WO2011105820A2 - Enzyme column and method for manufacturing same - Google Patents

Enzyme column and method for manufacturing same Download PDF

Info

Publication number
WO2011105820A2
WO2011105820A2 PCT/KR2011/001280 KR2011001280W WO2011105820A2 WO 2011105820 A2 WO2011105820 A2 WO 2011105820A2 KR 2011001280 W KR2011001280 W KR 2011001280W WO 2011105820 A2 WO2011105820 A2 WO 2011105820A2
Authority
WO
WIPO (PCT)
Prior art keywords
column
enzyme
polymer
nanofibers
alcohol
Prior art date
Application number
PCT/KR2011/001280
Other languages
French (fr)
Korean (ko)
Other versions
WO2011105820A3 (en
Inventor
김중배
이상원
전승현
장문석
김병찬
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020110015786A external-priority patent/KR101261796B1/en
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2011105820A2 publication Critical patent/WO2011105820A2/en
Publication of WO2011105820A3 publication Critical patent/WO2011105820A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/18Apparatus specially designed for the use of free, immobilized or carrier-bound enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/08Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer
    • C12N11/082Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/09Means for pre-treatment of biological substances by enzymatic treatment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/50Conditioning of the sorbent material or stationary liquid
    • G01N30/52Physical parameters
    • G01N2030/524Physical parameters structural properties

Definitions

  • the present invention relates to an enzyme column and a method for manufacturing the same, and more particularly, to increase the inter-fiber space by dispersing the polymer fibers in the column in detail, thereby immobilizing the fibers.
  • the present invention relates to an enzyme column in which polymer fibers are dispersed well inside a column, which maximizes the amount of enzyme, stabilizes the activity, and reduces the bypass of the sample flowing in the column. ⁇ ,
  • Enzymes are nanocatalysts (catalysts) of 2-20 nm size that promote chemical reactions in living organisms. Enzymes are linear biopolymers of amino acids that self-assemble into one form of structure by the evolution of life. This folding process results in enzyme selectivity, a useful property of enzymes. A binding pocket is formed. The enzyme's selectivity is already being used in a wide variety of fields, and its grandeur is expanding with the development of new disciplines. For example, enzymes are widely used in the pharmaceutical, fine chemical, food and detergent industries, and have a long history in biosensors, biopurification, and biochemical conversion. Recently, new uses of enzymes are spreading in biodiesel production, trypsin digestion in proteomic analysis, polymerase chain reaction, and biofuel cells. '
  • nanostructured materials having high surface area ratios such as polymer nanofibers, nanoporous materials and magnetic nano Particles (magnet ic nanopar tides) and the like have been developed (see FIG. 1).
  • One of the various advantages of these nanostructured materials is their ability to control nanometer sizes. For example, the size of the pores in the nanoporous material, the thickness control of the nanofibers or nanotubes, the particle size of the nanoparticles can be uniformly adjusted.
  • These uniformly sized nanomaterials and similarly sized enzyme particles combine with other advantages of nanomaterials, such as conductivity and magnetism. It is possible to improve the properties of enzymes, particularly the activity and stability of enzymes in a nano biocatalyst system.
  • the immobilization method is an essential element in the use of enzyme as an industrial biocatalyst.
  • a general enzyme immobilization method using nano-structured materials a simple adsorption method or a covalent attachment method using a covalent bond is used.
  • the high surface area provided by the nanostructured materials can increase the loading of enzymes and increase the enzyme activity per unit weight.
  • the enzymatic column containing the enzyme immobilized on the surface of the polymer fiber is not only proteolytic process but also L-amino acid production through light splitting of DL-amino acid, isomerization sugar production through fructose conversion of glucose, and cephalosporin.
  • the enzyme column including the enzyme immobilized on the conventional polymer fiber does not fill the column with the polymer fiber packed inside the column, and the bypass phenomenon occurs when the semi-coupling is poured into the column. do. Due to this, there is a problem in that the reaction efficiency of the enzyme reaction is sharply decreased due to a decrease in the chance of encountering the reaction product with the enzyme.
  • the present invention has been made to solve the above-mentioned problems, the first problem to be solved of the present invention, by dispersing the polymer fibers in the column by blocking the bypass phenomenon through the semi-efficiency of the sample flowing through the column Enzyme curls to maximize It is to provide a method for producing rum.
  • the second problem to be solved of the present invention is to provide an enzyme column produced by the above production method.
  • a method for producing an enzyme column 1) packing the polymer fibers in a column (packing); 2) treating the polymer fibers packed in the column with an alcohol solution to disperse the polymer fibers in the column to increase the inter-fiber space; 3) removing the treated alcohol solution in the column; And 4) adding an enzyme to the polymer fiber packed in the column to fix the enzyme on the surface of the polymer fiber.
  • the polymer fiber is a polymer nano fiber or a polymer micron fiber and may have a three-dimensional network structure.
  • the polymer fiber is the polymer fiber is polyvinyl alcohol, polyacrylonitrile, nylon, polyester, polyurethane, polyvinyl chloride, polystyrene, cellulose, Chitosan, polylactic acid, polylactic-co-glycolic acid, polyglycolic acid polycaprolactone, collagen, polyaniline and poly (styrene-co-maleic anhydride).
  • the alcohol solution is N-(2-aminoethyl)-2-aminoethyl alcohol
  • step 3) may be performed by washing the inside of the column without including a drying step.
  • a crosslinking agent may be added to the inside of the column in order to fix the enzyme on the surface of the polymer fiber.
  • the crosslinking agent is diisocyanate, dianhydride, diepoxide, dialdehyde, diimide, 1-ethyl-3-dimethylaminopropylcarbodi Mead and glutaraldehyde may include any one or more selected from the group consisting of.
  • the enzyme is trypsin, chemo Proteases such as trypsin, subtilisin, papain and thermolysin, lipases, peroxidases (horse radish peroxidases, soybean peroxidases, chloroperoxidases, manganese peroxides), tyrosinase, laca At least one selected from the group consisting of azeases, celases, xylanases, lactases, organophosphodilases, cholinesterases, glycosylases, alcohol dehydrogenases, glucose dehydrogenases, and glucose isomerases Can be.
  • chemo Proteases such as trypsin, subtilisin, papain and thermolysin
  • lipases peroxidases (horse radish peroxidases, soybean peroxidases, chloroperoxidases, manganese peroxides), tyrosinase, laca At least one selected from the group consisting of
  • the enzyme column according to an embodiment of the present invention is a column; And polymer fibers packed inside the column, treated with an alcohol solution, dispersed in the column, and having an increased inter-fiber space.
  • the polymer fiber is a polymer nano fiber or a polymer micron fiber and may have a three-dimensional network structure.
  • the polymer fiber is polyvinyl alcohol, polyacrylonitrile, nylon, polyester, polyurethane, polyvinyl chloride, polystyrene cellulose, chitosan, polylac Tic acid, polylactic-co-glycolic acid, polyglycolic acid polycaprolactone, collagen, polyaniline, and poly (styrene-co-maleic anhydride).
  • an enzyme may be immobilized on the surface of the polymer fiber, in which case the enzyme may be a protease or lipase such as trypsin, chymotrypsin, subtilisin, papain, thermolysin, etc.
  • Peroxidase (horse radish peroxidase, soybean peroxidase, chloro peroxidase, manganese peroxidase), tyrosinase, lacase, cell 1: lase, xylanase, lactase, organic It may be any one or more selected from the group consisting of phosphohydrolase, cholinesterase, glycosylase, alcohol dehydrogenase, glucose dehydrogenase, glucose isomerase, and the like, but is not limited thereto.
  • the enzyme column is L-amino acid production through the hydrolysis process of the protein and DL-amino acid light splitting, isomerized sugar production through fructose conversion of glucose, Separosporin C Production of 7-aminocephalosporinic acid through removal of organic acids, acrylamide through hydrolysis of L-alanine and acrylonitrile, production of palatinose and fructoligosaccharides using fructose, cacao butter and fatty acid production using vegetable oils , D-aspartic acid production through light splitting of DL-aspartic acid, maltooligosaccharide production using liquefied starch, aspartame production using amino acid, R- ibuprofen production through RS-ibuprofen light splitting, biodiesel production using oil Can be used for production.
  • the enzyme column of the present invention disperses the polymer fibers in which the enzyme is immobilized in the column, thereby maximizing the space between the high molecular fibers to prevent bypass when a sample such as a protein passes through the column, and at the same time, By maximizing loading capacity and activity, hydrolysis efficiency can be maximized. In addition, the reaction time can be significantly reduced compared to the enzyme column.
  • the reuse is easy and the on-line hydrolysis process or automation in the trypsin hydrolysis process is easy. You can enjoy the process.
  • it can be applied to various enzymes that can be used industrially as well as tricin, thereby securing the enzyme activity and stability required for industrial production using enzymes.
  • 1 illustrates the structure of a conventional nanomaterial.
  • Figure 2 schematically shows a conventional protein hydrolysis.
  • FIG. 3 schematically shows a production process of PS + PSMA nanofibers using an electrospinning method.
  • FIG. 5 shows an enzyme coating method for (a) an alcohol-coated polymer nanofiber (EC-TR / NF-column) using an enzyme coating method, and (b) an alcohol-treated polymer nanofiber. It is a graph showing the column used (EC-TR / EtOH-NF-column).
  • FIG. 6 is a graph showing the results of measuring LOMS / MS through CA-TR / NF for 0 to 59 days as one embodiment of the present invention.
  • FIG. 7 illustrates an embodiment of the present invention using CA-TR / EtOH-NF for 0 to 59 days.
  • FIG. 8 shows an embodiment of the present invention using LC-TR / NF for 0-59 days.
  • FIG 9 shows an embodiment of the present invention using EC-TR / EtOH-NF for 0 to 59 days.
  • FIG. 10 is a graph showing the results of LC-MS / MS after 59 days as one embodiment of the present invention. to be.
  • FIG. 11 shows, as one embodiment of the present invention, (a) 0.1 ml / h, (b) 0.5 ml / h, (c) 1 ml / h,
  • FIG. 12 shows, as one embodiment of the present invention, (a) an EC-TR / NF column, and (b) an EC-TR / EtOH-NF.
  • FIG. 13 is a graph comparing proteolytic ability after stirring EC-TR / EtOH-NF, commercially available trypsin beads, and free enzymes at a high temperature of 50 to confirm thermal stability.
  • the enzymatic column including the enzyme immobilized on the conventional polymer fiber does not fill the column with the polymer fiber packed inside the column, and when the semi-coagulum is poured into the column, The fibers are compressed to create voids in the column (the space not layered with polymer fibers), as well as to compress the polymer fibers
  • the method for producing an enzyme column 1) packing the high molecular fibers in a column (packing); 2) Treating the polymer fibers packed in the column with an alcohol solution to disperse the polymer fibers in the column to inter-fiber
  • the enzyme column disperses the polymer fibers in which the enzyme is immobilized in the column, thereby maximizing the space between the high molecular fibers to prevent bypass when a sample such as a protein passes through the column and at the same time loading the enzyme such as trypsin.
  • the hydrolysis efficiency can be maximized.
  • the hydrolysis time can be significantly reduced as compared to the conventional method of hydrolyzing the protein.
  • the usable column may have a suitable diameter, shape and material according to the purpose and use, and preferably may have various diameters of cylindrical 50 nm ⁇ lm, depending on the purpose, The length of the column may also be appropriately adjusted.
  • polymer fibers are packed to immobilize enzymes in the column.
  • the polymer fibers used are not limited in kind and diameter as long as they can be used in the enzyme column, but preferably microfibers or nanofibers may be used, and more preferably nanofibers may be used. It is very advantageous to maximize the amount of enzyme immobilized by increasing the specific surface area.
  • the polymer fibers may have a three-dimensional network structure including an inter-fiber space between the fibers and the fibers, for this purpose, the polymer fibers are produced by electrospinning or melt spinning May be, but is not limited to.
  • the material of the polymer fiber of the present invention is polyvinyl alcohol, polyacrylonitrile, nylon, polyester, polyurethane, polyvinyl chloride, polystyrene, cellulose, chitosan, polylactic acid, polylactic-co-glycolic acid , Polyglycolic acid, polycaprolactone, collagen, polyaniline, poly (styrene-co-maleic anhydride), and copolymers thereof, but may be any one or more selected from the group.
  • nanofibers having a three-dimensional network structure made of electrospinning or melt spinning maximizes the space between polymer fibers to prevent bypasses when proteins and samples pass through the column. It is extremely advantageous to maximize the loading and activity of enzymes such as trypsin.
  • the polymer fibers are packed in a column, and the method of immobilizing the nanofibers on the column is a conventional method, preferably fixing the polymer fibers at both ends of the column, or By physically compressing and packing the polymer fiber in the front of the column can be fixed by pressing the hydraulic pressure so that no empty space.
  • step 2) the polymer fibers packed in the column are treated with an alcohol solution to disperse the polymer fibers in the column to increase the inter-fiber space. Specifically, referring to FIG.
  • FIG. 5 (a) is a column without alcohol treatment
  • FIG. 5 (b) is a column with alcohol treatment, in which a portion is an outer wall portion of the column and b portion is a hollow portion where polymer fibers are located. This is the part that is performed.
  • the alcohol-treated enzyme column (FIG. 5b) is dispersed widely enough to fill the inside of the column, whereas the alcohol-treated enzyme column (FIG. 5a) is not dispersed and the polymer fibers are bound together to form a space between fibers. You can see this very small.
  • the present invention it is very advantageous to prevent the bypass and maximize the efficiency of the polymer fiber is dispersed widely enough to fill the inside of the column through the alcohol treatment. . Specifically, if the dispersed polymer fibers do not fill the inside of the column, a space is formed between the inner wall of the column and the polymer fibers. Without returning to the spaced apart space is reduced efficiency. In addition, if the polymer fibers are not dispersed in a small amount, the space between the fibers may be reduced, which may cause a problem in that the reaction efficiency decreases.
  • the alcohol treatment step must be performed after packing the polymer fibers in the column. If the polymer fiber is alcohol-treated and then the polymer fiber is packed in the column, the dispersed polymer fiber is shrunk again during the packing process, resulting in a small space between the fibers.
  • the polymer fiber is in contact with the inner wall of the column in the packing process may cause a problem that the space between the fibers is significantly smaller.
  • the alcohol that can be used in the present invention can be used without limitation as long as it can increase the interfiber space of the polymer fiber, preferably the alcohol solution is methane, ethanol, 1-propanol It may include any one or more selected from the group consisting of 2-propanol and butyl alcohol.
  • the concentration of the alcohol solution is 15 ⁇ 100% (v / v) is very advantageous to maximize the dispersion effect of the polymer fiber (see Example 6).
  • step 3) is performed to remove the alcohol solution treated in the column. If the alcohol treated in step 2) is not removed, the stability of the enzyme is lowered, and the enzyme may adversely affect alcohol-sensitive enzyme reaction, which may denature the enzyme or inhibit the yield of the product. Since the interfiber space of the dispersed polymer fibers may be reduced, the step of removing alcohol treated in step 2) must be performed. To this end, there is a method of evaporating alcohol through a drying method such as washing through a conventional water washing, heating, etc., but when performing the drying step, the polymer fibers dispersed in the column may shrink again, so It is preferable to remove the alcohol.
  • a drying method such as washing through a conventional water washing, heating, etc.
  • the enzyme is added to the polymer fiber packed in the column to fix the enzyme on the surface of the polymer fiber.
  • Enzymes that can be applied to the present invention can be used without limitation as long as it can be immobilized on a polymer fiber, preferably the enzyme is trypsin, chymotrypsin, subtilisin, papain, thermolysine) such as protease, lipase , Peroxidase (horse radish peroxidase, soybean peroxidase, chloro peroxidase, manganese peroxidase), tyrosinase, laccase, celerase, xylanase, lactase, organophosphohydrate Relase choline, at least one selected from the group consisting of steases, glycosylases, alcohol dehydrogenases, glucose dehydrogenases, and glucose isomerases, typically trypsin is used as an indicator of the enzyme column. That is, the enzyme column in which trypsin
  • the method of immobilizing the enzyme on the surface of the polymer fiber is not limited, and preferably, the enzyme is added to the inside of the column to immobilize the enzyme on the surface of the polymer fiber through the adsorption and / or covalent bond between the polymer fiber and the enzyme You can. More preferably, by adding a crosslinking agent to form crosslinks between the enzymes to immobilize the enzymes on the surface of the polymer fibers, the enzymes may be entrained on the surface of the polymer fibers and immobilized through the enzyme coating. This is called.
  • the crosslinking agent that can be used at this time can be used without any limitation as long as it can form crosslinking between enzymes without inhibiting the activity of the enzyme.
  • a specific example of this is diisocyane. Yit, dianhydride, diepoxide, dialdehyde, diimide, 1-ethyl-3-dimethyl aminopropylcarbodiimide, glutaraldehyde, a mixture thereof, and the like, and glutaraldehyde is more preferable.
  • the present invention is not limited thereto.
  • a high molecular nanofiber polymer nanofiber
  • a simple treatment using alcohol polymer nanofiber nanofiber
  • the dispersed polymer nanofibers increase the surface area to which enzymes can attach, thereby increasing the amount of enzyme per unit weight of nanofibers.
  • the enzyme trypsin solution is flowed, and the glutaraldehyde and trypsin mixture are flowed into the column to crosslink .
  • the enzyme is coated on the polymer nanofibers within.
  • the polymer nanofibers are dispersed through alcohol treatment, even if hydraulic pressure is generated when they are thrown in the column of the protein solution, the polymer nanofibers are dispersed and filled in the column to prevent bypass. Hydrolysis efficiency can be maximized (see FIG. 5B).
  • the enzyme column produced by the above-described manufacturing method of the present invention is packed into a column and the inside of the column, and treated with an alcohol solution to disperse the column and increase the inter-fiber space (inter-fiber space). It includes.
  • the target enzyme can be immobilized on the surface of the polymer fiber of the enzyme column thus prepared.
  • the bypass and maximize the efficiency of the polymer fiber is dispersed widely enough to fill the inside of the column through the alcohol treatment.
  • a space is formed between the inner wall of the column and the polymer fiber. Therefore, when the reaction product is flowed into the column, some reaction products do not react with the enzyme immobilized on the polymer fiber. Without being taken out into the spaced apart, the efficiency is reduced.
  • the polymer fibers are not dispersed in a small amount, the space between the fibers may be small, resulting in a decrease in reaction efficiency.
  • the enzyme column of the present invention can be used not only for the use of protein hydrolysis columns, but also for the production of L-amino acids through DL-amino acid light splitting, the production of isomerized sugars through the conversion of fructose to glucose, and the removal of organic acids from cephalosporin C.
  • the enzyme column according to the present invention can not only shorten the total proteomic analysis time by hydrolyzing the target protein within a short time, but also stabilize the enzyme activity using the enzyme coating method. The lifespan of these products is greatly increased, making them useful for the proteomic analysis industry.
  • the enzyme column of the present invention not only proteolysis, but also bioconversion, bioremediation, biosensors, high fructose corn syrup production, pharmaceutical industry , Food industry, chemical industry, etc.) can be used for the treatment of various enzymes.
  • Enzymes for enzyme immobilization are high purity derived from porcine pancreas. Trypsin was used. Trypsin was purchased from Sigma-Aldr ich (St. Louis, Mo., USA).
  • Phosphate buffer (PB) 10 100 mM, pH 7.9 was used as the buffer, and glutaraldehyde was used to use the enzyme coating.
  • Tris buffer (OOmM, pH 7.9) was used to prevent maleic anhydride groups in polymer nanofibers after enzyme coating.
  • Nci-benzoyl-L-arginine 4-nitroanilide hydro, chloride N a_Benzoyl_L_arginine 4-nitroani 1 ide hydrochloride, L—BAPNA
  • L—BAPNA Nci-benzoyl-L_arginine 4-nitroani 1 ide hydrochloride
  • the model protein used in the proteolytic process was enolase, which was all purchased from Sigma-Aldr ich (St. Louis, MO, USA).
  • a polymer solvent is used for the electrospinning method.
  • a high-voltage supply and a syringe pump (syringe pump, PHD-2000 Infusion, Harvard Apparatus, Holliston, MA) are used. , USA).
  • the product obtained by reacting trypsin immobilized with the enzyme coating method and L-BAPNA, which was an anti-ungwoo substrate was measured using a spectrophotometer (Sspectrophotometer, Shimadzu, UV-2450). Hydrolyzed peptides after hydrolysis of the model proteins using immobilized enzymes for protein hydrolysis were used nanoAQUITY UPLC (Waters) and 7-tesla LTQ-FT (Thermo).
  • Nanofibers for enzyme immobilization include polystyrene (PS) and poly (styrene).
  • PSMA Poly (styrene-co-maleic anhydride), PSMA
  • the maleic anhydride of PSMA is covalently immobilized with the amine group of the enzyme.
  • FIG. 3 shows the production of PS + PSMA nanofibers using the electrospinning method.
  • the production method of PS + PSMA nanofiber is as follows. PS and PSMA were mixed at a weight ratio of 2: 1 at room temperature, dissolved in tetrahydrofuran (THF), and mixed for about 3 hours using a magnetic stirrer. Thereafter, the acetone solution was mixed to lower the viscosity of the polymer solution, and then the polymer solution was filled with a 5 ml syringe with 30 gauge stainless steel needles. The operating condition of the voltage was 7 kV, and the flow rate was 0.1 ml / hr using a syringe pump. The nanofibers from the electrospinning were collected in clean aluminum foil.
  • the alcohol treatment process for making dispersed nanofibers is as follows. Nanofibers were placed in a vial containing 50% v / v alcohol solution (ethanol), followed by shaking for 10 minutes at 200 rpm. Once the nanofibers were completely dispersed, they were washed without drying until alcohol was completely removed from the solution. The dispersed nanofibers were stored in buffer solution until trypsin immobilization.
  • Enzyme (trypsin) immobilization using nanofibers (NF) was carried out using the following four types.
  • TR / NF covalent enzyme fixation method using alcohol-treated nanofibers
  • CA-TR / EtOH-NF covalent enzyme fixation method using alcohol-treated nanofibers
  • EC-TR / NF enzyme coating method using alcohol-free nanofibers
  • Enzyme coating method using fiber EC-TR / EtOH-NF
  • FIG. 4 is a conceptual diagram for trypsin immobilization using polymer nanofibers.
  • trypsin solution (10 mg / ml, 10 mM sodium phosphate buffer (sodium phosphate) buffer, pH 7.9).
  • trypsin was incubated at 4 ° C for 2 hours to immobilize the trypsin to the nanofibers.
  • Trypsin activity of the biocatalyst nanofibers was measured by hydrolysis of L-BAPNA, the semi-manipulator of trypsin in aqueous buffer.
  • the L-BAPNA solution was used by diluting 1/100 of a solution in which L-BAPNA was dissolved with DMF (10 mg / ml in DMF) using 10 mM sodium phosphate buffer (pH 7.9). Enzyme immobilized on nano-structured material is impossible to measure in real time, so 10ml L-BAPNA solution is added with biocatalytic nanofibers and reacted at 200rpm. Used. Thereafter, after diluting to 1/10 with 10 mM sodium phosphate buffer (pH 7.9), the absorbance was measured at 410 nm using a spectrophotometer.
  • the protein to be hydrolyzed was model protein Enolaa low Kenolase), and the hydrolysis method was in-solut ion digestion method.
  • the experimental method is as follows.
  • Enzyme column was prepared by enzymatic coating method after put into a chromatography column.
  • the enzyme column is connected to a syringe pump that can flow protein solution into the column at a constant rate.
  • frits are formed at the inlet and outlet of the column to prevent nanofibers from coming out of the column, so that only the product solution decomposed by the enzymatic column can come out.
  • the polymer nanofibers are filled into a chromatography column, and in the case of the EC-TR / EtOH-NF-column, 50% v / v alcohol solution is poured overnight at 1 ml / h flow rate to disperse the nanofibers in the column. gave. After washing with 10 mM phosphate buffer (pH 7.9) to ensure that no alcohol solution remains in the column, trypsin solution (10 mg / ml in 10 mM phosphate buffer (pH 7.9)) is filled with nanofibers. It was held for 2 hours at a flow rate of 2.5 ml / h into a column.
  • the solution containing trypsin and glutaraldehyde was flowed for 10 minutes and then incubated for 50 minutes. Then, as in the enzyme coating method, lOOmM Tris-HCKpH 7.9) was used to prevent aldehyde groups of unfinished nanofibers for 1 hour.
  • the enzyme column was washed with 5 ml / h flow rate using PB buffer and stored at room temperature until use.
  • the enzyme In the case of free enzyme, the enzyme is dissolved in water, so it can be measured in real time using a spectrophotometer, but in the case of an enzyme immobilized on a nanostructured material, it cannot be measured in real time. Therefore, after reacting at 200 rpm, a method of taking and measuring samples by lOOul was used every hour. Then, after diluting to 1/10 with 10mM sodium phosphate (sodium phosphate, pH 7.9), the absorbance was measured with a spectrophotometer at 410nm.
  • sodium phosphate sodium phosphate
  • Table 1 shows EC-TR / EtOH-NF.
  • Initial Activity EC The initial activity of the TR / NF and the kinetic values are shown. First, the initial activity of EC-TR / EtOH-NF is about 8.2 times higher than the initial activity of EOTR / NF. This proves that the maleic anhydride group contained in the nanofiber is exposed to the aqueous phase because the surface area is increased by spreading the nanofiber through alcohol treatment. Since the amine groups of the enzyme are immobilized to maleic anhydride, this means that the ability of the dispersed nanofibers to immobilize trypsin is improved. Compared to the enzyme coating on the enzyme loading amount is greatly improved.
  • V max and K Reaction rate constants of immobilized enzymes (V max and K can be obtained by michaelis-menten analysis. Because the enzyme coating was crosslinked by glutaraldehyde treatment, hop intensity It is not possible to measure the exact amount of loading by the BCA method or the BCA method, and the method of measuring the initial activity is also affected by the mass transfer limitation. Therefore, measuring the loading of the immobilized enzyme by obtaining V max may be a method of obtaining a relatively accurate enzyme loading.
  • V max of EC-TR / EtOH-NF was about 21.7 times higher than that of Vmax of EC-TR / NF.
  • EC-TR / EtOH-NF was found to be about 5.8 times higher than ⁇ of EC-TR / NF. It is confirmed that the mass transfer resistance is high because the dispersed nanofibers are attached with a large amount of cross-linked trypsin.
  • Example 3 Measurement of Stability, Efficiency and Reusability of Enzyme Columns Trypsin can be used in the process of analyzing proteins in the proteomics, and in the process of making proteins into fabtide through trypsin hydrolysis process.
  • trypsin hydrolysis process we examined the utility of the trypsin hydrolysis process in proteomic analysis using immobilized trypsin.
  • the model protein enolase for this purpose, the model protein enolase
  • the solution containing the hydrolyzed product was stored at -70 ° C for IX-X MS / MS analysis, and the immobilized trypsin used was no longer hydrolyzed. After washing with a buffer until no residual protein remained, it was stored at 4 ° C until the next use.
  • proteomic analysis using LOMS / MS the peptides from which enolase is hydrolyzed through conventional enolase hydrolysis are organized into a database, and LC-MS / The peak area of the peptide detected by MS analysis was compared with the existing database to confirm the efficiency of hydrolysis.
  • the enolase was determined from the peak area weighting database of the peptide peptide detected by LC-MS / MS analysis.
  • Enolase was hydrolyzed using 4 types of immobilized trypsin repeated for 59 days, followed by enolase hydrolyzed peptides via LC-MS / MS.
  • the analysis results are as follows. First, in the case of covalent enzyme immobilization methods (CA / EtOH-NF and CA / NF), the initial hydrolysis efficiency is lower than that of enzyme coating, and the efficiency decreases rapidly over time when reused. It could be confirmed (see FIGS. 6 and 7). This results in the low stability of the covalent enzyme immobilization method, demonstrating that enolase was not fully digested under in-solution digestion experimental conditions.
  • CA / EtOH-NF and CA / NF covalent enzyme immobilization method
  • the remaining enzyme is relatively large compared to the enzyme attached to the existing nanofibers.
  • the enzyme coating method (EC / EtOH-NF) using dispersed nanofibers has about three times higher hydrolysis efficiency than the conventional enzyme coating method (EC / NF) using nanofibers. (See FIG. 10).
  • the enzyme coating method maintains high stability and activity compared to the covalent enzyme fixation method.
  • the amount of the enzyme immobilized increases the existing nanofibers. Compared with the results used, it was confirmed that the high activity.
  • this enzyme immobilization method was confirmed that can be successfully used in the trypsin hydrolysis process in the proteomic analysis, which is the actual field of practice.
  • FIG. 5 shows the entire picture of the enzyme column system for protein hydrolysis and the dispersed nanofibers through the enzyme treatment (EC-TR / NF column) and alcohol treatment using the enzyme coating method in the conventional nanofibers.
  • the enzyme column system using the enzyme coating method has the advantage of significantly reducing the hydrolysis time (within 5 minutes) compared to the conventional in-solution digestion method.
  • the enzyme coating stabilizes the enzyme, it has the advantage of maintaining the hydrolysis efficiency even when reused.
  • EC-TR / NF columns continue to be used, the nanofibers in the column are compressed by fluid pressure, resulting in an empty space, and thus the fluid flowing in the column. Bypassing into the voids reduces protein hydrolysis efficiency.
  • EC-TR / EtOH-NF columns are nano-islets in the column. ; ⁇ Oil is completely dispersed and nanofibers are compressed to prevent empty spaces, preventing bypass and having high protein hydrolysis efficiency even when reused.
  • the flow rate of the EC-TR / NF column was changed (0.1-5 ml / h), and the degree of hydrolysis by hydrolysis of the enolase was analyzed by LC / MS-MS. As a result, the enolase was more hydrolyzed as the flow rate was enjoyed (see FIG. 11). This can be seen that as the ow rate decreases, the time for which the enolase solution stays in the column increases, so that the time for enolase contact with trypsin increases and more hydrolysis occurs. From these results, the final flow rate (flow rate) was determined to be 2 ⁇ / min.
  • Figure 12 shows the enzyme column using the enzyme coating method in the conventional nanofibers (EC-
  • TPP peptide prophet tool
  • Figure 13 is a graph showing the vertical axis of the protein hydrolytic ability after stirring the EC-TR / EtOH-NF, commercially available trypsin beads, free enzyme at a high temperature of 50 ° C to confirm thermal stability
  • the amount of the hydrolyzed peptide was calculated by area using a machine called LC-MS / MS.
  • the initial hydrolysis capacity of EC-TR / EtOH-NF was slightly higher than that of in-solution digestion and commercialized trypsin bead.
  • the hydrolysis was carried out again. As a result, the hydrolytic ability of EC-TR / EtOH-NF was maintained.
  • FIG. 14 is a photograph taken after alcohol treatment with nanofibers, washing with water and removing alcohol according to the concentration.
  • the vial containing 1 mg of nanofibers and alcohol solution was shaken for 5 minutes and vortexed for 10 minutes, the structure of nanofibers after mixing was not significantly different after 10% (v / v) alcohol concentration. .
  • the concentration of alcohol increases, the nanofibers were easily dispersed, and it was confirmed that the nanofibers were dispersed at an alcohol concentration of more than 20% ( V / V ).
  • dispersed nanofibers are used to remove alcohol Even after washing with water for harm, the degree of dispersion did not change and was found to remain dispersed (see FIG. 14). Maintaining the dispersed shape of the nanofibers dispersed by alcohol treatment even after removing the alcohol maintains the shape of the nanofibers even though the reaction proceeds in a buffer for enzyme fixation, thereby increasing the amount of enzyme immobilized.
  • the enzyme stabilization method using the polymer nanofibers was further extended to disperse the polymer nanofibers through alcohol treatment to increase the surface area, thereby increasing the amount of immobilized enzyme compared to the conventional method.
  • the efficiency could be increased and stabilized using an enzyme coating method.
  • the enzyme column including the immobilized enzyme of the present invention can reduce the total proteomic analysis time by hydrolyzing the target protein in a short time.
  • the enzyme activity is stabilized using the enzyme coating method, the lifespan of the column is greatly increased, and thus it may be usefully used in the proteomic analysis industry.

Abstract

The present invention relates to an enzyme column and to a method for manufacturing same, and more particularly, to an enzyme column in which polymer nanofibres, which can maximize the hydrolysis efficiency of a sample flowing in the column, are dispersed in the column by dispersing polymer fibers in the column to increase inter-fiber space between fibers, thereby maximizing the amount of an enzyme to be immobilized on the fiber and stabilizing activity, and to a method for manufacturing same.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
효소컬럼 및 그 제조방법  Enzyme column and its manufacturing method
【기술분먀】  Technology
<1> 본 발명은 효소컬럼 및 그 제조방법에 관한 것으로, 보다 상세하게는 고분자 섬유를 컬럼 내부에서 층분히 분산시켜 섬유 간 공간 (inter-fiber space)을 증가시 키고, 이를 통해 섬유에 고정화되는 효소의 양을 극대화하고 활성을 안정화하며 컬 럼 내 흐르는 샘플의 바이패스를 줄임으로써, 효소반웅의 효율성을 최대화시킬 수 있는 고분자 섬유가 컬럼 내부에서 잘 분산된 효소컬럼 및 그 제조방법에 관한 것 이다ᅳ ,  The present invention relates to an enzyme column and a method for manufacturing the same, and more particularly, to increase the inter-fiber space by dispersing the polymer fibers in the column in detail, thereby immobilizing the fibers. The present invention relates to an enzyme column in which polymer fibers are dispersed well inside a column, which maximizes the amount of enzyme, stabilizes the activity, and reduces the bypass of the sample flowing in the column. ᅳ,
<2>  <2>
【배경기술】  Background Art
<3> 효소는 생명체의 화학반웅을 촉진시키는 나노미터 (2 ~ 20nm) 크기의 생촉매 (biocatalyst) 이다. 효소는 아미노산으로 이루어진 선형 생고분자 (linear biopolymer)로서 생명체의 진화에 의하여 한 가지 형태의 구조로 자가조립 (self- assembly) 되는데, 이 접힘 과정 (folding)에 의해 효소의 유용한 성질인 효소 선택 성을 결정짓는 결합주머니 (binding pocket)가 형성된다. 이 효소의 선택성은 이미 아주 다양한 분야에서 쓰이고 있고, 새로운 학문의 발전에 따라 그 웅용분야가 점 점 넓어지고 있다. 예를 들면, 효소는 제약, 정밀화학, 식품 및 세제산업 등에서 널리 사용되고 있으며, 바이오센서, 바이오정화, 바이오화학전환 등에서도 오랜 웅 용의 역사를 가지고 있다. 근래에는 바이오디젤 생산, 프로테오믹 분석에서의 트립 신 가수분해 (trypsin digestion), 폴리메라아제 사슬 반웅 (polymerase chain reaction), 바이오 연료전지 등에서 효소의 새로운 웅용이 확산되고 있는 실정이 다. '  <3> Enzymes are nanocatalysts (catalysts) of 2-20 nm size that promote chemical reactions in living organisms. Enzymes are linear biopolymers of amino acids that self-assemble into one form of structure by the evolution of life. This folding process results in enzyme selectivity, a useful property of enzymes. A binding pocket is formed. The enzyme's selectivity is already being used in a wide variety of fields, and its grandeur is expanding with the development of new disciplines. For example, enzymes are widely used in the pharmaceutical, fine chemical, food and detergent industries, and have a long history in biosensors, biopurification, and biochemical conversion. Recently, new uses of enzymes are spreading in biodiesel production, trypsin digestion in proteomic analysis, polymerase chain reaction, and biofuel cells. '
<4> 한편, 1990년대 이후, 나노 테크놀로지가 급속히 발전함에 따라 높은 표면적 비를 가진 다양한 나노 구조 물질, 예를 들어, 고분자 나노섬유 (polymer nanof ibers) , 나노세공성 물질 (nanoporous materials) , 자성 나노입자 (magnet ic nanopar tides) 등이 개발되었다 (도 1 참조). 이러한 나노 구조 물질의 다양한 장 점 증 하나는 나노미터 크기를 컨트를할 수 있다는 것이다. 예를 들어, 나노세공성 물질에서의 공극의 크기, 나노섬유나 나노튜브의 두께 조절, 나노입자의 입자 크기 등을 균일하게 조절할 수 있다. 이러한 균일한 크기의 나노 물질과 이와 비슷한 크 기의 효소 입자들은 나노 물질의 다른 장점인 전도성 및 자성 등의 성질과 결합되 어 나노 바이오 촉매 시스템에서의 효소의 특성, 특히 효소의 활성이나 안정성을 향상시킬 수 있다. On the other hand, since the rapid development of nanotechnology since the 1990s, various nanostructured materials having high surface area ratios such as polymer nanofibers, nanoporous materials and magnetic nano Particles (magnet ic nanopar tides) and the like have been developed (see FIG. 1). One of the various advantages of these nanostructured materials is their ability to control nanometer sizes. For example, the size of the pores in the nanoporous material, the thickness control of the nanofibers or nanotubes, the particle size of the nanoparticles can be uniformly adjusted. These uniformly sized nanomaterials and similarly sized enzyme particles combine with other advantages of nanomaterials, such as conductivity and magnetism. It is possible to improve the properties of enzymes, particularly the activity and stability of enzymes in a nano biocatalyst system.
<5> 상술한 바와 같이, 효소는 매우 다양한 산업 분야에서 웅용될 수 있는데, 이 러한 효소는 상대적으로 비싼 촉매이므로 고정화된 효소를 통한 효소의 재사용과 회수는 경제적으로 중요한 역할을 한다. 또한, 고정화된 효소의 사용은 반웅기의 설계나 컨트를을 매우 간편하게 할 수 있도록 한다. 따라서, 고정화 방법은 산업적 인 생촉매로서의 효소의 사용에서 필수적인 요소라 할 수 있다. 나노 구조 물질을 이용한 일반적인 효소 고정화 방법으로는 단순 흡착 (adsorption)이나 공유결합을 이용한 효소 부착 (covalent attachment)의 방법이 사용되고 있다. 나노 구조 물질 들이 제공하는 높은 표면적은 효소의 담지량을 높여주고, 더불어 단위 무게당 효소 활성을 높여주는 효과를 나타낼 수 있다. 하지만, 그 효소 안정성에 있어서는 아직 많은 문제점들을 가지고 있다.  As described above, enzymes can be used in a wide variety of industrial fields. Since such enzymes are relatively expensive catalysts, reuse and recovery of enzymes through immobilized enzymes play an important economic role. In addition, the use of immobilized enzymes makes it very easy to design and control the reaction. Therefore, the immobilization method is an essential element in the use of enzyme as an industrial biocatalyst. As a general enzyme immobilization method using nano-structured materials, a simple adsorption method or a covalent attachment method using a covalent bond is used. The high surface area provided by the nanostructured materials can increase the loading of enzymes and increase the enzyme activity per unit weight. However, there are still many problems with the enzyme stability.
<6> 한편, 고분자 섬유의 표면에 고정화된 효소를 포함하는 효소컬럼은 단백질 가수분해 공정 뿐 아니라 DL-아미노산 광분할을 통한 L-아미노산 생산, 포도당의 과당 변환을 통한 이성화당 생산, 세파로스포린 C의 유기산 제거를 통한 7-아미노 세파로스포린산 생산, L-알라닌, 아크릴로니트릴의 가수분해를 통한 아크릴아미드, 과당을 이용한 팔라티노즈 및 프룩토올리고당 생산, 식물유를 이용한 카카오버터 및 지방산 생산, DL-아스파라긴산의 광분할을 통한 D-아스파라긴산 생산, 액화전분 을 이용한 말토올리고당 생산, 아미노산을 이용한 아스파탐 생산, RS-이부프로펜 광분할을 통한 R-이부프로펜 생산, 기름을 이용한 바이오디젤 생산 등의 생산의 용 도로 사용되고 있다.  On the other hand, the enzymatic column containing the enzyme immobilized on the surface of the polymer fiber is not only proteolytic process but also L-amino acid production through light splitting of DL-amino acid, isomerization sugar production through fructose conversion of glucose, and cephalosporin. Production of 7-amino sephalosporinic acid by removal of C organic acid, acrylamide through hydrolysis of L-alanine and acrylonitrile, production of palatinose and fructooligosaccharides using fructose, production of cacao butter and fatty acids using vegetable oil, Production of D-aspartic acid by light splitting of DL-aspartic acid, production of maltooligosaccharides using liquefied starch, aspartame production using amino acids, R-ibuprofen production through RS-ibuprofen light splitting, biodiesel production using oil, etc. It is being used as a road.
<7> 그러나, 종래의 고분자 섬유에 고정화된 효소를 포함하는 효소컬럼은 컬럼 내부에 팩킹된 고분자 섬유가 컬럼을 가득 채우지 못하고, 반웅물을 컬럼 내부로 홀려 주었을 때 바이패스 (bypass) 현상이 나타나게 된다. 이로 인해, 반웅물이 효 소와 만날 수 있는 기회가 줄어들어 효소 반웅의 효율이 급격하게 떨어지는 문제가 있었다.  However, the enzyme column including the enzyme immobilized on the conventional polymer fiber does not fill the column with the polymer fiber packed inside the column, and the bypass phenomenon occurs when the semi-coupling is poured into the column. do. Due to this, there is a problem in that the reaction efficiency of the enzyme reaction is sharply decreased due to a decrease in the chance of encountering the reaction product with the enzyme.
<8>  <8>
【발명의 상세한 설명】  [Detailed Description of the Invention]
【기술적 과제】  [Technical problem]
<9> 본 발명은 상술한 문제점을 해결하기 위해 안출된 것으로, 본 발명의 첫번째 해결하려는 과제는, 컬럼 내 고분자 섬유를 분산시켜 이를 통해 바이패스 현상을 차단하여 컬럼 내부를 관류하는 샘플의 반웅효율성을 최대화시킬 수 있는 효소 컬 럼의 제조방법을 제공하는 것이다. The present invention has been made to solve the above-mentioned problems, the first problem to be solved of the present invention, by dispersing the polymer fibers in the column by blocking the bypass phenomenon through the semi-efficiency of the sample flowing through the column Enzyme curls to maximize It is to provide a method for producing rum.
<10> 본 발명의 두번째 해결하려는 과제는 상기 제조방법을 통해 제조된 효소컬럼 을 제공하는 것이다. The second problem to be solved of the present invention is to provide an enzyme column produced by the above production method.
<11>  <11>
【기술적 해결방법】  Technical Solution
<12> 상술한 첫번째 과제를 해결하기 위하여, 본 발명의 일실시예에 따른 효소컬럼의 제 조방법은, 1) 컬럼 내에 고분자 섬유를 팩킹 (packing)하는 단계 ; 2) 상기 컬럼 내 에 팩킹된 고분자 섬유를 알코올 용액으로 처리하여 상기 고분자 섬유를 컬럼내부 에 분산시켜 섬유 간 공간 (inter-fiber space)을 증가시키는 단계; 3) 상기 컬럼 내에 처리된 알코올 용액을 제거하는 단계; 및 4) 상기 컬럼 내에 팩킹된 고분자 섬유에 효소를 첨가하여 상기 고분자 섬유의 표면에 효소를 고정화하는 단계 ;를 포 함한다.  In order to solve the first problem described above, a method for producing an enzyme column according to an embodiment of the present invention, 1) packing the polymer fibers in a column (packing); 2) treating the polymer fibers packed in the column with an alcohol solution to disperse the polymer fibers in the column to increase the inter-fiber space; 3) removing the treated alcohol solution in the column; And 4) adding an enzyme to the polymer fiber packed in the column to fix the enzyme on the surface of the polymer fiber.
<13> 본 발명의 바람직한 일실시예에 따르면, 상기 고분자 섬유는 고분자 나노섬 유 또는 고분자 마이크론 섬유이며 3차원 네트워크 구조를 가질 수 있다.  According to a preferred embodiment of the present invention, the polymer fiber is a polymer nano fiber or a polymer micron fiber and may have a three-dimensional network structure.
<14> 본 발명의 바람직한 다른 일실시예에 따르면, 상기 고분자 섬유는 상기 고분 자 섬유는 폴리비닐알콜, 폴리아크릴로니트릴, 나일론, 폴리에스테르, 폴리우레탄, 폴리염화비닐, 폴리스티렌, 셀를로우즈, 키토산, 폴리락틱산, 폴리락틱 -co-글리콜 산, 폴리글리콜산 폴리카프로락톤, 콜라겐, 폴리아닐린 및 폴리 (스티렌 -co-무수말 레산)으로 이루어진 군으로부터 선택되는 어느 하나 이상일 수 있다.  According to another preferred embodiment of the present invention, the polymer fiber is the polymer fiber is polyvinyl alcohol, polyacrylonitrile, nylon, polyester, polyurethane, polyvinyl chloride, polystyrene, cellulose, Chitosan, polylactic acid, polylactic-co-glycolic acid, polyglycolic acid polycaprolactone, collagen, polyaniline and poly (styrene-co-maleic anhydride).
<15> 본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 알코올 용액은  According to another preferred embodiment of the present invention, the alcohol solution is
메탄올, 에탄올, 프로판올 및 부탄올로 이루어진 군으로부터 선택되는 어느 하나 이상을 포함할 수 있으며, 상기 알코올 용액의 농도는 15 ~ 100¾(v/v)일 수 있다. <16> 본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 3) 단계는 건조단계를 포함하지 않으면서 컬럼 내부를 수세하는 것을 통해 수행될 수 있다.  It may include any one or more selected from the group consisting of methanol, ethanol, propanol and butanol, the concentration of the alcohol solution may be 15 ~ 100¾ (v / v). According to another preferred embodiment of the present invention, step 3) may be performed by washing the inside of the column without including a drying step.
<17> 본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 4) 단계에서 고분자 섬유의 표면에 효소를 고정화시키기 위하여 컬럼 내부에 가교결합제를 첨가할 수 있다.  According to another preferred embodiment of the present invention, in step 4), a crosslinking agent may be added to the inside of the column in order to fix the enzyme on the surface of the polymer fiber.
<18> 본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 가교결합제는 디이소 시아네이트, 디안하이드라이드, 디에폭사이드, 디알데히드, 디이미드, 1-에틸 -3-디 메틸 아미노프로필카보디이미드 및 글루타르알데히드로 이루어진 군으로부터 선택 되는 어느 하나 이상을 포함할 수 있다.  According to another preferred embodiment of the present invention, the crosslinking agent is diisocyanate, dianhydride, diepoxide, dialdehyde, diimide, 1-ethyl-3-dimethylaminopropylcarbodi Mead and glutaraldehyde may include any one or more selected from the group consisting of.
<19> 본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 효소는 트립신, 키모 트립신, 서브틸리신, 파파인, 서몰리신 등의 프로테아제 , 리파아제, 페록시다아제 (호스래디시 퍼록시데이즈, 소이빈 퍼옥시데이즈, 클로로 퍼옥시데이즈, 망간 퍼옥 시데이즈), 티로시나아제, 라카아제, 셀를라아제, 자일라나제, 락타아제, 유기포스 포하이드를레이즈, 콜린에스테라아제, 당산화효소, 알코을 탈수소 효소, 포도당 탈 수소 효소, 및 포도당 이성화 효소로 구성되는 군으로부터 선택되는 어느 하나 이 상일 수 있다. According to another preferred embodiment of the present invention, the enzyme is trypsin, chemo Proteases such as trypsin, subtilisin, papain and thermolysin, lipases, peroxidases (horse radish peroxidases, soybean peroxidases, chloroperoxidases, manganese peroxides), tyrosinase, laca At least one selected from the group consisting of azeases, celases, xylanases, lactases, organophosphodilases, cholinesterases, glycosylases, alcohol dehydrogenases, glucose dehydrogenases, and glucose isomerases Can be.
<20> 상술한 두번째 과제를 해결하기 위하여, 본 발명의 일실시예에 따른 효소컬 럼은 컬럼; 및 상기 컬럼의 내부에 팩킹되되, 알코올 용액으로 처리되어 컬럼 내 분산되고 섬유간 공간 (inter— fiber space)이 증가된 고분자 섬유를 포함한다.  In order to solve the above-mentioned second problem, the enzyme column according to an embodiment of the present invention is a column; And polymer fibers packed inside the column, treated with an alcohol solution, dispersed in the column, and having an increased inter-fiber space.
<21> 본 발명의 바람직한 일실시예에 따르면, 상기 고분자 섬유는 고분자 나노섬 유 또는 고분자 마이크론 섬유이며 3차원 네트워크 구조를 가질 수 있다. According to a preferred embodiment of the present invention, the polymer fiber is a polymer nano fiber or a polymer micron fiber and may have a three-dimensional network structure.
<22> 본 발명의 바람직한 다른 일실시예에 따르면, 상기 고분자 섬유는 폴리비닐 알콜, 폴리아크릴로니트릴, 나일론, 폴리에스테르, 폴리우레탄, 플리염화비닐, 폴 리스티렌 셀를로우즈, 키토산, 폴리락틱산, 폴리락틱 -co-글리콜산, 폴리글리콜산 폴리카프로락톤, 콜라겐, 폴리아닐린 및 폴리 (스티렌 -co-무수말레산)으로 이루어진 군으로부터 선택되는 어느 하나 이상일 수 있다.  According to another preferred embodiment of the present invention, the polymer fiber is polyvinyl alcohol, polyacrylonitrile, nylon, polyester, polyurethane, polyvinyl chloride, polystyrene cellulose, chitosan, polylac Tic acid, polylactic-co-glycolic acid, polyglycolic acid polycaprolactone, collagen, polyaniline, and poly (styrene-co-maleic anhydride).
<23> 본 발명의 바람직한 일실시예에 따르면, 상기 고분자 섬유의 표면에 효소가 고정될 수 있으며, 이 경우 상기 효소는 트립신, 키모트립신, 서브틸리신, 파파인, 서몰리신 등의 프로테아제, 리파아제, 페록시다아제 (호스래디시 퍼록시데이즈, 소 이빈 퍼옥시데이즈, 클로로 퍼옥시데이즈, 망간 퍼옥시데이즈), 티로시나아제, 라 카아제, 셀 1:라아제, 자일라나제, 락타아제, 유기포스포하이드롤레이즈, 콜린에스 테라아제, 당산화효소, 알코올 탈수소 효소, 포도당 탈수소 효소, 포도당 이성화 효소 등으로 구성되는 군으로부터 선택되는 어느 하나 이상일 수 있으나 이에 제한 되지 않는다. According to a preferred embodiment of the present invention, an enzyme may be immobilized on the surface of the polymer fiber, in which case the enzyme may be a protease or lipase such as trypsin, chymotrypsin, subtilisin, papain, thermolysin, etc. , Peroxidase (horse radish peroxidase, soybean peroxidase, chloro peroxidase, manganese peroxidase), tyrosinase, lacase, cell 1: lase, xylanase, lactase, organic It may be any one or more selected from the group consisting of phosphohydrolase, cholinesterase, glycosylase, alcohol dehydrogenase, glucose dehydrogenase, glucose isomerase, and the like, but is not limited thereto.
<24> 본 발명의 바람직한 일실시예에 따르면, 상기 효소컬럼은 단백질의 가수분해 공정 및 DL-아미노산 광분할을 통한 L-아미노산 생산, 포도당의 과당 변환을 통한 이성화당 생산, 세파로스포린 C의 유기산 제거를 통한 7-아미노세파로스포린산 생 산, L-알라닌, 아크릴로니트릴의 가수분해를 통한 아크릴아미드, 과당을 이용한 팔 라티노즈 및 프룩토을리고당 생산, 식물유를 이용한 카카오버터 및 지방산 생산, DL-아스파라긴산의 광분할을 통한 D-아스파라긴산 생산, 액화전분을 이용한 말토올 리고당 생산, 아미노산을 이용한 아스파탐 생산, RS-이부프로펜 광분할을 통한 R- 이부프로펜 생산, 기름을 이용한 바이오디젤 생산 등의 생산에 이용될 수 있다. <25> According to a preferred embodiment of the present invention, the enzyme column is L-amino acid production through the hydrolysis process of the protein and DL-amino acid light splitting, isomerized sugar production through fructose conversion of glucose, Separosporin C Production of 7-aminocephalosporinic acid through removal of organic acids, acrylamide through hydrolysis of L-alanine and acrylonitrile, production of palatinose and fructoligosaccharides using fructose, cacao butter and fatty acid production using vegetable oils , D-aspartic acid production through light splitting of DL-aspartic acid, maltooligosaccharide production using liquefied starch, aspartame production using amino acid, R- ibuprofen production through RS-ibuprofen light splitting, biodiesel production using oil Can be used for production. <25>
【유리한 효과】  Advantageous Effects
<26> 본 발명의 효소 컬럼은 컬럼 내 효소가 고정된 고분자 섬유가 분산되므로 고 분자 섬유간 공간을 극대화시켜 단백질 등의 샘플이 컬럼을 통과할 때 바이패스를 예방해주며, 동시에 트립신과 같은 효소의 적재량과 활성을 극대화함으로써 가수분 해 효율성을 극대화할 수 있다. 또한, 효소컬럼에 비하여 반웅시간을 획기적으로 저감할 수 있다.  The enzyme column of the present invention disperses the polymer fibers in which the enzyme is immobilized in the column, thereby maximizing the space between the high molecular fibers to prevent bypass when a sample such as a protein passes through the column, and at the same time, By maximizing loading capacity and activity, hydrolysis efficiency can be maximized. In addition, the reaction time can be significantly reduced compared to the enzyme column.
<27> 나아가, 종래의 액상 가수분해 (in-solution digestion) 방법 또는 상용화되 고 있는 효소비드나 키트 등에 비하여, 재사용이 손쉬워지고 트립신 가수분해 공정 에서의 실시간 (on-line) 가수분해 공정이나 자동화 공정을 가능하게 해 즐 수 있 다. 또한 트린신 뿐 아니라 산업적으로 웅용될 수 있는 다양한 효소에도 적용이 가 능하므로 효소를 이용한 산업적 생산에서 요구되는 효소 활성 및 안정성을 확보할 수 있다.  Furthermore, compared with the conventional in-solution digestion method or commercially available enzyme beads or kits, the reuse is easy and the on-line hydrolysis process or automation in the trypsin hydrolysis process is easy. You can enjoy the process. In addition, it can be applied to various enzymes that can be used industrially as well as tricin, thereby securing the enzyme activity and stability required for industrial production using enzymes.
<28>  <28>
【도면의 간단한 설명】  [Brief Description of Drawings]
<29> 도 1은 종래의 나노 물질의 구조를 나타낸 것이다.  1 illustrates the structure of a conventional nanomaterial.
<30> 도 2는 통상의 단백질 가수분해를 개략적으로 나타낸 것이다.  Figure 2 schematically shows a conventional protein hydrolysis.
<3i> 도 3은 전기방사방법을 이용한 PS + PSMA 나노 섬유의 생산공정을 개략적으 로 나타낸 것이다.  3 schematically shows a production process of PS + PSMA nanofibers using an electrospinning method.
<32> 도 4는 고분자 섬유를 이용한 효소 고정화를 개략적으로 나타낸 것이다.  4 schematically shows enzyme immobilization using polymer fibers.
<33> 도 5는 (a) 알코을 처리하지 않은 고분자 나노섬유에 효소 코팅방법을 이용 한 컬럼 (EC-TR/NF-column), 및 (b) 알코올 처리한 고분자 나노섬유에 효소 코팅방 법을 이용한 컬럼 (EC-TR/EtOH-NF-column)을 나타낸 그래프이다.  FIG. 5 shows an enzyme coating method for (a) an alcohol-coated polymer nanofiber (EC-TR / NF-column) using an enzyme coating method, and (b) an alcohol-treated polymer nanofiber. It is a graph showing the column used (EC-TR / EtOH-NF-column).
<34> 도 6은 본 발명의 일구체예로서 0 ~ 59일 동안 CA-TR/NF를 통한 LOMS/MS를 측정한 결과를 나타낸 그래프이다.  6 is a graph showing the results of measuring LOMS / MS through CA-TR / NF for 0 to 59 days as one embodiment of the present invention.
<35> 도 7은 본 발명의 일구체예로서 0 ~ 59일 동안 CA-TR/EtOH-NF를 이용하여  FIG. 7 illustrates an embodiment of the present invention using CA-TR / EtOH-NF for 0 to 59 days.
LC-MS/MS를 측정한 결과를 나타낸 그래프이다.  It is a graph which shows the result of measuring LC-MS / MS.
<36> 도 8은 본 발명의 일구체예로서 0 ~ 59일 동안 EC-TR/NF를 이용하여 LC- FIG. 8 shows an embodiment of the present invention using LC-TR / NF for 0-59 days.
MS/MS를 측정한 결과를 나타낸 그래프이다. It is a graph which shows the result of measuring MS / MS.
<37> 도 9는 본 발명의 일구체예로서 0 ~ 59일 동안 EC-TR/EtOH-NF를 이용하여  9 shows an embodiment of the present invention using EC-TR / EtOH-NF for 0 to 59 days.
LC-MS/MS를 측정한 결과를 나타낸 그래프이다. ᅳ It is a graph which shows the result of measuring LC-MS / MS. ᅳ
<38> 도 10은 본 발명의 일구체예로서 59일 후 LC-MS/MS의 결과를 나타낸 그래프 이다. 10 is a graph showing the results of LC-MS / MS after 59 days as one embodiment of the present invention. to be.
<39> 도 11은 본 발명의 일구체예로서 (a) 0.1 ml/h, (b) 0.5 ml/h, (c)l ml/h,  11 shows, as one embodiment of the present invention, (a) 0.1 ml / h, (b) 0.5 ml / h, (c) 1 ml / h,
(d) 5 ml/h에서 LC/MS-MS를 나타낸 그래프이다.  (d) Graph showing LC / MS-MS at 5 ml / h.
<40> 도 12는 본 발명의 일구체예로서 (a) EC-TR/NF 컬럼, 및 (b) EC-TR/EtOH-NF 12 shows, as one embodiment of the present invention, (a) an EC-TR / NF column, and (b) an EC-TR / EtOH-NF.
컬럼에서 LC/MS-MS를 나타낸 그래프이다.  Graph showing LC / MS-MS in column.
<4i> 도 13은 열적안정성을 확인하기 위해 EC-TR/EtOH-NF, 상용화 트립신 비드, 자유효소를 50 의 고온조건에서 교반한 후, 단백질 가수분해 능력을 비교한 그래프 이다. FIG. 13 is a graph comparing proteolytic ability after stirring EC-TR / EtOH-NF, commercially available trypsin beads, and free enzymes at a high temperature of 50 to confirm thermal stability.
<42> 도 14는 알콜의 농도에 따른 나노섬유의 분산정도를 측정한사진이다.  14 is a photograph measuring the degree of dispersion of nanofibers according to the concentration of alcohol.
<43>  <43>
【발명의 실시를 위한 최선의 형태】  [Best form for implementation of the invention]
<44> 이하, 본 발명을 보다 상세히 설명한다.  Hereinafter, the present invention will be described in more detail.
<45> 상술한 바와 같이, 종래의 고분자 섬유에 고정화된 효소를 포함하는 효소컬 럼은 컬럼내부에 팩킹된 고분자 섬유가 컬럼을 가득 채우지 못하고, 반웅물을 컬럼 내부로 홀려 주었을 때 유압에 의해 고분자 섬유가 압축되어 컬럼 내 빈 공간 (고분 자 섬유로 층진되지 않은 공간)이 발생할 뿐 아니라, 고분자 섬유가 압축되므로 섬 As described above, the enzymatic column including the enzyme immobilized on the conventional polymer fiber does not fill the column with the polymer fiber packed inside the column, and when the semi-coagulum is poured into the column, The fibers are compressed to create voids in the column (the space not layered with polymer fibers), as well as to compress the polymer fibers
' 유와 섬유간에 섬유간 공간 (inter-fiber space)가 감소하게 되어 결국 '' The inter-fiber space between oil and fiber is reduced and eventually
바이패스 (bypass) 현상이 나타나게 된다. 이로 인해, 반웅물이 컬럼을 통과하는 동 안 나노섬유에 고정화된 효소와 접촉하지 못해 반웅하지 못하고 빠져나가게 되어 가수분해 효율이 급격하게 떨어지는 문제가 있었다.  Bypass will appear. As a result, the reaction product does not come into contact with the enzyme immobilized on the nanofibers while passing through the column.
<46> 이에, 본 발명의 일구현예에 따른 효소컬럼의 제조방법은, 1) 컬럼 내에 고 분자 섬유를 팩킹 (packing)하는 단계 ; 2) 상기 컬럼 내에 팩킹된 고분자 섬유를 알 코올 용액으로 처리하여 상기 고분자 섬유를 컬럼내부에 분산시켜 섬유 간  Thus, the method for producing an enzyme column according to an embodiment of the present invention, 1) packing the high molecular fibers in a column (packing); 2) Treating the polymer fibers packed in the column with an alcohol solution to disperse the polymer fibers in the column to inter-fiber
공간 (inter-fiber space)을 증가시키는 단계; 3) 상기 컬럼 내에 처리된 알코올 용 액을 제거하는 단계; 및 4) 상기 컬럼 내에 팩킹된 고분자 섬유에 효소를 첨가하여 상기 고분자 섬유의 표면에 효소를 고정화하는 단계 ;를 포함하여 상술한 문제의 해 결을 모색하였다.  Increasing inter-fiber space; 3) removing the treated alcohol solution in the column; And 4) adding an enzyme to the polymer fiber packed in the column to fix the enzyme on the surface of the polymer fiber.
<47> 이를 통해 효소 컬럼은 컬럼 내 효소가 고정된 고분자 섬유가 분산되므로 고 분자 섬유간 공간을 극대화시켜 단백질 등의 샘플이 컬럼을 통과할 때 바이패스를 예방해주며, 동시에 트립신과 같은 효소의 적재량과 활성을 극대화함으로써 가수분 해 효율성을 극대화할 수 있다. 또한, 기존의 단백질을 가수분해하는 방법에 비하 여 가수분해 시간을 획기적으로 저감할 수 있다. <48> 먼저, 1) 단계로서 컬럼 내에 고분자 섬유를 팩킹 (packing)하는 단계를 수행 한다. 본 발명에 일구현예에 따르면, 사용가능한 컬럼은 목적 및 용도에 따라 적절 한 직경, 형상 및 재질을 가질 수 있으며, 바람직하게는 목적에 따라 원통형의 50 nm ~ lm의 다양한 직경을 가질 수 있으나, 이에 제한되지 않으며 컬럼의 길이 역시 적절하게 조절하여 사용할 수 있다. As a result, the enzyme column disperses the polymer fibers in which the enzyme is immobilized in the column, thereby maximizing the space between the high molecular fibers to prevent bypass when a sample such as a protein passes through the column and at the same time loading the enzyme such as trypsin. By maximizing the activity, the hydrolysis efficiency can be maximized. In addition, the hydrolysis time can be significantly reduced as compared to the conventional method of hydrolyzing the protein. First, as the step 1), the polymer fiber is packed into the column. According to one embodiment of the present invention, the usable column may have a suitable diameter, shape and material according to the purpose and use, and preferably may have various diameters of cylindrical 50 nm ~ lm, depending on the purpose, The length of the column may also be appropriately adjusted.
<49> 본 발명의 일구현예에 따르면, 상기 컬럼의 내부에 효소를 고정화시키기 위 하여 고분자 섬유가 패킹된다. 이 때, 사용되는 고분자 섬유는 효소컬럼에 사용할 수 있는 것이면, 종류 및 직경의 제한이 없지만, 바람직하게는 마이크로 섬유, 나 노섬유를 사용할 수 있고, 보다 바람직하게는 나노섬유를 사용하는 것이 섬유의 비 표면적을 넓혀 고정화되는 효소의 양을 극대화하는데 매우 유리하다.  According to one embodiment of the invention, polymer fibers are packed to immobilize enzymes in the column. At this time, the polymer fibers used are not limited in kind and diameter as long as they can be used in the enzyme column, but preferably microfibers or nanofibers may be used, and more preferably nanofibers may be used. It is very advantageous to maximize the amount of enzyme immobilized by increasing the specific surface area.
<50> 한편, 상기 고분자 섬유는 섬유와 섬유사이에 섬유간 공간 (inter-fiber space)을 포함하는 3차원 네트워크 구조를 가질 수 있으며, 이를 위하여 상기 고분 자 섬유는 전기방사 또는 용융방사를 통해 제조될 수 있지만 이에 제한되는 것은 아니다. 본 발명의 고분자 섬유의 재질로는 폴리비닐알콜, 폴리아크릴로니트릴, 나 일론, 폴리에스테르, 폴리우레탄, 폴리염화비닐, 폴리스티렌, 셀를로우즈, 키토산, 폴리락틱산, 폴리락틱 -co-글리콜산, 폴리글리콜산, 폴리카프로락톤, 콜라겐, 폴리 아닐린, 폴리 (스티렌 -co-무수말레산) 및 이들의 공중합체로 이루어진 군으로부터 선택되는 어느 하나 이상일 수 있으나 이에 제한되지 않는다. 바람직하게는 전기방 사 또는 용융방사로 제조된 3차원 네트워크 구조를 가지는 나노섬유를 사용하는 것 이 고분자 섬유간 공간을 극대화시켜 단백질 등의 샘플이 컬럼을 통과할 때 바이패 스를 예방해주며, 동시에 트립신과 같은 효소의 적재량과 활성을 극대화하는데 대 단히 유리하다.  On the other hand, the polymer fibers may have a three-dimensional network structure including an inter-fiber space between the fibers and the fibers, for this purpose, the polymer fibers are produced by electrospinning or melt spinning May be, but is not limited to. The material of the polymer fiber of the present invention is polyvinyl alcohol, polyacrylonitrile, nylon, polyester, polyurethane, polyvinyl chloride, polystyrene, cellulose, chitosan, polylactic acid, polylactic-co-glycolic acid , Polyglycolic acid, polycaprolactone, collagen, polyaniline, poly (styrene-co-maleic anhydride), and copolymers thereof, but may be any one or more selected from the group. Preferably, the use of nanofibers having a three-dimensional network structure made of electrospinning or melt spinning maximizes the space between polymer fibers to prevent bypasses when proteins and samples pass through the column. It is extremely advantageous to maximize the loading and activity of enzymes such as trypsin.
<51> 한편, 상기 고분자 섬유는 컬럼내부에 팩킹되며, 상기 컬럼에 나노섬유를 고정화하는 방법은 통상의 방법에 의하나, 바람직하게는 컬럼의 양단에 상기 고분 자 섬유를 고정시키거나, 고분자 섬유를 물리적으로 압착하여 팩킹함으로써 컬럼의 앞쪽에서 고분자 섬유가 유압에 의해 압착되어 빈공간이 생기지 않도록 고정할 수 있다. 또한 컬럼 내부의 유리에 아미노프로필 트리메톡시실란 (aminopropyl trimethoxysilane) 등을 이용해 유리의 표면을 개질한 후 나노섬유를 팩킹하게 되 면, 나노섬유의 무수 말레산 (maleic anhydride)기와 표면 개질된 유리의 아미노기 가 화학적 반웅을 형성하여 나노섬유가 컬럼 내부에 고정될 수 있으나 이에 제한되 는 것은 아니며 당업계에 알려진 다양한 방법을 통해 컬럼 내부에 고분자 섬유가 패킹될 수 있음은 당업자에게 자명하다. <52> 다음, 2) 단계로서 상기 컬럼 내에 팩킹된 고분자 섬유를 알코올 용액으로 처리하여 상기 고분자 섬유를 컬럼내부에 분산시켜 섬유 간 공간 (inter-fiber space)을 증가시킨다. 구체적으로 도 4를 참조하면 고분자 섬유가 팩킹된 컬럼의 내부에 알코올 용액을 첨가하면, 고분자 섬유가 컬럼내부에 넓게 분산되어 섬유와 섬유 사이에 공간 (inter-fiber space)이 현저하게 증가하게 된다. 그 결과 단백질 과 같은 샘플이 컬럼을 통과하는 경우 바이패스 (bypass)가 개선되므로 반웅시간이 현저하게 즐어들 뿐 아니라, 효소와 결합할 수 있는 고분자 섬유의 표면적이 증대 되어 훨씬 많은 양의 효소를 고분자 섬유의 표면에 고정화시킬 수 있게 된다. On the other hand, the polymer fibers are packed in a column, and the method of immobilizing the nanofibers on the column is a conventional method, preferably fixing the polymer fibers at both ends of the column, or By physically compressing and packing the polymer fiber in the front of the column can be fixed by pressing the hydraulic pressure so that no empty space. In addition, when the surface of the glass is modified with aminopropyl trimethoxysilane on the glass inside the column and the nanofibers are packed, maleic anhydride of the nanofibers and the surface-modified glass It is apparent to those skilled in the art that the amino group may form a chemical reaction so that the nanofibers may be immobilized inside the column, but the present invention is not limited thereto, and the polymer fibers may be packed into the column through various methods known in the art. Next, in step 2), the polymer fibers packed in the column are treated with an alcohol solution to disperse the polymer fibers in the column to increase the inter-fiber space. Specifically, referring to FIG. 4, when an alcohol solution is added to the inside of the column packed with polymer fibers, the polymer fibers are widely dispersed in the column, thereby significantly increasing the inter-fiber space between the fibers. As a result, when a sample such as a protein passes through the column, the bypass is improved, so that the reaction time is remarkably enjoyed, and the surface area of the polymer fiber that can bind with the enzyme is increased, thereby increasing the amount of enzyme. It can be immobilized on the surface of the fiber.
<53> 도 5의 (a)는 알콜처리를 하지 않은 컬럼이고, 도 5의 (b)는 알콜처리를 한 컬럼으로서 a 부분은 컬럼의 외벽부분이고 b 부분이 중공부분으로서 고분자 섬유가 위치하고 반웅이 수행되는 부분이다. 이 경우 알콜처리를 실시한 효소컬럼 (도 5b) 은 컬럼의 내부를 가득 채울 정도로 넓게 분산되는 반면에, 알콜처리를 실시하지 않은 효소컬럼 (도 5a)는 고분자 섬유가 분산되지 못하고 뭉쳐있어 섬유간 공간이 매우 작은 것을 알 수 있다. FIG. 5 (a) is a column without alcohol treatment, and FIG. 5 (b) is a column with alcohol treatment, in which a portion is an outer wall portion of the column and b portion is a hollow portion where polymer fibers are located. This is the part that is performed. In this case, the alcohol-treated enzyme column (FIG. 5b) is dispersed widely enough to fill the inside of the column, whereas the alcohol-treated enzyme column (FIG. 5a) is not dispersed and the polymer fibers are bound together to form a space between fibers. You can see this very small.
<54> 한편, 본 발명의 바람직한 일구현예에 따르면, 상기 알콜처리를 통해 컬럼의 내부를 고분자 섬유가 가득채울 정도로 고분자 섬유가 넓게 분산되는 것이 바이패 스를 방지하고 효율을 극대화시키는데 매우 유리하다. 구체적으로 분산된 고분자 섬유가 컬럼의 내부를 가득채우지 못하는 경우 컬럼의 내벽과 고분자 섬유 사이에 이격된 공간이 형성되므로 이후 컬럼 내부에 반웅물을 홀려주는 경우 일부 반웅물 은 고분자 섬유에 고정된 효소와 반웅하지 않고 상기 이격된 공간으로 홀러나가게 되어 효율이 떨어지게 된다. 또한, 고분자 섬유가 층분히 분산되지 않으면 섬유간 공간이 작아져서 반웅효율이 떨어지는 문제가 발생할 수 있다.  On the other hand, according to a preferred embodiment of the present invention, it is very advantageous to prevent the bypass and maximize the efficiency of the polymer fiber is dispersed widely enough to fill the inside of the column through the alcohol treatment. . Specifically, if the dispersed polymer fibers do not fill the inside of the column, a space is formed between the inner wall of the column and the polymer fibers. Without returning to the spaced apart space is reduced efficiency. In addition, if the polymer fibers are not dispersed in a small amount, the space between the fibers may be reduced, which may cause a problem in that the reaction efficiency decreases.
<55> 한편, 상기 알콜처리단계는 반드시 컬럼에 고분자 섬유를 패킹한 이후 수행 되어야 한다. 만일 고분자 섬유를 알콜처리하고 이후 컬럼내부에 고분자 섬유를 패 킹하는 경우 패킹과정에서 분산된 고분자 섬유가 다시 수축되어 섬유간 공간이 작 아지는 문제가 발생한다 . 특히 도 5b와 같이 반웅효율을 극대화시키기 위하여 컬럼 내부의 중공이 작은 것을 사용하는 경우에는 패킹과정에서 고분자 섬유가 컬럼의 내벽과 접촉하여 섬유간 공간이 현저하게 작아지는 문제가 발생할 수 있는 것이다. Meanwhile, the alcohol treatment step must be performed after packing the polymer fibers in the column. If the polymer fiber is alcohol-treated and then the polymer fiber is packed in the column, the dispersed polymer fiber is shrunk again during the packing process, resulting in a small space between the fibers. In particular, when the hollow inside the column is used in order to maximize the reaction efficiency as shown in Figure 5b, the polymer fiber is in contact with the inner wall of the column in the packing process may cause a problem that the space between the fibers is significantly smaller.
<56> 한편 본 발명에 사용될 수 있는 알콜은 고분자 섬유의 섬유간 공간을 증대시 킬 수 있는 것이면 종류의 제한이 없이 사용될 수 있으며, 바람직하게는 상기 알코 올 용액은 메탄을, 에탄올, 1-프로판올, 2-프로판올 및 부틸알콜로 이루어진 군으 로부터 선택되는 어느 하나 이상을 포함할 수 있다. 한편, 본 발명의 바람직한 일구현예에 따르면 상기 알코올 용액의 농도는 15 ~ 100%(v/v)인 것이 고분자 섬유의 분산효과를 극대화하는데 매우 유리하다 (실시예 6 참조). Meanwhile, the alcohol that can be used in the present invention can be used without limitation as long as it can increase the interfiber space of the polymer fiber, preferably the alcohol solution is methane, ethanol, 1-propanol It may include any one or more selected from the group consisting of 2-propanol and butyl alcohol. On the other hand, according to a preferred embodiment of the present invention, the concentration of the alcohol solution is 15 ~ 100% (v / v) is very advantageous to maximize the dispersion effect of the polymer fiber (see Example 6).
다음, 3) 단계로서 상기 컬럼 내에 처리된 알코올 용액을 제거하는 단계를 수행한다. 만일 상기 2) 단계에서 처리된 알콜을 제거하지 않는 경우 효소의 안정 성이 낮아지며 효소에 따라 알코올에 민감한 효소반웅에 나쁜 영향을 미쳐 효소가 변성되거나 생성물의 수율이 저해될 수 있고 시간이 지나면서 다시 분산된 고분자 섬유의 섬유간 공간이 줄어들 수 있으므로 반드시 2) 단계에서 처리된 알콜을 제거 하는 단계를 수행하여야 한다. 이를 위하여, 통상의 수세를 통한 세척방법, 가열 등의 건조단계를 통한 알콜을 증발시키는 방법이 있으나, 건조단계를 수행하는 경 우 컬럼내부에 분산된 고분자 섬유가 다시 수축될 가능성이 있으므로 수세를 통하 여 알콜을 제거하는 것이 바람직하다.  Next, step 3) is performed to remove the alcohol solution treated in the column. If the alcohol treated in step 2) is not removed, the stability of the enzyme is lowered, and the enzyme may adversely affect alcohol-sensitive enzyme reaction, which may denature the enzyme or inhibit the yield of the product. Since the interfiber space of the dispersed polymer fibers may be reduced, the step of removing alcohol treated in step 2) must be performed. To this end, there is a method of evaporating alcohol through a drying method such as washing through a conventional water washing, heating, etc., but when performing the drying step, the polymer fibers dispersed in the column may shrink again, so It is preferable to remove the alcohol.
다음, 4) 단계로서 상기 컬럼 내에 팩킹된 고분자 섬유에 효소를 첨가하여 상기 고분자 섬유의 표면에 효소를 고정화하는 단계를 수행한다. 본 발명에 적용될 수 있는 효소는 고분자 섬유에 고정화될 수 있는 것이면 종류의 제한없이 사용될 수 있으며, 바람직하게는 상기 효소는 트립신, 키모트립신, 서브틸리신, 파파인, 서몰리신) 등의 프로테아제, 리파아제, 페록시다아제 (호스래디시 퍼록시데이즈, 소이빈 퍼옥시데이즈, 클로로 퍼옥시데이즈, 망간 퍼옥시데이즈), 티로시나아제, 라카아제, 셀를라아제, 자일라나제, 락타아제, 유기포스포하이드를레이즈 콜린에 스테라아제, 당산화효소, 알코올 탈수소 효소, 포도당 탈수소 효소, 및 포도당 이 성화 효소로 구성되는 군으로부터 선택되는 어느 하나 이상, 통상적으로 트립신은 효소컬럼의 지표로 사용된다. 즉 트립신이 사용될 수 있는 효소컬럼은 다른 종류의 효소역시 층분하게 사용될 수 있는 것이다. 바람직하게는 이 때 사용될 수 있는 효 소는 그 크기가 lnm 이상일 수 있다.  Next, as step 4), the enzyme is added to the polymer fiber packed in the column to fix the enzyme on the surface of the polymer fiber. Enzymes that can be applied to the present invention can be used without limitation as long as it can be immobilized on a polymer fiber, preferably the enzyme is trypsin, chymotrypsin, subtilisin, papain, thermolysine) such as protease, lipase , Peroxidase (horse radish peroxidase, soybean peroxidase, chloro peroxidase, manganese peroxidase), tyrosinase, laccase, celerase, xylanase, lactase, organophosphohydrate Relase choline, at least one selected from the group consisting of steases, glycosylases, alcohol dehydrogenases, glucose dehydrogenases, and glucose isomerases, typically trypsin is used as an indicator of the enzyme column. That is, the enzyme column in which trypsin can be used can be used in different types of enzymes. Preferably, the enzyme that can be used at this time may have a size of more than lnm.
한편, 고분자 섬유의 표면에 효소를 고정화시키는 방법은 제한이 없으며 , 바 람직하게는 컬럼 내부에 효소를 첨가하여 고분자 섬유와 효소간의 흡착 및 /또는 공 유결합을 통해 고분자 섬유의 표면에 효소를 고정화시킬 수 있다. 보다 바람직하게 는 가교결합제를 첨가하여 효소간에 가교결합을 형성하여 고분자 섬유의 표면에 효 소를 고정화시키는 방법을 통해 효소를 고분자 섬유의 표면상에 웅집시키고 이를 통해 고정화를 수행할 수 있는데 이를 효소 코팅이라 한다. 이 때 사용될 수 있는 가교결합제는 효소의 활성을 저해하지 않고서 효소 간에 가교결합을 형성할 수 있 는 것이면 종류의 제한 없이 사용될 수 있다. 이의 구체적인 예로는 디이소시아네 이트, 디안하이드라이드, 디에폭사이드, 디알데히드, 디이미드, 1-에틸 -3-디메틸 아미노프로필카보디이미드, 글루타르알데히드, 이들의 흔합물 등을 들 수 있고, 글 루타르알데히드가 보다 바람직하나, 이에만 한정되는 것은 아니다. On the other hand, the method of immobilizing the enzyme on the surface of the polymer fiber is not limited, and preferably, the enzyme is added to the inside of the column to immobilize the enzyme on the surface of the polymer fiber through the adsorption and / or covalent bond between the polymer fiber and the enzyme You can. More preferably, by adding a crosslinking agent to form crosslinks between the enzymes to immobilize the enzymes on the surface of the polymer fibers, the enzymes may be entrained on the surface of the polymer fibers and immobilized through the enzyme coating. This is called. The crosslinking agent that can be used at this time can be used without any limitation as long as it can form crosslinking between enzymes without inhibiting the activity of the enzyme. A specific example of this is diisocyane. Yit, dianhydride, diepoxide, dialdehyde, diimide, 1-ethyl-3-dimethyl aminopropylcarbodiimide, glutaraldehyde, a mixture thereof, and the like, and glutaraldehyde is more preferable. However, the present invention is not limited thereto.
<61> 본 발명의 바람직한 일구현예에 따르면, 효소의 아미노기가 붙을 수 있는 고 분자 나노섬유 (polymer nanofiber)를 전기방사를 통해 제작한 후, 알코올을 이용한 간단한 처리를 해주게 되면 고분자 나노섬유 (nanofiber)가 분산되어 표면적 및 섬 유 내 공간 (inter-fiber space)이 증가한다. 이렇게 분산된 고분자 나노섬유 (nanofiber)는 효소가 붙을 수 있는 표면적을 증가시켜 단위 무게의 고분자 나노섬 유 (nanofiber)당 효소가 붙을 수 있는 양이 증가하게 된다.  According to a preferred embodiment of the present invention, after preparing a high molecular nanofiber (polymer nanofiber) that can be attached to the amino group of the enzyme by electrospinning, if a simple treatment using alcohol polymer nanofiber (nanofiber ) Disperse increases surface area and inter-fiber space. The dispersed polymer nanofibers increase the surface area to which enzymes can attach, thereby increasing the amount of enzyme per unit weight of nanofibers.
<62> 그 뒤, 수세를 통해 첨가된 알콜을 제거한 후, 효소인 트립신 용액을 흘려주 고, 글루타르알데히드 (glutaraldehyde)와 트립신 흔합액을 컬럼 내로 흘려주어 가 교결합 시켜주면, 컬럼.내에서 고분자 나노섬유 (nanofiber)에 효소가 코팅된다. 이 러한 방법의 장점은 고분자 나노섬유 (nanofiber)를 알코올 처리를 통해 분산시키지 않을 경우, 단백질 용액을 컬럼 내 흘려주었을 때, 유압에 의해 고분자 나노섬유 (nanofiber)가 압축되어 컬럼 내 빈 공간이 발생하여 단백질 용액이 바이패스되어 가수^해 효율성이 감소한다 (도 5의 (a) 참조). 반면에, 고분자 나노섬유 (nanofiber)를 알코올 처리를 통해 분산시키게 되면 단백질 용액올 컬럼 내 홀려주 었을 때 유압이 발생해도 고분자 나노섬유 (nanofiber)가 분산되어 컬럼 내 가득 차 있기 때문에 바이패스를 예방하여 가수분해 효율성을 최대화할 수 있다 (도 5의 (b) 참조). Then, after removing the alcohol added by washing with water, the enzyme trypsin solution is flowed, and the glutaraldehyde and trypsin mixture are flowed into the column to crosslink . The enzyme is coated on the polymer nanofibers within. The advantage of this method is that if the polymer nanofibers are not dispersed through alcohol treatment, when the protein solution flows into the column, the polymer nanofibers are compressed by hydraulic pressure to generate empty space in the column. The protein solution is bypassed to decrease the hydrolysis efficiency (see FIG. 5A). On the other hand, if the polymer nanofibers are dispersed through alcohol treatment, even if hydraulic pressure is generated when they are thrown in the column of the protein solution, the polymer nanofibers are dispersed and filled in the column to prevent bypass. Hydrolysis efficiency can be maximized (see FIG. 5B).
<63> 상술한 본 발명의 제조방법을 통해 제조된 효소컬럼은 컬럼 및 상기 컬럼의 내부에 팩킹되되, 알코올 용액으로 처리되어 컬럼 내 분산되고 섬유간 공간 (inter- fiber space)이 증가된 고분자 섬유를 포함한다. 또한 이렇게 제조된 효소컬럼의 고분자 섬유의 표면에 목적하는 효소를 고정화시킬 수 있다.  The enzyme column produced by the above-described manufacturing method of the present invention is packed into a column and the inside of the column, and treated with an alcohol solution to disperse the column and increase the inter-fiber space (inter-fiber space). It includes. In addition, the target enzyme can be immobilized on the surface of the polymer fiber of the enzyme column thus prepared.
<64> 본 발명의 바람직한 일구현예에 따르면, 상기 알콜처리를 통해 컬럼의 내부 를 고분자 섬유가 가득채을 정도로 고분자 섬유가 넓게 분산되는 것이 바이패스를 방지하고 효율을 극대화시키는데 매우 유리하다. 구체적으로 고분자 섬유가 컬럼의 내부를 가득채우지 못하는 경우 컬럼의 내벽과 고분자 섬유 사이에 이격된 공간이 형성되므로 이후 컬럼 내부에 반웅물을 흘려주는 경우 일부 반웅물은 고분자 섬유 에 고정된 효소와 반웅하지 않고 상기 이격된 공간으로 홀러나가게 되어 효율이 떨 어지게 된다. 또한, 고분자 섬유가 층분히 분산되지 않으면 섬유간 공간이 작아져 서 반웅효율이 떨어지는 문제가 발생할 수 있다. ' <65> 이를 통해 단백질과 같은 샘플이 컬럼을 통과하는 경우 바이패스 (bypass)가 개선되므로 반웅시간이 현저하게 줄어들 뿐 아니라, 효소와 결합할 수 있는 고분자 섬유의 표면적이 증대되어 훨씬 많은 양의 효소를 고분자 섬유의 표면에 고정화시 킬 수 있게 된다. 이를 통해 현저한 활성의 증대를 도모할 수 있게 된다.나아가, 종래의 알콜처리를 하지 않은 효소컬럼, 액상 가수분해 (in-solution digestion) 방 법 또는 효소비드에 비하여 활성의 지속력이 현저하게 개선되며, 반웅물질과 효소 와의 접촉이 긴밀하게 이루어지므로 반응시간이 감소시킬 수 있다. According to a preferred embodiment of the present invention, it is very advantageous to prevent the bypass and maximize the efficiency of the polymer fiber is dispersed widely enough to fill the inside of the column through the alcohol treatment. Specifically, when the polymer fiber is unable to fill the inside of the column, a space is formed between the inner wall of the column and the polymer fiber. Therefore, when the reaction product is flowed into the column, some reaction products do not react with the enzyme immobilized on the polymer fiber. Without being taken out into the spaced apart, the efficiency is reduced. In addition, if the polymer fibers are not dispersed in a small amount, the space between the fibers may be small, resulting in a decrease in reaction efficiency. ' This improves the bypass when samples such as proteins pass through the column, significantly reducing reaction time and increasing the surface area of the polymer fibers that can bind the enzyme, resulting in much higher amounts of enzyme. It can be immobilized on the surface of the polymer fiber. This leads to a marked increase in activity. Furthermore, the sustainability of the activity is remarkably improved compared to conventional alcohol-free enzyme columns, in-solution digestion methods or enzyme beads. Since the reaction between the reaction material and the enzyme is made intimately, the reaction time can be reduced.
<66> 본 발명의 효소컬럼은 단백질 가수분해 컬럼의 용도 뿐 아니라 DL-아미노산 광분할을 통한 L-아미노산 생산, 포도당의 과당 변환을 통한 이성화당 생산, 세파 로스포린 C의 유기산 제거를 통한 7-아미노세파로스포린산 생산, L-알라닌, 아크릴 로니트릴의 가수분해를 통한 아크릴아미드, 과당을 이용한 팔라티노즈 및 프룩토을 리고당 생산, 식물유를 이용한 카카오버터 및 지방산 생산, DL-아스파라긴산의 광 분할을 통한 D-아스파라긴산 생산, 액화전분을 이용한 말토올리고당 생산, 아미노 산을 이용한 아스파탐 생산, RS-이부프로펜 광분할을 통한 R-이부프로펜 생산, 기 름을 이용한 바이오디젤 생산 등의 생산으로 폭넓게 활용될 수 있다.  The enzyme column of the present invention can be used not only for the use of protein hydrolysis columns, but also for the production of L-amino acids through DL-amino acid light splitting, the production of isomerized sugars through the conversion of fructose to glucose, and the removal of organic acids from cephalosporin C. Production of aminocephalosporinic acid, hydrolysis of L-alanine and acrylonitrile, production of palatinose and fructose using fructose, sugar production, cacao butter and fatty acid production using vegetable oil, and optical splitting of DL-aspartic acid It can be widely used for production of D-aspartic acid production, maltooligosaccharide production using liquefied starch, aspartame production using amino acid, R-ibuprofen production through RS-ibuprofen light splitting, and biodiesel production using oil.
<67> 상기와 같이, 본 발명에 따른 효소 컬럼은 빠른 시간 내에 표적 단백질을 가 수분해 시킴으로써 전체 프로테오믹 분석시간을 줄일 수 있을 뿐 아니라, 효소 코 팅방법을 사용하여 효소활성이 안정화되어 컬럼의 수명이 크게 증가하므로 프로테 오믹 분석 산업에 유용하게 이용될 수ᅳ있다. 또한, 본 발명의 효소 컬럼은 단백질 가수분해뿐만 아니라, 생물전환 (bioconversion), 바이오정화 (bioremediation), 바 이오센서 (biosensors), 고과당 콘시럽 (high fructose corn syrup) 생산, 제약업 (pharmaceutical industry) , 식품산업 (food industry) , 화학산업 (chemical industry) 등) 등 다양한 효소의 웅용에 사용될 수 있다.  As described above, the enzyme column according to the present invention can not only shorten the total proteomic analysis time by hydrolyzing the target protein within a short time, but also stabilize the enzyme activity using the enzyme coating method. The lifespan of these products is greatly increased, making them useful for the proteomic analysis industry. In addition, the enzyme column of the present invention not only proteolysis, but also bioconversion, bioremediation, biosensors, high fructose corn syrup production, pharmaceutical industry , Food industry, chemical industry, etc.) can be used for the treatment of various enzymes.
<68>  <68>
【발명의 실시를 위한 형태】  [Form for implementation of invention]
<69> 이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나, 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 이에 의 해 본 발명의 내용이 한정되는 것은 아니다.  Hereinafter, preferred embodiments will be presented to aid in understanding the present invention. However, the following examples are merely provided to more easily understand the present invention, and the contents of the present invention are not limited thereto.
<70> <실시예 1>효소컬럼의 제작  Example 1 Preparation of Enzyme Column
<71> 1-1. 재료의 준비  <71> 1-1. Preparation of the ingredients
<72> (1) 효소  (1) enzymes
<73> 효소 고정화를 위한 효소는 돼지 췌장 (porcine pancreas)에서 유래된 고순도 의 트립신 (trypsin)을 사용하였다. 트립신은 Sigma-Aldr ich(St . Louis, MO, USA)에 서 구입하였다. Enzymes for enzyme immobilization are high purity derived from porcine pancreas. Trypsin was used. Trypsin was purchased from Sigma-Aldr ich (St. Louis, Mo., USA).
<74> (2) 고분자나노섬유 (polymer nano fiber) (2) Polymer nano fiber
<75> 고분자 나노섬유를 만들기 위한 고분자는 PS molecular weight (丽) =  <75> The polymer for making the polymer nanofiber is PS molecular weight (丽) =
950,400) 와 폴리 (스티렌 -co-무수말레산) (Poly(styrene-co-maleic anhydride), PSMA, Mw = 224,000)을 사용하였고, 고분자를 녹이기 위한 유기용매는 테트라하이 드로퓨란 (Tetrahydrofuran, THF)과 아세톤 (acetone)을 사용하였다. 이들 재료는 Sigma-Aldrich(St. Louis, MO, USA)에서 구입하였다.  950,400) and poly (styrene-co-maleic anhydride) (PSMA, Mw = 224,000) were used, and the organic solvent for dissolving the polymer was tetrahydrofuran (THF). And acetone were used. These materials were purchased from Sigma-Aldrich (St. Louis, MO, USA).
<76> (3) 버퍼 (buffer) 및 화학물질  (3) Buffers and Chemicals
<77> 버퍼는 인산염 버퍼 (phosphate buffer, PB) 10, lOOmM, pH 7.9를 사용하였 고, 효소 코팅을 사용하기 위해 글루타르알데히드 (glutaraldehyde)를 사용하였다. 효소 코팅 후 고분자 나노섬유에 있는 무수말레산 (maleic anhydride) 기를 막아주 기 위해 트리스 버퍼 (Tris buffer) lOOmM, pH 7.9를 사용하였다. 효소의 활성 및 물성 측정을 위해 반웅기질로 Nci-벤조일 -L-아르기닌 4-니트로아닐라이드 하이드로 ,클로라이드 (N a_Benzoyl_L_arginine 4-nitroani 1 ide hydrochloride, L—BAPNA)를 사 용하였다. 프로테오믹 분석에서 단백질 가수분해 공정에서 사용되는 모델 단백질은 '엔올라아제 (enolase)를 사용하였고 이들은 모두 Sigma-Aldr ich( St . Louis, MO, •USA)에서 구입하였다.  Phosphate buffer (PB) 10, 100 mM, pH 7.9 was used as the buffer, and glutaraldehyde was used to use the enzyme coating. Tris buffer (OOmM, pH 7.9) was used to prevent maleic anhydride groups in polymer nanofibers after enzyme coating. Nci-benzoyl-L-arginine 4-nitroanilide hydro, chloride (N a_Benzoyl_L_arginine 4-nitroani 1 ide hydrochloride, L—BAPNA) was used as a semi-ung substrate for enzyme activity and physical properties. In the proteomic analysis, the model protein used in the proteolytic process was enolase, which was all purchased from Sigma-Aldr ich (St. Louis, MO, USA).
<78> 1-2. 사용기기  <78> 1-2. Device used
<79> 고분자 나노섬유를 생산하기 위해서는 고분자 용매를 전기방사 방법을 이용 하는데, 이를 위해 고전압 공급장치 (high-voltage supply)과 실린지 펌프 (syringe pump, PHD-2000 Infusion, Harvard Apparatus, Holliston, MA, USA)를 사용하였다. In order to produce polymer nanofibers, a polymer solvent is used for the electrospinning method. For this, a high-voltage supply and a syringe pump (syringe pump, PHD-2000 Infusion, Harvard Apparatus, Holliston, MA) are used. , USA).
<80> 효소 촉매 특성을 확인하기 위해 효소 코팅방법을 이용해 고정화된 트립신과 반웅기질인 L-BAPNA를 반웅시켜 나온 생성물은 분광광도계 (spectrophotometer, Shimadzu, UV-2450)를 이용해 측정하였다. 단백질 가수분해를 위해 고정화된 효소 를 이용해 모델 단백질을 가수분해시킨 후 나오는 가수분해된 펩타이드는 nanoAQUITY UPLC (Waters)와 7-tesla LTQ-FT(Thermo)를 사용하였다. In order to confirm the characteristics of the enzyme catalyst, the product obtained by reacting trypsin immobilized with the enzyme coating method and L-BAPNA, which was an anti-ungwoo substrate, was measured using a spectrophotometer (Sspectrophotometer, Shimadzu, UV-2450). Hydrolyzed peptides after hydrolysis of the model proteins using immobilized enzymes for protein hydrolysis were used nanoAQUITY UPLC (Waters) and 7-tesla LTQ-FT (Thermo).
<8i> 2-1. 트립신 가수분해 컬럼의 제작  <8i> 2-1. Fabrication of Trypsin Hydrolysis Column
<82> (1) 전기방사방법을 이용한 PS + PSMA나노섬유의 준비 및 고분자나노섬유 의 알코올 처리  (1) Preparation of PS + PSMA Nanofibers by Electrospinning Method and Alcohol Treatment of Polymer Nanofibers
<83> 효소 고정화를 위한 나노섬유는 폴리스티렌 (polystyrene, PS)과 폴리 (스티렌  <83> Nanofibers for enzyme immobilization include polystyrene (PS) and poly (styrene).
-ex)-무수말레산) (Poly(styrene-co-maleic anhydride), PSMA)를 사용하게 되는데, PSMA의 무수말레산 (maleic anhydride)에 효소의 아민 (amine) 그룹과 공유결합으로 고정화된다. -ex) -maleic anhydride) (Poly (styrene-co-maleic anhydride), PSMA) The maleic anhydride of PSMA is covalently immobilized with the amine group of the enzyme.
<84> 도 3은 전기방사 방법을 이용한 PS + PSMA 나노섬유의 생산에 대해 나타내었 다. PS + PSMA 나노섬유의 생산방법은 다음과 같다. 상온에서 PS와 PSMA를 2 : 1 무게 비로 섞은 후 테트라하이드로퓨란 (tetrahydrofuran, THF)에 녹인 후, 자성 교 반기 (magnetic stirrer)를 이용해 3시간 정도 섞어주었다. 그 후, 고분자 용액의 점성을 낮춰주기 위해 아세톤 (acetone) 용액을 섞어준 후, 고분자 용액을 30 게이 지 스테인레스 스틸 니들 (gauge stainless steel needle)이 있는 5ml 시린지 (syringe)^ 담았다. 전압의 운용 조건은 7kV이며, 시린지 펌프 (syringe pump)를 이용해 유속은 0.1 ml/hr로 진행하였다. 전기방사를 통해 나온 나노섬유는 깨끗한 알루미늄 호일에 모았다.  Figure 3 shows the production of PS + PSMA nanofibers using the electrospinning method. The production method of PS + PSMA nanofiber is as follows. PS and PSMA were mixed at a weight ratio of 2: 1 at room temperature, dissolved in tetrahydrofuran (THF), and mixed for about 3 hours using a magnetic stirrer. Thereafter, the acetone solution was mixed to lower the viscosity of the polymer solution, and then the polymer solution was filled with a 5 ml syringe with 30 gauge stainless steel needles. The operating condition of the voltage was 7 kV, and the flow rate was 0.1 ml / hr using a syringe pump. The nanofibers from the electrospinning were collected in clean aluminum foil.
<85> 분산된 나노섬유를 만들기 위한 알코올 처리 과정은 다음과 같다. 50% v/v 알코올 용액 (에탄올)이 들어있는 바이알 (vial)에 나노섬유를 넣은 후, 200rpm에서 10분간 쉐이킹 (shaking) 시켰다. 나노섬유가 완전히 분산되면 용액 상에 알코올이 완전히 제거될 때까지 건조과정 없이 씻어주었다. 분산된 나노섬유는 트립신 고정 화 전까지 버퍼 용액에 보관하였다.  The alcohol treatment process for making dispersed nanofibers is as follows. Nanofibers were placed in a vial containing 50% v / v alcohol solution (ethanol), followed by shaking for 10 minutes at 200 rpm. Once the nanofibers were completely dispersed, they were washed without drying until alcohol was completely removed from the solution. The dispersed nanofibers were stored in buffer solution until trypsin immobilization.
<86> (2) 고분자나노섬유를 이용한효소 고정화  (2) Enzyme Immobilization Using Polymer Nanofibers
<87> 나노섬유 (NF)를 이용한 효소 (트립신) 고정화는 다음과 같은 4가지 종류를 이 용해 진행되었다.  Enzyme (trypsin) immobilization using nanofibers (NF) was carried out using the following four types.
<88> [알코을 처리되지 않은 나노섬유를 이용한 공유결합 효소고정화 방법 (CA- [88] [Coupling Enzyme Immobilization Using Alkali-treated Nanofibers (CA-
TR/NF) , 알코올 처리된 나노섬유를 이용한 공유결합 효소고정화 방법 (CA-TR/EtOH- NF), 알코올 처리되지 않은 나노섬유를 이용한 효소코팅 방법 (EC-TR/NF), 알코올 처리된 나노섬유를 이용한 효소코팅 방법 (EC-TR/EtOH-NF)]. TR / NF), covalent enzyme fixation method using alcohol-treated nanofibers (CA-TR / EtOH-NF), enzyme coating method (EC-TR / NF) using alcohol-free nanofibers, alcohol-treated nanofibers Enzyme coating method using fiber (EC-TR / EtOH-NF)].
<89> 도 4는 고분자 나노섬유를 이용한 트립신 고정화에 대한 개념도이다. 트립신 고정화를 위해 같은 무게 (5mg)의 알코올 처리되지 않은 나노섬유 (NF)와 알코올 처 리한 나노섬유 (Et0H-NF)를 준비한 후, 트립신 용액 (10 mg/ml , lOmM 인산나트륨 버 퍼 (sodium phosphate buffer, pH 7.9))에 배양하였다. 트립신 용액과 나노섬유가 들어있는 바이알 (vial)을 30분간 200rpm으로 쉐이킹 (shaking) 한 후, 트립신을 나 노섬유에 공유결합을 이용해 고정화하기 위해 4°C에서 2시간 동안 배양하였다. 이 후 효소 코팅 (EC— TR)의 합성을 위해, 가교결합제인 글루타르알데히드 (glut ar aldehyde) 용액 (0.5% w/v)을 넣은 후, 4°C에서 하룻밤 동안 배양하였다. 90> 공유결합 효소고정화 방법 (covalent attached trypsin, CA—TR)을 위해서는 글루타르알데히드 (glutaraldehyde) 용액 대신 버퍼 용액을 넣어주었다. 하룻밤 동 안 배양한 생촉매 나노섬유 (CA-TR, EC-TR)는 lOOmM 인산나트륨 버퍼 (sodium phosphate buffer, pH 7.9)로 씻어준 후, 나노섬유에 남아있는 반웅하지 않은 알데 히드 (aldehyde) 그룹을 막아주기 위해 lOOmM 인산나트륨 버퍼 (sodium phosphate buffer, pH 7.9)를 이용해 30분 동안 쉐이킹 (shaking) 시켰다. 이렇게 완성된 생촉 매 나노섬유는 10mM 인산나트륨 버퍼 (sodium phosphate buffer, pH 7.9)로 완전히 씻어준 후 4°C에 보관하였다. 4 is a conceptual diagram for trypsin immobilization using polymer nanofibers. After preparing the same weight (5 mg) alcohol-free nanofibers (NF) and alcohol-treated nanofibers ( Et0H - NF ) for trypsin immobilization, trypsin solution (10 mg / ml, 10 mM sodium phosphate buffer (sodium phosphate) buffer, pH 7.9)). After shaking the vial containing trypsin solution and nanofibers at 200 rpm for 30 minutes, the trypsin was incubated at 4 ° C for 2 hours to immobilize the trypsin to the nanofibers. Thereafter, for the synthesis of enzyme coating (EC-TR), a glutaraldehyde solution (0.5% w / v) as a crosslinker was added thereto, and then incubated overnight at 4 ° C. 90> For covalent attached trypsin (CA—TR) A buffer solution was added instead of a glutaraldehyde solution. The biocatalyst nanofibers (CA-TR, EC-TR) incubated overnight were washed with lOOmM sodium phosphate buffer (pH 7.9), and the unreacted aldehyde groups remained on the nanofibers. Shaking was performed for 30 minutes using lOOmM sodium phosphate buffer (pH 7.9) to prevent this. The finished biocatalyst nanofibers were completely washed with 10 mM sodium phosphate buffer (pH 7.9) and stored at 4 ° C.
<91> (3) 고정화된 트립신의 활성 측정 (3) Determination of activity of immobilized trypsin
<92> 생촉매 나노섬유의 트립신 활성의 측정은 수용액 버퍼 내에서의 트립신의 반 웅기질인 L-BAPNA의 가수분해를 통해 측정하였다. L-BAPNA 용액은 L-BAPNA를 DMF를 이용해 용해시킨 용액 (10 mg/ml in DMF)을 10mM 인산나트륨 버퍼 (sodium phosphate buffer, pH 7.9)를 이용하여 1/100 희석시켜 사용하였다. 나노 구조 물질에 고정화 된 효소 (enzyme)의 경우에는 실시간으로 측정이 불가능하므로 10ml의 L-BAPNA 용액 에 생촉매 나노섬유를 넣어 200rpm으로 반웅시킨 후, 시간별로 lOOul씩 샘플을 취 하여 측정하는 방법을 사용하였다. 그 후, 10mM 인산나트륨 버퍼 (sodium phosphate buffer, pH 7.9)를 이용해 1/10로 희석한 후 생성물의 농도를 410nm에서 분광광도 계 (spectrophotometer)로 흡광도를 측정하였다.  Trypsin activity of the biocatalyst nanofibers was measured by hydrolysis of L-BAPNA, the semi-manipulator of trypsin in aqueous buffer. The L-BAPNA solution was used by diluting 1/100 of a solution in which L-BAPNA was dissolved with DMF (10 mg / ml in DMF) using 10 mM sodium phosphate buffer (pH 7.9). Enzyme immobilized on nano-structured material is impossible to measure in real time, so 10ml L-BAPNA solution is added with biocatalytic nanofibers and reacted at 200rpm. Used. Thereafter, after diluting to 1/10 with 10 mM sodium phosphate buffer (pH 7.9), the absorbance was measured at 410 nm using a spectrophotometer.
<93> (4) 생촉매 나노섬유를 이용한단백질 가수분해  (4) Protein Hydrolysis Using Biocatalytic Nanofibers
<94> 생촉매 나노섬유를 이용해 프로테오믹 분석에서의 단백질 가수분해 공정에 적용시키기 위해 실험을 진행하였다. 가수분해할 단백질은 모델 단백질인 엔올라아 저 Kenolase)를 사용하였고, 가수분해 방법은 액상 가수분해 ( in-solut ion digestion) 방법을 사용하였다. 실험방법은 다음과 같다.  Experiments were carried out to apply proteolytic processes in proteomic analysis using biocatalyst nanofibers. The protein to be hydrolyzed was model protein Enolaa low Kenolase), and the hydrolysis method was in-solut ion digestion method. The experimental method is as follows.
<95> 생촉매 나노섬유가 들어있는 바이알 (vial)에 2ml의 엔올라아제 (enolase) 용 액 (0.1 mg/ml in lOOmM 암모늄 바이카보네이트 (a隱 onium bicarbonate, pH 8.0))을 넣어준 후, 200rpm 및 상은에서 밤새 동안 반웅시켰다. 반웅 후, 1.5ml의 상층액 (supernatant)을 새로운 바이알 (vial)에 넣은 후 더 이상의 반웅을 막아주기 위해 포름산 (formic acid)을 넣어주었다. 만들어진 샘플은 LC— MS/MS를 이용한 분석 전까 지 -70°C에 보관하였다. 사용된 생촉매 나노섬유는 깨끗이 씻어준 후 다음 사용 시 까지 4°C에 보관하였다. In a vial containing biocatalyst nanofibers, 2 ml of enolase solution (0.1 mg / ml in lOOmM ammonium bicarbonate (pH 8.0)) was added. The reaction was overnight at 200 rpm and phase. After reaction, 1.5 ml of supernatant was added to a new vial and formic acid was added to prevent further reaction. The resulting samples were stored at -70 ° C until analysis using LC—MS / MS. The biocatalyst nanofibers used were washed clean and stored at 4 ° C until the next use.
<96> (5) 효소 컬럼을 이용한단백질 가수분해  (5) Protein hydrolysis using enzyme column
<97> 기존의 액상 가수분해 (in-solut ion digestion) 방법은 시간이 오래 걸리는 문제점을 가지고 있다. 이러한 문제점올 해결하기 위해 나노섬유를 크로마토그래피 컬럼 (chromatography column)에 넣어준 후 효소 코팅방법을 이용해 효소 컬럼을 제 작하였다. 효소 컬럼은 단백질 용액을 일정한 속도로 컬럼 내로 흘려줄 수 있는 실 린지 펌프 (syringe pump)와 연결되어 있다. 크로마토그래피 컬럼 내에는 나노섬유 가 컬럼 밖으로 나오지 못하도록 컬럼의 입구와 출구에 프리트 (frit)가 구성되어 있어, 효소 컬럼에 의해 분해된 생성물 용액만 밖으로 나올 수 있다. 효소 컬럼 제 작은 알코올 처리하지 않은 나노섬유에 효소 코팅방법을 이용한 컬럼 (EC-TR/NF- column)과 알코올 처리한 나노섬유에 효소 코팅방법을 이용한 컬럼 (EC—TR/EtOH-NF- column) 두 가지 방법으로 제작하였다 (도 5). The conventional in-solut ion digestion method has a long time problem. Chromatography of nanofibers to solve this problem Enzyme column was prepared by enzymatic coating method after put into a chromatography column. The enzyme column is connected to a syringe pump that can flow protein solution into the column at a constant rate. In the chromatography column, frits are formed at the inlet and outlet of the column to prevent nanofibers from coming out of the column, so that only the product solution decomposed by the enzymatic column can come out. Enzymatic Columns Columns (EC-TR / NF-column) for enzyme-coated nanofibers on small alcohol-treated nanofibers (EC—TR / EtOH-NF-columns) It was produced in two ways (FIG. 5).
먼저 고분자 나노섬유를 크로마토그래피 컬럼에 채운 후, EC-TR/EtOH-NF- column의 경우, 나노섬유를 컬럼 내에서 분산시키기 위해 50% v/v 알코올 용액을 1 ml/h 유속으로 밤새 동안 홀려주었다. 10mM 인산염 버퍼 (phosphate buffer, pH 7.9)를 이용해 컬럼 내 더 이상 알코올 용액이 남아있지 않도록 세척한 후, 트립신 용액 (10 mg/ml in 10mM 인산염 버퍼 (phosphate buffer, pH 7.9))을 나노섬유가 들 어있는 컬럼 내로 2.5 ml/h 유속으로 2시간 동안 홀려주었다. 효소 코팅 합성을 위 해 트립신과 글루타르알데히드 (glutaraldehyde)가 함께 들어있는 용액을 10 분간 흘려준 후, 50분간 배양시켰다. 이후 효소 코팅방법과 마찬가지로 반웅되지 않은 나노섬유의 알데히드 (aldehyde) 그룹을 막아주기 위해 lOOmM Tris-HCKpH 7.9)를 이용해 1시간 동안 반웅시켰다. 이렇게 만들어진 효소 컬럼은 PB 버퍼를 이용해 5 ml/h유속으로 깨끗이 씻어준 후, 사용 시까지 상온에 보관하였다.  First, the polymer nanofibers are filled into a chromatography column, and in the case of the EC-TR / EtOH-NF-column, 50% v / v alcohol solution is poured overnight at 1 ml / h flow rate to disperse the nanofibers in the column. gave. After washing with 10 mM phosphate buffer (pH 7.9) to ensure that no alcohol solution remains in the column, trypsin solution (10 mg / ml in 10 mM phosphate buffer (pH 7.9)) is filled with nanofibers. It was held for 2 hours at a flow rate of 2.5 ml / h into a column. For the synthesis of enzyme coating, the solution containing trypsin and glutaraldehyde was flowed for 10 minutes and then incubated for 50 minutes. Then, as in the enzyme coating method, lOOmM Tris-HCKpH 7.9) was used to prevent aldehyde groups of unfinished nanofibers for 1 hour. The enzyme column was washed with 5 ml / h flow rate using PB buffer and stored at room temperature until use.
<실시예 2>트립신 가수분해 컬럼의 활성측정 Example 2 Activity Measurement of Trypsin Hydrolysis Column
자유 효소 (Free enzyme)의 경우에는 효소 (enzyme)가 물에 녹기 때문에 분광 광도계 (spectrophotometer)를 이용해 실시간으로 측정이 가능하나, 나노 구조 물질 에 고정화된 효소 (enzyme)의 경우에는 실시간으로 측정이 불가능하므로 200rpm으로 반웅시킨 후, 시간별로 lOOul씩 샘플을 취하여 측정하는 방법올 사용하였다. 그 후 , 10mM 인산나트륨 (sodium phosphate, pH 7.9)를 이용해 1/10로 희석한 후 410nm에 서 분광광도계로 흡광도를 측정하였다.  In the case of free enzyme, the enzyme is dissolved in water, so it can be measured in real time using a spectrophotometer, but in the case of an enzyme immobilized on a nanostructured material, it cannot be measured in real time. Therefore, after reacting at 200 rpm, a method of taking and measuring samples by lOOul was used every hour. Then, after diluting to 1/10 with 10mM sodium phosphate (sodium phosphate, pH 7.9), the absorbance was measured with a spectrophotometer at 410nm.
【표 1】  Table 1
Figure imgf000017_0001
<i03> 표 1은, EC-TR/EtOH-NF의. 초기 활성도 EC— TR/NF의 초기 활성도, kinetic 값에 대해 나타내었다. 먼저 EC-TR/EtOH-NF의 초기 활성도는 EOTR/NF의 초기 활성에 비해 약 8.2 배 높은 것을 확인할 수 있다. 이는 알코올 처리를 통해 나노섬유가 퍼짐으로써 표면적이 증가하였기 때문에, 나노섬유에 함유된 무수말레 산 (maleic anhydride) 그룹이 수용액상에 많이 노출되어 있다는 것을 증명하는 것 이다. 효소의 아민기가 무수말레산 (maleic anhydride)에 고정화되기 때문에, 이는 분산된 나노섬유가 트립신을 고정화할 수 있는 능력이 향상되는 것을 의미하며, 분 산된 나노섬유 위에 효소 코팅을 하는 것은 기존의 나노섬유에 효소 코팅을 하는 것에 비해 효소 담지량이 크게 향상되는 것이다.
Figure imgf000017_0001
<i03> Table 1 shows EC-TR / EtOH-NF. Initial Activity EC— The initial activity of the TR / NF and the kinetic values are shown. First, the initial activity of EC-TR / EtOH-NF is about 8.2 times higher than the initial activity of EOTR / NF. This proves that the maleic anhydride group contained in the nanofiber is exposed to the aqueous phase because the surface area is increased by spreading the nanofiber through alcohol treatment. Since the amine groups of the enzyme are immobilized to maleic anhydride, this means that the ability of the dispersed nanofibers to immobilize trypsin is improved. Compared to the enzyme coating on the enzyme loading amount is greatly improved.
<|04> 고정화된 효소의 반웅속도 상수 (Vmax 와 K 는 michaelis-menten 분석을 통해 구할 수 있다. 효소 코팅은 글루타르알데히드 (glutaraldehyde) 처리를 통해 크로스 링킹 (crossl inking) 되었기 때문에 , 홉광도를 이용한 방법이나 BCA 방법으로는 정 , 확한 담지량을 측정할 수가 없다. 또한, 초기 활성을 측정하는 방법 역시 반웅 도 중 질량 이동 한계 (mass transfer limitation)의 영향을 받기 때문에 정확한 담지 량을 측정할 수 없다. 따라서, Vmax를 구함으로써 고정화된 효소의 담지량을 측정하 는 것은 비교적 정확한 효소 담지량을 구할 수 있는 방법이 될 수 있다.<| 04> Reaction rate constants of immobilized enzymes (V max and K can be obtained by michaelis-menten analysis. Because the enzyme coating was crosslinked by glutaraldehyde treatment, hop intensity It is not possible to measure the exact amount of loading by the BCA method or the BCA method, and the method of measuring the initial activity is also affected by the mass transfer limitation. Therefore, measuring the loading of the immobilized enzyme by obtaining V max may be a method of obtaining a relatively accurate enzyme loading.
105> 실험 결과, EC-TR/EtOH-NF의 Vmax는 EC-TR/NF의 Vmax에 비해 약 21.7 배 높은 것을 확인할 수 있었다. Vmax에서 전환수 (Turnover number , kcat)가 고정화 시스템 에서 일정하다고 가정하였올 때, 최대 속도 값 (Maximum velocity value, Vmax)는 효소 담지량에 비례한다고 볼 수 있다 (Vmax = kcat > [E]o]). 따라서, 이는 알코을 처 리를 통해 나노섬유가 퍼짐으로써 표면적이 증가하였기 때문에, 분산된 나노섬유에 붙은 트립신의 담지량이 기존의 나노섬유에 붙은 트립신의 담지량에 비해 19배 이 상 높은 것을 확인할 수 있다. As a result, the V max of EC-TR / EtOH-NF was about 21.7 times higher than that of Vmax of EC-TR / NF. Assuming that the turnover number (kcat) at V max is constant in the immobilization system, the maximum velocity value (Vmax) is proportional to the enzyme loading (V max = k cat > [E ] o]). Therefore, since the surface area was increased by the nanofiber spread through the alcohol treatment, it can be confirmed that the amount of trypsin adhered to the dispersed nanofibers is 19 times higher than the amount of trypsin adhered to the conventional nanofibers.
¾106> ^는 효소가 기질과 반웅할 때 물질 전달 저항을 알 수 있는 정보이다. Km 값이 낮을수록 물질 전달 저항이 낮은 것으로 효소와 기질의 반웅 효율이 높은 것 이라 볼 수 있다. 실험 결과, EC-TR/EtOH-NF의 는 EC-TR/NF의 ^에 비해 약 5.8배 높은 것을 확인할 수 있었다. 이는 분산된 나노섬유에는 많은 양의 가교결합 (crossl inking)된 트립신이 붙어있기 때문에 물질 전달 저항은 높은 것을 확인할 수 있다.  ^ Is information that can be used to determine mass transfer resistance when an enzyme reacts with a substrate. The lower the Km value, the lower the mass transfer resistance, and the higher the reaction efficiency of enzyme and substrate. As a result, EC-TR / EtOH-NF was found to be about 5.8 times higher than ^ of EC-TR / NF. It is confirmed that the mass transfer resistance is high because the dispersed nanofibers are attached with a large amount of cross-linked trypsin.
<107> <실시예 3>효소컬럼의 안정성, 효율성 및 재사용 가능성 측정 <108> 트립신은 프로테오믹 분야에서 단백질을 분석하기 위한 과정 중, 트립신 가 수분해 공정을 통해 단백질을 팹타이드로 만들어 주는 과정에 웅용될 수 있다. 이 번 실험에서는 고정화된 트립신을 이용해 프로테오믹 분석에서의 트립신 가수분해 공정에 대한 웅용가능성에 대해 알아보았다. 이를 위해 모델 단백질인 엔올라아제Example 3 Measurement of Stability, Efficiency and Reusability of Enzyme Columns Trypsin can be used in the process of analyzing proteins in the proteomics, and in the process of making proteins into fabtide through trypsin hydrolysis process. In this experiment, we examined the utility of the trypsin hydrolysis process in proteomic analysis using immobilized trypsin. For this purpose, the model protein enolase
(enolase)를 이용해 4가지 다른 고정화된 트립신 (EC-TR/EtOH-NF, EC-TR/NF, CA- TR/EtOH-NF, CA-TR/EtOH-NF)의 가수분해 효율성 (efficiency), 안정성 (stabi lity) , 재사용가능성 (reusability)에 대한 실험을 진행하였다. hydrolysis efficiency of four different immobilized trypsin (EC-TR / EtOH-NF, EC-TR / NF, CA-TR / EtOH-NF, CA-TR / EtOH-NF) with enolase, Experiments were conducted on stability and reusability.
<109> 엔올라아제 (Enolase) 가수분해 후, 가수분해된 생성물이 함유된 용액은 IX- ᅳ MS/MS 분석을 위해 -70°C에서 보관하고, 사용한 고정화된 트립신은 더 이상 가수분 해된 잔류 단백질이 남아있지 않을 때까지 버퍼 (buffer)로 세척 (washing)한 후 다 음 사용 시까지 4°C에 보관하였다. LOMS/MS를 통한 프로테오믹 분석에서는, 기존 의 엔을라아제 (enolase) 가수분해를 통해 엔올라아제 (enolase)가 가수분해되어 나 온 펩타이드를 데이터베이스 (database)로 정리하고, LC-MS/MS 분석에 의해 검출된 펩타이드의 피크 면적 (peak area)를 기존의 데이터베이스 (database)와 비교하여 가 수분해의 효율성을 확인하였다. 본 실험에서는 LC-MS/MS 분석에 의해 검출된 펩타 ᅳ 이드의 피크 면적 (peak area) 중ᅳ 데이터베이스 (database)를 통해 엔올라아제 After Enolase hydrolysis, the solution containing the hydrolyzed product was stored at -70 ° C for IX-X MS / MS analysis, and the immobilized trypsin used was no longer hydrolyzed. After washing with a buffer until no residual protein remained, it was stored at 4 ° C until the next use. In proteomic analysis using LOMS / MS, the peptides from which enolase is hydrolyzed through conventional enolase hydrolysis are organized into a database, and LC-MS / The peak area of the peptide detected by MS analysis was compared with the existing database to confirm the efficiency of hydrolysis. In this experiment, the enolase was determined from the peak area weighting database of the peptide peptide detected by LC-MS / MS analysis.
(enolase)의 가수분해되어 나온 펩타이드라고 확신할 수 있는 대표적인 펩타이드 5 개를 선별하여 이들의 면적 (area) 합을 구해서 가수분해 효율성을 결정하였다.  Five representative peptides that can be considered to be hydrolyzed peptides of (enolase) were selected and their area summed to determine their hydrolysis efficiency.
<ιιο> 59일 동안 분석한 4가지 종류의 고정화된 트립신을 반복해서 사용하여 엔올 라아제 (enolase)를 가수분해한 후 엔올라아제 (enolase)가 가수분해된 펩타이드를 LC-MS/MS를 통해 분석한 결과는 다음과 같다. 먼저 공유결합 효소고정화 방법 (CA/EtOH-NF 와 CA/NF)의 경우, 초기 가수분해 효율성도 효소코팅의 효율성에 비해 낮은 것을 볼 수 있으며, 재사용시 시간이 지남에 따라 효율성도 급격히 감소하는 것을 확인할 수 있었다 (도 6 및 7 참조). 이는 공유결합 효소고정화 방법의 낮은 안정성의 결과로, 엔올라아제 (enolase)가 액상 가수분해 (in—solution digestion) 실험 조건에서 완전히 가수분해 (digestion)되지 않았다는 것을 증명하는 것이다. 반면, 나노섬유와 분산된 나노섬유에서의 공유결합 효소고정화 방법 (CA/EtOH-NF 와 CA/NF)을 비교해보면 CA/EtOH-NF의 상대적인 안정성이 더 높은 것을 볼 수 있다. 이는 알코올 처리를 통해 나노섬유가 퍼짐으로써 표면적이 증가하여 더 많은 효소 가 붙어있으므로, 효소가 시간이 지남에 따라 활성을 잃어버리지만 활성을 유지하 <ιιο> Enolase was hydrolyzed using 4 types of immobilized trypsin repeated for 59 days, followed by enolase hydrolyzed peptides via LC-MS / MS. The analysis results are as follows. First, in the case of covalent enzyme immobilization methods (CA / EtOH-NF and CA / NF), the initial hydrolysis efficiency is lower than that of enzyme coating, and the efficiency decreases rapidly over time when reused. It could be confirmed (see FIGS. 6 and 7). This results in the low stability of the covalent enzyme immobilization method, demonstrating that enolase was not fully digested under in-solution digestion experimental conditions. On the other hand, comparing the covalent enzyme immobilization method (CA / EtOH-NF and CA / NF) in nanofibers and dispersed nanofibers, the relative stability of CA / EtOH-NF is higher. This is due to the spread of nanofibers through alcohol treatment, which leads to an increase in the surface area and thus to the attachment of more enzymes, so that the enzymes lose their activity over time but remain active.
: 고 있는 남은 효소가 기존의 나노섬유에 붙어있는 효소에 비해 상대적으로 많기 때 문으로 분석할 수 있다. <ιπ> 효소 코팅방법을 사용할 경우, 59일 동안 재사용할 경우에도 높은 가수분해 효율성을 유지하는 것을 볼 수 있다 (도 8 및 9 참조). 또한, 분산된 나노섬유를 이 용한 효소 코팅방법 (EC/EtOH-NF)는 기존의 나노섬유를 이용한 효소 코팅방법 (EC/NF)에 비해 약 3배 정도 높은 가수분해 효율성을 나타내는 것을 확인할 수 있 다 (도 10 참조). : The remaining enzyme is relatively large compared to the enzyme attached to the existing nanofibers. When the <ιπ> enzyme coating method is used, it can be seen that high hydrolysis efficiency is maintained even when reused for 59 days (see FIGS. 8 and 9). In addition, it can be seen that the enzyme coating method (EC / EtOH-NF) using dispersed nanofibers has about three times higher hydrolysis efficiency than the conventional enzyme coating method (EC / NF) using nanofibers. (See FIG. 10).
<112> 이를 통해 효소 코팅방법은 공유결합 효소고정화 방법에 비해 높은 안정성 및 활성을 유지하고 있는 것을 확인할 수 있으며, 분산된 나노섬유를 이용할 경우, 고정화된 효소의 양이 많기 때문에 기존의 나노섬유를 이용한 결과에 비해 높은 활 성을 보이는 것을 확인할 수 있었다. 또한, 이러한 효소고정화 방법은 실제 웅용 분야인 프로테오믹 분석에서의 트립신 가수분해 공정에 성공적으로 웅용될 수 있음 을 확인할 수 있었다.  Through this, it can be seen that the enzyme coating method maintains high stability and activity compared to the covalent enzyme fixation method. When using dispersed nanofibers, the amount of the enzyme immobilized increases the existing nanofibers. Compared with the results used, it was confirmed that the high activity. In addition, this enzyme immobilization method was confirmed that can be successfully used in the trypsin hydrolysis process in the proteomic analysis, which is the actual field of practice.
<Π3> <실시예 4>구체적인 트립신 가수분해 컬럼의 제작  Example 4 Fabrication of Specific Trypsin Hydrolysis Column
<ιΐ4> 생촉매적 나노섬유 (Biocatalytic nanofiber)를 이용한 액상 가수분해 (in- <ιΐ4> Liquid phase hydrolysis using biocatalytic nanofiber (in-
" solution digestion)의 경우, 단백질 가수분해시 뛰어난 가수분해 효율성을 나타내 었으나, 가수분해를 위한 시간이 12시간 이상으로 효율적인 실제 웅용을 위해서는"Solution digestion" showed excellent hydrolysis efficiency during protein hydrolysis.
― 가수분해를 위한 시간을 줄여야 하는 문제를 가지고 있다. 이러한 문제를 해결하기 위한 많은 노력들이 이루어지고 있는데 여전히 효소안정화가 문제가 되므로, 이번 연구에서는 효소안정화와 가수분해 시간을 줄일 수 있는 해결책을 제시하기 위해 효소코팅 방법을 이용한 효소 컬럼 (enzymatic column)을 제작하고 이를 단백질 가 수분해 공정에 적용시켜 보았다. Has the problem of reducing the time for hydrolysis. Many efforts have been made to solve this problem, and enzyme stabilization is still a problem. In this study, an enzymatic column using enzymatic coating method was proposed to provide a solution to reduce enzyme stabilization and hydrolysis time. It was fabricated and applied to the hydrolysis process.
<115> 도 5에서는 단쌕질 가수분해를 위한 효소 컬럼 시스템에 대한 전체 그림 및 기존의 나노섬유에서 효소코팅 방법을 이용한 효소 컬럼 (EC-TR/NF column)과 알코 올 처리를 통한 분산된 나노섬유에서 효소 코팅방법을 이용한 효소 컬럼 (EC- FIG. 5 shows the entire picture of the enzyme column system for protein hydrolysis and the dispersed nanofibers through the enzyme treatment (EC-TR / NF column) and alcohol treatment using the enzyme coating method in the conventional nanofibers. Column using enzyme coating method
- TR/EtOH-NF column)의 차이에 대해 나타내었다. -TR / EtOH-NF column).
<!16> 효소 코팅방법을 이용한 효소 컬럼 시스템은 기존의 액상 가수분해 (in- solution digestion) 방법에 비해 가수분해 시간올 획기적으로 줄일 수 있는 장점 을 가지고 있다 (5분 이내) '. 또한 효소코팅 방법이 효소를 안정화시키기 때문에 재 사용시에도 가수분해 효율성을 유지할 수 있는 장점올 가지고 있다.  <! 16> The enzyme column system using the enzyme coating method has the advantage of significantly reducing the hydrolysis time (within 5 minutes) compared to the conventional in-solution digestion method. In addition, since the enzyme coating stabilizes the enzyme, it has the advantage of maintaining the hydrolysis efficiency even when reused.
<ιΐ7> 그러나, EC-TR/NF 컬럼 (column)은 계속해서 사용함에 따라 유체 압력 (fluid pressure)에 의해 컬럼 내의 나노섬유가 압착 (compress)되어 빈 공간이 생기고, 이 에 따라 컬럼 내에 흐르는 유체가 빈 공간으로 바이패스 (bypass)되므로 단백질 가 수분해 효율성이 감소하게 된다. 반면, EC-TR/EtOH-NF 컬럼은 컬럼 내에서 나노섬 ;ᅳ 유가 완전히 분산되어 나노섬유가 압착되어 빈 공간이 생기는 현상을 막아주어 바 이패스를 예방하여 재사용시에도 높은 단백질 가수분해 효율성을 가질 수 있다.<ιΐ7> However, as EC-TR / NF columns continue to be used, the nanofibers in the column are compressed by fluid pressure, resulting in an empty space, and thus the fluid flowing in the column. Bypassing into the voids reduces protein hydrolysis efficiency. EC-TR / EtOH-NF columns, on the other hand, are nano-islets in the column. ; ᅳ Oil is completely dispersed and nanofibers are compressed to prevent empty spaces, preventing bypass and having high protein hydrolysis efficiency even when reused.
<ιΐ8> 먼저 엔을라아제 (enolase) 용액을 컬럼 내에 흘려주는 속도를 결정하기 위해 <ιΐ8> First to determine the rate of flow of enolase solution into the column
EC-TR/NF 컬럼에 유속 (flow rate)을 변화 (0.1 ~ 5 ml/h)시켜 주며 엔올라아제 (enolase)를 가수분해시켜 가수분해된 정도를 LC/MS-MS로 분석하였다. 그 결과 유 속 (flow rate)을 즐임에 따라 엔올라아제 (enolase)가 더 많이 가수분해되는 것을 확인하였다 (도 11 참조. ) . 이는 유속 ( ow rate)이 감소할수록 엔을라아제 (enolase) 용액이 컬럼 내에 체류하는 시간이 증가하므로 엔올라아제 (enolase)가 트립신과 접촉하는 시간이 증가하여 더 많이 가수분해된다고 볼 수 있다. 이러한 결과를 통해 최종 유속 (flow rate)를 2 ^/min으로 결정하였다.  The flow rate of the EC-TR / NF column was changed (0.1-5 ml / h), and the degree of hydrolysis by hydrolysis of the enolase was analyzed by LC / MS-MS. As a result, the enolase was more hydrolyzed as the flow rate was enjoyed (see FIG. 11). This can be seen that as the ow rate decreases, the time for which the enolase solution stays in the column increases, so that the time for enolase contact with trypsin increases and more hydrolysis occurs. From these results, the final flow rate (flow rate) was determined to be 2 ^ / min.
<ιΐ9> 도 12에서는 기존의 나노섬유에서 효소 코팅방법을 이용한 효소 컬럼 (EC- <ιΐ9> Figure 12 shows the enzyme column using the enzyme coating method in the conventional nanofibers (EC-
TR/NF column)과 알코올 처리를 통한 분산된 나노섬유에서 효소 코팅방법을 이용한 효소 컬럼 (EC-TR/EtOH-NF column)을 이용해 엔올라아제 (enolase) 가수분해를 수행 한 결과를 나타내었다. 100 ng/ 의 엔을라아제 (enolase) 용액을 2 / /min의 속도 로 효소 컬럼 내에 흘려주면, 체류시간은 5분 이내로 줄일 수 있었다. 컬럼을 통과TR / NF column) and enolase hydrolysis using enzymatic column (EC-TR / EtOH-NF column) using enzyme coating method on nanofibers dispersed through alcohol treatment. When 100 ng / enolase solution was flowed into the enzyme column at a rate of 2 / min, the residence time could be reduced to within 5 minutes. Pass through column
- 한 유출물 (effluent)은 가수분해된 펩타이드 조각의 확인을 위해 LTQ-FT 질량 분광 계 (mass spectrometer)로 분석하였다. 또한, 시퀀스 범위 (sequence coverage) 분석 을 위해서 시퀘스트 검색 (sequest search) 결과로 나온 IDed 펩타이드를 검증One effluent was analyzed by LTQ-FT mass spectrometer to identify hydrolyzed peptide fragments. In addition, we validate IDed peptides from the results of a search search for sequence coverage analysis.
; (validation) 하기 위해 ISB에서 제공하는 TPP라는 파이프라인 (pipel ine)에서 펩타 이드 예지 기구 (peptide prophet tool)를 사용하였다.For the validation, a peptide prophet tool was used in a pipeline called TPP provided by ISB.
i20> EC-TR/NF 컬럼의 경우에는, 크로마토그래피 (chromatography) 분석 결과 엔올 라아제 (enolase)라고 확신할 수 있는 피크 (peak)가 비교적 명확하게 나타난 것을 볼 수 있었으며, 24개의 엔올라아제 (enolase)로부터 잘린 특정 펩타이드를 확인할 수 있었으며, 68.4)의 아미노산 시퀀스 범위 (amino acid sequence coverage)를 확 인하였다. 반면, EC-TR/EtOH-NF 컬럼의 경우에는, 크로마토그래피 (chromatography) 분석 결과 엔을라아제라고 확신할 수 있는 피크 (peak)가 매우 명확하게 나타난 것 을 볼 수 있었으며, 33개의 엔올라아제 (enolase)로부터 잘린 특정 펩타이드를 확인 할 수 있었으며 , 80.5%의 아미노산 시뭔스 범위 (amino acid sequence coverage)를 In the case of i20> EC-TR / NF columns, the chromatographic analysis showed relatively clear peaks that can be confirmed as enolase. Specific peptides cut from enolase) were identified, and amino acid sequence coverage of 68.4) was confirmed. On the other hand, in the case of the EC-TR / EtOH-NF column, the chromatographic analysis showed a very clear peak that could be confirmed as enlase. specific peptides cut from the enolase were identified and the amino acid sequence coverage of 80.5% was determined.
' 확인하였다 (표 2 참조). 이러한 결과를 통해 효소 코팅방법을 이용한 효소 컬럼은 가수분해 시간을 획기적으로 줄임과 동시에 효율적인 단백질 가수분해 결과를 얻을 수 있었으며, EC-TR/EtOH-NF 컬럼의 경우 유체 압력에 의해 나노섬유가 압착되어 빈 공간이 생기는 현상을 막아주어 바이패스를 예방하므로 보다 더 높은 가수분해 효율성을 나타내는 것을 증명할 수 있었다. Confirmed (see Table 2). Through these results, the enzymatic column using the enzyme coating method was able to significantly reduce the hydrolysis time and at the same time obtain efficient protein hydrolysis results.In the case of the EC-TR / EtOH-NF column, the nanofibers were compressed by the fluid pressure. Higher hydrolysis by preventing voids from occurring and preventing bypass It could prove to show efficiency.
<121> 【표 2】
Figure imgf000022_0001
<121> [Table 2]
Figure imgf000022_0001
122> <실시예 5>효소컬럼의 지속력 측정  <Example 5> Measurement of the persistence of the enzyme column
<i23> EC-TR/EtOH-NF의 가수분해 수행능력을 기존에 사용하는 방법인 액상 가수분해 (in- solution digestion) 방법과 현재 상용화되어 판매하고 있는 트립신 비드 (trypsin bead)와 비교하기 위해, 각각의 샘플을 50의 고온조건에서 6시간동안 250 rpm에서 교반한 후, 모델 단백질인 엔올라아제를 가수분해시켰다.각각 같은 시간에서, 액 상 가수분해 (in-solution digestion 방법, free trypsin을 이용해 트립신: 단백질 = 1: 50 비율로 섞어 12시간 동안 가수분해 하는 방법)에 사용되는 free trypsin은 일정양올 채취하여 사용하였고, 상용화 트립신 비드 (프로메가, V9012)와 EC— TR/Et0H-NF은 샘플을 깨끗이 씻은 후, 같은 샘폴을 재사용하였다.  <i23> To compare the hydrolysis performance of EC-TR / EtOH-NF with conventional in-solution digestion method and trypsin bead which is currently commercially available. Each sample was stirred at 250 rpm for 6 hours at a high temperature of 50, followed by hydrolysis of the model protein enolase. At the same time, liquid phase hydrolysis (in-solution digestion method, free trypsin) was used. Free trypsin used in trypsin: protein = 1:50 ratio and hydrolyzed for 12 hours) was used to collect a certain amount of commercial trypsin, and commercialized trypsin beads (Promega, V9012) and EC—TR / Et0H-NF were sampled. After washing, the same sample was reused.
<i24> 도 13은 열적안정성을 확인하기 위해 EC-TR/EtOH-NF, 상용화 트립신 비드, 자유효소를 50°C의 고온조건에서 교반한 후, 단백질 가수분해 능력을 비교한 그래 프로서 세로축은 가수분해된 펩타이드의 양올 LC-MS/MS라는 기계를 통해 면적으로 계산해준 값이다. 이를 통해 EC-TR/EtOH-NF의 초기 가수분해능력은 액상 가수분해 (in— solution digestion) 방법과 상용화 trypsin bead에 비해 약간 높은 것으로 나 타났다. 또한 60 시간 동안 250 rpm, 50°C에서 반웅시킨 후, 다시 가수분해를 시킨 결과, EC-TR/EtOH-NF의 가수분해 능력은 그대로 유지하는 것을 알 수 있으나, free trypsin과 상용화 trypsin bead는 가수분해 능력이 현저하게 감소한 것을 볼 수 있 었다. 이 결과는 EC-TR/EtOH-NF는 상온 뿐 아니라 50°C의 고온 조건에서도 가수분 해 수행능력의 손실 없이 재사용이 가능하다는 것을 의미한다. <i24> Figure 13 is a graph showing the vertical axis of the protein hydrolytic ability after stirring the EC-TR / EtOH-NF, commercially available trypsin beads, free enzyme at a high temperature of 50 ° C to confirm thermal stability The amount of the hydrolyzed peptide was calculated by area using a machine called LC-MS / MS. The initial hydrolysis capacity of EC-TR / EtOH-NF was slightly higher than that of in-solution digestion and commercialized trypsin bead. In addition, after reaction at 250 rpm and 50 ° C for 60 hours, the hydrolysis was carried out again. As a result, the hydrolytic ability of EC-TR / EtOH-NF was maintained. However, free trypsin and commercialized trypsin bead were It can be seen that the degradation capacity was significantly reduced. This result implies that EC-TR / EtOH-NF can be reused at room temperature as well as 50 ° C without loss of hydrolysis performance.
<125> <실시예 6> 알콜농도에 따른 나노섬유의 분산정도 측정  <Example 6> Measurement of the dispersion degree of the nanofiber according to the alcohol concentration
<126> 알콜 처리에 따른 나노섬유의 분산정도를 측정하기 위해 1 mg의 나노섬유를 다양한 농도의 에탄올 용액 (0 ~ 100% v/v)으로 처리한 후, 분산정도를 확인해보았 다. 도 14는 농도에 따라 나노섬유를 알콜처리한 후 물로 수세하고 알콜을 제거하 고 촬영한 사진이다. 그 결과, 1 mg의 나노섬유와 알콜 용액이 들어있는 유리병을 5분간 볼텍성 및 10분간 흔들어 주었을 때, 알콜 농도 10%(v/v) 이하에서는 흔합 후 나노섬유의 구조에 큰 차이가 없었다. 반면에 알콜의 농도가 높아질수록 나노섬 유는 쉽게 분산되는 것을 볼 수 있었으며, 알콜 농도 20%(V/V) 이상에서는 나노섬 유가 분산되는 것을 확인할 수 있었다. 이렇게 분산된 나노섬유는 알콜을 제거하기 위해 물로 수세한 후에도 분산되는 정도는 변하지 않고 분산된 상태로 유지된 것을 볼 수 있었다 (도 14 참조). 알콜 처리를 통해 분산된 나노섬유가 알콜을 제거한 후 에도 분산된 모양을 유지하는 것은 효소고정화를 위해 버퍼 상에서 반웅올 진행해 도 나노섬유의 모양을 유지하므로 고정화되는 효소의 양을 증가시킬 수 있다. In order to measure the dispersion of nanofibers according to alcohol treatment, 1 mg of nanofibers were treated with various concentrations of ethanol solution (0-100% v / v), and then the dispersion degree was checked. FIG. 14 is a photograph taken after alcohol treatment with nanofibers, washing with water and removing alcohol according to the concentration. As a result, when the vial containing 1 mg of nanofibers and alcohol solution was shaken for 5 minutes and vortexed for 10 minutes, the structure of nanofibers after mixing was not significantly different after 10% (v / v) alcohol concentration. . On the other hand, as the concentration of alcohol increases, the nanofibers were easily dispersed, and it was confirmed that the nanofibers were dispersed at an alcohol concentration of more than 20% ( V / V ). These dispersed nanofibers are used to remove alcohol Even after washing with water for harm, the degree of dispersion did not change and was found to remain dispersed (see FIG. 14). Maintaining the dispersed shape of the nanofibers dispersed by alcohol treatment even after removing the alcohol maintains the shape of the nanofibers even though the reaction proceeds in a buffer for enzyme fixation, thereby increasing the amount of enzyme immobilized.
<127> 결국, 기존의 연구되었던 고분자 나노섬유를 이용한 효소안정화 방법을 더욱 확장하여 고분자 나노섬유를 알코을 처리를 통해 분산시켜 표면적을 증가시킴으로 써, 기존의 방법에 비해 고정화된 효소의 양을 증가시켜 효율성을 높이고 이를 효 소코팅 방법을 사용하여 안정화시킬 수 있었다. 이렇게 만들어진 고정화된 효소를 액상 가수분해 (in-solution digestion) 방법을 이용하여 59일 동안 수행한 결과 효 소 코팅방법을 사용하면 높은 단백질 가수분해 효율을 유지하는 것을 확인할 수 있 었다. Finally, the enzyme stabilization method using the polymer nanofibers, which was previously studied, was further extended to disperse the polymer nanofibers through alcohol treatment to increase the surface area, thereby increasing the amount of immobilized enzyme compared to the conventional method. The efficiency could be increased and stabilized using an enzyme coating method. The created an immobilized enzyme liquid phase hydrolysis using a result of over (n i so lution digestion) method using a 59 days when enzyme coating method was able to confirm that maintains a high proteolytic efficiency.
<128> 또한, 가수분해 시간을 단축시키기 위해 효소 코팅방법을 이용한 효소 컬럼 In addition, the enzyme column using the enzyme coating method to shorten the hydrolysis time
" 을 제작하여 단백질을 가수분해시킨 결과, 가수분해 시간을 기존의 시간 (4 ~ 12시 간)에 비해 획기적으로 즐일 수 있는 동시에 (체류시간: 5분 이내) 높은 가수분해 효율을 유지하는 것을 확인할 수 있었다. 즉, 효소 코팅을 이용한 효소 컬럼 시스 템은 높은 안정성을 유지하면서 가수분해 시간도 줄일 수 있는 방법이다. 이러한 시스템의 개발을 통해 향후 실제 웅용에 활용되기 위한 다양한 실험, 즉 실제 단백 질의 사용, 저농도의 단백질에서의 가수분해 효율성 확인 등을 연구를 통해 최적화 된 시스템의 개발을 연구할 수 있다. "As a result of the hydrolysis of the protein, the hydrolysis time can be greatly enjoyed compared to the existing time (4-12 hours) and the high hydrolysis efficiency (retention time: within 5 minutes) was confirmed. In other words, the enzyme column system using enzyme coating can reduce the hydrolysis time while maintaining high stability.The development of such a system enables the use of various experiments, that is, the actual protein quality, for future practical use. , Development of optimized system through research on the identification of hydrolysis efficiency in low concentration protein.
<129>  <129>
【산업상 이용가능성】  Industrial Applicability
<130> 본 발명의 고정화된 효소를 포함하는 효소컬럼은 빠른 시간 내에 표적 단백 질을 가수분해 시킴으로써 전체 프로테오믹 분석시간을 줄일 수 있다. 또한 효소 코팅방법을 사용하여 효소활성이 안정화되어 컬럼의 수명이 크게 증가하므로 프로 테오믹 분석 산업에 유용하게 이용될 수 있다.  The enzyme column including the immobilized enzyme of the present invention can reduce the total proteomic analysis time by hydrolyzing the target protein in a short time. In addition, since the enzyme activity is stabilized using the enzyme coating method, the lifespan of the column is greatly increased, and thus it may be usefully used in the proteomic analysis industry.
<i3l>  <i3l>
<132> <132>

Claims

【청구의 범위】  [Range of request]
【청구항 11  [Claim 11
1) 컬럼 내에 고분자 섬유를 팩킹 (packing)하는 단계 ;  1) packing polymer fibers into a column;
2) 상기 컬럼 내에 팩킹된 고분자 섬유를 알코올 용액으로 처리하여 상기 고 분자 섬유를 컬럼내부에 분산시켜 섬유 간 공간 (inter-fiber space)을 증가시키는 단계;  2) treating the polymer fibers packed in the column with an alcohol solution to disperse the high molecular fibers in the column to increase the inter-fiber space;
3) 상기 컬럼 내에 처리된 알코을 용액을 제거하는 단계; 및  3) removing the treated alcohol solution in the column; And
4) 상기 컬럼 내에 팩킹된 고분자 섬유에 효소를 첨가하여 상기 고분자 섬유 의 표면에 효소를 고정화하는 단계;를 포함하는 효소컬럼의 제조방법.  4) adding an enzyme to the polymer fiber packed in the column to immobilize the enzyme on the surface of the polymer fiber.
【청구항 2】  [Claim 2]
제 1항에 있어서, 상기 고분자 섬유는 고분자 나노섬유 또는 고분자 마이크론 섬유이며 3차원 네트워크 구조를 갖는 것을 특징으로 하는 효소컬럼의 제조방법.  The method of claim 1, wherein the polymer fibers are polymer nanofibers or polymer micron fibers and a method for producing an enzyme column, characterized in that it has a three-dimensional network structure.
【청구항 3] [Claim 3]
거 U항에 있어서,  In U,
상기 고분자 섬유는 상기 고분자 섬유는 폴리비닐알콜, 폴리아크릴로니트릴, 나일론, 폴리에스테르, 폴리우레탄, 폴리염화비닐, 폴리스티렌, 셀를로우즈, 키토 산, 폴리락틱산, 폴리락틱 -co-글리콜산, 폴리글리콜산 폴리카프로락톤, 콜라겐, 폴 리아닐린 및 폴리 (스티렌 -co-무수말레산)으로 이루어진 군으로부터 선택되는 어느 하나 이상인 것을 특징으로 하는 효소컬럼의 제조방법 . '  The polymer fibers are polyvinyl alcohol, polyacrylonitrile, nylon, polyester, polyurethane, polyvinyl chloride, polystyrene, cellulose, chitosan, polylactic acid, polylactic-co-glycolic acid, A method for producing an enzyme column, characterized in that at least one selected from the group consisting of polyglycolic acid polycaprolactone, collagen, polyaniline and poly (styrene-co-maleic anhydride). '
【청구항 4】  [Claim 4]
제 1항에 있어서,  The method of claim 1,
상기 알코을 용액은 메탄올, 에탄올, 프로판올 및 부탄올로 이루어진 군으로 부터 선택되는 어느 하나 이상을 포함하는 것을 특징으로 하는 효소컬럼의 제조방 법.  The alcohol solution is a method of producing an enzyme column, characterized in that it comprises any one or more selected from the group consisting of methanol, ethanol, propanol and butanol.
【청구항 5]  [Claim 5]
제 1항에 있어서,  The method of claim 1,
상기 알코올 용액의 농도는 15 ~ 100%(ν/ν)인 것을 특징으로 하는 효소컬럼 의 제조방법 . ' The concentration of the alcohol solution is 15 to 100% (ν / ν) method for producing an enzyme column, characterized in that. '
【청구항 6】  [Claim 6]
거 U항에 있어서,  In U,
상기 3) 단계는 건조단계를 포함하지 않으면서 컬럼 내부를 수세하는 것을 특징으로 하는 효소컬럼의 제조방법 . Step 3) is a method for producing an enzyme column, characterized in that washing the inside of the column without including a drying step.
【청구항 7】 [Claim 7]
제 1항에 있어서,  The method of claim 1,
상기 4) 단계에서 고분자 섬유의 표면에 효소를 고정화시키기 위하여 컬럼 내부에 가교결합제를 첨가하는 것을 특징으로 하는 효소컬럼의 제조방법.  Method for producing an enzyme column, characterized in that to add a cross-linking agent in the column in order to immobilize the enzyme on the surface of the polymer fiber in the step 4).
【청구항 8]  [Claim 8]
제 7항에 있어서,  The method of claim 7,
상기 가교결합제는 디이소시아네이트, 디안하이드라이드, 디에폭사이드, 디 알데히드, 디이미드, 1-에틸 -3—디메틸 아미노프로필카보디이미드 및 글루타르알데 히드로 이루어진 군으로부터 선택되는 어느 하나 이상을 포함하는 것을 특징으로 하는 효소컬럼의 제조방법 .  The crosslinking agent includes any one or more selected from the group consisting of diisocyanate, dianhydride, diepoxide, dialdehyde, diimide, 1-ethyl-3-dimethyl aminopropylcarbodiimide, and glutaraldehyde Method for producing an enzyme column characterized by.
【청구항 9】  [Claim 9]
제 1항에 있어서,  The method of claim 1,
상기 효소는 트립신, 키모트립신, 서브틸리신, 파파인, 서몰리신, 리파아제, 페록시다아제, 티로시나아제, 라카아제, 셀를라아제, 자일라나제, 락타아제, 유기 포스포하이드롤레이즈, 콜린에스테라아제, 당산화효소, 알코올 탈수소 효소, 포도 당 탈수소 효소, 및 포도당 이성화 효소로 구성되는 군으로부터 선택되는 어느 하 나 이상인 것을 특징으로 하는 효소컬럼의 제조방법.  The enzyme is trypsin, chymotrypsin, subtilisin, papain, thermolysine, lipase, peroxidase, tyrosinase, laccase, celase, xylanase, lactase, organic phosphohydrolase, cholinesterase , Glycolytic enzyme, alcohol dehydrogenase, glucose dehydrogenase, and glucose isomerization enzyme production method, characterized in that any one or more selected from the group consisting of isomerase.
【청구항 10】  [Claim 10]
컬럼; 및 상기 컬럼의 내부에 팩킹되되, 알코올 용액으로 처리되어 컬럼 내 분산되 고 섬유간 공간 (inter-fiber space)이 증가된 고분자 섬유를 포함하는 효소컬럼. column; And an enzyme column packed inside the column, the polymer fiber being treated with an alcohol solution to be dispersed in the column and having an increased inter-fiber space.
【청구항 11】 [Claim 11]
제 10항에 있어서, 상기 고분자 섬유는 고분자 나노섬유 또는 고분자 마이크 론 섬유이며 3차원 네트워크 구조를 갖는 것을 특징으로 하는 효소컬럼.  The enzyme column according to claim 10, wherein the polymer fibers are polymer nanofibers or polymer micron fibers and have a three-dimensional network structure.
【청구항 12】  [Claim 12]
제 10항에 있어서,  The method of claim 10,
상기 고분자 섬유는 상기 고분자 섬유는 폴리비닐알콜, 폴리아크릴로니트릴, 나일론, 폴리에스테르, 폴리우레탄, 폴리염화비닐, 폴리스티렌, 셀를로우즈, 키토 산, 폴리락틱산, 폴리락틱 -co-글리콜산, 폴리글리콜산 폴리카프로락톤, 콜라겐, 폴 리아닐린 및 폴리 (스티렌 -co-무수말레산)으로 이루어진 군으로부터 선택되는 어느 하나 이상인 것을 특징으로 하는 효소컬럼.  The polymer fibers may be polyvinyl alcohol, polyacrylonitrile, nylon, polyester, polyurethane, polyvinyl chloride, polystyrene, cellulose, chitosan, polylactic acid, polylactic-co-glycolic acid, Enzyme column, characterized in that at least one selected from the group consisting of polyglycolic acid polycaprolactone, collagen, polyaniline and poly (styrene-co-maleic anhydride).
[청구항 13】  [Claim 13]
제 10항에 있어서, 상기 고분자 섬유의 표면에 효소가 고정된 것을 특징으로 하는 효소컬럼. The method of claim 10, wherein the enzyme is fixed on the surface of the polymer fiber Enzyme column.
【청구항 14]  [Claim 14]
제 13항에 있어서,  The method of claim 13,
상기 효소는 트립신, 키모트립신, 서브틸리신, 파파인, 서몰리신, 리파아제, 페록시다아제, 티로시나아제, 라카아제, 셀를라아제, 자일라나제, 락타아제, 유기 포스포하이드를레이즈, 콜린에스테라아제, 당산화효소, 알코을 탈수소 효소, 포도 당 탈수소 효소, 및 포도당 이성화 효소로 구성되는 군으로부터 선택되는 어느 하 나 이상인 것을 특징으로 하는 효소컬럼.  The enzyme is trypsin, chymotrypsin, subtilisin, papain, thermolysine, lipase, peroxidase, tyrosinase, laccase, celase, xylanase, lactase, organic phosphohydrase, choline An enzyme column, characterized in that at least one selected from the group consisting of esterases, glycosylase, alcohol dehydrogenase, glucose dehydrogenase, and glucose isomerase.
【청구항 15]  [Claim 15]
제 10항에 있어서,  The method of claim 10,
상기 효소컬럼 내부가 섬유간 공간 (inter-fiber space)이 증가된 고분자 섬 유로 가득찬 것을 특징으로 하는 효소컬럼.  Enzyme column, characterized in that the enzyme column is filled with a polymer island flow path is increased inter-fiber space (inter-fiber space).
PCT/KR2011/001280 2010-02-26 2011-02-24 Enzyme column and method for manufacturing same WO2011105820A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20100018252 2010-02-26
KR10-2010-0018252 2010-02-26
KR1020110015786A KR101261796B1 (en) 2010-02-26 2011-02-23 enzyme column and manufacturing method thereof
KR10-2011-0015786 2011-02-23

Publications (2)

Publication Number Publication Date
WO2011105820A2 true WO2011105820A2 (en) 2011-09-01
WO2011105820A3 WO2011105820A3 (en) 2012-02-02

Family

ID=44507436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/001280 WO2011105820A2 (en) 2010-02-26 2011-02-24 Enzyme column and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2011105820A2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070077567A1 (en) * 2005-09-30 2007-04-05 Battelle Memorial Institute High stability, high activity materials and processes for using same
US20070077565A1 (en) * 2005-09-30 2007-04-05 Battelle Memorial Institute Process for preparing high stability, high activity materials and processes for using same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070077567A1 (en) * 2005-09-30 2007-04-05 Battelle Memorial Institute High stability, high activity materials and processes for using same
US20070077565A1 (en) * 2005-09-30 2007-04-05 Battelle Memorial Institute Process for preparing high stability, high activity materials and processes for using same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHUN, K-Y. ET AL.: 'Highly dispersed multi-walled carbon nanotubes in ethanol using potassium doping' CARBON vol. 44, no. 8, 2006, pages 1491 - 1495 *
GOTO, M. ET AL.: 'Design of polymer brushes for immobilizing enzymes onto hollow fiber micropores in organic media reaction' BIOCHEMICAL ENGINEERING JOURNAL vol. 37, no. 2, 2007, pages 159 - 165 *
GREINER, A. ET AL.: 'Biohybrid nanosystems with polymer nanofibers and nanotubes' APPL MICROBIOL BIOTECHNOL. vol. 71, no. 4, 2006, pages 387 - 393 *

Also Published As

Publication number Publication date
WO2011105820A3 (en) 2012-02-02

Similar Documents

Publication Publication Date Title
Bayramoğlu et al. Covalent immobilisation of invertase onto a reactive film composed of 2-hydroxyethyl methacrylate and glycidyl methacrylate: properties and application in a continuous flow system
Gür et al. Optimization of enzyme co-immobilization with sodium alginate and glutaraldehyde-activated chitosan beads
de Oliveira et al. Immobilisation studies and catalytic properties of microbial lipase onto styrene–divinylbenzene copolymer
Li et al. Electrospun polyacrylonitrile nanofibrous membranes for lipase immobilization
Lu et al. Stabilization of enzymes in silk films
Gao et al. Bioremediation of pesticide contaminated water using an organophosphate degrading enzyme immobilized on nonwoven polyester textiles
Lei et al. The preparation and catalytically active characterization of papain immobilized on magnetic composite microspheres
CA1056746A (en) Biologically active membrane material
Krishnamoorthi et al. Immobilized enzyme technology: potentiality and prospects
Arıca et al. Invertase reversibly immobilized onto polyethylenimine-grafted poly (GMA–MMA) beads for sucrose hydrolysis
Khan Immobilized enzymes: a comprehensive review
Gilani et al. Stability of immobilized porcine pancreas lipase on mesoporous chitosan beads: A comparative study
Hou et al. Stable immobilization of enzymes in a macro-and mesoporous silica monolith
Moradzadegan et al. Immobilization of acetylcholinesterase in nanofibrous PVA/BSA membranes by electrospinning
Reddy et al. Improved stability of urease upon coupling to alkylamine and arylamine glass and its analytical use
Wu et al. DNA-directed trypsin immobilization on a polyamidoamine dendrimer-modified capillary to form a renewable immobilized enzyme microreactor
Sharma et al. Enzyme immobilization: Implementation of nanoparticles and an insight into polystyrene as the contemporary immobilization matrix
Yang et al. Enhanced reusability and activity: DNA directed immobilization of enzyme on polydopamine modified magnetic nanoparticles
Zhu et al. Amino modified magnetic halloysite nanotube supporting chloroperoxidase immobilization: enhanced stability, reusability, and efficient degradation of pesticide residue in wastewater
WO2003106655A2 (en) Fibrous protein-immobilization systems
KR101261796B1 (en) enzyme column and manufacturing method thereof
EP2316932B1 (en) Enzyme-functionalized supports
WO2011105820A2 (en) Enzyme column and method for manufacturing same
CN102382809A (en) Flexible immobilized enzyme of comb epoxy polymer carrier
KR101661154B1 (en) Enzyme-monolithic column and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11747710

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11747710

Country of ref document: EP

Kind code of ref document: A2