WO2011108494A1 - Conductive laminate film and touch panel using the same - Google Patents

Conductive laminate film and touch panel using the same Download PDF

Info

Publication number
WO2011108494A1
WO2011108494A1 PCT/JP2011/054523 JP2011054523W WO2011108494A1 WO 2011108494 A1 WO2011108494 A1 WO 2011108494A1 JP 2011054523 W JP2011054523 W JP 2011054523W WO 2011108494 A1 WO2011108494 A1 WO 2011108494A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
laminated film
touch panel
conductive laminated
resin
Prior art date
Application number
PCT/JP2011/054523
Other languages
French (fr)
Japanese (ja)
Inventor
正之 関口
貴志 蔵田
正洋 田端
謙太朗 平石
亮 田村
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2012503130A priority Critical patent/JPWO2011108494A1/en
Publication of WO2011108494A1 publication Critical patent/WO2011108494A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/005Arrays characterized by the distribution or form of lenses arranged along a single direction only, e.g. lenticular sheets
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/045Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact

Definitions

  • the present invention relates to a conductive laminated film and a touch panel using the same. Specifically, the present invention relates to a conductive laminated film suitable for use in a touch panel that is provided on a liquid crystal display and can be used as an input means, and a touch panel using the same.
  • PDAs personal digital assistants
  • notebook PCs notebook PCs
  • OA devices OA devices
  • medical devices or car navigation systems
  • touch panels that have input means on these displays are widely used.
  • a transparent base film is provided with a thin film of metal oxide such as indium tin oxide and tin antimonic acid or metal such as gold, palladium, aluminum and silver as a transparent conductive film on one side of the transparent base film. Since these metal oxides or metal thin films have a large light reflection, a touch panel having these thin films as a conductive film has a significantly reduced contrast of a liquid crystal display, resulting in a screen that is extremely difficult to see.
  • metal oxide such as indium tin oxide and tin antimonic acid or metal such as gold, palladium, aluminum and silver
  • Patent Document 1 As a method for solving such a problem, in Patent Document 1, two transparent conductive films (a laminated film of glass and ITO) facing each other through a first quarter-wave plate and a spacer in order from the liquid crystal display side. It has been proposed to arrange a second quarter-wave plate and a polarizing plate to increase visibility.
  • the contrast of the liquid crystal display is still insufficient, and since the touch panel has a multilayer structure, optical characteristics such as light transmittance and viewing angle compensation are insufficient.
  • Patent Document 2 has an attempt to suppress the generation of interference fringes (hereinafter also referred to as “Newton rings”) by making the transparent resistive film a special shape.
  • This method cannot suppress the surface reflected light and cannot obtain high contrast, visibility, and durability.
  • streaky lines derived from a special shape are recognized on the touch panel screen, and improvement is demanded as the screen becomes higher in definition.
  • the generation of interference fringes is suppressed, and in particular, when a streaky line derived from the shape of the conductive laminated film provided to suppress the interference fringes is used as a touch panel, the contrast is not recognized.
  • the object is to provide a conductive laminated film and a touch panel that are high in durability, low in glare, and particularly excellent in durability when used as a touch panel.
  • the present invention for solving the above-mentioned problems is a conductive laminated film in which a transparent conductive layer (III) is laminated on a film (I) made of a transparent resin, and a plurality of surface portions on the transparent conductive layer (III) side are provided. It is an electroconductive laminated film characterized by having a convex part and having a part including a plurality of convex parts whose surface is formed by a curved surface.
  • the plurality of convex portions are formed in a bowl shape and the convex portions meander.
  • the plurality of protrusions are formed in a bowl shape and the height of the protrusions varies in the extending direction of the protrusions.
  • the conductive laminated film it is preferable that there is no regularity in the change in the position where the plurality of protrusions are provided and the height of the plurality of protrusions.
  • the conductive laminated film preferably has a resin layer (II) made of a curable resin composition between the film (I) and the transparent conductive layer (III).
  • a plurality of convex portions are formed in a ridge shape on the surface portion on the transparent conductive layer (III) side, and in a plane perpendicular to the length direction of the ridge.
  • the line representing the surface on which the convex portion is formed is a wavy curve.
  • the wavy curve is preferably a wavy curve having a regular period.
  • the plurality of convex portions formed in a bowl shape meander in the length direction.
  • the plurality of convex portions formed in a bowl shape meander at regular intervals along the length direction.
  • the maximum height of the protrusions is preferably 0.1 to 10 ⁇ m, and the period of wrinkles formed by the protrusions is preferably in the range of 100 to 5000 ⁇ m. .
  • the convex portions exist in a sea-island shape when viewed in the vertical direction from the film surface.
  • the conductive laminated film preferably has a resin layer (II) made of a curable resin composition between the film (I) and the transparent conductive layer (III).
  • the highest height among the heights of the respective convex portions required as the height difference between the highest point of the convex portion and the lowest point of the valley portion adjacent to the convex portion is 0.1 to 10 ⁇ m, and the film surface between the highest point of the convex portion having the maximum height and the lowest point of the valley adjacent to the convex portion It is preferable that the distance dL in the inward direction and the dH satisfy the following formula (1).
  • the film (I) is preferably a film obtained by stretching.
  • the film (I) is preferably a retardation film having an in-plane retardation in the range of 128 to 148 nm with respect to transmitted light having a wavelength of 550 nm.
  • the resin layer (II) is preferably formed of a UV curable resin composition.
  • the film (I) preferably contains at least one of a cyclic olefin resin and a polycarbonate resin.
  • the film (I) includes a cyclic olefin resin, and the cyclic olefin resin (co) polymerizes at least one monomer represented by the following formula (1). Is preferably obtained.
  • R 1 to R 4 represent any of the following (i) to (iii), x represents an integer of 0 to 3, and y represents 0 or 1.
  • x represents an integer of 0 to 3
  • y represents 0 or 1.
  • R 1 and R 2 , R 3 and R 4 are (Iii) R 1 and R 2 , R 3 and R 4 , and R 2 and R 3 are each bonded to a monocyclic or polycyclic carbocyclic or heterocyclic ring.
  • the transparent conductive layer (III) is preferably formed of crystalline ITO.
  • Another invention is a touch panel having the conductive laminated film.
  • a touch panel having the conductive laminated film, and a conductive laminated film in which a transparent conductive layer, a retardation film, and a polarizing plate are laminated in this order.
  • the present invention there is no reflection due to reflection of light, generation of interference fringes is suppressed, and in particular, streaky lines derived from the shape of the conductive laminated film provided to suppress interference fringes are connected to the touch panel. Even when it is used, it is not recognized on the screen, has high contrast, little glare, can achieve clear display, especially when it is used as a touch panel, it has improved durability and excellent visibility.
  • a laminated film and a touch panel can be provided.
  • FIG. 1 shows a cross-sectional view perpendicular to the ridge direction and an oblique observation view of the ridge-like surface in a conductive laminated film having convex portions formed in a ridge shape.
  • FIG. 2 shows a cross-sectional observation view perpendicular to the wrinkle direction in the conductive laminated film having convex portions formed in a wrinkle shape.
  • FIG. 3 shows an observation view from above of the conductive laminated film having convex portions formed in a bowl shape.
  • FIG. 4 shows an observation image diagram of a conductive laminated film having convex portions formed in a sea-island shape.
  • FIG. 5 is an enlarged partial sectional view of the touch panel according to the eighteenth embodiment of the present invention.
  • FIG. 6 shows an enlarged partial cross-sectional view of the touch panel according to Embodiment 19 of the present invention.
  • FIG. 7 shows a cross-sectional view perpendicular to the ridge direction and an oblique observation view of the ridge-like surface in a conductive laminated film having a ridge-like projection provided with a resin layer (II).
  • FIG. 8 shows a cross-sectional observation view perpendicular to the wrinkle direction in a conductive laminated film having a ridge-like convex portion provided with a resin layer (II).
  • FIG. 9 shows an observation view from above of a conductive laminated film having a convex portion formed in a bowl shape and provided with a resin layer (II).
  • FIG. 10 is an enlarged partial sectional view of the touch panel according to the seventh embodiment of the present invention.
  • FIG. 11 is an enlarged partial sectional view of the touch panel according to the eighth embodiment of the present invention.
  • the conductive laminated film of the present invention is a conductive laminated film in which a transparent conductive layer (III) is laminated on a film (I) made of a transparent resin, and the surface on the transparent conductive layer (III) side.
  • the portion has a plurality of convex portions, and has a portion including a plurality of convex portions whose surface is formed by a curved surface.
  • the conductive laminated film of the present invention has at least a film (I) made of a transparent resin and a transparent conductive layer (III) laminated thereon, and has a convex portion on the surface portion on the transparent conductive layer (III) side. .
  • a convex portion is provided on the surface portion of the film (I), and the transparent conductive layer (III) is laminated thereon with a substantially uniform thickness, whereby the surface portion on the transparent conductive layer (III) side.
  • a convex portion may be formed on the surface of the transparent conductive layer (III) without providing the convex portion on the film (I) and providing the convex portion on the transparent conductive layer (III). It may be formed, and the convex part may be formed in the surface part by the side of transparent conductive layer (III) by providing a convex part in both film (I) and transparent conductive layer (III).
  • the resin layer (II) is provided between the film (I) and the transparent conductive layer (III), by providing a convex portion on the resin layer (II), the transparent conductive layer (III) side
  • a convex portion may be formed on the surface portion.
  • the conductive laminated film of the present invention has a convex part on the surface part on the transparent conductive layer (III) side, and has a part including a plurality of convex parts whose surface is formed by a curved surface, that is, transparent.
  • the surface portion on the conductive layer (III) side the surface of at least one of the portions including the plurality of convex portions is formed with a curved surface, thereby ensuring anti-Newton ring property and improving clearness, Prevention etc. can be achieved.
  • the surface is formed with a curved surface and has a portion including a plurality of convex portions
  • the surface having the plurality of convex portions is formed in an arbitrary cross section of the portion including the plurality of convex portions. It means that the representing line is a smooth curve having no cusps. Therefore, even if the surface of each convex part is formed with a curved surface, if the two convex parts are joined at an angle, the cross section including the two convex parts has Since a cusp appears at the connection point of the two convex portions, the portion including the two convex portions does not mean that the surface is formed of a curved surface.
  • the convex portion has no regularity in the change in the position where the plural convex portions are provided and the height of the plural convex portions. If the convex part has such regularity, for example, primary reflected light and secondary reflected light interfere with each other, and Newton's ring is likely to appear.
  • the regularity means that, for example, the convex portions are formed with a certain distance, and the heights of adjacent convex portions are periodically changed.
  • the plurality of convex portions provided on the surface portion on the side of the bowl-shaped transparent conductive layer (III) are preferably formed in a bowl shape.
  • a line indicating a surface on which the convex portion is formed is preferably a wavy curve.
  • the convex part formed in bowl shape meanders in the length direction.
  • FIG. 1 is a diagram in which a film (I) having convex portions formed in a bowl shape is cut from a plane perpendicular to the length direction of the convex portions and observed obliquely from above.
  • the plurality of convex portions are linearly provided in parallel to form a ridge.
  • the ridgeline of each convex part was shown with the dotted line.
  • the “ridge line” is an ideal line drawn by connecting the vertices of one convex part in all cross sections orthogonal to the length direction of the convex part.
  • the line indicating the surface on which the convex portion is formed is a wavy curve.
  • the pitch (P) of the curve indicating the surface on which the convex portions on this surface are formed is determined by a plurality of convex portions.
  • the pitch is the length in the plane direction from the apex of the wavy curve to the adjacent apex.
  • the height of the convex portion is obtained as a height difference between the highest point of the convex portion and the lowest point of the valley adjacent to the convex portion.
  • the P of the wavy curve appearing in the cross section is preferably in the range of 50 to 5000 ⁇ m, more preferably 100 to 1000 ⁇ m.
  • P is less than 50 ⁇ m, glare may occur, and when it exceeds 5000 ⁇ m, anti-Newton ring properties may not be sufficiently exhibited.
  • the maximum height of the convex portion formed in a bowl shape is usually set in the range of 0.1 to 10 ⁇ m, preferably 0.5 to 3 ⁇ m. If it is smaller than 0.1 ⁇ m, the anti-Newton ring property does not appear, and if it is larger than 10 ⁇ m, a bumpy feeling is felt at the time of input when assembled as a touch panel.
  • the maximum height of the convex portion is the largest height among the heights of the plurality of convex portions.
  • FIG. 2 is an observation view of a cross section orthogonal to the length direction of the convex portion formed in a bowl shape.
  • the curved part drawn by the top of the convex part in this cross section and the curved part drawn by the valley part sandwiched between the two convex parts are rounded curves having radii of curvature (Rt) and (Rb), respectively.
  • This curve may be a sinusoid.
  • Each roundness of the curved line is appropriately adjusted in terms of touch panel feel, ease of striped lines, interference fringe prevention effect, and durability performance. This roundness can be adjusted, for example, by adjusting the respective curvature radii.
  • the curvature radii (Rt) and (Rb) are preferably not less than half and not more than 30 times the pitch (P). More preferably, the pitch (P) is not less than 10 times and particularly preferably not less than 3 times and not more than 10 times the pitch (P). In addition, it is preferable that the curvature radii (Rt) and (Rb) are the same from the viewpoint of ease of production, and it is preferable that the curvature radius (Rt) is larger than (Rb) from the viewpoint of improving the touch on the touch panel. Moreover, the length (L) of the film plane direction in FIG.
  • pitch ( P) is preferably 1/3 or less, more preferably 1/5 or less, and particularly preferably 1/10 or less.
  • the convex portion formed in a bowl shape meanders.
  • “meandering” means that the convex portion formed in a bowl shape draws a wavy curve along the length direction on a plane parallel to the plane of the conductive laminated film of the present invention.
  • the wave shape may be a regular wave shape or a non-regular wave shape.
  • FIG. 3 shows an observation view from above of the conductive laminated film in which convex portions formed in a bowl shape meander at a pitch (Pl).
  • the plurality of convex portions have the same wave shape, are provided with the same period, and form a ridge.
  • the pitch (Pl) is the length in the planar direction from the apex of the wavy curve to the apex.
  • the ridge line of the convex portion draws a wavy curve on the plane of the conductive laminated film.
  • the “ridge line” is a notional line drawn by connecting the vertices of one convex portion in all cross sections orthogonal to the length direction of the convex portion.
  • the ridge line of the convex portion is a straight line
  • the ridge line of each convex portion formed in a bowl shape is regular on a plane parallel to the film plane. Meandering. By making the saddle shape like this, the streak line becomes harder to be recognized, the smoothness when used as a touch panel is improved and the touch is improved, and the resistance value change when the touch panel is used for a long time This is preferable because the durability can be further improved.
  • the pitch (Pl) is preferably 1 to 30 times, more preferably the pitch (P). Is not less than 2 times and not more than 20 times, particularly preferably not less than 3 times and not more than 10 times, and the width (W) of the curve is preferably not less than 1/2 times and not more than 30 times, more preferably not less than 1 time of the pitch (P). 20 times or less, particularly preferably 3 times or more and 10 times or less.
  • the touch panel When the ratio of the pitch (Pl) to the pitch (P) in the regular curve in the film plane direction and the ratio of the width (W) of the curve to the pitch (P) is less than the lower limit of the above range, the touch panel is used. A feeling of glare may occur, and if the upper limit of the above range is exceeded, the effect of making the ridge line a curve may be diminished.
  • the height variation width is within a range of ⁇ 50%, more preferably ⁇ 30%, and particularly preferably ⁇ 10% with respect to the average height of one convex portion. If it does so, since durability performance when it is set as a touch panel improves, it is preferable.
  • the curve indicating the surface on which the convex portion in the cross section orthogonal to the length direction of the ridge has a height variation within a certain range.
  • the variation range at that time is preferably adjusted to a range of ⁇ 50%, more preferably ⁇ 30%, particularly preferably ⁇ 10% with respect to the average height.
  • the amplitude may be appropriately adjusted so that the amplitude has a variation within a certain range.
  • the variation range is preferably adjusted to a range of ⁇ 50%, more preferably ⁇ 30%, and particularly preferably ⁇ 10% with respect to the average amplitude.
  • the plurality of convex portions formed in a bowl shape are intermittently formed in the length direction of the bowl.
  • the length of the convex portion is preferably in the range of 1 to 10 times, more preferably 1 to 5 times, and particularly preferably 2 to 4 times the pitch of the ridges.
  • the intermittent portion which is a portion where the ridge-shaped convex portion is not formed, has the curved shape described in the sea-island structure described later. By doing so, in addition to a good appearance, a further durability performance can be obtained.
  • a plurality of convex portions provided on the surface portion on the transparent conductive layer (III) side may be provided in a sea island shape.
  • the sea island shape will be further described with reference to the drawings.
  • (1) to (4) in FIG. 4 show image views of a conductive laminated film having a convex portion formed on one side as a sea-island shape as an example of a sea-island shape according to the present invention, as observed from the top and cross-sectional directions. .
  • the important point here is that any shape does not have a locally acute angle portion, but has a curved shape. By doing so, desired characteristics can be obtained in appearance and durability.
  • Such a curved shape change can be formed, for example, by stretching a film.
  • a top view is shown on the left side, and a cross-sectional view of the dotted line shown in the top view is shown on the right side.
  • the convex portion does not appear with a contour line, but is represented with an ideal contour line in order to visually represent the convex portion.
  • the two opposing arrows indicate the height of the convex portion.
  • convex portions having a rectangular planar shape are arranged in multiple rows in the long side direction, and the convex portions are half of the long sides between two adjacent rows. They are arranged so as to be shifted by the length.
  • the film surface has a wavy curve.
  • FIG. 4 (2) convex portions having a rhombus in the planar shape are arranged.
  • the film surface has a wavy curve.
  • convex portions having an elliptical planar shape are arranged.
  • the film surface draws a rounded curve in the portion where the convex portion is provided, and is linear in the portion where the convex portion is not provided.
  • the convex portions having a rectangular planar shape are arranged in rows and columns.
  • the film surface has a wavy curve.
  • the maximum height dH of the convex portion is preferably 0.1 to 10 ⁇ m, and the maximum height of the convex portion having the maximum height is preferably It is preferable that the distances dL and dH in the film in-plane direction between the high point and the lowest point of the valley adjacent to the convex portion satisfy the following formula (1).
  • dH is more preferably 0.5 to 5 ⁇ m, particularly preferably 1 to 3 ⁇ m, and the range of dH / dL is more preferably greater than 0 and not greater than 0.03, particularly preferably greater than 0 and not greater than 0.01. is there.
  • the maximum height dH is the largest height among the heights of the plurality of convex portions.
  • the height of the convex portion is obtained as a difference in height between the highest point of the convex portion and the lowest point of the valley adjacent to the convex portion.
  • dL is determined by two points at which dL is the minimum value.
  • the convex portion When the convex portion satisfies the above conditions, the generation of interference fringes is suppressed, and particularly when the streaky line derived from the shape of the conductive laminated film provided to suppress the interference fringes is used as the touch panel In addition, it is not recognized on the screen, has high contrast, little glare, and when it is used as a touch panel, it has excellent durability because it has improved sliding properties, and a highly visible conductive laminate film and touch panel can be obtained. it can.
  • the film (I) made of a transparent resin may be any film as long as it has transparency and can be used as a base film for a conductive laminated film, and a film containing a known transparent resin can be used. In the present invention, it is preferable to use a film containing a cyclic olefin resin and / or a polycarbonate resin as the film (I) made of a transparent resin.
  • the film (I) made of a transparent resin contains a cyclic olefin resin and / or a polycarbonate resin, it may be formed of one kind of cyclic olefin resin or polycarbonate resin, and two or more kinds of cyclic olefin resins.
  • the film (I) made of a transparent resin is more preferably a film made of a resin or a resin composition in which the resin component is only one or more cyclic olefin resins, or only one or more polycarbonate resins.
  • the film is made of only one or more cyclic olefin-based resins.
  • the film (I) made of a transparent resin is a film made of a cyclic olefin resin or a polycarbonate resin, in addition to being excellent in transparency, it can be suitably used as a retardation film, suppressing reflected light and improving visibility. Improvements can be made.
  • the film (I) made of the transparent resin according to the present invention may be a film showing no retardation or a retardation film.
  • the film (I) is a retardation film
  • it is desirable that the in-plane retardation with respect to transmitted light with a wavelength of 550 nm is 128 to 148 nm, preferably 133 to 143 nm, and preferably a 1 / 4 ⁇ retardation film.
  • the phase difference is defined by the product ( ⁇ nd) of the refractive index difference ( ⁇ n) of birefringent light and the thickness (d).
  • the retardation film is preferably obtained by stretching a film obtained from a cyclic olefin resin or a polycarbonate resin, and obtained by stretching a film obtained from a cyclic olefin resin. More preferably.
  • the cyclic olefin-based resin that can constitute the transparent resin film (I) includes a monomer containing at least one cyclic olefin-based compound having a norbornene skeleton, or a copolymer together with the cyclic olefin-based compound.
  • a monomer composition containing a polymerizable monomer is preferably a ring-opening (co) polymerization or addition (co) polymerization, and a double bond in the main chain of the obtained (co) polymer
  • a hydrogenated product is more preferably used.
  • the cyclic olefin-based resin is a resin obtained by (co) polymerizing a monomer containing at least one compound represented by the following formula (1) (hereinafter also referred to as “specific monomer”). It is preferable.
  • R 1 ⁇ R 4 are each independently a hydrogen atom, a halogen atom, or an oxygen, nitrogen, represents an organic group which may monovalent that contain sulfur or silicon, and R 1 R 2 , R 3 and R 4 may be independently bonded to each other to form an alkylidene group.
  • R 1 and R 2 , R 3 and R 4 , R 2 and R 3 And each independently may be bonded to each other to form a monocyclic or polycyclic carbocyclic or heterocyclic ring, x represents an integer of 0 to 3, and y represents 0 or 1.
  • the cyclic olefin resin suitably used in the present invention, the following (co) polymers (i) to (iii) are preferable.
  • the present invention among the (co) polymers of (ii) above, that is, in the main chain of the (co) polymer obtained by ring-opening (co) polymerizing a monomer containing a specific monomer.
  • a resin in which the double bond is hydrogenated is preferable.
  • Examples of such a cyclic olefin-based resin include resins having a structural unit represented by the following formula (1 ′).
  • R 1 ⁇ R 4, x and y are respectively similar to the R 1 ⁇ R 4, x and y of the above formula (1).
  • a specific monomer may be used individually by 1 type, or may be used together 2 or more types.
  • Use of a monomer containing such a specific monomer is preferable in that the obtained cyclic olefin-based resin has a high glass transition temperature and excellent mechanical strength.
  • Examples of the monovalent organic group having the polarity include a carboxyl group, a hydroxyl group, an alkoxycarbonyl group, an allyloxycarbonyl group, an amino group, an amide group, and a cyano group. These monovalent organic groups having polarity may be bonded via a linking group such as a methylene group.
  • a hydrocarbon group or the like in which a divalent organic group having polarity such as a carbonyl group, an ether group, a silyl ether group, a thioether group, or an imino group is bonded as a linking group is also exemplified.
  • a carboxyl group, a hydroxyl group, an alkoxycarbonyl group, and an allyloxycarbonyl group are preferable, and an alkoxycarbonyl group and an allyloxycarbonyl group are more preferable.
  • R 2 and R 4 when at least one of R 2 and R 4 contains a monomer representing a monovalent organic group having a polarity represented by the formula: — (CH 2 ) n COOR
  • the obtained cyclic olefin-based resin is preferable in that it has a high glass transition temperature, low hygroscopicity, and excellent adhesion to various materials.
  • R represents a hydrocarbon group having 1 to 12 carbon atoms, preferably 1 to 4 carbon atoms, more preferably 1 to 2 carbon atoms, desirably an alkyl group.
  • n is usually an integer of 0 to 5, but a smaller value of n is preferable because the glass transition temperature of the resulting cyclic olefin resin is higher, and a specific monomer in which n is 0. Is preferred because of its easy synthesis.
  • R 1 or R 3 is preferably an alkyl group having 1 to 4 carbon atoms, more preferably an alkyl group having 1 to 2 carbon atoms, and further preferably a methyl group.
  • R 1 or R 3 is preferably an alkyl group having 1 to 4 carbon atoms, more preferably an alkyl group having 1 to 2 carbon atoms, and further preferably a methyl group.
  • such an alkyl group is bonded to the same carbon atom as the carbon atom to which the monovalent organic group having the polarity represented by the above formula: — (CH 2 ) n COOR is bonded.
  • This is preferable in that the hygroscopicity of the cyclic olefin resin can be lowered.
  • the cyclic olefin resin used in the present invention may be obtained by copolymerizing a copolymerizable monomer together with a cyclic olefin compound such as a specific monomer.
  • the copolymerizable monomer in the ring-opening (co) polymer include cycloolefins such as cyclobutene, cyclopentene, cycloheptene, cyclooctene, and dicyclopentadiene.
  • the number of carbon atoms in the cycloolefin is preferably 4-20, and more preferably 5-12. These may be used alone or in combination of two or more.
  • the copolymerizable monomer in the addition (co) polymer is preferably a compound having a reactive unsaturated double bond, specifically, an olefinic compound such as ethylene, propylene, and butene; And vinyl unsaturated hydrocarbon compounds such as ⁇ -methylstyrene and vinylcyclopentene; and (meth) acrylates such as methyl methacrylate.
  • the ring-opening (co) polymerization reaction is performed in the presence of a metathesis catalyst.
  • a metathesis catalyst a known catalyst can be used.
  • a known catalyst can be used.
  • a Deaming periodic table group IA element for example, Li, Na, K, etc.
  • Group IIA elements eg, Mg, Ca, etc.
  • Group IIB elements eg, Zn, Cd, Hg, etc.
  • Group IIIA elements eg, B, Al, etc.
  • Group IVA elements eg, Si, Sn, Pb, etc.
  • a group IVB element for example, Ti, Zr, etc.
  • alcohols, aldehydes, ketones, amines and the like can be suitably contained in the catalyst in order to increase the activity of the catalyst.
  • compounds shown in JP-A-1-132626, page 8, lower right column, line 16 to page 9, upper left column, line 17 may be contained.
  • solvent used in the ring-opening (co) polymerization reaction examples include pentane, hexane, heptane, octane, nonane, decane, etc.
  • Alkanes such as cyclohexane, cycloheptane, cyclooctane, decalin, norbornane; aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, cumene; chlorobutane, bromohexane, methylene chloride, dichloroethane, hexamethylenedi Halogenated alkanes such as bromide, chlorobenzene, chloroform, tetrachloroethylene, aryl halides; saturated carboxylic acid esters such as ethyl acetate, n-butyl acetate, iso-butyl acetate, methyl propionate, and dimethoxyethane; Ether, tetrahydrofuran, include such ethers such as dimethoxyethane, they may be used in combination of two or more types may be used alone. Of these,
  • solvent specific monomer (weight ratio)
  • weight ratio is usually in an amount of 1: 1 to 10: 1, preferably in an amount of 1: 1 to 5: 1.
  • the molecular weight of the resulting ring-opening (co) polymer can be adjusted depending on the polymerization temperature, the type of catalyst, and the type of solvent. For example, ethylene, propene, 1-butene, 1-pentene, 1-hexene Further, ⁇ -olefins such as 1-heptene, 1-octene, 1-nonene and 1-decene and a molecular weight regulator such as styrene may be added.
  • the ring-opening (co) polymer obtained as described above can be used as it is, but (ii) hydrogen obtained by hydrogenating an olefinically unsaturated bond in the molecule of this (co) polymer.
  • the additive (co) polymer is preferable because it is excellent in heat-resistant coloring and light resistance and can improve the durability of the retardation film.
  • Hydrogenation catalyst For the hydrogenation reaction, a method of hydrogenating a normal olefinically unsaturated bond can be applied. That is, a hydrogenation catalyst is added to a ring-opening (co) polymer solution, and hydrogen gas at atmospheric pressure to 300 atmospheres, preferably 3 to 200 atmospheres, is applied at 0 to 200 ° C., preferably 20 to 180 ° C. Is done by letting
  • the hydrogenation catalyst those used in the usual hydrogenation reaction of olefinic compounds can be used.
  • the hydrogenation catalyst include a heterogeneous catalyst and a homogeneous catalyst.
  • heterogeneous catalyst examples include a solid catalyst in which a noble metal catalyst material such as palladium, platinum, nickel, rhodium, and ruthenium is supported on a carrier such as carbon, silica, alumina, and titania.
  • a noble metal catalyst material such as palladium, platinum, nickel, rhodium, and ruthenium is supported on a carrier such as carbon, silica, alumina, and titania.
  • homogeneous catalysts include nickel naphthenate / triethylaluminum, nickel acetylacetonate / triethylaluminum, cobalt octenoate / n-butyllithium, titanocene dichloride / diethylaluminum monochloride, rhodium acetate, chlorotris (triphenylphosphine) rhodium.
  • the form of the catalyst may be powder or granular.
  • the hydrogenation rate of the hydrogenated (co) polymer is 50% or more, preferably 90% or more, more preferably 98% or more, and most preferably 99% or more, as measured by 500 MHz and 1 H-NMR.
  • the higher the hydrogenation rate the better the stability to heat and light.
  • stable characteristics can be obtained over a long period of time.
  • the aromatic group when an aromatic group is present in the ring-opening (co) polymer molecule, the aromatic group is less likely to deteriorate the heat resistance coloring property and light resistance, and conversely optical characteristics such as refractive index and wavelength dispersion. There are cases where advantageous effects are brought about with respect to optical properties such as properties or heat resistance, and a suitable film (I) can be obtained without hydrogenation.
  • the ring-opening (co) polymer obtained as described above includes known antioxidants such as 2,6-di-t-butyl-4-methylphenol, 2,2′-dioxy-3, 3′-di-t-butyl-5,5′-dimethyldiphenylmethane, tetrakis [methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] methane, pentaerythrityltetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] and / or UV absorbers such as 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, etc. Can be stabilized. Further, additives such as a lubricant can be added for the purpose of improving processability.
  • antioxidants such as 2,6-di-t-butyl-4-methylphenol, 2,2′-dioxy-3, 3′-di-t-butyl
  • the hydrogenated (co) polymer used as the cyclic olefin resin preferably has a gel content contained in the hydrogenated (co) polymer of 5% by weight or less, preferably 1% by weight or less. It is more preferable that
  • cyclic olefin resin a (co) polymer obtained by cyclizing the ring-opened (co) polymer by Friedel-Craft reaction and then hydrogenating it is also used.
  • a known catalyst can be used, specifically, at least one selected from the group consisting of a titanium compound, a zirconium compound and a vanadium compound, and an assistant. It is an organoaluminum compound as a catalyst.
  • the molecular weight of the cyclic olefin resin is an intrinsic viscosity [ ⁇ ] inh , preferably 0.2 to 5 dl / g, more preferably 0.3 to 3 dl / g, still more preferably 0.4 to 1.5 dl / g.
  • the number average molecular weight (Mn) in terms of polystyrene measured by gel permeation chromatography (GPC) is preferably 8,000 to 100,000, more preferably 10,000 to 80,000, and still more preferably 12
  • the weight average molecular weight (Mw) is preferably in the range of 20,000 to 300,000, more preferably 30,000 to 250,000, and still more preferably 40,000 to 200,000. Are preferred.
  • the glass transition temperature (Tg) of the cyclic olefin resin is usually 120 ° C. or higher, preferably 120 to 350 ° C., more preferably 130 to 250 ° C., and further preferably 140 to 200 ° C. This is to stabilize the change in optical properties of the obtained cyclic olefin resin film and prevent thermal deterioration of the resin when heated to near Tg and processed, such as stretching.
  • the saturated water absorption at 23 ° C. of the cyclic olefin resin is preferably 2% by weight or less, more preferably 0.01 to 2% by weight, and further preferably 0.1 to 1% by weight. If the saturated water absorption is within this range, the optical characteristics are uniform, the adhesiveness between the obtained cyclic olefin resin film and other optical members and adhesives is excellent, and peeling does not occur during use. Moreover, it is excellent in compatibility with an antioxidant and the like, and can be added in a large amount.
  • the saturated water absorption is a value obtained by immersing in 23 ° C. water for 1 week and measuring the increased weight according to ASTM D570.
  • the cyclic olefin resin has a photoelastic coefficient (C P ) of 0 to 100 ( ⁇ 10 ⁇ 12 Pa ⁇ 1 ) and a stress optical coefficient (C R ) of 1,000 to 4,000 ( ⁇ 10 Those satisfying ⁇ 12 Pa ⁇ 1 ) are preferable.
  • C P photoelastic coefficient
  • C R stress optical coefficient
  • various documents such as Polymer Journal, Vol. 27, No, 9pp 943-950 (1995), Journal of the Japanese Society of Rheology, Vol. .19, No. 2, p93-97 (1991), photoelastic experiment method, Nikkan Kogyo Shimbun, 7th edition of 1975.
  • the former represents the degree of occurrence of phase difference due to stress in the glass state of the polymer, while the latter represents the degree of occurrence of phase difference due to stress in the flow state.
  • the large photoelastic coefficient (C P ) means that stress generated from external factors or strain generated from its own frozen strain when a cyclic olefin resin film is used in combination with another optical member or adhesive. For example, when a transparent conductive layer is laminated as in the present invention or when it is used fixed to another optical member, residual strain at the time of bonding is expressed. It means that an unnecessary phase difference is likely to be generated due to a minute stress generated by shrinkage of a material accompanying a temperature change or a humidity change. Therefore, it is better that the photoelastic coefficient (C P ) is as small as possible.
  • a large stress optical coefficient (C R ) means that, for example, a desired retardation can be obtained with a small stretch ratio when imparting retardation to a cyclic olefin-based resin film.
  • C R small stress optical coefficient
  • the photoelastic coefficient (C P ) is preferably 0 to 100 ( ⁇ 10 ⁇ 12 Pa ⁇ 1 ), more preferably 0 to 80 ( ⁇ 10 ⁇ 12 Pa ⁇ 1 ), and still more preferably 0. To 50 ( ⁇ 10 ⁇ 12 Pa ⁇ 1 ), particularly preferably 0 to 30 ( ⁇ 10 ⁇ 12 Pa ⁇ 1 ), and most preferably 0 to 20 ( ⁇ 10 ⁇ 12 Pa ⁇ 1 ). Minimizes unnecessary phase difference due to stress generated when the transparent conductive layer is laminated, stress generated when the conductive laminated film is fixed to other optical members, and phase change caused by environmental changes during use This is to limit it to the limit.
  • the cyclic olefin-based resin can be further stabilized by adding known antioxidants, ultraviolet absorbers and the like. Moreover, in order to improve workability, the additive used in conventional resin processings, such as a lubricant, can also be added.
  • antioxidant examples include pentaerythrityl tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], 2,6-di-t-butyl-4-methylphenol, 2,2′-dioxy-3,3′-di-t-butyl-5,5′-dimethyldiphenylmethane, tetrakis [methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate]
  • ultraviolet absorber examples include 2,4-dihydroxybenzophenone and 2-hydroxy-4-methoxybenzophenone.
  • Polycarbonate resin The polycarbonate resin that can form the transparent resin film (I) is not particularly limited, and any aromatic homopolycarbonate or copolycarbonate known in the art can be used. .
  • the polycarbonate component may be produced according to any method generally known in the art, such as interfacial polycondensation, homogeneous phase polycondensation, or transesterification. These methods and the associated reactants, polymers, catalysts, solvents and conditions are well known in the art and are described in U.S. Pat. Nos. 2,964,974, 2,970,137, 2,999,835. 2,999,846, 3,028,365, 3,153,008, 3,187,065, 3,215,668, 3,258,414 and No. 5,010,162.
  • Suitable polycarbonates are based, for example, on one or more of the following bisphenols: dihydroxydiphenyls, bis (hydroxyphenyl) alkanes, bis (hydroxyphenyl) cycloalkanes, bis (hydroxyphenyl) sulfides, bis (Hydroxyphenyl) ethers, bis (hydroxyphenyl) ketones, bis (hydroxyphenyl) sulfoxides, bis (hydroxyphenyl) sulfones, alkylcyclohexylidene bisphenols, ⁇ , ⁇ -bis (hydroxyphenyl) diisopropylbenzenes , Derivatives in which these nuclei are alkylated or derivatives in which the nuclei are halogenated, and mixtures thereof.
  • bisphenols include 4,4'-dihydroxydiphenyl, 2,2-bis (4-hydroxyphenyl) propane, 2,4-bis (4-hydroxyphenyl) -2-methylbutane, 1,1- Bis (4-hydroxyphenyl) cyclohexane, ⁇ , ⁇ -bis (4-hydroxyphenyl) diisopropylbenzene, 2,2-bis (3-methyl-4-hydroxyphenyl) propane, 2,2-bis (3-chloro- 4-hydroxyphenyl) propane, bis (3,5-dimethyl-4-hydroxyphenyl) methane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane, bis (3,5-dimethyl-4) -Hydroxyphenyl) sulfone, 2,4-bis (3,5-dimethyl-4-hydroxyphenyl) -2-methylbutane 1,1-bis (3,5-dimethyl-4-hydroxyphenyl) cyclohexane, ⁇ , ⁇ -bis (3,5-di
  • a particularly preferred bisphenol is 2,2-bis (4-hydroxyphenyl) propane, more commonly known as bisphenol A.
  • the above bisphenols can be reacted with phosgene to produce an aromatic polycarbonate. Suitable polycarbonates are also described in US Pat. No. 4,677,162.
  • the film made of the transparent resin according to the present invention is made of a resin other than the cyclic olefin resin and the polycarbonate resin
  • the transparent resin include polyethylene terephthalate, polyethylene naphthalate, polymethyl methacrylate, and triacetyl cellulose. , Polyethersulfone, polyimide and the like.
  • Production of Film (I) Made of Transparent Resin Film (I) made of transparent resin used in the present invention is not particularly limited in its production method, and a transparent resin such as a cyclic olefin resin or a polycarbonate resin is previously used as a film or sheet. After forming into a shape, it can be obtained by stretching.
  • the film (I) made of a transparent resin obtained by stretching is preferable because it is suitable for a touch panel that requires an antireflection function.
  • the convex portion is formed on the surface of the transparent conductive layer (III) by providing the convex portion on the film (I), the convex portion provided on the film (I) may be formed after the stretching process. Alternatively, a preliminary convex portion may be made on the film before stretching and the film may be stretched.
  • the method for forming the transparent resin into a film can be appropriately selected according to the type of the transparent resin or the desired properties of the film, such as a melt molding method and a solvent casting method (solution casting method).
  • the method can be adopted.
  • a solvent casting method is preferable from the viewpoint of good film thickness uniformity and surface smoothness. From the viewpoint of production cost, the melt molding method is preferable.
  • the film thus formed is not particularly limited, but the film thickness is usually 70 to 300 ⁇ m, preferably 80 to 250 ⁇ m, and the difference between the maximum thickness and the minimum thickness of the film is usually within 3 ⁇ m, preferably Is within 2 ⁇ m.
  • the transparent resin When the transparent resin is formed into a film or sheet, it is preferable to form a convex portion on at least one surface thereof. If it does in this way, the film (I) which has a desired convex part can be obtained by extending
  • a known method can be used as a method for forming the convex portion. For example, in the melt molding method, when the molten resin is cooled and solidified, a method of transferring by pressing against a metal roll having a concave portion is preferably used. It is done.
  • the surface of a relatively soft metal such as copper or nickel that is easy to surface is plated, and the surface of the roll is desired after it has been cut into a desired shape by cutting or the like, and the metal roll surface is textured
  • the roll etc. which plated chromium, nickel, etc. so that it may become the shape of this are used suitably.
  • a transparent resin solution is cast on a base material made of stainless steel having a recess and a plastic base material such as polyethylene terephthalate, and the solvent is removed by drying. The method is preferably used.
  • the amount of residual solvent in the resin film is preferably 20% or less, more preferably 10% or less, particularly preferably 5% or less.
  • the amount depends on the solvent during stretching. It is preferable because foaming can be suppressed.
  • the transparent resin After forming the transparent resin into a film or sheet, it is also preferable to form a protrusion on at least one surface of the film or sheet using, for example, an embossing roll or the like. Even if it does in this way, the film (I) which has a desired convex part can be obtained by extending
  • the embossing roll a known material or the above-described metal roll is appropriately used.
  • the film (I) made of a transparent resin used in the present invention can be produced by using a film-like product obtained by molding the transparent resin as described above as a raw film, and stretching the film.
  • the raw film can be produced by stretching by a known uniaxial stretching method, biaxial stretching method, oblique stretching method or the like.
  • An oblique stretching method in which the optical axis is slanted in the film plane without contrasting the moving speed and the shape of the guide roll, a stretching method by an inflation method, and the like can be used.
  • horizontal uniaxial stretching and vertical uniaxial stretching are preferable from the viewpoint of production cost
  • oblique stretching is preferable from the surface where the optical axis can be adjusted obliquely
  • biaxial stretching is preferably used from the viewpoint of easy control of the film surface shape.
  • the stretching speed at the time of stretching is usually 1 to 5,000% / min, preferably 50 to 1,000% / min, more preferably 100 to 1,000% / min, and further preferably 100 to 500% / min.
  • the stretching speed of 1% / min means a speed at which the length of the film becomes longer by 1% of the original length per minute.
  • stretching may be performed in two directions at the same time, or the stretching may be performed in a direction different from the first stretching direction after uniaxial stretching.
  • the intersecting angle of the two stretching axes is usually in the range of 120 to 60 degrees, and the stretching speed may be the same or different in each stretching direction.
  • the stretching temperature is not particularly limited, but is usually Tg ⁇ 40 ° C., preferably Tg ⁇ 5 to Tg + 40 ° C., more preferably Tg, based on the glass transition temperature (Tg) of the resin constituting the film. ⁇ Tg + 30 ° C., particularly preferably in the range of Tg + 10 to Tg + 30 ° C. Moreover, when the convex shape is formed only on one side of the film, it is preferable to increase the temperature of the surface on which the convex shape is formed by 5 ° C. or more, and preferably by 10 ° C. or more. Is more preferable.
  • temperature adjustment is suitably performed by adjusting the temperature distribution setting in the whole thermostat which heats a film, installing a spot heater etc. in a thermostat.
  • the film surface shape can be made into a curved convex state, and the occurrence of unevenness can be suppressed while suitably controlling the occurrence of phase difference. To preferred.
  • the draw ratio is usually 1.01 to 10 times, preferably 1.5 to 5 times, more preferably 2.0 to 3.5 times. When the draw ratio exceeds 10 times, it may be difficult to control the film surface shape and retardation.
  • the stretched film may be cooled as it is, but is allowed to stand in a temperature atmosphere of Tg-20 ° C. to Tg for at least 10 seconds or more, preferably 30 seconds to 60 minutes, more preferably 1 minute to 60 minutes.
  • a stable retardation film with little change in retardation characteristics with time can be obtained.
  • it is also suitably performed to contact a roll adjusted to a temperature range of preferably Tg-20 ° C to Tg + 10 ° C, more preferably Tg-10 ° C to Tg + 5 ° C. By doing so, it is preferable from the point that the curved convex shape of the film surface can be formed more uniformly.
  • the linear expansion coefficient of the film (I) comprising the transparent resin of the present invention after stretching is preferably 1 ⁇ 10 ⁇ 4 (1 / ° C.) or less, more preferably in the temperature range of 20 ° C. to 100 ° C. Is 9 ⁇ 10 ⁇ 5 (1 / ° C.) or less, more preferably 8 ⁇ 10 ⁇ 5 (1 / ° C.) or less, and particularly preferably 7 ⁇ 10 ⁇ 5 (1 / ° C.) or less.
  • the difference in linear expansion coefficient between the stretching direction and the direction perpendicular thereto is preferably 5 ⁇ 10 ⁇ 5 (1 / ° C.) or less, more preferably 3 ⁇ 10 ⁇ 5 (1 / ° C.) or less, and further preferably 1 ⁇ 10 ⁇ 5 (1 / ° C.) or less.
  • phase difference is determined by the retardation value, stretching ratio, stretching temperature, stretching of the film before stretching. It can control by the thickness of the film after orientation.
  • the total light transmittance of the film (I) made of the transparent resin used in the present invention is preferably 85% or more, more preferably 88% or more, and still more preferably 90% or more, since the visibility of the touch panel is improved. is there.
  • the film (I) made of the transparent resin according to the present invention is subjected to a surface treatment for the purpose of improving the adhesion with the resin layer (II) and the transparent conductive layer (III) made of a curable resin composition.
  • a surface treatment for the purpose of improving the adhesion with the resin layer (II) and the transparent conductive layer (III) made of a curable resin composition.
  • the surface treatment include plasma treatment, corona treatment, alkali treatment, and coating treatment.
  • corona treatment the adhesion between the transparent resin film (I) and the resin layer (II) can be strengthened.
  • the corona treatment conditions is preferably 1 ⁇ 1000W / m 2 / min as an irradiation amount of corona discharge electron, and more preferably in the 10 ⁇ 100W / m 2 / min . If the irradiation amount is lower than this, a sufficient surface modification effect may not be obtained, and if the irradiation amount is higher than this, the treatment effect reaches the inside of the retardation film, and the film itself is There is a risk of deterioration.
  • the film (I) which consists of a transparent resin which carried out the corona treatment
  • ⁇ Resin layer (II) made of curable resin composition Between the film (I) made of the transparent resin and the transparent conductive layer (III), it is made of a curable resin composition for the purpose of improving the surface hardness, adhesion, etc. and adjusting the smoothness of the surface protrusions. It is preferable to provide the resin layer (II).
  • the resin layer (II) when the resin layer (II) is provided between the film (I) and the transparent conductive layer (III), by providing a convex portion on the surface portion of the resin layer (II), A convex portion may be formed on the surface portion on the conductive layer (III) side. If it does in this way, the conductive laminated film of this invention can achieve the anti-Newton ring property ensuring, the improvement of a clear feeling, and prevention of glare.
  • the convex portion provided on the surface portion of the resin layer (II) can be formed in a bowl shape or a sea island shape as described above.
  • the transparent conductive layer (III) By laminating the transparent conductive layer (III) with a substantially uniform thickness on the resin layer (II) provided with such convex portions, the above-mentioned bowl-like shape is formed on the surface portion on the transparent conductive layer (III) side. Or the electroconductive laminated film which has the convex part formed in sea island shape can be obtained.
  • the convex part of the resin layer (II) is formed in a bowl shape, and in the cross section obtained by cutting along a plane perpendicular to the length direction of the bottle, the line indicating the surface on which the convex part is formed is a wavy curve.
  • the plurality of convex portions forming the ridge meander in the length direction of the ridge.
  • the wavy curve is preferably a wavy curve having a regular period (pitch: hereinafter also referred to as P), and the plurality of convex portions forming the wrinkles are regularly formed along the length direction of the wrinkles. It is also preferable to meander at a regular cycle (pitch: hereinafter also referred to as Pl).
  • the P of the wavy curve appearing in the cross section is preferably in the range of 100 to 5000 ⁇ m, more preferably in the range of 200 to 1000 ⁇ m.
  • P is less than 100 ⁇ m, glare may occur, and when it exceeds 5000 ⁇ m, anti-Newton ring properties may not be sufficiently exhibited.
  • the maximum height of the convex portion formed in a bowl shape is usually set in the range of 0.1 to 10 ⁇ m, preferably 0.5 to 3 ⁇ m. If it is less than 0.1 ⁇ m, the anti-Newton ring property does not appear, and if it exceeds 10 ⁇ m, a feeling of bumpiness is felt at the time of input when assembled as a touch panel.
  • the plurality of convex portions forming the ridge meander with the Pl.
  • “meandering” means that the convex portion formed in a bowl shape draws a wavy curve along the length direction on a plane parallel to the plane of the conductive laminated film of the present invention.
  • the bowl-shaped convex part is preferably formed by continuously transferring the shape onto a film (I) made of a transparent resin by a transfer roll having a concave part capable of forming such a convex part.
  • a film (I) made of a transparent resin by a transfer roll having a concave part capable of forming such a convex part.
  • FIG. 7 shows a laminated film in which a resin layer (II) having convex portions provided in a bowl shape is formed on one side of a film (I) made of a transparent resin by a UV curable resin composition. It is the figure cut from the surface orthogonal to the direction and observed from diagonally upward.
  • the pitch (P) of the ridges is determined by a plurality of convex portions of the resin layer (II).
  • the line indicating the surface on which the convex portion is formed is preferably a wavy curve having a regular period.
  • the sliding property when used as a touch panel is improved, the touch is improved, the resistance value change when the touch panel is used for a long time can be suppressed, and the durability performance can be further improved.
  • FIG. 8 is an observation view of a cross section orthogonal to the length direction of the convex portion formed in a bowl shape.
  • the curved part drawn by the convex part in this cross section and the curved part drawn by the valley part sandwiched between the two convex parts are rounded curves having curvature radii (Rt) and (Rb), respectively.
  • This curve may be a sinusoid.
  • a sine curve is preferable from the viewpoint of ease of making the mold.
  • the touch of the touch panel and the ease of eliminating the streak lines, the interference fringe prevention effect and the durability performance can be adjusted by adjusting the respective curvature radii.
  • the curvature radii (Rt) and (Rb) are each preferably not less than half and not more than 30 times of the pitch (P), more preferably not less than 1 and not more than 10 times, particularly preferably not less than 1 time of the pitch (P). Is not less than 3 times and not more than 10 times the pitch (P).
  • the curvature radii (Rt) and (Rb) are preferably used from the viewpoint of ease of production, but from the aspect of improving the touch on the touch panel, making the curvature radius (Rt) larger than (Rb). preferable.
  • pitch (P) is preferably 1/3 or less, more preferably 1/5 or less, particularly preferably 1/10 or less.
  • FIG. 9 shows an observation view from above of the resin layer (II) having convex portions formed in a bowl shape, which is a preferred example.
  • the ridge line of the convex portion formed in a bowl shape draws a wavy curve having a regular period (pitch) on the plane of the conductive laminated film.
  • the ridge line of the convex portion is a straight line, whereas in FIG. 9, the convex portion is meandering regularly on a plane parallel to the film plane.
  • the ridge-shaped projections By making the ridge-shaped projections in this way, the streak-like lines are less likely to be recognized, the slipperiness when used as a touch panel is improved and the touch is improved, and when the touch panel is used for a long time The resistance value change can be suppressed, and the durability performance can be further improved, which is preferable.
  • the pitch (Pl) is preferably 1 to 30 times, more preferably the pitch (P). Is not less than 2 times and not more than 20 times, particularly preferably not less than 3 times and not more than 10 times, and the width (W) of the curve is preferably not less than 1/2 times and not more than 30 times, more preferably not less than 1 time of the pitch (P). 20 times or less, particularly preferably 3 times or more and 10 times or less are used. If the regular curve in the film plane direction is less than the range, glare may occur when the touch panel is used, and if it exceeds the range, the effect of the curve may be reduced.
  • the curable resin composition is preferably a UV curable resin composition from the viewpoint that the other layers have low influence, can be cured efficiently, and the curing conditions are easily controlled.
  • the UV curable resin composition preferably comprises (A) a polyfunctional monomer having 3 or more acryloyl groups (hereinafter also referred to as “(A) component”), (B) acrylic acid in a glycidyl (meth) acrylate polymer.
  • component (B)”) and (C) optionally other acrylic oligomer hereinafter also referred to as “component (C) are blended in a specific amount.
  • the component (A) is a component that can impart hardness of the transparent conductive layer (III), adhesion to the film (I) made of a transparent resin, and the like.
  • the component (B) is a component that can impart further improvement in the hardness of the transparent conductive layer, curability, reduction of curling during curing, and the like.
  • (C) component is an arbitrary component which can provide toughness etc.
  • the surface tension of the component (A) is suitably in the range of 37 mN / m or less, more preferably 30 mN / m or more, from the viewpoint that sufficient hardness and adhesion can be obtained.
  • the surface tension is measured by a vertical plate method using a Kyowa CBVP surface tension meter.
  • component (A) examples include trimethylolpropane triacrylate, ditrimethylolpropane tetraacrylate, triacrylate of glycerin propylene glycol adduct, triacrylate of trimethylolpropane propylene glycol adduct, and the like. Of these, trimethylolpropane triacrylate and ditrimethylolpropane tetraacrylate are preferred because the cured coating film has high hardness.
  • the blending amount of the component (A) in the curable resin composition is suitably 40 to 60% by weight (however, the total of the components (A) to (C) is 100% by weight), 50 to 60% by weight is preferred.
  • the component (B) is a polymer acrylate obtained by adding an acrylic acid to a glycidyl (meth) acrylate polymer as described above.
  • the amount of acrylic acid added to the epoxy group is suitably about 1: 1 to 1: 0.8 because unreacted epoxy adversely affects the stability of the composition, and 1: 1 to 1: 0.9. The degree is preferred.
  • Examples of the glycidyl (meth) acrylate polymer include homopolymers of glycidyl (meth) acrylate, copolymers of glycidyl (meth) acrylate and various ⁇ , ⁇ -unsaturated monomers not containing a carboxyl group, and the like. Can be mentioned.
  • Examples of the ⁇ , ⁇ -unsaturated monomer not containing a carboxyl group include various (meth) acrylic acid esters, styrene, vinyl acetate, acrylonitrile and the like.
  • a glycidyl (meth) acrylate polymer is obtained by copolymerizing glycidyl (meth) acrylate and an ⁇ , ⁇ -unsaturated monomer not containing a carboxyl group, crosslinking occurs during the reaction. Therefore, high viscosity and gelation can be effectively prevented.
  • the molecular weight of the glycidyl (meth) acrylate polymer is about 5,000 to 100,000 in terms of weight average molecular weight from the viewpoint of reducing curling at the time of curing and preventing gelation at the time of the acrylic addition reaction. About 1,000 is preferable.
  • the weight average molecular weight is obtained in terms of polystyrene by gel permeation chromatography (GPC).
  • (B) 70 weight% or more is suitable for the usage-amount of the glycidyl (meth) acrylate in a component in consideration of the hardness of a transparent conductive layer, the transferability of a polymer, etc., and 75 weight% or more is preferable.
  • a known copolymerization method can be applied to the production of the component (B).
  • the glycidyl (meth) acrylate polymer is prepared by charging this monomer, a polymerization initiator, and, if necessary, a chain transfer agent and a solvent into a reaction vessel under conditions of 80 to 90 ° C. and 3 to 6 hours under a nitrogen stream. It is appropriate to do in The glycidyl (meth) acrylate polymer thus obtained and acrylic acid can be subjected to a ring-opening esterification reaction to obtain the component (B).
  • This reaction is usually carried out in an oxygen stream in order to prevent the polymerization of acrylic acid itself, and the reaction temperature is suitably 100 to 120 ° C. and the reaction time is about 5 to 8 hours.
  • the blending amount of the component (B) in the cured resin composition is suitably 10 to 60% by weight (however, the total of the components (A) to (C) is 100% by weight), and 20 ⁇ 50% by weight is preferred.
  • component (C) examples include polyfunctional polyester acrylate, polyfunctional urethane acrylate, and epoxy acrylate.
  • polyfunctional urethane acrylates are preferred from the viewpoints of scratch resistance and toughness of the cured coating film.
  • Examples include a reaction product obtained by reacting a polyol, polyester or polyamide-based diol to synthesize an adduct, and then adding a (meth) acrylate having a hydroxyl group to the remaining isocyanate group (for example, JP-A-2002-275392). Issue).
  • Polyfunctional urethane acrylate is a urethane reaction product composed of (meth) acrylate having a hydroxyl group and a polyvalent isocyanate compound having two or more isocyanate groups.
  • (meth) acrylate having a hydroxyl group pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate and the like are preferable.
  • the blending amount of the component (C) in the cured resin composition is suitably 0 to 50% by weight (however, the total of the components (A) to (C) is 100% by weight).
  • the curable resin composition As a method used for curing the curable resin composition, heat, active energy rays, or the like is preferably used.
  • the active energy ray for example, any of ultraviolet rays and electron beams may be used.
  • a photopolymerization initiator When the resin composition is cured with an electron beam or the like, a photopolymerization initiator is not required. However, when cured with ultraviolet rays, the photopolymerization initiator is usually 1 to 15 weights per 100 parts by weight of the resin composition. About parts can be contained.
  • photopolymerization initiator various known ones such as Darocur 1173, Irgacure 651, Irgacure 184, Irgacure 907, Irgacure 754 (all manufactured by Ciba Specialty Chemicals) and benzophenone can be used. If necessary, various additives other than those described above, for example, a polymerization inhibitor, an antioxidant, an ultraviolet absorber, an antistatic agent, a light stabilizer, a solvent, an antifoaming agent, and a leveling agent may be blended.
  • the conductive laminated film of the present invention has a film (I) made of a transparent resin and a transparent conductive layer (III), and optionally has a resin layer (II), but on the film (I) made of a transparent resin.
  • the laminated film obtained by forming the resin layer (II) preferably has the following physical properties.
  • Haze is also called haze value and represents the degree of haze and the degree of diffusion. For example, using a commercially available Suga Test Machine Co., Ltd. HGM-2DP, etc., it conforms to JIS K-7136. The haze (%) can be measured. The haze of the title film is preferably 1% or less. When the haze is outside the above range, white blur occurs and the visibility of the touch panel decreases.
  • the pencil hardness is preferably HB or higher when measured by JIS K5600-5-4 using NP manufactured by Toyo Seiki Co., Ltd. If it is less than HB, the transparent conductive film may be damaged during ITO film formation.
  • the luminance unevenness of the pixel is hardly recognized when the screen of the mobile tool SL-6000N manufactured by Sharp is displayed in green, and then the mark film is placed and evaluated by visual observation.
  • the anti-Newton ring property is determined by placing the film on a smooth glass plate (thickness 3 mm, material: soda glass) so that the resin layer adheres and pressing it with a finger to see if Newton rings occur. It is preferable that no Newton ring is generated.
  • the heat shrinkage rate (%) is determined by allowing the title film to stand for 60 minutes in a forced circulation dryer heated to 150 ° C., and using the dimension measurement microscope 176-812 made by Mitutoyo before and after heating. When measuring the change and calculating the heat shrinkage rate, it is preferably 1.5% or less, more preferably 1.3% or less, and even more preferably 1.0% or less. If the heat shrinkage rate exceeds 1.5%, the touch panel may be deformed.
  • the retardation is not particularly limited, but when the transparent resin film (I) is a retardation film, “KOBRA-21ADH / PR” manufactured by Oji Scientific Instruments
  • the phase difference (nm) measured for transmitted light having a wavelength of 550 nm is preferably 128 to 148 nm, and more preferably 133 to 143 nm. If the phase difference deviates from the above, the contrast and visibility of the liquid crystal display may be lowered.
  • the conductive laminated film of the present invention is formed by laminating a transparent conductive layer (III) on a film (I) made of a transparent resin, or comprising the above-described curable resin composition on a film (I).
  • a resin layer (II) or the like is appropriately formed, and a transparent conductive layer (III) is further laminated thereon.
  • the transparent conductive layer (III) constituting the conductive laminated film of the present invention is not particularly limited as long as it is a layer having transparency in the visible light region and having conductivity.
  • the transparent conductive layer (III) is preferably a layer made of ITO, and more specifically a layer made of crystalline ITO.
  • any of the conventionally known techniques such as a vacuum deposition method, a sputtering method, and an ion plating method can be used. From the viewpoint of adhesion, it is preferable to form a thin film by a sputtering method.
  • the thin film material to be used is, for example, metal oxide such as tin oxide containing antimony, gold, silver, platinum, palladium, copper, aluminum, nickel, chromium, titanium, cobalt, tin, or these An alloy or the like may be used.
  • the thickness of the conductive thin film is preferably 30 mm or more, and if it is thinner than this, it may be difficult to form a continuous film having good conductivity with a surface resistance of 1000 ⁇ / ⁇ or less. On the other hand, if the thickness is too large, the transparency may be lowered. Therefore, the preferred thickness is about 50 to 2000 mm.
  • the transparent conductive layer (III) made of ITO is formed by a sputtering method
  • a conventionally known ITO target is used as a target.
  • the weight ratio of indium oxide to tin oxide is preferably 99: 0.5 to 99:20, more preferably 99: 1 to 90:15, and still more preferably 99: 1. It is desirable to use the one of up to 90:10. When the weight ratio is out of the above range, the resistance value increases.
  • the temperature during the ITO film formation is preferably not more than the glass transition temperature (Tg) of the film (I) made of transparent resin, more preferably “room temperature to Tg of transparent resin”, and “room temperature to Tg of transparent resin— “20 ° C.” is more preferable.
  • Tg of the transparent resin constituting the film (I) is exceeded, the film may be deteriorated.
  • Tg of resin layer (II) which consists of curable resin compositions is lower than Tg of transparent resin, it is desirable to form into a film at the temperature below Tg of the said resin layer (II).
  • traces of oxygen in Ar as the atmosphere gas during ITO deposition preferably the total of Ar and O 2, preferably 0.05 to 20 vol%, more preferably 0.01 to 10% by volume, further When 0.1 to 3% by volume of O 2 is preferably introduced, the transparency and conductivity of the ITO thin film can be improved.
  • the ITO is preferably crystalline ITO.
  • the film formation method of the crystalline ITO thin film includes a pulse sputtering method in which the power applied to the target electrode (cathode) is intermittently changed, and a dual cathode pulse sputtering method in which a plurality of cathodes are arranged as a basic configuration in this pulse sputtering method. Is used. These sputtering methods preferably use a magnetron sputtering method in order to cope with a plasma discharge at a better degree of vacuum. Also, in order to have a stable generation of pulse current and freedom of condition setting, a pulse generation unit is used.
  • the crystalline ITO thin film can also be obtained by crystallization by annealing at a temperature level of about 150 ° C. after the film formation. The durability is remarkably improved by using a crystallized ITO film.
  • the conductive laminated film of the present invention improves adhesion and provides gas barrier properties between the transparent resin film (I) or the resin layer (II) made of a cured resin layer and the transparent conductive layer (III). Therefore, it is also preferable to have an easy-adhesion layer.
  • the easy-adhesion layer may or may not contain metal oxide fine particles, but inclusion of metal oxide fine particles is preferable because adhesion is improved.
  • a preferable easy-adhesion layer is prepared by preparing a coating liquid comprising a composition containing metal oxide fine particles and polysiloxane, and coating the coating liquid on the film (I) or the resin layer (II), followed by drying. Can be obtained.
  • metal oxide fine particles used in the easy adhesion layer is not particularly limited as long as it is an oxide fine particle of a metal element.
  • the primary average particle diameter of the metal oxide fine particles is preferably 0.1 to 100 nm, more preferably 0.1 to 70 nm, and particularly preferably 0.1 to 50 nm.
  • the primary average particle diameter of the metal oxide fine particles is in the above range, a laminated film having excellent light transmittance can be obtained.
  • the polysiloxane used for the easy-adhesion layer is preferably a polyfunctional polysiloxane.
  • polysiloxane a polysiloxane obtained by subjecting a polyfunctional polysiloxane having a dimethylsiloxane chain and a polydimethylsiloxane to a dealcoholization reaction is preferable.
  • the polyfunctional polysiloxane and the polydimethylsiloxane preferably have an alkoxyl group or a hydroxyl group at the terminal functional group.
  • the polyfunctional polysiloxane and the polydimethylsiloxane are obtained by subjecting dimethylsiloxane and polydimethylsiloxane having different terminal functional groups to a dealcoholization reaction. Polysiloxane is obtained.
  • the conductive laminated film of the present invention preferably has an antireflection layer on the lower layer side of the transparent conductive layer (III) for the purpose of improving the transmittance in the visible light region.
  • the antireflection layer usually has a laminated structure of two or more layers including a low refractive index layer such as silicon oxide and magnesium fluoride and a high refractive index layer such as titanium oxide, niobium oxide and tantalum oxide.
  • a method for forming a low and high refractive index layer composed of these inorganic oxides vacuum deposition, sputtering, ion plating (dry process) or ultrafine particles of inorganic oxides such as metal alkoxides and zirconium oxide are used.
  • a publicly known method such as a coating method (wet process) of the coating liquid containing it can be employed.
  • the conductive laminated film of the present invention preferably has the following physical properties.
  • Haze is also called haze value and represents the degree of haze and the degree of diffusion. For example, using a commercially available Suga Test Machine Co., Ltd. HGM-2DP, etc., it conforms to JIS K-7136. The haze (%) can be measured. The haze of the title film is preferably 1% or less. When the haze is outside the above range, white blur occurs and the visibility of the touch panel decreases.
  • the pencil hardness is preferably HB or higher when measured by JIS K5600-5-4 using NP manufactured by Toyo Seiki Co., Ltd. If it is less than HB, the transparent conductive film may be damaged during ITO film formation.
  • the luminance unevenness of the pixel is hardly recognized when the screen of the mobile tool SL-6000N manufactured by Sharp is displayed in green, and then the mark film is placed and evaluated by visual observation.
  • Anti-Newton ring property Newton ring occurs when the film is placed on a smooth glass plate (thickness 3 mm, material: soda glass) so that the curved convex surface is in close contact with the finger. When visually evaluating whether to do, it is preferable that a Newton ring does not generate
  • the heat shrinkage rate (%) is determined by allowing the title film to stand for 60 minutes in a forced circulation dryer heated to 150 ° C., and using the dimension measurement microscope 176-812 made by Mitutoyo before and after heating. When measuring the change and calculating the heat shrinkage rate, it is preferably 1.5% or less, more preferably 1.3% or less, and even more preferably 1.0% or less. If the heat shrinkage rate exceeds 1.5%, the touch panel may be deformed.
  • the retardation is not particularly limited, but when the transparent resin film (I) is a retardation film, “KOBRA-21ADH / PR” manufactured by Oji Scientific Instruments
  • the phase difference (nm) measured for transmitted light having a wavelength of 550 nm is preferably 128 to 148 nm, and more preferably 133 to 143 nm. If the phase difference deviates from the above, the contrast and visibility of the liquid crystal display may be lowered.
  • the surface resistance ( ⁇ / ⁇ ) is preferably 200 to 1500 ⁇ / ⁇ , for example, when measured using a commercially available low resistivity meter “Loresta-GP” manufactured by Mitsubishi Chemical Corporation. More preferably, it is ⁇ 1000 ⁇ / ⁇ , and more preferably 300 ⁇ 500 ⁇ / ⁇ . If the surface resistance exceeds 1500 ⁇ / ⁇ , it may be difficult to form a continuous film having good conductivity. On the other hand, if it is less than 200 ⁇ / ⁇ , transparency may be lowered and a touch panel may malfunction.
  • the conductive laminated film of the present invention is suitably used as an upper electrode and / or a lower electrode of a 4-wire resistive film system, 5-wire resistive film system, or the like.
  • the display apparatus which has a touch-panel function is obtained by arrange
  • the touch panel of the present invention has the above-described conductive laminated film, and preferably has a configuration in which a conductive laminated film is used as a lower electrode and a conductive laminated film (B) described later is used as an upper electrode. .
  • the conductive laminated film and the conductive laminated film (B) are preferably combined through a spacer as necessary so that the respective transparent conductive layers face each other.
  • the conductive laminated film (B) used as the upper electrode of the touch panel is preferably formed by laminating a transparent conductive layer, a transparent resin film, and, if necessary, a polarizing plate in this order.
  • the transparent resin film constituting the conductive laminated film (B) used as the upper electrode may be a retardation film or a film that does not exhibit retardation, such as a normal PET film.
  • the thing similar to a conductive laminated film can also be used as a conductive laminated film (B).
  • a transparent conductive layer which comprises a conductive laminated film (B) the thing similar to the transparent conductive layer (III) which comprises the conductive laminated film (A) mentioned above is mentioned, Especially the transparent conductive layer which consists of ITO is mentioned.
  • a transparent conductive layer made of crystalline ITO is more preferable.
  • the transparent conductive layer is formed on the transparent resin film via an easy adhesion layer, an antireflection layer, or the like as necessary.
  • the transparent resin film constituting the conductive laminated film (B) is a retardation film
  • the in-plane retardation with respect to transmitted light having a wavelength of 550 nm is 128 to 148 nm, preferably 133 to 143 nm.
  • a / 4 ⁇ retardation film is particularly preferable.
  • the conductive laminated film (B) used in the present invention preferably has a polarizing plate on the side opposite to the transparent conductive layer of the transparent resin film.
  • the polarizing plate constituting the conductive laminated film (B) has a function of polarizing film, that is, splitting incident light into two polarizing components orthogonal to each other, allowing only one of them to pass, and absorbing or dispersing the other components. If it has a film
  • polarizing film examples include polyvinyl alcohol (hereinafter also referred to as “PVA”) / iodine polarizing film; PVA / dye polarizing film obtained by adsorbing and orienting a dichroic dye on a PVA film; PVA film A polyene-based polarizing film in which a polyene is formed by a dehydration reaction of a polyvinyl chloride film, a dehydrochlorination reaction of a polyvinyl chloride film, or the like. And a polarizing film having a functional dye. Of these, PVA / iodine polarizing films are preferred.
  • the manufacturing method of the polarizing film is not particularly limited, and a conventionally known method can be applied.
  • a method of adsorbing iodine ions after stretching a PVA-based film a method of stretching a PVA-based film after dyeing with a dichroic dye; a method of stretching a PVA-based film and then dyeing with a dichroic dye; And a method of stretching a chromogenic dye on a PVA-based film; a method of stretching a PVA-based film and then printing a dichroic dye.
  • iodine is dissolved in a potassium iodide solution to form higher-order iodine ions, the ions are adsorbed on a PVA film and stretched, and then a 1 to 5% by weight boric acid aqueous solution is added at a bath temperature of 30.
  • a method of producing a polarizing film by immersing at ⁇ 40 ° C .; or a PVA film treated with boric acid in the same manner as described above and stretched about 3 to 7 times in a uniaxial direction, and then dichroism of 0.05 to 5 wt% Examples include a method for producing a polarizing film by immersing the dye in an aqueous dye solution at a bath temperature of 30 to 40 ° C. to adsorb the dye, then drying at 80 to 100 ° C. and heat setting.
  • the thickness of the polarizing film is not particularly limited, but is preferably 10 to 50 ⁇ m, and more preferably 15 to 45 ⁇ m.
  • polarizing films may be used as they are for the production of the polarizing plate of the present invention, but can also be used after being subjected to corona discharge treatment or plasma treatment on the surface in contact with the adhesive layer.
  • the polarizing plate used in the present invention may be composed only of a polarizing film, but may have a protective film for the purpose of imparting moisture absorption resistance to the polarizing film.
  • the transparent conductive layer, the retardation film, and the polarizing plate are preferably laminated in this order.
  • pressure sensitive adhesive polyvinyl alcohol pressure sensitive adhesive, acrylic pressure sensitive adhesive, rubber pressure sensitive adhesive, silicone pressure sensitive adhesive and the like are suitable.
  • a conductive laminated film (B) in which a transparent conductive layer, a 1 / 4 ⁇ retardation film and a polarizing plate are integrally laminated in this order is used as an upper electrode, and a 1 / 4 ⁇ retardation is used as a corresponding lower electrode.
  • part means “part by weight”.
  • Pencil hardness Pencil hardness was measured according to JIS K-5600-5-4 using a pencil scratch coating film hardness tester NP manufactured by Toyo Seiki Co., Ltd.
  • Antiglare property A fluorescent lamp (total light flux: 3520 lm) was projected on the film, and the degree of blurring of the outline of the fluorescent lamp was visually evaluated according to the following criteria.
  • A The outline of the fluorescent lamp is not known at all.
  • B The outline of the fluorescent lamp is slightly understood.
  • C The outline of the fluorescent lamp is clearly understood.
  • a film is a smooth glass plate (thickness 3 mm, The material-containing resin layer was placed on top of the material (soda glass) and pressed with a finger, and it was visually evaluated whether Newton rings would occur.
  • Phase difference (nm) at a wavelength of 550 nm was measured using “KOBRA-21ADH / PR” manufactured by Oji Scientific Instruments.
  • A Number of keystrokes 10 million times or more
  • B Number of keystrokes 5 million times to less than 10 million times
  • C Number of keystrokes less than 5 million times (17)
  • Touch panel touch evaluation Touch panel surface is rubbed with a finger and touch evaluation is performed was performed according to the following criteria.
  • 1,7,10 ] -3-dodecene 227.5 parts, bicyclo [2.2.1] hept-2-ene 22.5 parts, 1-hexene (molecular weight regulator) 18 parts, toluene (for ring-opening polymerization reaction) (Solvent) 750 parts were charged into a nitrogen-substituted reaction vessel, and this solution was heated to 60 ° C. Next, 0.62 part of a toluene solution of triethylaluminum (1.5 mol / L) and tungsten hexachloride modified with t-butanol / methanol (t-butanol: methanol: tungsten) were added to the solution in the reaction vessel.
  • the autoclave was charged with 4,000 parts of the ring-opening copolymer solution thus obtained, and 0.48 part of RuHCl (CO) [P (C 6 H 5 ) 3 ] 3 was added to the ring-opening copolymer solution. And a hydrogenation reaction was performed by heating and stirring for 3 hours under the conditions of a hydrogen gas pressure of 100 kg / cm 2 and a reaction temperature of 160 ° C.
  • reaction solution hydrogenated polymer solution
  • hydrogen gas was released.
  • This reaction solution was poured into a large amount of methanol to separate and recover a coagulated product, which was dried to obtain a hydrogenated cyclic olefin polymer A.
  • the resulting solution was filtered using a metal fiber sintered filter made by Nippon Pole with a pore diameter of 5 ⁇ m while controlling the flow rate of the solution so that the differential pressure was within 0.4 MPa.
  • a PET film having a thickness of 100 ⁇ m made by Toray Industries, Inc. treated with an acrylic acid-based surface treatment agent to make it hydrophilic (easy to adhere). Lumirror U94 ").
  • the obtained liquid layer was subjected to a primary drying treatment at 50 ° C., and further subjected to a secondary drying treatment at 90 ° C., and then peeled off from the PET film, whereby a 188 ⁇ m-thick cyclic olefin-based weight was obtained.
  • Merged film A-1 was formed.
  • the cyclic olefin polymer film A-1 thus obtained had a residual solvent amount of 0.5% by weight and a light transmittance of 93% or more.
  • Preparation Example 1 (Preparation of mixed adhesive) Water was added to 163-03045 (molecular weight: 22,000, saponification degree: 88 mol%) manufactured by Wako Pure Chemical Industries, Ltd., which is a PVA resin, to prepare an aqueous solution having a solid content concentration of 7% by weight. .
  • WLS-201 solid content concentration 35% by weight
  • CR- manufactured by Dainippon Ink Industries, Ltd. which is a polyepoxy curing agent.
  • Table 1 shows the results of measuring or evaluating various physical properties of the obtained laminated film B-1.
  • Example 1 (Production of conductive laminated film C-1) The corrugated resin layer surface of the laminated film B-1 was subjected to a corona discharge treatment of 50 W ⁇ min / m 2 in the air.
  • a transparent conductive layer was formed by sputtering under the following conditions using a target containing indium and tin under an argon gas inflow to obtain a conductive laminated film C-1.
  • the surface resistance value in the transparent conductive layer of the obtained conductive laminated film C-1 was measured and found to be 550 ⁇ / ⁇ .
  • the results of measuring and evaluating various physical properties are shown in Table 2.
  • Example 3 (Production of conductive laminated film C-3) A conductive laminated film C-3 was obtained in the same manner as in Example 1 except that the laminated film B-3 was used instead of the laminated film B-1. The results of measuring and evaluating various physical properties are also shown in Table 2.
  • Example 4 (Production of conductive laminated film C-4) A conductive laminated film C-4 was obtained in the same manner as in Example 1 except that the laminated film B-4 was used instead of the laminated film B-1. The results of measuring and evaluating various physical properties are also shown in Table 2.
  • Example 5 (Production of conductive laminated film C-5) A conductive laminated film C-5 was obtained in the same manner as in Example 1 except that the laminated film B-5 was used instead of the laminated film B-1. The results of measuring and evaluating various physical properties are also shown in Table 2.
  • Example 6 (Production of conductive laminated film C-6) A conductive laminated film C-6 was obtained in the same manner as in Example 1 except that the laminated film B-6 was used instead of the laminated film B-1. The results of measuring and evaluating various physical properties are also shown in Table 2.
  • Example 7 (Production of touch panel)
  • the conductive laminated film C-1 obtained in Example 1 was used as the lower electrode, and a film obtained by sputtering ITO on a 188 ⁇ m PET film in the same manner as in Example 1 was used as the upper electrode.
  • the two sheets were overlapped with a spacer so that the transparent conductive film surfaces face each other and placed on the liquid crystal display element to obtain the touch panel of the present invention.
  • the configuration is shown in FIG.
  • the obtained touch panel was subjected to contrast and visibility, anti-Newton ring property and streaked lines, and keystroke durability evaluation and hand touch evaluation. The results are shown in Table 3.
  • Example 8 (Production of polarizing plate and touch panel)
  • the mixed adhesive obtained in Preparation Example 1 was applied to the opposite side of the transparent conductive film of the conductive retardation film obtained by sputtering ITO on the cyclic olefin polymer film A-2 in the same manner as in Example 1.
  • the upper electrode was laminated so as to be in contact with the polarizing film. In addition, it bonded together so that the absorption axis of a polarizing film and the optical axis of the phase-difference film in an electroconductive laminated film may make an angle of 45 degrees in that case.
  • Example 2 Using the conductive laminated film C-2 obtained in Example 2 as a lower electrode, these two sheets were overlapped via a spacer so that the transparent conductive film faces each other, and placed on a liquid crystal display element. A touch panel of the present invention was obtained. The configuration is shown in FIG.
  • the polarization axis of the liquid crystal display element is set to 45 °
  • the optical axis of the retardation film of the lower electrode is set to 0 °
  • the axis of the bowl shape is set to 35 °
  • the optical axis of the retardation film of the upper electrode is set to The orientation was 90 ° and the optical axis of the polarizing plate was 45 °.
  • Example 9 (Production of touch panel) Various evaluations were performed in the same manner as in Example 7 except that the conductive laminated film C-3 was used. The results are also shown in Table 3.
  • Example 10 (Production of polarizing plate and touch panel) Various evaluations were performed in the same manner as in Example 8 except that the conductive laminated film C-4 was used. The results are also shown in Table 3.
  • Example 11 (Production of touch panel) Various evaluations were performed in the same manner as in Example 7 except that the conductive laminated film C-5 was used. The results are also shown in Table 3.
  • Example 12 (Production of polarizing plate and touch panel) Various evaluations were performed in the same manner as in Example 8 except that the conductive laminated film C-6 was used and the axis of the center line of the regular period in the in-plane direction of the bowl-shaped film was set to the 35 ° direction. The results are also shown in Table 3.
  • Example 3 (Production of touch panel) A touch panel was obtained in the same manner as in Example 7 except that the conductive laminated film C-7 was used instead of the conductive laminated film C-1. Various evaluations were performed on the obtained touch panel. The results are also shown in Table 3.
  • Example 4 (Production of touch panel) A touch panel was obtained in the same manner as in Example 7 except that the conductive laminated film C-8 was used instead of the conductive laminated film C-1. Various evaluations were performed on the obtained touch panel. The results are also shown in Table 3.
  • Examples 13 to 22 and Comparative Examples 5 to 8> (1) Surface shape The surface shape of the film was measured using a non-contact three-dimensional surface shape / roughness measuring machine manufactured by Zygo Corporation.
  • Pencil hardness Pencil hardness was measured according to JIS K-5600-5-4 using a pencil scratch coating film hardness tester NP manufactured by Toyo Seiki Co., Ltd.
  • Luminance unevenness (about the occurrence of glare)
  • the screen of Sharp mobile tool SL-6000N was displayed in green, and then a film was placed thereon. Visual evaluation was performed according to the following criteria.
  • A The streak line of the touch panel is not observed at all.
  • B The streak line of the touch panel is slightly observed.
  • C The streak line of the touch panel is clearly observed.
  • (13) Evaluation of keystroke durability of the touch panel Using a high load keying tester manufactured by Research Laboratory, silicone rubber (curvature radius 8 cm) was used, and the keying durability was evaluated at room temperature at a load of 750 g and a keying speed of 10 Hz. The initial energization voltage was set to 3V, and a current was passed. The number of keystrokes until the voltage dropped to 2/3 (2V) was examined.
  • Touch panel touch evaluation Touch panel surface is rubbed with a finger to evaluate touch characteristics was performed according to the following criteria.
  • the opening of the T die was 1.0 mm, and the distance between the T die outlet and the pressure bonding point of the film of the cooling roll 1 was 70 mm.
  • the cooling roll 1 had a bowl-shaped convex part in which prism-shaped convex parts having a vertex angle of 100 degrees and a pitch of 50 ⁇ were continuously engraved in the roll circumferential direction on the surface of a 300 mm ⁇ roll.
  • the melt extruded from the T die was pressed on the cooling roll 1.
  • the temperature of the cooling roll 1 was 120 ° C. so that the shape was well transferred onto the surface of the norbornene resin film.
  • a 300 mm ⁇ cooling roll 2 was provided on the downstream side, and a 300 mm ⁇ peeling roll was further provided on the downstream side.
  • the temperature of each roll was set to 115 ° C. and 100 ° C.
  • the film was peeled from the peeling roll at a film surface temperature of 98 ° C.
  • prism-shaped convex portions having a vertex angle of 100 ° and a pitch of 50 ⁇ m were continuous in the longitudinal direction of the film.
  • a norbornene-based resin film A-1a having a 250 ⁇ m-thick convex portion was obtained.
  • Preparation Example 2 (Preparation of mixed adhesive) Water was added to 163-03045 (molecular weight: 22,000, saponification degree: 88 mol%) manufactured by Wako Pure Chemical Industries, Ltd., which is a PVA resin, to prepare an aqueous solution having a solid content concentration of 7% by weight. .
  • WLS-201 solid content concentration 35% by weight
  • CR- manufactured by Dainippon Ink Industries, Ltd. which is a polyepoxy curing agent.
  • Film B-1b having a thickness of 100 ⁇ m made of a cyclic olefin-based resin film having a retardation R0 of 138 nm, a variation of R0 of ⁇ 5 nm, and an optical axis of 0 ⁇ 2 degrees with respect to the film width direction after uniaxial stretching by a stretching machine Got.
  • R0 retardation
  • R0 variation of R0 of ⁇ 5 nm
  • an optical axis of 0 ⁇ 2 degrees with respect to the film width direction after uniaxial stretching by a stretching machine Got When the surface shape of the surface preliminarily shaped of the film was examined with a Zygo Corporation non-contact three-dimensional surface shape / roughness measuring machine, it was a ridge shape having a convex part, and dH / dL was the maximum.
  • a line indicating a surface in a cross section perpendicular to the length direction of the ridge was 0.01 and was a wavy curve having a height of 2
  • the surface shape of the surface of the film preliminarily shaped is not contacted by Zygo Corporation
  • the shape of the ridges has a convex part, the distance between the ridges in the longitudinal direction of the ridges is 50 ⁇ m, and dH / dL is 0.02 at the maximum.
  • the line indicating the surface in the cross section perpendicular to the length direction of the ridge was a curve having a height of 2 ⁇ m and a pitch of 130 ⁇ m.
  • the plane shape When examined with a three-dimensional surface shape / roughness measuring instrument, the plane shape was 920 ⁇ m in width, 5000 ⁇ m in length, 1 ⁇ m in height, 108 ⁇ m in the direction parallel to the stretching direction, and 250 ⁇ m in the direction perpendicular thereto.
  • the convex portion has a sea-island shape, dH / dL is 0.02 at the maximum, and the line indicating the convex portion appearing in the longitudinal section has a curved shape having an edge portion having a curvature radius of 15000 ⁇ m.
  • the planar shape with a width of 720 ⁇ m, a length of 5000 ⁇ m, and a height of 1 ⁇ m has an elliptical convex part in a sea-island shape, and dH / dL is 0.01 at the maximum.
  • the line indicating the convex portion appearing in the longitudinal section was a curved shape having an edge portion having a curvature radius of 15000 ⁇ m.
  • R0 of the film is 140 nm, variation of R0 is ⁇ 7 nm, and the optical axis is ⁇ 3 degrees with respect to the film width direction, and the surface shape of the surface of the film preliminarily shaped is non-contact tertiary When examined by the original surface shape / roughness measuring machine, it is a ridge shape having a convex portion, dH / dL is 0.02 at the maximum, and a line indicating the surface in a cross section orthogonal to the length direction of the ridge is It was a wavy curve with a height of 2 ⁇ m and a pitch of 130 ⁇ m.
  • Example 13 (Production of conductive laminated film C-1c) The convex surface of the film B-1b was subjected to a corona discharge treatment of 50 W ⁇ min / m 2 in the atmosphere.
  • a transparent conductive layer was formed by sputtering under the following conditions using a target containing indium and tin under argon gas flow to obtain a conductive laminated film C-1c.
  • the surface resistance value in the transparent conductive layer of the obtained conductive laminated film C-1c was measured and found to be 550 ⁇ / ⁇ . Table 4 shows the results of measurement and evaluation of various physical properties.
  • Example 15 (Production of conductive laminated film C-3c) A conductive laminated film C-3c was obtained in the same manner as in Example 13 except that the film B-3b was used instead of the film B-1b. Table 4 shows the results of measurement and evaluation of various physical properties.
  • Example 16 (Production of conductive laminated film C-4c) A conductive laminated film C-4c was obtained in the same manner as in Example 13 except that the film B-4b was used instead of the film B-1b. Table 4 shows the results of measurement and evaluation of various physical properties.
  • Example 17 (Production of conductive laminated film C-5c) A conductive laminated film C-5c was obtained in the same manner as in Example 13 except that the film B-5b was used instead of the film B-1b. Table 4 shows the results of measurement and evaluation of various physical properties.
  • Example 18 (Production of touch panel)
  • the conductive laminate film C-1c obtained in Example 1 was used as the lower electrode, and a film obtained by sputtering ITO on a 188 ⁇ m PET film in the same manner as in Example 13 was used as the upper electrode.
  • the two sheets were overlapped with a spacer so that the transparent conductive film surfaces face each other and placed on the liquid crystal display element to obtain the touch panel of the present invention.
  • the configuration is shown in FIG.
  • the obtained touch panel was subjected to contrast and visibility, anti-Newton ring property and streaked lines, and keystroke durability evaluation and hand touch evaluation. The results are shown in Table 5.
  • Example 19 (Production of polarizing plate and touch panel)
  • the mixed adhesive obtained in Preparation Example 2 was applied to the opposite side of the transparent conductive film of the conductive retardation film formed by sputtering ITO on the film B-6b in the same manner as in Example 13.
  • the upper electrode was laminated so as to be in contact with the polarizing film produced in Example 9.
  • it bonded together so that the absorption axis of a polarizing film and the optical axis of the phase-difference film in an electroconductive laminated film may make an angle of 45 degrees in that case.
  • Example 14 Using the conductive laminated film C-2c obtained in Example 14 as a lower electrode, the two sheets were overlapped with a spacer so that the transparent conductive film faces each other, and placed on a liquid crystal display element. A touch panel of the present invention was obtained. The configuration is shown in FIG.
  • the polarization axis of the liquid crystal display element is set to 45 ° direction
  • the optical axis of the retardation film of the lower electrode is set to 0 ° direction
  • the axis of the bowl shape is set to 35 ° direction
  • the optical axis of the retardation film of the upper electrode is set to The orientation was 90 ° and the optical axis of the polarizing plate was 45 °.
  • Example 20 (Production of touch panel) Various evaluations were performed in the same manner as in Example 18 except that the conductive laminated film C-3c was used instead of the conductive laminated film C-1c. The results are also shown in Table 5.
  • Example 21 (Production of polarizing plate and touch panel) Various evaluations were performed in the same manner as in Example 19 except that the conductive laminated film C-4c was used instead of the conductive laminated film C-2c. The results are also shown in Table 5.
  • Example 22 (Production of touch panel) Various evaluations were performed in the same manner as in Example 18 except that the conductive laminated film C-5c was used instead of the conductive laminated film C-1c. The results are also shown in Table 5.
  • Example 7 (Production of touch panel) A touch panel was obtained in the same manner as in Example 18 except that the conductive laminated film C-6c was used instead of the conductive laminated film C-1c. Various evaluations were performed on the obtained touch panel. The results are also shown in Table 5.
  • Example 8 (Production of touch panel) A touch panel was obtained in the same manner as in Example 18 except that the conductive laminated film C-7c was used instead of the conductive laminated film C-1c. Various evaluations were performed on the obtained touch panel. The results are also shown in Table 5.
  • the conductive laminated film of the present invention can be suitably used as a transparent electrode of a display such as a liquid crystal display or a touch panel, and is particularly suitable for a touch panel application, particularly a touch panel application for a display device.
  • the touch panel of the present invention is useful as a touch panel for various display devices such as liquid crystal display elements.
  • PDA personal digital assistant
  • notebook PC notebook PC
  • OA equipment OA equipment
  • medical equipment or electronic equipment such as a car navigation system. It can be suitably used as a touch panel.

Abstract

Disclosed is a conductive laminate film formed by laminating a film (I) configured from a transparent resin, and a transparent conductive layer (III). The conductive laminate film has positions with multiple protrusions; the surface on the side of the transparent conductive layer (III) has multiple protrusions, and the surface is curved. The disclosed conductive laminate film does not have background reflections caused by reflected light, and the occurrence of interference fringes is suppressed. Even when used as a touch panel, streak lines due to the shape of the conductive laminate film imparted in order to suppress interference fringes are not visible on the screen; high contrast and low glare are achieved along with a clear display. Disclosed is a conductive laminate film which, especially when used as a touch panel, has a high visibility and excellent durability due to improved slip properties; also disclosed is a touch panel.

Description

導電性積層フィルムおよびそれを用いたタッチパネルConductive laminated film and touch panel using the same
 本発明は、導電性積層フィルムおよびそれを用いたタッチパネルに関する。詳しくは、本発明は、液晶ディスプレイ上に設けられ、入力手段として使用できるタッチパネルの用途に好適な導電性積層フィルムおよびそれを用いたタッチパネルに関する。 The present invention relates to a conductive laminated film and a touch panel using the same. Specifically, the present invention relates to a conductive laminated film suitable for use in a touch panel that is provided on a liquid crystal display and can be used as an input means, and a touch panel using the same.
 パーソナル・デジタル・アシスタント(PDA)、ノートPC、OA機器、医療機器、あるいはカーナビゲーションシステム等の電子機器においては、これらのディスプレイに入力手段を兼ね備えるタッチパネルが広く用いられる。 In electronic devices such as personal digital assistants (PDAs), notebook PCs, OA devices, medical devices, or car navigation systems, touch panels that have input means on these displays are widely used.
 透明導電膜式タッチパネルは、透明なベースフィルムの片面にインジウム錫酸化物、錫アンチモン酸等の金属酸化物または金、パラジウム、アルミニウム、銀等の金属の薄膜が透明導電膜として設けられている。これらの金属酸化物あるいは金属の薄膜は光の反射が大きいため、これらの薄膜を導電膜として有するタッチパネルは、液晶ディスプレイのコントラストが著しく低下し、極めて見えにくい画面となる。 In the transparent conductive film type touch panel, a transparent base film is provided with a thin film of metal oxide such as indium tin oxide and tin antimonic acid or metal such as gold, palladium, aluminum and silver as a transparent conductive film on one side of the transparent base film. Since these metal oxides or metal thin films have a large light reflection, a touch panel having these thin films as a conductive film has a significantly reduced contrast of a liquid crystal display, resulting in a screen that is extremely difficult to see.
 このような問題を解決する方法として、特許文献1では、液晶ディスプレイ側から順に第一の1/4波長板、スペーサーを介して対向する2枚の透明導電膜(ガラスとITOとの積層膜)、第二の1/4波長板、偏光板を配置させ、視認性を上げることが提案されている。 As a method for solving such a problem, in Patent Document 1, two transparent conductive films (a laminated film of glass and ITO) facing each other through a first quarter-wave plate and a spacer in order from the liquid crystal display side. It has been proposed to arrange a second quarter-wave plate and a polarizing plate to increase visibility.
 しかしながら、上記構成のタッチパネルでは、液晶ディスプレイのコントラストはまだ不十分であり、また、タッチパネルが多層構造となるために、光線透過率や視野角補償性などの光学特性が不十分である。 However, in the touch panel having the above configuration, the contrast of the liquid crystal display is still insufficient, and since the touch panel has a multilayer structure, optical characteristics such as light transmittance and viewing angle compensation are insufficient.
 一方で特許文献2には、透明抵抗膜の形状を特殊な形状にすることにより、干渉縞(以降、「ニュートンリング」とも言う。)の発生を抑えようという試みがある。しかしながら、この方法では表面反射光を抑えることはできず、高いコントラストや視認性、耐久性を得ることはできない。 On the other hand, Patent Document 2 has an attempt to suppress the generation of interference fringes (hereinafter also referred to as “Newton rings”) by making the transparent resistive film a special shape. However, this method cannot suppress the surface reflected light and cannot obtain high contrast, visibility, and durability.
 また、上記方法では、特殊な形状に由来する筋状の線がタッチパネル画面上に認められ、画面の高精細化に伴い改善が求められている。 Further, in the above method, streaky lines derived from a special shape are recognized on the touch panel screen, and improvement is demanded as the screen becomes higher in definition.
 このため、光学特性に優れ視認性が高く、干渉縞が抑制されるとともに、より高い耐久性を併せ持つ、優れたタッチパネルの出現が強く望まれていた。 For this reason, there has been a strong demand for the appearance of an excellent touch panel having excellent optical characteristics, high visibility, suppression of interference fringes, and higher durability.
特開平10-48625号公報Japanese Patent Laid-Open No. 10-48625 特開2005-18726号公報JP 2005-18726 A
 本発明は、干渉縞の発生が抑えられると共に、特に干渉縞を抑制するために付与される導電性積層フィルムの形状由来の筋状の線がタッチパネルとした時にも画面上に認められず、コントラストが高く、ぎらつきが少なく、特にタッチパネルとした時に、耐久性に優れ、視認性の高い導電性積層フィルム、およびタッチパネルを提供することを課題としている。 In the present invention, the generation of interference fringes is suppressed, and in particular, when a streaky line derived from the shape of the conductive laminated film provided to suppress the interference fringes is used as a touch panel, the contrast is not recognized. The object is to provide a conductive laminated film and a touch panel that are high in durability, low in glare, and particularly excellent in durability when used as a touch panel.
 前記課題を解決する本発明は、透明樹脂からなるフィルム(I)に透明導電層(III)が積層されてなる導電性積層フィルムであって、透明導電層(III)側の表面部が複数の凸部を有しており、表面が曲面で形成されている、複数の凸部を含む部位を有することを特徴とする導電性積層フィルムである。 The present invention for solving the above-mentioned problems is a conductive laminated film in which a transparent conductive layer (III) is laminated on a film (I) made of a transparent resin, and a plurality of surface portions on the transparent conductive layer (III) side are provided. It is an electroconductive laminated film characterized by having a convex part and having a part including a plurality of convex parts whose surface is formed by a curved surface.
 前記導電性積層フィルムにおいては、前記複数の凸部が畝状に形成され、且つ前記凸部が蛇行していることが好ましい。 In the conductive laminated film, it is preferable that the plurality of convex portions are formed in a bowl shape and the convex portions meander.
 前記導電性積層フィルムにおいては、前記複数の凸部が畝状に形成され、且つ前記凸部の伸長方向において前記凸部の高さが変動を持つことが好ましい。 In the conductive laminated film, it is preferable that the plurality of protrusions are formed in a bowl shape and the height of the protrusions varies in the extending direction of the protrusions.
 前記導電性積層フィルムにおいては、前記複数の凸部が設けられた位置および複数の凸部の高さの変化に規則性がないことが好ましい。 In the conductive laminated film, it is preferable that there is no regularity in the change in the position where the plurality of protrusions are provided and the height of the plurality of protrusions.
 前記導電性積層フィルムにおいては、前記フィルム(I)と透明導電層(III)との間に、硬化性樹脂組成物よりなる樹脂層(II)を持つことが好ましい。 The conductive laminated film preferably has a resin layer (II) made of a curable resin composition between the film (I) and the transparent conductive layer (III).
 前記導電性積層フィルムにおいては、樹脂層(II)において、その透明導電層(III)側の表面部に、複数の凸部が畝状に形成され、その畝の長さ方向と直交する面における断面における、前記凸部が形成された表面を表わす線が波状の曲線であることが好ましい。 In the conductive laminated film, in the resin layer (II), a plurality of convex portions are formed in a ridge shape on the surface portion on the transparent conductive layer (III) side, and in a plane perpendicular to the length direction of the ridge. In the cross section, it is preferable that the line representing the surface on which the convex portion is formed is a wavy curve.
 前記導電性積層フィルムにおいては、前記波状の曲線が、規則的な周期を有する波状の曲線であることが好ましい。 In the conductive laminated film, the wavy curve is preferably a wavy curve having a regular period.
 前記導電性積層フィルムにおいては、前記畝状に形成された複数の凸部がその長さ方向に蛇行していることが好ましい。 In the conductive laminated film, it is preferable that the plurality of convex portions formed in a bowl shape meander in the length direction.
 前記導電性積層フィルムにおいては、前記畝状に形成された複数の凸部がその長さ方向に沿って規則的な周期で蛇行していることが好ましい。 In the conductive laminated film, it is preferable that the plurality of convex portions formed in a bowl shape meander at regular intervals along the length direction.
 前記導電性積層フィルムにおいては、前記樹脂層(II)において、凸部の最大高さが0.1~10μmであり、凸部が形成する畝の周期が100~5000μmの範囲であることが好ましい。 In the conductive laminated film, in the resin layer (II), the maximum height of the protrusions is preferably 0.1 to 10 μm, and the period of wrinkles formed by the protrusions is preferably in the range of 100 to 5000 μm. .
 前記導電性積層フィルムにおいては、前記凸部が、フィルム面から垂直方向に見て海島状に存在していることが好ましい。 In the conductive laminated film, it is preferable that the convex portions exist in a sea-island shape when viewed in the vertical direction from the film surface.
 前記導電性積層フィルムにおいては、前記フィルム(I)と透明導電層(III)との間に、硬化性樹脂組成物よりなる樹脂層(II)を持つことが好ましい。 The conductive laminated film preferably has a resin layer (II) made of a curable resin composition between the film (I) and the transparent conductive layer (III).
 前記導電性積層フィルムにおいては、前記凸部の最も高い点と、その凸部に隣接する谷部の最も低い点との高低差として求められる各凸部の高さの中で最も大きい高さである凸部の最大高さdHが0.1~10μmであり、その最大高さを有する凸部の最も高い点と、その凸部に隣接する谷部の最も低い点との間の、フィルム面内方向の距離dLと前記dHとが下記数式(1)を満たすことが好ましい。 In the conductive laminated film, the highest height among the heights of the respective convex portions required as the height difference between the highest point of the convex portion and the lowest point of the valley portion adjacent to the convex portion. The maximum height dH of a certain convex portion is 0.1 to 10 μm, and the film surface between the highest point of the convex portion having the maximum height and the lowest point of the valley adjacent to the convex portion It is preferable that the distance dL in the inward direction and the dH satisfy the following formula (1).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 前記導電性積層フィルムにおいては、前記フィルム(I)が、延伸加工により得られたフィルムであることが好ましい。 In the conductive laminated film, the film (I) is preferably a film obtained by stretching.
 前記導電性積層フィルムにおいては、前記フィルム(I)が、波長550nmの透過光に対する面内位相差が128~148nmの範囲にある位相差フィルムであることが好ましい。 In the conductive laminated film, the film (I) is preferably a retardation film having an in-plane retardation in the range of 128 to 148 nm with respect to transmitted light having a wavelength of 550 nm.
 前記導電性積層フィルムにおいては、前記樹脂層(II)がUV硬化性樹脂組成物により形成されていることが好ましい。 In the conductive laminated film, the resin layer (II) is preferably formed of a UV curable resin composition.
 前記導電性積層フィルムにおいては、前記フィルム(I)が、環状オレフィン系樹脂およびポリカーボネート樹脂の少なくとも1種を含有することが好ましい。 In the conductive laminated film, the film (I) preferably contains at least one of a cyclic olefin resin and a polycarbonate resin.
 前記導電性積層フィルムにおいては、前記フィルム(I)は、環状オレフィン系樹脂を含み、前記環状オレフィン系樹脂は、下記式(1)で表される単量体の少なくとも1種を(共)重合して得られることが好ましい。 In the conductive laminated film, the film (I) includes a cyclic olefin resin, and the cyclic olefin resin (co) polymerizes at least one monomer represented by the following formula (1). Is preferably obtained.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式(1)中、R1~R4は、下記(i)~(iii)のいずれかを表し、xは0~3の整数を表し、yは0または1を表す。
(i)それぞれ独立に、水素原子、ハロゲン原子、または酸素、窒素、イオウもしくはケイ素を含有していてもよい1価の有機基、(ii)R1とR2、R3とR4が、それぞれ結合したアルキリデン基、(iii)R1とR2、R3とR4、R2とR3が、それぞれ結合した単環または多環の炭素環もしくは複素環。)
 前記導電性積層フィルムにおいては、透明導電層(III)が、結晶性ITOにより形成されていることが好ましい。
(In the formula (1), R 1 to R 4 represent any of the following (i) to (iii), x represents an integer of 0 to 3, and y represents 0 or 1.
(I) each independently a hydrogen atom, a halogen atom, or a monovalent organic group optionally containing oxygen, nitrogen, sulfur or silicon, (ii) R 1 and R 2 , R 3 and R 4 are (Iii) R 1 and R 2 , R 3 and R 4 , and R 2 and R 3 are each bonded to a monocyclic or polycyclic carbocyclic or heterocyclic ring. )
In the conductive laminated film, the transparent conductive layer (III) is preferably formed of crystalline ITO.
 他の発明は、前記導電性積層フィルムを有することを特徴とするタッチパネルである。 Another invention is a touch panel having the conductive laminated film.
 また、前記導電性積層フィルムと、透明導電層、位相差フィルム、および偏光板がこの順に積層されてなる導電性積層フィルムとを有するタッチパネルである。 Moreover, it is a touch panel having the conductive laminated film, and a conductive laminated film in which a transparent conductive layer, a retardation film, and a polarizing plate are laminated in this order.
 本発明によれば、光の反射による映り込みがなく、干渉縞の発生が抑えられると共に、特に干渉縞を抑制するために付与される導電性積層フィルムの形状由来の筋状の線がタッチパネルとしたときにも画面上に認められず、コントラストが高く、ぎらつきが少なく、明瞭な表示を達成でき、特にタッチパネルとした時に、すべり性が向上するため耐久性に優れ、視認性の高い導電性積層フィルムおよびタッチパネルを提供することができる。 According to the present invention, there is no reflection due to reflection of light, generation of interference fringes is suppressed, and in particular, streaky lines derived from the shape of the conductive laminated film provided to suppress interference fringes are connected to the touch panel. Even when it is used, it is not recognized on the screen, has high contrast, little glare, can achieve clear display, especially when it is used as a touch panel, it has improved durability and excellent visibility. A laminated film and a touch panel can be provided.
図1は、畝状に形成された凸部を有する導電性積層フィルムにおける、畝方向と垂直な断面と畝状表面の斜め観察図を示す。FIG. 1 shows a cross-sectional view perpendicular to the ridge direction and an oblique observation view of the ridge-like surface in a conductive laminated film having convex portions formed in a ridge shape. 図2は、畝状に形成された凸部を有する導電性積層フィルムにおける、畝方向と垂直な断面観察図を示す。FIG. 2 shows a cross-sectional observation view perpendicular to the wrinkle direction in the conductive laminated film having convex portions formed in a wrinkle shape. 図3は、畝状に形成された凸部を有する導電性積層フィルムにおける、フィルムの上方からの観察図を示す。FIG. 3 shows an observation view from above of the conductive laminated film having convex portions formed in a bowl shape. 図4は、海島状に形成された凸部を有する導電性積層フィルムの観察イメージ図を示す。FIG. 4 shows an observation image diagram of a conductive laminated film having convex portions formed in a sea-island shape. 図5は、本発明の実施例18のタッチパネルの部分断面拡大図を示す。FIG. 5 is an enlarged partial sectional view of the touch panel according to the eighteenth embodiment of the present invention. 図6は、本発明の実施例19のタッチパネルの部分断面拡大図を示す。FIG. 6 shows an enlarged partial cross-sectional view of the touch panel according to Embodiment 19 of the present invention. 図7は、樹脂層(II)を備えた、畝状に形成された凸部を有する導電性積層フィルムにおける、畝方向と垂直な断面と畝状表面の斜め観察図を示す。FIG. 7 shows a cross-sectional view perpendicular to the ridge direction and an oblique observation view of the ridge-like surface in a conductive laminated film having a ridge-like projection provided with a resin layer (II). 図8は、樹脂層(II)を備えた、畝状に形成された凸部を有する導電性積層フィルムにおける、畝方向と垂直な断面観察図を示す。FIG. 8 shows a cross-sectional observation view perpendicular to the wrinkle direction in a conductive laminated film having a ridge-like convex portion provided with a resin layer (II). 図9は、樹脂層(II)を備えた、畝状に形成された凸部を有する導電性積層フィルムにおける、フィルムの上方からの観察図を示す。FIG. 9 shows an observation view from above of a conductive laminated film having a convex portion formed in a bowl shape and provided with a resin layer (II). 図10は、本発明の実施例7のタッチパネルの部分断面拡大図を示す。FIG. 10 is an enlarged partial sectional view of the touch panel according to the seventh embodiment of the present invention. 図11は、本発明の実施例8のタッチパネルの部分断面拡大図を示す。FIG. 11 is an enlarged partial sectional view of the touch panel according to the eighth embodiment of the present invention.
 以下、本発明について具体的に説明する。 Hereinafter, the present invention will be specifically described.
 導電性積層フィルム
 本発明の導電性積層フィルムは、透明樹脂からなるフィルム(I)に透明導電層(III)が積層されてなる導電性積層フィルムであって、透明導電層(III)側の表面部が複数の凸部を有しており、表面が曲面で形成されている、複数の凸部を含む部位を有する。
Conductive laminated film The conductive laminated film of the present invention is a conductive laminated film in which a transparent conductive layer (III) is laminated on a film (I) made of a transparent resin, and the surface on the transparent conductive layer (III) side. The portion has a plurality of convex portions, and has a portion including a plurality of convex portions whose surface is formed by a curved surface.
 <凸部>
 本発明の導電性積層フィルムは、少なくとも透明樹脂からなるフィルム(I)とこれに積層される透明導電層(III)とを有し、透明導電層(III)側の表面部に凸部を有する。
<Convex>
The conductive laminated film of the present invention has at least a film (I) made of a transparent resin and a transparent conductive layer (III) laminated thereon, and has a convex portion on the surface portion on the transparent conductive layer (III) side. .
 導電性積層フィルムにおいては、フィルム(I)の表面部に凸部を設け、その上に透明導電層(III)をほぼ均一の厚みに積層することにより、透明導電層(III)側の表面部に凸部が形成されていてもよく、フィルム(I)に凸部を設けず、透明導電層(III)に凸部を設けることにより、透明導電層(III)側の表面部に凸部が形成されていてもよく、またフィルム(I)および透明導電層(III)の両方に凸部を設けることにより、透明導電層(III)側の表面部に凸部が形成されていてもよい。フィルム(I)と透明導電層(III)との間に樹脂層(II)が設けられている場合には、樹脂層(II)に凸部を設けることにより、透明導電層(III)側の表面部に凸部が形成されていてもよい。 In the conductive laminated film, a convex portion is provided on the surface portion of the film (I), and the transparent conductive layer (III) is laminated thereon with a substantially uniform thickness, whereby the surface portion on the transparent conductive layer (III) side. A convex portion may be formed on the surface of the transparent conductive layer (III) without providing the convex portion on the film (I) and providing the convex portion on the transparent conductive layer (III). It may be formed, and the convex part may be formed in the surface part by the side of transparent conductive layer (III) by providing a convex part in both film (I) and transparent conductive layer (III). When the resin layer (II) is provided between the film (I) and the transparent conductive layer (III), by providing a convex portion on the resin layer (II), the transparent conductive layer (III) side A convex portion may be formed on the surface portion.
 本発明の導電性積層フィルムは、透明導電層(III)側の表面部に凸部を有し、表面が曲面で形成されている、複数の凸部を含む部位を有することで、つまり、透明導電層(III)側の表面部において、複数の凸部を含む部位のうちの少なくとも1つの部位の表面が曲面で形成されていることにより、アンチニュートンリング性確保とクリア感の向上、ぎらつきの防止等を達成することができる。 The conductive laminated film of the present invention has a convex part on the surface part on the transparent conductive layer (III) side, and has a part including a plurality of convex parts whose surface is formed by a curved surface, that is, transparent. In the surface portion on the conductive layer (III) side, the surface of at least one of the portions including the plurality of convex portions is formed with a curved surface, thereby ensuring anti-Newton ring property and improving clearness, Prevention etc. can be achieved.
 本発明において「表面が曲面で形成されている、複数の凸部を含む部位を有する」とは、複数の凸部を含む部位の任意の断面において、その複数の凸部が形成された表面を表わす線が、尖点を有しない滑らかな曲線であることを意味する。したがって、1つ1つの凸部の表面が曲面で形成されていても、その2つの凸部が角度をもって結合している場合には、その2つの凸部を含む部位におけるある断面には、その2つの凸部の結合点において尖点が現れるので、その2つの凸部を含む部位は「表面が曲面で形成されている」ことにはならない。 In the present invention, “the surface is formed with a curved surface and has a portion including a plurality of convex portions” means that the surface having the plurality of convex portions is formed in an arbitrary cross section of the portion including the plurality of convex portions. It means that the representing line is a smooth curve having no cusps. Therefore, even if the surface of each convex part is formed with a curved surface, if the two convex parts are joined at an angle, the cross section including the two convex parts has Since a cusp appears at the connection point of the two convex portions, the portion including the two convex portions does not mean that the surface is formed of a curved surface.
 前記凸部は、複数の凸部が設けられた位置および複数の凸部の高さの変化に規則性がないことが好ましい。凸部にこのような規則性があると、例えば一次反射光と二次反射光とが干渉し、ニュートンリングが発現しやすい。尚、ここで規則性とは、例えば前記凸部が一定の距離をもって形成されていることや、隣接する凸部の高さが周期的に変動していることを言う。 It is preferable that the convex portion has no regularity in the change in the position where the plural convex portions are provided and the height of the plural convex portions. If the convex part has such regularity, for example, primary reflected light and secondary reflected light interfere with each other, and Newton's ring is likely to appear. Here, the regularity means that, for example, the convex portions are formed with a certain distance, and the heights of adjacent convex portions are periodically changed.
 畝状
 透明導電層(III)側の表面部に設けられる複数の凸部は、畝状に形成されていることが好ましい。畝状に形成された凸部をその長さ方向と直交する面で切って得られる断面において、その凸部が形成されている表面を示す線は波状の曲線であることが好ましい。また、畝状に形成された凸部は、その長さ方向に蛇行していることが好ましい。
The plurality of convex portions provided on the surface portion on the side of the bowl-shaped transparent conductive layer (III) are preferably formed in a bowl shape. In a cross section obtained by cutting a convex portion formed in a bowl shape with a plane orthogonal to the length direction, a line indicating a surface on which the convex portion is formed is preferably a wavy curve. Moreover, it is preferable that the convex part formed in bowl shape meanders in the length direction.
 畝状に形成された凸部について更に図を用いて説明する。図1は、凸部が畝状に形成されたフィルム(I)を、凸部の長さ方向と直交する面で切って斜め上方から観察した図である。図1においては、複数の凸部は直線状に、平行に設けられ、畝を形成している。図1においては、各凸部の稜線を点線で示した。ここで「稜線」とは、凸部の長さ方向と直交するすべての断面における1つの凸部の頂点を結ぶことによって描かれる観念上の線である。 The convex portion formed in a bowl shape will be further described with reference to the drawings. FIG. 1 is a diagram in which a film (I) having convex portions formed in a bowl shape is cut from a plane perpendicular to the length direction of the convex portions and observed obliquely from above. In FIG. 1, the plurality of convex portions are linearly provided in parallel to form a ridge. In FIG. 1, the ridgeline of each convex part was shown with the dotted line. Here, the “ridge line” is an ideal line drawn by connecting the vertices of one convex part in all cross sections orthogonal to the length direction of the convex part.
 この断面において、凸部が形成されている表面を示す線は波状の曲線である。このような曲線を描くことにより、本導電性積層フィルムをタッチパネルとしたときに畝状に起因する筋状の線が認められなくなり、より画面の高精細化に対応することができ好適である。さらに、タッチパネルとして使用したときのすべり性が向上し、手触りが良くなるとともに、タッチパネルを長期間使用したときの抵抗値変化を抑制することができ、耐久性能をより一段と向上することができ好ましい。こうすることで、干渉縞の発生が抑えられ、コントラストが高く、ぎらつきが少なく、明瞭な表示を達成でき、耐久性に優れ、視認性の高い導電性積層フィルムおよびタッチパネルを提供することができる。 In this cross section, the line indicating the surface on which the convex portion is formed is a wavy curve. By drawing such a curve, when the conductive laminated film is used as a touch panel, a streak-like line due to the hook shape is not recognized, and it is possible to cope with higher definition of the screen. Furthermore, it is preferable that the slipperiness when used as a touch panel is improved, the touch is improved, the resistance value change when the touch panel is used for a long time can be suppressed, and the durability can be further improved. By doing so, it is possible to provide a conductive laminated film and a touch panel that can suppress generation of interference fringes, have high contrast, have less glare, achieve a clear display, have excellent durability, and high visibility. .
 この面における凸部が形成されている表面を示す曲線のピッチ(P)は、複数の凸部によって決まる。ここでピッチとは、波状の曲線の頂点からそのとなりの頂点までの平面方向の長さである。凸部の高さは、図1に示されるように、凸部の最も高い点と、その凸部に隣接する谷部の最も低い点との高低差として求められる。 The pitch (P) of the curve indicating the surface on which the convex portions on this surface are formed is determined by a plurality of convex portions. Here, the pitch is the length in the plane direction from the apex of the wavy curve to the adjacent apex. As shown in FIG. 1, the height of the convex portion is obtained as a height difference between the highest point of the convex portion and the lowest point of the valley adjacent to the convex portion.
 前記断面に現れる波状曲線の前記Pは、好ましくは50~5000μm、より好ましくは100~1000μmの範囲である。前記Pが50μmを下回るとぎらつきが発生する場合があり、5000μmを超えるとアンチニュートンリング性が十分に発現しない場合がある。 The P of the wavy curve appearing in the cross section is preferably in the range of 50 to 5000 μm, more preferably 100 to 1000 μm. When P is less than 50 μm, glare may occur, and when it exceeds 5000 μm, anti-Newton ring properties may not be sufficiently exhibited.
 また、畝状に形成された凸部の最大高さは通常0.1~10μm、好ましくは0.5~3μmの範囲に設定される。0.1μmより小さいとアンチニュートンリング性が発現せず、10μmより大きいとタッチパネルとして組み立てたときに入力時にでこぼこ感が感じとれてしまう。ここで凸部の最大高さとは、複数の凸部の高さの中で最も大きい高さである。 Further, the maximum height of the convex portion formed in a bowl shape is usually set in the range of 0.1 to 10 μm, preferably 0.5 to 3 μm. If it is smaller than 0.1 μm, the anti-Newton ring property does not appear, and if it is larger than 10 μm, a bumpy feeling is felt at the time of input when assembled as a touch panel. Here, the maximum height of the convex portion is the largest height among the heights of the plurality of convex portions.
 畝状に形成された凸部を備えたフィルム(I)を他のフィルムやシートと積層するときは、例えば下部表示装置に液晶を使用する場合、モアレ対策として、その偏光軸に対して、畝状に形成された凸部の長さ方向を10~45°の角度に積層することで視認性が良好となる。故に、基材フィルムに1/4λ位相差フィルムを使用する場合、その遅相軸に対しても凸部の長さ方向が10~80°の角度となるように積層されることが望ましい。 When laminating the film (I) having a convex portion formed in a bowl shape with another film or sheet, for example, when using liquid crystal for the lower display device, as a countermeasure against moire, Visibility is improved by laminating the length direction of the convex portions formed in a shape at an angle of 10 to 45 °. Therefore, when a quarter-wave retardation film is used as the base film, it is desirable that the convex portions are laminated so that the length direction of the convex portion is an angle of 10 to 80 ° with respect to the slow axis.
 図2は、畝状に形成された凸部の長さ方向と直交する断面の観察図である。この断面における凸部の頂部が描く曲線部および2つの凸部に挟まれた谷間部が描く曲線部はそれぞれ曲率半径(Rt)、(Rb)を持つ丸みを帯びた曲線である。この曲線は正弦曲線であってもよい。前記曲線が有する1つ1つの丸みは、タッチパネルの感触、筋状の線の解消のしやすさ、干渉縞の防止効果および耐久性能面からそれぞれ適宜調整される。この丸みは、例えば、それぞれの曲率半径を調整することで調節することができ、その際には、曲率半径(Rt)、(Rb)はそれぞれ、ピッチ(P)の半分以上30倍以下が好ましく用いられ、更に好ましくはピッチ(P)以上で10倍以下、特に好ましくはピッチ(P)の3倍以上で10倍以下が用いられる。また、曲率半径(Rt)と(Rb)を同じにすることはその作りやすさから好ましく、曲率半径(Rt)を(Rb)より大きくすることがタッチパネルでの感触を向上する面から好ましい。また、前記断面における凸部の頂部が描く曲線部と2つの凸部に挟まれた谷間部の曲線部とをつなぐ直線部分の、図2におけるフィルム平面方向の長さ(L)は、ピッチ(P)に対して、好ましくは三分の一以下、更に好ましくは五分の一以下、特に好ましくは十分の一以下である。 FIG. 2 is an observation view of a cross section orthogonal to the length direction of the convex portion formed in a bowl shape. The curved part drawn by the top of the convex part in this cross section and the curved part drawn by the valley part sandwiched between the two convex parts are rounded curves having radii of curvature (Rt) and (Rb), respectively. This curve may be a sinusoid. Each roundness of the curved line is appropriately adjusted in terms of touch panel feel, ease of striped lines, interference fringe prevention effect, and durability performance. This roundness can be adjusted, for example, by adjusting the respective curvature radii. In this case, the curvature radii (Rt) and (Rb) are preferably not less than half and not more than 30 times the pitch (P). More preferably, the pitch (P) is not less than 10 times and particularly preferably not less than 3 times and not more than 10 times the pitch (P). In addition, it is preferable that the curvature radii (Rt) and (Rb) are the same from the viewpoint of ease of production, and it is preferable that the curvature radius (Rt) is larger than (Rb) from the viewpoint of improving the touch on the touch panel. Moreover, the length (L) of the film plane direction in FIG. 2 of the straight line part which connects the curved part which the top part of the convex part in the said cross section draws, and the curved part of the valley part pinched | interposed into two convex parts is pitch ( P) is preferably 1/3 or less, more preferably 1/5 or less, and particularly preferably 1/10 or less.
 畝状に形成された凸部は蛇行していることが好ましい。ここで「蛇行している」とは、本発明の導電性積層フィルムの平面と平行な面上で、畝状に形成された凸部がその長さ方向に沿って波状の曲線を描くことをいう。波状は、規則性のある波状でも、規則性のない波状であってもよい。 It is preferable that the convex portion formed in a bowl shape meanders. Here, “meandering” means that the convex portion formed in a bowl shape draws a wavy curve along the length direction on a plane parallel to the plane of the conductive laminated film of the present invention. Say. The wave shape may be a regular wave shape or a non-regular wave shape.
 図3には、畝状に形成された凸部がピッチ(Pl)で蛇行している導電性積層フィルムの上方からの観察図を示す。図3においては、複数の凸部は、同じ波状を有しており、周期を一致させて設けられ、畝を形成している。ピッチ(Pl)は、前記波状の曲線の頂点からそのとなりの頂点までの平面方向の長さである。 FIG. 3 shows an observation view from above of the conductive laminated film in which convex portions formed in a bowl shape meander at a pitch (Pl). In FIG. 3, the plurality of convex portions have the same wave shape, are provided with the same period, and form a ridge. The pitch (Pl) is the length in the planar direction from the apex of the wavy curve to the apex.
 本発明の導電性積層フィルムにおいて、凸部の稜線が、導電性積層フィルムの平面上において波状の曲線を描くことが好ましい。「稜線」とは、前述のとおり、凸部の長さ方向と直交するすべての断面における1つの凸部の頂点を結ぶことによって描かれる観念上の線である。図1では凸部の稜線が直線であったのに対し、本発明の一態様である図3においては、畝状に形成された各凸部の稜線がフィルム平面と平行な面上において規則的に蛇行している。畝状をこのようにすることで、筋状の線がより認められにくくなり、タッチパネルとして使用したときのすべり性が向上して手触りが良くなるとともに、タッチパネルを長期間使用したときの抵抗値変化を抑制することができ、耐久性能をより一段と向上することができ好ましい。 In the conductive laminated film of the present invention, it is preferable that the ridge line of the convex portion draws a wavy curve on the plane of the conductive laminated film. As described above, the “ridge line” is a notional line drawn by connecting the vertices of one convex portion in all cross sections orthogonal to the length direction of the convex portion. In FIG. 1, the ridge line of the convex portion is a straight line, whereas in FIG. 3, which is one embodiment of the present invention, the ridge line of each convex portion formed in a bowl shape is regular on a plane parallel to the film plane. Meandering. By making the saddle shape like this, the streak line becomes harder to be recognized, the smoothness when used as a touch panel is improved and the touch is improved, and the resistance value change when the touch panel is used for a long time This is preferable because the durability can be further improved.
 このときのフィルム平面内での規則的な曲線のピッチを(Pl)、曲線の幅を(W)とすると、ピッチ(Pl)はピッチ(P)の好ましくは1倍以上30倍以下、更に好ましくは2倍以上20倍以下、特に好ましくは3倍以上10倍以下であり、また、曲線の幅(W)はピッチ(P)の好ましくは二分の一倍以上30倍以下、更に好ましくは一倍以上20倍以下、特に好ましくは3倍以上10倍以下である。当該フィルム平面方向における規則的な曲線におけるピッチ(Pl)のピッチ(P)に対する比および曲線の幅(W)のピッチ(P)に対する比が、上記範囲の下限値未満であるとタッチパネルにしたときにぎらつき感が発生することがあり、また、上記範囲の上限値を超えると稜線を曲線にすることによる効果が薄れることがある。 When the pitch of the regular curve in the film plane at this time is (Pl) and the width of the curve is (W), the pitch (Pl) is preferably 1 to 30 times, more preferably the pitch (P). Is not less than 2 times and not more than 20 times, particularly preferably not less than 3 times and not more than 10 times, and the width (W) of the curve is preferably not less than 1/2 times and not more than 30 times, more preferably not less than 1 time of the pitch (P). 20 times or less, particularly preferably 3 times or more and 10 times or less. When the ratio of the pitch (Pl) to the pitch (P) in the regular curve in the film plane direction and the ratio of the width (W) of the curve to the pitch (P) is less than the lower limit of the above range, the touch panel is used. A feeling of glare may occur, and if the upper limit of the above range is exceeded, the effect of making the ridge line a curve may be diminished.
 また、畝状に形成された1つ1つの凸部に高さ変動をつけることも好ましい。その場合には、高さ変動幅は1つの凸部の高さの平均に対して、±50%、更に好ましくは±30%、特に好ましくは±10%の範囲とする。そうすると、タッチパネルとしたときの耐久性能が向上するために好ましい。 It is also preferable to vary the height of each convex portion formed in a bowl shape. In that case, the height variation width is within a range of ± 50%, more preferably ± 30%, and particularly preferably ± 10% with respect to the average height of one convex portion. If it does so, since durability performance when it is set as a touch panel improves, it is preferable.
 また、畝の長さ方向と直交する断面における凸部が形成されている表面を示す曲線は、一定の範囲内の高さのばらつきを持つことも好ましく行われる。そのときのばらつき範囲は高さの平均に対し、好ましくは±50%、更に好ましくは±30%、特に好ましくは±10%の範囲に調整される。 Also, it is preferable that the curve indicating the surface on which the convex portion in the cross section orthogonal to the length direction of the ridge has a height variation within a certain range. The variation range at that time is preferably adjusted to a range of ± 50%, more preferably ± 30%, particularly preferably ± 10% with respect to the average height.
 また、畝状に形成された凸部の稜線がフィルムの平面上において波状の曲線を描く場合も、その振幅が一定の範囲内のばらつきを持つように適宜調整してもよい。その場合のばらつき範囲は振幅の平均に対し、好ましくは±50%、更に好ましくは±30%、特に好ましくは±10%の範囲に調整される。 Also, when the ridge line of the convex portion formed in a bowl shape draws a wavy curve on the plane of the film, the amplitude may be appropriately adjusted so that the amplitude has a variation within a certain range. In this case, the variation range is preferably adjusted to a range of ± 50%, more preferably ± 30%, and particularly preferably ± 10% with respect to the average amplitude.
 ばらつきを範囲に調整することで、外観上や耐久性能等において所望の特性を得ることができる。 By adjusting the variation within the range, desired characteristics can be obtained in appearance and durability.
 畝状に形成された複数の凸部は畝の長さ方向において断続的に形成されていることも好適である。その場合の凸部の長さは、畝のピッチに対して1~10倍の範囲が好ましく、更に好ましくは1~5倍、特に好ましくは2~4倍である。この場合特に重要なのは、畝状の凸部が形成されていない部分である断続部においても、後述の海島状構造で説明した曲線状の形状を有することである。そうすることで、良好な外観に加え、より一層の耐久性能を得ることができる。 It is also preferable that the plurality of convex portions formed in a bowl shape are intermittently formed in the length direction of the bowl. In this case, the length of the convex portion is preferably in the range of 1 to 10 times, more preferably 1 to 5 times, and particularly preferably 2 to 4 times the pitch of the ridges. In this case, it is particularly important that the intermittent portion, which is a portion where the ridge-shaped convex portion is not formed, has the curved shape described in the sea-island structure described later. By doing so, in addition to a good appearance, a further durability performance can be obtained.
 海島状
 透明導電層(III)側の表面部に設けられる複数の凸部は海島状に設けられていてもよい。海島状について更に図を用いて説明する。図4の(1)~(4)に、本発明の海島状の態様例として、片面に凸部が海島状に形成された導電性積層フィルムを、上面および断面方向から観察したイメージ図を示した。ここでの重要点は、何れの形状も局所的に鋭角な部分は存在せず、曲面状の形状変化になっている点である。そうすることにより、外観上や耐久性能において所望の特性を得ることができる。このような曲面状の形状変化は、たとえば、フィルムを延伸加工することにより形成することができる。
Sea Island Shape A plurality of convex portions provided on the surface portion on the transparent conductive layer (III) side may be provided in a sea island shape. The sea island shape will be further described with reference to the drawings. (1) to (4) in FIG. 4 show image views of a conductive laminated film having a convex portion formed on one side as a sea-island shape as an example of a sea-island shape according to the present invention, as observed from the top and cross-sectional directions. . The important point here is that any shape does not have a locally acute angle portion, but has a curved shape. By doing so, desired characteristics can be obtained in appearance and durability. Such a curved shape change can be formed, for example, by stretching a film.
 図4(1)~(4)においては、それぞれ左側に上面図を、右側に、上面図に示された点線部における断面図を示した。なお、図4(1)~(4)の上面図においては、凸部は輪郭線をもって現れることはないが、凸部を視覚的に表現するため、観念的な輪郭線によって表現されている。図4(1)~(4)の断面図において、対向する2本の矢印は凸部の高さを示す。 4 (1) to (4), a top view is shown on the left side, and a cross-sectional view of the dotted line shown in the top view is shown on the right side. In the top views of FIGS. 4 (1) to (4), the convex portion does not appear with a contour line, but is represented with an ideal contour line in order to visually represent the convex portion. In the cross-sectional views of FIGS. 4 (1) to 4 (4), the two opposing arrows indicate the height of the convex portion.
 図4(1)においては、平面形状が長方形である凸部が、その長辺方向に多列に並んでおり、隣接する2列間においては、凸部がその長辺の2分の1の長さだけずれるように配列されている。断面図においては、フィルム表面は波状の曲線を描いている。 In FIG. 4 (1), convex portions having a rectangular planar shape are arranged in multiple rows in the long side direction, and the convex portions are half of the long sides between two adjacent rows. They are arranged so as to be shifted by the length. In the cross-sectional view, the film surface has a wavy curve.
 図4(2)においては、平面形状が菱形である凸部が配列されている。断面図においては、フィルム表面は波状の曲線を描いている。 In FIG. 4 (2), convex portions having a rhombus in the planar shape are arranged. In the cross-sectional view, the film surface has a wavy curve.
 図4(3)においては、平面形状が楕円形である凸部が配列されている。断面図においては、フィルム表面は、凸部が設けられている部分においては丸みを帯びた曲線を描き、凸部が設けられていない部分においては直線状である。 In FIG. 4 (3), convex portions having an elliptical planar shape are arranged. In the cross-sectional view, the film surface draws a rounded curve in the portion where the convex portion is provided, and is linear in the portion where the convex portion is not provided.
 図4(4)においては、平面形状が長方形である凸部が、縦横列をなして配列されている。断面図においては、フィルム表面は波状の曲線を描いている。 In FIG. 4 (4), the convex portions having a rectangular planar shape are arranged in rows and columns. In the cross-sectional view, the film surface has a wavy curve.
 凸部が畝状や海島状などの何れの状態で形成されている場合にもおいて、凸部の最大高さdHは0.1~10μmが好ましく、その最大高さを有する凸部の最も高い点と、その凸部に隣接する谷部の最も低い点との間の、フィルム面内方向における距離dLとdHとが下記数式(1)を満たすことが好ましい。 Even in the case where the convex portion is formed in any shape such as a bowl shape or a sea island shape, the maximum height dH of the convex portion is preferably 0.1 to 10 μm, and the maximum height of the convex portion having the maximum height is preferably It is preferable that the distances dL and dH in the film in-plane direction between the high point and the lowest point of the valley adjacent to the convex portion satisfy the following formula (1).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 dHはより好ましくは0.5~5μm、特に好ましくは1~3μmであり、dH/dLの範囲はより好ましくは0より大きく0.03以下であり、特に好ましくは0より大きく0.01以下である。最大高さdHは、複数の凸部の高さの中で最も大きい高さである。凸部の高さは、その凸部の最も高い点と、その凸部に隣接する谷部の最も低い点との高低差として求められる。dHを与えるフィルム表面上の2点の組み合わせが複数存在する場合には、それらのうち、dLが最小値となる2点によりdLを定める。 dH is more preferably 0.5 to 5 μm, particularly preferably 1 to 3 μm, and the range of dH / dL is more preferably greater than 0 and not greater than 0.03, particularly preferably greater than 0 and not greater than 0.01. is there. The maximum height dH is the largest height among the heights of the plurality of convex portions. The height of the convex portion is obtained as a difference in height between the highest point of the convex portion and the lowest point of the valley adjacent to the convex portion. When there are a plurality of combinations of two points on the film surface giving dH, dL is determined by two points at which dL is the minimum value.
 凸部が上記条件を満たすようにすることで、干渉縞の発生が抑えられると共に、特に干渉縞を抑制するために付与される導電性積層フィルムの形状由来の筋状の線がタッチパネルとしたときにも画面上に認められず、コントラストが高く、ぎらつきが少なく、特にタッチパネルとした時に、すべり性が向上するため耐久性に優れ、視認性の高い導電性積層フィルム、およびタッチパネルにすることができる。 When the convex portion satisfies the above conditions, the generation of interference fringes is suppressed, and particularly when the streaky line derived from the shape of the conductive laminated film provided to suppress the interference fringes is used as the touch panel In addition, it is not recognized on the screen, has high contrast, little glare, and when it is used as a touch panel, it has excellent durability because it has improved sliding properties, and a highly visible conductive laminate film and touch panel can be obtained. it can.
 <透明樹脂からなるフィルム(I)>
 透明樹脂からなるフィルム(I)としては、透明性を有し、導電性積層フィルムの基材フィルムとして用いられるものであればよく、公知の透明樹脂を含有するフィルムを用いることができる。本発明では、透明樹脂からなるフィルム(I)として、環状オレフィン系樹脂および/またはポリカーボネート樹脂を含有するフィルムを用いることが好ましい。透明樹脂からなるフィルム(I)は、環状オレフィン系樹脂および/またはポリカーボネート樹脂を含有する場合、1種単独の環状オレフィン系樹脂あるいはポリカーボネート樹脂から形成されてもよく、2種以上の環状オレフィン系樹脂を含む樹脂組成物、2種以上のポリカーボネート樹脂を含む樹脂組成物、または1種以上の環状オレフィン系樹脂および1種以上のポリカーボネート樹脂を含む樹脂組成物、あるいはさらにその他の樹脂成分を含む樹脂組成物から形成されてもよい。本発明では、透明樹脂からなるフィルム(I)が、樹脂成分が1種以上の環状オレフィン系樹脂のみ、あるいは1種以上のポリカーボネート樹脂のみである樹脂または樹脂組成物からなるフィルムであることがより好ましく、1種以上の環状オレフィン系樹脂のみからなるフィルムであることがさらに好ましい。透明樹脂からなるフィルム(I)が環状オレフィン系樹脂もしくはポリカーボネート樹脂からなるフィルムである場合には、透明性に優れるほか、好適に位相差フィルムとすることができ、反射光の抑制および視認性の向上を図ることができる。
<Film made of transparent resin (I)>
The film (I) made of a transparent resin may be any film as long as it has transparency and can be used as a base film for a conductive laminated film, and a film containing a known transparent resin can be used. In the present invention, it is preferable to use a film containing a cyclic olefin resin and / or a polycarbonate resin as the film (I) made of a transparent resin. When the film (I) made of a transparent resin contains a cyclic olefin resin and / or a polycarbonate resin, it may be formed of one kind of cyclic olefin resin or polycarbonate resin, and two or more kinds of cyclic olefin resins. Resin composition containing two or more polycarbonate resins, or one or more cyclic olefin-based resins and one or more polycarbonate resins, or a resin composition containing other resin components It may be formed from an object. In the present invention, the film (I) made of a transparent resin is more preferably a film made of a resin or a resin composition in which the resin component is only one or more cyclic olefin resins, or only one or more polycarbonate resins. Preferably, the film is made of only one or more cyclic olefin-based resins. When the film (I) made of a transparent resin is a film made of a cyclic olefin resin or a polycarbonate resin, in addition to being excellent in transparency, it can be suitably used as a retardation film, suppressing reflected light and improving visibility. Improvements can be made.
 本発明に係る透明樹脂からなるフィルム(I)は、位相差を示さないフィルムであってもよく、位相差フィルムであってもよい。フィルム(I)が位相差フィルムである場合、波長550nmの透過光に対する面内位相差が128~148nm、好ましくは133~143nmのフィルムであることが望ましく、1/4λ位相差フィルムであることが特に好ましい。ここで、位相差は、複屈折光の屈折率差(Δn)と厚さ(d)との積(Δnd)で定義される。透明樹脂からなるフィルム(I)が、このような位相差を有する場合には、反射光を効果的に防止することができ、高コントラストのタッチパネルが得られるため好ましい。 The film (I) made of the transparent resin according to the present invention may be a film showing no retardation or a retardation film. When the film (I) is a retardation film, it is desirable that the in-plane retardation with respect to transmitted light with a wavelength of 550 nm is 128 to 148 nm, preferably 133 to 143 nm, and preferably a 1 / 4λ retardation film. Particularly preferred. Here, the phase difference is defined by the product (Δnd) of the refractive index difference (Δn) of birefringent light and the thickness (d). When the film (I) made of a transparent resin has such a phase difference, reflected light can be effectively prevented, and a high-contrast touch panel is obtained, which is preferable.
 上記位相差フィルムは、環状オレフィン系樹脂あるいはポリカーボネート樹脂から得られるフィルムを延伸処理して得られたものであることが好ましく、環状オレフィン系樹脂から得られるフィルムを延伸処理して得られたものであることがより好ましい。 The retardation film is preferably obtained by stretching a film obtained from a cyclic olefin resin or a polycarbonate resin, and obtained by stretching a film obtained from a cyclic olefin resin. More preferably.
 ・環状オレフィン系樹脂
 透明樹脂からなるフィルム(I)を構成し得る環状オレフィン系樹脂としては、ノルボルネン骨格を有する環状オレフィン系化合物を1種以上含む単量体、あるいは前記環状オレフィン系化合物とともにさらに共重合性単量体を含む単量体組成物を、開環(共)重合あるいは付加(共)重合したものであることが好ましく、得られた(共)重合体の主鎖中の二重結合が水素添加されたものがより好適に用いられる。
Cyclic olefin-based resin The cyclic olefin-based resin that can constitute the transparent resin film (I) includes a monomer containing at least one cyclic olefin-based compound having a norbornene skeleton, or a copolymer together with the cyclic olefin-based compound. A monomer composition containing a polymerizable monomer is preferably a ring-opening (co) polymerization or addition (co) polymerization, and a double bond in the main chain of the obtained (co) polymer A hydrogenated product is more preferably used.
 環状オレフィン系樹脂としては、下記式(1)で表される少なくとも1種の化合物(以下、「特定単量体」ともいう)を含む単量体を(共)重合して得られる樹脂であることが好ましい。 The cyclic olefin-based resin is a resin obtained by (co) polymerizing a monomer containing at least one compound represented by the following formula (1) (hereinafter also referred to as “specific monomer”). It is preferable.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式(1)中、R1~R4は、それぞれ独立に、水素原子;ハロゲン原子;または酸素、窒素、イオウもしくはケイ素を含有していてもよい1価の有機基を表し、R1とR2と、R3とR4とが、それぞれ独立に、相互に結合してアルキリデン基を形成していてもよく、R1とR2と、R3とR4と、R2とR3とが、それぞれ独立に、相互に結合して単環または多環の炭素環もしくは複素環を形成してもよく、xは0~3の整数を表し、yは0または1を表す。)
 本発明において好適に用いられる環状オレフィン系樹脂としては、下記(i)~(iii)の(共)重合体が好ましい。
(i)特定単量体と、必要に応じて共重合性単量体との開環(共)重合体(以下「特定の開環(共)重合体」ともいう。)。
(ii)特定の開環(共)重合体の水素添加(共)重合体。
(iii)特定単量体と、必要に応じて共重合性単量体との付加(共)重合体。
(In the formula (1), R 1 ~ R 4 are each independently a hydrogen atom, a halogen atom, or an oxygen, nitrogen, represents an organic group which may monovalent that contain sulfur or silicon, and R 1 R 2 , R 3 and R 4 may be independently bonded to each other to form an alkylidene group. R 1 and R 2 , R 3 and R 4 , R 2 and R 3 And each independently may be bonded to each other to form a monocyclic or polycyclic carbocyclic or heterocyclic ring, x represents an integer of 0 to 3, and y represents 0 or 1.)
As the cyclic olefin resin suitably used in the present invention, the following (co) polymers (i) to (iii) are preferable.
(I) A ring-opening (co) polymer of a specific monomer and, if necessary, a copolymerizable monomer (hereinafter also referred to as “specific ring-opening (co) polymer”).
(Ii) Hydrogenated (co) polymers of specific ring-opening (co) polymers.
(Iii) Addition (co) polymer of a specific monomer and, if necessary, a copolymerizable monomer.
 本発明ではこれらの中でも、上記(ii)の(共)重合体、すなわち、特定単量体を含む単量体を開環(共)重合し、得られた(共)重合体の主鎖中の二重結合を水素添加した樹脂が好ましい。このような環状オレフィン系樹脂としては、下記式(1')で表わされる構造単位を有する樹脂が挙げられる。 Among these, in the present invention, among the (co) polymers of (ii) above, that is, in the main chain of the (co) polymer obtained by ring-opening (co) polymerizing a monomer containing a specific monomer. A resin in which the double bond is hydrogenated is preferable. Examples of such a cyclic olefin-based resin include resins having a structural unit represented by the following formula (1 ′).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(式(1')中、R1~R4、xおよびyは、それぞれ上記式(1)のR1~R4、xおよびyと同様である。)
 (特定単量体)
 特定単量体は、1種単独で用いても2種以上併用してもよい。
(Wherein (1 '), R 1 ~ R 4, x and y are respectively similar to the R 1 ~ R 4, x and y of the above formula (1).)
(Specific monomer)
A specific monomer may be used individually by 1 type, or may be used together 2 or more types.
 これらの特定単量体のうち好ましいものとしては、上記式(1)中、R1およびR3が、水素原子、または炭素原子数1~10、より好ましくは1~4、さらに好ましくは1~2の炭化水素基を表し、R2およびR4が、水素原子;または酸素原子、窒素原子、イオウ原子もしくはケイ素原子を含有していてもよい1価の有機基を表し、R2およびR4の少なくとも1つが、水素原子、または炭化水素基以外の極性を有する1価の有機基を表し、xは、0~3の整数を表し、yは、0~3の整数を表し、より好ましくはx+y=0~4、さらに好ましくは0~2、特に好ましくはx=0、y=1であるものが挙げられる。このような特定単量体を含む単量体を用いると、得られる環状オレフィン系樹脂のガラス転移温度が高く、かつ機械的強度も優れたものとなる点で好ましい。 Among these specific monomers, R 1 and R 3 in the above formula (1) are preferably a hydrogen atom or 1 to 10 carbon atoms, more preferably 1 to 4, more preferably 1 to 2 represents a hydrocarbon group, R 2 and R 4 represent a hydrogen atom; or a monovalent organic group which may contain an oxygen atom, a nitrogen atom, a sulfur atom or a silicon atom, and R 2 and R 4 At least one represents a hydrogen atom or a monovalent organic group having a polarity other than a hydrocarbon group, x represents an integer of 0 to 3, y represents an integer of 0 to 3, more preferably x + y = 0 to 4, more preferably 0 to 2, particularly preferably x = 0 and y = 1. Use of a monomer containing such a specific monomer is preferable in that the obtained cyclic olefin-based resin has a high glass transition temperature and excellent mechanical strength.
 上記極性を有する1価の有機基としては、例えば、カルボキシル基、水酸基、アルコキシカルボニル基、アリロキシカルボニル基、アミノ基、アミド基、シアノ基等が挙げられる。これら極性を有する1価の有機基は、メチレン基などの連結基を介して結合していてもよい。また、カルボニル基、エーテル基、シリルエーテル基、チオエーテル基、イミノ基など極性を有する2価の有機基が連結基となって結合している炭化水素基等も極性基として挙げられる。これらのうち、カルボキシル基、水酸基、アルコキシカルボニル基およびアリロキシカルボニル基が好ましく、アルコキシカルボニル基およびアリロキシカルボニル基がより好ましい。 Examples of the monovalent organic group having the polarity include a carboxyl group, a hydroxyl group, an alkoxycarbonyl group, an allyloxycarbonyl group, an amino group, an amide group, and a cyano group. These monovalent organic groups having polarity may be bonded via a linking group such as a methylene group. In addition, a hydrocarbon group or the like in which a divalent organic group having polarity such as a carbonyl group, an ether group, a silyl ether group, a thioether group, or an imino group is bonded as a linking group is also exemplified. Among these, a carboxyl group, a hydroxyl group, an alkoxycarbonyl group, and an allyloxycarbonyl group are preferable, and an alkoxycarbonyl group and an allyloxycarbonyl group are more preferable.
 さらに、上記式(1)中、R2およびR4のうち少なくとも1つが、式:-(CH2nCOORで示される極性を有する1価の有機基を表す単量体を含む場合には、得られる環状オレフィン系樹脂が高いガラス転移温度、低い吸湿性、および各種材料との優れた密着性を有するものとなる点で好ましい。該式中、Rは、炭素原子数1~12、好ましくは1~4、より好ましくは1~2の炭化水素基、望ましくはアルキル基を表す。また、nは、通常、0~5の整数であるが、nの値が小さいものほど、得られる環状オレフィン系樹脂のガラス転移温度が高くなるので好ましく、さらにnが0である特定単量体はその合成が容易である点で好ましい。 Further, in the above formula (1), when at least one of R 2 and R 4 contains a monomer representing a monovalent organic group having a polarity represented by the formula: — (CH 2 ) n COOR The obtained cyclic olefin-based resin is preferable in that it has a high glass transition temperature, low hygroscopicity, and excellent adhesion to various materials. In the formula, R represents a hydrocarbon group having 1 to 12 carbon atoms, preferably 1 to 4 carbon atoms, more preferably 1 to 2 carbon atoms, desirably an alkyl group. Further, n is usually an integer of 0 to 5, but a smaller value of n is preferable because the glass transition temperature of the resulting cyclic olefin resin is higher, and a specific monomer in which n is 0. Is preferred because of its easy synthesis.
 また、上記式(1)中、R1またはR3は、炭素原子数1~4のアルキル基が好ましく、炭素原子数1~2のアルキル基がより好ましく、メチル基がさらに好ましい。特に、このようなアルキル基が、上記式:-(CH2nCOORで示される極性を有する1価の有機基が結合した炭素原子と同一の炭素原子に結合していることが、得られる環状オレフィン系樹脂の吸湿性を低くできる点で好ましい。 In the above formula (1), R 1 or R 3 is preferably an alkyl group having 1 to 4 carbon atoms, more preferably an alkyl group having 1 to 2 carbon atoms, and further preferably a methyl group. In particular, it is obtained that such an alkyl group is bonded to the same carbon atom as the carbon atom to which the monovalent organic group having the polarity represented by the above formula: — (CH 2 ) n COOR is bonded. This is preferable in that the hygroscopicity of the cyclic olefin resin can be lowered.
 (共重合性単量体)
 本発明で用いられる環状オレフィン系樹脂は、特定単量体などの環状オレフィン系化合物とともに、共重合性単量体を共重合してなるものであってもよい。
(Copolymerizable monomer)
The cyclic olefin resin used in the present invention may be obtained by copolymerizing a copolymerizable monomer together with a cyclic olefin compound such as a specific monomer.
 開環(共)重合体における共重合性単量体の具体例としては、シクロブテン、シクロペンテン、シクロヘプテン、シクロオクテン、ジシクロペンタジエン等のシクロオレフィンが挙げられる。シクロオレフィンの炭素原子数としては、4~20が好ましく、5~12がより好ましい。これらは、1種単独で用いても2種以上併用してもよい。 Specific examples of the copolymerizable monomer in the ring-opening (co) polymer include cycloolefins such as cyclobutene, cyclopentene, cycloheptene, cyclooctene, and dicyclopentadiene. The number of carbon atoms in the cycloolefin is preferably 4-20, and more preferably 5-12. These may be used alone or in combination of two or more.
 また、付加(共)重合体における共重合性単量体としては、例えば、反応性不飽和二重結合を有する化合物が好ましく、具体的には、エチレン、プロピレン、ブテン等のオレフィン系化合物;スチレン、α-メチルスチレン、ビニルシクロペンテン等のビニル系不飽和炭化水素化合物;メチルメタクリレート等の(メタ)アクリレートなどが挙げられる。 The copolymerizable monomer in the addition (co) polymer is preferably a compound having a reactive unsaturated double bond, specifically, an olefinic compound such as ethylene, propylene, and butene; And vinyl unsaturated hydrocarbon compounds such as α-methylstyrene and vinylcyclopentene; and (meth) acrylates such as methyl methacrylate.
 (開環重合触媒)
 開環(共)重合反応は、メタセシス触媒の存在下に行われる。このメタセシス触媒としては公知のものを用いることができ、例えば、(a)W、MoおよびReの化合物から選ばれる少なくとも1種と、(b)デミングの周期律表IA族元素(例えば、Li、Na、K等)、IIA族元素(例えば、Mg、Ca等)、IIB族元素(例えば、Zn、Cd、Hg等)、IIIA族元素(例えば、B、Al等)、IVA族元素(例えば、Si、Sn、Pb等)またはIVB族元素(例えば、Ti、Zr等)の化合物であって、少なくとも1つの該元素-炭素結合あるいは該元素-水素結合を有するものから選ばれる少なくとも1種との組み合せからなる触媒である。また、この場合に触媒の活性を高めるために、この触媒にアルコール類、アルデヒド類、ケトン類、アミン類等を好適に含有させることができる。さらに特開平1-132626号公報第8頁右下欄第16行~第9頁左上欄第17行に示される化合物を含有させることもできる。
(Ring-opening polymerization catalyst)
The ring-opening (co) polymerization reaction is performed in the presence of a metathesis catalyst. As this metathesis catalyst, a known catalyst can be used. For example, (a) at least one selected from W, Mo and Re compounds, and (b) a Deaming periodic table group IA element (for example, Li, Na, K, etc.), Group IIA elements (eg, Mg, Ca, etc.), Group IIB elements (eg, Zn, Cd, Hg, etc.), Group IIIA elements (eg, B, Al, etc.), Group IVA elements (eg, Si, Sn, Pb, etc.) or a group IVB element (for example, Ti, Zr, etc.) and at least one selected from those having at least one of the element-carbon bond or the element-hydrogen bond A catalyst composed of a combination. In this case, alcohols, aldehydes, ketones, amines and the like can be suitably contained in the catalyst in order to increase the activity of the catalyst. Further, compounds shown in JP-A-1-132626, page 8, lower right column, line 16 to page 9, upper left column, line 17 may be contained.
 (重合反応用溶媒)
 開環(共)重合反応において用いられる溶媒(分子量調節剤溶液を構成する溶媒、特定単量体および/またはメタセシス触媒の溶媒)としては、例えば、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン等のアルカン類;シクロヘキサン、シクロヘプタン、シクロオクタン、デカリン、ノルボルナン等のシクロアルカン類;ベンゼン、トルエン、キシレン、エチルベンゼン、クメン等の芳香族炭化水素;クロロブタン、ブロモヘキサン、塩化メチレン、ジクロロエタン、ヘキサメチレンジブロミド、クロロベンゼン、クロロホルム、テトラクロロエチレン等のハロゲン化アルカン、ハロゲン化アリール;酢酸エチル、酢酸n-ブチル、酢酸iso-ブチル、プロピオン酸メチル、ジメトキシエタン等の飽和カルボン酸エステル類;ジブチルエーテル、テトラヒドロフラン、ジメトキシエタン等のエーテル類などが挙げられ、これらは1種単独で用いても2種以上併用してもよい。これらのうち、芳香族炭化水素が好ましい。
(Solvent for polymerization reaction)
Examples of the solvent used in the ring-opening (co) polymerization reaction (solvent constituting the molecular weight modifier solution, solvent for the specific monomer and / or metathesis catalyst) include pentane, hexane, heptane, octane, nonane, decane, etc. Alkanes; cycloalkanes such as cyclohexane, cycloheptane, cyclooctane, decalin, norbornane; aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, cumene; chlorobutane, bromohexane, methylene chloride, dichloroethane, hexamethylenedi Halogenated alkanes such as bromide, chlorobenzene, chloroform, tetrachloroethylene, aryl halides; saturated carboxylic acid esters such as ethyl acetate, n-butyl acetate, iso-butyl acetate, methyl propionate, and dimethoxyethane; Ether, tetrahydrofuran, include such ethers such as dimethoxyethane, they may be used in combination of two or more types may be used alone. Of these, aromatic hydrocarbons are preferred.
 溶媒の使用量としては、「溶媒:特定単量体(重量比)」が、通常、1:1~10:1となる量とされ、好ましくは1:1~5:1となる量とされる。 As the amount of the solvent used, “solvent: specific monomer (weight ratio)” is usually in an amount of 1: 1 to 10: 1, preferably in an amount of 1: 1 to 5: 1. The
 得られる開環(共)重合体の分子量の調節は、重合温度、触媒の種類、溶媒の種類によっても行うことができるが、例えば、エチレン、プロペン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセンなどのα-オレフィン類およびスチレン等の分子量調節剤を添加して行ってもよい。 The molecular weight of the resulting ring-opening (co) polymer can be adjusted depending on the polymerization temperature, the type of catalyst, and the type of solvent. For example, ethylene, propene, 1-butene, 1-pentene, 1-hexene Further, α-olefins such as 1-heptene, 1-octene, 1-nonene and 1-decene and a molecular weight regulator such as styrene may be added.
 以上のようにして得られる開環(共)重合体は、そのままでも用いることができるが、この(共)重合体の分子中のオレフィン性不飽和結合を水素添加して得られる(ii)水素添加(共)重合体は耐熱着色性や耐光性に優れ、位相差フィルムの耐久性を向上させることができるので好ましい。 The ring-opening (co) polymer obtained as described above can be used as it is, but (ii) hydrogen obtained by hydrogenating an olefinically unsaturated bond in the molecule of this (co) polymer. The additive (co) polymer is preferable because it is excellent in heat-resistant coloring and light resistance and can improve the durability of the retardation film.
 (水素添加触媒)
 水素添加反応には、通常のオレフィン性不飽和結合を水素添加する方法が適用できる。すなわち、開環(共)重合体の溶液に水素添加触媒を添加し、これに常圧~300気圧、好ましくは3~200気圧の水素ガスを0~200℃、好ましくは20~180℃で作用させることによって行われる。
(Hydrogenation catalyst)
For the hydrogenation reaction, a method of hydrogenating a normal olefinically unsaturated bond can be applied. That is, a hydrogenation catalyst is added to a ring-opening (co) polymer solution, and hydrogen gas at atmospheric pressure to 300 atmospheres, preferably 3 to 200 atmospheres, is applied at 0 to 200 ° C., preferably 20 to 180 ° C. Is done by letting
 水素添加触媒としては、通常のオレフィン性化合物の水素添加反応に用いられるものを使用することができる。この水素添加触媒としては、不均一系触媒および均一系触媒が挙げられる。 As the hydrogenation catalyst, those used in the usual hydrogenation reaction of olefinic compounds can be used. Examples of the hydrogenation catalyst include a heterogeneous catalyst and a homogeneous catalyst.
 不均一系触媒としては、パラジウム、白金、ニッケル、ロジウム、ルテニウムなどの貴金属触媒物質を、カーボン、シリカ、アルミナ、チタニアなどの担体に担持させた固体触媒が挙げられる。また、均一系触媒としては、ナフテン酸ニッケル/トリエチルアルミニウム、ニッケルアセチルアセトナート/トリエチルアルミニウム、オクテン酸コバルト/n-ブチルリチウム、チタノセンジクロリド/ジエチルアルミニウムモノクロリド、酢酸ロジウム、クロロトリス(トリフェニルホスフィン)ロジウム、ジクロロトリス(トリフェニルホスフィン)ルテニウム、クロロヒドロカルボニルトリス(トリフェニルホスフィン)ルテニウム、ジクロロカルボニルトリス(トリフェニルホスフィン)ルテニウムなどを挙げることができる。触媒の形態は、粉末でも粒状でもよい。 Examples of the heterogeneous catalyst include a solid catalyst in which a noble metal catalyst material such as palladium, platinum, nickel, rhodium, and ruthenium is supported on a carrier such as carbon, silica, alumina, and titania. In addition, homogeneous catalysts include nickel naphthenate / triethylaluminum, nickel acetylacetonate / triethylaluminum, cobalt octenoate / n-butyllithium, titanocene dichloride / diethylaluminum monochloride, rhodium acetate, chlorotris (triphenylphosphine) rhodium. Dichlorotris (triphenylphosphine) ruthenium, chlorohydrocarbonyltris (triphenylphosphine) ruthenium, dichlorocarbonyltris (triphenylphosphine) ruthenium, and the like. The form of the catalyst may be powder or granular.
 水素添加(共)重合体の水素添加率は、500MHz、1H-NMRで測定した値が50%以上、好ましくは90%以上、さらに好ましくは98%以上、最も好ましくは99%以上である。水素添加率が高いほど、熱や光に対する安定性が優れたものとなり、本発明の透明フィルムとして使用した場合に長期にわたって安定した特性を得ることができる。 The hydrogenation rate of the hydrogenated (co) polymer is 50% or more, preferably 90% or more, more preferably 98% or more, and most preferably 99% or more, as measured by 500 MHz and 1 H-NMR. The higher the hydrogenation rate, the better the stability to heat and light. When used as the transparent film of the present invention, stable characteristics can be obtained over a long period of time.
 なお、開環(共)重合体分子中に芳香族基が存在する場合、係る芳香族基は耐熱着色性、耐光性を低下させることが少なく、逆に光学特性、例えば、屈折率、波長分散性等の光学的特性あるいは耐熱性に関して有利な効果をもたらすこともあり、水素添加しなくても好適なフィルム(I)を得ることができる。 In addition, when an aromatic group is present in the ring-opening (co) polymer molecule, the aromatic group is less likely to deteriorate the heat resistance coloring property and light resistance, and conversely optical characteristics such as refractive index and wavelength dispersion. There are cases where advantageous effects are brought about with respect to optical properties such as properties or heat resistance, and a suitable film (I) can be obtained without hydrogenation.
 上述のようにして得られた開環(共)重合体には、公知の酸化防止剤、例えば、2,6-ジ-t-ブチル-4-メチルフェノール、2,2'-ジオキシ-3,3'-ジ-t-ブチル-5,5'-ジメチルジフェニルメタン、テトラキス[メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、ペンタエリスリチルテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]等、および/または紫外線吸収剤、例えば、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン等を添加することによって安定化することができる。また、加工性を向上させる目的で、滑剤などの添加剤を添加することもできる。 The ring-opening (co) polymer obtained as described above includes known antioxidants such as 2,6-di-t-butyl-4-methylphenol, 2,2′-dioxy-3, 3′-di-t-butyl-5,5′-dimethyldiphenylmethane, tetrakis [methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] methane, pentaerythrityltetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] and / or UV absorbers such as 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, etc. Can be stabilized. Further, additives such as a lubricant can be added for the purpose of improving processability.
 なお、上記環状オレフィン系樹脂として使用される水素添加(共)重合体は、該水素添加(共)重合体中に含まれるゲル含有量が5重量%以下であることが好ましく、1重量%以下であることがより好ましい。 The hydrogenated (co) polymer used as the cyclic olefin resin preferably has a gel content contained in the hydrogenated (co) polymer of 5% by weight or less, preferably 1% by weight or less. It is more preferable that
 また、上記環状オレフィン系樹脂として、上記開環(共)重合体をフリーデルクラフト反応により環化したのち、水素添加した(共)重合体も用いられる。 Further, as the cyclic olefin resin, a (co) polymer obtained by cyclizing the ring-opened (co) polymer by Friedel-Craft reaction and then hydrogenating it is also used.
 (付加重合触媒)
 上記付加(共)重合体を合成するための触媒としては、公知のものを用いることができ、具体的には、チタン化合物、ジルコニウム化合物およびバナジウム化合物からなる群より選ばれる少なくとも1種と、助触媒としての有機アルミニウム化合物である。
(Addition polymerization catalyst)
As the catalyst for synthesizing the addition (co) polymer, a known catalyst can be used, specifically, at least one selected from the group consisting of a titanium compound, a zirconium compound and a vanadium compound, and an assistant. It is an organoaluminum compound as a catalyst.
 (環状オレフィン系樹脂の物性)
 上記環状オレフィン系樹脂の分子量は、固有粘度〔η〕inhで、好ましくは0.2~5dl/g、より好ましくは0.3~3dl/g、さらに好ましくは0.4~1.5dl/gであり、ゲルパーミエーションクロマトグラフィー(GPC)で測定したポリスチレン換算の数平均分子量(Mn)は、好ましくは8,000~100,000、より好ましくは10,000~80,000、さらに好ましくは12,000~50,000であり、重量平均分子量(Mw)は、好ましくは20,000~300,000、より好ましくは30,000~250,000、さらに好ましくは40,000~200,000の範囲のものが好適である。
(Physical properties of cyclic olefin resin)
The molecular weight of the cyclic olefin resin is an intrinsic viscosity [η] inh , preferably 0.2 to 5 dl / g, more preferably 0.3 to 3 dl / g, still more preferably 0.4 to 1.5 dl / g. The number average molecular weight (Mn) in terms of polystyrene measured by gel permeation chromatography (GPC) is preferably 8,000 to 100,000, more preferably 10,000 to 80,000, and still more preferably 12 The weight average molecular weight (Mw) is preferably in the range of 20,000 to 300,000, more preferably 30,000 to 250,000, and still more preferably 40,000 to 200,000. Are preferred.
 固有粘度〔η〕inh、数平均分子量および重量平均分子量が上記範囲内であると、環状オレフィン系樹脂の耐熱性、耐水性、耐薬品性、機械的特性と、本発明の導電性積層フィルムとして使用したときの光学特性の安定性とのバランスが良好となる。 When the intrinsic viscosity [η] inh , number average molecular weight and weight average molecular weight are within the above ranges, the heat resistance, water resistance, chemical resistance, mechanical properties of the cyclic olefin resin, and the conductive laminated film of the present invention The balance with the stability of optical characteristics when used is good.
 環状オレフィン系樹脂のガラス転移温度(Tg)としては、通常、120℃以上、好ましくは120~350℃、より好ましくは130~250℃、さらに好ましくは140~200℃である。得られる環状オレフィン系樹脂フィルムの光学特性変化を安定にし、延伸加工など、Tg近辺まで加熱して加工する場合の樹脂の熱劣化を防止するためである。 The glass transition temperature (Tg) of the cyclic olefin resin is usually 120 ° C. or higher, preferably 120 to 350 ° C., more preferably 130 to 250 ° C., and further preferably 140 to 200 ° C. This is to stabilize the change in optical properties of the obtained cyclic olefin resin film and prevent thermal deterioration of the resin when heated to near Tg and processed, such as stretching.
 環状オレフィン系樹脂の23℃における飽和吸水率は、好ましくは2重量%以下、より好ましくは0.01~2重量%、さらに好ましくは0.1~1重量%の範囲にある。飽和吸水率がこの範囲内であると、光学特性が均一であり、得られる環状オレフィン系樹脂フィルムと他の光学部材や接着剤などとの密着性に優れ、使用途中で剥離などが発生せず、また、酸化防止剤などとの相溶性にも優れ、多量に添加することも可能となる。なお、飽和吸水率はASTM D570に従い、23℃水中で1週間浸漬して増加重量を測定することにより得られる値である。 The saturated water absorption at 23 ° C. of the cyclic olefin resin is preferably 2% by weight or less, more preferably 0.01 to 2% by weight, and further preferably 0.1 to 1% by weight. If the saturated water absorption is within this range, the optical characteristics are uniform, the adhesiveness between the obtained cyclic olefin resin film and other optical members and adhesives is excellent, and peeling does not occur during use. Moreover, it is excellent in compatibility with an antioxidant and the like, and can be added in a large amount. The saturated water absorption is a value obtained by immersing in 23 ° C. water for 1 week and measuring the increased weight according to ASTM D570.
 環状オレフィン系樹脂としては、その光弾性係数(CP)が0~100(×10-12Pa-1)であり、かつ応力光学係数(CR)が1,000~4,000(×10-12Pa-1)を満たすようなものが好適である。ここで、光弾性係数(CP)および応力光学係数(CR)については、種々の文献、例えば、Polymer Journal,Vol.27,No,9pp 943-950(1995)、日本レオロジー学会誌,Vol.19,No.2, p93-97(1991)、光弾性実験法,日刊工業新聞社,昭和50年第7版に記載されている。前者がポリマーのガラス状態での応力による位相差の発生程度を表すのに対し、後者は流動状態での応力による位相差の発生程度を表す。 The cyclic olefin resin has a photoelastic coefficient (C P ) of 0 to 100 (× 10 −12 Pa −1 ) and a stress optical coefficient (C R ) of 1,000 to 4,000 (× 10 Those satisfying −12 Pa −1 ) are preferable. Here, with respect to the photoelastic coefficient (C P ) and the stress optical coefficient (C R ), various documents such as Polymer Journal, Vol. 27, No, 9pp 943-950 (1995), Journal of the Japanese Society of Rheology, Vol. .19, No. 2, p93-97 (1991), photoelastic experiment method, Nikkan Kogyo Shimbun, 7th edition of 1975. The former represents the degree of occurrence of phase difference due to stress in the glass state of the polymer, while the latter represents the degree of occurrence of phase difference due to stress in the flow state.
 光弾性係数(CP)が大きいことは、環状オレフィン系樹脂フィルムを他の光学部材や接着剤と貼り合わせて用いた場合に外的因子または自らの凍結した歪みから発生した歪みから発生する応力などにおいて敏感に光学特性が変化してしまうことを表し、例えば、本発明のように透明導電層を積層する場合、および他の光学部材に固定して用いる場合には、貼り合わせ時の残留歪みや、温度変化や湿度変化などにともなう材料の収縮により発生する微小な応力によって不必要な位相差を発生しやすいことを意味する。このことから、できるだけ光弾性係数(CP)は小さい程よい。 The large photoelastic coefficient (C P ) means that stress generated from external factors or strain generated from its own frozen strain when a cyclic olefin resin film is used in combination with another optical member or adhesive. For example, when a transparent conductive layer is laminated as in the present invention or when it is used fixed to another optical member, residual strain at the time of bonding is expressed. It means that an unnecessary phase difference is likely to be generated due to a minute stress generated by shrinkage of a material accompanying a temperature change or a humidity change. Therefore, it is better that the photoelastic coefficient (C P ) is as small as possible.
 一方、応力光学係数(CR)が大きいことは、例えば、環状オレフィン系樹脂フィルムに位相差の発現性を付与する際に少ない延伸倍率で所望の位相差を得られるようになったり、大きな位相差を付与しうるフィルムを得やすくなったり、同じ位相差を所望の場合には応力光学係数(CR)が小さいものと比べてフィルムを薄肉化できるという大きなメリットがある。 On the other hand, a large stress optical coefficient (C R ) means that, for example, a desired retardation can be obtained with a small stretch ratio when imparting retardation to a cyclic olefin-based resin film. There is a great merit that it is easy to obtain a film capable of imparting a phase difference, and that when the same phase difference is desired, the film can be thinned as compared with a film having a small stress optical coefficient (C R ).
 以上のような見地から、光弾性係数(CP)が好ましくは0~100(×10-12Pa-1)、より好ましくは0~80(×10-12Pa-1)、さらに好ましくは0~50(×10-12Pa-1)、特に好ましくは0~30(×10-12Pa-1)、最も好ましくは0~20(×10-12Pa-1)である。透明導電層を積層した時に発生する応力、導電性積層フィルムを他の光学部材に固定した時に発生する応力、使用する際の環境変化などによって発生する位相差変化などによる不必要な位相差を最小限に止めるためである。 From the above viewpoint, the photoelastic coefficient (C P ) is preferably 0 to 100 (× 10 −12 Pa −1 ), more preferably 0 to 80 (× 10 −12 Pa −1 ), and still more preferably 0. To 50 (× 10 −12 Pa −1 ), particularly preferably 0 to 30 (× 10 −12 Pa −1 ), and most preferably 0 to 20 (× 10 −12 Pa −1 ). Minimizes unnecessary phase difference due to stress generated when the transparent conductive layer is laminated, stress generated when the conductive laminated film is fixed to other optical members, and phase change caused by environmental changes during use This is to limit it to the limit.
 (添加剤)
 上記環状オレフィン系樹脂は、公知の酸化防止剤、紫外線吸収剤などを添加してさらに安定化させることができる。また、加工性を向上させるために、滑剤などの従来の樹脂加工において用いられる添加剤を添加することもできる。
(Additive)
The cyclic olefin-based resin can be further stabilized by adding known antioxidants, ultraviolet absorbers and the like. Moreover, in order to improve workability, the additive used in conventional resin processings, such as a lubricant, can also be added.
 上記酸化防止剤としては、例えば、ペンタエリスリチルテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,6-ジ-t-ブチル-4-メチルフェノール、2,2'-ジオキシ-3,3'-ジ-t-ブチル-5,5'-ジメチルジフェニルメタン、テトラキス[メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン等が挙げられ、上記紫外線吸収剤としては、例えば、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン等が挙げられる。 Examples of the antioxidant include pentaerythrityl tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], 2,6-di-t-butyl-4-methylphenol, 2,2′-dioxy-3,3′-di-t-butyl-5,5′-dimethyldiphenylmethane, tetrakis [methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] Examples of the ultraviolet absorber include 2,4-dihydroxybenzophenone and 2-hydroxy-4-methoxybenzophenone.
 ・ポリカーボネート樹脂
 透明樹脂からなるフィルム(I)を構成し得るポリカーボネート樹脂としては、特に限定されるものではなく、当該技術分野で知られている任意の芳香族ホモポリカーボネートあるいはコポリカーボネートを用いることができる。ポリカーボネート成分は、例えば界面重縮合法、均一相における重縮合法あるいはエステル交換法等、当該技術分野で一般に知られている方法の何れに従って製造されてもよい。これらの方法並びに関連する反応物、ポリマー、触媒、溶媒および条件は当該技術分野で周知であり、米国特許第2,964,974号,第2,970,137号,第2,999,835号,第2,999,846号,第3,028,365号,第3,153,008号,第3,187,065号,第3,215,668号,第3,258,414号および第5,010,162号に記載されている。適当なポリカーボネートは、例えば下記のビスフェノール類の一種またはそれ以上に基づいている:ジヒドロキシジフェニル類、ビス(ヒドロキシフェニル)アルカン類、ビス(ヒドロキシフェニル)シクロアルカン類、ビス(ヒドロキシフェニル)スルフィド類、ビス(ヒドロキシフェニル)エーテル類、ビス(ヒドロキシフェニル)ケトン類、ビス(ヒドロキシフェニル)スルホキシド類、ビス(ヒドロキシフェニル)スルホン類、アルキルシクロヘキシリデンビスフェノール類、α,α-ビス(ヒドロキシフェニル)ジイソプロピルベンゼン類、これらの核がアルキル化された誘導体あるいは核がハロゲン化された誘導体、およびこれらの混合物である。
Polycarbonate resin The polycarbonate resin that can form the transparent resin film (I) is not particularly limited, and any aromatic homopolycarbonate or copolycarbonate known in the art can be used. . The polycarbonate component may be produced according to any method generally known in the art, such as interfacial polycondensation, homogeneous phase polycondensation, or transesterification. These methods and the associated reactants, polymers, catalysts, solvents and conditions are well known in the art and are described in U.S. Pat. Nos. 2,964,974, 2,970,137, 2,999,835. 2,999,846, 3,028,365, 3,153,008, 3,187,065, 3,215,668, 3,258,414 and No. 5,010,162. Suitable polycarbonates are based, for example, on one or more of the following bisphenols: dihydroxydiphenyls, bis (hydroxyphenyl) alkanes, bis (hydroxyphenyl) cycloalkanes, bis (hydroxyphenyl) sulfides, bis (Hydroxyphenyl) ethers, bis (hydroxyphenyl) ketones, bis (hydroxyphenyl) sulfoxides, bis (hydroxyphenyl) sulfones, alkylcyclohexylidene bisphenols, α, α-bis (hydroxyphenyl) diisopropylbenzenes , Derivatives in which these nuclei are alkylated or derivatives in which the nuclei are halogenated, and mixtures thereof.
 これらのビスフェノール類の具体例は、4,4′-ジヒドロキシジフェニル、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,4-ビス(4-ヒドロキシフェニル)-2-メチルブタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、α,α-ビス(4-ヒドロキシフェニル)ジイソプロピルベンゼン、2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-クロロ-4-ヒドロキシフェニル)プロパン、ビス(3,5-ジメチル-4-ヒドロキシフェニル)メタン、2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパン、ビス(3,5-ジメチル-4-ヒドロキシフェニル)スルホン、2,4-ビス(3,5-ジメチル-4-ヒドロキシフェニル)-2-メチルブタン、1,1-ビス(3,5-ジメチル-4-ヒドロキシフェニル)シクロヘキサン、α,α-ビス(3,5-ジメチル-4-ヒドロキシフェニル)-p-ジイソプロピルベンゼン、2,2-ビス(3,5-ジクロロ-4-ヒドロキシフェニル)プロパンおよび2,2-ビス(3,5-ジブロモ-4-ヒドロキシフェニル)プロパンである。特に好ましいビスフェノールは、より一般的にはビスフェノールAとして知られている2,2-ビス(4-ヒドロキシフェニル)プロパンである。上記ビスフェノール類をホスゲンと反応させ、芳香族ポリカーボネートを製造し得る。適当なポリカーボネートはまた、米国特許第4,677,162号にも述べられている。 Specific examples of these bisphenols include 4,4'-dihydroxydiphenyl, 2,2-bis (4-hydroxyphenyl) propane, 2,4-bis (4-hydroxyphenyl) -2-methylbutane, 1,1- Bis (4-hydroxyphenyl) cyclohexane, α, α-bis (4-hydroxyphenyl) diisopropylbenzene, 2,2-bis (3-methyl-4-hydroxyphenyl) propane, 2,2-bis (3-chloro- 4-hydroxyphenyl) propane, bis (3,5-dimethyl-4-hydroxyphenyl) methane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane, bis (3,5-dimethyl-4) -Hydroxyphenyl) sulfone, 2,4-bis (3,5-dimethyl-4-hydroxyphenyl) -2-methylbutane 1,1-bis (3,5-dimethyl-4-hydroxyphenyl) cyclohexane, α, α-bis (3,5-dimethyl-4-hydroxyphenyl) -p-diisopropylbenzene, 2,2-bis (3 , 5-dichloro-4-hydroxyphenyl) propane and 2,2-bis (3,5-dibromo-4-hydroxyphenyl) propane. A particularly preferred bisphenol is 2,2-bis (4-hydroxyphenyl) propane, more commonly known as bisphenol A. The above bisphenols can be reacted with phosgene to produce an aromatic polycarbonate. Suitable polycarbonates are also described in US Pat. No. 4,677,162.
 ・その他の樹脂
 本発明に係る透明樹脂からなるフィルムが、環状オレフィン系樹脂およびポリカーボネート樹脂以外の樹脂からなる場合、透明樹脂としては、たとえば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリメチルメタクリレート、トリアセチルセルロース、ポリエーテルスルフォン、ポリイミドなどを挙げることができる。
Other resin When the film made of the transparent resin according to the present invention is made of a resin other than the cyclic olefin resin and the polycarbonate resin, examples of the transparent resin include polyethylene terephthalate, polyethylene naphthalate, polymethyl methacrylate, and triacetyl cellulose. , Polyethersulfone, polyimide and the like.
 透明樹脂からなるフィルム(I)の製造
 本発明で用いる透明樹脂からなるフィルム(I)は、その製造方法には特に制限はなく、予め環状オレフィン系樹脂またはポリカーボネート樹脂などの透明樹脂をフィルムまたはシート状に成形した後、延伸加工などをして得ることができる。特に、延伸加工により得られる透明樹脂からなるフィルム(I)は、反射防止機能の必要なタッチパネルに好適であるという理由において好ましい。フィルム(I)に凸部を設けることにより透明導電層(III)側の表面部に前記凸部を形成する場合には、フィルム(I)に設けられる凸部は、延伸加工後に形成してもよく、延伸加工前のフィルムに予備凸部を作っておき、これを延伸して形成してもよい。
Production of Film (I) Made of Transparent Resin Film (I) made of transparent resin used in the present invention is not particularly limited in its production method, and a transparent resin such as a cyclic olefin resin or a polycarbonate resin is previously used as a film or sheet. After forming into a shape, it can be obtained by stretching. In particular, the film (I) made of a transparent resin obtained by stretching is preferable because it is suitable for a touch panel that requires an antireflection function. When the convex portion is formed on the surface of the transparent conductive layer (III) by providing the convex portion on the film (I), the convex portion provided on the film (I) may be formed after the stretching process. Alternatively, a preliminary convex portion may be made on the film before stretching and the film may be stretched.
 透明樹脂をフィルム状に成形する方法は、透明樹脂の種類あるいはフィルムの所望特性などに応じて適宜選択して行うことができ、たとえば、溶融成形法および溶剤キャスト法(溶液流延法)などの方法を採用することができる。フィルムの成形方法としては、膜厚の均一性および表面平滑性が良好になる点からは溶剤キャスト法が好ましい。また、製造コスト面からは溶融成形法が好ましい。このようにして成形したフィルムは、特に限定されるものではないが、フィルム厚みが通常70~300μm、好ましくは80~250μmであり、フィルムの最大厚みと最小厚みとの差が通常3μm以内、好ましくは2μm以内である。 The method for forming the transparent resin into a film can be appropriately selected according to the type of the transparent resin or the desired properties of the film, such as a melt molding method and a solvent casting method (solution casting method). The method can be adopted. As a method for forming the film, a solvent casting method is preferable from the viewpoint of good film thickness uniformity and surface smoothness. From the viewpoint of production cost, the melt molding method is preferable. The film thus formed is not particularly limited, but the film thickness is usually 70 to 300 μm, preferably 80 to 250 μm, and the difference between the maximum thickness and the minimum thickness of the film is usually within 3 μm, preferably Is within 2 μm.
 透明樹脂をフィルム状またはシート状に成形する際に、その少なくともその一面に凸部を形成することが好ましい。このようにすれば、このフィルム状物またはシート状物を延伸加工することにより、所望の凸部を有するフィルム(I)を得ることができる。凸部を形成する方法は公知の方法を用いることができ、例えば、溶融成形法においては溶融した樹脂を冷却・固化する際に、凹部を有する金属ロールなどに押し当てて転写する方法が好ましく用いられる。金属ロールは、例えば表面加工のしやすい銅やニッケルなどの比較的にやわらかい金属の表面をメッキし、切削等により所望の形状にしたロールや、金属ロール表面にシボ加工した後、ロール表面が所望の形状になるようにクロムやニッケル等のメッキを行ったロール等が適宜使用される。また、これら金属ロール表面には、傷付防止を目的として公知の例えばダイヤモンドライクカーボンのような皮膜をつけることが望ましい。また、例えば溶剤キャスト法においては、凹部を有するステンレスを母材とした基材や例えばポリエチレンテレフタレート等のプラスチックの基材の上に、透明樹脂の溶液を流延し、溶媒を乾燥除去して得る方法が好ましく用いられる。このとき、樹脂フィルム中の残留溶媒量は、好ましくは20%以下、更に好ましくは10%以下、特に好ましくは5%以下であり、残留溶媒量をこの範囲とすることで延伸加工時の溶剤による発泡を押さえることができ好ましい。 When the transparent resin is formed into a film or sheet, it is preferable to form a convex portion on at least one surface thereof. If it does in this way, the film (I) which has a desired convex part can be obtained by extending | stretching this film-like thing or a sheet-like thing. A known method can be used as a method for forming the convex portion. For example, in the melt molding method, when the molten resin is cooled and solidified, a method of transferring by pressing against a metal roll having a concave portion is preferably used. It is done. For metal rolls, for example, the surface of a relatively soft metal such as copper or nickel that is easy to surface is plated, and the surface of the roll is desired after it has been cut into a desired shape by cutting or the like, and the metal roll surface is textured The roll etc. which plated chromium, nickel, etc. so that it may become the shape of this are used suitably. Moreover, it is desirable to apply a known film such as diamond-like carbon to the surface of these metal rolls for the purpose of preventing scratches. Further, for example, in the solvent casting method, a transparent resin solution is cast on a base material made of stainless steel having a recess and a plastic base material such as polyethylene terephthalate, and the solvent is removed by drying. The method is preferably used. At this time, the amount of residual solvent in the resin film is preferably 20% or less, more preferably 10% or less, particularly preferably 5% or less. By setting the residual solvent amount within this range, the amount depends on the solvent during stretching. It is preferable because foaming can be suppressed.
 透明樹脂をフィルム状またはシート状に形成した後に、例えばエンボスロール等を用いてそのフィルム状物またはシート状物の少なくとも一面に凸部を形成することも好ましく行われる。このようにしても、この凸部を有するフィルム状物またはシート状物を延伸加工することにより、所望の凸部を有するフィルム(I)を得ることができる。エンボスロールは公知の素材を使用したものや上述の金属ロール等が適宜使用される。 After forming the transparent resin into a film or sheet, it is also preferable to form a protrusion on at least one surface of the film or sheet using, for example, an embossing roll or the like. Even if it does in this way, the film (I) which has a desired convex part can be obtained by extending | stretching the film-form thing or sheet-like thing which has this convex part. As the embossing roll, a known material or the above-described metal roll is appropriately used.
 本発明で用いる透明樹脂からなるフィルム(I)は、上記のようにして透明樹脂を成形したフィルム状物を原反フィルムとし、これを延伸処理することにより製造することができる。具体的には、原反フィルムを公知の一軸延伸法または二軸延伸法、斜め延伸法等により延伸して製造することができる。すなわち、テンター法による横一軸延伸法、ロール間圧縮延伸法、周遠の異なるロールを利用する縦一軸延伸法等、または横一軸と縦一軸とを組み合わせた二軸延伸法、フィルム両端のテンターの移動速度やガイドロールの形状を非対照にして光軸をフィルム面内で斜めとする斜め延伸法、インフレーション法による延伸法等を用いることができる。これらのうち、製造コスト面から横一軸延伸や縦一軸延伸が好ましく、光軸を斜めに調整できる面から斜め延伸が好ましく、フィルム表面形状のコントロールしやすさから二軸延伸がそれぞれ好ましく用いられる。 The film (I) made of a transparent resin used in the present invention can be produced by using a film-like product obtained by molding the transparent resin as described above as a raw film, and stretching the film. Specifically, the raw film can be produced by stretching by a known uniaxial stretching method, biaxial stretching method, oblique stretching method or the like. That is, the horizontal uniaxial stretching method by the tenter method, the inter-roll compression stretching method, the longitudinal uniaxial stretching method using rolls with different circumferences, or the biaxial stretching method combining horizontal uniaxial and longitudinal uniaxial, An oblique stretching method in which the optical axis is slanted in the film plane without contrasting the moving speed and the shape of the guide roll, a stretching method by an inflation method, and the like can be used. Among these, horizontal uniaxial stretching and vertical uniaxial stretching are preferable from the viewpoint of production cost, oblique stretching is preferable from the surface where the optical axis can be adjusted obliquely, and biaxial stretching is preferably used from the viewpoint of easy control of the film surface shape.
 延伸時の延伸速度は、通常は1~5,000%/分であり、好ましくは50~1,000%/分であり、より好ましくは100~1,000%/分であり、さらに好ましくは100~500%/分である。ここで、延伸速度1%/分とは、フィルムの長さが元の長さの1%だけ毎分長くなる速度を意味する。また二軸延伸法の場合、同時2方向に延伸を行う場合や一軸延伸後に最初の延伸方向と異なる方向に延伸処理する場合がある。これらの場合、2つの延伸軸の交わり角度は、通常は120~60度の範囲であり、また、延伸速度は各延伸方向で同じであってもよく、異なっていても良い。 The stretching speed at the time of stretching is usually 1 to 5,000% / min, preferably 50 to 1,000% / min, more preferably 100 to 1,000% / min, and further preferably 100 to 500% / min. Here, the stretching speed of 1% / min means a speed at which the length of the film becomes longer by 1% of the original length per minute. In the case of the biaxial stretching method, stretching may be performed in two directions at the same time, or the stretching may be performed in a direction different from the first stretching direction after uniaxial stretching. In these cases, the intersecting angle of the two stretching axes is usually in the range of 120 to 60 degrees, and the stretching speed may be the same or different in each stretching direction.
 延伸加工温度は、特に限定されるものではないが、フィルムを構成する樹脂のガラス転移温度(Tg)を基準として、通常はTg±40℃、好ましくはTg-5~Tg+40℃、さらに好ましくはTg~Tg+30℃、特に好ましくはTg+10~Tg+30℃の範囲である。また、凸形状がフィルムの片面にのみ形成されている場合は、凸形状が形成された面の温度を形成されていない面に対して5℃以上高くすることが好ましく、10℃以上高くすることが更に好ましい。その場合、フィルムを加熱する恒温槽全体における温度分布設定を調整することや、恒温槽内にスポットヒーター等を設置すること等で温度調整が好適に行われる。延伸時の加工温度を上記範囲内にすると、フィルム表面形状を曲線状の凸状態にすることができ、また、位相差の発生を好適にコントロールするとともにムラの発生を抑えることが可能となることから好ましい。 The stretching temperature is not particularly limited, but is usually Tg ± 40 ° C., preferably Tg−5 to Tg + 40 ° C., more preferably Tg, based on the glass transition temperature (Tg) of the resin constituting the film. ˜Tg + 30 ° C., particularly preferably in the range of Tg + 10 to Tg + 30 ° C. Moreover, when the convex shape is formed only on one side of the film, it is preferable to increase the temperature of the surface on which the convex shape is formed by 5 ° C. or more, and preferably by 10 ° C. or more. Is more preferable. In that case, temperature adjustment is suitably performed by adjusting the temperature distribution setting in the whole thermostat which heats a film, installing a spot heater etc. in a thermostat. When the processing temperature at the time of stretching is within the above range, the film surface shape can be made into a curved convex state, and the occurrence of unevenness can be suppressed while suitably controlling the occurrence of phase difference. To preferred.
 延伸倍率は、通常1.01~10倍、好ましくは1.5~5倍、より好ましくは2.0~3.5倍である。延伸倍率が10倍を超える場合、フィルム表面形状や位相差の制御が困難になる場合がある。 The draw ratio is usually 1.01 to 10 times, preferably 1.5 to 5 times, more preferably 2.0 to 3.5 times. When the draw ratio exceeds 10 times, it may be difficult to control the film surface shape and retardation.
 延伸したフィルムは、そのまま冷却してもよいが、Tg-20℃~Tgの温度雰囲気下に少なくとも10秒以上、好ましくは30秒~60分、より好ましくは1分~60分静置する。これにより、位相差特性の経時変化が少なく安定した位相差フィルムが得られる。また、好ましくはTg-20℃~Tg+10℃、より好ましくはTg-10℃~Tg+5℃の温度範囲に調整されたロールに接触させることも好適に行われる。そうすることで、フィルム表面の曲線状の凸形状をより均一に形成することができる点から好ましい。 The stretched film may be cooled as it is, but is allowed to stand in a temperature atmosphere of Tg-20 ° C. to Tg for at least 10 seconds or more, preferably 30 seconds to 60 minutes, more preferably 1 minute to 60 minutes. As a result, a stable retardation film with little change in retardation characteristics with time can be obtained. Further, it is also suitably performed to contact a roll adjusted to a temperature range of preferably Tg-20 ° C to Tg + 10 ° C, more preferably Tg-10 ° C to Tg + 5 ° C. By doing so, it is preferable from the point that the curved convex shape of the film surface can be formed more uniformly.
 また、延伸後の本発明の透明樹脂からなるフィルム(I)の線膨張係数は、温度20℃から100℃の範囲において、好ましくは1×10-4(1/℃)以下であり、より好ましくは9×10-5(1/℃)以下であり、さらに好ましくは8×10-5(1/℃)以下であり、特に好ましくは7×10-5(1/℃)以下である。また、延伸方向とそれに垂直方向の線膨張係数差が好ましくは5×10-5(1/℃)以下であり、より好ましくは3×10-5(1/℃)以下であり、さらに好ましくは1×10-5(1/℃)以下である。線膨張係数を上記範囲内とすることで、フィルム(I)を本発明の導電性積層フィルムに用いたときに、使用時の温度および湿度などの影響により生じる応力変化に起因する位相差の変化や透明導電膜の抵抗値変化が抑えられ、長期間の特性の安定を得ることができる。また、フィルム(I)を用いた本発明の導電性積層フィルムをタッチパネルとしたときに、外部環境変化による変形が抑えられ、干渉縞の発生をより抑制することができる。 Further, the linear expansion coefficient of the film (I) comprising the transparent resin of the present invention after stretching is preferably 1 × 10 −4 (1 / ° C.) or less, more preferably in the temperature range of 20 ° C. to 100 ° C. Is 9 × 10 −5 (1 / ° C.) or less, more preferably 8 × 10 −5 (1 / ° C.) or less, and particularly preferably 7 × 10 −5 (1 / ° C.) or less. Further, the difference in linear expansion coefficient between the stretching direction and the direction perpendicular thereto is preferably 5 × 10 −5 (1 / ° C.) or less, more preferably 3 × 10 −5 (1 / ° C.) or less, and further preferably 1 × 10 −5 (1 / ° C.) or less. By setting the linear expansion coefficient within the above range, when the film (I) is used in the conductive laminated film of the present invention, a change in phase difference caused by a change in stress caused by the influence of temperature and humidity during use In addition, changes in resistance value of the transparent conductive film can be suppressed, and long-term characteristics can be stabilized. Moreover, when the conductive laminated film of the present invention using the film (I) is used as a touch panel, deformation due to a change in the external environment can be suppressed and generation of interference fringes can be further suppressed.
 上述のようにして延伸したフィルムは、延伸により分子が配向し、透過光に位相差を与えるようになるが、この位相差は、延伸前のフィルムの位相差値と延伸倍率、延伸温度、延伸配向後のフィルムの厚さにより制御することができる。 In the film stretched as described above, molecules are oriented by stretching and a phase difference is imparted to transmitted light. This phase difference is determined by the retardation value, stretching ratio, stretching temperature, stretching of the film before stretching. It can control by the thickness of the film after orientation.
 本発明で用いる透明樹脂からなるフィルム(I)の全光線透過率は、タッチパネルの視認性が良好となることから、好ましくは85%以上、より好ましくは88%以上、さらに好ましくは90%以上である。 The total light transmittance of the film (I) made of the transparent resin used in the present invention is preferably 85% or more, more preferably 88% or more, and still more preferably 90% or more, since the visibility of the touch panel is improved. is there.
 表面処理
 本発明に係る透明樹脂からなるフィルム(I)は、硬化性樹脂組成物よりなる樹脂層(II)や透明導電層(III)との接着性を高める目的で表面処理を施したものであってもよい。該表面処理としては、プラズマ処理、コロナ処理、アルカリ処理、コーティング処理等が挙げられる。とりわけコロナ処理を用いることで、透明樹脂からなるフィルム(I)と当該樹脂層(II)との密着を強固とすることができる。
Surface Treatment The film (I) made of the transparent resin according to the present invention is subjected to a surface treatment for the purpose of improving the adhesion with the resin layer (II) and the transparent conductive layer (III) made of a curable resin composition. There may be. Examples of the surface treatment include plasma treatment, corona treatment, alkali treatment, and coating treatment. In particular, by using corona treatment, the adhesion between the transparent resin film (I) and the resin layer (II) can be strengthened.
 コロナ処理条件としては、コロナ放電電子の照射量として1~1000W/m2/minであることが好ましく、10~100W/m2/minとすることがより好ましい。これより照射量が低い場合には、充分な表面改質効果が得られない場合があり、またこれより照射量が高い場合には、位相差フィルムの内部にまで処理効果が及び、フィルムそのものが変質してしまうおそれがある。 The corona treatment conditions, is preferably 1 ~ 1000W / m 2 / min as an irradiation amount of corona discharge electron, and more preferably in the 10 ~ 100W / m 2 / min . If the irradiation amount is lower than this, a sufficient surface modification effect may not be obtained, and if the irradiation amount is higher than this, the treatment effect reaches the inside of the retardation film, and the film itself is There is a risk of deterioration.
 また、コロナ処理をした透明樹脂からなるフィルム(I)上に、当該樹脂層(II)を形成する場合、コロナ処理をした直後のフィルム(I)を用いてもよいが、除電させてから用いることが異物付着防止の面から好ましい。 Moreover, when forming the said resin layer (II) on the film (I) which consists of a transparent resin which carried out the corona treatment, you may use the film (I) immediately after a corona treatment, but use it after carrying out static elimination. This is preferable in terms of preventing foreign matter adhesion.
 <硬化性樹脂組成物よりなる樹脂層(II)>
 前記透明樹脂からなるフィルム(I)と透明導電層(III)との間に、表面硬度や密着性等の向上や表面凸部のなだらかさを調整することを目的に硬化性樹脂組成物よりなる樹脂層(II)を設けることが好ましい。
<Resin layer (II) made of curable resin composition>
Between the film (I) made of the transparent resin and the transparent conductive layer (III), it is made of a curable resin composition for the purpose of improving the surface hardness, adhesion, etc. and adjusting the smoothness of the surface protrusions. It is preferable to provide the resin layer (II).
 前述のとおり、フィルム(I)と透明導電層(III)との間に樹脂層(II)が設けられている場合には、樹脂層(II)の表面部に凸部を設けることにより、透明導電層(III)側の表面部に凸部を形成してもよい。このようにすると、本発明の導電性積層フィルムは、アンチニュートンリング性確保とクリア感の向上、ぎらつきの防止を達成することができる。 As described above, when the resin layer (II) is provided between the film (I) and the transparent conductive layer (III), by providing a convex portion on the surface portion of the resin layer (II), A convex portion may be formed on the surface portion on the conductive layer (III) side. If it does in this way, the conductive laminated film of this invention can achieve the anti-Newton ring property ensuring, the improvement of a clear feeling, and prevention of glare.
 樹脂層(II)の表面部に設ける凸部は、前述と同様に、畝状や海島状に形成することができる。このような凸部が設けられた樹脂層(II)の上に透明導電層(III)をほぼ均一の厚さに積層することにより、透明導電層(III)側の表面部に前述の畝状や海島状に形成された凸部を有する導電性積層フィルムを得ることができる。 The convex portion provided on the surface portion of the resin layer (II) can be formed in a bowl shape or a sea island shape as described above. By laminating the transparent conductive layer (III) with a substantially uniform thickness on the resin layer (II) provided with such convex portions, the above-mentioned bowl-like shape is formed on the surface portion on the transparent conductive layer (III) side. Or the electroconductive laminated film which has the convex part formed in sea island shape can be obtained.
 以下、樹脂層(II)の畝状に設けられた凸部を有する樹脂層(II)について述べる。 Hereinafter, the resin layer (II) having convex portions provided in a bowl shape of the resin layer (II) will be described.
 樹脂層(II)の凸部は、畝状に形成され、当該畝の長さ方向と直交する面で切って得られる断面において、凸部が形成されている表面を示す線が波状の曲線であることが好ましい。前記畝を形成する複数の凸部が、畝の長さ方向に蛇行していることが好ましい。 The convex part of the resin layer (II) is formed in a bowl shape, and in the cross section obtained by cutting along a plane perpendicular to the length direction of the bottle, the line indicating the surface on which the convex part is formed is a wavy curve. Preferably there is. It is preferable that the plurality of convex portions forming the ridge meander in the length direction of the ridge.
 また、前記波状の曲線が、規則的な周期(ピッチ:以下Pともいう)を有する波状の曲線であることが好ましく、前記畝を形成する複数の凸部が畝の長さ方向に沿って規則的な周期(ピッチ:以下Plともいう)で蛇行していることも好ましい。 The wavy curve is preferably a wavy curve having a regular period (pitch: hereinafter also referred to as P), and the plurality of convex portions forming the wrinkles are regularly formed along the length direction of the wrinkles. It is also preferable to meander at a regular cycle (pitch: hereinafter also referred to as Pl).
 前記断面に現れる波状の曲線の前記Pは、好ましくは100~5000μm、より好ましくは200~1000μmの範囲である。前記Pが100μmを下回るとぎらつきが発生する場合があり、5000μmを超えるとアンチニュートンリング性が十分に発現しない場合がある。 The P of the wavy curve appearing in the cross section is preferably in the range of 100 to 5000 μm, more preferably in the range of 200 to 1000 μm. When P is less than 100 μm, glare may occur, and when it exceeds 5000 μm, anti-Newton ring properties may not be sufficiently exhibited.
 また、畝状に形成された凸部の最大高さは通常0.1~10μm、好ましくは0.5~3μmの範囲に設定される。0.1μm未満だとアンチニュートンリング性が発現せず、10μmを超えるとタッチパネルとして組み立てた時に入力時にでこぼこ感が感じとれてしまう。 Further, the maximum height of the convex portion formed in a bowl shape is usually set in the range of 0.1 to 10 μm, preferably 0.5 to 3 μm. If it is less than 0.1 μm, the anti-Newton ring property does not appear, and if it exceeds 10 μm, a feeling of bumpiness is felt at the time of input when assembled as a touch panel.
 畝を形成する複数の凸部は前記Plで蛇行していることが好ましい。ここで「蛇行している」とは、本発明の導電性積層フィルムの平面と平行な面上で、畝状に形成された凸部がその長さ方向に沿って波状の曲線を描くことをいう。 It is preferable that the plurality of convex portions forming the ridge meander with the Pl. Here, “meandering” means that the convex portion formed in a bowl shape draws a wavy curve along the length direction on a plane parallel to the plane of the conductive laminated film of the present invention. Say.
 畝状の凸部は、このような凸部を形成できる凹部を有する転写ロール等により形状を連続的に透明樹脂からなるフィルム(I)上へ転写することにより好適に形成される。畝状の凸部を有する樹脂層(II)を他のフィルムやシートと積層するときは、例えば下部表示装置に液晶を使用する場合、モアレ対策として、その偏光軸に対して、畝の長さ方向を10~45°の角度に積層することで視認性が良好となる。故に、基材フィルムに1/4λ位相差フィルムを使用する場合、その遅相軸に対しても畝の長さ方向を10~80°の角度で積層される事が望ましい。 The bowl-shaped convex part is preferably formed by continuously transferring the shape onto a film (I) made of a transparent resin by a transfer roll having a concave part capable of forming such a convex part. When laminating the resin layer (II) having a ridge-shaped convex part with another film or sheet, for example, when using a liquid crystal in the lower display device, the length of the ridge with respect to the polarization axis as a countermeasure against moire Visibility is improved by laminating the directions at an angle of 10 to 45 °. Therefore, when a ¼λ retardation film is used as the base film, it is desirable that the longitudinal direction of the ridge is laminated at an angle of 10 to 80 ° with respect to the slow axis.
 畝状に形成された凸部について更に図を用いて説明する。図7は、透明樹脂からなるフィルム(I)の片面に、UV硬化性樹脂組成物により、畝状に設けられた凸部を有する樹脂層(II)が形成された積層フィルムを、畝の長さ方向と直交する面で切って斜め上方から観察した図である。畝のピッチ(P)は、樹脂層(II)の複数の凸部によって決まる。 The convex portion formed in a bowl shape will be further described with reference to the drawings. FIG. 7 shows a laminated film in which a resin layer (II) having convex portions provided in a bowl shape is formed on one side of a film (I) made of a transparent resin by a UV curable resin composition. It is the figure cut from the surface orthogonal to the direction and observed from diagonally upward. The pitch (P) of the ridges is determined by a plurality of convex portions of the resin layer (II).
 この断面において、凸部が形成されている表面を示す線は、規則的な周期を有する波状の曲線であることが好ましい。このように、曲線を描くことにより、タッチパネルとしたときに畝状に起因する筋状の線が認められなくなり、より画面の高精細化に対応することができ好適である。さらに、タッチパネルとして使用したときのすべり性が向上し、手触りが良くなるとともに、タッチパネルを長期に使用したときの抵抗値変化を抑制することができ、耐久性能をより一段と向上することができ好ましい。こうすることで、干渉縞の発生が抑えられ、コントラストが高く、ぎらつきが少なく、明瞭な表示を達成でき、耐久性に優れ、視認性の高い導電性積層フィルムおよびタッチパネルを提供することができる。 In this cross section, the line indicating the surface on which the convex portion is formed is preferably a wavy curve having a regular period. Thus, by drawing a curved line, when a touch panel is used, a streak-like line caused by a bowl shape is not recognized, and it is possible to cope with higher definition of the screen. Furthermore, it is preferable that the sliding property when used as a touch panel is improved, the touch is improved, the resistance value change when the touch panel is used for a long time can be suppressed, and the durability performance can be further improved. By doing so, it is possible to provide a conductive laminated film and a touch panel that can suppress generation of interference fringes, have high contrast, have less glare, achieve a clear display, have excellent durability, and high visibility. .
 図8には畝状に形成された凸部の長さ方向と直交する断面の観察図である。この断面における凸部が描く曲線部および2つの凸部に挟まれた谷間部が描く曲線部はそれぞれ曲率半径(Rt)、(Rb)を持つ丸みを帯びた曲線である。この曲線は正弦曲線であってもよい。正弦曲線であると、その金型の作りやすさから好ましい。また、タッチパネルの感触と筋状の線の解消のしやすさ、ならびに干渉縞の防止効果や耐久性能面は、それぞれの曲率半径を調整することで調節することができる。その際には、曲率半径(Rt)、(Rb)はそれぞれ、ピッチ(P)の半分以上30倍以下が好ましく用いられ、更に好ましくはピッチ(P)の1倍以上で10倍以下、特に好ましくはピッチ(P)の3倍以上で10倍以下が用いられる。また、曲率半径(Rt)と(Rb)を同じにすることはその作りやすさから好ましく用いられるが、曲率半径(Rt)を(Rb)より大きくすることがタッチパネルでの感触を向上する面から好ましい。また、前記断面における凸部が描く曲線部と2つの凸部に挟まれた谷間部の曲線部とをつなぐ直線部分の、図8におけるフィルム平面方向の長さ(L)は、ピッチ(P)と比べて好ましくは三分の一以下、更に好ましくは五分の一以下、特に好ましくは十分の一以下が用いられる。 FIG. 8 is an observation view of a cross section orthogonal to the length direction of the convex portion formed in a bowl shape. The curved part drawn by the convex part in this cross section and the curved part drawn by the valley part sandwiched between the two convex parts are rounded curves having curvature radii (Rt) and (Rb), respectively. This curve may be a sinusoid. A sine curve is preferable from the viewpoint of ease of making the mold. In addition, the touch of the touch panel and the ease of eliminating the streak lines, the interference fringe prevention effect and the durability performance can be adjusted by adjusting the respective curvature radii. In that case, the curvature radii (Rt) and (Rb) are each preferably not less than half and not more than 30 times of the pitch (P), more preferably not less than 1 and not more than 10 times, particularly preferably not less than 1 time of the pitch (P). Is not less than 3 times and not more than 10 times the pitch (P). Moreover, although it is preferable to make the curvature radii (Rt) and (Rb) the same, it is preferably used from the viewpoint of ease of production, but from the aspect of improving the touch on the touch panel, making the curvature radius (Rt) larger than (Rb). preferable. Moreover, the length (L) of the film plane direction in FIG. 8 of the straight line part which connects the curved part which the convex part in the said cross section draws, and the curved part of the valley part pinched | interposed into two convex parts is pitch (P). Is preferably 1/3 or less, more preferably 1/5 or less, particularly preferably 1/10 or less.
 図9には、一好適例である、畝状に形成された凸部を有する樹脂層(II)の上方からの観察図を示す。本発明の導電性積層フィルムにおいて、畝状に形成された凸部の稜線が、導電性積層フィルムの平面上において規則的な周期(ピッチ)を有する波状の曲線を描くことが好ましい。図7では凸部の稜線が直線であったのに対し、図9では凸部がフィルム平面と平行な面上において規則的に蛇行している。畝状の凸部をこのようにすることで、筋状の線がより認められにくくなり、タッチパネルとして使用したときのすべり性が向上して手触りが良くなるとともに、タッチパネルを長期に使用したときの抵抗値変化を抑制することができ、耐久性能をより一段と向上することができ好ましい。 FIG. 9 shows an observation view from above of the resin layer (II) having convex portions formed in a bowl shape, which is a preferred example. In the conductive laminated film of the present invention, it is preferable that the ridge line of the convex portion formed in a bowl shape draws a wavy curve having a regular period (pitch) on the plane of the conductive laminated film. In FIG. 7, the ridge line of the convex portion is a straight line, whereas in FIG. 9, the convex portion is meandering regularly on a plane parallel to the film plane. By making the ridge-shaped projections in this way, the streak-like lines are less likely to be recognized, the slipperiness when used as a touch panel is improved and the touch is improved, and when the touch panel is used for a long time The resistance value change can be suppressed, and the durability performance can be further improved, which is preferable.
 このときのフィルム平面内での規則的な曲線のピッチを(Pl)、曲線の幅を(W)とすると、ピッチ(Pl)はピッチ(P)の好ましくは1倍以上30倍以下、更に好ましくは2倍以上20倍以下、特に好ましくは3倍以上10倍以下であり、また、曲線の幅(W)はピッチ(P)の好ましくは二分の一倍以上30倍以下、更に好ましくは一倍以上20倍以下、特に好ましくは3倍以上10倍以下が用いられる。当該フィルム平面方向における規則的な曲線を、当該範囲未満にするとタッチパネルにしたときにぎらつき感が発生することがあり、また、範囲を超えると曲線にすることによる効果が薄れることがあり好ましくない。 When the pitch of the regular curve in the film plane at this time is (Pl) and the width of the curve is (W), the pitch (Pl) is preferably 1 to 30 times, more preferably the pitch (P). Is not less than 2 times and not more than 20 times, particularly preferably not less than 3 times and not more than 10 times, and the width (W) of the curve is preferably not less than 1/2 times and not more than 30 times, more preferably not less than 1 time of the pitch (P). 20 times or less, particularly preferably 3 times or more and 10 times or less are used. If the regular curve in the film plane direction is less than the range, glare may occur when the touch panel is used, and if it exceeds the range, the effect of the curve may be reduced.
 (硬化性樹脂組成物)
 硬化性樹脂組成物は、他の層には影響が低く、効率よく硬化でき、硬化条件のコントロールがしやすいという観点から、UV硬化性樹脂組成物であることが好ましい。UV硬化性樹脂組成物は、好ましくは(A)アクリロイル基を3以上有する多官能モノマー(以下「(A)成分」ともいう。)、(B)グリシジル(メタ)アクリレート系重合物にアクリル酸を付加反応させてなるポリマー(以下「(B)成分」ともいう。)および(C)任意にその他のアクリルオリゴマー(以下「(C)成分」ともいう。)を特定量で配合してなる。特に、(A)成分は、透明導電層(III)の硬度、透明樹脂からなるフィルム(I)への密着性等を付与し得る成分である。(B)成分は、透明導電層の硬度のさらなる向上、硬化性および硬化時のカール発生の低減などを付与し得る成分である。(C)成分は、強靭性等を付与し得る任意成分である。
(Curable resin composition)
The curable resin composition is preferably a UV curable resin composition from the viewpoint that the other layers have low influence, can be cured efficiently, and the curing conditions are easily controlled. The UV curable resin composition preferably comprises (A) a polyfunctional monomer having 3 or more acryloyl groups (hereinafter also referred to as “(A) component”), (B) acrylic acid in a glycidyl (meth) acrylate polymer. A polymer obtained by addition reaction (hereinafter also referred to as “component (B)”) and (C) optionally other acrylic oligomer (hereinafter also referred to as “component (C)”) are blended in a specific amount. In particular, the component (A) is a component that can impart hardness of the transparent conductive layer (III), adhesion to the film (I) made of a transparent resin, and the like. The component (B) is a component that can impart further improvement in the hardness of the transparent conductive layer, curability, reduction of curling during curing, and the like. (C) component is an arbitrary component which can provide toughness etc.
 (A)成分の表面張力は、充分な硬度および密着性を得ることができるという観点から、37mN/m以下の範囲が適当であり、さらに30mN/m以上が好ましい。表面張力の測定は、協和CBVP式表面張力計を用いる垂直板法(wilhemy method)による。 The surface tension of the component (A) is suitably in the range of 37 mN / m or less, more preferably 30 mN / m or more, from the viewpoint that sufficient hardness and adhesion can be obtained. The surface tension is measured by a vertical plate method using a Kyowa CBVP surface tension meter.
 (A)成分の具体例としては、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、グリセリンプロピレングリコール付加物のトリアクリレート、トリメチロールプロパンプロピレングリコール付加物のトリアクリレートなどが挙げられる。これらのうち、硬化塗膜が高硬度となることから、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレートが好ましい。 Specific examples of the component (A) include trimethylolpropane triacrylate, ditrimethylolpropane tetraacrylate, triacrylate of glycerin propylene glycol adduct, triacrylate of trimethylolpropane propylene glycol adduct, and the like. Of these, trimethylolpropane triacrylate and ditrimethylolpropane tetraacrylate are preferred because the cured coating film has high hardness.
 硬化性樹脂組成物中の(A)成分の配合量は、40~60重量%(ただし、(A)~(C)成分の合計が100重量%である。)であることが適当であり、50~60重量%が好ましい。 The blending amount of the component (A) in the curable resin composition is suitably 40 to 60% by weight (however, the total of the components (A) to (C) is 100% by weight), 50 to 60% by weight is preferred.
 (B)成分は、上述のように、グリシジル(メタ)アクリレート系重合物にアクリル酸を付加反応させてなるポリマーアクリレートである。エポキシ基に対するアクリル酸の付加量は、未反応のエポキシが組成物の安定性に悪影響を与えるため、1:1~1:0.8程度が適当であり、1:1~1:0.9程度が好ましい。 The component (B) is a polymer acrylate obtained by adding an acrylic acid to a glycidyl (meth) acrylate polymer as described above. The amount of acrylic acid added to the epoxy group is suitably about 1: 1 to 1: 0.8 because unreacted epoxy adversely affects the stability of the composition, and 1: 1 to 1: 0.9. The degree is preferred.
 グリシジル(メタ)アクリレート系重合物としては、グリシジル(メタ)アクリレートの単独重合体、グリシジル(メタ)アクリレートとカルボキシル基とを含有しない各種α,β-不飽和単量体との共重合体等が挙げられる。該カルボキシル基を含有しないα,β-不飽和単量体としては、各種の(メタ)アクリル酸エステル、スチレン、酢酸ビニル、アクリロニトリルなどが例示できる。なお、グリシジル(メタ)アクリレートとカルボキシル基を含有しないα,β-不飽和単量体とを共重合させてグリシジル(メタ)アクリレート系重合物を得ようとする場合には、反応時に架橋が生じることなく、高粘度化やゲル化を有効に防止することができる。グリシジル(メタ)アクリレート系重合物の分子量は、硬化時のカール性の低減およびアクリル付加反応時のゲル化防止の観点より重量平均分子量5,000~100,000程度であり、10,000~50,000程度が好ましい。重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)によりポリスチレン換算で得られたものである。(B)成分中のグリシジル(メタ)アクリレートの使用割合は、透明導電層の硬度およびポリマーの移行性などを考慮して70重量%以上が適しており、75重量%以上が好ましい。 Examples of the glycidyl (meth) acrylate polymer include homopolymers of glycidyl (meth) acrylate, copolymers of glycidyl (meth) acrylate and various α, β-unsaturated monomers not containing a carboxyl group, and the like. Can be mentioned. Examples of the α, β-unsaturated monomer not containing a carboxyl group include various (meth) acrylic acid esters, styrene, vinyl acetate, acrylonitrile and the like. When a glycidyl (meth) acrylate polymer is obtained by copolymerizing glycidyl (meth) acrylate and an α, β-unsaturated monomer not containing a carboxyl group, crosslinking occurs during the reaction. Therefore, high viscosity and gelation can be effectively prevented. The molecular weight of the glycidyl (meth) acrylate polymer is about 5,000 to 100,000 in terms of weight average molecular weight from the viewpoint of reducing curling at the time of curing and preventing gelation at the time of the acrylic addition reaction. About 1,000 is preferable. The weight average molecular weight is obtained in terms of polystyrene by gel permeation chromatography (GPC). (B) 70 weight% or more is suitable for the usage-amount of the glycidyl (meth) acrylate in a component in consideration of the hardness of a transparent conductive layer, the transferability of a polymer, etc., and 75 weight% or more is preferable.
 (B)成分の製造は、公知の共重合方法を適用できる。グリシジル(メタ)アクリレート系重合体の製造は、この単量体、重合開始剤、必要により連鎖移動剤および溶剤を反応容器に仕込み、窒素気流下に80~90℃、3~6時間程度の条件にて行うことが適切である。こうして得られたグリシジル(メタ)アクリレート系重合体とアクリル酸とを開環エステル化反応させて、(B)成分を収得できる。この反応は、通常は、アクリル酸自体の重合を防止するために酸素気流下に行うのがよく、また反応温度は100~120℃、反応時間は5~8時間程度が適切である。 A known copolymerization method can be applied to the production of the component (B). The glycidyl (meth) acrylate polymer is prepared by charging this monomer, a polymerization initiator, and, if necessary, a chain transfer agent and a solvent into a reaction vessel under conditions of 80 to 90 ° C. and 3 to 6 hours under a nitrogen stream. It is appropriate to do in The glycidyl (meth) acrylate polymer thus obtained and acrylic acid can be subjected to a ring-opening esterification reaction to obtain the component (B). This reaction is usually carried out in an oxygen stream in order to prevent the polymerization of acrylic acid itself, and the reaction temperature is suitably 100 to 120 ° C. and the reaction time is about 5 to 8 hours.
 硬化樹脂組成物中の(B)成分の配合量は、10~60重量%(ただし、(A)~(C)成分の合計が100重量%である。)であることが適しており、20~50重量%が好ましい。 The blending amount of the component (B) in the cured resin composition is suitably 10 to 60% by weight (however, the total of the components (A) to (C) is 100% by weight), and 20 ~ 50% by weight is preferred.
 (C)成分の具体例としては、多官能ポリエステルアクリレート、多官能ウレタンアクリレート、エポキシアクリレートが挙げられる。なかでも、硬化塗膜の耐擦傷性、強靭性等の観点から、多官能ウレタンアクリレートが好ましい。例えば(a)ヒドロキシル基を有する(メタ)アクリレートと分子内に2個以上のイソシアネート基を有するイソシアネート化合物とのウレタン反応生成物、(b)分子内に2個以上のイソシアネート基を有するイソシアネート化合物にポリオール、ポリエステルまたはポリアミド系のジオールを反応させて付加体を合成した後、残ったイソシアネート基にヒドロキシル基を有する(メタ)アクリレートを付加させる反応生成物等が挙げられる(例えば、特開2002-275392号参照)。 Specific examples of the component (C) include polyfunctional polyester acrylate, polyfunctional urethane acrylate, and epoxy acrylate. Of these, polyfunctional urethane acrylates are preferred from the viewpoints of scratch resistance and toughness of the cured coating film. For example, (a) a urethane reaction product of (meth) acrylate having a hydroxyl group and an isocyanate compound having two or more isocyanate groups in the molecule, and (b) an isocyanate compound having two or more isocyanate groups in the molecule. Examples include a reaction product obtained by reacting a polyol, polyester or polyamide-based diol to synthesize an adduct, and then adding a (meth) acrylate having a hydroxyl group to the remaining isocyanate group (for example, JP-A-2002-275392). Issue).
 多官能ウレタンアクリレートは、ヒドロキシル基を有する(メタ)アクリレートと2個以上のイソシアネート基を有する多価イソシアネート化合物とからなるウレタン反応生成物である。ヒドロキシル基を有する(メタ)アクリレートとしては、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレートなどが好ましい。 Polyfunctional urethane acrylate is a urethane reaction product composed of (meth) acrylate having a hydroxyl group and a polyvalent isocyanate compound having two or more isocyanate groups. As the (meth) acrylate having a hydroxyl group, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate and the like are preferable.
 硬化樹脂組成物中の(C)成分の配合量は、0~50重量%(ただし、(A)~(C)成分の合計が100重量%である。)が適している。 The blending amount of the component (C) in the cured resin composition is suitably 0 to 50% by weight (however, the total of the components (A) to (C) is 100% by weight).
 硬化樹脂組成物を硬化させるために用いる方法としては、熱や活性エネルギー線等が好適に用いられる。活性エネルギー線としては、例えば、紫外線、電子線等のいずれでもよい。電子線等により樹脂組成物を硬化させる場合には光重合開始剤は不要であるが、紫外線により硬化させる場合には、樹脂組成物100重量部に対し、通常、光重合開始剤1~15重量部程度を含有させることができる。光重合開始剤としては、ダロキュアー1173、イルガキュアー651、イルガキュアー184、イルガキュアー907、イルガキュアー754(いずれもチバ・スペシャルティ・ケミカルズ社製)、ベンゾフェノン等の各種の公知のものを使用できる。必要に応じて、上記以外の各種添加剤、例えば、重合禁止剤、酸化防止剤、紫外線吸収剤、帯電防止剤、光安定剤、溶剤、消泡剤、レベリング剤などを配合してもよい。 As a method used for curing the curable resin composition, heat, active energy rays, or the like is preferably used. As the active energy ray, for example, any of ultraviolet rays and electron beams may be used. When the resin composition is cured with an electron beam or the like, a photopolymerization initiator is not required. However, when cured with ultraviolet rays, the photopolymerization initiator is usually 1 to 15 weights per 100 parts by weight of the resin composition. About parts can be contained. As the photopolymerization initiator, various known ones such as Darocur 1173, Irgacure 651, Irgacure 184, Irgacure 907, Irgacure 754 (all manufactured by Ciba Specialty Chemicals) and benzophenone can be used. If necessary, various additives other than those described above, for example, a polymerization inhibitor, an antioxidant, an ultraviolet absorber, an antistatic agent, a light stabilizer, a solvent, an antifoaming agent, and a leveling agent may be blended.
 (フィルム(I)/樹脂層(II)からなる積層フィルムの物性)
 本発明の導電性積層フィルムは、透明樹脂からなるフィルム(I)および透明導電層(III)を有し、任意的に樹脂層(II)を有するが、透明樹脂からなるフィルム(I)上に樹脂層(II)が形成されて得られる積層フィルムは、好ましくは以下の物性を有する。
(Physical properties of laminated film consisting of film (I) / resin layer (II))
The conductive laminated film of the present invention has a film (I) made of a transparent resin and a transparent conductive layer (III), and optionally has a resin layer (II), but on the film (I) made of a transparent resin. The laminated film obtained by forming the resin layer (II) preferably has the following physical properties.
 (1)ヘイズは、曇価ともよばれ、曇り具合、拡散度合いを表すものであって、例えば、市販されているスガ試験機(株)HGM-2DP等を用いて、JIS K-7136に準拠してヘイズ(%)を測定することができる。標記フィルムのヘイズは、1%以下が好ましい。ヘイズが上記範囲外であると、白ぼけが発生しタッチパネルの視認性が低下する。 (1) Haze is also called haze value and represents the degree of haze and the degree of diffusion. For example, using a commercially available Suga Test Machine Co., Ltd. HGM-2DP, etc., it conforms to JIS K-7136. The haze (%) can be measured. The haze of the title film is preferably 1% or less. When the haze is outside the above range, white blur occurs and the visibility of the touch panel decreases.
 (2)全光線透過率(%)は、例えば、市販されているスガ試験機(株)HGM-2DP等を用いて、JIS K-7361に準拠して測定する場合、タッチパネルの視認性が向上することから、80%以上が好ましく、83%以上がより好ましく、85%以上がさらに好ましい。 (2) When the total light transmittance (%) is measured according to JIS K-7361 using, for example, a commercially available Suga Test Instruments Co., Ltd. HGM-2DP, the touch panel visibility is improved. Therefore, 80% or more is preferable, 83% or more is more preferable, and 85% or more is more preferable.
 (3)透過光b*(%)は、例えば、市販されている大塚電子(株)製 色差計RETS-1200VA等を用いて、JIS Z-8722に準拠し測定する場合、タッチパネルの視認性が向上することから、0~10%が好ましく、0~5%がより好ましく、0~2%がさらに好ましい。 (3) When the transmitted light b * (%) is measured in accordance with JIS Z-8722 using, for example, a commercially available color difference meter RETS-1200VA manufactured by Otsuka Electronics Co., Ltd., the visibility of the touch panel is low. From the viewpoint of improvement, 0 to 10% is preferable, 0 to 5% is more preferable, and 0 to 2% is more preferable.
 (4)鉛筆硬度は、(株)東洋精機製 NPを用いて、JIS K5600-5-4により測定する場合、HB以上であることが好ましい。HB未満であるとITO成膜時に透明導電膜に傷が入ることがある。 (4) The pencil hardness is preferably HB or higher when measured by JIS K5600-5-4 using NP manufactured by Toyo Seiki Co., Ltd. If it is less than HB, the transparent conductive film may be damaged during ITO film formation.
 (5)防眩性は、標記フィルムに蛍光灯(全光束3520lm)を映し、蛍光灯の輪郭のボケの程度を目視により評価する場合、蛍光灯の輪郭がまったくわからないことが好ましい。 (5) For anti-glare properties, when a fluorescent lamp (total luminous flux 3520 lm) is projected on the title film and the degree of blurring of the fluorescent lamp outline is visually evaluated, it is preferable that the fluorescent lamp outline is not known at all.
 (6)輝度ムラは、シャープ製モバイルツールSL-6000Nの画面を緑表示とした後、標記フィルムを乗せ、目視により評価する場合、画素の輝度ムラがほとんど認識できないことが好ましい。 (6) It is preferable that the luminance unevenness of the pixel is hardly recognized when the screen of the mobile tool SL-6000N manufactured by Sharp is displayed in green, and then the mark film is placed and evaluated by visual observation.
 (7)アンチニュートンリング性は、標記フィルムを平滑なガラス板(厚み3mm、素材:ソーダガラス)の上に樹脂層が密着するように乗せて指で押しつけ、ニュートンリングが発生するかを目視にて評価する場合、ニュートンリングが発生しないことが好ましい。 (7) The anti-Newton ring property is determined by placing the film on a smooth glass plate (thickness 3 mm, material: soda glass) so that the resin layer adheres and pressing it with a finger to see if Newton rings occur. It is preferable that no Newton ring is generated.
 (8)熱収縮率(%)は、150℃に加熱した強制循環式乾燥機の中に標記フィルムを60分間静置させ、ミツトヨ製 寸法測定顕微鏡176-812を用いて加熱前後のフィルムの寸法変化を測定し、熱収縮率を算出する場合、1.5%以下が好ましく、1.3%以下がより好ましく、1.0%以下がさらに好ましい。熱収縮率が1.5%を超えると、タッチパネルの変形が発生する場合がある。 (8) The heat shrinkage rate (%) is determined by allowing the title film to stand for 60 minutes in a forced circulation dryer heated to 150 ° C., and using the dimension measurement microscope 176-812 made by Mitutoyo before and after heating. When measuring the change and calculating the heat shrinkage rate, it is preferably 1.5% or less, more preferably 1.3% or less, and even more preferably 1.0% or less. If the heat shrinkage rate exceeds 1.5%, the touch panel may be deformed.
 (9)位相差は、特に限定されるものではないが、透明樹脂からなるフィルム(I)が位相差フィルムである場合には、王子計測機器(株)製の「KOBRA-21ADH/PR」を用いて、波長550nmの透過光に対して測定した位相差(nm)では、128~148nmが好ましく、133~143nmがより好ましい。位相差が上記から外れると液晶ディスプレイのコントラスト、視認性が低下する場合がある。 (9) The retardation is not particularly limited, but when the transparent resin film (I) is a retardation film, “KOBRA-21ADH / PR” manufactured by Oji Scientific Instruments The phase difference (nm) measured for transmitted light having a wavelength of 550 nm is preferably 128 to 148 nm, and more preferably 133 to 143 nm. If the phase difference deviates from the above, the contrast and visibility of the liquid crystal display may be lowered.
 <透明導電層(III)>
 本発明の導電性積層フィルムは、透明樹脂からなるフィルム(I)の上に透明導電層(III)が積層されてなるか、あるいはフィルム(I)の上に上述の硬化性樹脂組成物よりなる樹脂層(II)等が適宜形成され、さらにその上に透明導電層(III)が積層されてなる。
<Transparent conductive layer (III)>
The conductive laminated film of the present invention is formed by laminating a transparent conductive layer (III) on a film (I) made of a transparent resin, or comprising the above-described curable resin composition on a film (I). A resin layer (II) or the like is appropriately formed, and a transparent conductive layer (III) is further laminated thereon.
 本発明の導電性積層フィルムを構成する透明導電層(III)は、可視光領域において透過度を有し、かつ導電性を有する層であればよく、特に限定されるものではないが、酸化錫を含有する酸化インジウム(酸化インジウムスズ、以下ITOともいう)、酸化チタンを含有する酸化インジウム、酸化錫、酸化チタン、ポリチオフェン、無機ナノ粒子等を分散した無機/有機複合系材料などから得られる層が挙げられる。本発明では、透明導電層(III)が、ITOからなる層であることが好ましく、より具体的には結晶性ITOからなる層であることが好ましい。 The transparent conductive layer (III) constituting the conductive laminated film of the present invention is not particularly limited as long as it is a layer having transparency in the visible light region and having conductivity. A layer obtained from an inorganic / organic composite material dispersed with indium oxide containing indium oxide (indium tin oxide, hereinafter also referred to as ITO), indium oxide containing titanium oxide, tin oxide, titanium oxide, polythiophene, inorganic nanoparticles, etc. Is mentioned. In the present invention, the transparent conductive layer (III) is preferably a layer made of ITO, and more specifically a layer made of crystalline ITO.
 (透明導電層(III)の形成)
 透明導電層(III)の形成方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法等の従来公知の技術をいずれも用いることができるが、膜の均一性や透明基材への薄膜の密着性の観点から、スパッタリング法での薄膜形成が好ましい。また、用いる薄膜材料も上記以外に、例えば、アンチモンを含有する酸化錫などの金属酸化物のほか、金、銀、白金、パラジウム、銅、アルミニウム、ニッケル、クロム、チタン、コバルト、錫またはこれらの合金などを用いてもよい。この導電性薄膜の厚さは、30Å以上とすることが好ましく、これより薄いと表面抵抗が、1000Ω/□以下となる良好な導電性を有する連続被膜となり難いことがある。一方、厚くしすぎると透明性の低下などをきたすことがあるために、好適な厚さとしては、50~2000Å程度である。
(Formation of transparent conductive layer (III))
As a method for forming the transparent conductive layer (III), any of the conventionally known techniques such as a vacuum deposition method, a sputtering method, and an ion plating method can be used. From the viewpoint of adhesion, it is preferable to form a thin film by a sputtering method. In addition to the above, the thin film material to be used is, for example, metal oxide such as tin oxide containing antimony, gold, silver, platinum, palladium, copper, aluminum, nickel, chromium, titanium, cobalt, tin, or these An alloy or the like may be used. The thickness of the conductive thin film is preferably 30 mm or more, and if it is thinner than this, it may be difficult to form a continuous film having good conductivity with a surface resistance of 1000 Ω / □ or less. On the other hand, if the thickness is too large, the transparency may be lowered. Therefore, the preferred thickness is about 50 to 2000 mm.
 ITOからなる透明導電層(III)をスパッタリング法により形成する場合、ターゲットとして、従来公知のITOターゲットが用いられる。ITO膜の形成に用いるターゲット材として、酸化インジウムと酸化錫との重量比が、好ましくは99:0.5~99:20、より好ましくは99:1~90:15、さらに好ましくは99:1~90:10のものを用いるのが望ましい。重量比が上記範囲外であると抵抗値の上昇が起こる。 When the transparent conductive layer (III) made of ITO is formed by a sputtering method, a conventionally known ITO target is used as a target. As a target material used for forming the ITO film, the weight ratio of indium oxide to tin oxide is preferably 99: 0.5 to 99:20, more preferably 99: 1 to 90:15, and still more preferably 99: 1. It is desirable to use the one of up to 90:10. When the weight ratio is out of the above range, the resistance value increases.
 ITO成膜時の温度は、透明樹脂からなるフィルム(I)のガラス転移温度(Tg)以下であることが好ましく、「室温~透明樹脂のTg」がより好ましく、「室温~透明樹脂のTg-20℃」がさらに好ましい。フィルム(I)を構成する透明樹脂のTg以上であるとフィルムの劣化が起こることがある。なお、硬化性樹脂組成物よりなる樹脂層(II)のTgが透明樹脂のTgよりも低い場合には、当該樹脂層(II)のTg以下の温度で成膜を行うのが望ましい。 The temperature during the ITO film formation is preferably not more than the glass transition temperature (Tg) of the film (I) made of transparent resin, more preferably “room temperature to Tg of transparent resin”, and “room temperature to Tg of transparent resin— “20 ° C.” is more preferable. When the Tg of the transparent resin constituting the film (I) is exceeded, the film may be deteriorated. In addition, when Tg of resin layer (II) which consists of curable resin compositions is lower than Tg of transparent resin, it is desirable to form into a film at the temperature below Tg of the said resin layer (II).
 また、ITO成膜時に雰囲気ガスとしてArに微量の酸素、好ましくはArとO2との合計に対して、好ましくは0.05~20体積%、より好ましくは0.01~10体積%、さらに好ましくは0.1~3体積%のO2を導入すると、ITO薄膜の透明性と導電性を良くすることができる。 Also, traces of oxygen in Ar as the atmosphere gas during ITO deposition, preferably the total of Ar and O 2, preferably 0.05 to 20 vol%, more preferably 0.01 to 10% by volume, further When 0.1 to 3% by volume of O 2 is preferably introduced, the transparency and conductivity of the ITO thin film can be improved.
 透明導電層(III)としてITO薄膜を形成する場合、そのITOは結晶性ITOであることが好ましい。結晶性ITO薄膜の成膜方法は、ターゲット電極(カソード)に印加する電力を間欠的に変化させるパルススパッタリング法、更に、このパルススパッタリング法に複数のカソード配置を基本構成としたデュアルカソードパルススパッタリング法が用いられる。これらのスパッタリング法は、よりよい真空度でのプラズマ放電にも対応させるため、マグネトロンスパッタリング法を用いることが好ましく、また安定したパルス電流の発生と条件設定の自由度をもたせるため、パルス発生ユニットにはバイポーラ型またはユニポーラ型を用いることが好ましい。結晶性ITO薄膜は、成膜後に150℃程度の温度レベルでアニールをすることにより結晶化する方法でも得ることができる。結晶化ITO膜とする事で耐久性が著しく向上する。 When an ITO thin film is formed as the transparent conductive layer (III), the ITO is preferably crystalline ITO. The film formation method of the crystalline ITO thin film includes a pulse sputtering method in which the power applied to the target electrode (cathode) is intermittently changed, and a dual cathode pulse sputtering method in which a plurality of cathodes are arranged as a basic configuration in this pulse sputtering method. Is used. These sputtering methods preferably use a magnetron sputtering method in order to cope with a plasma discharge at a better degree of vacuum. Also, in order to have a stable generation of pulse current and freedom of condition setting, a pulse generation unit is used. It is preferable to use a bipolar type or a unipolar type. The crystalline ITO thin film can also be obtained by crystallization by annealing at a temperature level of about 150 ° C. after the film formation. The durability is remarkably improved by using a crystallized ITO film.
 <易接着層>
 本発明の導電性積層フィルムは、透明樹脂からなるフィルム(I)あるいは硬化樹脂層からなる樹脂層(II)と透明導電層(III)との間に、接着性を向上させるとともにガスバリア性を付与する目的で、易接着層を有することも好ましい。当該易接着層には、金属酸化物微粒子含有してもしなくても良いが、金属酸化物微粒子を含有することにより接着性が向上することから好ましい。通常、好ましい易接着層は、金属酸化物微粒子とポリシロキサンとを含有する組成物からなる塗工液を調製し、当該塗工液をフィルム(I)または樹脂層(II)に塗工、乾燥することにより得られる。
<Easily adhesive layer>
The conductive laminated film of the present invention improves adhesion and provides gas barrier properties between the transparent resin film (I) or the resin layer (II) made of a cured resin layer and the transparent conductive layer (III). Therefore, it is also preferable to have an easy-adhesion layer. The easy-adhesion layer may or may not contain metal oxide fine particles, but inclusion of metal oxide fine particles is preferable because adhesion is improved. Usually, a preferable easy-adhesion layer is prepared by preparing a coating liquid comprising a composition containing metal oxide fine particles and polysiloxane, and coating the coating liquid on the film (I) or the resin layer (II), followed by drying. Can be obtained.
 (金属酸化物微粒子)
 易接着層に用いられる金属酸化物微粒子は、金属元素の酸化物微粒子であればその種類は特に限定されないが、例えば、酸化アンチモン、酸化ジルコニウム、アナターゼ型酸化チタン、ルチル型酸化チタン、ブルッカイト型酸化チタン、酸化亜鉛、酸化タンタル、酸化インジウム、酸化ハフニウム、酸化スズ、酸化ニオブ、酸化アルミニウム、酸化セリウム、酸化スカンジウム、酸化イットリウム、酸化ランタン、酸化プラセオジウム、酸化ネオジウム、酸化サマリウム、酸化ユウロピウム、酸化ガドリニウム、酸化テルビニウム、酸化ジスプロシウム、酸化ホルミウム、酸化エルビウム、酸化ツリウム、酸化イッテルビウム、酸化ルテチウム、酸化カルシウム、酸化ガリウム、酸化リチウム、酸化ストロンチウム、酸化タングステン、酸化バリウム、酸化マグネシウム、およびこれらの複合体、ならびにインジウム-スズ複合酸化物などの上記金属2種以上の複合体の酸化物などの微粒子が挙げられる。
(Metal oxide fine particles)
The type of metal oxide fine particles used in the easy adhesion layer is not particularly limited as long as it is an oxide fine particle of a metal element. For example, antimony oxide, zirconium oxide, anatase type titanium oxide, rutile type titanium oxide, brookite type oxidation Titanium, zinc oxide, tantalum oxide, indium oxide, hafnium oxide, tin oxide, niobium oxide, aluminum oxide, cerium oxide, scandium oxide, yttrium oxide, lanthanum oxide, praseodymium oxide, neodymium oxide, samarium oxide, europium oxide, gadolinium oxide, Terbium oxide, dysprosium oxide, holmium oxide, erbium oxide, thulium oxide, ytterbium oxide, lutetium oxide, calcium oxide, gallium oxide, lithium oxide, strontium oxide, tungsten oxide, oxide Potassium, magnesium oxide, and complexes thereof, and indium - include fine particles such as oxides of the metal 2 or more complex, such as tin oxide.
 上記金属酸化物微粒子の1次平均粒子径は、好ましくは0.1~100nm、より好ましくは0.1~70nm、特に好ましくは0.1~50nmである。金属酸化物微粒子の1次平均粒子径が上記範囲にあると、光透過性に優れた積層フィルムを得ることができる。 The primary average particle diameter of the metal oxide fine particles is preferably 0.1 to 100 nm, more preferably 0.1 to 70 nm, and particularly preferably 0.1 to 50 nm. When the primary average particle diameter of the metal oxide fine particles is in the above range, a laminated film having excellent light transmittance can be obtained.
 (ポリシロキサン)
 易接着層に用いられるポリシロキサンは、多官能性ポリシロキサンであることが好ましい。
(Polysiloxane)
The polysiloxane used for the easy-adhesion layer is preferably a polyfunctional polysiloxane.
 多官能性ポリシロキサンとしては、ジメチルシロキサン連鎖を有する多官能ポリシロキサンと、ポリジメチルシロキサンとを脱アルコール反応させて得られるポリシロキサンが好ましいものとして挙げられる。多官能ポリシロキサンとポリジメチルシロキサンとは、末端官能基がアルコキシル基またはヒドロキシル基であることが好ましく、それぞれ異なる末端官能基を有するジメチルシロキサンとポリジメチルシロキサンとを脱アルコール反応させて、多官能性ポリシロキサンが得られる。 As the polyfunctional polysiloxane, a polysiloxane obtained by subjecting a polyfunctional polysiloxane having a dimethylsiloxane chain and a polydimethylsiloxane to a dealcoholization reaction is preferable. The polyfunctional polysiloxane and the polydimethylsiloxane preferably have an alkoxyl group or a hydroxyl group at the terminal functional group. The polyfunctional polysiloxane and the polydimethylsiloxane are obtained by subjecting dimethylsiloxane and polydimethylsiloxane having different terminal functional groups to a dealcoholization reaction. Polysiloxane is obtained.
 <反射防止層>
 本発明の導電性積層フィルムは、可視光領域の透過度を向上させる目的で、透明性導電層(III)の下層側に反射防止層を有することも好ましい。反射防止層は通常、酸化ケイ素、フッ化マグネシウム等の低屈折率層と、酸化チタン、酸化ニオブおよび酸化タンタル等の高屈折率層とを含む2層以上の積層構造からなる。
<Antireflection layer>
The conductive laminated film of the present invention preferably has an antireflection layer on the lower layer side of the transparent conductive layer (III) for the purpose of improving the transmittance in the visible light region. The antireflection layer usually has a laminated structure of two or more layers including a low refractive index layer such as silicon oxide and magnesium fluoride and a high refractive index layer such as titanium oxide, niobium oxide and tantalum oxide.
 これらの無機酸化物からなる低、高屈折率層の形成方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法(ドライプロセス)または各金属アルコキサイド、酸化ジルコニウム等の無機酸化物の超微粒子を含む塗布液の塗工法(ウェットプロセス)など公知の方法を採用することができる。 As a method for forming a low and high refractive index layer composed of these inorganic oxides, vacuum deposition, sputtering, ion plating (dry process) or ultrafine particles of inorganic oxides such as metal alkoxides and zirconium oxide are used. A publicly known method such as a coating method (wet process) of the coating liquid containing it can be employed.
 また、低屈折層としてフッ素ポリマーを主成分とする有機材料を塗工することも好ましい。 It is also preferable to apply an organic material mainly composed of a fluoropolymer as the low refractive layer.
 <導電性積層フィルムの特性>
 本発明の導電性積層フィルムは、好ましくは以下の各物性を有する。
<Characteristics of conductive laminated film>
The conductive laminated film of the present invention preferably has the following physical properties.
 (1)ヘイズは、曇価ともよばれ、曇り具合、拡散度合いを表すものであって、例えば、市販されているスガ試験機(株)HGM-2DP等を用いて、JIS K-7136に準拠してヘイズ(%)を測定することができる。標記フィルムのヘイズは、1%以下が好ましい。ヘイズが上記範囲外であると、白ぼけが発生しタッチパネルの視認性が低下する。 (1) Haze is also called haze value and represents the degree of haze and the degree of diffusion. For example, using a commercially available Suga Test Machine Co., Ltd. HGM-2DP, etc., it conforms to JIS K-7136. The haze (%) can be measured. The haze of the title film is preferably 1% or less. When the haze is outside the above range, white blur occurs and the visibility of the touch panel decreases.
 (2)全光線透過率(%)は、例えば、市販されているスガ試験機(株)HGM-2DP等を用いて、JIS K-7361に準拠して測定する場合、タッチパネルの視認性が向上することから、80%以上が好ましく、83%以上がより好ましく、85%以上がさらに好ましい。 (2) When the total light transmittance (%) is measured according to JIS K-7361 using, for example, a commercially available Suga Test Instruments Co., Ltd. HGM-2DP, the touch panel visibility is improved. Therefore, 80% or more is preferable, 83% or more is more preferable, and 85% or more is more preferable.
 (3)透過光b*(%)は、例えば、市販されている大塚電子(株)製 色差計RETS-1200VA等を用いて、JIS Z-8722に準拠し測定する場合、タッチパネルの視認性が向上することから、0~12%が好ましく、0~7%がより好ましく、0~4%がさらに好ましい。 (3) When the transmitted light b * (%) is measured in accordance with JIS Z-8722 using, for example, a commercially available color difference meter RETS-1200VA manufactured by Otsuka Electronics Co., Ltd., the visibility of the touch panel is low. In view of improvement, 0 to 12% is preferable, 0 to 7% is more preferable, and 0 to 4% is more preferable.
 (4)鉛筆硬度は、(株)東洋精機製 NPを用いて、JIS K5600-5-4により測定する場合、HB以上であることが好ましい。HB未満であるとITO成膜時に透明導電膜に傷が入ることがある。 (4) The pencil hardness is preferably HB or higher when measured by JIS K5600-5-4 using NP manufactured by Toyo Seiki Co., Ltd. If it is less than HB, the transparent conductive film may be damaged during ITO film formation.
 (5)防眩性は、標記フィルムに蛍光灯(全光束3520lm)を映し、蛍光灯の輪郭のボケの程度を目視により評価する場合、蛍光灯の輪郭がまったくわからないことが好ましい。 (5) For anti-glare properties, when a fluorescent lamp (total luminous flux 3520 lm) is projected on the title film and the degree of blurring of the fluorescent lamp outline is visually evaluated, it is preferable that the fluorescent lamp outline is not known at all.
 (6)輝度ムラは、シャープ製モバイルツールSL-6000Nの画面を緑表示とした後、標記フィルムを乗せ、目視により評価する場合、画素の輝度ムラがほとんど認識できないことが好ましい。 (6) It is preferable that the luminance unevenness of the pixel is hardly recognized when the screen of the mobile tool SL-6000N manufactured by Sharp is displayed in green, and then the mark film is placed and evaluated by visual observation.
 (7)アンチニュートンリング性は、標記フィルムを平滑なガラス板(厚み3mm、素材:ソーダガラス)の上に曲線状の凸形状の面が密着するように乗せて指で押しつけ、ニュートンリングが発生するかを目視にて評価する場合、ニュートンリングが発生しないことが好ましい。 (7) Anti-Newton ring property: Newton ring occurs when the film is placed on a smooth glass plate (thickness 3 mm, material: soda glass) so that the curved convex surface is in close contact with the finger. When visually evaluating whether to do, it is preferable that a Newton ring does not generate | occur | produce.
 (8)熱収縮率(%)は、150℃に加熱した強制循環式乾燥機の中に標記フィルムを60分間静置させ、ミツトヨ製 寸法測定顕微鏡176-812を用いて加熱前後のフィルムの寸法変化を測定し、熱収縮率を算出する場合、1.5%以下が好ましく、1.3%以下がより好ましく、1.0%以下がさらに好ましい。熱収縮率が1.5%を超えると、タッチパネルの変形が発生する場合がある。 (8) The heat shrinkage rate (%) is determined by allowing the title film to stand for 60 minutes in a forced circulation dryer heated to 150 ° C., and using the dimension measurement microscope 176-812 made by Mitutoyo before and after heating. When measuring the change and calculating the heat shrinkage rate, it is preferably 1.5% or less, more preferably 1.3% or less, and even more preferably 1.0% or less. If the heat shrinkage rate exceeds 1.5%, the touch panel may be deformed.
 (9)位相差は、特に限定されるものではないが、透明樹脂からなるフィルム(I)が位相差フィルムである場合には、王子計測機器(株)製の「KOBRA-21ADH/PR」を用いて、波長550nmの透過光に対して測定した位相差(nm)では、128~148nmが好ましく、133~143nmがより好ましい。位相差が上記から外れると液晶ディスプレイのコントラスト、視認性が低下する場合がある。 (9) The retardation is not particularly limited, but when the transparent resin film (I) is a retardation film, “KOBRA-21ADH / PR” manufactured by Oji Scientific Instruments The phase difference (nm) measured for transmitted light having a wavelength of 550 nm is preferably 128 to 148 nm, and more preferably 133 to 143 nm. If the phase difference deviates from the above, the contrast and visibility of the liquid crystal display may be lowered.
 (10)表面抵抗(Ω/□)は、例えば、市販されている三菱化学(株)製の低抵抗率計「ロレスタ-GP」を用いて測定する場合、200~1500Ω/□が好ましく、250~1000Ω/□がより好ましく、300~500Ω/□がさらに好ましい。表面抵抗が、1500Ω/□を超えると、良好な導電性を有する連続皮膜となり難い場合がある。一方、200Ω/□未満であると、透明性の低下およびタッチパネルの誤作動を引き起こし易くなる場合がある。 (10) The surface resistance (Ω / □) is preferably 200 to 1500 Ω / □, for example, when measured using a commercially available low resistivity meter “Loresta-GP” manufactured by Mitsubishi Chemical Corporation. More preferably, it is ˜1000Ω / □, and more preferably 300˜500Ω / □. If the surface resistance exceeds 1500 Ω / □, it may be difficult to form a continuous film having good conductivity. On the other hand, if it is less than 200 Ω / □, transparency may be lowered and a touch panel may malfunction.
 タッチパネル
 本発明のタッチパネルは、本発明の導電性積層フィルムを、4線式抵抗膜方式、5線式抵抗膜方式等のタッチパネルの上部電極および/または下部電極として好適に用いられる。そして、このタッチパネルを液晶ディスプレイの前面に配置することでタッチパネル機能を有する表示装置が得られる。
Touch panel In the touch panel of the present invention, the conductive laminated film of the present invention is suitably used as an upper electrode and / or a lower electrode of a 4-wire resistive film system, 5-wire resistive film system, or the like. And the display apparatus which has a touch-panel function is obtained by arrange | positioning this touch panel in the front surface of a liquid crystal display.
 本発明のタッチパネルは、上述した導電性積層フィルムを有するものであり、好ましくは、下部電極として導電性積層フィルムを、上部電極として後述の導電性積層フィルム(B)を組み合わせて用いた構成である。導電性積層フィルムと導電性積層フィルム(B)とは、それぞれの透明導電層が対向するように、必要に応じてスペーサーを介して組み合わされることが好ましい。 The touch panel of the present invention has the above-described conductive laminated film, and preferably has a configuration in which a conductive laminated film is used as a lower electrode and a conductive laminated film (B) described later is used as an upper electrode. . The conductive laminated film and the conductive laminated film (B) are preferably combined through a spacer as necessary so that the respective transparent conductive layers face each other.
 タッチパネルの上部電極として用いられる導電性積層フィルム(B)は、透明導電層と、透明樹脂フィルムと、必要に応じて偏光板とがこの順に積層されてなることが好ましい。上部電極として用いられる導電性積層フィルム(B)を構成する透明樹脂フィルムは、位相差フィルムであってもよく、通常のPETフィルムなどの位相差を示さないフィルムであってもよい。また、導電性積層フィルム(B)として、導電性積層フィルムと同様のものを用いることもできる。 The conductive laminated film (B) used as the upper electrode of the touch panel is preferably formed by laminating a transparent conductive layer, a transparent resin film, and, if necessary, a polarizing plate in this order. The transparent resin film constituting the conductive laminated film (B) used as the upper electrode may be a retardation film or a film that does not exhibit retardation, such as a normal PET film. Moreover, the thing similar to a conductive laminated film can also be used as a conductive laminated film (B).
 導電性積層フィルム(B)を構成する透明導電層としては、上述した導電性積層フィルム(A)を構成する透明導電層(III)と同様のものが挙げられ、中でもITOからなる透明導電層が好ましく、結晶性ITOからなる透明導電層がより好ましい。透明導電層は、透明樹脂フィルム上に必要に応じて易接着層、反射防止層などを介して形成される。 As a transparent conductive layer which comprises a conductive laminated film (B), the thing similar to the transparent conductive layer (III) which comprises the conductive laminated film (A) mentioned above is mentioned, Especially the transparent conductive layer which consists of ITO is mentioned. Preferably, a transparent conductive layer made of crystalline ITO is more preferable. The transparent conductive layer is formed on the transparent resin film via an easy adhesion layer, an antireflection layer, or the like as necessary.
 導電性積層フィルム(B)を構成する透明樹脂フィルムが位相差フィルムである場合、波長550nmの透過光に対する面内位相差が128~148nm、好ましくは133~143nmのフィルムであることが望ましく、1/4λ位相差フィルムであることが特に好ましい。 When the transparent resin film constituting the conductive laminated film (B) is a retardation film, it is desirable that the in-plane retardation with respect to transmitted light having a wavelength of 550 nm is 128 to 148 nm, preferably 133 to 143 nm. A / 4λ retardation film is particularly preferable.
 本発明で用いられる導電性積層フィルム(B)は、透明樹脂フィルムの透明導電層とは逆側に、偏光板を有することも好ましい。導電性積層フィルム(B)を構成する偏光板は、偏光膜、すなわち、入射光を互いに直行する2つの偏光成分に分け、その一方のみを通過させ、他の成分を吸収または分散させる働きを有する膜を有するものであれば特に限定されない。このような偏光膜としては、例えば、ポリビニルアルコール(以下「PVA」ともいう。)・ヨウ素系偏光膜;PVA系フィルムに二色性染料を吸着配向させたPVA・染料系偏光膜;PVA系フィルムの脱水反応、ポリ塩化ビニルフィルムの脱塩酸反応等により、ポリエンを形成させたポリエン系偏光膜;分子内にカチオン性基を含有する変性PVAからなるPVA系フィルムの表面および/または内部に二色性染料を有する偏光膜などが挙げられる。これらのうち、PVA・ヨウ素系偏光膜が好ましい。 The conductive laminated film (B) used in the present invention preferably has a polarizing plate on the side opposite to the transparent conductive layer of the transparent resin film. The polarizing plate constituting the conductive laminated film (B) has a function of polarizing film, that is, splitting incident light into two polarizing components orthogonal to each other, allowing only one of them to pass, and absorbing or dispersing the other components. If it has a film | membrane, it will not specifically limit. Examples of such a polarizing film include polyvinyl alcohol (hereinafter also referred to as “PVA”) / iodine polarizing film; PVA / dye polarizing film obtained by adsorbing and orienting a dichroic dye on a PVA film; PVA film A polyene-based polarizing film in which a polyene is formed by a dehydration reaction of a polyvinyl chloride film, a dehydrochlorination reaction of a polyvinyl chloride film, or the like. And a polarizing film having a functional dye. Of these, PVA / iodine polarizing films are preferred.
 偏光膜の製造方法は特に限定されず、従来公知の方法を適用することができる。例えば、PVA系フィルムを延伸後、ヨウ素イオンを吸着させる方法;PVA系フィルムを二色性染料による染色後、延伸する方法;PVA系フィルムを延伸後、二色性染料で染色する方法;二色性染料をPVA系フィルムに印刷後、延伸する方法;PVA系フィルムを延伸後、二色性染料を印刷する方法などが挙げられる。より具体的には、ヨウ素をヨウ化カリウム溶液に溶解して、高次のヨウ素イオンを作り、このイオンをPVAフィルムに吸着させて延伸し、次いで1~5重量%ホウ酸水溶液に浴温度30~40℃で浸漬して偏光膜を製造する方法;またはPVAフィルムを上記と同様にホウ酸処理して一軸方向に3~7倍程度延伸した後、0.05~5重量%の二色性染料水溶液に浴温度30~40℃で浸漬して染料を吸着し、次いで80~100℃で乾燥して熱固定して偏光膜を製造する方法などが挙げられる。 The manufacturing method of the polarizing film is not particularly limited, and a conventionally known method can be applied. For example, a method of adsorbing iodine ions after stretching a PVA-based film; a method of stretching a PVA-based film after dyeing with a dichroic dye; a method of stretching a PVA-based film and then dyeing with a dichroic dye; And a method of stretching a chromogenic dye on a PVA-based film; a method of stretching a PVA-based film and then printing a dichroic dye. More specifically, iodine is dissolved in a potassium iodide solution to form higher-order iodine ions, the ions are adsorbed on a PVA film and stretched, and then a 1 to 5% by weight boric acid aqueous solution is added at a bath temperature of 30. A method of producing a polarizing film by immersing at ˜40 ° C .; or a PVA film treated with boric acid in the same manner as described above and stretched about 3 to 7 times in a uniaxial direction, and then dichroism of 0.05 to 5 wt% Examples include a method for producing a polarizing film by immersing the dye in an aqueous dye solution at a bath temperature of 30 to 40 ° C. to adsorb the dye, then drying at 80 to 100 ° C. and heat setting.
 偏光膜の厚さは、特に限定されるものではないが、10~50μmが好ましく、15~45μmがより好ましい。 The thickness of the polarizing film is not particularly limited, but is preferably 10 to 50 μm, and more preferably 15 to 45 μm.
 これらの偏光膜は、そのまま本発明の偏光板の製造に用いてもよいが、接着剤層と接する面に、コロナ放電処理、プラズマ処理を施して用いることもできる。 These polarizing films may be used as they are for the production of the polarizing plate of the present invention, but can also be used after being subjected to corona discharge treatment or plasma treatment on the surface in contact with the adhesive layer.
 本発明で用いる偏光板は、偏光膜のみから構成されていてもよいが、偏光膜に耐吸湿性等を付与する目的で保護膜を有していてもよい。 The polarizing plate used in the present invention may be composed only of a polarizing film, but may have a protective film for the purpose of imparting moisture absorption resistance to the polarizing film.
 本発明に係る導電性積層フィルム(B)が偏光板を有する場合、透明導電層、位相差フィルム、および偏光板がこの順に積層されてなることが好ましく、具体的には、位相差フィルム、および透明導電層が積層された導電性積層フィルムの透明導電層と反対側の面に、感圧性接着剤により偏光膜と接着されて、偏光板を構成するのが好ましい。 When the conductive laminated film (B) according to the present invention has a polarizing plate, the transparent conductive layer, the retardation film, and the polarizing plate are preferably laminated in this order. Specifically, the retardation film, and It is preferable that a polarizing plate is formed by adhering to a polarizing film with a pressure-sensitive adhesive on the surface opposite to the transparent conductive layer of the conductive laminated film on which the transparent conductive layer is laminated.
 上記感圧性接着剤としては、ポリビニルアルコール系感圧性接着剤、アクリル系感圧性接着剤、ゴム系感圧性接着剤、シリコーン系感圧性接着剤などが好適である。 As the pressure sensitive adhesive, polyvinyl alcohol pressure sensitive adhesive, acrylic pressure sensitive adhesive, rubber pressure sensitive adhesive, silicone pressure sensitive adhesive and the like are suitable.
 本発明のタッチパネルでは、透明導電層、1/4λ位相差フィルムおよび偏光板がこの順に一体に積層された導電性積層フィルム(B)を上部電極として用い、対応する下部電極として1/4λ位相差フィルムであるフィルム(I)上に樹脂層(II)と透明導電層(III)とが積層された導電性積層フィルムを用いることにより、反射光が好適に抑制され、視認性が特に向上するため好ましい。 In the touch panel of the present invention, a conductive laminated film (B) in which a transparent conductive layer, a 1 / 4λ retardation film and a polarizing plate are integrally laminated in this order is used as an upper electrode, and a 1 / 4λ retardation is used as a corresponding lower electrode. By using the conductive laminated film in which the resin layer (II) and the transparent conductive layer (III) are laminated on the film (I) which is a film, reflected light is suitably suppressed, and visibility is particularly improved. preferable.
 以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、以下において、「部」はいずれも「重量部」を表す。 Hereinafter, the present invention will be described more specifically based on examples, but the present invention is not limited to these examples. In the following, “part” means “part by weight”.
 各種物性は、次のようにして測定あるいは評価した。
<実施例1~12および比較例1~4>
 (1)ヘイズ
 スガ試験機(株)HGM-2DPを用い、JIS K-7136に準拠してヘイズ(%)を測定した。
Various physical properties were measured or evaluated as follows.
<Examples 1 to 12 and Comparative Examples 1 to 4>
(1) Haze Using a Suga Test Instruments Co., Ltd. HGM-2DP, haze (%) was measured based on JIS K-7136.
 (2)全光線透過率
 スガ試験機(株)HGM-2DPを用い、JIS K-7361に準拠して全光線透過率(%)を測定した。
(2) Total light transmittance Total light transmittance (%) was measured in accordance with JIS K-7361 using Suga Test Instruments Co., Ltd. HGM-2DP.
 (3)透過光b*
 大塚電子(株)製 色差計RETS-1200VAを用い、JIS Z-8722に準拠して透過光b*(%)を測定した。
(3) Transmitted light b *
Using a color difference meter RETS-1200VA manufactured by Otsuka Electronics Co., Ltd., transmitted light b * (%) was measured according to JIS Z-8722.
 (4)鉛筆硬度
(株)東洋精機製 鉛筆引掻塗膜硬さ試験機NPを用いて、JIS K-5600-5-4に準拠して鉛筆硬度を測定した。
(4) Pencil hardness Pencil hardness was measured according to JIS K-5600-5-4 using a pencil scratch coating film hardness tester NP manufactured by Toyo Seiki Co., Ltd.
 (5)防眩性
 フィルムに蛍光灯(全光束3520lm)を映し、蛍光灯の輪郭のボケの程度を以下の基準で目視により評価した。
(5) Antiglare property A fluorescent lamp (total light flux: 3520 lm) was projected on the film, and the degree of blurring of the outline of the fluorescent lamp was visually evaluated according to the following criteria.
  A :蛍光灯の輪郭がまったくわからない
  B :蛍光灯の輪郭が僅かにわかる
  C :蛍光灯の輪郭がはっきりわかる
 (6)輝度ムラ
 シャープ製モバイルツールSL-6000Nの画面を緑表示とした後、フィルムを乗せ、以下の基準で目視により評価した。
A: The outline of the fluorescent lamp is not known at all. B: The outline of the fluorescent lamp is slightly understood. C: The outline of the fluorescent lamp is clearly understood. (6) Unevenness of brightness After the screen of Sharp mobile tool SL-6000N is displayed in green, film And visually evaluated according to the following criteria.
  A :画素の輝度ムラがほとんど認識できない
  B :画素の輝度ムラが認識できるが、目立たない
  C :画素の輝度ムラがはっきり認識できる
 (7)アンチニュートンリング性
 フィルムを平滑なガラス板(厚み3mm、素材:ソーダガラス)の上に粒子含有樹脂層が密着するように乗せて指で押しつけ、ニュートンリングが発生するかを目視にて評価した。
A: Pixel brightness unevenness is hardly recognized B: Pixel brightness unevenness is recognizable, but not noticeable C: Pixel brightness unevenness is clearly recognizable (7) Anti-Newton ring property A film is a smooth glass plate (thickness 3 mm, The material-containing resin layer was placed on top of the material (soda glass) and pressed with a finger, and it was visually evaluated whether Newton rings would occur.
  A :ニュートンリングが発生しない
  B :ニュートンリングがわずかに発生する
  C :ニュートンリングが明らかに発生する
 (8)熱収縮率
 150℃に加熱した強制循環式乾燥機の中にフィルムを60分間静置させ、ミツトヨ製寸法測定顕微鏡176-812を用いて加熱前後のフィルムの寸法変化を、フィルムの縦方向(MD)、幅方向(TD)についてそれぞれ測定し、熱収縮率(%)を算出した。
A: Newton ring does not occur B: Newton ring slightly occurs C: Newton ring clearly occurs (8) Heat shrinkage rate The film is allowed to stand for 60 minutes in a forced circulation dryer heated to 150 ° C. Then, the dimensional change of the film before and after heating was measured in the longitudinal direction (MD) and the width direction (TD) of the film using a Mitutoyo dimension measuring microscope 176-812, and the thermal shrinkage rate (%) was calculated.
 (9)残留溶剤
 160℃に加熱した強制循環式乾燥機の中にフィルムを30分間静置させ、加熱前後の重量変化を調べ、重量減少率(%)を残留溶剤(%)とした。
(9) Residual solvent The film was allowed to stand for 30 minutes in a forced circulation dryer heated to 160 ° C., and the weight change before and after heating was examined. The weight reduction rate (%) was defined as the residual solvent (%).
 (10)位相差
王子計測機器(株)製の「KOBRA-21ADH/PR」を用いて、波長550nmにおける位相差(nm)を測定した。
(10) Phase difference (nm) at a wavelength of 550 nm was measured using “KOBRA-21ADH / PR” manufactured by Oji Scientific Instruments.
 (11)表面抵抗
 三菱化学(株)製の低抵抗率計「ロレスタ-GP」を用い、透明導電層の表面抵抗値(Ω/□)を測定した。
(11) Surface Resistance The surface resistance value (Ω / □) of the transparent conductive layer was measured using a low resistivity meter “Loresta GP” manufactured by Mitsubishi Chemical Corporation.
 (12)タッチパネルのコントラスト評価
 暗室にて、タッチパネルの黒表示画面を正面方向から見て、目視で色味変化を観察して下記基準で評価した。
(12) Contrast evaluation of touch panel In a dark room, the black display screen of the touch panel was viewed from the front, and the color change was visually observed and evaluated according to the following criteria.
  A :タッチパネルの色味変化が無く、クリア感がある
  B :タッチパネルの色味変化が無い
  C :タッチパネルの色味変化が多少観察される
  D :タッチパネルの色味変化が大きい
 (13)タッチパネルの視認性評価
 視野角を変えた時の画面の色変化を目視観察した。
A: There is no color change of the touch panel and there is a clear feeling B: No color change of the touch panel C: Some color change of the touch panel is observed D: Color change of the touch panel is large (13) Visual recognition of the touch panel Evaluation of color The color change of the screen when the viewing angle was changed was visually observed.
  A :タッチパネルの色味変化が無く、クリア感がある
  B :タッチパネルの色味変化が無い
  C :タッチパネルの色味変化が多少観察される
  D :タッチパネルの色味変化が大きい
 (14)タッチパネルのアンチニュートンリング性評価
 タッチパネルの上部電極側の表面を、電極間が接触するように指で押しつけ、ニュートンリングが発生するかを目視にて評価した。
A: There is no color change of the touch panel and there is a clear feeling B: There is no color change of the touch panel C: Some color change of the touch panel is observed D: A color change of the touch panel is large (14) Anti-touch panel Newton ring property evaluation The surface on the upper electrode side of the touch panel was pressed with a finger so that the electrodes were in contact with each other, and whether or not Newton ring was generated was visually evaluated.
  A :ニュートンリングが発生しない
  B :ニュートンリングがわずかに発生する
  C :ニュートンリングが明らかに発生する
 (15)タッチパネルの筋状の線評価
 明るい通常の部屋にて、タッチパネルの黒表示画面を正面及び斜め方向から見て、目視で筋状の線が観察できるか調べ、下記基準で評価した。
A: Newton's ring does not occur B: Newton's ring slightly occurs C: Newton's ring appears clearly (15) Streaky line evaluation of the touch panel In a bright normal room, the black display screen of the touch panel is It was examined from the oblique direction whether a streak line could be observed visually, and the following criteria were evaluated.
  A :タッチパネルの筋状の線が全く観察されない
  B :タッチパネルの筋状の線がわずかに観察される
  C :タッチパネルの筋状の線がはっきりと観察される
 (16)タッチパネルの打鍵耐久性評価
 タッチパネル研究所製、高荷重打鍵試験機を使用し、シリコーンゴム(曲率半径8cm)を使用し、荷重750g、打鍵速度10Hzにて室温で打鍵耐久性評価を行った。初期の通電電圧を3Vとして電流を流し、当該電圧が三分の二(2V)に低下するまでの打鍵回数を調べた。
A: The streak line of the touch panel is not observed at all B: The streak line of the touch panel is slightly observed C: The streak line of the touch panel is clearly observed (16) Evaluation of keystroke durability of the touch panel Using a high load keying tester manufactured by Research Laboratory, silicone rubber (curvature radius 8 cm) was used, and the keying durability was evaluated at room temperature at a load of 750 g and a keying speed of 10 Hz. The initial energization voltage was set to 3V, and a current was passed. The number of keystrokes until the voltage dropped to 2/3 (2V) was examined.
  A :打鍵回数1000万回以上
  B :打鍵回数500万回~1000万回未満
  C :打鍵回数500万回未満
 (17)タッチパネルの手触り性評価
 タッチパネルについて、その表面を指で擦り、手触り性の評価を下記の基準で行った。
A: Number of keystrokes 10 million times or more B: Number of keystrokes 5 million times to less than 10 million times C: Number of keystrokes less than 5 million times (17) Touch panel touch evaluation Touch panel surface is rubbed with a finger and touch evaluation is performed Was performed according to the following criteria.
  A :タッチパネルの表面凸凹感を全く感じない
  B :タッチパネルの表面凹凸感がやや感じられる
  C :タッチパネルの表面凹凸感が直ぐに分かるほど感じられる
 [合成例1](環状オレフィン系重合体Aの合成)
 8-メチル-8-メトキシカルボニルテトラシクロ[4.4.0.12,5.17,10]-3-ドデセン227.5部、ビシクロ[2.2.1]ヘプト-2-エン22.5部、1-ヘキセン(分子量調節剤)18部、トルエン(開環重合反応用溶媒)750部とを窒素置換した反応容器内に仕込み、この溶液を60℃に加熱した。次いで、反応容器内の溶液に、トリエチルアルミニウムのトルエン溶液(1.5モル/L)0.62部と、t-ブタノール/メタノールで変性した六塩化タングステン(t-ブタノール:メタノール:タングステン=0.35モル:0.3モル:1モル)のトルエン溶液(濃度0.05モル/L)3.7部とを添加し、この系を80℃で3時間加熱攪拌することにより開環重合反応させて開環共重合体溶液を得た。この重合反応における重合転化率は97%であった。
A: Feeling the surface unevenness of the touch panel is not felt at all B: Feeling of the surface unevenness of the touch panel is slightly felt C: Feeling of the surface unevenness of the touch panel is felt immediately [Synthesis Example 1] (Synthesis of cyclic olefin polymer A)
8-methyl-8-methoxycarbonyltetracyclo [4.4.0.1 2,5 . 1,7,10 ] -3-dodecene 227.5 parts, bicyclo [2.2.1] hept-2-ene 22.5 parts, 1-hexene (molecular weight regulator) 18 parts, toluene (for ring-opening polymerization reaction) (Solvent) 750 parts were charged into a nitrogen-substituted reaction vessel, and this solution was heated to 60 ° C. Next, 0.62 part of a toluene solution of triethylaluminum (1.5 mol / L) and tungsten hexachloride modified with t-butanol / methanol (t-butanol: methanol: tungsten) were added to the solution in the reaction vessel. 37 parts of a toluene solution (concentration 0.05 mol / L) of 35 mol: 0.3 mol: 1 mol) was added, and the system was heated and stirred at 80 ° C. for 3 hours to cause a ring-opening polymerization reaction. Thus, a ring-opening copolymer solution was obtained. The polymerization conversion rate in this polymerization reaction was 97%.
 このようにして得られた開環共重合体溶液4,000部をオートクレーブに仕込み、この開環共重合体溶液に、RuHCl(CO)[P(C6533 0.48部を添加し、水素ガス圧力100kg/cm2、反応温度160℃の条件下で、3時間加熱攪拌して水素添加反応を行った。 The autoclave was charged with 4,000 parts of the ring-opening copolymer solution thus obtained, and 0.48 part of RuHCl (CO) [P (C 6 H 5 ) 3 ] 3 was added to the ring-opening copolymer solution. And a hydrogenation reaction was performed by heating and stirring for 3 hours under the conditions of a hydrogen gas pressure of 100 kg / cm 2 and a reaction temperature of 160 ° C.
 得られた反応溶液(水素添加重合体溶液)を冷却した後、水素ガスを放圧した。この反応溶液を大量のメタノール中に注いで凝固物を分離回収し、これを乾燥して、水素添加された環状オレフィン系重合体Aを得た。 After cooling the obtained reaction solution (hydrogenated polymer solution), the hydrogen gas was released. This reaction solution was poured into a large amount of methanol to separate and recover a coagulated product, which was dried to obtain a hydrogenated cyclic olefin polymer A.
 [作製例1](環状オレフィン系重合体フィルムA-1の製造)
 合成例1で得られた環状オレフィン系重合体Aを、固形分濃度が30%となるようにトルエンに溶解した。得られた溶液の室温における溶液粘度は30,000mPa・sであった。この溶液に、酸化防止剤としてペンタエリスリチルテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]を、環状オレフィン系重合体A100重量部に対して0.1重量部を添加し、得られた溶液を日本ポール製の孔径5μmの金属繊維焼結フィルターを用い、差圧が0.4MPa以内に収まるように溶液の流速をコントロールしながら濾過した後、クラス1000のクリーンルーム内に設置した井上金属工業製の「INVEXラボコーター」を用い、アクリル酸系表面処理剤によって親水化(易接着性化)処理された、厚みが100μmのPETフィルム(東レ(株)製の「ルミラーU94」)に塗布した。次いで、得られた液層に対して、50℃で一次乾燥処理を行い、さらに、90℃で二次乾燥処理を行った後、PETフィルムから剥離させることにより、厚さ188μmの環状オレフィン系重合体フィルムA-1を形成した。得られた環状オレフィン系重合体フィルムA-1の残留溶媒量は0.5重量%であり、光線透過率は93%以上であった。
[Production Example 1] (Production of Cyclic Olefin Polymer Film A-1)
The cyclic olefin polymer A obtained in Synthesis Example 1 was dissolved in toluene so that the solid content concentration was 30%. The solution viscosity at room temperature of the obtained solution was 30,000 mPa · s. To this solution, pentaerythrityltetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] as an antioxidant was added in an amount of 0.1 weight with respect to 100 parts by weight of the cyclic olefin polymer A. The resulting solution was filtered using a metal fiber sintered filter made by Nippon Pole with a pore diameter of 5 μm while controlling the flow rate of the solution so that the differential pressure was within 0.4 MPa. Using an “INVEX Lab Coater” manufactured by Inoue Metal Industry installed in a clean room, a PET film having a thickness of 100 μm (made by Toray Industries, Inc.) treated with an acrylic acid-based surface treatment agent to make it hydrophilic (easy to adhere). Lumirror U94 "). Next, the obtained liquid layer was subjected to a primary drying treatment at 50 ° C., and further subjected to a secondary drying treatment at 90 ° C., and then peeled off from the PET film, whereby a 188 μm-thick cyclic olefin-based weight was obtained. Merged film A-1 was formed. The cyclic olefin polymer film A-1 thus obtained had a residual solvent amount of 0.5% by weight and a light transmittance of 93% or more.
 [作製例2](環状オレフィン系重合体フィルムA-2の製造)
 作製例1にて得られた環状オレフィン系重合体フィルムA-1を、風向制御板を設けた縦延伸炉内で148℃に加熱し、延伸機炉内温度分布が148±0.2℃以内にコントロールされた層内にて炉内速度4.0m/minでフィルム長手方向に1.2倍に、フィルム幅方向を固定しない一軸延伸をしてR0が138nm、R0のばらつきが±5nmかつ光軸がフィルム長手方向に対して0±2度の環状オレフィン系重合体フィルムA-2を得た。
[Production Example 2] (Production of Cyclic Olefin Polymer Film A-2)
The cyclic olefin polymer film A-1 obtained in Production Example 1 was heated to 148 ° C. in a longitudinal stretching furnace provided with a wind direction control plate, and the temperature distribution in the stretching machine furnace was within 148 ± 0.2 ° C. In the controlled layer, the furnace speed was 1.2 m in the longitudinal direction of the film at 4.0 m / min, uniaxial stretching without fixing the film width direction, R0 was 138 nm, R0 variation was ± 5 nm and light A cyclic olefin polymer film A-2 having an axis of 0 ± 2 degrees with respect to the film longitudinal direction was obtained.
 [作製例3](偏光膜の製造)
 ヨウ素濃度が0.03重量%、ヨウ化カリウム濃度が0.5重量%である水溶液からなる、温度30℃の染色浴中で、PVAを延伸倍率3倍で前延伸加工し、次いで、ホウ酸濃度が5重量%、ヨウ化カリウム濃度が8重量%である水溶液からなる、温度55℃の架橋浴中で、延伸倍率2倍で後延伸加工した後、乾燥処理することにより、偏光膜を得た。
[Production Example 3] (Production of polarizing film)
PVA was pre-stretched at a stretch ratio of 3 times in a dyeing bath at a temperature of 30 ° C. consisting of an aqueous solution having an iodine concentration of 0.03% by weight and a potassium iodide concentration of 0.5% by weight, and then boric acid A polarizing film is obtained by post-stretching at a stretch ratio of 2 in a cross-linking bath having a temperature of 55 ° C. consisting of an aqueous solution having a concentration of 5% by weight and a potassium iodide concentration of 8% by weight, followed by drying. It was.
 [調製例1](混合接着剤の調製)
 PVA系樹脂である和光純薬工業(株)製の163-03045(分子量:22,000、ケン化度:88モル%)に、水を加えて固形分濃度が7重量%の水溶液を調製した。一方、ポリウレタン系樹脂である大日本インキ化学工業(株)製のWLS-201(固形分濃度35重量%)100部に、ポリエポキシ系硬化剤である大日本インキ工業(株)製のCR-5L(有効成分100%品)5部を配合し、水で希釈して固形分濃度が20重量%の水溶液を調製した。得られたポリウレタン系樹脂水溶液とポリビニルアルコール系樹脂水溶液とを、重量比で1:1(固形分重量比で80:20)の割合で混合し、固形分濃度が15重量%の混合接着剤を調製した。
[Preparation Example 1] (Preparation of mixed adhesive)
Water was added to 163-03045 (molecular weight: 22,000, saponification degree: 88 mol%) manufactured by Wako Pure Chemical Industries, Ltd., which is a PVA resin, to prepare an aqueous solution having a solid content concentration of 7% by weight. . On the other hand, 100 parts of WLS-201 (solid content concentration 35% by weight) manufactured by Dainippon Ink & Chemicals, Inc., which is a polyurethane resin, is added to CR- manufactured by Dainippon Ink Industries, Ltd., which is a polyepoxy curing agent. 5 L (100% active ingredient product) 5 parts was blended and diluted with water to prepare an aqueous solution with a solid content of 20% by weight. The obtained polyurethane resin aqueous solution and polyvinyl alcohol resin aqueous solution were mixed at a weight ratio of 1: 1 (solid content weight ratio of 80:20), and a mixed adhesive having a solid content concentration of 15% by weight was obtained. Prepared.
 [製造例1](積層フィルムB-1の製造)
 UV硬化樹脂(JSR(株)製 デソライトKZ-9136)を、グラビアリバース法にて、環状オレフィン系重合体フィルム作製例1により得られたA-1の片面に塗布後、畝形状が形成されたロールに密着させながら、1J/cm2の紫外線を照射して、厚さ2μmの土台の上に凸部の最大高さ2μm、ピッチP1000μmの正弦曲線を持つ畝形樹脂層を有する積層フィルムB-1を得た。
[Production Example 1] (Production of laminated film B-1)
A UV curable resin (Desolite KZ-9136 manufactured by JSR Corporation) was applied to one side of A-1 obtained in Cyclic Olefin Polymer Film Production Example 1 by the gravure reverse method, and then a bowl shape was formed. Laminate film B- having a sinusoidal resin layer having a sine curve with a maximum height of 2 μm and a pitch P of 1000 μm on a base of 2 μm thickness, irradiated with 1 J / cm 2 ultraviolet light while being in close contact with the roll 1 was obtained.
 得られた積層フィルムB-1の各種物性を測定または評価した結果を表1に示す。 Table 1 shows the results of measuring or evaluating various physical properties of the obtained laminated film B-1.
 [製造例2](積層フィルムB-2の製造)
 環状オレフィン系重合体フィルムA-1に替えて、環状オレフィン系重合体フィルム作製例2で得られたA-2を用いた以外は製造例1と同様にして積層フィルムB-2を得た。得られた積層フィルムB-2の各種物性を測定または評価した結果を表1に併せて示す。
[Production Example 2] (Production of laminated film B-2)
A laminated film B-2 was obtained in the same manner as in Production Example 1 except that A-2 obtained in Cyclic olefin polymer film production example 2 was used instead of the cyclic olefin polymer film A-1. The results of measuring or evaluating various physical properties of the obtained laminated film B-2 are also shown in Table 1.
 [製造例3](積層フィルムB-3の製造)
 製造例1において、畝形状樹脂層の形状について、畝形状の凸部分の曲率半径(Rt)を10000μm(ピッチPの10倍)、凹部分の曲率半径(Rb)を3000μm(ピッチPの3倍)、凸部の曲線と凹部の曲線とをつなぐ直線の幅(L)を100μm(ピッチPの十分の一)としたこと以外は同様にして、高さ2μm、ピッチ1000μmの規則的な曲線を持つ畝形樹脂層を有する積層フィルムB-3を得た。得られた積層フィルムB-3の各種物性を測定または評価した結果を表1に併せて示す。
[Production Example 3] (Production of laminated film B-3)
In Production Example 1, the curvature radius (Rt) of the ridge-shaped convex portion is 10000 μm (10 times the pitch P), and the curvature radius (Rb) of the concave portion is 3000 μm (3 times the pitch P). ), Except that the width (L) of the straight line connecting the curve of the convex part and the curve of the concave part is set to 100 μm (tenth of the pitch P), and a regular curve having a height of 2 μm and a pitch of 1000 μm is obtained. A laminated film B-3 having a bowl-shaped resin layer was obtained. The results of measuring or evaluating various physical properties of the obtained laminated film B-3 are also shown in Table 1.
 [製造例4](積層フィルムB-4の製造)
 環状オレフィン系重合体フィルムA-1に替えて、環状オレフィン系重合体フィルムA-2を用いた以外は製造例3と同様にして積層フィルムB-4を得た。得られた積層フィルムB-4の各種物性を測定または評価した結果を表1に併せて示す。
[Production Example 4] (Production of laminated film B-4)
A laminated film B-4 was obtained in the same manner as in Production Example 3, except that the cyclic olefin polymer film A-2 was used instead of the cyclic olefin polymer film A-1. The results of measuring or evaluating various physical properties of the obtained laminated film B-4 are also shown in Table 1.
 [製造例5](積層フィルムB-5の製造)
 製造例1において、畝形状樹脂層の上方からの形状について、畝形状の稜線が規則的な曲線を描き、具体的にはフィルム平面内での規則的な曲線のピッチ(Pl)を8000μm(ピッチPの8倍)、曲線の幅(W)を5000μm(ピッチPの5倍)となる正弦曲線となるようにしたこと以外は同様にして、高さ2μm、ピッチP1000μmの規則的な曲線を持つ畝形樹脂層を有する積層フィルムB-5を得た。得られた積層フィルムB-5の各種物性を測定または評価した結果を表1に併せて示す。
[Production Example 5] (Production of laminated film B-5)
In Production Example 1, the shape of the ridge-shaped ridge line draws a regular curve with respect to the shape from above the ridge-shaped resin layer. Specifically, the pitch (Pl) of the regular curve in the film plane is 8000 μm (pitch P has a regular curve with a height of 2 μm and a pitch of P 1000 μm, except that it is a sine curve with a curve width (W) of 5000 μm (5 times the pitch P). A laminated film B-5 having a cage-shaped resin layer was obtained. The results of measuring or evaluating various physical properties of the obtained laminated film B-5 are also shown in Table 1.
 [製造例6](積層フィルムB-6の製造)
 環状オレフィン系重合体フィルムA-1に替えて、環状オレフィン系重合体フィルムA-2を用い、畝形状樹脂層の断面の形状を製造例3と同様にした以外は、製造例5と同様にして積層フィルムB-6を得た。得られた積層フィルムB-6の各種物性を測定または評価した結果を表1に併せて示す。
[Production Example 6] (Production of laminated film B-6)
Instead of the cyclic olefin polymer film A-1, a cyclic olefin polymer film A-2 was used, and the shape of the cross-section of the bowl-shaped resin layer was the same as in Production Example 3, the same as in Production Example 5. Thus, a laminated film B-6 was obtained. The results of measuring or evaluating various physical properties of the obtained laminated film B-6 are also shown in Table 1.
 [比較製造例1](積層フィルムB-7の製造)
 製造例1において、畝形樹脂層の形状を、断面が二等辺三角形となる高さ2μm、ピッチ1000μmとなる突条にした以外は同様にして、積層フィルムB-7を得た。得られた積層フィルムB-7の各種物性を測定または評価した結果を表1に併せて示す。
[Comparative Production Example 1] (Production of laminated film B-7)
A laminated film B-7 was obtained in the same manner as in Production Example 1, except that the shape of the bowl-shaped resin layer was changed to a protrusion having a cross-section with an isosceles triangle height of 2 μm and a pitch of 1000 μm. The results of measuring or evaluating various physical properties of the obtained laminated film B-7 are also shown in Table 1.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 [実施例1](導電性積層フィルムC-1の製造)
 積層フィルムB-1における畝形状樹脂層の面に、大気中で50W・min/m2のコロナ放電処理を行なった。
[Example 1] (Production of conductive laminated film C-1)
The corrugated resin layer surface of the laminated film B-1 was subjected to a corona discharge treatment of 50 W · min / m 2 in the air.
 その表面に、アルゴンガス流入下でインジウムと錫とを含んだターゲットを用いて、下記の条件により透明導電層をスパッタリング法により形成し、導電性積層フィルムC-1を得た。得られた導電性積層フィルムC-1の透明導電層における表面抵抗値を測定したところ、550Ω/□であった。各種物性を測定および評価した結果を表2に示す。 On the surface, a transparent conductive layer was formed by sputtering under the following conditions using a target containing indium and tin under an argon gas inflow to obtain a conductive laminated film C-1. The surface resistance value in the transparent conductive layer of the obtained conductive laminated film C-1 was measured and found to be 550Ω / □. The results of measuring and evaluating various physical properties are shown in Table 2.
 (条件)
  基材温度:50℃以下
  ターゲット:In23/SnO2=90/10(重量比)の酸化物
  雰囲気:アルゴン流入下
  アルゴン流量:100~500sccm
  出力:1~1.5Kw
 [実施例2](導電性積層フィルムC-2の製造)
 積層フィルムB-1に替えて、積層フィルムB-2を用いた以外は実施例1と同様にして導電性積層フィルムC-2を得た。各種物性を測定および評価した結果を表2に併せて示す。
(conditions)
Substrate temperature: 50 ° C. or less Target: In 2 O 3 / SnO 2 = 90/10 (weight ratio) oxide Atmosphere: Under argon flow Argon flow rate: 100 to 500 sccm
Output: 1 ~ 1.5Kw
[Example 2] (Production of conductive laminated film C-2)
A conductive laminated film C-2 was obtained in the same manner as in Example 1 except that the laminated film B-2 was used instead of the laminated film B-1. The results of measuring and evaluating various physical properties are also shown in Table 2.
 [実施例3](導電性積層フィルムC-3の製造)
 積層フィルムB-1に替えて、積層フィルムB-3を用いた以外は実施例1と同様にして導電性積層フィルムC-3を得た。各種物性を測定および評価した結果を表2に併せて示す。
[Example 3] (Production of conductive laminated film C-3)
A conductive laminated film C-3 was obtained in the same manner as in Example 1 except that the laminated film B-3 was used instead of the laminated film B-1. The results of measuring and evaluating various physical properties are also shown in Table 2.
 [実施例4](導電性積層フィルムC-4の製造)
 積層フィルムB-1に替えて、積層フィルムB-4を用いた以外は実施例1と同様にして導電性積層フィルムC-4を得た。各種物性を測定および評価した結果を表2に併せて示す。
[Example 4] (Production of conductive laminated film C-4)
A conductive laminated film C-4 was obtained in the same manner as in Example 1 except that the laminated film B-4 was used instead of the laminated film B-1. The results of measuring and evaluating various physical properties are also shown in Table 2.
 [実施例5](導電性積層フィルムC-5の製造)
 積層フィルムB-1に替えて、積層フィルムB-5を用いた以外は実施例1と同様にして導電性積層フィルムC-5を得た。各種物性を測定および評価した結果を表2に併せて示す。
[Example 5] (Production of conductive laminated film C-5)
A conductive laminated film C-5 was obtained in the same manner as in Example 1 except that the laminated film B-5 was used instead of the laminated film B-1. The results of measuring and evaluating various physical properties are also shown in Table 2.
 [実施例6](導電性積層フィルムC-6の製造)
 積層フィルムB-1に替えて、積層フィルムB-6を用いた以外は実施例1と同様にして導電性積層フィルムC-6を得た。各種物性を測定および評価した結果を表2に併せて示す。
[Example 6] (Production of conductive laminated film C-6)
A conductive laminated film C-6 was obtained in the same manner as in Example 1 except that the laminated film B-6 was used instead of the laminated film B-1. The results of measuring and evaluating various physical properties are also shown in Table 2.
 [比較例1](導電性積層フィルムC-7の製造)
 積層フィルムB-1に替えて、積層フィルムB-7を用いた以外は実施例1と同様にして導電性積層フィルムC-7を得た。各種物性を測定および評価した結果を表2に併せて示す。
[Comparative Example 1] (Production of conductive laminated film C-7)
A conductive laminated film C-7 was obtained in the same manner as in Example 1 except that the laminated film B-7 was used instead of the laminated film B-1. The results of measuring and evaluating various physical properties are also shown in Table 2.
 [比較例2](導電性積層フィルムC-8の製造)
 積層フィルムB-1に替えて、環状オレフィン系重合体フィルムA-1を用い、畝形状樹脂層の面の代わりに環状オレフィン系重合体フィルムA-1の片面を用いた以外は実施例1と同様にして導電性積層フィルムC-8を得た。各種物性を測定および評価した結果を表2に示す。
[Comparative Example 2] (Production of conductive laminated film C-8)
Example 1 except that the cyclic olefin polymer film A-1 was used instead of the laminated film B-1 and one side of the cyclic olefin polymer film A-1 was used instead of the surface of the bowl-shaped resin layer. In the same manner, a conductive laminated film C-8 was obtained. The results of measuring and evaluating various physical properties are shown in Table 2.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 [実施例7](タッチパネルの作製)
 実施例1で得られた導電性積層フィルムC-1を下部電極として、188μmのPETフィルムに実施例1と同様の方法でITOをスパッタリングしたフィルムを上部電極とした。この2枚を、透明導電膜面が対向するように、スペーサーを介して重ね合わせ、液晶表示素子上に配置して、本発明のタッチパネルを得た。その構成を図10に示す。得られたタッチパネルについて、コントラストと視認性、アンチニュートンリング性と筋状の線、ならびに打鍵耐久性評価や手触り性評価を行った。結果を表3に示す。
[Example 7] (Production of touch panel)
The conductive laminated film C-1 obtained in Example 1 was used as the lower electrode, and a film obtained by sputtering ITO on a 188 μm PET film in the same manner as in Example 1 was used as the upper electrode. The two sheets were overlapped with a spacer so that the transparent conductive film surfaces face each other and placed on the liquid crystal display element to obtain the touch panel of the present invention. The configuration is shown in FIG. The obtained touch panel was subjected to contrast and visibility, anti-Newton ring property and streaked lines, and keystroke durability evaluation and hand touch evaluation. The results are shown in Table 3.
 [実施例8](偏光板、タッチパネルの作製)
 環状オレフィン系重合体フィルムA-2に実施例1と同様の方法でITOをスパッタリングした導電性位相差フィルムの透明導電膜の反対側に、調製例1で得られた混合接着剤を塗工し、偏光膜に当接するように積層させ上部電極とした。なおその際、偏光膜の吸収軸と導電性積層フィルムにおける位相差フィルムの光軸とが、45°の角度をなすように貼り合わせた。
[Example 8] (Production of polarizing plate and touch panel)
The mixed adhesive obtained in Preparation Example 1 was applied to the opposite side of the transparent conductive film of the conductive retardation film obtained by sputtering ITO on the cyclic olefin polymer film A-2 in the same manner as in Example 1. The upper electrode was laminated so as to be in contact with the polarizing film. In addition, it bonded together so that the absorption axis of a polarizing film and the optical axis of the phase-difference film in an electroconductive laminated film may make an angle of 45 degrees in that case.
 実施例2で得られた導電性積層フィルムC-2を下部電極として、この2枚を、透明導電膜面が対向するように、スペーサーを介して重ね合わせ、液晶表示素子上に配置して、本発明のタッチパネルを得た。その構成を図11に示す。 Using the conductive laminated film C-2 obtained in Example 2 as a lower electrode, these two sheets were overlapped via a spacer so that the transparent conductive film faces each other, and placed on a liquid crystal display element. A touch panel of the present invention was obtained. The configuration is shown in FIG.
 この時、液晶表示素子の偏光軸を45°方向とし、下部電極の位相差フィルムの光軸を0°方向とし、畝形状の軸を35°方向とし、上部電極の位相差フィルムの光軸を90°方向とし、偏光板の光軸を45°となるように配置した。 At this time, the polarization axis of the liquid crystal display element is set to 45 °, the optical axis of the retardation film of the lower electrode is set to 0 °, the axis of the bowl shape is set to 35 °, and the optical axis of the retardation film of the upper electrode is set to The orientation was 90 ° and the optical axis of the polarizing plate was 45 °.
 得られたタッチパネルについて、コントラストとアンチニュートンリング性と視認性を評価した。結果を表3に示す。 The contrast, anti-Newton ring property and visibility of the obtained touch panel were evaluated. The results are shown in Table 3.
 [実施例9](タッチパネルの作製)
 導電性積層フィルムC-3を使用した以外は実施例7と同様にして、各種評価を行った。結果を表3に併せて示す。
[Example 9] (Production of touch panel)
Various evaluations were performed in the same manner as in Example 7 except that the conductive laminated film C-3 was used. The results are also shown in Table 3.
 [実施例10](偏光板、タッチパネルの作製)
 導電性積層フィルムC-4を使用した以外は実施例8と同様にして、各種評価を行った。結果を表3に併せて示す。
[Example 10] (Production of polarizing plate and touch panel)
Various evaluations were performed in the same manner as in Example 8 except that the conductive laminated film C-4 was used. The results are also shown in Table 3.
 [実施例11](タッチパネルの作製)
 導電性積層フィルムC-5を使用した以外は実施例7と同様にして、各種評価を行った。結果を表3に併せて示す。
[Example 11] (Production of touch panel)
Various evaluations were performed in the same manner as in Example 7 except that the conductive laminated film C-5 was used. The results are also shown in Table 3.
 [実施例12](偏光板、タッチパネルの作製)
 導電性積層フィルムC-6を使用し、畝形状のフィルム面内方向での規則的周期の中心線の軸を35°方向とした以外は実施例8と同様にして、各種評価を行った。結果を表3に併せて示す。
[Example 12] (Production of polarizing plate and touch panel)
Various evaluations were performed in the same manner as in Example 8 except that the conductive laminated film C-6 was used and the axis of the center line of the regular period in the in-plane direction of the bowl-shaped film was set to the 35 ° direction. The results are also shown in Table 3.
 [比較例3](タッチパネルの作製)
 導電性積層フィルムC-1に替えて導電性積層フィルムC-7を用いた以外は、実施例7と同様にしてタッチパネルを得た。得られたタッチパネルについて、各種評価を行った。結果を表3に併せて示す。
[Comparative Example 3] (Production of touch panel)
A touch panel was obtained in the same manner as in Example 7 except that the conductive laminated film C-7 was used instead of the conductive laminated film C-1. Various evaluations were performed on the obtained touch panel. The results are also shown in Table 3.
 [比較例4](タッチパネルの作製)
 導電性積層フィルムC-1に替えて導電性積層フィルムC-8を用いた以外は、実施例7と同様にしてタッチパネルを得た。得られたタッチパネルについて、各種評価を行った。結果を表3に併せて示す。
[Comparative Example 4] (Production of touch panel)
A touch panel was obtained in the same manner as in Example 7 except that the conductive laminated film C-8 was used instead of the conductive laminated film C-1. Various evaluations were performed on the obtained touch panel. The results are also shown in Table 3.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
<実施例13~22および比較例5~8>
 (1)表面形状
 ザイゴ(株)非接触三次元表面形状・粗さ測定機を用い、フィルム表面形状を測定した。
<Examples 13 to 22 and Comparative Examples 5 to 8>
(1) Surface shape The surface shape of the film was measured using a non-contact three-dimensional surface shape / roughness measuring machine manufactured by Zygo Corporation.
 (2)全光線透過率
 スガ試験機(株)HGM-2DPを用い、JIS K-7361に準拠して全光線透過率(%)を測定した。
(2) Total light transmittance Total light transmittance (%) was measured in accordance with JIS K-7361 using Suga Test Instruments Co., Ltd. HGM-2DP.
 (3)透過光b*
 大塚電子(株)製 色差計RETS-1200VAを用い、JIS Z-8722に準拠して透過光b*(%)を測定した。
(3) Transmitted light b *
Using a color difference meter RETS-1200VA manufactured by Otsuka Electronics Co., Ltd., transmitted light b * (%) was measured according to JIS Z-8722.
 (4)鉛筆硬度
(株)東洋精機製 鉛筆引掻塗膜硬さ試験機NPを用いて、JIS K-5600-5-4に準拠して鉛筆硬度を測定した。
(4) Pencil hardness Pencil hardness was measured according to JIS K-5600-5-4 using a pencil scratch coating film hardness tester NP manufactured by Toyo Seiki Co., Ltd.
 (5)輝度ムラ(ぎらつき発生程度)
 シャープ製モバイルツールSL-6000Nの画面を緑表示とした後、フィルムを乗せ、以下の基準で目視により評価した。
(5) Luminance unevenness (about the occurrence of glare)
The screen of Sharp mobile tool SL-6000N was displayed in green, and then a film was placed thereon. Visual evaluation was performed according to the following criteria.
  A :画素の輝度ムラがほとんど認識できない
  B :画素の輝度ムラが認識できるが、目立たない
  C :画素の輝度ムラがはっきり認識できる
 (6)アンチニュートンリング性(干渉縞の発生の抑制程度)
 フィルムを平滑なガラス板(厚み3mm、素材:ソーダガラス)の上に粒子含有樹脂層が密着するように乗せて指で押しつけ、ニュートンリングが発生するかを目視にて評価した。
A: Pixel brightness unevenness is hardly recognized B: Pixel brightness unevenness is recognizable, but not noticeable C: Pixel brightness unevenness is clearly recognizable (6) Anti-Newton ring property (degree of suppression of occurrence of interference fringes)
The film was placed on a smooth glass plate (thickness 3 mm, material: soda glass) so that the particle-containing resin layer was in close contact and pressed with a finger, and it was visually evaluated whether Newton rings were generated.
  A :ニュートンリングが発生しない
  B :ニュートンリングがわずかに発生する
  C :ニュートンリングが明らかに発生する
 (7)位相差
王子計測機器(株)製の「KOBRA-21ADH/PR」を用いて、波長550nmにおける位相差(R0:nm)を測定した。
A: Newton ring does not occur B: Newton ring slightly occurs C: Newton ring clearly occurs (7) Wavelength using “KOBRA-21ADH / PR” manufactured by Oji Scientific Instruments Co., Ltd. The phase difference (R0: nm) at 550 nm was measured.
 (8)表面抵抗
 三菱化学(株)製の低抵抗率計「ロレスタ-GP」を用い、透明導電層の表面抵抗値(Ω/□)を測定した。
(8) Surface Resistance Using a low resistivity meter “Loresta GP” manufactured by Mitsubishi Chemical Corporation, the surface resistance value (Ω / □) of the transparent conductive layer was measured.
 (9)タッチパネルのコントラスト評価
 暗室にて、タッチパネルの黒表示画面を正面方向から見て、目視で色味変化を観察して下記基準で評価した。
(9) Contrast evaluation of touch panel In the dark room, the black display screen of the touch panel was viewed from the front, and the color change was visually observed and evaluated according to the following criteria.
  A :タッチパネルの色味変化が無く、クリア感がある
  B :タッチパネルの色味変化が無い
  C :タッチパネルの色味変化が多少観察される
  D :タッチパネルの色味変化が大きい
 (10)タッチパネルの視認性評価
 視野角を変えた時の画面の色変化を目視観察した。
A: There is no color change of the touch panel and there is a clear feeling B: No color change of the touch panel C: Some color change of the touch panel is observed D: Color change of the touch panel is large (10) Visual recognition of the touch panel Evaluation of color The color change of the screen when the viewing angle was changed was visually observed.
  A :タッチパネルの色味変化が無く、クリア感がある
  B :タッチパネルの色味変化が無い
  C :タッチパネルの色味変化が多少観察される
  D :タッチパネルの色味変化が大きい
 (11)タッチパネルのアンチニュートンリング性(干渉縞の発生の抑制程度)評価
 タッチパネルの上部電極側の表面を、電極間が接触するように指で押しつけ、ニュートンリングが発生するかを目視にて評価した。
A: There is no color change of the touch panel and there is a clear feeling B: No color change of the touch panel C: Some color change of the touch panel is observed D: Color change of the touch panel is large (11) Anti-touch panel Newton ring property (degree of suppression of occurrence of interference fringes) evaluation The surface of the upper electrode side of the touch panel was pressed with a finger so that the electrodes were in contact with each other, and whether or not Newton ring was generated was visually evaluated.
  A :ニュートンリングが発生しない
  B :ニュートンリングがわずかに発生する
  C :ニュートンリングが明らかに発生する
 (12)タッチパネルの筋状の線評価
 明るい通常の部屋にて、タッチパネルの黒表示画面を正面および斜め方向から見て、目視で筋状の線が観察できるか調べ、下記基準で評価した。
A: Newton ring does not occur B: Newton ring slightly occurs C: Newton ring clearly occurs (12) Streaky line evaluation of the touch panel In a bright normal room, the black display screen of the touch panel is It was examined from the oblique direction whether a streak line could be observed visually, and the following criteria were evaluated.
  A :タッチパネルの筋状の線が全く観察されない
  B :タッチパネルの筋状の線がわずかに観察される
  C :タッチパネルの筋状の線がはっきりと観察される
 (13)タッチパネルの打鍵耐久性評価
 タッチパネル研究所製、高荷重打鍵試験機を使用し、シリコーンゴム(曲率半径8cm)を使用し、荷重750g、打鍵速度10Hzにて室温で打鍵耐久性評価を行った。初期の通電電圧を3Vとして電流を流し、当該電圧が三分の二(2V)に低下するまでの打鍵回数を調べた。
A: The streak line of the touch panel is not observed at all. B: The streak line of the touch panel is slightly observed. C: The streak line of the touch panel is clearly observed. (13) Evaluation of keystroke durability of the touch panel Using a high load keying tester manufactured by Research Laboratory, silicone rubber (curvature radius 8 cm) was used, and the keying durability was evaluated at room temperature at a load of 750 g and a keying speed of 10 Hz. The initial energization voltage was set to 3V, and a current was passed. The number of keystrokes until the voltage dropped to 2/3 (2V) was examined.
  A :打鍵回数1000万回以上
  B :打鍵回数500万回~1000万回未満
  C :打鍵回数500万回未満
 (14)タッチパネルの手触り性評価
 タッチパネルについて、その表面を指で擦り、手触り性の評価を下記の基準で行った。
A: Number of keystrokes of 10 million times or more B: Number of keystrokes of 5 million to less than 10 million times C: Number of keystrokes of less than 5 million times (14) Touch panel touch evaluation Touch panel surface is rubbed with a finger to evaluate touch characteristics Was performed according to the following criteria.
  A :タッチパネルの表面凸凹感を全く感じない
  B :タッチパネルの表面凹凸感がやや感じられる
  C :タッチパネルの表面凹凸感が直ぐに分かるほど感じられる
 (15)フィルムの厚み測定
 フィルムの厚みはマイクロメーターで測定した。
A: Feeling the surface unevenness of the touch panel is not felt at all B: Feeling of the surface unevenness of the touch panel is slightly felt C: Feeling of the surface unevenness of the touch panel is felt immediately (15) Film thickness measurement The film thickness is measured with a micrometer did.
 [作製例4](環状オレフィン系樹脂フィルムA-1aの製造)
 環状オレフィン系樹脂として、ノルボルネン系樹脂(JSR株式会社製:商品名「ARTON D4531」、ガラス転移温度130℃)を用いた。この原料を乾燥温度100℃で、窒素下で除湿乾燥を行い、押出機(ジーエムエンジニアリング社製:GM-65)に導き260℃で溶融し、ギアポンプを用いて定量で送液し、5μmリーフディスクフィルターを用いて、異物を除去し、250℃に設定したアルミ鋳込みヒーターにより加熱されたTダイから押出を実施した。このときのTダイの開口は1.0mmであり、Tダイ出口と冷却ロール1のフィルムの圧着点との間の距離は70mmとした。冷却ロール1は、300mmφのロールの表面に、頂角100度でピッチ50μのプリズム形状の凸部がロール周方向に連続して彫刻された、畝形状の凸部を有するものであった。Tダイから押出された溶融物を冷却ロール1に圧着させた。冷却ロール1の温度は120℃としてノルボルネン系樹脂フィルムの表面に当該形状が良く転写するようにした。そして、その下流側に300mmφの冷却ロール2を、さらに下流側に300mmφの剥離ロールを設けた。それぞれのロールの温度を115℃、100℃として、フィルム表面温度98℃で剥離ロールからフィルムを剥離させて、頂角100度でピッチ50μmのプリズム形状の凸部がフィルム長手方向に連続した、畝形状の凸部を持つ250μm厚みのノルボルネン系樹脂フィルムA-1aを得た。
[Production Example 4] (Production of Cyclic Olefin Resin Film A-1a)
A norbornene resin (manufactured by JSR Corporation: trade name “ARTON D4531”, glass transition temperature 130 ° C.) was used as the cyclic olefin resin. This raw material is dehumidified and dried under nitrogen at a drying temperature of 100 ° C., led to an extruder (GM Engineering Co., Ltd .: GM-65), melted at 260 ° C., and fed in a fixed amount using a gear pump, and a 5 μm leaf disk Foreign matters were removed using a filter, and extrusion was performed from a T die heated by an aluminum casting heater set at 250 ° C. At this time, the opening of the T die was 1.0 mm, and the distance between the T die outlet and the pressure bonding point of the film of the cooling roll 1 was 70 mm. The cooling roll 1 had a bowl-shaped convex part in which prism-shaped convex parts having a vertex angle of 100 degrees and a pitch of 50 μ were continuously engraved in the roll circumferential direction on the surface of a 300 mmφ roll. The melt extruded from the T die was pressed on the cooling roll 1. The temperature of the cooling roll 1 was 120 ° C. so that the shape was well transferred onto the surface of the norbornene resin film. Then, a 300 mmφ cooling roll 2 was provided on the downstream side, and a 300 mmφ peeling roll was further provided on the downstream side. The temperature of each roll was set to 115 ° C. and 100 ° C., the film was peeled from the peeling roll at a film surface temperature of 98 ° C., and prism-shaped convex portions having a vertex angle of 100 ° and a pitch of 50 μm were continuous in the longitudinal direction of the film. A norbornene-based resin film A-1a having a 250 μm-thick convex portion was obtained.
 [作製例5](環状オレフィン系樹脂フィルムA-2aの製造)
 畝の長さが1000μmであり、畝の長さ方向における畝と畝との間隔が50μmであること以外は冷却ロール1と同様の冷却ロール2を用いたこと以外は作製例1と同様にして、頂角100度で畝のピッチ50μm、長さ1000μmのプリズム形状の凸部がフィルム長手方向に連続し、畝の長さ方向における畝と畝との間隔が50μmである、断続的な畝形状の凸部を持つ250μm厚みのノルボルネン系樹脂フィルムA-2aを得た。
[Production Example 5] (Production of Cyclic Olefin Resin Film A-2a)
Except that the length of the ridge is 1000 μm and the distance between the ridge and the ridge in the length direction of the ridge is 50 μm, the same as in Production Example 1 except that the cooling roll 2 similar to the cooling roll 1 is used. An intermittent ridge shape in which a prism-shaped convex part having a ridge pitch of 50 μm and a length of 1000 μm is continuous in the longitudinal direction of the film at an apex angle of 100 degrees, and the distance between the ridges in the ridge length direction is 50 μm. A norbornene-based resin film A-2a having a thickness of 250 μm was obtained.
 [作製例6](環状オレフィン系樹脂フィルムA-3aの製造)
 幅1000μm、長さ2000μm、深さ10μmの平面形状が方形の凹部を格子状に有すること以外は冷却ロール1と同様の冷却ロール3を用いたこと以外は作製例1と同様にして、幅1000μm、長さ2000μm、高さ10μm、各格子の間隔が100μm(形状イメージは、図4(1)相当)の平面形状が方形の凸部を海島状に持つ250μm厚みのノルボルネン系樹脂フィルムA-3aを得た。
[Production Example 6] (Production of Cyclic Olefin Resin Film A-3a)
The width of 1000 μm is the same as that of Production Example 1 except that the cooling roll 3 similar to the cooling roll 1 is used except that the planar shape having a width of 1000 μm, a length of 2000 μm, and a depth of 10 μm has a rectangular recess. A norbornene-based resin film A-3a having a length of 2000 μm, a height of 10 μm, and a spacing of each grid of 100 μm (the shape image is equivalent to FIG. 4 (1)) having a square-shaped convex portion in a sea-island shape. Got.
 [作製例7](環状オレフィン系樹脂フィルムA-4aの製造)
 幅1000μm、長さ2000μm、深さ10μmの平面形状が楕円状の凹部を海島状に有すること以外は冷却ロール1と同様の冷却ロール4を用いたこと以外は作製例1と同様にして、幅1000μm、長さ2000μm、高さ10μm、各間隔2000μm及び500μm(形状イメージは、図4(3)相当)の平面形状が楕円状の凸部を海島状に持つ250μm厚みのノルボルネン系樹脂フィルムA-4aを得た。
[Production Example 7] (Production of Cyclic Olefin Resin Film A-4a)
The width is 1000 μm, the length is 2000 μm, and the depth is 10 μm, except that a cooling roll 4 similar to the cooling roll 1 is used, except that the elliptical recess has a sea-island shape. 250 μm-thick norbornene resin film A—having an elliptical convex shape in the shape of a sea island of 1000 μm, length 2000 μm, height 10 μm, intervals 2000 μm and 500 μm (the shape image corresponds to FIG. 4 (3)) 4a was obtained.
 [作製例8](環状オレフィン系樹脂フィルムA-5aの製造)
 表面状態が鏡面状態であること以外は冷却ロール1と同様の冷却ロール5を用いたこと以外は作製例1と同様にして、フィルム表面に凸部を持たない250μm厚みのノルボルネン系樹脂フィルムA-5aを得た。
[Production Example 8] (Production of Cyclic Olefin Resin Film A-5a)
A 250 μm-thick norbornene-based resin film A− having no projections on the film surface was used in the same manner as in Production Example 1 except that the cooling roll 5 similar to the cooling roll 1 was used except that the surface state was a mirror surface state. 5a was obtained.
 [作製例9](偏光膜の製造)
 ヨウ素濃度が0.03重量%、ヨウ化カリウム濃度が0.5重量%である水溶液からなる、温度30℃の染色浴中で、PVAを延伸倍率3倍で前延伸加工し、次いで、ホウ酸濃度が5重量%、ヨウ化カリウム濃度が8重量%である水溶液からなる、温度55℃の架橋浴中で、延伸倍率2倍で後延伸加工した後、乾燥処理することにより、30μm厚みの偏光膜を得た。
[Production Example 9] (Production of Polarizing Film)
PVA was pre-stretched at a stretch ratio of 3 times in a dyeing bath at a temperature of 30 ° C. consisting of an aqueous solution having an iodine concentration of 0.03% by weight and a potassium iodide concentration of 0.5% by weight, and then boric acid 30 μm thick polarized light by post-stretching at a stretch ratio of 2 in a crosslinking bath of 55 ° C. consisting of an aqueous solution having a concentration of 5% by weight and a potassium iodide concentration of 8% by weight, followed by drying. A membrane was obtained.
 [調製例2](混合接着剤の調製)
 PVA系樹脂である和光純薬工業(株)製の163-03045(分子量:22,000、ケン化度:88モル%)に、水を加えて固形分濃度が7重量%の水溶液を調製した。一方、ポリウレタン系樹脂である大日本インキ化学工業(株)製のWLS-201(固形分濃度35重量%)100部に、ポリエポキシ系硬化剤である大日本インキ工業(株)製のCR-5L(有効成分100%品)5部を配合し、水で希釈して固形分濃度が20重量%の水溶液を調製した。得られたポリウレタン系樹脂水溶液とポリビニルアルコール系樹脂水溶液とを、重量比で1:1(固形分重量比で80:20)の割合で混合し、固形分濃度が15重量%の混合接着剤を調製した。
[Preparation Example 2] (Preparation of mixed adhesive)
Water was added to 163-03045 (molecular weight: 22,000, saponification degree: 88 mol%) manufactured by Wako Pure Chemical Industries, Ltd., which is a PVA resin, to prepare an aqueous solution having a solid content concentration of 7% by weight. . On the other hand, 100 parts of WLS-201 (solid content concentration 35% by weight) manufactured by Dainippon Ink & Chemicals, Inc., which is a polyurethane resin, is added to CR- manufactured by Dainippon Ink Industries, Ltd., which is a polyepoxy curing agent. 5 L (100% active ingredient product) 5 parts was blended and diluted with water to prepare an aqueous solution with a solid content of 20% by weight. The obtained polyurethane resin aqueous solution and polyvinyl alcohol resin aqueous solution were mixed at a weight ratio of 1: 1 (solid content weight ratio of 80:20), and a mixed adhesive having a solid content concentration of 15% by weight was obtained. Prepared.
 [製造例7](透明樹脂からなるフィルムB-1bの製造)
 作製例4にて得られた環状オレフィン系樹脂フィルムA-1aを、風向制御板を設けた延伸炉内で表面賦形された反対面が145℃になるよう加熱し、遠赤外ヒーターを用いて表面賦形された面が155℃となるよう加熱しコントロールされた槽内にて、延伸速度が300%/分で、フィルム幅方向に2.5倍の延伸倍率になるようテンター式の横延伸機による一軸延伸をして、位相差R0が138nm、R0のばらつきが±5nmかつ光軸がフィルム幅方向に対して0±2度の環状オレフィン系樹脂フィルムからなる厚み100μmのフィルムB-1bを得た。当該フィルムの予め表面賦形された面の表面形状をザイゴ(株)非接触三次元表面形状・粗さ測定機により調べたところ、凸部をもつ畝形状であって、dH/dLが最大で0.01であり、畝の長さ方向と直交する断面における表面を示す線が、高さ2μm、ピッチ130μmの波状の曲線であった。
[Production Example 7] (Production of film B-1b made of transparent resin)
The cyclic olefin-based resin film A-1a obtained in Production Example 4 was heated in a drawing furnace provided with a wind direction control plate so that the opposite surface was 145 ° C., and a far infrared heater was used. A tenter type horizontal so that the stretched speed is 300% / min and the stretch ratio is 2.5 times in the film width direction in a controlled tank heated to 155 ° C. Film B-1b having a thickness of 100 μm made of a cyclic olefin-based resin film having a retardation R0 of 138 nm, a variation of R0 of ± 5 nm, and an optical axis of 0 ± 2 degrees with respect to the film width direction after uniaxial stretching by a stretching machine Got. When the surface shape of the surface preliminarily shaped of the film was examined with a Zygo Corporation non-contact three-dimensional surface shape / roughness measuring machine, it was a ridge shape having a convex part, and dH / dL was the maximum. A line indicating a surface in a cross section perpendicular to the length direction of the ridge was 0.01 and was a wavy curve having a height of 2 μm and a pitch of 130 μm.
 [製造例8](透明樹脂からなるフィルムB-2bの製造)
 環状オレフィン系樹脂フィルムA-1aに替えて、環状オレフィン系樹脂フィルム作製例5で得られたA-2aを用いた以外は製造例7と同様にして、環状オレフィン系樹脂フィルムからなる厚み100μmのフィルムB-2bを得た。当該フィルムのR0は138nm、R0のばらつきが±5nmかつ光軸がフィルム幅方向に対して0±2度であり、当該フィルムの予め表面賦形された面の表面形状をザイゴ(株)非接触三次元表面形状・粗さ測定機により調べたところ、凸部をもつ畝形状であって、畝の長さ方向の畝と畝との間隔が50μmであり、dH/dLが最大で0.02であり、畝の長さ方向と直交する断面における表面を示す線が、高さ2μm、ピッチ130μmの曲線であった。
[Production Example 8] (Production of transparent resin film B-2b)
In the same manner as in Production Example 7 except that A-2a obtained in Cyclic Olefin Resin Film Production Example 5 was used in place of Cyclic Olefin Resin Film A-1a, and a thickness of 100 μm made of a cyclic olefin resin film was used. Film B-2b was obtained. R0 of the film is 138 nm, variation of R0 is ± 5 nm, and the optical axis is 0 ± 2 degrees with respect to the film width direction. The surface shape of the surface of the film preliminarily shaped is not contacted by Zygo Corporation When examined with a three-dimensional surface shape / roughness measuring machine, the shape of the ridges has a convex part, the distance between the ridges in the longitudinal direction of the ridges is 50 μm, and dH / dL is 0.02 at the maximum. The line indicating the surface in the cross section perpendicular to the length direction of the ridge was a curve having a height of 2 μm and a pitch of 130 μm.
 [製造例9](透明樹脂からなるフィルムB-3bの製造)
 環状オレフィン系樹脂フィルムA-1aに替えて、環状オレフィン系樹脂フィルム作製例6で得られたA-3aを用い、ニップロールを使用した縦一軸延伸機を用いた以外は製造例7と同様にして、環状オレフィン系樹脂フィルムからなる厚み130μmのフィルムB-3bを得た。当該フィルムのR0は138nm、R0のばらつきが±5nmかつ光軸がフィルム長手方向に対して0±2度であり、当該フィルムの予め表面賦形された面の表面形状をザイゴ(株)非接触三次元表面形状・粗さ測定機により調べたところ、幅920μm、長さ5000μm、高さ1μm、格子の幅が延伸方向と平行な方向で108μm、それと垂直な方向で250μmの平面形状が方形の凸部を海島状に有し、dH/dLが最大で0.02であり、縦断面に現れる凸部を示す線が曲率半径15000μmのエッジ部を有する曲線状であった。
[Production Example 9] (Production of transparent resin film B-3b)
Instead of the cyclic olefin resin film A-1a, A-3a obtained in the cyclic olefin resin film production example 6 was used, and a longitudinal uniaxial stretching machine using a nip roll was used, and the same procedure as in Production Example 7 was performed. Thus, a film B-3b made of a cyclic olefin resin film and having a thickness of 130 μm was obtained. R0 of the film is 138 nm, variation of R0 is ± 5 nm, and the optical axis is 0 ± 2 degrees with respect to the longitudinal direction of the film. When examined with a three-dimensional surface shape / roughness measuring instrument, the plane shape was 920 μm in width, 5000 μm in length, 1 μm in height, 108 μm in the direction parallel to the stretching direction, and 250 μm in the direction perpendicular thereto. The convex portion has a sea-island shape, dH / dL is 0.02 at the maximum, and the line indicating the convex portion appearing in the longitudinal section has a curved shape having an edge portion having a curvature radius of 15000 μm.
 [製造例10](透明樹脂からなるフィルムB-4bの製造)
 環状オレフィン系樹脂フィルムA-3aに替えて、環状オレフィン系樹脂フィルム作製例7で得られたA-4aを用いた以外は製造例9と同様にして、環状オレフィン系樹脂フィルムからなる厚み130μmのフィルムB-4bを得た。当該フィルムのR0は138nm、R0のばらつきが±5nmかつ光軸がフィルム長手方向に対して0±2度であり、当該フィルムの予め表面賦形された面の表面形状をザイゴ(株)非接触三次元表面形状・粗さ測定機により調べたところ、幅720μm、長さ5000μm、高さ1μmの平面形状が楕円状の凸部を海島状に有し、dH/dLが最大で0.01であり、縦断面に現れる凸部を示す線が曲率半径15000μmのエッジ部を有する曲線状であった。
[Production Example 10] (Production of transparent resin film B-4b)
In the same manner as in Production Example 9 except that A-4a obtained in Cyclic Olefin Resin Film Production Example 7 was used instead of Cyclic Olefin Resin Film A-3a, a 130 μm thick cyclic olefin resin film was formed. Film B-4b was obtained. R0 of the film is 138 nm, variation of R0 is ± 5 nm, and the optical axis is 0 ± 2 degrees with respect to the longitudinal direction of the film. When examined with a three-dimensional surface shape / roughness measuring machine, the planar shape with a width of 720 μm, a length of 5000 μm, and a height of 1 μm has an elliptical convex part in a sea-island shape, and dH / dL is 0.01 at the maximum. The line indicating the convex portion appearing in the longitudinal section was a curved shape having an edge portion having a curvature radius of 15000 μm.
 [製造例11](透明樹脂からなるフィルムB-5bの製造)
 環状オレフィン系樹脂フィルムA-1aに替えて、市販のポリカーボネート樹脂からなるプリズム表面賦形フィルム(五洋紙工株式会社製、GTL5000F、厚み240μm、ガラス転移温度125℃)を用い、表面賦形された面が155℃、反対面が140℃となるようにしたこと以外は製造例7と同様にして、ポリカーボネート樹脂からなる厚み100μmのフィルムB-5bを得た。当該フィルムのR0は140nm、R0のばらつきが±7nmかつ光軸がフィルム幅方向に対して±3度であり、当該フィルムの予め表面賦形された面の表面形状をザイゴ(株)非接触三次元表面形状・粗さ測定機により調べたところ、凸部をもつ畝形状であって、dH/dLが最大で0.02であり、畝の長さ方向と直交する断面における表面を示す線が、高さ2μm、ピッチ130μmの波状の曲線であった。
[Production Example 11] (Production of transparent resin film B-5b)
Instead of the cyclic olefin-based resin film A-1a, the surface was shaped using a prism surface-shaped film made of a commercially available polycarbonate resin (manufactured by Goyo Paper Industries Co., Ltd., GTL5000F, thickness 240 μm, glass transition temperature 125 ° C.). A film B-5b made of polycarbonate resin and having a thickness of 100 μm was obtained in the same manner as in Production Example 7 except that the surface was 155 ° C. and the opposite surface was 140 ° C. R0 of the film is 140 nm, variation of R0 is ± 7 nm, and the optical axis is ± 3 degrees with respect to the film width direction, and the surface shape of the surface of the film preliminarily shaped is non-contact tertiary When examined by the original surface shape / roughness measuring machine, it is a ridge shape having a convex portion, dH / dL is 0.02 at the maximum, and a line indicating the surface in a cross section orthogonal to the length direction of the ridge is It was a wavy curve with a height of 2 μm and a pitch of 130 μm.
 [製造例12](透明樹脂からなるフィルムB-6bの製造)
 環状オレフィン系樹脂フィルムA-1aに替えて、環状オレフィン系樹脂フィルム作製例8で得られたA-5aを用いた以外は製造例7と同様にして、環状オレフィン系樹脂フィルムからなる厚み100μmのフィルムB-6bを得た。当該フィルムのR0は138nm、R0のばらつきが±5nmかつ光軸がフィルム幅方向に対して0±2度であり、ザイゴ(株)非接触三次元表面形状・粗さ測定機により調べたところ、当該フィルムの表面は平滑であり、dH/dLが概ね0であった。
[Production Example 12] (Production of transparent resin film B-6b)
In the same manner as in Production Example 7 except that A-5a obtained in Cyclic Olefin Resin Film Production Example 8 was used in place of Cyclic Olefin Resin Film A-1a, Film B-6b was obtained. R0 of the film is 138 nm, variation of R0 is ± 5 nm, and the optical axis is 0 ± 2 degrees with respect to the film width direction. When examined with a non-contact three-dimensional surface shape / roughness measuring machine, The surface of the film was smooth and dH / dL was approximately 0.
 [実施例13](導電性積層フィルムC-1cの製造)
 フィルムB-1bにおける凸を有する面に、大気中で50W・min/m2のコロナ放電処理を行った。
[Example 13] (Production of conductive laminated film C-1c)
The convex surface of the film B-1b was subjected to a corona discharge treatment of 50 W · min / m 2 in the atmosphere.
 その表面に、アルゴンガス流入下でインジウムと錫とを含んだターゲットを用いて、下記の条件により透明導電層をスパッタリング法により形成し、導電性積層フィルムC-1cを得た。得られた導電性積層フィルムC-1cの透明導電層における表面抵抗値を測定したところ、550Ω/□であった。各種物性を測定および評価した結果を表4に示す。 On the surface, a transparent conductive layer was formed by sputtering under the following conditions using a target containing indium and tin under argon gas flow to obtain a conductive laminated film C-1c. The surface resistance value in the transparent conductive layer of the obtained conductive laminated film C-1c was measured and found to be 550Ω / □. Table 4 shows the results of measurement and evaluation of various physical properties.
 (条件)
  基材温度:50℃以下
  ターゲット:ITO(In23/SnO2=90/10(重量比))
  雰囲気:アルゴン流入下
  アルゴン流量:100~500sccm
  出力:1~1.5Kw
  透明導電層の厚み:55nm
 [実施例14](導電性積層フィルムC-2cの製造)
 UV硬化樹脂(JSR(株)製 デソライトKZ-9136)を、グラビアリバース法にて、フィルム製造例8により得られたフィルムB-2bの凸を有する面に塗布後、1J/cm2の紫外線を照射して硬化させた。このフィルムのUV硬化樹脂膜上に実施例13と同様の条件でスパッタリングを行い、透明導電層を形成し、導電性積層フィルムC-2cを得た。各種物性を測定および評価した結果を表4に併せて示す。
(conditions)
Substrate temperature: 50 ° C. or less Target: ITO (In 2 O 3 / SnO 2 = 90/10 (weight ratio))
Atmosphere: Argon flow Argon flow: 100-500sccm
Output: 1 ~ 1.5Kw
Transparent conductive layer thickness: 55nm
[Example 14] (Production of conductive laminated film C-2c)
A UV curable resin (Desolite KZ-9136 manufactured by JSR Corporation) was applied to the convex surface of the film B-2b obtained in Film Production Example 8 by the gravure reverse method, and then an ultraviolet ray of 1 J / cm 2 was applied. Irradiated to cure. Sputtering was performed on the UV curable resin film of this film under the same conditions as in Example 13 to form a transparent conductive layer, to obtain a conductive laminated film C-2c. Table 4 shows the results of measurement and evaluation of various physical properties.
 [実施例15](導電性積層フィルムC-3cの製造)
 フィルムB-1bに替えて、フィルムB-3bを用いた以外は実施例13と同様にして導電性積層フィルムC-3cを得た。各種物性を測定および評価した結果を表4に併せて示す。
[Example 15] (Production of conductive laminated film C-3c)
A conductive laminated film C-3c was obtained in the same manner as in Example 13 except that the film B-3b was used instead of the film B-1b. Table 4 shows the results of measurement and evaluation of various physical properties.
 [実施例16](導電性積層フィルムC-4cの製造)
 フィルムB-1bに替えて、フィルムB-4bを用いた以外は実施例13と同様にして導電性積層フィルムC-4cを得た。各種物性を測定および評価した結果を表4に併せて示す。
[Example 16] (Production of conductive laminated film C-4c)
A conductive laminated film C-4c was obtained in the same manner as in Example 13 except that the film B-4b was used instead of the film B-1b. Table 4 shows the results of measurement and evaluation of various physical properties.
 [実施例17](導電性積層フィルムC-5cの製造)
 フィルムB-1bに替えて、フィルムB-5bを用いた以外は実施例13と同様にして導電性積層フィルムC-5cを得た。各種物性を測定および評価した結果を表4に併せて示す。
[Example 17] (Production of conductive laminated film C-5c)
A conductive laminated film C-5c was obtained in the same manner as in Example 13 except that the film B-5b was used instead of the film B-1b. Table 4 shows the results of measurement and evaluation of various physical properties.
 [比較例5](導電性積層フィルムC-6cの製造)
 フィルムB-1bに替えて、環状オレフィン系樹脂フィルムA-1aを用いた以外は実施例13と同様にして導電性積層フィルムC-6cを得た。各種物性を測定および評価した結果を表4に併せて示す。
[Comparative Example 5] (Production of conductive laminated film C-6c)
A conductive laminated film C-6c was obtained in the same manner as in Example 13 except that the cyclic olefin resin film A-1a was used in place of the film B-1b. Table 4 shows the results of measurement and evaluation of various physical properties.
 [比較例6](導電性積層フィルムC-7cの製造)
 フィルムB-1bに替えて、環状オレフィン系樹脂フィルムA-5aを用いた以外は実施例13と同様にして導電性積層フィルムC-7cを得た。各種物性を測定および評価した結果を表4に示す。
[Comparative Example 6] (Production of conductive laminated film C-7c)
A conductive laminated film C-7c was obtained in the same manner as in Example 13 except that the cyclic olefin resin film A-5a was used in place of the film B-1b. Table 4 shows the results of measurement and evaluation of various physical properties.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 [実施例18](タッチパネルの作製)
 実施例1で得られた導電性積層フィルムC-1cを下部電極として、188μmのPETフィルムに実施例13と同様の方法でITOをスパッタリングして得られたフィルムを上部電極とした。この2枚を、透明導電膜面が対向するように、スペーサーを介して重ね合わせ、液晶表示素子上に配置して、本発明のタッチパネルを得た。その構成を図5に示す。得られたタッチパネルについて、コントラストと視認性、アンチニュートンリング性と筋状の線、ならびに打鍵耐久性評価や手触り性評価を行った。結果を表5に示す。
[Example 18] (Production of touch panel)
The conductive laminate film C-1c obtained in Example 1 was used as the lower electrode, and a film obtained by sputtering ITO on a 188 μm PET film in the same manner as in Example 13 was used as the upper electrode. The two sheets were overlapped with a spacer so that the transparent conductive film surfaces face each other and placed on the liquid crystal display element to obtain the touch panel of the present invention. The configuration is shown in FIG. The obtained touch panel was subjected to contrast and visibility, anti-Newton ring property and streaked lines, and keystroke durability evaluation and hand touch evaluation. The results are shown in Table 5.
 [実施例19](偏光板、タッチパネルの作製)
 フィルムB-6bに実施例13と同様の方法でITOをスパッタリングして形成した導電性位相差フィルムの透明導電膜の反対側に、調製例2で得られた混合接着剤を塗工し、作製例9で作製した偏光膜に当接するように積層させ上部電極とした。なおその際、偏光膜の吸収軸と導電性積層フィルムにおける位相差フィルムの光軸とが、45°の角度をなすように貼り合わせた。
[Example 19] (Production of polarizing plate and touch panel)
The mixed adhesive obtained in Preparation Example 2 was applied to the opposite side of the transparent conductive film of the conductive retardation film formed by sputtering ITO on the film B-6b in the same manner as in Example 13. The upper electrode was laminated so as to be in contact with the polarizing film produced in Example 9. In addition, it bonded together so that the absorption axis of a polarizing film and the optical axis of the phase-difference film in an electroconductive laminated film may make an angle of 45 degrees in that case.
 実施例14で得られた導電性積層フィルムC-2cを下部電極として、この2枚を、透明導電膜面が対向するように、スペーサーを介して重ね合わせ、液晶表示素子上に配置して、本発明のタッチパネルを得た。その構成を図6に示す。 Using the conductive laminated film C-2c obtained in Example 14 as a lower electrode, the two sheets were overlapped with a spacer so that the transparent conductive film faces each other, and placed on a liquid crystal display element. A touch panel of the present invention was obtained. The configuration is shown in FIG.
 この時、液晶表示素子の偏光軸を45°方向とし、下部電極の位相差フィルムの光軸を0°方向とし、畝形状の軸を35°方向とし、上部電極の位相差フィルムの光軸を90°方向とし、偏光板の光軸を45°となるように配置した。 At this time, the polarization axis of the liquid crystal display element is set to 45 ° direction, the optical axis of the retardation film of the lower electrode is set to 0 ° direction, the axis of the bowl shape is set to 35 ° direction, and the optical axis of the retardation film of the upper electrode is set to The orientation was 90 ° and the optical axis of the polarizing plate was 45 °.
 得られたタッチパネルについて、コントラストとアンチニュートンリング性と視認性を評価した。結果を表5に示す。 The contrast, anti-Newton ring property and visibility of the obtained touch panel were evaluated. The results are shown in Table 5.
 [実施例20](タッチパネルの作製)
 導電性積層フィルムC-1cに替えて導電性積層フィルムC-3cを使用した以外は実施例18と同様にして、各種評価を行った。結果を表5に併せて示す。
[Example 20] (Production of touch panel)
Various evaluations were performed in the same manner as in Example 18 except that the conductive laminated film C-3c was used instead of the conductive laminated film C-1c. The results are also shown in Table 5.
 [実施例21](偏光板、タッチパネルの作製)
 導電性積層フィルムC-2cに替えて導電性積層フィルムC-4cを使用した以外は実施例19と同様にして、各種評価を行った。結果を表5に併せて示す。
[Example 21] (Production of polarizing plate and touch panel)
Various evaluations were performed in the same manner as in Example 19 except that the conductive laminated film C-4c was used instead of the conductive laminated film C-2c. The results are also shown in Table 5.
 [実施例22](タッチパネルの作製)
 導電性積層フィルムC-1cに替えて導電性積層フィルムC-5cを使用した以外は実施例18と同様にして、各種評価を行った。結果を表5に併せて示す。
[Example 22] (Production of touch panel)
Various evaluations were performed in the same manner as in Example 18 except that the conductive laminated film C-5c was used instead of the conductive laminated film C-1c. The results are also shown in Table 5.
 [比較例7](タッチパネルの作製)
 導電性積層フィルムC-1cに替えて導電性積層フィルムC-6cを用いた以外は、実施例18と同様にしてタッチパネルを得た。得られたタッチパネルについて、各種評価を行った。結果を表5に併せて示す。
[Comparative Example 7] (Production of touch panel)
A touch panel was obtained in the same manner as in Example 18 except that the conductive laminated film C-6c was used instead of the conductive laminated film C-1c. Various evaluations were performed on the obtained touch panel. The results are also shown in Table 5.
 [比較例8](タッチパネルの作製)
 導電性積層フィルムC-1cに替えて導電性積層フィルムC-7cを用いた以外は、実施例18と同様にしてタッチパネルを得た。得られたタッチパネルについて、各種評価を行った。結果を表5に併せて示す。
[Comparative Example 8] (Production of touch panel)
A touch panel was obtained in the same manner as in Example 18 except that the conductive laminated film C-7c was used instead of the conductive laminated film C-1c. Various evaluations were performed on the obtained touch panel. The results are also shown in Table 5.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 本発明の導電性積層フィルムは、液晶ディスプレイやタッチパネルなどのディスプレイの透明電極として好適に用いることができ、タッチパネル用途、なかでも表示装置用のタッチパネル用途に特に好適である。本発明のタッチパネルは、液晶表示素子などの各種表示装置用のタッチパネルとして有用であり、たとえば、パーソナル・デジタル・アシスタント(PDA)、ノートPC、OA機器、医療機器、あるいはカーナビゲーションシステム等の電子機器のタッチパネルとして好適に用いることができる。 The conductive laminated film of the present invention can be suitably used as a transparent electrode of a display such as a liquid crystal display or a touch panel, and is particularly suitable for a touch panel application, particularly a touch panel application for a display device. The touch panel of the present invention is useful as a touch panel for various display devices such as liquid crystal display elements. For example, personal digital assistant (PDA), notebook PC, OA equipment, medical equipment, or electronic equipment such as a car navigation system. It can be suitably used as a touch panel.

Claims (21)

  1.  透明樹脂からなるフィルム(I)に透明導電層(III)が積層されてなる導電性積層フィルムであって、透明導電層(III)側の表面部が複数の凸部を有しており、表面が曲面で形成されている、複数の凸部を含む部位を有することを特徴とする導電性積層フィルム。 A conductive laminated film in which a transparent conductive layer (III) is laminated on a film (I) made of a transparent resin, the surface portion on the transparent conductive layer (III) side has a plurality of convex portions, and the surface The electroconductive laminated film characterized by having the site | part containing a some convex part currently formed in the curved surface.
  2.  前記複数の凸部が畝状に形成され、且つ前記凸部が蛇行していることを特徴とする請求項1に記載の導電性積層フィルム。 The conductive laminated film according to claim 1, wherein the plurality of convex portions are formed in a bowl shape, and the convex portions meander.
  3.  前記複数の凸部が畝状に形成され、且つ前記凸部の伸長方向において前記凸部の高さが変動を持つことを特徴とする請求項1に記載の導電性積層フィルム。 The conductive laminated film according to claim 1, wherein the plurality of convex portions are formed in a bowl shape, and the height of the convex portions varies in the extending direction of the convex portions.
  4.  前記複数の凸部が設けられた位置および複数の凸部の高さの変化に規則性がないことを特徴とする請求項1~3のいずれかに記載の導電性積層フィルム。 The conductive laminated film according to any one of claims 1 to 3, wherein there is no regularity in a change in the position where the plurality of protrusions are provided and the height of the plurality of protrusions.
  5.  前記フィルム(I)と透明導電層(III)との間に、硬化性樹脂組成物よりなる樹脂層(II)を持つことを特徴とする、請求項1~4のいずれかに記載の導電性積層フィルム。 The conductive layer according to any one of claims 1 to 4, wherein a resin layer (II) comprising a curable resin composition is provided between the film (I) and the transparent conductive layer (III). Laminated film.
  6.  樹脂層(II)において、その透明導電層(III)側の表面部に、複数の凸部が畝状に形成され、その畝の長さ方向と直交する面における断面における、前記凸部が形成された表面を表わす線が波状の曲線であることを特徴とする請求項5に記載の導電性積層フィルム。 In the resin layer (II), a plurality of convex portions are formed in a hook shape on the surface portion on the transparent conductive layer (III) side, and the convex portions are formed in a cross section in a plane perpendicular to the length direction of the hook. 6. The conductive laminated film according to claim 5, wherein the line representing the surface is a wavy curve.
  7.  前記波状の曲線が、規則的な周期を有する波状の曲線であることを特徴とする請求項6に記載の導電性積層フィルム。 The conductive laminated film according to claim 6, wherein the wavy curve is a wavy curve having a regular period.
  8.  前記畝状に形成された複数の凸部がその長さ方向に蛇行していることを特徴とする請求項6または7に記載の導電性積層フィルム。 The conductive laminated film according to claim 6 or 7, wherein the plurality of convex portions formed in a bowl shape meander in the length direction.
  9.  前記畝状に形成された複数の凸部がその長さ方向に沿って規則的な周期で蛇行していることを特徴とする請求項8に記載の導電性積層フィルム。 The conductive laminated film according to claim 8, wherein the plurality of convex portions formed in a bowl shape meanders at regular intervals along the length direction thereof.
  10.  前記樹脂層(II)において、凸部の最大高さが0.1~10μmであり、凸部が形成する畝の周期が100~5000μmの範囲であることを特徴とする請求項6~9のいずれかに記載の導電性積層フィルム。 10. The resin layer (II) according to claim 6, wherein the maximum height of the convex portion is 0.1 to 10 μm, and the period of wrinkles formed by the convex portion is in the range of 100 to 5000 μm. The electroconductive laminated film in any one.
  11.  前記凸部が、フィルム面から垂直方向に見て海島状に存在していることを特徴とする請求項1に記載の導電性積層フィルム。 2. The conductive laminated film according to claim 1, wherein the convex portions are present in a sea-island shape when viewed in the vertical direction from the film surface.
  12.  前記フィルム(I)と透明導電層(III)との間に、硬化性樹脂組成物よりなる樹脂層(II)を持つことを特徴とする、請求項11に記載の導電性積層フィルム。 The conductive laminated film according to claim 11, further comprising a resin layer (II) made of a curable resin composition between the film (I) and the transparent conductive layer (III).
  13.  前記凸部の最も高い点と、その凸部に隣接する谷部の最も低い点との高低差として求められる各凸部の高さの中で最も大きい高さである凸部の最大高さdHが0.1~10μmであり、その最大高さを有する凸部の最も高い点と、その凸部に隣接する谷部の最も低い点との間の、フィルム面内方向の距離dLと前記dHとが下記数式(1)を満たすことを特徴とする請求項1~12のいずれかに記載の導電性積層フィルム。
    Figure JPOXMLDOC01-appb-M000001
    The maximum height dH of the convex portion, which is the highest height among the heights of the convex portions obtained as the height difference between the highest point of the convex portion and the lowest point of the valley adjacent to the convex portion. Is the distance dL in the film in-plane direction between the highest point of the convex part having the maximum height and the lowest point of the valley adjacent to the convex part, and the dH The conductive laminated film according to any one of claims 1 to 12, wherein and satisfy the following formula (1).
    Figure JPOXMLDOC01-appb-M000001
  14.  前記フィルム(I)が、延伸加工により得られたフィルムであることを特徴とする請求項1~14のいずれかに記載の導電性積層フィルム。 The conductive laminated film according to any one of claims 1 to 14, wherein the film (I) is a film obtained by stretching.
  15.  前記フィルム(I)が、波長550nmの透過光に対する面内位相差が128~148nmの範囲にある位相差フィルムであることを特徴とする請求項1~14のいずれかに記載の導電性積層フィルム。 The conductive laminated film according to any one of claims 1 to 14, wherein the film (I) is a retardation film having an in-plane retardation in a range of 128 to 148 nm with respect to transmitted light having a wavelength of 550 nm. .
  16.  前記フィルム(I)が、環状オレフィン系樹脂およびポリカーボネート樹脂の少なくとも1種を含有することを特徴とする請求項1~15のいずれかに記載の導電性積層フィルム。 The conductive laminated film according to any one of claims 1 to 15, wherein the film (I) contains at least one of a cyclic olefin resin and a polycarbonate resin.
  17.  前記フィルム(I)は、環状オレフィン系樹脂を含み、
    前記環状オレフィン系樹脂は、下記式(1)で表される単量体の少なくとも1種を(共)重合して得られることを特徴とする請求項16に記載の導電性積層フィルム。
    Figure JPOXMLDOC01-appb-C000002
    (式(1)中、R1~R4は、下記(i)~(iii)のいずれかを表し、xは0~3の整数を表し、yは0または1を表す。
    (i)それぞれ独立に、水素原子、ハロゲン原子、または酸素、窒素、イオウもしくはケイ素を含有していてもよい1価の有機基、(ii)R1とR2、R3とR4が、それぞれ結合したアルキリデン基、(iii)R1とR2、R3とR4、R2とR3が、それぞれ結合した単環または多環の炭素環もしくは複素環。)
    The film (I) contains a cyclic olefin resin,
    17. The conductive laminated film according to claim 16, wherein the cyclic olefin-based resin is obtained by (co) polymerizing at least one monomer represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000002
    (In the formula (1), R 1 to R 4 represent any of the following (i) to (iii), x represents an integer of 0 to 3, and y represents 0 or 1.
    (I) each independently a hydrogen atom, a halogen atom, or a monovalent organic group optionally containing oxygen, nitrogen, sulfur or silicon, (ii) R 1 and R 2 , R 3 and R 4 are (Iii) R 1 and R 2 , R 3 and R 4 , and R 2 and R 3 are each bonded to a monocyclic or polycyclic carbocyclic or heterocyclic ring. )
  18.  前記樹脂層(II)がUV硬化性樹脂組成物により形成されていることを特徴とする請求項5~10および12のいずれかに記載の導電性積層フィルム。 The conductive laminated film according to any one of claims 5 to 10 and 12, wherein the resin layer (II) is formed of a UV curable resin composition.
  19.  透明導電層(III)が、結晶性ITOにより形成されていることを特徴とする請求項1~18のいずれかに記載の導電性積層フィルム。 The conductive laminated film according to any one of claims 1 to 18, wherein the transparent conductive layer (III) is formed of crystalline ITO.
  20.  請求項1~19のいずれかに記載の導電性積層フィルムを有することを特徴とするタッチパネル。 A touch panel comprising the conductive laminated film according to any one of claims 1 to 19.
  21.  請求項1~19のいずれかに記載の導電性積層フィルムと、透明導電層、位相差フィルム、および偏光板がこの順に積層されてなる導電性積層フィルムとを有することを特徴とするタッチパネル。 20. A touch panel comprising: the conductive laminated film according to claim 1; and a conductive laminated film in which a transparent conductive layer, a retardation film, and a polarizing plate are laminated in this order.
PCT/JP2011/054523 2010-03-01 2011-02-28 Conductive laminate film and touch panel using the same WO2011108494A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012503130A JPWO2011108494A1 (en) 2010-03-01 2011-02-28 Conductive laminated film and touch panel using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-043884 2010-03-01
JP2010043884 2010-03-01
JP2010-252766 2010-11-11
JP2010252766 2010-11-11

Publications (1)

Publication Number Publication Date
WO2011108494A1 true WO2011108494A1 (en) 2011-09-09

Family

ID=44542146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054523 WO2011108494A1 (en) 2010-03-01 2011-02-28 Conductive laminate film and touch panel using the same

Country Status (3)

Country Link
JP (1) JPWO2011108494A1 (en)
TW (1) TW201134665A (en)
WO (1) WO2011108494A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013077214A (en) * 2011-09-30 2013-04-25 Shoei:Kk Touch panel
JP2013114344A (en) * 2011-11-25 2013-06-10 Nitto Denko Corp Touch panel sensor
WO2014136701A1 (en) * 2013-03-04 2014-09-12 富士フイルム株式会社 Transparent conductive film and touch panel
JP2015115171A (en) * 2013-12-11 2015-06-22 日東電工株式会社 Transparent conductive film and usage of the same
TWI672712B (en) * 2015-03-10 2019-09-21 日商日本電氣硝子股份有限公司 Glass substrate with transparent conductive film and method of manufacturing same
JP2020034673A (en) * 2018-08-29 2020-03-05 日東電工株式会社 Retardation film, polarizing plate with retardation layer, and method for manufacturing retardation film
KR20200070240A (en) * 2017-10-27 2020-06-17 닛토덴코 가부시키가이샤 Transparent conductive film and method for manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1048625A (en) * 1996-08-02 1998-02-20 Sumitomo Chem Co Ltd Touch panel for liquid crystal display
JP2005018726A (en) * 2002-10-16 2005-01-20 Alps Electric Co Ltd Transparent coordinate input device and transparent composite material
JP2005205903A (en) * 2003-12-25 2005-08-04 Toyobo Co Ltd Transparent electroconductive film, transparent electroconductive sheet and touch panel
JP2007012484A (en) * 2005-06-30 2007-01-18 Tdk Corp Transparent conductor and panel switch
JP2007103348A (en) * 2005-09-12 2007-04-19 Nitto Denko Corp Transparent conductive film, electrode plate for touch panel, and the touch panel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1048625A (en) * 1996-08-02 1998-02-20 Sumitomo Chem Co Ltd Touch panel for liquid crystal display
JP2005018726A (en) * 2002-10-16 2005-01-20 Alps Electric Co Ltd Transparent coordinate input device and transparent composite material
JP2005205903A (en) * 2003-12-25 2005-08-04 Toyobo Co Ltd Transparent electroconductive film, transparent electroconductive sheet and touch panel
JP2007012484A (en) * 2005-06-30 2007-01-18 Tdk Corp Transparent conductor and panel switch
JP2007103348A (en) * 2005-09-12 2007-04-19 Nitto Denko Corp Transparent conductive film, electrode plate for touch panel, and the touch panel

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013077214A (en) * 2011-09-30 2013-04-25 Shoei:Kk Touch panel
JP2013114344A (en) * 2011-11-25 2013-06-10 Nitto Denko Corp Touch panel sensor
US8742772B2 (en) 2011-11-25 2014-06-03 Nitto Denko Corporation Touch panel sensor
US10228782B2 (en) 2013-03-04 2019-03-12 Fujifilm Corporation Transparent conductive film and touch panel
JP2014168886A (en) * 2013-03-04 2014-09-18 Fujifilm Corp Transparent conductive film and touch panel
WO2014136701A1 (en) * 2013-03-04 2014-09-12 富士フイルム株式会社 Transparent conductive film and touch panel
US10684710B2 (en) 2013-03-04 2020-06-16 Fujifilm Corporation Transparent conductive film and touch panel
JP2015115171A (en) * 2013-12-11 2015-06-22 日東電工株式会社 Transparent conductive film and usage of the same
TWI672712B (en) * 2015-03-10 2019-09-21 日商日本電氣硝子股份有限公司 Glass substrate with transparent conductive film and method of manufacturing same
US10651404B2 (en) 2015-03-10 2020-05-12 Nippon Electric Glass Co., Ltd. Transparent conductive film-equipped glass substrate and method for manufacturing same
KR20200070240A (en) * 2017-10-27 2020-06-17 닛토덴코 가부시키가이샤 Transparent conductive film and method for manufacturing the same
KR102594226B1 (en) * 2017-10-27 2023-10-25 닛토덴코 가부시키가이샤 Transparent conductive film and manufacturing method thereof
JP2020034673A (en) * 2018-08-29 2020-03-05 日東電工株式会社 Retardation film, polarizing plate with retardation layer, and method for manufacturing retardation film
CN110873916A (en) * 2018-08-29 2020-03-10 日东电工株式会社 Retardation film, polarizing plate with retardation layer, and method for producing retardation film
TWI812753B (en) * 2018-08-29 2023-08-21 日商日東電工股份有限公司 Retardation film, polarizing plate with retardation layer, and manufacturing method of retardation film

Also Published As

Publication number Publication date
TW201134665A (en) 2011-10-16
JPWO2011108494A1 (en) 2013-06-27

Similar Documents

Publication Publication Date Title
CN103129064B (en) Hard coating film, transparent conductive laminate and touch panel
JP5880762B2 (en) Optical film and touch panel
TWI494223B (en) A hard coat film, a transparent conductive laminate, and a touch panel
WO2011108494A1 (en) Conductive laminate film and touch panel using the same
KR101406805B1 (en) Hard coat film, transparent conductive laminate and touch panel
TWI430886B (en) Conductive laminated film, polarizing laminated plate and touch panel
JP4840037B2 (en) Conductive transparent film and use thereof
KR101495138B1 (en) Optical sheet, transparent conductive laminate and touch panel
JP2010055944A (en) Conductive laminate film, and touch panel using the same
JP2013020120A (en) Hard coat film and touch panel
JP5965745B2 (en) Optically isotropic polarizing film protective film and polarizing plate
JP5594188B2 (en) Conductive laminated film, touch panel and display device
EP3170660B1 (en) Uniaxially stretched multilayer laminate film, and optical member comprising same
WO2019230187A1 (en) Anti-newton ring film, method for producing same, and use thereof
JP2009202538A (en) Electrically-conductive laminated film, polarizing plate, and touch panel
JP2012155663A (en) Conductive laminated film, touch panel and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11750604

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012503130

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11750604

Country of ref document: EP

Kind code of ref document: A1