WO2011108586A1 - Air-fuel ratio detector - Google Patents

Air-fuel ratio detector Download PDF

Info

Publication number
WO2011108586A1
WO2011108586A1 PCT/JP2011/054764 JP2011054764W WO2011108586A1 WO 2011108586 A1 WO2011108586 A1 WO 2011108586A1 JP 2011054764 W JP2011054764 W JP 2011054764W WO 2011108586 A1 WO2011108586 A1 WO 2011108586A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
pressure
sensor
air
fuel ratio
Prior art date
Application number
PCT/JP2011/054764
Other languages
French (fr)
Japanese (ja)
Inventor
大治 長岡
輝男 中田
裕之 遊座
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Publication of WO2011108586A1 publication Critical patent/WO2011108586A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1448Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1448Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure
    • F02D41/145Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0812Particle filter loading
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter

Definitions

  • the present invention relates to an air-fuel ratio detection apparatus using a lambda sensor, and more particularly to an air-fuel ratio detection apparatus in which correction of the air-fuel ratio output from the lambda sensor is realized without newly providing a pressure sensor.
  • a broadband lambda sensor (hereinafter referred to as a lambda sensor) is used to detect an air-fuel ratio in a target gas such as engine exhaust gas or air.
  • the air-fuel ratio is the weight ratio of fuel to air.
  • the lambda sensor is provided with a cell chamber formed of zirconium oxide.
  • the oxygen concentration in the target gas is higher than the oxygen concentration at the stoichiometric air-fuel ratio, the air-fuel ratio becomes lean (fuel lean), and oxide ions flow into the cell chamber.
  • the oxygen concentration in the target gas is lower than the oxygen concentration at the stoichiometric air-fuel ratio, the air-fuel ratio becomes rich (fuel rich), and oxide ions flow out from the cell chamber.
  • the air-fuel ratio is detected by the pumping current when the oxide ions flow into or out of the cell chamber.
  • control for correcting the fuel flow rate is performed by using the air-fuel ratio detected by the lambda sensor. Since the air-fuel ratio is the weight ratio of air and fuel, the fuel weight in the flowing target gas, that is, the actual fuel flow rate is calculated from the air-fuel ratio detected by the lambda sensor and the intake air amount detected by the MAF sensor. Is done. The difference between the fuel weight and the fuel flow rate instruction value is obtained. The fuel flow rate instruction value is corrected so that the deviation becomes small and the actual fuel flow rate becomes a desired value.
  • the air-fuel ratio detected by the lambda sensor is adjusted optimally by adjusting the intake air amount, EGR amount, and fuel amount. Contributes to optimization of exhaust gas.
  • the output fluctuates due to the influence of the pressure of the target gas.
  • the error when the error is 0% based on the intermediate pressure of the target gas, the error increases to the positive side when the target gas pressure increases, and the error decreases to the negative side when the target gas pressure decreases.
  • the target gas pressure when the target gas pressure is high, the detected value of the lambda sensor is higher than the actual air-fuel ratio, and when the target gas pressure is low, the detected value of the lambda sensor is lower than the actual air-fuel ratio.
  • the exhaust pipe includes a turbocharger that compresses the intake air using the pressure of the exhaust gas, and a DPF (Diesel Particulate Filter) that removes particulate matter (Particulate Matter; hereinafter referred to as PM) in the exhaust gas.
  • DPF Diesel Particulate Filter
  • PM particulate Matter
  • a pressure sensor that detects the pressure of the target gas is installed at the place where the lambda sensor is installed, and the output of the lambda sensor may be corrected by the pressure of the target gas.
  • the installation of a new pressure sensor invites an increase in cost, so it is desired to avoid it.
  • an object of the present invention is to provide an air-fuel ratio detection device that solves the above-described problems and that realizes correction of the air-fuel ratio output from the lambda sensor without newly providing a pressure sensor.
  • the present invention provides a diesel particulate filter (hereinafter referred to as DPF) that is installed in an exhaust pipe of an engine to remove particulate matter in exhaust gas, and an exhaust gas that is installed at the outlet of the DPF.
  • DPF diesel particulate filter
  • a lambda sensor for detecting an air-fuel ratio
  • a sensor bypass pipe connecting the inlet and outlet of the DPF
  • a differential pressure sensor installed in the sensor bypass pipe for detecting a differential pressure between the upstream side and the downstream side
  • a three-way valve that is installed between the differential pressure sensor of the bypass pipe and the inlet of the DPF and can be switched to open the upstream side of the differential pressure sensor to the atmosphere or communicate with the inlet of the DPF, and detects atmospheric pressure.
  • the atmospheric pressure detected by the atmospheric pressure sensor and the differential pressure sensor are Exhaust gas pressure estimating means for estimating the exhaust gas pressure at the outlet of the DPF, which is the installation location of the lambda sensor, from the pressure difference that has been output, the exhaust gas pressure estimated by the exhaust gas pressure estimating means, and the pressure of the lambda sensor And air-fuel ratio correcting means for correcting the air-fuel ratio detected by the lambda sensor according to characteristics.
  • the exhaust gas pressure estimating means estimates the exhaust gas pressure at the location where the lambda sensor is installed by temporarily opening the upstream side of the differential pressure sensor to the atmosphere by the three-way valve when the engine is in a steady state.
  • the exhaust gas pressure is substituted into the relational expression of the exhaust gas pressure, the atmospheric pressure, and the pressure loss coefficient to calculate the pressure loss coefficient, the pressure loss coefficient is stored, and the upstream of the differential pressure sensor is stored by the three-way valve.
  • the exhaust gas pressure may be estimated by substituting the atmospheric pressure detected by the atmospheric pressure sensor and the stored pressure loss coefficient into the relational expression.
  • the relational expression is that the difference between the exhaust gas pressure at the location where the lambda sensor is installed and the atmospheric pressure is the product of the pressure loss coefficient and the square of the exhaust gas flow rate at the location where the lambda sensor is installed.
  • the exhaust gas flow rate at the place where the lambda sensor is installed is calculated from the air flow rate of the intake pipe and the fuel flow rate given by the fuel injection control, and the lambda sensor.
  • the gas density at the sensor installation location may be obtained from the exhaust gas temperature and the exhaust gas pressure.
  • the air-fuel ratio correcting means has a map of air-fuel ratio correction values based on the pressure characteristics of the lambda sensor with respect to the exhaust gas pressure estimated by the exhaust gas pressure estimating means, and the exhaust gas estimated by the exhaust gas pressure estimating means
  • the air-fuel ratio may be corrected by referring to the map with the gas pressure and assigning an air-fuel ratio correction value.
  • the present invention exhibits the following excellent effects.
  • FIG. 1 It is a block diagram of the air fuel ratio detection apparatus which shows one Embodiment of this invention. It is a figure which shows the operation state of the three-way valve in the air fuel ratio detection apparatus of FIG. 1, (a) is a block diagram at the time of interruption
  • an air-fuel ratio detection apparatus 1 includes a diesel particulate filter (hereinafter referred to as DPF) 4 that is installed in an exhaust pipe 3 of an engine 2 and removes particulate matter in exhaust gas.
  • the lambda sensor 5 installed at the outlet of the DPF 4 detects the air-fuel ratio in the exhaust gas
  • the sensor bypass pipe 6 connecting the inlet and outlet of the DPF 4 and the differential pressure between the upstream and downstream sides installed in the sensor bypass pipe 6 Can be switched between the differential pressure sensor 7 for detecting the pressure difference and the differential pressure sensor 7 of the sensor bypass pipe 6 and the inlet of the DPF 4 to open the upstream side of the differential pressure sensor 7 to the atmosphere or to communicate with the inlet of the DPF 4
  • the exhaust gas pressure estimating means 10 for estimating the exhaust gas pressure at the outlet of the DPF 4 where the lambda sensor 5 is installed from
  • the engine 2 is, for example, a diesel engine, and includes a turbocharger 12 here.
  • the turbocharger 12 drives the turbine with exhaust gas flowing from the exhaust manifold 13 to the exhaust pipe 3, compresses air taken from the intake pipe 14 with a compressor, and supplies the compressed air to the intake manifold 15.
  • the intake pipe 14 is provided with an air flow rate sensor (hereinafter MAF) 16.
  • the DPF 4 is for purifying exhaust gas by removing PM.
  • the DPF 4 includes an oxidation catalyst member (DieseliesOxidation Catalyst; hereinafter referred to as DOC) and a catalyzed soot filter.
  • DOC DieseliesOxidation Catalyst
  • the lambda sensor 5 detects the air-fuel ratio by the pumping current in the inflow / outflow of the oxide ions to / from the cell chamber, but the output fluctuates due to the influence of the pressure of the target gas.
  • members such as a purifier using a catalyst and a silencer are installed in the exhaust pipe 3 downstream of the lambda sensor 5.
  • the sensor bypass pipe 6 is conventionally provided for the differential pressure sensor 7.
  • the differential pressure sensor 7 detects a differential pressure between the upstream side and the downstream side of the differential pressure sensor 7, and the differential pressure sensor 7 is configured such that the sensor bypass pipe 6 connects between the inlet and outlet of the DPF 4.
  • the differential pressure between the inlet and outlet of the DPF 4 is detected.
  • PM accumulates on the DPF 4
  • the flow of exhaust gas receives resistance, so the pressure at the outlet relative to the pressure at the inlet of the DPF 4 decreases.
  • regeneration of the PM accumulated in the DPF 4 is called regeneration, but the DPF regeneration timing is performed when the differential pressure between the inlet and outlet of the DPF 4 reaches a threshold value. It is determined.
  • the three-way valve 8 has one outlet for two inlets, and an internal valve body (not shown) is opened and closed by electromagnetic force or the like.
  • the entrance communicating with the exit is switched.
  • One inlet is connected to the inlet side of the DPF 4, the other inlet is opened to the atmosphere, and the outlet is connected to the differential pressure sensor 7 side.
  • the three-way valve 8 is opened, the upstream side of the differential pressure sensor 7 is opened to the atmosphere, and when the three-way valve 8 is shut off, the upstream side of the differential pressure sensor 7 is communicated with the inlet of the DPF 4.
  • the atmospheric pressure sensor 9 in FIG. 1 is conventionally mounted on a vehicle for correcting various control amounts at high altitudes.
  • the atmospheric pressure sensor 9 is installed in a housing of an electronic control unit (Electronic Control Unit: ECU) 17 that controls each part of the vehicle including fuel injection control and DPF regeneration control, for example.
  • ECU Electronic Control Unit
  • the exhaust gas pressure estimating means 10 and the air-fuel ratio correcting means 11 are incorporated in the ECU 17 as a program.
  • the three-way valve 8 is shut off, and the upstream side of the differential pressure sensor 7 is communicated with the inlet of the DPF 4. Therefore, the differential pressure sensor 7 detects the differential pressure between the inlet and outlet of the DPF 4.
  • the exhaust gas pressure estimating means 10 opens the upstream side of the differential pressure sensor 7 to the atmosphere by periodically opening the three-way valve 8 periodically when the engine 2 is in a steady state.
  • the steady state of the engine 2 is a state in which the engine 2 is stably operated, and is determined by the fuel increase rate, the accelerator opening change rate, and the like.
  • the differential pressure sensor 7 By upstream of the differential pressure sensor 7 is opened to the atmosphere, the differential pressure sensor 7 is the differential pressure between the outlet pressure P 1 from the atmospheric pressure P2 DPF 4 is detected.
  • the exhaust gas pressure estimating means 10 calculates the outlet pressure P 1 of the DPF 4 , that is, the exhaust gas pressure at the place where the lambda sensor 5 is installed, from the differential pressure detected by the differential pressure sensor 7 and the atmospheric pressure P 2 detected by the atmospheric pressure sensor 9. Can be estimated.
  • the exhaust gas pressure estimating means 10 stores the estimated exhaust gas pressure P 1 in a memory (not shown).
  • the exhaust gas pressure estimating means 10 detects the air flow rate detected by the MAF 16, the exhaust gas temperature detected by a temperature sensor (not shown), the air-fuel ratio detected by the lambda sensor 5, and the atmospheric pressure sensor 9. Record atmospheric pressure P 2 etc.
  • the exhaust gas pressure estimating means 10 substitutes the estimated exhaust gas pressure P 1 into the relational expression (1).
  • the relational expression (1) is a relational expression between the exhaust gas pressure P 1 at the place where the lambda sensor 5 is installed, the atmospheric pressure P 2, and the pressure loss coefficient k at the place where the lambda sensor 5 is installed relative to the atmosphere.
  • the exhaust gas flow rate W 12 at the place where the lambda sensor 5 is installed is calculated from the air flow rate detected by the MAF 16 and the fuel flow rate given by the fuel injection control.
  • the gas density ⁇ 1 at the place where the lambda sensor 5 is installed is obtained from the exhaust gas temperature detected by a temperature sensor (not shown) and the exhaust gas pressure P 1 .
  • the exhaust gas pressure estimating means 10 calculates the pressure loss coefficient k according to the relational expression (1).
  • the exhaust gas pressure estimating means 10 stores this pressure loss coefficient k as a learning value in a memory (not shown). Thereafter, the exhaust gas pressure estimating means 10 shuts off the three-way valve 8.
  • the upstream side of the differential pressure sensor 7 is communicated with the inlet of the DPF 4 so that the differential pressure between the inlet and outlet of the DPF 4 is detected by the differential pressure sensor 7. Use is resumed.
  • the exhaust gas pressure estimation means 10 is successively stored with the atmospheric pressure P 2 detected by the atmospheric pressure sensor 9.
  • the exhaust gas pressure P 1 is estimated by substituting the pressure loss coefficient k into the relational expression (1).
  • the air-fuel ratio correcting means 11 uses the exhaust gas pressure P 1 estimated by the exhaust gas pressure estimating means 10 for correcting the air-fuel ratio detected by the lambda sensor 5. Specifically, a map of correction values for the exhaust gas pressure P 1 is created based on the characteristics of FIG. 3, and the map is referred to by the exhaust gas pressure P 1 estimated by the exhaust gas pressure estimation means 10. The correction value is assigned.
  • the air-fuel ratio detected by the lambda sensor 5 is optimally controlled by adjusting the intake air amount, the EGR amount, and the fuel amount. Contributes to optimization of power performance and exhaust gas.
  • the upstream of the differential pressure sensor 7 is opened to the atmosphere by the three-way valve 8, so that the installation location of the lambda sensor 5 is determined from the output of the differential pressure sensor 7.
  • the exhaust gas pressure will be estimated.
  • the three-way valve 8 can be installed at a lower cost than the pressure sensor that detects the pressure of the target gas is installed at the place where the lambda sensor 5 is installed. Therefore, the air-fuel ratio output from the lambda sensor 5 can be corrected at a low cost.
  • the pressure loss coefficient k obtained when the upstream of the differential pressure sensor 7 is opened to the atmosphere is stored as a learned value. Even during normal travel where the output is not available, the exhaust gas pressure P 1 is estimated by substituting the pressure loss coefficient k into the relational expression (1). Therefore, the number of times and the time that the upstream of the differential pressure sensor 7 is opened to the atmosphere is limited and the detection of the DPF regeneration timing, which is the original purpose of use of the differential pressure sensor 7, is not hindered.
  • Air-fuel ratio correction means 1 Air-fuel ratio detection apparatus 2 Engine 3 Exhaust pipe 4 DPF (diesel particulate filter) 5 Lambda sensor 6 Sensor bypass pipe 7 Differential pressure sensor 8 Three-way valve 9 Atmospheric pressure sensor 10 Exhaust gas pressure estimation means 11 Air-fuel ratio correction means

Abstract

Provided is an air-fuel ratio detector in which the air-fuel ratio output by a lambda sensor is corrected without providing an additional pressure sensor. The air-fuel ratio detector is equipped with: a lambda sensor (5) installed at the outlet of a DPF (4); a three-way valve (8) which can be switched between opening the upstream side of a differential pressure sensor (7) to the atmosphere or causing the upstream side to communicate with the inlet of the DPF (4); an atmospheric pressure sensor (9) that detects the atmospheric pressure; an exhaust gas pressure estimation means (10) that estimates the pressure of exhaust gas at the location where the lambda sensor (5) is installed, when the upstream side of the differential pressure sensor (7) is open to the atmosphere due to the three-way valve (8); and an air-fuel ratio correction means (11) in which the air-fuel ratio detected by the lambda sensor (5) is corrected according to the estimated exhaust gas pressure and the pressure characteristics of the lambda sensor (5).

Description

空燃比検出装置Air-fuel ratio detection device
 本発明は、ラムダセンサを用いた空燃比検出装置に係り、ラムダセンサが出力する空燃比の補正が新規に圧力センサが設けられることなく実現される空燃比検出装置に関する。 The present invention relates to an air-fuel ratio detection apparatus using a lambda sensor, and more particularly to an air-fuel ratio detection apparatus in which correction of the air-fuel ratio output from the lambda sensor is realized without newly providing a pressure sensor.
 エンジンの排気ガスや大気等の対象ガスにおける空燃比が検出されるために広帯域ラムダセンサ(以下、ラムダセンサという)が用いられる。空燃比とは、空気に対する燃料の重量比である。ラムダセンサは、酸化ジルコニウムで形成されるセル室が設けられたものである。対象ガス中の酸素濃度が理論空燃比における酸素濃度より高い場合は、空燃比はリーン(燃料リーン)となり、セル室内に酸化イオンが流入する。対象ガス中の酸素濃度が理論空燃比における酸素濃度より低い場合は、空燃比はリッチ(燃料リッチ)となり、セル室内から酸化イオンが流出する。このように、セル室内に酸化イオンが流入するか又はセル室内から酸化イオンが流出するときのポンピング電流によって空燃比が検出される。 A broadband lambda sensor (hereinafter referred to as a lambda sensor) is used to detect an air-fuel ratio in a target gas such as engine exhaust gas or air. The air-fuel ratio is the weight ratio of fuel to air. The lambda sensor is provided with a cell chamber formed of zirconium oxide. When the oxygen concentration in the target gas is higher than the oxygen concentration at the stoichiometric air-fuel ratio, the air-fuel ratio becomes lean (fuel lean), and oxide ions flow into the cell chamber. When the oxygen concentration in the target gas is lower than the oxygen concentration at the stoichiometric air-fuel ratio, the air-fuel ratio becomes rich (fuel rich), and oxide ions flow out from the cell chamber. As described above, the air-fuel ratio is detected by the pumping current when the oxide ions flow into or out of the cell chamber.
 ラムダセンサの検出精度が高められることで、エンジンにおける各種の制御の精度が高められる。例えば、ラムダセンサで検出された空燃比が用いられることで燃料流量を補正する制御が行われる。空燃比は、空気と燃料の重量比であるので、ラムダセンサで検出された空燃比とMAFセンサで検出された吸入空気量から、流れている対象ガス中の燃料重量、すなわち実燃料流量が算出される。この燃料重量と燃料流量指示値との乖離が求められる。その乖離が小さくなって実燃料流量が所望される値となるように燃料流量指示値が補正される。また、EGRと可変ノズルターボの協調制御においては、吸入空気量とEGR量と燃料量が調整されることでラムダセンサで検出される空燃比が最適に制御されることは、スモーク、動力性能、排気ガスの最適化に寄与する。 ¡By increasing the detection accuracy of the lambda sensor, the accuracy of various controls in the engine can be increased. For example, control for correcting the fuel flow rate is performed by using the air-fuel ratio detected by the lambda sensor. Since the air-fuel ratio is the weight ratio of air and fuel, the fuel weight in the flowing target gas, that is, the actual fuel flow rate is calculated from the air-fuel ratio detected by the lambda sensor and the intake air amount detected by the MAF sensor. Is done. The difference between the fuel weight and the fuel flow rate instruction value is obtained. The fuel flow rate instruction value is corrected so that the deviation becomes small and the actual fuel flow rate becomes a desired value. In the cooperative control of EGR and variable nozzle turbo, the air-fuel ratio detected by the lambda sensor is adjusted optimally by adjusting the intake air amount, EGR amount, and fuel amount. Contributes to optimization of exhaust gas.
特開2005-530154号公報JP 2005-530154 A 特開2006-242011号公報JP 2006-242011 A
 ところで、図3に示されるように、ラムダセンサでは、対象ガスの圧力の影響を受けて出力が変動する。すなわち、対象ガスの圧力が中間的な値のときを基準にして誤差0パーセントとしたとき、対象ガスの圧力が高くなると誤差がプラス側に増加し、対象ガスの圧力が低くなると誤差がマイナス側に増加する。この結果、対象ガスの圧力が高いときにはラムダセンサの検出値が実際の空燃比より高くなり、対象ガスの圧力が低いときにはラムダセンサの検出値が実際の空燃比より低くなる。 Incidentally, as shown in FIG. 3, in the lambda sensor, the output fluctuates due to the influence of the pressure of the target gas. In other words, when the error is 0% based on the intermediate pressure of the target gas, the error increases to the positive side when the target gas pressure increases, and the error decreases to the negative side when the target gas pressure decreases. To increase. As a result, when the target gas pressure is high, the detected value of the lambda sensor is higher than the actual air-fuel ratio, and when the target gas pressure is low, the detected value of the lambda sensor is lower than the actual air-fuel ratio.
 対象ガスの圧力変動によって空燃比の検出精度が低下すると、空燃比を利用する各種の制御の精度も低下することになる。しかし、ラムダセンサの設置場所におけるガスの圧力が安定であることは期待できない。なぜなら、エンジンの場合、排気管には、排気ガスの圧力を利用して吸気を圧縮するターボチャージャ、排気ガス中の粒子状物質(Particulate Matter;以下、PMという)を除去するDPF(Diesel Particulate Filter;ディーゼルパティキュレートフィルタ)、触媒を用いた浄化器、サイレンサなどが設けられる。これらの部材が抵抗となって、配管内での排気ガスの圧力は場所により異なる。また、海抜高度の差異や気候の影響により大気圧が変動すると、排気ガスの圧力も変動する。 If the detection accuracy of the air-fuel ratio decreases due to the pressure fluctuation of the target gas, the accuracy of various controls that use the air-fuel ratio also decreases. However, it cannot be expected that the gas pressure at the place where the lambda sensor is installed is stable. This is because, in the case of an engine, the exhaust pipe includes a turbocharger that compresses the intake air using the pressure of the exhaust gas, and a DPF (Diesel Particulate Filter) that removes particulate matter (Particulate Matter; hereinafter referred to as PM) in the exhaust gas. A diesel particulate filter), a purifier using a catalyst, a silencer, and the like. These members serve as resistances, and the pressure of the exhaust gas in the piping varies depending on the location. In addition, when the atmospheric pressure changes due to the difference in altitude above sea level or the influence of the climate, the exhaust gas pressure also changes.
 この対策として、ラムダセンサの設置箇所に対象ガスの圧力を検出する圧力センサが設置され、ラムダセンサの出力が対象ガスの圧力で補正されることはある。しかし、車両の場合、新規に圧力センサが設置されることは、コストの増加を招くので、避けたいところである。 As a countermeasure, a pressure sensor that detects the pressure of the target gas is installed at the place where the lambda sensor is installed, and the output of the lambda sensor may be corrected by the pressure of the target gas. However, in the case of a vehicle, the installation of a new pressure sensor invites an increase in cost, so it is desired to avoid it.
 そこで、本発明の目的は、上記課題を解決し、ラムダセンサが出力する空燃比の補正が新規に圧力センサが設けられることなく実現される空燃比検出装置を提供することにある。 Accordingly, an object of the present invention is to provide an air-fuel ratio detection device that solves the above-described problems and that realizes correction of the air-fuel ratio output from the lambda sensor without newly providing a pressure sensor.
 上記目的を達成するために本発明は、エンジンの排気管に設置されて排気ガス中の粒子状物質を除去するディーゼルパティキュレートフィルタ(以下、DPF)と、前記DPFの出口に設置され排気ガスにおける空燃比を検出するラムダセンサと、前記DPFの入口出口間を繋ぐセンサ用バイパス管と、前記センサ用バイパス管に設置され上流側下流側間の差圧を検出する差圧センサと、前記センサ用バイパス管の前記差圧センサと前記DPFの入口間に設置されて前記差圧センサの上流側を大気へ開放させるか前記DPFの入口に連通させるか切り替え可能な三方弁と、大気圧を検出する大気圧センサと、前記三方弁により前記差圧センサの上流側が大気へ開放されているときに、前記大気圧センサが検出した大気圧と前記差圧センサが検出した差圧とから前記ラムダセンサの設置箇所である前記DPFの出口の排気ガス圧力を推定する排気ガス圧力推定手段と、前記排気ガス圧力推定手段が推定した排気ガス圧力と前記ラムダセンサの圧力特性とにより、前記ラムダセンサが検出した空燃比を補正する空燃比補正手段とを備えたものである。 In order to achieve the above object, the present invention provides a diesel particulate filter (hereinafter referred to as DPF) that is installed in an exhaust pipe of an engine to remove particulate matter in exhaust gas, and an exhaust gas that is installed at the outlet of the DPF. A lambda sensor for detecting an air-fuel ratio; a sensor bypass pipe connecting the inlet and outlet of the DPF; a differential pressure sensor installed in the sensor bypass pipe for detecting a differential pressure between the upstream side and the downstream side; A three-way valve that is installed between the differential pressure sensor of the bypass pipe and the inlet of the DPF and can be switched to open the upstream side of the differential pressure sensor to the atmosphere or communicate with the inlet of the DPF, and detects atmospheric pressure. When the upstream side of the differential pressure sensor is opened to the atmosphere by the atmospheric pressure sensor and the three-way valve, the atmospheric pressure detected by the atmospheric pressure sensor and the differential pressure sensor are Exhaust gas pressure estimating means for estimating the exhaust gas pressure at the outlet of the DPF, which is the installation location of the lambda sensor, from the pressure difference that has been output, the exhaust gas pressure estimated by the exhaust gas pressure estimating means, and the pressure of the lambda sensor And air-fuel ratio correcting means for correcting the air-fuel ratio detected by the lambda sensor according to characteristics.
 前記排気ガス圧力推定手段は、前記エンジンが定常状態のとき、一時的に前記三方弁により前記差圧センサの上流側を大気へ開放させて、前記ラムダセンサの設置箇所の排気ガス圧力を推定し、この排気ガス圧力を排気ガス圧力と大気圧と圧力ロス係数の関係式に代入して圧力ロス係数を算出し、この圧力ロス係数を記憶しておき、前記三方弁により前記差圧センサの上流側が前記DPFの入口に連通されているときには、前記大気圧センサが検出した大気圧と記憶されている圧力ロス係数を前記関係式に代入して排気ガス圧力を推定してもよい。 The exhaust gas pressure estimating means estimates the exhaust gas pressure at the location where the lambda sensor is installed by temporarily opening the upstream side of the differential pressure sensor to the atmosphere by the three-way valve when the engine is in a steady state. The exhaust gas pressure is substituted into the relational expression of the exhaust gas pressure, the atmospheric pressure, and the pressure loss coefficient to calculate the pressure loss coefficient, the pressure loss coefficient is stored, and the upstream of the differential pressure sensor is stored by the three-way valve. When the side is in communication with the inlet of the DPF, the exhaust gas pressure may be estimated by substituting the atmospheric pressure detected by the atmospheric pressure sensor and the stored pressure loss coefficient into the relational expression.
 前記関係式は、前記ラムダセンサの設置箇所の排気ガス圧力と大気圧との差が、圧力ロス係数と前記ラムダセンサの設置箇所の排気ガス流量の自乗との積を前記ラムダセンサの設置箇所の気体密度で除したものに等しいことを示す関係式であり、前記ラムダセンサの設置箇所の排気ガス流量は、吸気管の空気流量と燃料噴射制御により与えられた燃料流量とから算出され、前記ラムダセンサの設置箇所の気体密度は、排気ガス温度と排気ガス圧力とから求められてもよい。 The relational expression is that the difference between the exhaust gas pressure at the location where the lambda sensor is installed and the atmospheric pressure is the product of the pressure loss coefficient and the square of the exhaust gas flow rate at the location where the lambda sensor is installed. The exhaust gas flow rate at the place where the lambda sensor is installed is calculated from the air flow rate of the intake pipe and the fuel flow rate given by the fuel injection control, and the lambda sensor. The gas density at the sensor installation location may be obtained from the exhaust gas temperature and the exhaust gas pressure.
 前記空燃比補正手段は、前記排気ガス圧力推定手段が推定した排気ガス圧力に対する前記ラムダセンサの圧力特性に基づいた空燃比の補正値のマップを有し、前記排気ガス圧力推定手段が推定した排気ガス圧力で前記マップを参照することで空燃比の補正値を引き当てて空燃比を補正してもよい。 The air-fuel ratio correcting means has a map of air-fuel ratio correction values based on the pressure characteristics of the lambda sensor with respect to the exhaust gas pressure estimated by the exhaust gas pressure estimating means, and the exhaust gas estimated by the exhaust gas pressure estimating means The air-fuel ratio may be corrected by referring to the map with the gas pressure and assigning an air-fuel ratio correction value.
 本発明は次の如き優れた効果を発揮する。 The present invention exhibits the following excellent effects.
 (1)ラムダセンサが出力する空燃比の補正が新規に圧力センサが設けられることなく実現される。 (1) Correction of the air-fuel ratio output from the lambda sensor can be realized without providing a new pressure sensor.
本発明の一実施形態を示す空燃比検出装置の構成図である。It is a block diagram of the air fuel ratio detection apparatus which shows one Embodiment of this invention. 図1の空燃比検出装置における三方弁の動作状態を示す図であり、(a)は遮断時の構成図、(b)は開放時の構成図である。It is a figure which shows the operation state of the three-way valve in the air fuel ratio detection apparatus of FIG. 1, (a) is a block diagram at the time of interruption | blocking, (b) is a block diagram at the time of open | release. ラムダセンサの雰囲気圧力対誤差特性図である。It is an atmospheric pressure versus error characteristic diagram of a lambda sensor.
 以下、本発明の一実施形態を添付図面に基づいて詳述する。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
 図1に示されるように、本発明に係る空燃比検出装置1は、エンジン2の排気管3に設置されて排気ガス中の粒子状物質を除去するディーゼルパティキュレートフィルタ(以下、DPF)4と、DPF4の出口に設置され排気ガスにおける空燃比を検出するラムダセンサ5と、DPF4の入口出口間を繋ぐセンサ用バイパス管6と、センサ用バイパス管6に設置され上流側下流側間の差圧を検出する差圧センサ7と、センサ用バイパス管6の差圧センサ7とDPF4の入口間に設置されて差圧センサ7の上流側を大気へ開放させるかDPF4の入口に連通させるか切り替え可能な三方弁8と、大気圧を検出する大気圧センサ9と、三方弁8により差圧センサ7の上流側が大気へ開放されているときに、大気圧センサ9が検出した大気圧と差圧センサ7が検出した差圧とからラムダセンサ5の設置箇所であるDPF4の出口の排気ガス圧力を推定する排気ガス圧力推定手段10と、排気ガス圧力推定手段10が推定した排気ガス圧力とラムダセンサ5の圧力特性とにより、ラムダセンサ5が検出した空燃比を補正する空燃比補正手段11とを備えたものである。 As shown in FIG. 1, an air-fuel ratio detection apparatus 1 according to the present invention includes a diesel particulate filter (hereinafter referred to as DPF) 4 that is installed in an exhaust pipe 3 of an engine 2 and removes particulate matter in exhaust gas. The lambda sensor 5 installed at the outlet of the DPF 4 detects the air-fuel ratio in the exhaust gas, the sensor bypass pipe 6 connecting the inlet and outlet of the DPF 4, and the differential pressure between the upstream and downstream sides installed in the sensor bypass pipe 6 Can be switched between the differential pressure sensor 7 for detecting the pressure difference and the differential pressure sensor 7 of the sensor bypass pipe 6 and the inlet of the DPF 4 to open the upstream side of the differential pressure sensor 7 to the atmosphere or to communicate with the inlet of the DPF 4 When the upstream side of the differential pressure sensor 7 is opened to the atmosphere by the three-way valve 8, the difference from the atmospheric pressure detected by the atmospheric pressure sensor 9 The exhaust gas pressure estimating means 10 for estimating the exhaust gas pressure at the outlet of the DPF 4 where the lambda sensor 5 is installed from the differential pressure detected by the sensor 7, the exhaust gas pressure estimated by the exhaust gas pressure estimating means 10 and the lambda sensor 5 is provided with air-fuel ratio correction means 11 for correcting the air-fuel ratio detected by the lambda sensor 5 based on the pressure characteristic of 5.
 エンジン2は、例えば、ディーゼルエンジンであり、ここではターボチャージャ12を具備している。ターボチャージャ12は、排気マニホールド13から排気管3に流れる排気ガスでタービンを駆動して吸気管14から取り入れられる空気をコンプレッサで圧縮して吸気マニホールド15へと供給するものである。吸気管14には、空気流量センサ(以下、MAF)16が設けられる。 The engine 2 is, for example, a diesel engine, and includes a turbocharger 12 here. The turbocharger 12 drives the turbine with exhaust gas flowing from the exhaust manifold 13 to the exhaust pipe 3, compresses air taken from the intake pipe 14 with a compressor, and supplies the compressed air to the intake manifold 15. The intake pipe 14 is provided with an air flow rate sensor (hereinafter MAF) 16.
 DPF4は、PMを除去して排気ガスを浄化するためのものである。DPF4は、酸化触媒部材(Diesel Oxidation Catalyst;以下、DOCという)とキャタライズド・スート・フィルタ(Catalyzed Soot Filter)とから構成される。 The DPF 4 is for purifying exhaust gas by removing PM. The DPF 4 includes an oxidation catalyst member (DieseliesOxidation Catalyst; hereinafter referred to as DOC) and a catalyzed soot filter.
 ラムダセンサ5は、すでに述べたように、セル室に対する酸化イオンの流入・流出におけるポンピング電流によって空燃比を検出するものであるが、対象ガスの圧力の影響を受けて出力が変動する。なお、図1には示さなかったが、排気管3にはラムダセンサ5よりも下流に、触媒を用いた浄化器、サイレンサなどの部材が設置される。 As described above, the lambda sensor 5 detects the air-fuel ratio by the pumping current in the inflow / outflow of the oxide ions to / from the cell chamber, but the output fluctuates due to the influence of the pressure of the target gas. Although not shown in FIG. 1, members such as a purifier using a catalyst and a silencer are installed in the exhaust pipe 3 downstream of the lambda sensor 5.
 センサ用バイパス管6は、従来より差圧センサ7のために設けられている。差圧センサ7は、差圧センサ7の上流側下流側間の差圧を検出するものであり、センサ用バイパス管6がDPF4の入口出口間を繋ぐようになされることで、差圧センサ7によって、DPF4の入口出口間の差圧が検出される。DPF4にPMが堆積していくと、排気ガスの流れが抵抗を受けるようになるため、DPF4の入口の圧力に対する出口の圧力が低下する。これが解消されるよう、DPF4に堆積したPMが燃焼されて除去されることを再生と言うが、DPF再生時期は、DPF4の入口出口間の差圧が閾値に達したら再生が行われるという方法で決定される。 The sensor bypass pipe 6 is conventionally provided for the differential pressure sensor 7. The differential pressure sensor 7 detects a differential pressure between the upstream side and the downstream side of the differential pressure sensor 7, and the differential pressure sensor 7 is configured such that the sensor bypass pipe 6 connects between the inlet and outlet of the DPF 4. Thus, the differential pressure between the inlet and outlet of the DPF 4 is detected. As PM accumulates on the DPF 4, the flow of exhaust gas receives resistance, so the pressure at the outlet relative to the pressure at the inlet of the DPF 4 decreases. In order to solve this problem, regeneration of the PM accumulated in the DPF 4 is called regeneration, but the DPF regeneration timing is performed when the differential pressure between the inlet and outlet of the DPF 4 reaches a threshold value. It is determined.
 三方弁8は、図2(a)及び図2(b)に示されるように、2つの入口に対し1つの出口を有し、図示しない内部の弁体が電磁力などで開閉されることにより、出口に連通する入口が切り替えられる。1つの入口がDPF4の入口側に繋がれ、別の入口が大気に開放され、出口が差圧センサ7側に繋がれる。これにより、三方弁8の開放時は、差圧センサ7の上流側が大気へ開放され、三方弁8の遮断時は差圧センサ7の上流側がDPF4の入口に連通される。 As shown in FIGS. 2 (a) and 2 (b), the three-way valve 8 has one outlet for two inlets, and an internal valve body (not shown) is opened and closed by electromagnetic force or the like. The entrance communicating with the exit is switched. One inlet is connected to the inlet side of the DPF 4, the other inlet is opened to the atmosphere, and the outlet is connected to the differential pressure sensor 7 side. Thus, when the three-way valve 8 is opened, the upstream side of the differential pressure sensor 7 is opened to the atmosphere, and when the three-way valve 8 is shut off, the upstream side of the differential pressure sensor 7 is communicated with the inlet of the DPF 4.
 図1の大気圧センサ9は、従来より高地における諸制御量の補正用として車両に搭載されている。大気圧センサ9は、例えば、燃料噴射制御やDPF再生制御を含む車両の各部を制御する電子制御装置(Electronical Control Unit;ECU)17の筐体内に設置される。 The atmospheric pressure sensor 9 in FIG. 1 is conventionally mounted on a vehicle for correcting various control amounts at high altitudes. The atmospheric pressure sensor 9 is installed in a housing of an electronic control unit (Electronic Control Unit: ECU) 17 that controls each part of the vehicle including fuel injection control and DPF regeneration control, for example.
 排気ガス圧力推定手段10、空燃比補正手段11は、ECU17にプログラムとして組み込まれる。 The exhaust gas pressure estimating means 10 and the air-fuel ratio correcting means 11 are incorporated in the ECU 17 as a program.
 以下、本発明の空燃比検出装置1の動作を説明する。 Hereinafter, the operation of the air-fuel ratio detection apparatus 1 of the present invention will be described.
 通常、車両の走行時は、DPF再生制御が行われる必要があるため、三方弁8は遮断されており、差圧センサ7の上流側がDPF4の入口に連通される。よって、差圧センサ7では、DPF4の入口出口間の差圧が検出される。 Normally, since the DPF regeneration control needs to be performed when the vehicle is traveling, the three-way valve 8 is shut off, and the upstream side of the differential pressure sensor 7 is communicated with the inlet of the DPF 4. Therefore, the differential pressure sensor 7 detects the differential pressure between the inlet and outlet of the DPF 4.
 排気ガス圧力推定手段10は、エンジン2が定常状態のとき、定期的に、一時的に三方弁8を開放することにより、差圧センサ7の上流側を大気へ開放させる。エンジン2の定常状態とは、エンジン2が安定に運転されている状態のことであり、燃料増加率、アクセル開度変化率等により判断される。 The exhaust gas pressure estimating means 10 opens the upstream side of the differential pressure sensor 7 to the atmosphere by periodically opening the three-way valve 8 periodically when the engine 2 is in a steady state. The steady state of the engine 2 is a state in which the engine 2 is stably operated, and is determined by the fuel increase rate, the accelerator opening change rate, and the like.
 差圧センサ7の上流側が大気へ開放されたことにより、差圧センサ7には大気圧P2とDPF4の出口圧力P1との差圧が検出される。排気ガス圧力推定手段10は、差圧センサ7が検出する差圧と大気圧センサ9が検出する大気圧P2とから、DPF4の出口圧力P1、すなわちラムダセンサ5の設置箇所の排気ガス圧力を推定することができる。排気ガス圧力推定手段10は、推定した排気ガス圧力P1を図示しないメモリに記憶する。このとき同時に、排気ガス圧力推定手段10は、MAF16で検出される空気流量、図示しない温度センサで検出される排気ガス温度、ラムダセンサ5で検出される空燃比、大気圧センサ9で検出される大気圧P2などを記録する。 By upstream of the differential pressure sensor 7 is opened to the atmosphere, the differential pressure sensor 7 is the differential pressure between the outlet pressure P 1 from the atmospheric pressure P2 DPF 4 is detected. The exhaust gas pressure estimating means 10 calculates the outlet pressure P 1 of the DPF 4 , that is, the exhaust gas pressure at the place where the lambda sensor 5 is installed, from the differential pressure detected by the differential pressure sensor 7 and the atmospheric pressure P 2 detected by the atmospheric pressure sensor 9. Can be estimated. The exhaust gas pressure estimating means 10 stores the estimated exhaust gas pressure P 1 in a memory (not shown). At the same time, the exhaust gas pressure estimating means 10 detects the air flow rate detected by the MAF 16, the exhaust gas temperature detected by a temperature sensor (not shown), the air-fuel ratio detected by the lambda sensor 5, and the atmospheric pressure sensor 9. Record atmospheric pressure P 2 etc.
 さらに、排気ガス圧力推定手段10は、この推定した排気ガス圧力P1を関係式(1)に代入する。 Further, the exhaust gas pressure estimating means 10 substitutes the estimated exhaust gas pressure P 1 into the relational expression (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 関係式(1)は、ラムダセンサ5の設置箇所の排気ガス圧力P1と、大気圧P2と、大気に対するラムダセンサ5の設置箇所における圧力ロス係数kとの関係式である。ラムダセンサ5の設置箇所の排気ガス流量W12は、MAF16で検出される空気流量と燃料噴射制御により与えられた燃料流量とから算出される。ラムダセンサ5の設置箇所の気体密度ρ1は、図示しない温度センサが検出する排気ガス温度と、排気ガス圧力P1とから求められる。 The relational expression (1) is a relational expression between the exhaust gas pressure P 1 at the place where the lambda sensor 5 is installed, the atmospheric pressure P 2, and the pressure loss coefficient k at the place where the lambda sensor 5 is installed relative to the atmosphere. The exhaust gas flow rate W 12 at the place where the lambda sensor 5 is installed is calculated from the air flow rate detected by the MAF 16 and the fuel flow rate given by the fuel injection control. The gas density ρ 1 at the place where the lambda sensor 5 is installed is obtained from the exhaust gas temperature detected by a temperature sensor (not shown) and the exhaust gas pressure P 1 .
 排気ガス圧力推定手段10は、関係式(1)により圧力ロス係数kを算出する。排気ガス圧力推定手段10は、この圧力ロス係数kを、学習値として図示しないメモリに記憶しておく。その後、排気ガス圧力推定手段10は、三方弁8を遮断する。 The exhaust gas pressure estimating means 10 calculates the pressure loss coefficient k according to the relational expression (1). The exhaust gas pressure estimating means 10 stores this pressure loss coefficient k as a learning value in a memory (not shown). Thereafter, the exhaust gas pressure estimating means 10 shuts off the three-way valve 8.
 三方弁8が遮断されたことにより、差圧センサ7の上流側がDPF4の入口に連通され、差圧センサ7でDPF4の入口出口間の差圧が検出されるようになり、DPF再生制御への利用が再開される。 Since the three-way valve 8 is shut off, the upstream side of the differential pressure sensor 7 is communicated with the inlet of the DPF 4 so that the differential pressure between the inlet and outlet of the DPF 4 is detected by the differential pressure sensor 7. Use is resumed.
 一方、このときには差圧センサ7の出力から直接、排気ガス圧力P1が推定され得ないので、排気ガス圧力推定手段10は、逐次、大気圧センサ9が検出した大気圧P2と、記憶されている圧力ロス係数kを関係式(1)に代入して排気ガス圧力P1を推定する。 On the other hand, at this time, since the exhaust gas pressure P 1 cannot be estimated directly from the output of the differential pressure sensor 7, the exhaust gas pressure estimation means 10 is successively stored with the atmospheric pressure P 2 detected by the atmospheric pressure sensor 9. The exhaust gas pressure P 1 is estimated by substituting the pressure loss coefficient k into the relational expression (1).
 次に、空燃比補正手段11は、排気ガス圧力推定手段10が推定した排気ガス圧力P1をラムダセンサ5が検出した空燃比の補正に使用する。具体的には、図3の特性に基づいて、排気ガス圧力P1に対する補正値のマップが作成されており、排気ガス圧力推定手段10が推定した排気ガス圧力P1でマップが参照されることで補正値が引き当てられる。 Next, the air-fuel ratio correcting means 11 uses the exhaust gas pressure P 1 estimated by the exhaust gas pressure estimating means 10 for correcting the air-fuel ratio detected by the lambda sensor 5. Specifically, a map of correction values for the exhaust gas pressure P 1 is created based on the characteristics of FIG. 3, and the map is referred to by the exhaust gas pressure P 1 estimated by the exhaust gas pressure estimation means 10. The correction value is assigned.
 補正された空燃比が使用されることで、その空燃比と空気流量から実燃料流量が算出され得る。実燃料流量と指示燃料流量とから、燃料流量補正係数Kfが得られるので、その後は、
  燃料流量補正係数Kf×指示燃料流量=補正後燃料流量
が算出されることで、指示燃料流量が更新され得る。その結果、例えば、EGRと可変ノズルターボの協調制御において、吸入空気量とEGR量と燃料量が調整されることでラムダセンサ5で検出される空燃比が最適に制御されるようになり、スモーク、動力性能、排気ガスの最適化に寄与する。
By using the corrected air-fuel ratio, the actual fuel flow rate can be calculated from the air-fuel ratio and the air flow rate. Since the fuel flow rate correction coefficient Kf is obtained from the actual fuel flow rate and the indicated fuel flow rate,
By calculating the fuel flow rate correction coefficient Kf × the indicated fuel flow rate = the corrected fuel flow rate, the indicated fuel flow rate can be updated. As a result, for example, in the cooperative control of EGR and variable nozzle turbo, the air-fuel ratio detected by the lambda sensor 5 is optimally controlled by adjusting the intake air amount, the EGR amount, and the fuel amount. Contributes to optimization of power performance and exhaust gas.
 以上説明したように、本発明の空燃比検出装置1によれば、三方弁8によって差圧センサ7の上流が大気開放となることで、差圧センサ7の出力からラムダセンサ5の設置箇所の排気ガス圧力が推定されることになる。三方弁8が設置されることは、ラムダセンサ5の設置箇所に対象ガスの圧力を検出する圧力センサが設置されることよりも、低コストで可能である。よって、ラムダセンサ5が出力する空燃比の補正が低コストで可能となる。 As described above, according to the air-fuel ratio detection device 1 of the present invention, the upstream of the differential pressure sensor 7 is opened to the atmosphere by the three-way valve 8, so that the installation location of the lambda sensor 5 is determined from the output of the differential pressure sensor 7. The exhaust gas pressure will be estimated. The three-way valve 8 can be installed at a lower cost than the pressure sensor that detects the pressure of the target gas is installed at the place where the lambda sensor 5 is installed. Therefore, the air-fuel ratio output from the lambda sensor 5 can be corrected at a low cost.
 また、本発明の空燃比検出装置1によれば、差圧センサ7の上流が大気開放時に得られた圧力ロス係数kが学習値として記憶されるようになっているので、差圧センサ7の出力が利用できない通常走行時でも、圧力ロス係数kが関係式(1)に代入されることで排気ガス圧力P1が推定される。よって、差圧センサ7の上流が大気開放される回数や時間が少なく限定され、差圧センサ7の本来の利用目的であるDPF再生時期の検出には、支障を及ぼすことがない。 Further, according to the air-fuel ratio detection apparatus 1 of the present invention, the pressure loss coefficient k obtained when the upstream of the differential pressure sensor 7 is opened to the atmosphere is stored as a learned value. Even during normal travel where the output is not available, the exhaust gas pressure P 1 is estimated by substituting the pressure loss coefficient k into the relational expression (1). Therefore, the number of times and the time that the upstream of the differential pressure sensor 7 is opened to the atmosphere is limited and the detection of the DPF regeneration timing, which is the original purpose of use of the differential pressure sensor 7, is not hindered.
 1 空燃比検出装置
 2 エンジン
 3 排気管
 4 DPF(ディーゼルパティキュレートフィルタ)
 5 ラムダセンサ
 6 センサ用バイパス管
 7 差圧センサ
 8 三方弁
 9 大気圧センサ
 10 排気ガス圧力推定手段
 11 空燃比補正手段
DESCRIPTION OF SYMBOLS 1 Air-fuel ratio detection apparatus 2 Engine 3 Exhaust pipe 4 DPF (diesel particulate filter)
5 Lambda sensor 6 Sensor bypass pipe 7 Differential pressure sensor 8 Three-way valve 9 Atmospheric pressure sensor 10 Exhaust gas pressure estimation means 11 Air-fuel ratio correction means

Claims (4)

  1.  エンジンの排気管に設置されて排気ガス中の粒子状物質を除去するディーゼルパティキュレートフィルタ(以下、DPF)と、
     前記DPFの出口に設置され排気ガスにおける空燃比を検出するラムダセンサと、
     前記DPFの入口出口間を繋ぐセンサ用バイパス管と、
     前記センサ用バイパス管に設置され上流側下流側間の差圧を検出する差圧センサと、
     前記センサ用バイパス管の前記差圧センサと前記DPFの入口間に設置されて前記差圧センサの上流側を大気へ開放させるか前記DPFの入口に連通させるか切り替え可能な三方弁と、
     大気圧を検出する大気圧センサと、
     前記三方弁により前記差圧センサの上流側が大気へ開放されているときに、前記大気圧センサが検出した大気圧と前記差圧センサが検出した差圧とから前記ラムダセンサの設置箇所である前記DPFの出口の排気ガス圧力を推定する排気ガス圧力推定手段と、
     前記排気ガス圧力推定手段が推定した排気ガス圧力と前記ラムダセンサの圧力特性とにより、前記ラムダセンサが検出した空燃比を補正する空燃比補正手段とを備えたことを特徴とする空燃比検出装置。
    A diesel particulate filter (hereinafter referred to as DPF) that is installed in the exhaust pipe of the engine and removes particulate matter in the exhaust gas;
    A lambda sensor installed at the outlet of the DPF for detecting an air-fuel ratio in the exhaust gas;
    A bypass pipe for the sensor connecting between the inlet and outlet of the DPF;
    A differential pressure sensor that is installed in the sensor bypass pipe and detects a differential pressure between the upstream side and the downstream side;
    A three-way valve that is installed between the differential pressure sensor of the bypass pipe for the sensor and the inlet of the DPF and can be switched to open the upstream side of the differential pressure sensor to the atmosphere or communicate with the inlet of the DPF;
    An atmospheric pressure sensor for detecting atmospheric pressure;
    When the upstream side of the differential pressure sensor is opened to the atmosphere by the three-way valve, the lambda sensor is installed from the atmospheric pressure detected by the atmospheric pressure sensor and the differential pressure detected by the differential pressure sensor. Exhaust gas pressure estimating means for estimating the exhaust gas pressure at the outlet of the DPF;
    An air-fuel ratio detecting apparatus comprising: an air-fuel ratio correcting means for correcting an air-fuel ratio detected by the lambda sensor based on an exhaust gas pressure estimated by the exhaust gas pressure estimating means and a pressure characteristic of the lambda sensor. .
  2.  前記排気ガス圧力推定手段は、前記エンジンが定常状態のとき、一時的に前記三方弁により前記差圧センサの上流側を大気へ開放させて、前記ラムダセンサの設置箇所の排気ガス圧力を推定し、
     この排気ガス圧力を排気ガス圧力と大気圧と圧力ロス係数の関係式に代入して圧力ロス係数を算出し、この圧力ロス係数を記憶しておき、
     前記三方弁により前記差圧センサの上流側が前記DPFの入口に連通されているときには、前記大気圧センサが検出した大気圧と記憶されている圧力ロス係数を前記関係式に代入して排気ガス圧力を推定することを特徴とする請求項1記載の空燃比検出装置。
    The exhaust gas pressure estimating means estimates the exhaust gas pressure at the location where the lambda sensor is installed by temporarily opening the upstream side of the differential pressure sensor to the atmosphere by the three-way valve when the engine is in a steady state. ,
    Substituting this exhaust gas pressure into the relational expression of exhaust gas pressure, atmospheric pressure, and pressure loss coefficient, calculating the pressure loss coefficient, storing this pressure loss coefficient,
    When the upstream side of the differential pressure sensor communicates with the DPF inlet by the three-way valve, the exhaust gas pressure is substituted by substituting the atmospheric pressure detected by the atmospheric pressure sensor and the stored pressure loss coefficient into the relational expression. The air-fuel ratio detection apparatus according to claim 1, wherein
  3.  前記関係式は、前記ラムダセンサの設置箇所の排気ガス圧力と大気圧との差が、圧力ロス係数と前記ラムダセンサの設置箇所の排気ガス流量の自乗との積を前記ラムダセンサの設置箇所の気体密度で除したものに等しいことを示す関係式であり、
     前記ラムダセンサの設置箇所の排気ガス流量は、吸気管の空気流量と燃料噴射制御により与えられた燃料流量とから算出され、
     前記ラムダセンサの設置箇所の気体密度は、排気ガス温度と排気ガス圧力とから求められることを特徴とする請求項2記載の空燃比検出装置。
    The relational expression is that the difference between the exhaust gas pressure at the location where the lambda sensor is installed and the atmospheric pressure is the product of the pressure loss coefficient and the square of the exhaust gas flow rate at the location where the lambda sensor is installed. It is a relational expression showing that it is equal to that divided by the gas density,
    The exhaust gas flow rate at the installation location of the lambda sensor is calculated from the air flow rate of the intake pipe and the fuel flow rate given by the fuel injection control,
    The air-fuel ratio detection apparatus according to claim 2, wherein the gas density at the place where the lambda sensor is installed is obtained from an exhaust gas temperature and an exhaust gas pressure.
  4.  前記空燃比補正手段は、
     前記排気ガス圧力推定手段が推定した排気ガス圧力に対する前記ラムダセンサの圧力特性に基づいた空燃比の補正値のマップを有し、
     前記排気ガス圧力推定手段が推定した排気ガス圧力で前記マップを参照することで空燃比の補正値を引き当てて空燃比を補正することを特徴とする請求項1~3いずれか記載の空燃比検出装置。
    The air-fuel ratio correcting means includes
    A map of air-fuel ratio correction values based on pressure characteristics of the lambda sensor with respect to the exhaust gas pressure estimated by the exhaust gas pressure estimating means;
    The air-fuel ratio detection according to any one of claims 1 to 3, wherein the air-fuel ratio is corrected by referring to the map with the exhaust gas pressure estimated by the exhaust gas pressure estimating means and assigning an air-fuel ratio correction value. apparatus.
PCT/JP2011/054764 2010-03-04 2011-03-02 Air-fuel ratio detector WO2011108586A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-048131 2010-03-04
JP2010048131A JP5434685B2 (en) 2010-03-04 2010-03-04 Air-fuel ratio detection device

Publications (1)

Publication Number Publication Date
WO2011108586A1 true WO2011108586A1 (en) 2011-09-09

Family

ID=44542233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054764 WO2011108586A1 (en) 2010-03-04 2011-03-02 Air-fuel ratio detector

Country Status (2)

Country Link
JP (1) JP5434685B2 (en)
WO (1) WO2011108586A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015004656A (en) * 2013-05-22 2015-01-08 株式会社堀場製作所 Fuel consumption measurement apparatus
US10132225B2 (en) 2013-08-12 2018-11-20 Horiba, Ltd. Fuel consumption calculation unit, fuel consumption measuring apparatus, and exhaust gas measuring apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016122956A1 (en) * 2016-11-29 2018-05-30 Ford Global Technologies, Llc A method of determining a pressure compensation value for an oxygen sensor and controlling operation of an exhaust gas recirculation internal combustion engine and oxygen sensor
KR102610739B1 (en) 2018-11-13 2023-12-07 현대자동차주식회사 Apparatus for removing carbon from oxygen sensor and method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04204246A (en) * 1990-11-30 1992-07-24 Ngk Insulators Ltd Output correcting method for air-fuel ratio sensor
JP2002048664A (en) * 2000-08-03 2002-02-15 Denso Corp Setting structure for pressure sensor and pressure detector
JP2008216114A (en) * 2007-03-06 2008-09-18 Denso Corp Pressure sensor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3979099B2 (en) * 2002-01-23 2007-09-19 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP4389606B2 (en) * 2004-02-27 2009-12-24 株式会社デンソー Exhaust gas purification device for internal combustion engine
JP4710564B2 (en) * 2005-11-22 2011-06-29 いすゞ自動車株式会社 Exhaust gas purification system control method and exhaust gas purification system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04204246A (en) * 1990-11-30 1992-07-24 Ngk Insulators Ltd Output correcting method for air-fuel ratio sensor
JP2002048664A (en) * 2000-08-03 2002-02-15 Denso Corp Setting structure for pressure sensor and pressure detector
JP2008216114A (en) * 2007-03-06 2008-09-18 Denso Corp Pressure sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015004656A (en) * 2013-05-22 2015-01-08 株式会社堀場製作所 Fuel consumption measurement apparatus
US10132225B2 (en) 2013-08-12 2018-11-20 Horiba, Ltd. Fuel consumption calculation unit, fuel consumption measuring apparatus, and exhaust gas measuring apparatus

Also Published As

Publication number Publication date
JP2011185097A (en) 2011-09-22
JP5434685B2 (en) 2014-03-05

Similar Documents

Publication Publication Date Title
US7313913B2 (en) Exhaust gas purification system of internal combustion engine
US20100199639A1 (en) Exhaust-gas recirculation apparatus and exhaust-gas recirculation flow rate estimation method for internal combustion engines
US7147688B2 (en) Engine exhaust gas purification device
US20070079607A1 (en) Exhaust purifying apparatus for internal combustion engine
US10316716B2 (en) Exhaust purification system and method for restoring NOx purification capacity
EP1996810A2 (en) Exhaust gas control system for internal combustion engine
EP1996803A2 (en) Exhaust purification device of internal combustion engine, and control method thereof
WO2015016303A1 (en) Diagnosis device
WO2011108586A1 (en) Air-fuel ratio detector
JP2005307880A (en) Differential pressure sensor abnormality detecting device for exhaust emission control filter
US10392985B2 (en) Exhaust purification system
US20180094596A1 (en) Exhaust gas purification system
US11536209B2 (en) Control device, engine, and control method of engine
WO2018142510A1 (en) Intake control method and intake control device for internal combustion engine
JP6477088B2 (en) NOx storage amount estimation device
JP5206601B2 (en) Exhaust gas recirculation control device
JP6222138B2 (en) Emission estimation device for internal combustion engine
JP4613895B2 (en) Control device for internal combustion engine
US11053831B2 (en) Exhaust gas purification apparatus for an internal combustion engine
US10240499B2 (en) Exhaust purification system and control method of the same
JP2015021456A (en) Internal combustion engine control device
JP4026614B2 (en) Exhaust system pressure estimation device for internal combustion engine
WO2010029800A1 (en) Engine
US20170191397A1 (en) Exhaust-gas-cleaning system and method of controlling same
JP2007120455A (en) Exhaust emission control system for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11750695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11750695

Country of ref document: EP

Kind code of ref document: A1