粧品、医薬品又は化合物である試験物を、対象、対象から採取した試料又はPapd5を有しておりPapd5の転写又は発現が可能な細胞に適用し、対象又は試料におけるPapd5の転写量又は発現量が変化するか否かを検出する工程を含む、がんの処置に有効な物をスクリーニングする方法。
[7] エクオール、ダイゼイン又はそれらの類縁体と組み合わせて対象に適用するのに適した物をスクリーニングする、6に記載の方法。
The present invention provides the following.
[1] A biomarker for diagnosing the effectiveness of an anticancer substance selected from the group consisting of equol, daidzein and their analogs in a subject, from Papd5 or a product thereof A biomarker.
[2] A method for determining the effectiveness of an anticancer substance selected from the group consisting of equol, daidzein, and analogs thereof, comprising a step of detecting the transcription or expression of Papd5 in a sample collected from the subject.
[3] For detecting the biomarker according to [1], including oligonucleotide, peptide, antibody, for PCR, DNA array, ELISA, protein array, mass spectrometry, or immunochromatography , Product.
[4] The method according to [2], wherein the detection of transcription or expression of Papd5 is performed by PCR, DNA array, ELISA, protein array, mass spectrometry, or immunochromatography.
[5] Drugs, foods or cosmetics, or their application plans for the treatment of diseases or conditions ameliorated by equol or daidzein using the presence or absence of Papd5 mutation in the subject, or detection of transcription or expression as an index, Design method.
[6] Apply a test product that is a natural product, food, cosmetic, pharmaceutical product or compound to a subject, a sample collected from the subject, or a cell that has Papd5 and is capable of transcription or expression of Papd5. A method for screening for an effective treatment for cancer, comprising a step of detecting whether the amount of transcription or expression of Papd5 changes.
[7] The method according to 6, wherein an object suitable for application to a subject in combination with equol, daidzein or an analog thereof is screened.
図1は、各種がん細胞に対するequolの細胞増殖抑制活性と ER 依存性を示したグラフである。ヒト子宮頸がん細胞株HeLa又はヒト前立腺がん細胞株 PC-3 を 2 x 104 cells/mLにて24穴培養プレートに播種し、24時間前培養した。ERアンタゴニストである ICI182,780 を1 mM になるよう添加した培地で 30 分間処理した後、equolを添加して 72 時間培養し、細胞数を計測した。FIG. 1 is a graph showing the cell growth inhibitory activity and ER dependence of equol against various cancer cells. Human cervical cancer cell line HeLa or human prostate cancer cell line PC-3 was seeded in a 24-well culture plate at 2 × 10 4 cells / mL and pre-cultured for 24 hours. After treatment with a medium supplemented with 1 mM of ICI182,780, which is an ER antagonist, for 30 minutes, equol was added and cultured for 72 hours, and the number of cells was counted. 図2は、マウスメラノーマ細胞株 B16 に対するequolの細胞増殖抑制活性を示したグラフである。マウスメラノーマ細胞株 B16 を 2 x 104 cells/mL で 24 穴培養プレートに播種し、 equol を添加した培地で 72 時間培養後、細胞数を計測した。FIG. 2 is a graph showing the cytostatic activity of equol against mouse melanoma cell line B16. The mouse melanoma cell line B16 was seeded at 2 × 10 4 cells / mL in a 24-well culture plate, cultured for 72 hours in a medium supplemented with equol, and the number of cells was counted. 図3は、B16 細胞のequol感受性に及ぼすICIの影響を示したグラフである。B16 細胞を 2 x 104cells/mL で 24 穴プレートに播種し、ICI182,780 を終濃度 1 mM で添加した培地で 30 分間前処理した後、各濃度の equol  を添加した。 72 時間培養後、細胞数を測定した。ICI : ER 阻害剤 ICI182,780FIG. 3 is a graph showing the effect of ICI on the equol sensitivity of B16 cells. B16 cells were seeded in a 24-well plate at 2 × 10 4 cells / mL, pretreated for 30 minutes with a medium supplemented with ICI182,780 at a final concentration of 1 mM, and equol at each concentration was then added. After culturing for 72 hours, the number of cells was measured. ICI: ER inhibitor ICI182,780 図4は、HeLa 細胞の equol 感受性に対する Papd5 発現の関与について示したグラフである。a) Scramble-shRNA 発現ベクター導入 HeLa 細胞又は Papd5-shRNA 発現ベクター導入 HeLa 細胞から RNA を回収し cDNA 合成後、 Real time RT-PCR によって Papd5 mRNA 発現量を検討した。b) Scramble-shRNA あるいは Papd5-shRNA 発現ベクターを導入した HeLa 細胞を 2 x 104 cells/mL で 24 穴 培養プレート に播種し、各濃度の equol を添加した培地で 72 時間培養し、細胞数を測定した。scramble:scramble-shRNA 発現ベクター導入 HeLa 細胞、siPapd5:Papd5-shRNA 発現ベクター導入 HeLa 細胞FIG. 4 is a graph showing the involvement of Papd5 expression on the equol sensitivity of HeLa cells. a) Scramble-shRNA expression vector introduced HeLa cells or Papd5-shRNA expression vector introduced RNA was collected from HeLa cells, and after cDNA synthesis, the expression level of Papd5 mRNA was examined by Real time RT-PCR. b) HeLa cells transfected with Scramble-shRNA or Papd5-shRNA expression vector were seeded in a 24-well culture plate at 2 x 10 4 cells / mL, and cultured for 72 hours in a medium supplemented with each concentration of equol. It was measured. scramble: HeLa cells introduced with scramble-shRNA expression vector, siPapd5: HeLa cells introduced with Papd5-shRNA expression vector 図5は、B16 細胞の equol 感受性に対する Papd5 発現の関与について示したグラフである。a) Scramble-shRNA 発現ベクター導入 B16 細胞又は Papd5-shRNA 発現ベクター導入 B16 細胞から RNA を回収し cDNA 合成後、 RT-PCR によって Papd5 mRNA 発現量を検討した。b) Scramble-shRNA あるいは Papd5-shRNA 発現ベクターを導入した B16 細胞を 2 x 104 cells/mL で 24 穴 培養プレート に播種し、equol を添加した培地で 72 時間培養し、細胞数を測定した。FIG. 5 is a graph showing the involvement of Papd5 expression on the equol sensitivity of B16 cells. a) RNA was collected from Scramble-shRNA expression vector-introduced B16 cells or Papd5-shRNA expression vector-introduced B16 cells, and after cDNA synthesis, the expression level of Papd5 mRNA was examined by RT-PCR. b) B16 cells transfected with Scramble-shRNA or Papd5-shRNA expression vector were seeded at 2 x 10 4 cells / mL in a 24-well culture plate, cultured in medium supplemented with equol for 72 hours, and the number of cells was measured. 図6は、機能性食品因子のがん細胞増殖抑制作用における Papd5 発現の関与について示したグラフである。Scramble-shRNA あるいは Papd5-shRNA 発現ベクターを導入した HeLa 細胞に、equol、 genistein、 daidzein、 EGCG をそれぞれ各濃度添加し、 72 時間培養した後、細胞数を測定した。FIG. 6 is a graph showing the involvement of Papd5 expression in the cancer cell growth inhibitory action of functional food factors. Each concentration of equol, genistein, zedaidzein, and EGCG was added to HeLa cells into which Scramble-shRNA or Papd5-shRNA expression vector was introduced, and the number of cells was measured after culturing for 72 hours. 図7は、Papd5 発現をノックダウンした腫瘍に対するエクオールの経口摂取の影響を示したグラフである。Papd5-shRNA 発現ベクターを導入した細胞をマウス背部に皮下注射することでがんを移植し、その後、equalを経口投与し、腫瘍体積の経時変化を測定した。FIG. 7 is a graph showing the effect of oral intake of equol on tumors knocked down by Papd5 expression. Cancer was transplanted by subcutaneously injecting cells into which the Papd5-shRNA5- expression vector had been introduced into the back of the mouse, and then equal was orally administered, and the change in tumor volume over time was measured. 図8は、Papd5 発現をノックダウンしたがん細胞に対するエクオールの細胞増殖促進作用について示したグラフである。Papd5-shRNA 発現ベクターを導入したB16 細胞(siPapd5)、又はScramble-shRNAを導入したB16細胞(scramble)に、各濃度のequalを添加し、細胞数を計測した。FIG. 8 is a graph showing the cell growth promoting effect of equol on cancer cells knocked down by Papd5pd expression. Each concentration of equal was added to B16 cells (siPapd5) introduced with Papd5-shRNA expression vector or B16 cells (scramble) introduced with Scramble-shRNA, and the number of cells was counted. 図9Aは、本発明に関連するヌクレオチド配列、アミノ酸配列を示した図である。FIG. 9A is a view showing nucleotide sequences and amino acid sequences related to the present invention. 図9Bは、本発明に関連するヌクレオチド配列、アミノ酸配列を示した図である。FIG. 9B shows the nucleotide sequence and amino acid sequence related to the present invention. 図9Cは、本発明に関連するヌクレオチド配列、アミノ酸配列を示した図である。FIG. 9C is a view showing a nucleotide sequence and an amino acid sequence related to the present invention.
 本発明は、Papd5又はその産物の、エクオール(equol)、ダイゼイン(daidzein)及びそれらの類縁体からなる群より選択される抗がん物質の、対象における有効性を診断するためのバイオマーカーとしての使用に関する。 The present invention is a biomarker for diagnosing the effectiveness of Papd5 or a product thereof in a subject of an anticancer substance selected from the group consisting of equol, daidzein and analogs thereof. Regarding use.
 [Papd5又はその産物、バイオマーカー]
 本発明で「Papd5」というときは、特に記載した場合を除き、Papd5遺伝子の意味で用いている。具体的には、配列表に、配列番号:1、3又は5として表されたヌクレオチド配列からなるポリヌクレオチド、配列番号:2、4又は6のアミノ酸配列をコードするポリヌクレオチド、又はそれらのいずれか一のホモログを指す。より具体的には、下記(a)、(b)、(c)、(d)、(e)又は(f)のいずれかである。
(a)配列番号:1、3若しくは5のヌクレオチド配列からなるポリヌクレオチド(より特定すると、DNA);
(b)(a)のポリヌクレオチドと相補的な配列からなるポリヌクレオチドとストリンジェントな条件下でハイブリダイズし、かつequol又はdaidzein存在下で細胞増殖抑制活性を発揮しうる、ポリヌクレオチド(より特定すると、DNA);
(c)(a)のポリヌクレオチドと高い配列同一性を有し、かつequol又はdaidzein存在下で細胞増殖抑制活性を発揮しうる、ポリヌクレオチド(より特定すると、DNA);
(d)配列番号:2、4又は6のアミノ酸配列をコードするポリヌクレオチド(より特定すると、DNA);
(e)配列番号:2、4又は6のアミノ酸配列において1若しくは複数のアミノ酸が置換、欠失、挿入、及び/又は付加したアミノ酸配列をコードし、かつequol又はdaidzein存在下で細胞増殖抑制活性を発揮しうる、ポリヌクレオチド(より特定すると、DNA);
(f)配列番号:2、4又は6のアミノ酸配列と高い配列同一性を有するアミノ酸配列をコードし、かつかつequol又はdaidzein存在下で細胞増殖抑制活性を発揮しうる、ポリヌクレオチド(より特定すると、DNA)。
[Papd5 or its product, biomarker]
In the present invention, “Papd5” is used in the meaning of the Papd5 gene unless otherwise specified. Specifically, the polynucleotide comprising the nucleotide sequence represented as SEQ ID NO: 1, 3 or 5 in the sequence listing, the polynucleotide encoding the amino acid sequence of SEQ ID NO: 2, 4 or 6, or any of them Refers to a homolog. More specifically, it is one of the following (a), (b), (c), (d), (e) or (f).
(A) a polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1, 3 or 5 (more specifically, DNA);
(B) a polynucleotide that hybridizes with a polynucleotide comprising a sequence complementary to the polynucleotide of (a) under stringent conditions and can exhibit cytostatic activity in the presence of equol or daidzein (more specific Then DNA);
(C) a polynucleotide (more specifically, DNA) having high sequence identity with the polynucleotide of (a) and capable of exhibiting cytostatic activity in the presence of equol or daidzein;
(D) a polynucleotide encoding the amino acid sequence of SEQ ID NO: 2, 4, or 6 (more specifically, DNA);
(E) The amino acid sequence of SEQ ID NO: 2, 4 or 6 encodes an amino acid sequence in which one or more amino acids are substituted, deleted, inserted, and / or added, and inhibits cell proliferation in the presence of equol or daidzein A polynucleotide (more specifically, DNA) that can exhibit:
(F) a polynucleotide that encodes an amino acid sequence having high sequence identity with the amino acid sequence of SEQ ID NO: 2, 4, or 6 and that can exhibit cytostatic activity in the presence of equol or daidzein (more specifically, DNA).
 本明細書の配列表には、配列番号:1として、ヒトのPapd5のヌクレオチド配列、配列番号:2として、ヒトのPapd5タンパク質のアミノ酸配列を示した。また、配列番号:3として、マウスのPapd5のヌクレオチド配列、配列番号:4として、マウスのPapd5タンパク質のアミノ酸配列、配列番号:5として、ラットのPapd5のヌクレオチド配列、配列番号:6として、ラットのPapd5タンパク質のアミノ酸配列を示した。 In the sequence listing of the present specification, the nucleotide sequence of human Papd5 is shown as SEQ ID NO: 1, and the amino acid sequence of human Papd5 protein is shown as SEQ ID NO: 2. Further, as SEQ ID NO: 3, nucleotide sequence of mouse Papd5, as SEQ ID NO: 4, amino acid sequence of mouse Papd5 protein, as SEQ ID NO: 5, as nucleotide sequence of rat Papd5, as SEQ ID NO: 6, as rat The amino acid sequence of Papd5 protein is shown.
 Papd5は、好ましくは哺乳動物由来であり、より好ましくはヒト由来である。 Papd5 is preferably derived from a mammal, more preferably from a human.
 本発明でPapd5の「産物」というときは、特に記載した場合を除き、上述のPapd5の、転写産物(mRNA)、発現産物(タンパク質)又はそれらのいずれか一を特異的に認識する抗体をいう。 In the present invention, the term “product” of Papd5 refers to an antibody that specifically recognizes the above-mentioned Papd5 transcription product (mRNA), expression product (protein), or any one of them unless otherwise specified. .
 産物の一例は、配列番号:1、3又は5として表されたヌクレオチド配列からなるmRNA又はそのホモログである。ただし、配列番号:1、3又は5において、tはuに置換される。以下、mRNAの配列としての配列番号:1、3又は5についていうときは、同様である。mRNA又はそのホモログは、具体的には、下記(a')、(b')、(c')、(d')、(e')又は(f')のいずれかである。
(a')配列番号:1、3若しくは5のヌクレオチド配列からなる、ポリヌクレオチド(より特定すると、RNA);
(b')(a')のポリヌクレオチドと相補的な配列からなるポリヌクレオチドとストリンジェントな条件下でハイブリダイズし、かつequol又はdaidzein存在下で細胞増殖抑制活性を発揮しうる、ポリヌクレオチド(より特定すると、RNA);
(c')(a')のポリヌクレオチドと高い配列同一性を有し、かつequol又はdaidzein存在下で細胞増殖抑制活性を発揮しうる、ポリヌクレオチド(より特定すると、RNA);
(d')配列番号:2、4又は6のアミノ酸配列をコードするポリヌクレオチド(より特定すると、RNA);
(e')配列番号:2、4又は6のアミノ酸配列において1若しくは複数のアミノ酸が置換、欠失、挿入、及び/又は付加したアミノ酸配列をコードし、かつequol又はdaidzein存在下で細胞増殖抑制活性を発揮しうる、ポリヌクレオチド(より特定すると、RNA);
(f')配列番号:2、4又は6のアミノ酸配列と高い配列同一性を有するアミノ酸配列をコードし、かつかつequol又はdaidzein存在下で細胞増殖抑制活性を発揮しうる、ポリヌクレオチド(より特定すると、RNA)。
An example of the product is mRNA consisting of the nucleotide sequence represented as SEQ ID NO: 1, 3 or 5 or a homologue thereof. However, in SEQ ID NO: 1, 3, or 5, t is replaced with u. Hereinafter, the same applies to SEQ ID NO: 1, 3, or 5 as the mRNA sequence. Specifically, mRNA or a homologue thereof is any of the following (a ′), (b ′), (c ′), (d ′), (e ′), or (f ′).
(A ′) a polynucleotide consisting of the nucleotide sequence of SEQ ID NO: 1, 3, or 5 (more specifically, RNA);
(B ′) a polynucleotide that hybridizes with a polynucleotide comprising a sequence complementary to the polynucleotide of (a ′) under stringent conditions and can exhibit cell growth inhibitory activity in the presence of equol or daidzein ( More specifically, RNA);
(C ′) a polynucleotide (more specifically, RNA) having high sequence identity with the polynucleotide of (a ′) and capable of exhibiting cytostatic activity in the presence of equol or daidzein;
(D ′) a polynucleotide encoding the amino acid sequence of SEQ ID NO: 2, 4, or 6 (more specifically, RNA);
(E ′) encoding an amino acid sequence in which one or more amino acids are substituted, deleted, inserted and / or added in the amino acid sequence of SEQ ID NO: 2, 4 or 6, and cell growth inhibition in the presence of equol or daidzein A polynucleotide (more specifically, RNA) capable of exerting activity;
(F ′) a polynucleotide that encodes an amino acid sequence having high sequence identity with the amino acid sequence of SEQ ID NO: 2, 4, or 6 and that can exhibit cytostatic activity in the presence of equol or daidzein (more specifically, , RNA).
 産物の他の例は、2、4又は6のアミノ酸配列をからなるタンパク質又はそのホモログである。具体的には、下記(d”)、(e”)又は(f”)のいずれかである。
(d”)配列番号:2、4又は6のアミノ酸配列からなるタンパク質;
(e”)配列番号:2、4又は6のアミノ酸配列において1若しくは複数のアミノ酸が置換、欠失、挿入、及び/又は付加したアミノ酸配列からなり、かつequol又はdaidzein存在下で細胞増殖抑制活性を発揮しうる、タンパク質;
(f”)配列番号:2、4又は6のアミノ酸配列と高い同一性を有するアミノ酸配列からなり、かつかつequol又はdaidzein存在下で細胞増殖抑制活性を発揮しうる、タンパク質。
Another example of a product is a protein consisting of 2, 4 or 6 amino acid sequences or a homologue thereof. Specifically, it is one of the following (d ″), (e ″) or (f ″).
(D ″) a protein consisting of the amino acid sequence of SEQ ID NO: 2, 4 or 6;
(E ″) an amino acid sequence in which one or more amino acids are substituted, deleted, inserted, and / or added in the amino acid sequence of SEQ ID NO: 2, 4 or 6, and cell growth inhibitory activity in the presence of equol or daidzein A protein that can exert
(F ″) a protein comprising an amino acid sequence having high identity with the amino acid sequence of SEQ ID NO: 2, 4 or 6, and capable of exhibiting cell growth inhibitory activity in the presence of equol or daidzein.
 本発明でいう「ストリンジェントな条件」とは、特別な場合を除き、6M尿素、0.4% SDS、0.5×SSCの条件又はこれと同等のハイブリダイゼーション条件を指し、さらに必要に応じ、本発明には、よりストリンジェンシーの高い条件、例えば、6M尿素、0.4% SDS、0.1×SSC又はこれと同等のハイブリダイゼーション条件を適用してもよい。それぞれの条件において、温度は約40℃以上とすることができ、よりストリンジェンシーの高い条件が必要であれば、例えば約50℃、さらに約65℃としてもよい。 The term “stringent conditions” as used in the present invention refers to the conditions of 6M urea, 0.4% SDS, 0.5 × SSC or a hybridization condition equivalent thereto, unless otherwise specified. May be applied under conditions of higher stringency, for example, 6M urea, 0.4% SDS, 0.1 × SSC or equivalent hybridization conditions. Under each condition, the temperature can be about 40 ° C. or higher, and if higher stringency conditions are required, for example, about 50 ° C. or about 65 ° C. may be used.
 また、本発明で「1若しくは複数のアミノ酸が置換、欠失、挿入、及び/又は付加された」というときの置換等されるアミノ酸の個数は、そのアミノ酸配列からなるタンパク質又はそれをコードするポリヌクレオチドが所望の機能を有する限り特に限定されないが、1~9個又は1~4個程度である。そのようなアミノ酸配列に係るポリヌクレオチドを調製するための手段には、例えば、site-directed mutagenesis法(Kramer W & Fritz H-J: Methods Enzymol 154: 350、 1987)がある。 In the present invention, the number of amino acids to be substituted when “one or more amino acids are substituted, deleted, inserted, and / or added” is the number of amino acids to be replaced or the protein encoding the protein. The nucleotide is not particularly limited as long as it has a desired function, but it is about 1 to 9 or 1 to 4. Means for preparing a polynucleotide according to such an amino acid sequence include, for example, the site-directed mutagenesis method (Kramer W & Fritz H-J: Methods Enzymol 154: 350, 1987).
 本発明においてヌクレオチドに関し、同一性が「高い」というときは、少なくとも80%以上、好ましくは90%以上、より好ましくは95%以上の配列の同一性を指す。また、本発明においてアミノ酸配列に関し、同一性をいうときは、少なくとも80%以上、好ましくは90%以上、より好ましくは95%以上の配列の同一性を指す。ヌクレオチド配列又はアミノ酸配列の同一性は、カーリン及びアルチュールによるアルゴリズムBLAST(Proc. Natl. Acad. Sci. USA 87:2264-2268、 1990、Proc Natl Acad Sci USA 90: 5873、 1993)を用いて決定できる。BLASTのアルゴリズムに基づいたBLASTNやBLASTXと呼ばれるプログラムが開発されている(Altschul SF、 et al: J Mol Biol 215: 403、 1990)。BLASTNを用いて塩基配列を解析する場合は、パラメーターは、例えばscore=100、wordlength=12とする。また、BLASTXを用いてアミノ酸配列を解析する場合は、パラメーターは、例えばscore=50、wordlength=3とする。BLASTとGapped BLASTプログラムを用いる場合は、各プログラムのデフォルトパラメーターを用いる。これらの解析方法の具体的な手法は公知である(http://www.ncbi.nlm.nih.gov/)。 In the present invention, regarding nucleotides, when “identity” is “high”, it means sequence identity of at least 80% or more, preferably 90% or more, more preferably 95% or more. In the present invention, when referring to amino acid sequences, identity refers to sequence identity of at least 80% or more, preferably 90% or more, more preferably 95% or more. Nucleotide or amino acid sequence identity is determined using the algorithm BLAST by Carlin and Arthur (Proc. Natl. Acad. Sci. USA 87: 2264-2268, 1990, Proc Natl Acad Sci USA 90: 5873, 1993) it can. Programs called BLASTN and BLASTX based on the BLAST algorithm have been developed (Altschul SF, et al: J Mol Biol 215: 403, 1990). When analyzing a base sequence using BLASTN, parameters are set to, for example, score = 100 and wordlength = 12. In addition, when an amino acid sequence is analyzed using BLASTX, parameters are set, for example, score = 50 and wordlength = 3. When using BLAST and Gapped BLAST programs, use the default parameters of each program. Specific methods of these analysis methods are known (http://www.ncbi.nlm.nih.gov/).
 本発明で「ポリヌクレオチド」というときは、特に記載した場合を除き、DNA又はRNAである。いずれを指すかは、当業者には文脈から明らかである。DNAは、一本鎖又は二本鎖であり得る。 In the present invention, “polynucleotide” refers to DNA or RNA unless otherwise specified. Which one is indicated will be clear to the skilled person from the context. DNA can be single-stranded or double-stranded.
 本発明で「バイオマーカー(Biomarker)」というときは、特に記載した場合を除き、通常の生物学的過程、病理学的過程、又は治療的介入に対する薬理学的応答の指標として、客観的に測定され評価されうる物質(有体物)を指す意味で用いている。 In the present invention, the term “Biomarker” is objectively measured as an index of a pharmacological response to a normal biological process, pathological process, or therapeutic intervention, unless otherwise specified. It is used to refer to a substance (tangible) that can be evaluated.
 本発明でいう「Papd5又はその産物からなるバイオマーカー」は、特に記載した場合を除き、Papd5又はその産物の全部(全長)のみならず、その一部である場合も包含する。この「一部」は、Papd5又はその産物の存在が推認されうる程度の長さのある一部である。本発明でPapd5又はその産物に関し、「バイオマーカーとしての使用」というときは、Papd5又はその産物の全部が使用される場合のみならず、Papd5又はその産物の一部であって、Papd5又はその産物の存在が推認されうる程度の長さのある一部が使用される場合も包含する。また、バイオマーカーとしての使用は、SNPの検出のための使用、遺伝子変異の検出のための使用、局在変化の検出のための使用が含まれる。 In the present invention, “a biomarker comprising Papd5 or a product thereof” includes not only the whole (full length) of Papd5 or a product thereof but also a part thereof, unless otherwise specified. This “part” is a part that is long enough that the presence of Papd5 or its product can be inferred. In the present invention, Papd5 or a product thereof is referred to as “use as a biomarker”, not only when all of Papd5 or a product thereof is used, but also a part of Papd5 or a product thereof, and Papd5 or a product thereof. It also includes the case where a part having such a length that the existence of the above can be estimated is used. Also, use as a biomarker includes use for detection of SNP, use for detection of gene mutation, use for detection of localization change.
 [抗がん物質、equal、daidzein]
 本発明に用いられる、又は関連する化合物には、下記のものが含まれる。
[Anti-cancer substances, equal, daidzein]
Compounds used in or related to the present invention include the following:
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 本発明者らの検討によると、抗がん作用を示す機能性食品因子、equol、genistein、daidzein, エピガロカテキンガレート(EGCG)のうち、genisteinとEGCGはequolと同様にHeLa細胞の増殖を抑制したが、その作用はPapd5発現低下の影響を受けなかった。一方、daidzeinの細胞増殖抑制作用はequolと同様に、Papd5の発現を低下させた細胞では阻害された(実施例及び図6)。 According to the study by the present inventors, among functional food factors that exhibit anticancer effects, equol, genistein, daidzein, and epigallocatechin gallate (EGCG), genistein and EGCG inhibit the growth of HeLa cells in the same way as equol. However, the effect was not affected by the decrease in Papd5 expression. On the other hand, the cell growth inhibitory action of daidzein was inhibited in the cells in which the expression of Papd5 was reduced, like equol (Example and FIG. 6).
 本発明で「抗がん物質」というときは、特に記載した場合を除き、がんの処置のために有効な成分一般をいう。抗がん物質は、食品成分であることもあり、医薬(抗がん剤)であることもある。本発明には、equol、daidzein及びそれらの類縁体からなる群より選択される抗がん物質が用いられる。「それらの類縁体」には、daidzeinの配糖体、equol又はdaidzeinと同様に抗がん作用(より特定すると、がん細胞の増殖抑制作用)を有するが、その作用がPapd5の発現低下により阻害されるような物質が含まれる。このような物質は、ER非依存的に作用してもよい。 In the present invention, the term “anticancer substance” means a general component effective for the treatment of cancer, unless otherwise specified. The anticancer substance may be a food component or a medicine (anticancer agent). In the present invention, an anticancer substance selected from the group consisting of equol, daidzein and analogs thereof is used. “These analogs” have anti-cancer activity (more specifically, cancer cell growth-inhibitory activity) similar to that of daidzein glycosides, equol or daidzein, but the effect is due to decreased expression of Papd5. Substances that are inhibited are included. Such substances may act in an ER-independent manner.
 本発明者らの別の検討によると、ヒト子宮頸がん細胞株HeLa及びヒト前立腺がん細胞株PC-3は、equolによって増殖が抑制され、ERアンタゴニストであるICI182,780(ICI)で処理した場合においてもその作用は阻害されなかった。このことから、これらのがん細胞株に対してequolはER非依存的な作用機序により、細胞増殖抑制活性を示すといえる(図1)。 According to another study by the inventors, the human cervical cancer cell line HeLa and the human prostate cancer cell line PC-3 were inhibited by equol and treated with ER antagonist ICI182,780 (ICI). Even in the case of the action, the action was not inhibited. From this, it can be said that equol exhibits cytostatic activity against these cancer cell lines by an action mechanism independent of ER (FIG. 1).
 本明細書で「エストロゲン受容体(ER)」というときは、特に記載した場合を除き、エストロゲン(エストロン(E1)、エストラジオール(E2)及びエストリオール(E3))と結合能を有し、ステロイド受容体スーパーファミリーに属する分子の一つであって、卵胞ホルモン受容体とも呼ばれる受容体タンパク質を指す。エストロゲン受容体には、2つのアイソフォームERα(NR3A1、595アミノ酸残基)及びERβ(NR3A2、530残基)が存在する。エストロゲンは生殖機能の形成及び細胞の増殖を促進する働きを有する。 In this specification, “estrogen receptor (ER)” has the ability to bind to estrogen (estrone (E1), estradiol (E2) and estriol (E3)), unless otherwise specified, and accepts steroids. One of the molecules belonging to the body superfamily, and refers to a receptor protein also called follicular hormone receptor. The estrogen receptor has two isoforms, ERα (NR3A1, 595 amino acid residues) and ERβ (NR3A2, 530 residues). Estrogens have the function of promoting the formation of reproductive functions and cell proliferation.
 本発明で「ER非依存性」又は「ER非依存的(に)」というときは、特に記載した場合を除き、ERに依拠せずに対象に作用することを指す。ある物質の作用が「ER非依存性」であるか否かは、当業者であれば、適宜判断することができる。例えば、ERのアンタゴニストの存在により、発揮されるべき効果が影響を受けないか又は影響を受けたとしても無視できる(例えば、存在しない場合の効果と比較して、±30%の範囲内の効果を発揮する。)ことを指標に、判断することができる。より詳細な条件は、本願明細書の実施例の記載を参考にすることができる。 In the present invention, “ER-independent” or “ER-independent” means acting on a target without depending on ER, unless otherwise specified. Whether or not the action of a substance is “ER-independent” can be appropriately determined by those skilled in the art. For example, due to the presence of an antagonist of ER, the effect to be exerted is unaffected or can be neglected (eg, effects within ± 30% compared to the effect in the absence) Can be judged using the index of For more detailed conditions, reference can be made to the description of the examples in the present specification.
 [対象における抗がん物質の有効性の診断]
 本発明で、equol又はdaidzeinの作用により改善する疾患又は状態というときは、特に記載した場合を除き、がん、特に子宮頸がん、子宮体がん、前立線がん;胃がん、メラノーマ、膵臓がん(前掲非特許文献7);胸腺の肥大又は萎縮(前掲非特許文献8);アレルギー(前掲非特許文献9)、血管狭窄又は弛緩(前掲非特許文献10)を含む。好ましくはがんである。体がんの発生経路にはエストロゲン依存性と非依存性のものがあり、前者は類内膜腺がん、後者は漿液性腺がんが代表的なものである。
[Diagnosis of effectiveness of anticancer substances in subjects]
In the present invention, a disease or condition that is improved by the action of equol or daidzein, unless otherwise specified, cancer, particularly cervical cancer, endometrial cancer, prostate cancer; stomach cancer, melanoma, Pancreatic cancer (Non-patent document 7); Thymic hypertrophy or atrophy (Non-patent document 8); Allergy (Non-patent document 9), vascular stenosis or relaxation (Non-patent document 10). Preferably it is cancer. There are two types of pathogenesis of body cancer, estrogen-dependent and independent, with the former being representative of endometrioid adenocarcinoma and the latter being serous adenocarcinomas.
 本発明でがんに関し「処置」というときは、特に記載した場合を除き、がんを予防すること、がんの発症リスクを低減すること、がんを治療すること、がんの進行を抑制することを含む。 In the present invention, when “treatment” is concerned with cancer, unless otherwise specified, it prevents cancer, reduces the risk of developing cancer, treats cancer, and suppresses progression of cancer. Including doing.
 本発明により、本発明のバイオマーカーを検出するための、オリゴヌクレオチド、ペプチド、抗体を含む、PCR(RT-PCR、real time PCR)用、DNAアレイ用、ELISA用、プロテインアレイ用、又は免疫クロマトグラフィー用の、製品(キット等)が提供される。このような製品は、Papd5又はその転写産物と特異的にハイブリダイズすることにより検出可能とする、適切な長さのオリゴヌクレオチドプローブ、Papd5又はその転写産物の全部又は一部を特異的に増幅することを可能とする、適切な長さのオリゴヌクレオチドプライマーを含んでいてもよく、またPapd5、その転写産物又はその発現産物を特異的に認識することのできる、抗体(Papd5タンパク質を大腸菌で発現させた組み換えタンパク質又はPapd5のアミノ酸配列情報から抗原性の高いPapd5に由来するペプチドで免疫することでPapd5特異的抗体を得ることができる。)、SELEX産物等を含んでいてもよい。このようなプライマー等は、当業者であれば、技術常識及び本明細書の記載を参考に、配列表の配列番号1~6に示された配列情報に基づいて、適宜設計し、製造することができる。 According to the present invention, for detection of the biomarker of the present invention, oligonucleotides, peptides, antibodies, PCR (RT-PCR, real-time PCR), DNA array, ELISA, protein array, or immunochromatography Products (kits, etc.) for graphy are provided. Such products specifically amplify all or part of the appropriate length of the oligonucleotide probe, Papd5 or its transcript, which can be detected by specifically hybridizing with Papd5 or its transcript. An antibody (which can be expressed in Escherichia coli) and may contain an oligonucleotide primer of an appropriate length that can specifically recognize Papd5, its transcription product or its expression product. From the amino acid sequence information of the recombinant protein or Papd5, a Papd5-specific antibody can be obtained by immunization with a highly antigenic peptide derived from Papd5), and may contain a SELEX product or the like. Those skilled in the art should appropriately design and manufacture such primers and the like based on the sequence information shown in SEQ ID NOs: 1 to 6 in the sequence listing with reference to the common general technical knowledge and the description of the present specification. Can do.
 上述のプライマー等を含む製品は、具体的には、PCR用キット、DNAチップ(マイクロアレイ)、プロテインアレイであり得る。 Specifically, the product including the above-described primers can be a PCR kit, a DNA chip (microarray), or a protein array.
 また、本発明により、対象又は対象から採取した試料(通常、対象に戻すことを前提としていない。)におけるPapd5の転写又は発現を検出する工程を含む、equol又はdaidzein及びそれらの類縁体からなる群より選択される抗がん物質の対象における有効性の判定方法が提供される。この判定方法において、用いられる手法は、好ましくは、PCR法、DNAアレイ法、ELISA法、プロテインアレイ法、又は免疫クロマトグラフィー法である。 Further, according to the present invention, a group consisting of equol or daidzein and analogs thereof, comprising a step of detecting transcription or expression of Papd5 in a subject or a sample collected from the subject (usually not assumed to be returned to the subject). Methods for determining the effectiveness of a more selected anticancer substance in a subject are provided. In this determination method, the method used is preferably a PCR method, a DNA array method, an ELISA method, a protein array method, or an immunochromatography method.
 本発明においては、Papd5の転写又は発現が抑制されている場合には、equol又はdaidzein及びそれらの類縁体からなる群より選択される抗がん物質の対象における有効性が低いか、または有効でないと判断されうる。一般に、遺伝子の転写又は発現の抑制の原因として想定されるあらゆるものが、Papd5の転写又は発現に影響を与えるものと考えられる。例えば、先天的因子、酸化ストレス、発がん因子による遺伝子変異、食事、生活習慣(喫煙、アルコール摂取、運動など)、肥満、高血圧、高血糖及び高脂血症等の疾病リスクファクターの存在により、Papd5の転写又は発現が抑制されうる。 In the present invention, when the transcription or expression of Papd5 is suppressed, the effectiveness of the anticancer substance selected from the group consisting of equol or daidzein and their analogs is low or ineffective It can be judged. In general, anything assumed as a cause of suppression of gene transcription or expression is considered to affect the transcription or expression of Papd5. For example, due to the presence of disease risk factors such as congenital factors, oxidative stress, genetic mutations due to carcinogenic factors, diet, lifestyle (smoking, alcohol consumption, exercise, etc.), obesity, hypertension, hyperglycemia and hyperlipidemia, Papd5 Transcription or expression can be suppressed.
 本発明でequol又はdaidzein及びそれらの類縁体からなる群より選択される抗がん物質の適用に関し、「対象」というときは、特に記載した場合を除き、がん動物、健常な動物、がん患者及び健常人を含む。本発明で抗がん物質や抗がん物質の候補となる天然物等に関して「適用」というときは、試料に対して供試することのほか、個人に対する医薬品の投与、食品を摂取させること、化粧品を塗布することを含み、他人に対して行う場合を含む。本発明で言う「医薬品」は、特に記載した場合を除き、ヒトに対する医薬のほか、動物医薬を含み、また本発明でいう「食品」は、特に記載した場合を除き、固形のもののみならず、飲料を含み、またヒトのためのもののみならず、動物のためのもの、例えばペットフード、飼料を含む。本発明でいう「化粧品」は、特に記載した場合をのぞき、病気の処置を目的としない、美容を目的として用いられるものをいう。 Regarding the application of an anticancer substance selected from the group consisting of equol or daidzein and their analogs in the present invention, the term “subject” refers to cancer animals, healthy animals, cancers, unless otherwise specified. Includes patients and healthy individuals. In the present invention, when it is `` applied '' with respect to anticancer substances and natural products that are candidates for anticancer substances, in addition to testing on samples, administration of pharmaceuticals to individuals, intake of food, This includes applying cosmetics, including when it is done for others. The “medicine” referred to in the present invention includes animal drugs in addition to drugs for humans, unless otherwise specified, and the “food” referred to in the present invention includes not only solid foods, unless otherwise specified. Including beverages and for humans as well as for animals, such as pet food, feed. The “cosmetics” as used in the present invention refers to those used for the purpose of cosmetics, which are not intended for treatment of illness, except when specifically described.
 本発明により、既存の天然物、食品、化粧品、医薬品又は化合物から、がんの処置に有効な物をスクリーニングする方法が提供される。本発明のスクリーニング方法は、より詳細には、以下の工程を含んでいてもよい:
 1) 天然物、食品、化粧品、医薬品又は化合物である試験物を、対象、対象から採取した試料又はPapd5を有しておりPapd5の転写又は発現が可能な細胞に適用する工程;   
 2) 対象又は試料におけるPapd5の転写量又は発現量が変化するか否かを検出する工程;そして
 3)転写量又は発現量が増加した場合に、その試験物をがんの処置のために有効な物として、選択する工程。
INDUSTRIAL APPLICABILITY According to the present invention, there is provided a method for screening a substance effective for cancer treatment from existing natural products, foods, cosmetics, pharmaceuticals or compounds. More specifically, the screening method of the present invention may comprise the following steps:
1) A step of applying a test product which is a natural product, food, cosmetic, pharmaceutical product or compound to a subject, a sample collected from the subject or a cell having Papd5 and capable of transcription or expression of Papd5;
2) detecting whether or not the amount of transcription or expression of Papd5 in the subject or sample changes; and 3) if the amount of transcription or expression increases, the test substance is effective for treating cancer. The process of selecting as a simple thing.
 本発明のスクリーニング方法は、equol、daidzein又はそれらの類縁体と組み合わせて対象に適用するのに適した物をスクリーニングするために、特に適している。 The screening method of the present invention is particularly suitable for screening an object suitable for application to a subject in combination with equol, daidzein or an analog thereof.
 本発明により、Papd5の変異の有無、又は転写若しくは発現の量を指標として、対象者の個性に応じ、equol又はdaidzeinの作用により改善する疾患又は状態の処置のための医薬品、食品若しくは化粧品の、又はその適用計画を設計することができる。例えば、Papd5の発現が高い対象は、抗がん剤カンプトテシンの効果が低下する(前掲非特許文献14)が、むしろequol又はdaidzeinの作用が期待できると思われる。 According to the present invention, the presence or absence of mutation of Papd5, or the amount of transcription or expression, as an index, according to the individuality of the subject, a pharmaceutical, food or cosmetic for treatment of a disease or condition improved by the action of equol or daidzein, Or the application plan can be designed. For example, in a subject with high expression of Papd5, the effect of the anticancer drug camptothecin is reduced (Non-patent Document 14), but it seems that the action of equol or daidzein can be expected.
 本発明の、「処置」「適用」及び「設計」等の各行為を含む実施は、医師による医療行為と、医師に拠らない行為とを含む。  Implementation of the present invention including actions such as “treatment”, “application”, and “design” includes medical actions by doctors and actions that do not rely on doctors. *
 下記の実験のうち、1、5及び6のヒト由来細胞を用いた実験は、配列表の配列番号:1のヌクレオチド配列からなるポリヌクレオチド(ヒトのPapd5のmRNA)を転写により生じさせる遺伝子、配列番号:2のアミノ酸配列からなるタンパク質(ヒトのPapd5タンパク質)の実施に相当する、また、2~4及び7~9のマウス由来細胞を用いた実験は、配列番号:3のヌクレオチド配列からなるポリヌクレオチド(マウスのPapd5のmRNA)を転写により生じさせる遺伝子、配列番号:4のアミノ酸配列からなるタンパク質(マウスのPapd5タンパク質)の実施に相当する。 Among the following experiments, experiments using human-derived cells 1, 5 and 6 are genes and sequences that cause transcription of a polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1 in the sequence listing (mRNA of human Papd5). The experiment using a mouse-derived cell of 2-4 and 7-9, corresponding to the implementation of a protein consisting of the amino acid sequence of No. 2 (human Papd5 protein), This corresponds to the execution of a protein (mouse Papd5 protein) consisting of the amino acid sequence of SEQ ID NO: 4, a gene that generates nucleotides (mRNA of mouse Papd5) by transcription.
 <実験材料及び実験方法>
 1.ヒト由来各種がん細胞に対するequolの細胞増殖抑制活性とER依存性
 細胞数の測定に使用したヒト子宮頸がん細胞株HeLaは、10%ウシ胎児血清(FCS)(BIOLOGICAL)添加DMEM培地で、ヒト前立線がん細胞株PC-3は10%FCS添加RPMI1640培地で、37℃、水蒸気飽和した5%CO2条件下で継代、維持した。細胞は対数増殖期で培養維持した。培養に使用したDMEM培地は、dH2O 1LあたりダルベッコMEM培地(コスモ・バイオ株式会社)13.38g、HEPES(和光純薬工業株式会社)5.958g、注射用ペニシリンGカリウム20万単位(明治製菓株式会社)0.5 vial、硫酸ストレプトマイシン注射用1g(明治製菓株式会社)0.1 vial、NaHCO3(nacalai tesque)3.7gを懸濁した後、0.22μmフィルターで滅菌した。RPMI-1640培地は、dH2O 1LあたりRPMI-1640培地(日水製薬)10.4g、2-[4-(2-hydroxyethyl)-1-piperazinyl]ethane sulfonic acid(HEPES)2.38g、ペニシリン100U/mL、ストレプトマイシン100mg/L、NaHCO3(和光純薬工業)2.0gを懸濁し、炭酸ガスを吹き込んでpHを6.8~7.4に調整後、0.22μmフィルターで濾過滅菌した。そして、ウシ胎児血清(FCS)を10%添加し、細胞培養に使用した。細胞の継代の際は、PBSで洗浄した後、トリプシン溶液で細胞をはがした。PBSはdH2O 1LあたりNaCl(nacalai tesque)8.0g、KCl(nacalai tesque0.2g、Na2HPO4(和光純薬工業株式会社)1.15g、KH2PO4(nacalai tesque)0.2gを懸濁し、オートクレーブ滅菌した。トリプシン溶液は、100mLPBSあたりEDTA・2Na(和光純薬工業株式会社)0.05g、トリプシン(nacalai tesque)0.02gを懸濁し、フィルター滅菌した。また、細胞の継代、維持には、5mL又は10mL接着dish(nuncTM)を使用した。Equol(フナコシ)、Daidzein(フナコシ)、Genistein(フナコシ)は、100mMになるようにDMSO(nacalai tesque)に溶解し、4℃で保存しておいた。ICI182,780(invitrogen)は10mMになるようにDMSOに溶解し、-80℃で保存しておいた。
<Experimental materials and experimental methods>
1. The human cervical cancer cell line HeLa used for the measurement of equol's cytostatic activity and ER-dependent cell count on various human cancer cells is DMEM medium supplemented with 10% fetal bovine serum (FCS) (BIOLOGICAL). The human prostate cancer cell line PC-3 was subcultured and maintained in RPMI1640 medium supplemented with 10% FCS at 37 ° C. under 5% CO 2 with water vapor saturation. Cells were maintained in culture in the logarithmic growth phase. The DMEM medium used for the culture was Dulbecco's MEM medium (Cosmo Bio Co., Ltd.) 13.38 g per 1 L of dH 2 O, 5.958 g of HEPES (Wako Pure Chemical Industries, Ltd.), 200,000 units of penicillin G for injection (Meiji Seika Co., Ltd.) Company) 0.5 vial, 1 g of streptomycin sulfate for injection (Meiji Seika Co., Ltd.) 0.1 vial, NaHCO 3 (nacalai tesque) 3.7 g were suspended and then sterilized with a 0.22 μm filter. RPMI-1640 medium is 10.4 g of RPMI-1640 medium (Nissui Pharmaceutical) per 1 L of dH 2 O, 2.38 g of 2- [4- (2-hydroxyethyl) -1-piperazinyl] ethane sulfonic acid (HEPES), 100 U / penicillin. mL, streptomycin 100 mg / L, and NaHCO 3 (Wako Pure Chemical Industries, Ltd.) 2.0 g were suspended, and the pH was adjusted to 6.8 to 7.4 by blowing carbon dioxide, and then sterilized by filtration through a 0.22 μm filter. Then, 10% of fetal calf serum (FCS) was added and used for cell culture. When the cells were passaged, the cells were washed with PBS and then detached with a trypsin solution. PBS suspends 8.0 g of NaCl (nacalai tesque) per 1 L of dH 2 O, 0.2 g of KCl (nacalai tesque), 1.15 g of Na 2 HPO 4 (Wako Pure Chemical Industries, Ltd.), 0.2 g of KH 2 PO 4 (nacalai tesque). The trypsin solution was prepared by suspending 0.05 g of EDTA · 2Na (Wako Pure Chemical Industries, Ltd.) and 0.02 g of trypsin (nacalai tesque) per 100 mL of PBS, and sterilizing the filter. , 5 mL or 10 mL adhesive dish (nunc ) was used Equol (Funakoshi), Daidzein (Funakoshi), Genistein (Funakoshi) were dissolved in DMSO (nacalai tesque) to 100 mM and stored at 4 ° C. ICI182,780 (invitrogen) was dissolved in DMSO to a concentration of 10 mM and stored at −80 ° C.
 細胞数の測定は、各細胞を2x104cells/mLに調整して24穴プレート(nuncTM)に播種し、10%FCS含有培地で24時間前培養した。その後、1μMになるようICI182,780を添加した2%FCS含有培地に置換し30分間処理し、各濃度になるようにequol(LC Labolatories)を添加した。72時間培養した後、セルカウンターにて細胞数を計測した。実験結果の統計処理にはStudent's t検定を用いた。 For the measurement of the number of cells, each cell was adjusted to 2 × 10 4 cells / mL, seeded in a 24-well plate (nunc ), and precultured in a medium containing 10% FCS for 24 hours. Thereafter, the medium was replaced with 2% FCS-containing medium supplemented with ICI182,780 to 1 μM, treated for 30 minutes, and equol (LC Labolatories) was added to each concentration. After culturing for 72 hours, the number of cells was counted with a cell counter. Student's t test was used for statistical processing of the experimental results.
 2.マウスメラノーマ細胞株B16に対するequolの細胞増殖抑制活性
 細胞数及び細胞生存率の測定に使用したマウスメラノーマ細胞株B16(American Type Culture Collection)は、5%FCS添加DMEM培地で37℃、水蒸気飽和した5%CO2条件下で継代、維持した。細胞は対数増殖期で培養維持した。細胞数及び細胞生存率の測定は、マウスメラノーマ細胞株B16を2x104cells/mLに調整して24穴プレートに播種し、5%FCS含有DMEM培地で24時間前培養した。その後、終濃度0, 1, 5, 10, 25, 50μMのequolを含む2%FCS含有DMEM培地で、72時間又は24, 48, 72, 96時間培養後、細胞数をセルカウンターにより計測した。実験結果の統計処理にはStudent's t検定を用いた。
2. The mouse melanoma cell line B16 (American Type Culture Collection) used for the measurement of the cell proliferation inhibitory activity cell number and cell viability of equol against the mouse melanoma cell line B16 was 5% FCS-added DMEM medium at 37 ° C with water vapor saturation. Passaged and maintained under% CO 2 conditions. Cells were maintained in culture in the logarithmic growth phase. For the measurement of cell number and cell viability, mouse melanoma cell line B16 was adjusted to 2 × 10 4 cells / mL, seeded in a 24-well plate, and pre-cultured in DMEM medium containing 5% FCS for 24 hours. Thereafter, the cells were counted for 72 hours or 24, 48, 72, 96 hours in a 2% FCS-containing DMEM medium containing equol having a final concentration of 0, 1, 5, 10, 25, 50 μM, and the number of cells was counted using a cell counter. Student's t test was used for statistical processing of the experimental results.
 3.B16細胞のequol感受性に及ぼすICIの影響
 細胞数の測定は、B16細胞を2x104cells/mLに調整して24穴プレートに播種し、5%FCS含有DMEM培地で24時間前培養した。終濃度1μMのICI182,780を含む2%FCS含有DMEM培地で30分間処理した後、終濃度0,1,5,10,25μMとなるようにequolを添加した。72時間培養した後、細胞数をセルカウンターにより計測した。実験結果の統計処理にはStudent's t検定を用いた。
3. Effect of ICI on equol sensitivity of B16 cells To measure the number of cells, B16 cells were adjusted to 2 × 10 4 cells / mL, seeded in 24-well plates, and pre-cultured in DMEM medium containing 5% FCS for 24 hours. After treatment with 2% FCS-containing DMEM medium containing ICI 182,780 at a final concentration of 1 μM for 30 minutes, equol was added to a final concentration of 0, 1, 5, 10, 25 μM. After culturing for 72 hours, the number of cells was counted with a cell counter. Student's t test was used for statistical processing of the experimental results.
 4.equol感知遺伝子の同定
 EcoPack2-293及びAmphoPack-293パッケージング細胞(Clontech)を2x105cells/mLに調整して5mL dishに播種し、10%FCS含有DMEM培地で培養した。翌日、Mouse Embryo cDNAライブラリーML8000BB(Clontech,Mountain View, CA)を制限酵素EcoRI、Sph Iで断片化し、pLPCX改変レトロウイルスベクターに導入したFGS library(MFL-ESP)(1.0μg/μL)3μL、pVSV-G vector(タカラバイオ株式会社)(1.0μg/μL)3μL、FuGENE 6 Transfection Reagent(Roche)6μLで混合し、それぞれのパッケージング細胞に導入した。翌日、パッケージング細胞の培養上清をフィルター(0.22μm)に通し、ポリブレン(Hexadimethrine bromide)(SIGMA-ALDRICH)を終濃度8μg/mLになるように添加した後、前日1x104cells/mLに調整して5mL dishに播種し、5%FCS含有DMEM培地で培養しておいたB16細胞にふりかけ、培養上清中のウイルスを感染させた。パッケージング細胞には新しい10%FCS含有DMEM培地を添加し、培養を継続した。この操作を12時間ごとに計4回行った。感染の終了したB16細胞を1x104cells/mLに調整して、96穴プレート(nuncTM)に播種し、2%FCS含有DMEM培地で24時間回復培養を行った。回復培養後、1%FCS含有DMEM培地で、80μMのequol含有培地で培養し、equol耐性B16細胞を獲得した。
Four. Identification of equol-sensing gene EcoPack2-293 and AmphoPack-293 packaging cells (Clontech) were adjusted to 2 × 10 5 cells / mL, seeded in a 5 mL dish, and cultured in DMEM medium containing 10% FCS. The next day, Mouse Embryo cDNA library ML8000BB (Clontech, Mountain View, CA) was fragmented with restriction enzymes EcoRI and Sph I, and introduced into pLPCX-modified retroviral vector FGS library (MFL-ESP) (1.0 μg / μL) 3 μL, pVSV-G vector (Takara Bio Inc.) (1.0 μg / μL) 3 μL and FuGENE 6 Transfection Reagent (Roche) 6 μL were mixed and introduced into each packaging cell. The next day, the packaging cell culture supernatant is passed through a filter (0.22 μm), and polybrene (Hexadimethrine bromide) (SIGMA-ALDRICH) is added to a final concentration of 8 μg / mL, and then adjusted to 1 × 10 4 cells / mL the previous day. Then, the cells were seeded in a 5 mL dish and sprinkled on B16 cells that had been cultured in a DMEM medium containing 5% FCS to infect the virus in the culture supernatant. To the packaging cells, a fresh 10% FCS-containing DMEM medium was added, and the culture was continued. This operation was performed four times every 12 hours. The infected B16 cells were adjusted to 1 × 10 4 cells / mL, seeded in a 96-well plate (nunc ), and recovered for 24 hours in 2% FCS-containing DMEM medium. After recovery culture, the cells were cultured in a DMEM medium containing 1% FCS in a medium containing 80 μM equol to obtain equol-resistant B16 cells.
 Equol耐性細胞にTRIzol(登録商標) Reagent(invitogen)1mLを添加し、室温で5分間放置した。次に、クロロホルム(nacalai tesque)200μLを添加・撹拌し、室温で3分間放置後、4℃で15分間遠心(12000 x g)した。その後、上層を取り出し、2-プロパノール(nacalai tesque)500μLを添加・撹拌し、室温で10分間放置後、4℃で10分間遠心(12000 x g)した。その後、上清を除去し、75%EtOH(nacalai tesque)in DEPE水(DEPC(SIGMA-ALDRICH)1mLをdH2O 1Lに溶かし、オートクレーブ滅菌したもの)を1mL添加・撹拌後、4℃で5分間遠心(12000 x g)した。その上清を完全に除去し、DEPC水を10から20μL入れて懸濁した。それに、株式会社ジーンネット(福岡)に合成を委託した(dT)20 primer(5'-TTT TTT TTT TTT TTT TTT TT-3'、DEPC水で0.5μg/μLになるように調整したもの。以下のプライマーも全て株式会社ジーンネットに委託した。)を1.0μL添加し、70℃で10分間放置後、氷上で10分間放置した。その後、dNTP 2.0μL、M-MLV Reverse Transcriptase buffer 4.0μL、M-MLV Reverse Transcriptase(Promega)0.1μL、RNase inhibitor(タカラバイオ株式会社)0.1μLを添加して37℃で1時間放置後、5分間煮沸した。調製したcDNAは-20℃で保存した。そのcDNAを鋳型として、pLPCX-S(5'-GAT CCG CTA GCG CTA CCG GAC TCA GAT-3'、配列番号:7)とpLPCX-A(5'-CTT TCA TTC CCC CCT TTT TCT GGA GAC-3'、配列番号:8)のプライマーセットを、TE buffer(10mM Tris(nacalai tesque)-HCl,1mM EDTA, pH8.0)で20μMになるように調整して使用した。なお、以下のPCRに用いたプライマーも全て同様である。 To Equol resistant cells, 1 mL of TRIzol (registered trademark) Reagent (invitogen) was added and allowed to stand at room temperature for 5 minutes. Next, 200 μL of chloroform (nacalai tesque) was added and stirred, allowed to stand at room temperature for 3 minutes, and then centrifuged (12000 × g) at 4 ° C. for 15 minutes. Thereafter, the upper layer was taken out, 500 μL of 2-propanol (nacalai tesque) was added and stirred, allowed to stand at room temperature for 10 minutes, and then centrifuged (12000 × g) at 4 ° C. for 10 minutes. Thereafter, the supernatant was removed, and 1 mL of 75% EtOH (nacalai tesque) in DEPE water (1 mL of DEPC (SIGMA-ALDRICH) dissolved in 1 L of dH 2 O and autoclaved) was added and stirred, then 5 ° C at 4 ° C. Centrifuge for 1 minute (12000 xg). The supernatant was completely removed, and 10 to 20 μL of DEPC water was added and suspended. In addition, (dT) 20 primer (5'-TTT TTT TTT TTT TTT TTT TT-3 ', which was commissioned to Genenet Co., Ltd.) was adjusted to 0.5 μg / μL with DEPC water. All primers were also commissioned to Genenet Co., Ltd.) 1.0 μL was added, allowed to stand at 70 ° C. for 10 minutes, and then allowed to stand on ice for 10 minutes. Then, add dNTP 2.0 μL, M-MLV Reverse Transcriptase buffer 4.0 μL, M-MLV Reverse Transcriptase (Promega) 0.1 μL, RNase inhibitor (Takara Bio Inc.) 0.1 μL and let stand at 37 ° C. for 1 hour, then 5 minutes Boiled. The prepared cDNA was stored at -20 ° C. Using the cDNA as a template, pLPCX-S (5'-GAT CCG CTA GCG CTA CCG GAC TCA GAT-3 ', SEQ ID NO: 7) and pLPCX-A (5'-CTT TCA TTC CCC CCT TTT TCT GGA GAC-3 ', And the primer set of SEQ ID NO: 8) was used by adjusting to 20 μM with TE buffer (10 mM Tris (nacalai tesque) -HCl, 1 mM EDTA, pH 8.0). The same applies to the primers used in the following PCR.
 TE bufferを用いて導入cDNA断片をPCRにより増幅した。PCR装置として、TGRADIENT(Biometra(登録商標, Germany) 又はPC320(ASTEC、福岡)を使用した。PCRは1サンプルあたり、プライマー(senseプライマーとantisenseプライマー)各0.5μLずつと、タカラバイオ株式会社(滋賀)より購入したdNTP mix 1μL、10 x buffer 1μL、Ex taq 0.1μLとdH2O 5.9μL、鋳型1μLを懸濁し、初期変性94℃で2分間、変性反応94℃で30秒間、アニーリング67.1℃で30秒間、伸長反応72℃で1分間行い、変性反応、アニーリング及び伸長反応を40サイクル行った。PCR後、1サンプルあたり、BPB溶液 1μLとSYBR(登録商標) Green I nucleic acid gel stein(Molecular probes(invitrogen))0.5μLを添加した。BPB溶液は0.25%Bromophenol blue(和光純薬工業株式会社)、30%グリセリン(nacalai tesque)となるようにdH2Oに溶解した。SYBR(登録商標) Green I nucleic acid gel steinはdH2Oで1000倍希釈して用いた。そのサンプルを用い、1.5%アガロースゲルで電気泳動を行った。アガロースゲルは、TAE bufferに1~1.5%の濃度でAgarose S(和光純薬工業株式会社)を溶かして作成した。TAE bufferとして1LあたりTris(nacalaitesque)-HCl 242g、EDTA・2Na 37.2g、氷酢酸(nacalai tesque)57.1mLをdH2Oに溶解してpH8.5に調整後、dH2Oで1Lにフィルアップし、オートクレーブ滅菌をし、50 x TAE bufferを作成し、dH2Oで50倍希釈して使用した。電気泳動槽はGelMate(TOYOBO)を使用した。電気泳動後、250μL EtBrを添加した500mL TAE bufferに15分間浸した。その後、ChemiImagerTM 5500(Alpha Innotech)を用いてDNAの検出を行った。その後、photoshopのヒストグラムからDNA量を数値化した。その結果確認できたpLPCX特異的なバンドをGENECLEAN II kit(フナコシ)を用いてアガロースゲルより回収した。そのDNA断片をDNA Ligation Kit Ver.2.1(タカラバイオ株式会社)を用いてpTargeTTM Mammalian Expression Vector System(Promega)にTAクローニングを行った。このvectorを、次のように大腸菌に形質転換した。大腸菌は、Escherichiacoli JM109(タカラバイオ株式会社)を使用した。-80℃で保管しておいたEscherichia coliJM109のグリセロールストックを、SOBに加え、OD600=0.6になるまで16℃で振とうした後、遠心して上清を捨て、TB(Transfer Buffer)に懸濁した。それを遠心して上清を捨て、DMSO添加TBに懸濁し、液体窒素中で保存しておいたものを用いた。SOBは、150mlあたりBacto Tryptone(和光純薬工業株式会社)を3.0g、Bacto Yeast Extract(和光純薬工業株式会社)を0.75g、NaClを0.078g、KClを0.027g、dH2Oを全量が148.5mlになるまで加えた。この溶液をオートクレーブ滅菌し室温まで冷ました後、これとは別にオートクレーブした2M Mg2+液(12.324gのMgSO4・7H2O(和光純薬工業株式会社)+10.165gのMgCl2・6H2O(nacalai tesque)を水に混ぜて50mlにし、オートクレーブ滅菌した)を無菌的に1.5ml加えた。TBは、100mlあたりPIPES(和光純薬工業株式会社)を0.3g、CaCl2(和光純薬工業株式会社)を0.22g、KClを1.86gを90mlの水に混ぜた後、pHをKOH(nacalai tesque)で6.7に合わせた。MnCl2・4H2O(和光純薬工業株式会社)を1.09g加えた後、全量を100mlに合わせ、フィルター滅菌(0.22μm)してから4℃にて保存した。大腸菌の培養は、アンピシリン含有液体LB培地又はアンピシリン含有LBプレートを用いた。アンピシリン含有液体LB培地は、1LにつきBacto Tryptone 10g、Bacto Yeast Extract 5g、NaCl 10gをdH2Oで1Lにフィルアップして、pHを7.0にし、オートクレーブ滅菌した。そして使用前に、150mg/mlのアンピシリンを1000倍希釈で添加して使用した。LBプレートは200mlにつきBacto Tryptone 2g、Bacto Yeast Extract 1g、NaCl 2g、Bacto Agar(和光純薬工業株式会社)5g加え、dH2Oで200mlにフィルアップしてオートクレーブ滅菌した。オートクレーブ後、60℃に冷ましてから150mg/mlのアンピシリンを200μl加え、10ml dish(Falcon 1029)(日本ベクトン・ディッキンソン株式会社)に10mlずつ分注した。アンピシリンはアンピシリンナトリウム(和光純薬工業株式会社)を150mg/mlになるようにdH2Oで溶かし、フィルター滅菌(0.22μm)して-20℃で保存したものを使用した。形質転換は、vectorをEscherichiacoli JM109の懸濁液100μLに混和し、氷中に30分間放置した。その後、42℃で30秒間放置した後、氷中に戻し、1から3分間冷却した。これに、0.9mLのSOCを加え、37℃で1時間回復培養を行った。SOCは100mlあたり100mLのSOBに1mLの2Mグルコース溶液(18.016gを水に混ぜて50mlにしてオートクレーブしたもの)を加え、分注して室温あるいは4℃で保存したものを使用した。それを、室温で5分間遠心(1000 x g)して、上清900μLを取り除いた。 The introduced cDNA fragment was amplified by PCR using TE buffer. As a PCR device, TGRADIENT (Biometra (registered trademark ) , Germany) or PC320 (ASTEC, Fukuoka) was used. PCR is 0.5 μL of each primer (sense primer and antisense primer) per sample, dNTP mix 1 μL, 10 x buffer 1 μL, Ex taq 0.1 μL and dH 2 O 5.9 μL purchased from Takara Bio Inc. (Shiga) 1 μL of the template was suspended, initial denaturation at 94 ° C. for 2 minutes, denaturation reaction at 94 ° C. for 30 seconds, annealing at 67.1 ° C. for 30 seconds, extension reaction at 72 ° C. for 1 minute, and denaturation reaction, annealing and extension reaction were performed 40 cycles. . After PCR, 1 μL of BPB solution and 0.5 μL of SYBR (registered trademark) Green I nucleic acid gel stein (Molecular probes (invitrogen)) were added per sample. The BPB solution was dissolved in dH 2 O to be 0.25% Bromophenol blue (Wako Pure Chemical Industries, Ltd.) and 30% glycerin (nacalai tesque). SYBR (registered trademark) Green I nucleic acid gel stein was used after diluting 1000 times with dH 2 O. The sample was used for electrophoresis on a 1.5% agarose gel. The agarose gel was prepared by dissolving Agarose S (Wako Pure Chemical Industries, Ltd.) at a concentration of 1 to 1.5% in TAE buffer. As a TAE buffer, 242 g of Tris (nacalaitesque) -HCl per 1 L, 37.2 g of EDTA 2Na, 57.1 mL of glacial acetic acid (nacalai tesque) are dissolved in dH 2 O, adjusted to pH 8.5, and then filled up to 1 L with dH 2 O. The mixture was sterilized by autoclaving to prepare a 50 × TAE buffer, which was diluted 50 times with dH 2 O and used. GelMate (TOYOBO) was used for the electrophoresis tank. After electrophoresis, the cells were immersed in 500 mL TAE buffer supplemented with 250 μL EtBr for 15 minutes. Thereafter, DNA was detected using ChemiImager 5500 (Alpha Innotech). Then, the amount of DNA was digitized from the photoshop histogram. As a result, a pLPCX-specific band confirmed was collected from an agarose gel using GENECLEAN II kit (Funakoshi). The DNA fragment was TA cloned into pTargeT Mammalian Expression Vector System (Promega) using DNA Ligation Kit Ver.2.1 (Takara Bio Inc.). This vector was transformed into E. coli as follows. Escherichiacoli JM109 (Takara Bio Inc.) was used for E. coli. Add the glycerol stock of Escherichia coli JM109 stored at -80 ° C to SOB, shake at 16 ° C until OD 600 = 0.6, centrifuge, discard the supernatant, and suspend in TB (Transfer Buffer). It became cloudy. It was centrifuged and the supernatant was discarded. The supernatant was suspended in DMSO-added TB and stored in liquid nitrogen. SOB is 3.0 g of Bacto Tryptone (Wako Pure Chemical Industries, Ltd.), 0.75 g of Bacto Yeast Extract (Wako Pure Chemical Industries, Ltd.), 0.078 g of NaCl, 0.027 g of KCl, and dH 2 O per 150 ml. Added to 148.5 ml. After cooling the solution to room temperature autoclaved, which 2M Mg 2+ solution separately autoclaved and (12.324g MgSO 4 · 7H 2 O of (Wako Pure Chemical Industries, Ltd.) + 10.165g of MgCl 2 · 6H 2 1.5 ml of O (nacalai tesque) was mixed with water to make 50 ml and sterilized by autoclaving). TB is mixed with 0.3 g of PIPES (Wako Pure Chemical Industries, Ltd.), 0.22 g of CaCl 2 (Wako Pure Chemical Industries, Ltd.) and 1.86 g of KCl in 100 ml of water per 100 ml, and then the pH is adjusted to KOH (nacalai tesque) adjusted to 6.7. After adding 1.09 g of MnCl 2 .4H 2 O (Wako Pure Chemical Industries, Ltd.), the total amount was adjusted to 100 ml, filter sterilized (0.22 μm), and stored at 4 ° C. E. coli was cultured using ampicillin-containing liquid LB medium or ampicillin-containing LB plates. Ampicillin-containing liquid LB medium was filled with 1 g of Bacto Tryptone 10 g, Bacto Yeast Extract 5 g, and NaCl 10 g to 1 L with dH 2 O to a pH of 7.0, and autoclaved. Before use, 150 mg / ml ampicillin was added at a 1000-fold dilution. The LB plate was added with 2 g of Bacto Tryptone, 1 g of Bacto Yeast Extract, 2 g of NaCl, and 5 g of Bacto Agar (Wako Pure Chemical Industries, Ltd.) per 200 ml, filled up to 200 ml with dH2O and sterilized by autoclave. After autoclaving and cooling to 60 ° C., 200 μl of 150 mg / ml ampicillin was added, and 10 ml each was dispensed into a 10 ml dish (Falcon 1029) (Nippon Becton Dickinson Co., Ltd.). Ampicillin used was ampicillin sodium (Wako Pure Chemical Industries, Ltd.) dissolved in dH 2 O to 150 mg / ml, filter sterilized (0.22 μm) and stored at −20 ° C. For transformation, the vector was mixed with 100 μL of Escherichiacoli JM109 suspension and left on ice for 30 minutes. Thereafter, it was left at 42 ° C. for 30 seconds, then returned to ice and cooled for 1 to 3 minutes. 0.9 mL of SOC was added thereto, and recovery culture was performed at 37 ° C. for 1 hour. The SOC was 100 mL SOB per 100 mL, 1 mL of 2M glucose solution (18.016 g mixed in water and autoclaved to 50 mL), dispensed, and stored at room temperature or 4 ° C. It was centrifuged (1000 × g) for 5 minutes at room temperature to remove 900 μL of supernatant.
 その大腸菌をアンピシリン含有LBプレートに塗布し37℃で1晩培養後、立ち上がってきたコロニーを、青白判定のため、x-gal及びIPTGを塗布したアンピシリン含有LBプレートに塗布した。このプレートは、アンピシリン含有LBプレートに、20mg/ml X-gal 25μLと0.1M IPTG 25μLを塗布して使用した。20mg/ml X-galは、100mgのX-galを5 mlのN-N-dimethyl-formamide(和光純薬工業株式会社)に溶解し、-20℃で保存した。0.1M IPTGは、1gのIPTG(和光純薬工業株式会社)を4.2mlのdH2Oに溶解し、-20℃で保存した。37℃で1晩培養後、立ち上がってきた白コロニーを鋳型に1サンプルあたり、pLPCX-SとpLPCX-Aのプライマーセット各0.5μLずつと2.5mM dNTP mix 1μL、Fermentas UABより購入した25mM MgCl2 1μL、10 x buffer with (NH4)2SO41μL、Taq DNA Polymerase(Recombinant)0.1μLとdH2O 4.9μL、鋳型適量を懸濁した。PCRは、初期変性94℃で2分間、変性反応94℃で30秒間、アニーリング67.1 ℃で30秒間、伸長反応72℃で2分間行い、変性反応、アニーリング及び伸長反応を30サイクル行った。PCR後、各サンプルに、BPBを1 μL添加し、1.5%アガロースゲルで電気泳動を行った。 The Escherichia coli was applied to an ampicillin-containing LB plate and cultured at 37 ° C. overnight, and the colonies that had risen were applied to an ampicillin-containing LB plate coated with x-gal and IPTG for blue-white determination. The plate was used by applying 25 μL of 20 mg / ml X-gal and 25 μL of 0.1M IPTG to an LB plate containing ampicillin. For 20 mg / ml X-gal, 100 mg of X-gal was dissolved in 5 ml of NN-dimethyl-formamide (Wako Pure Chemical Industries, Ltd.) and stored at -20 ° C. For 0.1M IPTG, 1 g of IPTG (Wako Pure Chemical Industries, Ltd.) was dissolved in 4.2 ml of dH 2 O and stored at −20 ° C. After overnight culture at 37 ° C, a white colony that has risen as a template, 0.5 μL each of primer set of pLPCX-S and pLPCX-A, 2.5 mM dNTP mix 1 μL, 25 mM MgCl 2 purchased from Fermentas UAB 1 × L of 10 × buffer with (NH 4 ) 2 SO 4 , 0.1 μL of Taq DNA Polymerase (Recombinant) and 4.9 μL of dH 2 O were suspended in appropriate amounts. PCR was performed at an initial denaturation of 94 ° C. for 2 minutes, a denaturation reaction at 94 ° C. for 30 seconds, an annealing at 67.1 ° C. for 30 seconds, an extension reaction at 72 ° C. for 2 minutes, and a denaturation reaction, annealing, and extension reaction were performed for 30 cycles. After PCR, 1 μL of BPB was added to each sample, and electrophoresis was performed on a 1.5% agarose gel.
 インサートが確認できたクローンからLaboPassTM Mini(LaboPass)によりプラスミドDNAを回収し、TE bufferに懸濁した。回収したプラスミドDNAを鋳型として、シークエンス用の伸長反応を行った。反応は、Big Dye Terminatorサイクルシークエンシングプロトコールに従い、BigDye Terminator v3.1Cycle Sequencing Kitを用いて反応させた。反応液は、buffer 3.5μL、プライマー3.2pmol、鋳型適量、BigDye Terminator v3.1Cycle Sequencing Kit(プレミックス)1.0μLを混和し、dH2Oにて20μLとした。反応は、初期変性96℃で1分間、変性反応96℃で10秒間、アニーリング50℃で5秒間、伸長反応60℃で4分間行い、変性反応、アニーリング及び伸長反応を25サイクル行った。プライマーにはT7(5'-CTA ATA CGA CTC ACT ATA GGG C-3'、配列番号:9)、LacZ(5'-AGA TAT GAC CAT GAT TAC GCC-3'、配列番号:10) を、TE bufferで1.0pmol/μLになるように調整して使用した。その後、ABI3130xl DNAシークエンサーにより塩基配列を決定した。その塩基配列情報からequol耐性原因遺伝子を特定した。 Plasmid DNA was recovered from the clones in which the insert was confirmed using LaboPass Mini (LaboPass) and suspended in TE buffer. Using the recovered plasmid DNA as a template, an extension reaction for sequencing was performed. The reaction was performed using the BigDye Terminator v3.1Cycle Sequencing Kit according to the Big Dye Terminator cycle sequencing protocol. The reaction solution was mixed with 3.5 μL of buffer, 3.2 pmol of primer, appropriate amount of template, 1.0 μL of BigDye Terminator v3.1Cycle Sequencing Kit (premix), and adjusted to 20 μL with dH 2 O. The reaction was performed at initial denaturation 96 ° C. for 1 minute, denaturation reaction 96 ° C. for 10 seconds, annealing 50 ° C. for 5 seconds, extension reaction 60 ° C. for 4 minutes, and denaturation reaction, annealing, and extension reaction were performed 25 cycles. T7 (5'-CTA ATA CGA CTC ACT ATA GGG C-3 ', SEQ ID NO: 9), LacZ (5'-AGA TAT GAC CAT GAT TAC GCC-3', SEQ ID NO: 10) are used as primers. The buffer was adjusted to 1.0 pmol / μL before use. Thereafter, the base sequence was determined with an ABI3130xl DNA sequencer. The equol resistance causative gene was identified from the nucleotide sequence information.
 5.Papd5の発現をノックダウンさせたHeLa細胞の構築
 Papd5をノックダウンさせたヒト子宮頸がん細胞株HeLaの構築は以下の様に行った。Papd5の発現をノックダウンするためのベクター(shPapd5-RNA)は、ターゲット配列として5'-GCCACATATAGAGATTGGATA-3(配列番号:11)を持つpLKO.1-puro vector(SIGMA-ALDRICH)を使用した。遺伝子導入方法は、HeLa細胞を2 x 104cells/mLで播種し、24時間後、vectorを2μg、Fugene6を6μLそれぞれDMEMで全量200μLになるように混合し、細胞に添加した。遺伝子が導入された細胞の選択方法は、細胞にベクターを添加して48時間後に細胞を回収し、96穴プレートに播種し、puromycin(invivogen)によるセレクションを行った。生存し、増殖してきた細胞を用い、次のようにPapd5のノックダウンの確認を行った。用いた試薬は、equolの抗がん作用関連遺伝子の同定の際に調整したものを用いた。細胞にTRIzol(登録商標)Reagent 1mLを添加し、室温で5分間放置した。次に、クロロホルム200μLを添加・撹拌し、室温で3分間放置後、4℃で15分間遠心(12000 x g)した。その後、上層を取り出し、2-プロパノール500μLを添加・撹拌し、室温で10分間放置後、4℃で10分間遠心(12000 x g)した。その後、上清を除去し、75% EtOH in DEPE水1mLを添加・撹拌後、4℃で5分間遠心(12000x g)した。その上清を完全に除去し、DEPC水を10から20μL入れて懸濁した。そこに、(dT)20を0.5μLとRamdom 6 mers(5'-NNN NNN-3'、DEPC水で0.5μg/μLになるように調整したもの)を0.5μL、5 x PrimeScript Buffer(for Real time)2μL、PrimesScript RT Enzyme Mix I 0.5μL(いずれもタカラバイオ)を添加し、37℃で15分間逆転写反応を行った。85℃で5秒間処理した後、-4℃で保存した。Real Time PCRは、Papd5を増幅するプライマー、Papd5-F(5'-CACAAAGTCGCAGATGAGGA-3'、配列番号:12)、Papd5-R(5'-TGGACTGTGTGGCAGAAGAG-3'、配列番号:13)を10mMになるようにTE bufferで希釈したものを用いた。調整したcDNA2μL、各プライマー1μL、SYBR Premix Ex Taq II(2x,SYBR PrimerScript RT-PCR Kit II)12.5μLを混合し、Thermal Cycler Dice Real Time Systemにセットし反応を行った。PCR条件は、初期変性が95℃10秒、その後95℃5秒、60℃20秒で行った。また同様にして、内部標準物質としてGAPDH発現量をこれまでと同様の方法で検討した。
Five. Construction of HeLa cells in which expression of Papd5 was knocked down Construction of human cervical cancer cell line HeLa in which Papd5 was knocked down was performed as follows. As a vector (shPapd5-RNA) for knocking down the expression of Papd5, a pLKO.1-puro vector (SIGMA-ALDRICH) having 5′-GCCACATATAGAGATTGGATA-3 (SEQ ID NO: 11) as a target sequence was used. In the gene transfer method, HeLa cells were seeded at 2 × 10 4 cells / mL, and 24 hours later, 2 μg of vector and 6 μL of Fugene 6 were mixed with DMEM to a total volume of 200 μL, and added to the cells. As a method for selecting a cell into which a gene was introduced, a vector was added to the cell, and the cell was collected 48 hours later, seeded in a 96-well plate, and selected with puromycin (invivogen). Using the surviving and proliferating cells, knockdown of Papd5 was confirmed as follows. The reagents used were those prepared at the time of identification of equol's anticancer activity-related gene. 1 mL of TRIzol® Reagent was added to the cells and left at room temperature for 5 minutes. Next, 200 μL of chloroform was added and stirred, allowed to stand at room temperature for 3 minutes, and then centrifuged (12000 × g) at 4 ° C. for 15 minutes. Thereafter, the upper layer was taken out, 500 μL of 2-propanol was added and stirred, allowed to stand at room temperature for 10 minutes, and then centrifuged (12000 × g) at 4 ° C. for 10 minutes. Thereafter, the supernatant was removed, 1 mL of 75% EtOH in DEPE water was added and stirred, and then centrifuged (12000 × g) at 4 ° C. for 5 minutes. The supernatant was completely removed, and 10 to 20 μL of DEPC water was added and suspended. (DT) 20 0.5 μL and Ramdom 6 mers (5′-NNN NNN-3 ′, adjusted to 0.5 μg / μL with DEPC water) 0.5 μL, 5 x PrimeScript Buffer (for Real time) 2 μL, PrimesScript RT Enzyme Mix I 0.5 μL (both Takara Bio) were added, and a reverse transcription reaction was performed at 37 ° C. for 15 minutes. After treating at 85 ° C for 5 seconds, it was stored at -4 ° C. In Real Time PCR, a primer for amplifying Papd5, Papd5-F (5'-CACAAAGTCGCAGATGAGGA-3 ', SEQ ID NO: 12), Papd5-R (5'-TGGACTGTGTGGCAGAAGAG-3', SEQ ID NO: 13) becomes 10 mM. As described above, a solution diluted with TE buffer was used. 2 μL of the prepared cDNA, 1 μL of each primer, and 12.5 μL of SYBR Premix Ex Taq II (2 ×, SYBR PrimerScript RT-PCR Kit II) were mixed and set in the Thermal Cycler Dice Real Time System for reaction. PCR conditions were initial denaturation at 95 ° C. for 10 seconds, then 95 ° C. for 5 seconds and 60 ° C. for 20 seconds. Similarly, the expression level of GAPDH as an internal standard was examined in the same manner as before.
 他方、コントロールベクター(scramble-shRNA)を恒常的に発現導入させたHeLa細胞も作製した。 On the other hand, HeLa cells into which a control vector (scramble-shRNA) was constantly introduced were also prepared.
 6.HeLa細胞のequol感受性に対するPapd5の関与
 5で作成したPapd5-shRNA導入HeLa細胞、及びscramble-shRNA導入HeLa細胞は、10%FCS含有のDMEM培地でWildTypeのHeLa細胞と同様の方法で継代、維持した。
6. Papd5-shRNA-introduced HeLa cells and scramble-shRNA-introduced HeLa cells created in 5 of Papd5 on equol sensitivity of HeLa cells are subcultured and maintained in the same manner as WildType HeLa cells in DMEM medium containing 10% FCS. did.
 細胞数の測定は、HeLa細胞を2 x 104cells/mLにて24穴プレートに播種し、10% FCS含有DMEM培地にて24時間前培養した。その後、終濃度1,5,10,25μMのequolを含む10% FCS含有DMEM培地に置換して72時間培養し、セルカウンターにて細胞数を計測した。実験結果の統計処理にはStudent's t検定を用いた。 For the measurement of the number of cells, HeLa cells were seeded in a 24-well plate at 2 × 10 4 cells / mL and pre-cultured in DMEM medium containing 10% FCS for 24 hours. Thereafter, the cells were replaced with 10% FCS-containing DMEM medium containing equol having a final concentration of 1,5,10,25 μM, cultured for 72 hours, and the number of cells was counted with a cell counter. Student's t test was used for statistical processing of the experimental results.
 7.Papd5の発現をノックダウンさせたB16細胞の構築
 Papd5をノックダウンさせたB16細胞の構築は以下の様に行った。Papd5の発現をノックダウンするためのベクター(shPapd5-RNA)は、ターゲット配列として5'-CTGACGAGGATTCCGTGAAAG-3'(配列番号:14)を持つpLKO.1-puro vector(SIGMA-ALDRICH)を使用した。遺伝子導入方法は、B16細胞を2 x 104cells/mLで播種し24時間後、vectorを2μg、Fugene6を6μLそれぞれDMEMで全量200μLになるように混合し、細胞に添加した。遺伝子が導入された細胞の選択方法は、細胞にベクターを添加して48時間後に細胞を回収し、96穴プレートに播種し、puromycin(invivogen)によるセレクションを行った。生存し、増殖してきた細胞を用い、次のようにPapd5のノックダウンの確認を行った。用いた試薬は、equolの抗がん作用関連遺伝子の同定の際に調整したものを用いた。細胞にTRIzol(登録商標) Reagent 1mLを添加し、室温で5分間放置した。次に、クロロホルム200μLを添加・撹拌し、室温で3 分間放置後、4℃で15分間遠心(12000 x g)した。その後、上層を取り出し、2-プロパノール500μLを添加・撹拌し、室温で10分間放置後、4℃で10分間遠心(12000 x g)した。その後、上清を除去し、75% EtOH in DEPE水1mLを添加・撹拌後、4℃で5分間遠心(12000 x g)した。その上清を完全に除去し、DEPC水を10から20μL入れて懸濁した。そこに、(dT)20を0.5μLとRamdom 6 mers(5'-NNN NNN-3'、DEPC水で0.5μg/μLになるように調整したもの)を0.5μL、5x PrimeScript Buffer(for Real time)2μL、PrimesScript RT Enzyme Mix I 0.5μL(いずれもタカラバイオ)を添加し、37℃で15分間逆転写反応を行った。85℃で5秒間処理した後、-4℃で保存した。RT-PCRは、Papd5を増幅するプライマー、Papd5-F(5'-GGAGGTAGTGAGCAGGATCG-3'、配列番号:15)、Papd5-R(5'-ATCCTCGTCAGCGACTTTGT-3'、配列番号:16)を10mMになるようにTE bufferで希釈したものを用いた。調整したcDNA 1μL、各プライマー0.5μL、2.5mM dNTP mix 1μL、25mM MgCl21μL、10 x buffer with(NH4)2SO41μL、Taq DNA Polymerase(Fermentas)0.1μL、dH2O 4.9μLを用いてPCRに供した。PCRは、初期変性94℃で2分間、変性反応94℃で1分間、アニーリング60℃で1分間、伸長反応72℃で1分間行い、変性反応、アニーリング及び伸長反応を35サイクル行った。また同様にして、内部標準物質としてβ-Actin発現量を、これまでと同様の方法で検討した。PCR後BPBを1μL添加し、EtBr Solution(和光純薬株式会社)を10000倍希釈で添加した1.5%アガロースゲルで電気泳動を行った。
7. Construction of B16 cells in which expression of Papd5 was knocked down Construction of B16 cells in which Papd5 was knocked down was performed as follows. As a vector (shPapd5-RNA) for knocking down the expression of Papd5, a pLKO.1-puro vector (SIGMA-ALDRICH) having 5′-CTGACGAGGATTCCGTGAAAG-3 ′ (SEQ ID NO: 14) as a target sequence was used. In the gene transfer method, B16 cells were seeded at 2 × 10 4 cells / mL, 24 hours later, 2 μg of vector and 6 μL of Fugene 6 were mixed with DMEM to a total volume of 200 μL and added to the cells. As a method for selecting a cell into which a gene was introduced, a vector was added to the cell, and the cell was collected 48 hours later, seeded in a 96-well plate, and selected with puromycin (invivogen). Using the surviving and proliferating cells, knockdown of Papd5 was confirmed as follows. The reagents used were those prepared at the time of identification of equol's anticancer activity-related gene. 1 mL of TRIzol (Registered Trademark) Reagent was added to the cells and left at room temperature for 5 minutes. Next, 200 μL of chloroform was added and stirred, allowed to stand at room temperature for 3 minutes, and then centrifuged (12000 × g) at 4 ° C. for 15 minutes. Thereafter, the upper layer was taken out, 500 μL of 2-propanol was added and stirred, allowed to stand at room temperature for 10 minutes, and then centrifuged (12000 × g) at 4 ° C. for 10 minutes. Thereafter, the supernatant was removed, 1 mL of 75% EtOH in DEPE water was added and stirred, and then centrifuged (12000 × g) at 4 ° C. for 5 minutes. The supernatant was completely removed, and 10 to 20 μL of DEPC water was added and suspended. There, 0.5 μL of (dT) 20 and 0.5 μL of Ramdom 6 mers (5′-NNN NNN-3 ′, adjusted to 0.5 μg / μL with DEPC water), 5 × PrimeScript Buffer (for Real time ) 2 μL and PrimesScript RT Enzyme Mix I 0.5 μL (both Takara Bio) were added, and a reverse transcription reaction was performed at 37 ° C. for 15 minutes. After treating at 85 ° C for 5 seconds, it was stored at -4 ° C. RT-PCR is 10 mM of primers that amplify Papd5, Papd5-F (5′-GGAGGTAGTGAGCAGGATCG-3 ′, SEQ ID NO: 15), Papd5-R (5′-ATCCTCGTCAGCGACTTTGT-3 ′, SEQ ID NO: 16). As described above, a solution diluted with TE buffer was used. Using 1 μL of prepared cDNA, 0.5 μL of each primer, 2.5 μm dNTP mix 1 μL, 25 mM MgCl 2 1 μL, 10 x buffer with (NH 4 ) 2 SO 4 1 μL, Taq DNA Polymerase (Fermentas) 0.1 μL, dH 2 O 4.9 μL And subjected to PCR. PCR was performed at an initial denaturation of 94 ° C. for 2 minutes, a denaturation reaction at 94 ° C. for 1 minute, an annealing at 60 ° C. for 1 minute, an extension reaction at 72 ° C. for 1 minute, and a denaturation reaction, annealing, and extension reaction were performed for 35 cycles. Similarly, the expression level of β-Actin as an internal standard was examined in the same manner as before. After PCR, 1 μL of BPB was added, and electrophoresis was performed on a 1.5% agarose gel to which EtBr Solution (Wako Pure Chemical Industries, Ltd.) was added at a 10,000-fold dilution.
 他方、コントロールベクター(scramble-shRNA)を恒常的に発現導入させたB16細胞も作製した。 On the other hand, B16 cells into which a control vector (scramble-shRNA) was constantly introduced were also prepared.
 8.B16細胞のequol感受性に対するPapd5の関与
 7で作成したPapd5-shRNA導入B16細胞、及びcramble-shRNA入B16細胞は、5%FCS含有のDMEM培地でWild TypeのB16細胞と同様の方法で継代、維持した。
8. Papd5-shRNA-introduced B16 cells created in 7 involved in Papd5 on equol sensitivity of B16 cells, and B16 cells with cramble-shRNA were subcultured in the same manner as Wild Type B16 cells in DMEM medium containing 5% FCS. Maintained.
 細胞数の測定は、B16細胞を2 x 104cells/mLにて24穴プレートに播種し、5%FCS含有DMEM培地にて24時間前培養した。その後、終濃度10μMのequolを含む2%FCS含有DMEM培地に置換して72時間培養し、セルカウンターにて細胞数を計測した。実験結果の統計処理には Student's t検定を用いた。 For the measurement of the number of cells, B16 cells were seeded on a 24-well plate at 2 × 10 4 cells / mL and pre-cultured in DMEM medium containing 5% FCS for 24 hours. Thereafter, the medium was replaced with 2% FCS-containing DMEM medium containing equol having a final concentration of 10 μM and cultured for 72 hours, and the number of cells was counted with a cell counter. Student's t test was used for statistical processing of experimental results.
 9.機能性食品因子の細胞増殖抑制作用に及ぼすPapd5の関与
 5で作成したPapd5-shRNA導入HeLa細胞を用い、機能性食品因子(equol、genistein (東京化成工業)、daidzein (東京化成工業)、EGCG)の作用を検討した。equol、genistein、daidzeinは、DMSOで100mM となるように溶解し、-30 ℃で保存しておいた。EGCG(テアビゴ)は、超純水で5mMとなるように溶解し、4℃で保存しておいた。
9. Functional food factors (equol, genistein (Tokyo Kasei Kogyo), daidzein (Tokyo Kasei Kogyo), EGCG) using Papd5-shRNA-introduced HeLa cells created in Papd5's involvement 5 on the cell growth inhibitory action of functional food factors The effect of was examined. Equol, genistein and daidzein were dissolved in DMSO to 100 mM and stored at -30 ° C. EGCG (Teavigo) was dissolved in ultrapure water to 5 mM and stored at 4 ° C.
 細胞数の測定は、HeLa細胞を2x104cells/mLにて24穴プレートに播種し、10%FCS含有DMEM培地にて24時間前培養した。その後、終濃度1, 5, 10, 20μMの各サンプルを含む2%FCS含有DMEM培地に置換して72時間培養し、セルカウンターにて細胞数を計測した。実験結果の統計処理にはStudent's t検定を用いた。 For the measurement of the number of cells, HeLa cells were seeded on a 24-well plate at 2 × 10 4 cells / mL and pre-cultured in DMEM medium containing 10% FCS for 24 hours. Thereafter, the cells were replaced with 2% FCS-containing DMEM medium containing each sample at final concentrations of 1, 5, 10, and 20 μM, cultured for 72 hours, and the number of cells was counted with a cell counter. Student's t test was used for statistical processing of the experimental results.
 <結果>
 1.ヒト由来各種がん細胞に対するequolの細胞増殖抑制活性とそのER依存性
 ヒト子宮頸がん細胞株HeLa及びヒト前立腺がん細胞株PC-3をそれぞれ2 x 104 cells/mLで24穴プレートに播種し、ERアンタゴニストであるICI182,780(ICI)で処理した後、equolを添加して72時間培養し細胞数を計測した(図1)。その結果、これらのがん細胞株はequolによって増殖が抑制され、ICIで処理してもその作用は阻害されなかった。このことから、これらのがん細胞株に対してequolはER非依存的な作用機序により、細胞増殖抑制活性を示すことが示唆された(図1)。
<Result>
1. Equol cell growth-inhibitory activity against various human cancer cells and its ER-dependent human cervical cancer cell line HeLa and human prostate cancer cell line PC-3 at 2 x 10 4 cells / mL in 24-well plates After seeding and treatment with ER antagonist ICI182,780 (ICI), equol was added and cultured for 72 hours to count the number of cells (FIG. 1). As a result, the growth of these cancer cell lines was suppressed by equol, and even when treated with ICI, the action was not inhibited. This suggests that equol exhibits cytostatic activity against these cancer cell lines by an ER-independent mechanism of action (FIG. 1).
 2.マウスメラノーマ細胞株B16に対するequolの細胞増殖抑制活性
 Equolの抗がん作用が発現するために必須な遺伝子を同定するために、その遺伝子の働きを遺伝子断片の導入により阻害することでequol耐性となるがん細胞株をスクリーニングし、耐性細胞からその原因となった遺伝子断片を得る手法(genetic suppressor elements (GSE)法)を用いることにした。GSE法を用いるためにはequolによって増殖抑制や致死作用が誘導されるがん細胞株が必要である。マウスメラノーマ細胞株B16を2 x 104 cells/mLで24穴培養プレートに播種し、equolを添加した培地で72時間培養後、もしくは24時間毎に細胞数を測定した(図2)。その結果、本細胞株は、equolによって顕著にその増殖が抑制されたことから、GSE法の適応が可能ながん細胞株であることを見出した(図2)。
2. In order to identify a gene essential for the anticancer activity of equol's cytostatic activity Equol against mouse melanoma cell line B16, it becomes equol resistant by inhibiting the function of the gene by introducing a gene fragment. We decided to use a technique (genetic suppressor elements (GSE) method) to screen cancer cell lines and obtain the gene fragment that caused the disease from resistant cells. In order to use the GSE method, a cancer cell line in which growth suppression and lethal action are induced by equol is necessary. The mouse melanoma cell line B16 was seeded on a 24-well culture plate at 2 × 10 4 cells / mL and cultured for 72 hours in a medium supplemented with equol or the number of cells was measured every 24 hours (FIG. 2). As a result, this cell line was found to be a cancer cell line to which the GSE method can be applied because its growth was remarkably suppressed by equol (FIG. 2).
 3.B16細胞に対するequolの細胞増殖抑制活性のER依存性
 一方、B16細胞においては、ICIで処理してもequolの細胞増殖抑制作用は阻害されなかった。このことから、equolのB16細胞における細胞増殖抑制作用にはERが関与しないことが示された(図3)。
3. On the other hand, equol's cytostatic activity on B16 cells was not inhibited by treatment with ICI. This showed that ER was not involved in the cell growth inhibitory action of equol in B16 cells (FIG. 3).
 4.Equol 耐性 B16 細胞から検出されたマウス胚由来cDNA断片
 マウス胚由来cDNAライブラリーを導入したB16細胞を、equol(80μM)含有培地で培養し、equol耐性となった細胞をスクリーニングした。これらequol耐性となった細胞から遺伝子断片を網羅的に回収し、その遺伝子配列を解析した結果、Pap associated domain containing 5(Papd5)遺伝子(配列番号:3のヌクレオチド配列からなるポリヌクレオチド(マウスPapd5のmRNA)を転写により生じさせる遺伝子、及び配列番号:4のアミノ酸配列からなるタンパク質をコードする遺伝子)に由来する断片であることが明らかになった。
Four. Mouse embryo-derived cDNA fragments detected from Equol-resistant B16 cells B16 cells into which a mouse embryo-derived cDNA library was introduced were cultured in a medium containing equol (80 μM), and cells that became equol-resistant were screened. As a result of comprehensive collection of gene fragments from these equol-resistant cells and analysis of the gene sequence, the Pap associated domain containing 5 (Papd5) gene (polynucleotide comprising the nucleotide sequence of SEQ ID NO: 3 (mouse Papd5) mRNA) was found to be a fragment derived from a gene that generates by transcription and a gene that encodes a protein consisting of the amino acid sequence of SEQ ID NO: 4.
 5.HeLa細胞のequol感受性に対するPapd5ノックダウンの影響
 Papd5の発現をRNA干渉法を用いて特異的にノックダウンさせるため、Papd5特異的shRNA発現ベクター(Papd5-shRNA)とそのコントロールベクター(scramble-shRNA)をそれぞれ恒常的に発現導入させたヒト子宮頸がん細胞株HeLaを作製した。その結果、Papd5の発現が低下したHeLa細胞を得ることができた(図4a)。
Five. Effect of Papd5 knockdown on equol sensitivity of HeLa cells In order to specifically knockdown Papd5 expression using RNA interference method, a Papd5-specific shRNA expression vector (Papd5-shRNA) and its control vector (scramble-shRNA) are used. A human cervical cancer cell line HeLa into which expression was constantly introduced was prepared. As a result, HeLa cells with reduced Papd5 expression could be obtained (FIG. 4a).
 Papd5-shRNA又はscramble-shRNAを導入したHeLa細胞を2 x 104cells/mLで24穴培養プレートに播種し、各濃度のequolを添加した培地で72時間培養し、細胞数を測定し、equolに対する感受性を検討した。その結果、scramble-shRNAを導入したHeLa細胞はequolによってその細胞増殖が抑制された。一方、Papd5-shRNAを導入しPapd5発現量を低下させたHeLa細胞では、equolに対する感受性が完全に消失していた(図4b)。 HeLa cells introduced with Papd5-shRNA or scramble-shRNA were seeded in a 24-well culture plate at 2 x 10 4 cells / mL, cultured for 72 hours in a medium supplemented with equol of each concentration, the number of cells was measured, and equol The sensitivity to was investigated. As a result, HeLa cells into which scramble-shRNA had been introduced were inhibited by equol. On the other hand, the sensitivity to equol completely disappeared in HeLa cells in which Papd5-shRNA was introduced to reduce the amount of Papd5 expression (FIG. 4b).
 6.B16細胞のequol感受性に対するPapd5ノックダウンの影響
 マウスメラノーマ細胞株B16のequol感受性におけるPapd5の関与を明らかにするため、Papd5特異的shRNA発現ベクター(Papd5-shRNA)とそのコントロールベクター(scramble-shRNA)をそれぞれ恒常的に発現導入させたマウスメラノーマ細胞株B16を作製した。その結果、Papd5の発現が低下したB16細胞を得ることができた(図5a)。
6. Effect of Papd5 knockdown on equol sensitivity of B16 cells To elucidate the involvement of Papd5 in the equol sensitivity of mouse melanoma cell line B16, we used Papd5-specific shRNA expression vector (Papd5-shRNA) and its control vector (scramble-shRNA). A mouse melanoma cell line B16 into which expression was constantly introduced was prepared. As a result, B16 cells with reduced Papd5 expression could be obtained (FIG. 5a).
 Papd5-shRNA又はscramble-shRNAを導入したB16細胞を2 x 104cells/mLで24穴培養プレートに播種し、各濃度のequolを添加した培地で72時間培養し、細胞数を測定し、equolに対する感受性を検討した。その結果、scramble-shRNAを導入したB16細胞はequolによってその細胞増殖が抑制された。一方、Papd5-shRNAを導入しPapd5発現量を低下させたB16細胞では、equolに対する感受性が完全に消失していた(図5b)。 B16 cells transfected with Papd5-shRNA or scramble-shRNA were seeded in a 24-well culture plate at 2 x 10 4 cells / mL, cultured for 72 hours in a medium supplemented with equol of each concentration, the number of cells was measured, and equol The sensitivity to was investigated. As a result, B16 cells into which scramble-shRNA had been introduced were inhibited by equol. On the other hand, in B16 cells in which Papd5-shRNA was introduced and the expression level of Papd5 was reduced, the sensitivity to equol completely disappeared (FIG. 5b).
 7.機能性食品因子の細胞増殖抑制作用に対するPapd5の関与
 抗がん作用を示す機能性食品因子(equol、genistein、daidzein、EGCG)のがん細胞増殖抑制作用におけるPapd5の関与を検討した。Papd5-shRNA又はScramble-shRNAを導入したHeLa細胞を各濃度の食品因子を添加した培地で72時間培養し、細胞数を測定した。GenisteinとEGCGはequolと同様にHeLa細胞の増殖を抑制したが、その作用はPapd5発現低下の影響を受けなかった。一方、daidzeinの細胞増殖抑制作用はequolと同様に、Papd5の発現を低下させた細胞では阻害された(図6)。
7. Involvement of Papd5 in the cell growth inhibitory action of functional food factors The involvement of Papd5 in the cancer cell growth inhibitory action of functional food factors (equol, genistein, daidzein, EGCG), which show anticancer action, was examined. HeLa cells into which Papd5-shRNA or Scramble-shRNA had been introduced were cultured for 72 hours in a medium supplemented with various concentrations of food factors, and the number of cells was measured. Genistein and EGCG, like equol, inhibited the growth of HeLa cells, but their effects were not affected by the decrease in Papd5 expression. On the other hand, the cell growth inhibitory action of daidzein was inhibited in cells with decreased expression of Papd5, as in equol (FIG. 6).
 <考察>
 Equolがヒト子宮頸がん細胞株HeLa、ヒト前立腺がん細胞株PC-3、マウスメラノーマ細胞株B16の細胞増殖を抑制することを見出した。さらに、これらの細胞増殖抑制活性にERが関与していないことが明らかとなった。EquolがER非依存的に増殖抑制作用を示すB16細胞からequolの細胞増殖抑制活性を担う遺伝子候補としてPapd5が同定されたことから、Papd5がER非依存性のequolの機能性発現に関与する遺伝子であることが考えられた。RNA干渉法を用いてB16細胞ならびにHeLa細胞におけるPapd5の発現を特異的に低下させると、equolの細胞増殖抑制活性に対する感受性が両がん細胞株から消失した。以上の結果から、Papd5がER非依存性のequolの機能性発現に必須の遺伝子であることが明らかとなった。また、equolの前駆体であるdaidzeinの抗がん作用においても、Papd5が必須の遺伝子であることが明らかになった。
<Discussion>
Equol was found to suppress cell growth of human cervical cancer cell line HeLa, human prostate cancer cell line PC-3, and mouse melanoma cell line B16. Furthermore, it was revealed that ER is not involved in these cell growth inhibitory activities. Papd5 was identified as a gene candidate responsible for equol's cytostatic activity from B16 cells, where Equol exhibits ER-independent growth-suppressing activity. Papd5 is a gene involved in functional expression of ER-independent equol. It was thought that. When the expression of Papd5 in B16 cells and HeLa cells was specifically reduced using RNA interference, the sensitivity of equol to cytostatic activity disappeared from both cancer cell lines. From the above results, it was revealed that Papd5 is an essential gene for functional expression of ER independent of equol. It was also revealed that Papd5 is an essential gene in the anticancer activity of daidzein, the precursor of equol.
 Papd5に関する論文は1報のみで、詳細な機能については不明である。今回の発見は、Papd5を標的とした、全く新しいコンセプトに基づく抗がん剤の開発を可能にするとともに、Papd5の発現量を指標として、抗がん剤の効き方や適応性を診断するためのバイオマーカーとしての利用(診断薬)が期待できる。また、equolの効き方(適応者)を判断するバイオマーカーとしてPapd5を利用した、テーラーメード食品や代替医療剤の開発が期待できる。 * There is only one paper on Papd5, and detailed functions are unknown. This discovery enables the development of anticancer drugs based on a completely new concept that targets Papd5, and diagnoses the effectiveness and adaptability of anticancer drugs using the expression level of Papd5 as an index. Use as a biomarker (diagnostic agent) can be expected. In addition, development of tailor-made foods and alternative medicines using Papd5 as a biomarker to determine how equol works (adapters) can be expected.
 1.Papd5 発現をノックダウンした腫瘍に対するequolの経口摂取の影響 
 先の実施例と同様にして、Papd5-shRNA 発現ベクターを導入することによりPapd5の発現をノックダウンしたマウスメラノーマ細胞株 B16 細胞を得て、 1匹あたり5 x 105 cells / 100 mL PBS をC57BL/6Jマウス(オス, 6 週齢)の背部に皮下注射することで、がんを移植した。その後、1 匹あたり400 mL の 1% DMSO-H2Oに溶解したequol 0.8 mgを 2 日に 1 回強制的に経口投与し、腫瘍体積の経時変化を測定した。がん移植24日目に屠殺し、腫瘍重量を測定した。コントロール群は溶媒として 1% DMSO-H2Oを投与した。
1. Effects of oral intake of equol on tumors knocked down in Papd5 expression
In the same manner as in the previous example, a mouse melanoma cell line B16 cell in which expression of Papd5 was knocked down was obtained by introducing the Papd5-shRNA expression vector, and 5 x 10 5 cells / 100 mL PBS per mouse was added to C57BL. Cancer was transplanted by subcutaneous injection into the back of / 6J mice (male, 6 weeks old). Thereafter, equol 0.8 mg dissolved in 400 mL of 1% DMSO-H 2 O per mouse was forcibly orally administered once every two days, and changes in tumor volume over time were measured. On day 24 after cancer transplantation, the mice were sacrificed and the tumor weight was measured. The control group received 1% DMSO-H 2 O as a solvent.
 結果を図7に示した。Papd5 発現をノックダウンした腫瘍は、equalの経口摂取により、溶媒のみを摂取させた場合と比較して、体積及び重量が増加した。equalの抗がん作用が奏されるためには、Papd5の発現が重要であり、またPapd5発現がノックダウンされている状態では、equalはがんを進行させうることが示唆された。 The results are shown in FIG. Tumors knocked down in the expression of Papd5 increased in volume and weight as a result of oral intake of equal compared to the case of ingesting only the solvent. It was suggested that the expression of Papd5 is important for the equal anti-cancer effect, and that even if Papd5 expression is knocked down, equal can promote cancer.
 2.Papd5 発現をノックダウンしたがん細胞に対するequalの細胞増殖促進作用
 先の実施例と同様にして、Papd5-shRNA 発現ベクターを導入し、Papd5の発現をノックダウンしたマウスメラノーマ細胞株 B16 細胞、又はScramble-shRNAを導入したB16細胞に、各濃度のequalを添加し、72 時間培養した後、細胞数を計測した。equalの溶媒(DMSO)のみを添加した試験区をコントロールとし、コントロールの細胞数を100%とした相対細数(%)を算出した。
2. Equal cell growth-promoting action on cancer cells knocked down in Papd5 expression In the same manner as in the previous example, a mouse melanoma cell line B16 cell or Scramble in which Papd5-shRNA expression vector was introduced and Papd5 expression was knocked down was introduced. -Equal concentrations of each concentration were added to shRNA-introduced B16 cells and cultured for 72 hours, and the number of cells was counted. The test group to which only the equal solvent (DMSO) was added was used as a control, and the relative fine number (%) was calculated with the number of control cells as 100%.
 結果を図8に示した。Papd5 発現をノックダウンしたB16細胞は、equalの添加により、細胞増殖が有意に促進された。equalのがん細胞増殖抑制活性が奏されるためには、Papd5の発現が重要であり、またPapd5発現がノックダウンされているがん細胞では、equalは細胞増殖を促進させうることが示唆された。 The results are shown in FIG. In B16 cells in which Papd5 expression was knocked down, cell proliferation was significantly promoted by addition of equal. It is suggested that Papd5 expression is important for equal cancer cell growth inhibitory activity, and that equal can promote cell proliferation in cancer cells in which Papd5 expression is knocked down. It was.

Claims (7)

  1. エクオール、ダイゼイン及びそれらの類縁体からなる群より選択される抗がん物質の、対象における有効性を診断するためのバイオマーカーであって、Papd5又はその産物からなるバイオマーカー。 A biomarker for diagnosing the effectiveness of an anticancer substance selected from the group consisting of equol, daidzein, and their analogs in a subject, and comprising Papd5 or a product thereof.
  2. 対象から採取した試料におけるPapd5の転写又は発現を検出する工程を含む、エクオール、ダイゼイン及びそれらの類縁体からなる群より選択される抗がん物質の対象における有効性の判定方法。 A method for determining the effectiveness of an anticancer substance selected from the group consisting of equol, daidzein, and analogs thereof, comprising a step of detecting the transcription or expression of Papd5 in a sample collected from the subject.
  3. 請求項1に記載のバイオマーカーを検出するための、オリゴヌクレオチド、ペプチド、抗体を含む、PCR用、DNAアレイ用、ELISA用、プロテインアレイ用、質量分析用、又は免疫クロマトグラフィー用の、製品。 A product for detecting the biomarker according to claim 1, comprising an oligonucleotide, a peptide, or an antibody, for PCR, for DNA array, for ELISA, for protein array, for mass spectrometry, or for immunochromatography.
  4. Papd5の転写又は発現の検出を、 PCR法、DNAアレイ法、ELISA法、プロテインアレイ法、質量分析法、又は免疫クロマトグラフィー法により行う、請求項2に記載の方法。 3. The method according to claim 2, wherein the detection of transcription or expression of Papd5 is carried out by PCR method, DNA array method, ELISA method, protein array method, mass spectrometry method, or immunochromatography method.
  5. 対象におけるPapd5の変異の有無、又は転写若しくは発現の検出を指標とした、エクオール又はダイゼインにより改善する疾患又は状態の処置のための、医薬品、食品若しくは化粧品の、又はその適用計画の、設計方法。 A method for designing a pharmaceutical, food, or cosmetic product, or an application plan thereof, for the treatment of a disease or condition ameliorated by equol or daidzein using the presence or absence of Papd5 mutation in a subject, or detection of transcription or expression as an index.
  6. 天然物、食品、化粧品、医薬品又は化合物である試験物を、対象、対象から採取した試料又はPapd5を有しておりPapd5の転写又は発現が可能な細胞に適用し、
    Papd5の転写量又は発現量が変化するか否かを検出する
    工程を含む、がんの処置に有効な物をスクリーニングする方法。
    Apply a test product that is a natural product, food, cosmetic, pharmaceutical product or compound to a subject, a sample collected from the subject, or a cell that has Papd5 and is capable of transcription or expression of Papd5;
    A method for screening for an effective treatment for cancer, comprising a step of detecting whether the amount of transcription or expression of Papd5 changes.
  7. エクオール、ダイゼイン又はそれらの類縁体と組み合わせて対象に適用するのに適した物をスクリーニングする、請求項6に記載の方法。 7. The method according to claim 6, wherein an object suitable for application to a subject in combination with equol, daidzein or an analog thereof is screened.
PCT/JP2011/055057 2010-03-04 2011-03-04 Gene related to the action of isoflavones WO2011108699A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-048398 2010-03-04
JP2010048398A JP2013126374A (en) 2010-03-04 2010-03-04 Gene related to action of isoflavones

Publications (1)

Publication Number Publication Date
WO2011108699A1 true WO2011108699A1 (en) 2011-09-09

Family

ID=44542344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055057 WO2011108699A1 (en) 2010-03-04 2011-03-04 Gene related to the action of isoflavones

Country Status (2)

Country Link
JP (1) JP2013126374A (en)
WO (1) WO2011108699A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017066712A3 (en) * 2015-10-16 2017-06-22 The Children's Medical Center Corporation Modulators of telomere disease
WO2017066796A3 (en) * 2015-10-16 2017-06-22 The Children's Medical Center Corporation Modulators of telomere disease
CN108350508A (en) * 2015-10-29 2018-07-31 株式会社益力多本社 Equol generates the assay method of ability
CN109414448A (en) * 2016-06-17 2019-03-01 豪夫迈·罗氏有限公司 For reducing the nucleic acid molecules of PAPD5 or PAPD7 mRNA treatment hepatitis B infection
WO2019240872A1 (en) * 2018-06-15 2019-12-19 The Board Of Regents Of The University Of Texas System Methods of treating and preventing melanoma with s-equol
US10953034B2 (en) 2017-10-16 2021-03-23 Hoffmann-La Roche Inc. Nucleic acid molecule for reduction of PAPD5 and PAPD7 mRNA for treating hepatitis B infection
US11090286B2 (en) 2018-06-15 2021-08-17 The Board Of Regents Of The University Of Texas System Methods of treating and preventing breast cancer with S-equol

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DATABASE GENBANK [online] 27 December 2009 (2009-12-27), WALOWSKY, C. ET AL.: "Definition: Homo sapiens PAP associated domain containing 5 (PAPD5)", retrieved from http://www.ncbi.nlm.nih.gov/ nuccore/256818779?sat=13&satkey=9230099 Database accession no. NM_001040284 *
KOJI YAMADA ET AL.: "Hito Nyu Gan MCF-7 Saibo no Zoshoku ni Oyobosu Isoflavone no Sayo", DAIZU TANPAKUSHITSU KENKYU, vol. 3, October 2000 (2000-10-01), pages 54 - 58 *
L'ESPERANCE, S. ET AL.: "Gene expression profiling of paired ovarian tumors obtained prior to and following adjuvant chemotherapy: molecular signatures of chemoresistant tumors.", INT. J. ONCOL., vol. 29, no. 1, July 2006 (2006-07-01), pages 5 - 24, XP055208986, DOI: doi:10.3892/ijo.29.1.5 *
SHOKO KAMAIKE ET AL.: "Equol Kanchi Idenshi: Equol no Gan Saibo Zoshoku Yokusei Sayo o Ninau Idenshi no Dotei", NIPPON NOGEI KAGAKUKAI TAIKAI KOEN YOSHISHU, vol. 2010, 5 March 2010 (2010-03-05), pages 183 *
WALOWSKY, C. ET AL.: "The topoisomerase- related function gene TRF4 affects cellular sensitivity to the antitumor agent camptothecin.", J. BIOL. CHEM., vol. 274, no. 11, 12 March 1999 (1999-03-12), pages 7302 - 7308 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017066712A3 (en) * 2015-10-16 2017-06-22 The Children's Medical Center Corporation Modulators of telomere disease
WO2017066796A3 (en) * 2015-10-16 2017-06-22 The Children's Medical Center Corporation Modulators of telomere disease
US11220689B2 (en) 2015-10-16 2022-01-11 Children's Medical Center Corporation Modulators of telomere disease
CN108350508A (en) * 2015-10-29 2018-07-31 株式会社益力多本社 Equol generates the assay method of ability
CN109414448A (en) * 2016-06-17 2019-03-01 豪夫迈·罗氏有限公司 For reducing the nucleic acid molecules of PAPD5 or PAPD7 mRNA treatment hepatitis B infection
US11191775B2 (en) 2016-06-17 2021-12-07 Hoffmann-La Roche Inc. PAPD5 and PAPD7 inhibitors for treating a hepatitis B infection
US11534452B2 (en) 2016-06-17 2022-12-27 Hoffmann-La Roche Inc. Nucleic acid molecules for reduction of PAPD5 or PAPD7 mRNA for treating hepatitis B infection
US10953034B2 (en) 2017-10-16 2021-03-23 Hoffmann-La Roche Inc. Nucleic acid molecule for reduction of PAPD5 and PAPD7 mRNA for treating hepatitis B infection
US11484546B2 (en) 2017-10-16 2022-11-01 Hoffman-La Roche Inc. Nucleic acid molecule for reduction of PAPD5 and PAPD7 mRNA for treating hepatitis B infection
WO2019240872A1 (en) * 2018-06-15 2019-12-19 The Board Of Regents Of The University Of Texas System Methods of treating and preventing melanoma with s-equol
US11090286B2 (en) 2018-06-15 2021-08-17 The Board Of Regents Of The University Of Texas System Methods of treating and preventing breast cancer with S-equol

Also Published As

Publication number Publication date
JP2013126374A (en) 2013-06-27

Similar Documents

Publication Publication Date Title
WO2011108699A1 (en) Gene related to the action of isoflavones
Han et al. RNA interference-mediated silencing of NANOG reduces cell proliferation and induces G0/G1 cell cycle arrest in breast cancer cells
Cao et al. High glucose-induced circHIPK3 downregulation mediates endothelial cell injury
Gagnon et al. AKT involvement in cisplatin chemoresistance of human uterine cancer cells
Obaid et al. LncRNA HOTAIR regulates glucose transporter Glut1 expression and glucose uptake in macrophages during inflammation
Kong et al. RUNX3-mediated up-regulation of miR-29b suppresses the proliferation and migration of gastric cancer cells by targeting KDM2A
Li et al. miR-433 suppresses tumor progression via Smad2 in non-small cell lung cancer
Hou et al. MiR-27b promotes muscle development by inhibiting MDFI expression
Xiong et al. The lncRNA Rhno1/miR-6979-5p/BMP2 axis modulates osteoblast differentiation
Piastowska-Ciesielska et al. Effect of an angiotensin II type 1 receptor blocker on caveolin-1 expression in prostate cancer cells
Zhang et al. The Nedd8‐activating enzyme inhibitor MLN 4924 (TAK‐924/Pevonedistat) induces apoptosis via c‐Myc‐Noxa axis in head and neck squamous cell carcinoma
Xu et al. TM4SF1 involves in miR-1-3p/miR-214-5p-mediated inhibition of the migration and proliferation in keloid by regulating AKT/ERK signaling
Li et al. Hypoxia-induced miR-137 inhibition increased glioblastoma multiforme growth and chemoresistance through LRP6
Li LncRNA metastasis‐associated lung adenocarcinoma transcript‐1 promotes osteogenic differentiation of bone marrow stem cells and inhibits osteoclastic differentiation of Mø in osteoporosis via the miR‐124‐3p/IGF2BP1/Wnt/β‐catenin axis
Peng et al. Leptin stimulates the epithelial‑mesenchymal transition and pro‑angiogenic capability of cholangiocarcinoma cells through the miR‑122/PKM2 axis
Ren et al. CTGF siRNA ameliorates tubular cell apoptosis and tubulointerstitial fibrosis in obstructed mouse kidneys in a Sirt1-independent manner
WO2009030153A1 (en) The roles of mirnas in the diagnosis and treatment of systemic lupus erythematosus
Zhu et al. CPSF6-mediated XBP1 3’UTR shortening attenuates cisplatin-induced ER stress and elevates chemo-resistance in lung adenocarcinoma
CA2821952A1 (en) Melanoma treatments
Huang et al. Co-suppression of VEGF-A and VEGF-C inhibits development of experimental hemangioma
WO2013091293A1 (en) Medicine which relates to human gene nlk and use thereof
EP3541939A1 (en) Modulators of human kai1 metastasis suppressor gene, methods and uses thereof
US9434949B2 (en) Uses of the human ZFX gene and drugs associated with same
Zhu et al. Islet-1 promotes the proliferation and invasion, and inhibits the apoptosis of A375 human melanoma cells
US20130172400A1 (en) Cancer cell identification marker and cancer cell proliferation inhibitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11750808

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11750808

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP