WO2011105544A1 - Tumor marker, antibody to same, detection kit for same, and method for detecting same - Google Patents

Tumor marker, antibody to same, detection kit for same, and method for detecting same Download PDF

Info

Publication number
WO2011105544A1
WO2011105544A1 PCT/JP2011/054261 JP2011054261W WO2011105544A1 WO 2011105544 A1 WO2011105544 A1 WO 2011105544A1 JP 2011054261 W JP2011054261 W JP 2011054261W WO 2011105544 A1 WO2011105544 A1 WO 2011105544A1
Authority
WO
WIPO (PCT)
Prior art keywords
tumor marker
tumor
present
antibody
cancer
Prior art date
Application number
PCT/JP2011/054261
Other languages
French (fr)
Japanese (ja)
Inventor
泰豪 宮本
Original Assignee
地方独立行政法人大阪府立病院機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 地方独立行政法人大阪府立病院機構 filed Critical 地方独立行政法人大阪府立病院機構
Publication of WO2011105544A1 publication Critical patent/WO2011105544A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/44Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material not provided for elsewhere, e.g. haptens, metals, DNA, RNA, amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/303Liver or Pancreas
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3046Stomach, Intestines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/66Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood sugars, e.g. galactose
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2400/00Assays, e.g. immunoassays or enzyme assays, involving carbohydrates

Definitions

  • the present invention relates to a tumor marker, an antibody thereto, a detection kit thereof, and a detection method thereof.
  • Non-Patent Documents 1 and 2 are the observed specifically in cancer cells.
  • Sialyl-Le a is a sugar chain structure represented by the following formula (2) by the action of fucosyltransferase 3 (FUT3) encoded by the Lewis gene in vivo (referred to as Sialyl-Le c or Du-PAN-2) It is generated by adding fucose to.
  • FUT3 fucosyltransferase 3
  • tumor detection methods that target sugar chain structures that are specifically found in cancer cells have been conventionally performed.
  • the types of target sugar chain structures have been limited.
  • the tumor detection method using them has a problem that subjects to be targeted are limited.
  • An object of the present invention is to provide a new tumor marker having a sugar chain structure specifically found in cancer cells, an antibody against the same, a detection kit thereof, and a detection method thereof.
  • the present inventor has come up with a novel human-derived sugar chain structure that has not been known so far after extensive trial and error.
  • the present inventor has further intensively studied and found that this novel sugar chain structure is a sugar chain structure specifically observed in cancer cells.
  • the present inventor has also found that this novel sugar chain structure is a sugar chain structure also found in cancer cells derived from individuals of Lewis (-).
  • Item 1 A tumor marker having a sugar chain represented by the following formula (3).
  • Item 2 An antibody against the tumor marker according to Item 1.
  • Item 3. The antibody according to Item 2, which is a monoclonal antibody.
  • Item 4. A lectin that recognizes the tumor marker according to Item 1.
  • Item 5. A tumor detection kit comprising a material necessary for detecting the tumor marker according to Item 1.
  • Item 6 The tumor detection kit according to Item 5, wherein the material necessary for detecting the tumor marker is an antibody against the tumor marker according to Item 1.
  • Item 7. Item 6.
  • Item 8-1 The subject in which the tumor marker according to item 1 is detected in a sample collected from a subject and the detected value exceeds a reference value set based on the detected value of the tumor marker in a sample collected from a healthy subject To determine that the patient is a cancer patient.
  • Item 8. The method according to Item 8-1, wherein the test subject and the healthy subject are both Lewis negative (Lewis ( ⁇ )).
  • Item 10. (I) a step of applying a candidate compound to a tumor cell in which the tumor marker according to item 1 is expressed; and (ii) a candidate compound used when the expression of the tumor marker in the tumor cell is reduced or eliminated. Selecting an antitumor compound as an antitumor compound.
  • Term A-2 An antibody against the sugar chain according to Item A-1.
  • Term A-3 The antibody according to Item A-2, which is a monoclonal antibody.
  • Term A-4 A lectin that recognizes the sugar chain according to Item A-1.
  • Term A-5 A lectin that recognizes the sugar chain according to Item A-1.
  • the sugar chain detection kit comprising a material necessary for detecting the sugar chain according to Item A-1.
  • Term A-6 The sugar chain detection kit according to Item A-5, wherein the material necessary for detecting the sugar chain is an antibody against the sugar chain according to Item A-1 (that is, the antibody according to Item A-2).
  • Term A-7 The tumor detection kit according to Item A-5, wherein the material necessary for detecting the sugar chain is a lectin that recognizes the sugar chain according to Item A-1 (ie, the lectin according to Item A-4).
  • Term A-8-1 The sugar chain described in item A-1 in the sample collected from the subject is detected, and the detected value exceeds the reference value set based on the detected value of the sugar chain in the sample collected from the healthy subject.
  • a method of determining an examiner as a cancer patient Term A-8-2.
  • Term A-9-1. A method for determining whether or not a specimen is derived from a cancer patient, wherein the sugar chain according to item A-1 in the specimen is detected, and the detected value is a detection of the sugar chain in the specimen collected from a healthy subject A method for determining that a specimen exceeding a reference value set based on a value is derived from a cancer patient.
  • Term A-10 The method according to Item A-9-1, wherein the specimen is derived from Lewis negative (Lewis (-)) and the healthy subject is Lewis negative (Lewis (-)).
  • Term A-10 (I) a step of applying a candidate compound to a tumor cell in which the sugar chain described in item A-1 is expressed; and (ii) when the sugar chain expression of the tumor cell is reduced or eliminated. Selecting a candidate compound as an anti-tumor compound.
  • Term B-1 Use of a sugar chain represented by the following formula (3) as a tumor marker.
  • Term B-2 The use according to Item B-1, wherein the sugar chain is used as a Lewis negative (Lewis ( ⁇ )) tumor marker.
  • the tumor marker of the present invention When used, the presence or absence of a tumor in a subject can be determined.
  • the tumor marker of the present invention when used, the presence or absence of a tumor in a subject who is Lewis (-) can also be determined.
  • tumor marker of the present invention is used, variations in tumor determination means can be increased. By using the tumor marker of the present invention in combination with a conventional determination means, a more reliable determination can be performed.
  • Black circles indicate A8-2, and black triangles, black diamonds, and black squares indicate glycosidase degradation products of A8-2, respectively.
  • the starting point of the arrow indicates the starting material, and the end point indicates the decomposition product.
  • Each glycosidase used for the degradation is shown next to the arrow.
  • “N” is ⁇ -sialidase derived from Arthrobacter ureafaciens
  • “F” is ⁇ -fucosidase derived from bovine kidney
  • 2,6-S is ⁇ 2-3 binding and ⁇ 2-6 It shows that ⁇ 2,3-sialidase ( ⁇ 2,3-sialidase) was used under conditions that decompose sialic acid in the bond.
  • Figure 2 shows the expected biosynthetic pathway of major glycolipids in cancer cells and normal epithelial cells. Solid arrows indicate the dominant pathway in normal epithelial cells. The wavy arrow indicates the pathway that increases in cancer cells. “4F” indicates ⁇ 1-4 fucosylation of GlcNAc. “3F” indicates ⁇ 1-3 fucosylation of GlcNAc. “2F” indicates ⁇ 1-2 fucosylation of galactose. “3S” indicates ⁇ 2-3 sialylation of galactose. “6S” indicates ⁇ 2-6 sialylation of galactose.
  • White circles with dots are glucose, white circles are galactose ( ⁇ 1-4 bond, type 2), black circles are galactose ( ⁇ 1-3 bond, type 1), white squares are GlcNAc, white stars are sialic acid ( ⁇ 2-6 bonds), black stars are Sialic acid ( ⁇ 2-3 bond) and white triangle indicate fucose, respectively.
  • Tumor marker of the present invention is a tumor marker having a sugar chain represented by the following formula (3).
  • sugar residue is a group consisting of 0, 1 or multiple (preferably 2, 3, 4, 5, 6, 7, 8, 9, or 10) sugars. is there.
  • the sugar here may be a known sugar that constitutes a sugar chain present in the living body, and examples thereof include pentose, hexose, amino sugar, uronic acids, deoxy sugar, and the like.
  • the bond between sugars known bond modes can be exemplified, for example, ⁇ glycoside bond and ⁇ glycoside bond.
  • the tumor markers of the present invention include those in which R does not exist, those in which R is a monosaccharide, and those in which R is a sugar chain.
  • the end of the sugar residue may be PA (pyridylamino), for example, or may be bound to a protein or peptide.
  • the sugar chain represented by the formula (3) may be expressed as “ST1H” (abbreviation of ⁇ 2-6 sialylated type 1H).
  • ST1H is a sugar chain structure that is present more in cancer cells than in normal cells. ST1H is also characterized in that it is also present in cancer cells derived from individuals that are Lewis (-).
  • the tumor marker of the present invention is not particularly limited as long as it has ST1H.
  • the tumor marker of the present invention include a glycoprotein (ST1H-added glycoprotein) obtained by adding ST1H to an O-linked sugar chain or N-linked sugar chain on a glycoprotein, and ST1H added to a lipid.
  • Glycolipid (ST1H addition glycolipid) and the like As an example of the tumor marker of the present invention, ST1H itself separated from them may be used. The excision of the tumor marker of the present invention from ST1H-added glycoprotein or ST1H-added glycolipid can be performed by a known method.
  • excision of the tumor marker of the present invention from ST1H-added glycoprotein can be performed by a hydrazine decomposition method, an alkaline decomposition method, or the like when added to an O-linked sugar chain on the glycoprotein.
  • N-glycan is degraded by the hydrazine degradation method or the action of an enzyme having an activity of cleaving GlcNAc-Asn bond, such as N-glycanase and glycopeptidase. This can be done by cleaving the bond between the conjugated sugar chain and the protein.
  • glycolipid when added to a glycolipid, it can be carried out by the action of an enzyme having an activity of hydrolyzing a glycosidic bond, such as endoglycoceramidase.
  • excision of the tumor marker of the present invention from glycolipid cleaves the glycosidic bond between the glycolipid sugar chain and ceramide by the action of an enzyme such as endoglycoceramidase, which has an activity of hydrolyzing glycosidic bonds.
  • an enzyme such as endoglycoceramidase, which has an activity of hydrolyzing glycosidic bonds.
  • a tumor can be detected by detecting the tumor marker of the present invention.
  • a tumor derived from an individual that is Lewis (-) can also be detected. Details of this tumor detection method will be described later.
  • the “tumor” in the present invention is preferably a malignant tumor. Although it does not specifically limit as a malignant tumor, for example, an adenocarcinoma is preferable.
  • adenocarcinoma is preferable.
  • preferable adenocarcinoma in the present invention include colon cancer, pancreatic cancer, gastric cancer, gallbladder cancer, bile duct cancer, prostate cancer, uterine cancer, ovarian cancer, esophageal cancer, kidney cancer, bladder cancer, breast cancer, laryngeal cancer, pharyngeal cancer, Examples include liver cancer and lung cancer. Among these, colon cancer and pancreatic cancer are preferable.
  • the tumor detection method of the present invention is a method including a step of detecting a "tumor marker of the present invention”.
  • the “tumor marker of the present invention” is present more in cancer cells than in normal cells. For this reason, there is a causal relationship between the presence of the “tumor marker of the present invention” and the tumor.
  • the “tumor marker of the present invention” in the subject may be directly detected, or the “tumor marker of the present invention” in such a sample may be detected after the sample is once collected from the subject.
  • the area where the detected value of the “tumor marker of the present invention” exceeds the reference value is the area where the tumor is present it can.
  • the test subject to which the detected value of the “tumor marker of the present invention” exceeds the reference value It can be determined that the person is a cancer patient. In contrast, it is possible to determine that the subject who is the provider of the specimen whose detected value of the “tumor marker of the present invention” is below the reference value is not a cancer patient. Preferably, it is possible to determine whether or not the subject who is the specimen provider is a cancer patient based on the presence or absence of the tumor marker of the present invention.
  • the subject is not particularly limited.
  • the subject may be a health checkup patient who is regularly performed in the same manner as current tumor markers (CA19-9, CEA, PSA, etc.).
  • the fact that such health check-up recipients can be subjects means that all people can be subjects.
  • examples of the subject include a person who needs to determine whether or not a tumor exists, or a person who has undergone cancer surgery and needs a diagnosis of recurrence.
  • the person who needs to determine whether or not there is a tumor is not particularly limited.For example, symptoms such as loss of appetite, rapid weight loss, cough, or melena, or abnormalities in various images, blood tests, etc. You can list people who have left. For example, in the case of colorectal cancer, fecal occult blood is positive, or a person suspected of having an abnormality in image diagnosis or the like. In the case of gastric cancer, a person who is suspected of being abnormal in a stomach X-ray examination or the like can be mentioned.
  • pancreatic cancer or gallbladder cancer examples include those suspected of being abnormal by abdominal ultrasonography or CT.
  • lung cancer examples include those suspected of having abnormalities in chest X-ray examinations.
  • pancreatic cancer examples include those who have abnormally high levels of amylase or lipase in the blood.
  • the tumor marker of the present invention is highly expressed particularly in the tumor of Lewis (-) individuals. Therefore, by detecting the tumor marker of the present invention, it is possible to preferably detect a tumor derived from an individual who is especially Lewis ( ⁇ ). Therefore, a person who is Lewis (-) can be preferably a subject.
  • the specimen is not particularly limited, and examples thereof include blood-derived specimens, pancreatic juice-derived specimens, bile-derived specimens, and urine-derived specimens.
  • blood-derived specimens include serum or plasma.
  • the blood-derived specimen is derived from a cancer patient, the blood-derived specimen contains ST1H-added glycoprotein and ST1H-added glycolipid secreted from cancer cells. Therefore, when a blood-derived specimen is used as a specimen, a tumor can be detected by directly detecting ST1H-added glycoprotein or ST1H-added glycolipid.
  • an anticoagulant When using a blood-derived sample as a sample, an anticoagulant may be added in advance if necessary.
  • the anticoagulant is not particularly limited, and examples thereof include EDTA-dipotassium, sodium citrate, and heparin sodium.
  • the step of detecting the “tumor marker of the present invention” is not limited as long as the “tumor marker of the present invention” can be detected.
  • a step of detecting using a mass spectrometry method (MS method) a step of detecting using a nuclear magnetic resonance method, and the like.
  • the specific technique is not particularly limited as long as the “tumor marker of the present invention” is detected.
  • the RIA Radioimmunoassay
  • EIA Enzyme immunoassay
  • the ELISA method can be used as the EIA method.
  • a sandwich ELISA method can be used.
  • a two-step sandwich method can be used.
  • the 2-step sandwich method can be performed, for example, by the following procedure.
  • a monoclonal antibody for detecting the “tumor marker of the present invention” (hereinafter sometimes simply referred to as “tumor marker”)
  • it can be recovered by a method such as a magnet.
  • Two types are prepared: “antibody-bound particles” bound to particles and “enzyme-labeled antibodies” bound to enzymes.
  • a primary immune complex is formed by a monoclonal antibody bound to antibody-bound particles and a tumor marker contained in a specimen. Thereafter, the primary immune complex is recovered with a magnet or the like, the reaction solution is removed, and the primary immune complex is washed.
  • a secondary immune complex is formed by an enzyme-labeled antibody and a tumor marker bound to antibody-bound particles via a monoclonal antibody. Thereafter, the secondary immune complex is recovered again with a magnet or the like, the reaction solution is removed, and the secondary immune complex is washed. Finally, a “substrate solution” (solution containing the enzyme substrate in the enzyme-labeled antibody) is added to the secondary immune complex, and the amount of tumor marker present in the sample is measured by detecting the enzyme reaction. To do.
  • antibody-bound particles include, but are not limited to, ferrite particles to which antibodies are bound.
  • enzyme-labeled antibodies include, but are not limited to, antibodies labeled with alkaline phosphatase (ALP).
  • an ALP-labeled antibody as a substrate solution, for example, 3- (2′- spiroadamantane) -4- methoxy-4- (3 ′′-phosphoryloxy) phenyl-1,2- dioxetane ⁇ 2 sodium salt ( 3- (2′-spiroadamantane) -4-methoxy-4- (3 ′′ -phosphoryloxy) phenyl-1,2-dioxetane disodium salt; AMPPD).
  • the LC method When using the LC method, for example, it may be detected by performing analysis by a two-dimensional sugar chain mapping method after separation by HPLC of a normal phase column and a reverse phase column. In detail, it can carry out by the method as described in an Example. Moreover, you may carry out combining several processes as needed. For example, a method (LC-MS method) combining a step of detecting using liquid chromatography and a step of detecting using mass spectrometry may be used. In detail, it can carry out by the method as described in an Example.
  • LC-MS method combining a step of detecting using liquid chromatography and a step of detecting using mass spectrometry may be used. In detail, it can carry out by the method as described in an Example.
  • a lectin When a lectin is used, it can be detected by, for example, lectin column chromatography or lectin blot.
  • the detection value differs depending on the detection method, but may be a measurement value directly detected by a detection device, or may be a calculation value calculated according to a specific calculation formula based on the measurement value. .
  • Examples of the calculated value include the amount and concentration of the “tumor marker of the present invention”.
  • the amount or concentration of the “tumor marker of the present invention” is, for example, a standard curve (standard curve; based on a detection value obtained using a standard specimen in which the amount or concentration of the “tumor marker of the present invention” is known in advance. It can be calculated by creating a Standard curve.
  • the reference value that serves as an index for determination can be set based on the detected value of the “tumor marker of the present invention” using normal tissues of the same subject or other healthy subjects as controls.
  • a plurality of types of controls may be prepared and set based on the average value of the detected values of the “tumor marker of the present invention”.
  • the number of controls prepared for calculating the average value is not particularly limited.
  • “average value of healthy persons” + ( ⁇ ⁇ standard deviation) can be set.
  • can be set as appropriate.
  • Tumor detection kit of the present invention is a kit containing a material necessary for detecting the aforementioned "tumor marker of the present invention”.
  • the tumor detection kit of the present invention is used for the aforementioned “tumor detection method of the present invention”.
  • the material necessary for detecting the “tumor marker of the present invention” refers to a part or all of reagents or equipment substantially necessary for the “tumor detection method of the present invention”. It may be part or all of the reagent, or part or all of the device. Further, a combination of a part or all of the reagent and a part or all of the device may be used.
  • the material necessary for detecting the “tumor marker of the present invention” varies depending on the type of the step of detecting the tumor marker in the “tumor detection method of the present invention”.
  • the step of detecting a tumor marker in the “tumor detection method of the present invention” is an antigen-antibody reaction using an antibody, as an example of the material necessary for detecting “the tumor marker of the present invention”
  • An antibody is mentioned.
  • the antigen-antibody reaction is the above-described sandwich ELISA method (two-step sandwich method)
  • the antibody is included as an example of a material necessary for detecting the “tumor marker of the present invention”.
  • Antibody-binding particles and enzyme-labeled antibodies may further be included.
  • the material necessary for detecting the “tumor marker of the present invention” may further include instructions indicating the procedure for performing the detection.
  • Antibody is an antibody against the aforementioned “tumor marker of the present invention”.
  • the antibody of the present invention is preferably a specific antibody against the “tumor marker of the present invention”.
  • the antibody of the present invention may be a polyclonal antibody or a monoclonal antibody.
  • a monoclonal antibody is preferable.
  • the antibody of the present invention may be incorporated in the aforementioned “antibody-binding particle” or “enzyme-labeled antibody”.
  • the “tumor marker of the present invention” contained in a specimen can be detected.
  • the antigen-antibody reaction using the antibody of the present invention can be performed as described above.
  • the method for producing the polyclonal antibody of the present invention is not particularly limited as long as the polyclonal antibody of the present invention can be produced.
  • the following method can be mentioned.
  • immunogens include the following.
  • ST1H-added glycolipid is immunized with a liposome comprising cholesterol and phosphatidylcholine as a carrier substance together with an adjuvant such as complete Freund® or lipid A.
  • immunized with ST1H-added glycolipid adsorbed on cells such as Salmonella minnesota.
  • an immunogen that is not a glycolipid but a glycan portion bound to BSA (bovineserumalbumin) using a carrier.
  • BSA bovineserumalbumin
  • immunization methods include the following. Rabbits and chickens are injected subcutaneously with the immunogen, boosted several times every 3-4 days, and blood is collected one week after the final immunization.
  • ELISA As a means for confirming polyclonal antibodies, for example, ELISA can be used.
  • the method for producing the monoclonal antibody of the present invention is not particularly limited as long as the monoclonal antibody of the present invention can be produced.
  • the following method can be mentioned.
  • immunogens include the following. There is a method in which ST1H-added glycolipid is immunized with a liposome comprising cholesterol and phosphatidylcholine as a carrier substance together with an adjuvant such as complete Freund or lipid A. Alternatively, an ST1H-added glycolipid adsorbed on cells such as Salmonella minnesota is used as an immunogen. Examples of immunization methods include the following. Several mice are given the immunogen intraperitoneally, boosted several times every 3-4 days, and blood is collected one week after the final immunization. Serum antibody titer is measured by ELISA, and the mouse with the highest titer is selected and used for normal cell fusion.
  • Spleen cells are extracted from mice, fused with myeloma cells by the PEG (polyethylene glycol) method, etc., cultured in a hybridoma selection medium (HAT medium), and hybridomas are selected.
  • the ELISA method is mainly used for screening positive clones, cloning, and antibody titer measurement, but there are also complement binding reaction methods.
  • a mixture of antigen glycolipid, cholesterol and phosphatidylcholine is immobilized on a 96-well plate, and the hybridoma supernatant is added and reacted. After washing, for example, a Goat anti-mouse immunoglobulin labeled with peroxidase or the like is reacted. Further, after washing, color is developed using a peroxidase chromogenic substrate such as TMB (3,3 ', 5,5'-tetramethylbenzidine), and the color development is read with a plate reader.
  • a peroxidase chromogenic substrate such as TMB (3,3 ', 5,5'-tetramethylbenzidine
  • a method for producing a monoclonal antibody that recognizes a sugar chain can also be carried out with reference to the following literature.
  • Antibody-binding particles or “enzyme-labeled antibodies” can be produced according to known methods, respectively.
  • the lectin of the present invention is a lectin that recognizes the aforementioned “tumor marker of the present invention”.
  • the lectin of the present invention can be obtained, for example, as follows.
  • Lectin extraction and purification methods are basically the same as general protein purification methods. For example, it can be carried out according to the method described in “Nobuyuki Yamazaki, Shiro Yagi, Tatsuya Oda, Tomomitsu Hatakeyama, Tomohisa Ogawa, Biochemical Experimental Method 52, Lectin Research Method, Society Publishing Center, p19-p77.”
  • Extraction materials include animal tissues, plant seeds, invertebrate body fluids and shells, and fungi. They are homogenized in, for example, phosphate buffer, Tris-HCl buffer or unbuffered saline (which may contain detergent such as Triton X-100, EDTA or various protease inhibitors as appropriate). Extract the lectin.
  • affinity chromatography using a sugar chain as a ligand is mainly used.
  • affinity chromatography using a sugar chain as a ligand is mainly used.
  • affinity chromatography using a sugar chain as a ligand is mainly used.
  • For the activation of the resin for immobilizing the sugar chain on the carrier as a ligand there is a method using carbonyldiimidazole or divinylsulfone in addition to epoxy activation.
  • an affinity gel immobilized with ST1H using the above method, apply a crude extract containing lectin to the gel, bind the lectin, wash the gel, and a solution containing excess ST1H, or Lectins can be obtained by elution with a strongly acidic solution or the like.
  • purification can be performed by combining gel filtration chromatography, ion exchange chromatography, and the like in the same manner as normal protein purification.
  • the measurement of lectin activity is, for example, the method described in “Nobuyuki Yamazaki, Shiro Yagi, Tatsuya Oda, Tomomitsu Sasayama, Tomohisa Ogawa, Biochemical Experimental Method 52, Lectin Research Method, Society Publishing Center, p19-p77.” It can therefore be done.
  • a method of measuring the binding between lectin and a sugar ligand ST1H is used.
  • ST1H is immobilized on a microtiter plate using divinyl sulfone or the like.
  • the lectin solution is added to the wells on the plate, allowed to react, washed, and the colloidal gold solution is added to the wells to react, and then the absorbance at 620 nm is measured to determine the amount of bound lectin.
  • the tumor marker of the present invention can be used as an index for screening an antitumor compound. Therefore, the present invention also includes a method for screening an antitumor compound using the tumor marker of the present invention as an index.
  • An antitumor compound is a compound having an antitumor effect.
  • the screening method is used when a candidate compound (preferably a plurality) is applied to tumor cells expressing the tumor marker of the present invention, and the amount of the tumor marker decreases or disappears.
  • This is a method for selecting a candidate compound as an antitumor compound. That is, the screening method includes (i) a step of applying a candidate compound to a tumor cell in which the tumor marker of the present invention is expressed, and (ii) when the expression of the tumor marker of the present invention in the tumor cell is reduced or eliminated And a step of selecting the used candidate compound as an antitumor compound.
  • a colon cancer cell derived from a person of Lewis (-) (cultured with the tumor marker of the present invention) is cultured and established, and the expression level of the tumor marker of the present invention in the cell is determined.
  • a procedure is exemplified in which the candidate compound is added to the medium and cultured for a certain period of time, and then the expression level of the tumor marker of the present invention is measured again.
  • the tumor detection kit described above can also be used for detecting the tumor marker of the present invention in the screening method.
  • the tumor marker of the present invention can be used as an index for monitoring a disease state (cancer state) of a cancer patient. Therefore, the present invention also includes a method for monitoring the pathology of cancer patients using the tumor marker of the present invention as an index.
  • the monitoring method is a method for monitoring the medical condition of a patient having a tumor in which the tumor marker of the present invention is expressed. Specifically, a tumor in which the tumor marker of the present invention is expressed from the patient (preferably periodically) is collected as a sample, and the expression of the tumor marker of the present invention in the sample is measured. It is a method of monitoring the cancer state (degree of progression) of the patient by comparing with. That is, the monitoring method comprises (i) a step of collecting the tumor as a specimen from a patient having a tumor in which the tumor marker of the present invention is expressed, and (ii) measuring the expression of the tumor marker of the present invention in the specimen, Or a step of comparing with subsequent measurement results.
  • tumor detection kit can also be used to detect the tumor marker of the present invention in the monitoring method.
  • Tissue samples derived from all 65 cases 60 cases of colon cancer and 5 cases of pancreatic cancer were used. Cancer cells were extracted from the cancer tissue, and glycolipids were further extracted from the cancer cells. A sugar chain was cut out from the glycolipid and further fluorescently labeled. Fluorescently labeled sugar chains were separated by HPLC using normal phase columns and reverse phase columns by HPLC, and analyzed by a two-dimensional sugar chain mapping method to verify the presence or absence of new sugar chains that did not match the standard. Furthermore, this novel sugar chain structure was identified using mass spectrometry and enzyme digestion. Each procedure was performed as follows.
  • the sugar chain structure was estimated by comparison with a standard two-dimensional sugar chain map of a known PA sugar chain (see FIG. 2). Furthermore, mass spectrometry was performed and it was confirmed that the mass was the same as that estimated. For sugar chains that could not be estimated by the two-dimensional sugar chain map, the PA sugar chain was decomposed with an enzyme (exoglycosidase) that cleaves a specific sugar chain structure as necessary, and the structure was estimated.
  • an enzyme exoglycosidase
  • the fluorescence detector was set to an excitation wavelength of 310 nm and a fluorescence wavelength of 380 nm.
  • the fluorescence detector was set at an excitation wavelength of 315 nm and a fluorescence wavelength of 400 nm. Recover each peak (PA sugar chain) separated by reversed-phase HPLC, dry with a centrifugal concentrator, dissolve in an appropriate amount of water, and then add nano-LC / LCQ Deca XP (ESI-ion trap) The mass spectrometric measurement was performed.
  • A8-2 did not match the standard that it had so far, and the possibility of an unknown sugar chain was great (Fig. 2). In mass spectrometry, it was an isomer with Sialyl Le x , Sialyl Le a , ST2H. To determine the structure, A8-2 was cleaved with exoglycosidase (FIG. 2; method will be described later). When A8-2 was cut with Neuraminidase ( ⁇ -sialidase from Arthrobacter ureafaciens) (Nacalai), it matched with the standard Type1H on a two-dimensional map.
  • Neuraminidase ⁇ -sialidase from Arthrobacter ureafaciens
  • ST1H (abbreviation of ⁇ 2-6 sialylated type 1H). ST1H could not be detected in any case of normal mucosal epithelial cells.
  • Cleavage with exoglycosidase was performed as follows. Using 2 U / ml ⁇ 2,3-sialidase from Salmonella typhimurium (Takara) or 2 U / ml ⁇ -sialidase from Arthrobacter ureafaciens (Nacalai) as exoglycosidase, 100 mM sodium acetate buffer, pH 5.5, for 2 hr The reaction was carried out at 37 ° C. (condition 1). Under condition 1, ⁇ 2,3-sialidase specifically cleaved ⁇ 2,3-linked sialic acid to terminal galactose, but did not cleave ⁇ 2,6-linked sialic acid.
  • FIG. 3 shows a predicted glycolipid synthesis pathway in cancer cells and normal cells. Solid arrows indicate pathways in normal cells. On the other hand, a wavy arrow indicates a route in cancer cells.
  • ST1H is considered to be produced by sialylating the galactose in its precursor Type 1H. This reaction is considered to be a cancer cell specific reaction.
  • the major glycolipids in Lewis (+) normal cells are Le a and Le b .
  • Lewis (-) key glycolipid in normal cells is Lc 4 and Type1H.
  • SLe a sugar chain structure (NeuAc ⁇ 2-3Gal ⁇ 1-3 (Fuc ⁇ 1-4) GlcNAc ⁇ 1-R ) and sLe c carbohydrate structures (NeuAc ⁇ 2-3Gal ⁇ 1-3GlcNAc ⁇ 1-R), depending respectively CA19-9 antibody and DU-PAN-2 antibody Be recognized.
  • Colon cancer 60 cases in 4 cases pancreatic cancer cells five cases 2 cases (Reason 1) or not acknowledged Le a structure in sugar chain structure, or very that the expression was low, (Reason 2) CA19- 9 was OU / ml, (Reason 3) Examining the genome, all 6 were homozygous of mutant allele, and (Reason 4) Lewis enzyme activity was below detection limit Therefore, it was judged as Lewis negative (Lewis (-)). Note that the presence ratio of Lewis (-) is said to be about 10%, and six out of 65 cases are said to be Lewis (-), which is in good agreement with the ratio.
  • ST1H was expressed only in 3 of the 65 cases. This frequency is by no means low, assuming that ST1H ⁇ ⁇ ⁇ is likely to develop in cancer in Lewis ( ⁇ ) people. This is because 4 out of 60 cases of colorectal cancer and 2 out of 5 cases of pancreatic cancer cells were Lewis ( ⁇ ), and ST1H was expressed in 3 out of 6 cases of Lewis ( ⁇ ). However, by increasing the number of cases analyzed, there is a good possibility that ST1H expression is observed even in Lewis (+) human cancer.
  • ST1H is likely to be expressed in Lewis (-) human cancer.
  • the activity of Lewis enzyme is strong, so that Lc 4 and Type 1H rarely exist as they are, and change to Le a and Le b .
  • the antibody CA19-9 that recognizes SLe a as a tumor marker and recognizes it is used.
  • SLe c (DU-PAN-2 value), which is a precursor of SLe a , is increased in Lewis ( ⁇ ) human cancer, and is used as a tumor marker.
  • Lc 4 and Type 1H are the main products because Lewis enzyme (FUT3) has no activity.
  • FUT3 Lewis enzyme
  • SLe c is created from Lc 4 , but it is not converted to SLe a , so the amount of SLe c increases.
  • Lewis (-) with respect to recognize SLe c structure DU-PAN-2 antibodies are used in place of CA19-9 antibody.
  • ST1H may be synthesized from Type1H in Lewis (-) human cancer. This indicates that ST1H can be used as a better tumor marker for Lewis (-) individuals, similar to the SLe c structure.
  • ST1H can be used as a general tumor marker, and at the same time can be a better tumor marker for Lewis (-) people.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Diabetes (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Disclosed is a novel tumor marker focusing on a sugar chain structure unique to cancer cells, an antibody to same, a detection kit for same, and a method for detecting same. Specifically, the tumor marker has the sugar chain represented in the following formula (3): NeuAc α2-6(Fuc α1-2)Gal β1-3GlcNAc β1-R (3) (In the formula, R represents sugar residue).

Description

腫瘍マーカー、それに対する抗体、その検出キット及びその検出方法Tumor marker, antibody thereto, detection kit and detection method thereof
 本発明は、腫瘍マーカー、それに対する抗体、その検出キット及びその検出方法に関する。 The present invention relates to a tumor marker, an antibody thereto, a detection kit thereof, and a detection method thereof.
 従来から、癌化や癌の悪性度に糖鎖が深く関与していることが指摘されてきた。例えば、下記の式(1)で表される糖鎖構造(Sialyl-Lea又はCA19-9と呼ばれる)は癌細胞に特異的にみられるとされる(非特許文献1、2)。 Conventionally, it has been pointed out that sugar chains are deeply involved in canceration and malignancy of cancer. For example, the sugar chain structure represented by the following formula (1) (referred to as Sialyl-Le a or CA19-9) is the observed specifically in cancer cells (Non-Patent Documents 1 and 2).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式中、Rは糖残基を示す)
Sialyl-Leaを認識する抗体を用いて腫瘍を検出する方法が広く行われている(非特許文献3)。
(In the formula, R represents a sugar residue)
Method for detecting a tumor with an antibody that recognizes the sialyl-Le a is the widespread (Non-Patent Document 3).
 Sialyl-Leaは生体内において、Lewis遺伝子がコードするフコシルトランスフェラーゼ3(FUT3)の作用により下記の式(2)で表される糖鎖構造(Sialyl-Lec又はDu-PAN-2と呼ばれる)にフコースが付加されることによって生成する。 Sialyl-Le a is a sugar chain structure represented by the following formula (2) by the action of fucosyltransferase 3 (FUT3) encoded by the Lewis gene in vivo (referred to as Sialyl-Le c or Du-PAN-2) It is generated by adding fucose to.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式中、Rは糖残基を示す)
ところが、Lewis型の血液型がLewis(-)である個体においてはフコシルトランスフェラーゼ3の活性がみられないため、Sialyl-Leaが生成しない。このため、たとえ癌患者であったとしてもLewis(-)の個体からはSialyl-Leaが検出されない。したがって、Lewis(-)の個体においては、Sialyl-Leaを認識する抗体では腫瘍を検出できないという問題があった。
(In the formula, R represents a sugar residue)
However, since the activity of fucosyltransferase 3 is not observed in individuals whose Lewis blood type is Lewis (-), Sialyl-Le a is not produced. Therefore, even Lewis even a cancer patient (-) Sialyl-Le a is from individuals is not detected. Thus, Lewis (-) in the individual, the antibody recognizing the Sialyl-Le a there is a problem that can not be detected tumor.
 このように、癌細胞に特異的にみられる糖鎖構造を標的とする腫瘍検出方法が従来から行われてきた。しかしながら、標的となる糖鎖構造の種類は限られていた。またそれらを利用した腫瘍検出方法には、対象とすべき被検者が限定されてしまうという問題があった。 Thus, tumor detection methods that target sugar chain structures that are specifically found in cancer cells have been conventionally performed. However, the types of target sugar chain structures have been limited. Moreover, the tumor detection method using them has a problem that subjects to be targeted are limited.
 本発明は、癌細胞に特異的にみられる糖鎖構造を有する新たな腫瘍マーカー、それに対する抗体、その検出キット及びその検出方法を提供することを課題とする。 An object of the present invention is to provide a new tumor marker having a sugar chain structure specifically found in cancer cells, an antibody against the same, a detection kit thereof, and a detection method thereof.
 本発明者は、多大な試行錯誤の末、従来知られていなかった新規なヒト由来の糖鎖構造を新たに見出すに至った。本発明者はさらに鋭意検討を重ね、この新規な糖鎖構造が、癌細胞に特異的にみられる糖鎖構造であることを見出した。加えて本発明者は、この新規な糖鎖構造が、Lewis(-)の個体由来の癌細胞にもみられる糖鎖構造であることも見出した。 The present inventor has come up with a novel human-derived sugar chain structure that has not been known so far after extensive trial and error. The present inventor has further intensively studied and found that this novel sugar chain structure is a sugar chain structure specifically observed in cancer cells. In addition, the present inventor has also found that this novel sugar chain structure is a sugar chain structure also found in cancer cells derived from individuals of Lewis (-).
 本発明はかかる知見に基づきさらに検討を重ねた結果完成されたものであり、下記に掲げるものである。
項1.
以下の式(3)で表される糖鎖を有する、腫瘍マーカー。
The present invention has been completed as a result of further studies based on such knowledge, and is described below.
Item 1.
A tumor marker having a sugar chain represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式中、NeuAcはN-アセチルノイラミン酸残基を、Fucはフコース残基を、Galはガラクトース残基を、GlcNAcはN-アセチルグルコサミン残基を、α2-6はα2-6グリコシド結合を、α1-2はα1-2グリコシド結合を、β1-3はβ1-3グリコシド結合を、Rは糖残基をそれぞれ示す。)
項2.
項1記載の腫瘍マーカーに対する抗体。
項3.
モノクローナル抗体である、項2記載の抗体。
項4.
項1記載の腫瘍マーカーを認識するレクチン。
項5.
項1記載の腫瘍マーカーを検出するために必要な材料を含む、腫瘍検出キット。
項6.
腫瘍マーカーを検出するために必要な材料が項1記載の腫瘍マーカーに対する抗体である、項5記載の腫瘍検出キット。
項7.
腫瘍マーカーを検出するために必要な材料が項1記載の腫瘍マーカーを認識するレクチンである、項5記載の腫瘍検出キット。
項8-1.
被検者より採取した検体中の項1記載の腫瘍マーカーを検出し、その検出値が健常者より採取した検体中の該腫瘍マーカーの検出値に基づいて設定された基準値を超える被検者を癌患者であると判定する方法。
項8-2.
被験者及び健常者が、ともにLewis negative(Lewis(-))である、項8-1記載の方法。
項9-1.
検体が癌患者由来であるか否かを判定する方法であって、検体中の項1記載の腫瘍マーカーを検出し、その検出値が健常者より採取した検体中の該腫瘍マーカーの検出値に基づいて設定された基準値を超える検体を癌患者由来であると判定する方法。
項9-2.
前記検体がLewis negative(Lewis(-))由来であり、且つ前記健常者がLewis negative(Lewis(-))である、項9-1記載の方法。
項10.
(i)項1に記載の腫瘍マーカーが発現した腫瘍細胞に対して、候補化合物を適用する工程、及び(ii)前記腫瘍細胞の当該腫瘍マーカー発現が減少又は消失した場合に、用いた候補化合物を抗腫瘍化合物として選定する工程、を含む、抗腫瘍化合物のスクリーニング方法。
項A-1.
以下の式(3)で表される、単離された糖鎖。
(Where NeuAc is the N-acetylneuraminic acid residue, Fuc is the fucose residue, Gal is the galactose residue, GlcNAc is the N-acetylglucosamine residue, α2-6 is the α2-6 glycosidic bond. Α1-2 represents an α1-2 glycoside bond, β1-3 represents a β1-3 glycoside bond, and R represents a sugar residue.)
Item 2.
An antibody against the tumor marker according to Item 1.
Item 3.
Item 3. The antibody according to Item 2, which is a monoclonal antibody.
Item 4.
A lectin that recognizes the tumor marker according to Item 1.
Item 5.
A tumor detection kit comprising a material necessary for detecting the tumor marker according to Item 1.
Item 6.
Item 6. The tumor detection kit according to Item 5, wherein the material necessary for detecting the tumor marker is an antibody against the tumor marker according to Item 1.
Item 7.
Item 6. The tumor detection kit according to Item 5, wherein the material necessary for detecting the tumor marker is a lectin that recognizes the tumor marker according to Item 1.
Item 8-1.
The subject in which the tumor marker according to item 1 is detected in a sample collected from a subject and the detected value exceeds a reference value set based on the detected value of the tumor marker in a sample collected from a healthy subject To determine that the patient is a cancer patient.
Item 8-2.
Item 8. The method according to Item 8-1, wherein the test subject and the healthy subject are both Lewis negative (Lewis (−)).
Item 9-1.
A method for determining whether or not a specimen is derived from a cancer patient, wherein the tumor marker according to item 1 is detected in the specimen, and the detected value is a detected value of the tumor marker in the specimen collected from a healthy subject. A method for determining that a sample exceeding a reference value set based on cancer patients originates.
Item 9-2.
The method according to Item 9-1, wherein the specimen is derived from Lewis negative (Lewis (-)) and the healthy subject is Lewis negative (Lewis (-)).
Item 10.
(I) a step of applying a candidate compound to a tumor cell in which the tumor marker according to item 1 is expressed; and (ii) a candidate compound used when the expression of the tumor marker in the tumor cell is reduced or eliminated. Selecting an antitumor compound as an antitumor compound.
Term A-1.
An isolated sugar chain represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式中、NeuAcはN-アセチルノイラミン酸残基を、Fucはフコース残基を、Galはガラクトース残基を、GlcNAcはN-アセチルグルコサミン残基を、α2-6はα2-6グリコシド結合を、α1-2はα1-2グリコシド結合を、β1-3はβ1-3グリコシド結合を、Rは糖残基をそれぞれ示す。)
項A-2.
項A-1記載の糖鎖に対する抗体。
項A-3.
モノクローナル抗体である、項A-2記載の抗体。
項A-4.
項A-1記載の糖鎖を認識するレクチン。
項A-5.
項A-1記載の糖鎖を検出するために必要な材料を含む、前記糖鎖検出キット。
項A-6.
前記糖鎖を検出するために必要な材料が項A-1記載の糖鎖に対する抗体(すなわち項A-2記載の抗体)である、項A-5記載の前記糖鎖検出キット。
項A-7.
前記糖鎖を検出するために必要な材料が項A-1記載の糖鎖を認識するレクチン(すなわち項A-4記載のレクチン)である、項A-5記載の腫瘍検出キット。
項A-8-1.
被検者より採取した検体中の項A-1記載の糖鎖を検出し、その検出値が健常者より採取した検体中の該糖鎖の検出値に基づいて設定された基準値を超える被検者を癌患者であると判定する方法。
項A-8-2.
被験者及び健常者が、ともにLewis negative(Lewis(-))である、項A-8-1記載の方法。
項A-9-1.
検体が癌患者由来であるか否かを判定する方法であって、検体中の項A-1記載の糖鎖を検出し、その検出値が健常者より採取した検体中の該糖鎖の検出値に基づいて設定された基準値を超える検体を癌患者由来であると判定する方法。
項A-9-2.
前記検体がLewis negative(Lewis(-))由来であり、且つ前記健常者がLewis negative(Lewis(-))である、項A-9-1記載の方法。
項A-10.
(i)項A-1に記載の糖鎖が発現した腫瘍細胞に対して、候補化合物を適用する工程、及び(ii)前記腫瘍細胞の当該糖鎖発現が減少又は消失した場合に、用いた候補化合物を抗腫瘍化合物として選定する工程、を含む、抗腫瘍化合物のスクリーニング方法。
項B-1.
以下の式(3)で表される糖鎖の、腫瘍マーカーとしての使用。
(Where NeuAc is the N-acetylneuraminic acid residue, Fuc is the fucose residue, Gal is the galactose residue, GlcNAc is the N-acetylglucosamine residue, α2-6 is the α2-6 glycosidic bond. Α1-2 represents an α1-2 glycoside bond, β1-3 represents a β1-3 glycoside bond, and R represents a sugar residue.)
Term A-2.
An antibody against the sugar chain according to Item A-1.
Term A-3.
The antibody according to Item A-2, which is a monoclonal antibody.
Term A-4.
A lectin that recognizes the sugar chain according to Item A-1.
Term A-5.
The sugar chain detection kit comprising a material necessary for detecting the sugar chain according to Item A-1.
Term A-6.
The sugar chain detection kit according to Item A-5, wherein the material necessary for detecting the sugar chain is an antibody against the sugar chain according to Item A-1 (that is, the antibody according to Item A-2).
Term A-7.
The tumor detection kit according to Item A-5, wherein the material necessary for detecting the sugar chain is a lectin that recognizes the sugar chain according to Item A-1 (ie, the lectin according to Item A-4).
Term A-8-1.
The sugar chain described in item A-1 in the sample collected from the subject is detected, and the detected value exceeds the reference value set based on the detected value of the sugar chain in the sample collected from the healthy subject. A method of determining an examiner as a cancer patient.
Term A-8-2.
Item 8. The method according to Item A-8-1, wherein the subject and the healthy subject are both Lewis negative (Lewis (−)).
Term A-9-1.
A method for determining whether or not a specimen is derived from a cancer patient, wherein the sugar chain according to item A-1 in the specimen is detected, and the detected value is a detection of the sugar chain in the specimen collected from a healthy subject A method for determining that a specimen exceeding a reference value set based on a value is derived from a cancer patient.
Term A-9-2.
The method according to Item A-9-1, wherein the specimen is derived from Lewis negative (Lewis (-)) and the healthy subject is Lewis negative (Lewis (-)).
Term A-10.
(I) a step of applying a candidate compound to a tumor cell in which the sugar chain described in item A-1 is expressed; and (ii) when the sugar chain expression of the tumor cell is reduced or eliminated. Selecting a candidate compound as an anti-tumor compound.
Term B-1.
Use of a sugar chain represented by the following formula (3) as a tumor marker.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式中、NeuAcはN-アセチルノイラミン酸残基を、Fucはフコース残基を、Galはガラクトース残基を、GlcNAcはN-アセチルグルコサミン残基を、α2-6はα2-6グリコシド結合を、α1-2はα1-2グリコシド結合を、β1-3はβ1-3グリコシド結合を、Rは糖残基をそれぞれ示す。)
項B-2.
前記糖鎖の、Lewis negative(Lewis(-))腫瘍マーカーとしての、項B-1記載の使用。
(Where NeuAc is the N-acetylneuraminic acid residue, Fuc is the fucose residue, Gal is the galactose residue, GlcNAc is the N-acetylglucosamine residue, α2-6 is the α2-6 glycosidic bond. Α1-2 represents an α1-2 glycoside bond, β1-3 represents a β1-3 glycoside bond, and R represents a sugar residue.)
Term B-2.
The use according to Item B-1, wherein the sugar chain is used as a Lewis negative (Lewis (−)) tumor marker.
 本発明の腫瘍マーカーを用いると、被検者における腫瘍の有無を判定できる。 When the tumor marker of the present invention is used, the presence or absence of a tumor in a subject can be determined.
 特に、本発明の腫瘍マーカーを用いると、Lewis(-)である被検者における腫瘍の有無も判定できる。 In particular, when the tumor marker of the present invention is used, the presence or absence of a tumor in a subject who is Lewis (-) can also be determined.
 本発明の腫瘍マーカーを用いれば、腫瘍の判定手段のバリエーションを増やすことができる。本発明の腫瘍マーカーを従来の判定手段と組み合わせて用いることによって、より信頼性の高い判定を行うことができる。 If the tumor marker of the present invention is used, variations in tumor determination means can be increased. By using the tumor marker of the present invention in combination with a conventional determination means, a more reliable determination can be performed.
2症例(大腸癌1名、膵臓癌1名)における癌細胞の糖脂質のHPLCによる分離パターンである。A及びBは大腸癌患者、C及びDは膵臓癌患者の分離パターンをそれぞれ示している。また、A及びCは酸性糖脂質、B及びDは中性糖脂質の分離パターンをそれぞれ示している。It is the separation pattern by HPLC of glycolipids of cancer cells in 2 cases (1 colorectal cancer, 1 pancreatic cancer). A and B show separation patterns of colon cancer patients, and C and D show separation patterns of pancreatic cancer patients, respectively. A and C show acidic glycolipids, and B and D show neutral glycolipid separation patterns, respectively. ピークA8-2の2次元糖鎖マップである。丸、菱形、三角及び四角は、モノシアリル化モノフコシル化六糖(monosialylated monofucosylated hexasaccharide)、モノシアリル化五糖(monosialylated pentasaccharide)、モノフコシル化五糖(monofucosylated pentasaccharide)及び四糖(tetrasaccharide)をそれぞれ示す。黒丸はA8-2を示し、黒三角、黒菱形及び黒四角はそれぞれA8-2のグリコシダーゼ分解生成物を示している。矢印の始点は出発物質を、終点は分解生成物をそれぞれ示す。分解に使用したグリコシダーゼをそれぞれ矢印の横に示す。「N」はArthrobacter ureafaciens由来のα-シアリダーゼ(α-sialidase)、「F」はウシ腎臓由来のα-フコシダーゼ(α-fucosidase)及び「2,6-S」はα2-3結合及びα2-6結合におけるシアル酸を分解する条件でα2,3-シアリダーゼ(α2,3-sialidase)を用いたことをそれぞれ示している。It is a two-dimensional sugar chain map of peak A8-2. Circles, rhombuses, triangles and squares represent monosialylated monofucosylated hexasaccharide, monosialylated pentasaccharide, monofucosylated pentasaccharide and tetrasaccharide, respectively. Black circles indicate A8-2, and black triangles, black diamonds, and black squares indicate glycosidase degradation products of A8-2, respectively. The starting point of the arrow indicates the starting material, and the end point indicates the decomposition product. Each glycosidase used for the degradation is shown next to the arrow. “N” is α-sialidase derived from Arthrobacter ureafaciens, “F” is α-fucosidase derived from bovine kidney and “2,6-S” is α2-3 binding and α2-6 It shows that α2,3-sialidase (α2,3-sialidase) was used under conditions that decompose sialic acid in the bond. 癌細胞及び正常上皮細胞における主要な糖脂質の予想される生合成経路を示す。実線矢印は正常上皮細胞において優勢な経路を示す。波線矢印は癌細胞において増加する経路を示す。「4F」は、GlcNAcのα1-4フコシル化を示す。「3F」は、GlcNAcのα1-3フコシル化を示す。「2F」は、ガラクトースのα1-2フコシル化を示す。「3S」は、ガラクトースのα2-3シアリル化を示す。「6S」は、ガラクトースのα2-6シアリル化を示す。点入り白丸はグルコース、白丸はガラクトース(β1-4結合、type 2)、黒丸はガラクトース(β1-3結合、type 1)、白四角はGlcNAc、白星はシアル酸(α2-6結合)、黒星はシアル酸(α2-3結合)及び白三角はフコースをそれぞれ示す。Figure 2 shows the expected biosynthetic pathway of major glycolipids in cancer cells and normal epithelial cells. Solid arrows indicate the dominant pathway in normal epithelial cells. The wavy arrow indicates the pathway that increases in cancer cells. “4F” indicates α1-4 fucosylation of GlcNAc. “3F” indicates α1-3 fucosylation of GlcNAc. “2F” indicates α1-2 fucosylation of galactose. “3S” indicates α2-3 sialylation of galactose. “6S” indicates α2-6 sialylation of galactose. White circles with dots are glucose, white circles are galactose (β1-4 bond, type 2), black circles are galactose (β1-3 bond, type 1), white squares are GlcNAc, white stars are sialic acid (α2-6 bonds), black stars are Sialic acid (α2-3 bond) and white triangle indicate fucose, respectively.
1.腫瘍マーカー
本発明の腫瘍マーカーは、以下の式(3)で表される糖鎖を有する腫瘍マーカーである。
1. Tumor marker The tumor marker of the present invention is a tumor marker having a sugar chain represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
式中の各記号はそれぞれ下記の残基又は結合を示している。
NeuAc:N-アセチルノイラミン酸残基
Fuc:フコース残基
Gal:ガラクトース残基
GlcNAc:N-アセチルグルコサミン残基
α2-6:α2-6グリコシド結合
α1-2:α1-2グリコシド結合
β1-3:β1-3グリコシド結合
R:糖残基
なお、R(糖残基)は、0、1又は複数個(好ましくは2、3、4、5、6、7、8、9、又は10個)の糖からなる基である。ここでの糖は、生体内に存在する糖鎖を構成する公知の糖であればよく、例えばペントース、ヘキソース、アミノ糖、ウロン酸類、デオキシ糖等が例示され、より具体的には例えば上述の糖が例示される。糖と糖との結合も、公知の結合様式が例示でき、例えばαグリコシド結合、βグリコシド結合が例示される。また、言い換えれば、本発明の腫瘍マーカーは、Rが存在しないもの、Rが単糖であるもの、 及びRが糖鎖であるもの、を包含するといえる。なお、当該糖残基の末端は、例えばPA(ピリジルアミノ)化されていてもよいし、タンパク質またはペプチドに結合していてもよい。
Each symbol in the formula represents the following residue or bond, respectively.
NeuAc: N-acetylneuraminic acid residue
Fuc: Fucose residue
Gal: Galactose residue
GlcNAc: N-acetylglucosamine residue α2-6: α2-6 glycoside bond α1-2: α1-2 glycoside bond β1-3: β1-3 glycoside bond
R: sugar residue R (sugar residue) is a group consisting of 0, 1 or multiple (preferably 2, 3, 4, 5, 6, 7, 8, 9, or 10) sugars. is there. The sugar here may be a known sugar that constitutes a sugar chain present in the living body, and examples thereof include pentose, hexose, amino sugar, uronic acids, deoxy sugar, and the like. Sugar is exemplified. As for the bond between sugars, known bond modes can be exemplified, for example, α glycoside bond and β glycoside bond. In other words, it can be said that the tumor markers of the present invention include those in which R does not exist, those in which R is a monosaccharide, and those in which R is a sugar chain. The end of the sugar residue may be PA (pyridylamino), for example, or may be bound to a protein or peptide.
 本明細書において、式(3)で表される糖鎖のことを、「ST1H」(α2-6 sialylated type 1Hの略)と表記することがある。 In the present specification, the sugar chain represented by the formula (3) may be expressed as “ST1H” (abbreviation of α2-6 sialylated type 1H).
 ST1Hは、正常細胞と比較すると癌細胞でより多量に存在している糖鎖構造である。ST1Hは、Lewis(-)である個体由来の癌細胞にも存在していることを特徴とする。 ST1H is a sugar chain structure that is present more in cancer cells than in normal cells. ST1H is also characterized in that it is also present in cancer cells derived from individuals that are Lewis (-).
 本発明の腫瘍マーカーは、ST1Hを有していればよく、特に限定されない。本発明の腫瘍マーカーの例としては、ST1Hを糖タンパク質上のO結合型糖鎖、又はN結合型糖鎖に付加してなる糖タンパク質(ST1H付加糖タンパク質)、及びST1Hを脂質に付加してなる糖脂質(ST1H付加糖脂質)等が挙げられる。本発明の腫瘍マーカーの例としては、それらから切り離されてなる、ST1Hそのものであってもよい。ST1H付加糖タンパク質又はST1H付加糖脂質からの本発明の腫瘍マーカーの切り出しは、公知の方法によって行うことができる。 The tumor marker of the present invention is not particularly limited as long as it has ST1H. Examples of the tumor marker of the present invention include a glycoprotein (ST1H-added glycoprotein) obtained by adding ST1H to an O-linked sugar chain or N-linked sugar chain on a glycoprotein, and ST1H added to a lipid. Glycolipid (ST1H addition glycolipid) and the like. As an example of the tumor marker of the present invention, ST1H itself separated from them may be used. The excision of the tumor marker of the present invention from ST1H-added glycoprotein or ST1H-added glycolipid can be performed by a known method.
 例えば、ST1H付加糖タンパク質からの本発明の腫瘍マーカーの切り出しは、糖タンパク質上のO結合型糖鎖に付加している場合、ヒドラジン分解法やアルカリ分解法等によって行うことができる。また、糖タンパク質上のN結合型糖鎖に付加している場合は、ヒドラジン分解法や、N-グリカナーゼ、グリコペプチダーゼ等の、GlcNAc-Asn結合を切断する活性を有する酵素の作用等によりN-結合型糖鎖とタンパク質との結合を切断すること等によって行うことができる。 For example, excision of the tumor marker of the present invention from ST1H-added glycoprotein can be performed by a hydrazine decomposition method, an alkaline decomposition method, or the like when added to an O-linked sugar chain on the glycoprotein. In addition, when it is added to the N-linked sugar chain on the glycoprotein, N-glycan is degraded by the hydrazine degradation method or the action of an enzyme having an activity of cleaving GlcNAc-Asn bond, such as N-glycanase and glycopeptidase. This can be done by cleaving the bond between the conjugated sugar chain and the protein.
 また、糖脂質に付加している場合は、エンドグリコセラミダーゼ等の、グリコシド結合を加水分解する活性を有する酵素の作用等によって行うことができる。 In addition, when added to a glycolipid, it can be carried out by the action of an enzyme having an activity of hydrolyzing a glycosidic bond, such as endoglycoceramidase.
 例えば、糖脂質からの本発明の腫瘍マーカーの切り出しは、エンドグリコセラミダーゼ等の、グリコシド結合を加水分解する活性を有する酵素の作用等により糖脂質の糖鎖とセラミドの間のグリコシド結合を切断すること等によって行うことができる。 For example, excision of the tumor marker of the present invention from glycolipid cleaves the glycosidic bond between the glycolipid sugar chain and ceramide by the action of an enzyme such as endoglycoceramidase, which has an activity of hydrolyzing glycosidic bonds. Etc.
 本発明の腫瘍マーカーを検出することによって、腫瘍を検出することができる。特に、本発明の腫瘍マーカーを検出することによって、Lewis(-)である個体由来の腫瘍も検出することができる。この腫瘍検出方法の詳細については後述する。 A tumor can be detected by detecting the tumor marker of the present invention. In particular, by detecting the tumor marker of the present invention, a tumor derived from an individual that is Lewis (-) can also be detected. Details of this tumor detection method will be described later.
 本発明における「腫瘍」とは、好ましくは悪性腫瘍である。悪性腫瘍としては、特に限定されないが、例えば腺癌が好ましい。本発明において好ましい腺癌としては、例えば大腸癌、膵臓癌、胃癌、胆嚢癌、胆管癌、前立腺癌、子宮癌、卵巣癌、食道癌、腎臓癌、膀胱癌、乳癌、喉頭癌、咽頭癌、肝癌、及び肺癌等が挙げられる。これらの中でも大腸癌及び膵臓癌が好ましい。 The “tumor” in the present invention is preferably a malignant tumor. Although it does not specifically limit as a malignant tumor, For example, an adenocarcinoma is preferable. Examples of preferable adenocarcinoma in the present invention include colon cancer, pancreatic cancer, gastric cancer, gallbladder cancer, bile duct cancer, prostate cancer, uterine cancer, ovarian cancer, esophageal cancer, kidney cancer, bladder cancer, breast cancer, laryngeal cancer, pharyngeal cancer, Examples include liver cancer and lung cancer. Among these, colon cancer and pancreatic cancer are preferable.
 2.腫瘍検出方法
本発明の腫瘍検出方法は、「本発明の腫瘍マーカー」を検出する工程を含む方法である。
2. Tumor detection method The tumor detection method of the present invention is a method including a step of detecting a "tumor marker of the present invention".
 前述の通り、「本発明の腫瘍マーカー」は、正常細胞と比較すると癌細胞でより多量に存在している。このため、「本発明の腫瘍マーカー」の存在と腫瘍との間には因果関係がある。 As described above, the “tumor marker of the present invention” is present more in cancer cells than in normal cells. For this reason, there is a causal relationship between the presence of the “tumor marker of the present invention” and the tumor.
 被検者における「本発明の腫瘍マーカー」を直接検出してもよいし、被検者からいったん検体を採取した上でかかる検体における「本発明の腫瘍マーカー」を検出してもよい。 The “tumor marker of the present invention” in the subject may be directly detected, or the “tumor marker of the present invention” in such a sample may be detected after the sample is once collected from the subject.
 被検者における「本発明の腫瘍マーカー」を直接検出する場合は、「本発明の腫瘍マーカー」の検出値が基準値を超える領域を、腫瘍が存在している領域であると判定することができる。 When directly detecting the “tumor marker of the present invention” in a subject, it is possible to determine that the area where the detected value of the “tumor marker of the present invention” exceeds the reference value is the area where the tumor is present it can.
 被検者からいったん検体を採取した上でかかる検体における「本発明の腫瘍マーカー」を検出する場合は、「本発明の腫瘍マーカー」の検出値が基準値を超える検体の提供主である被検者を癌患者であると判定することができる。また、反対に「本発明の腫瘍マーカー」の検出値が基準値以下である検体の提供主である被検者を癌患者でないと判定することができる。好ましくは、本発明の腫瘍マーカーの有無により、検体の提供主である被検者が癌患者であるか否かを判定することができる。 In the case of detecting the “tumor marker of the present invention” in such a sample after collecting the sample once from the subject, the test subject to which the detected value of the “tumor marker of the present invention” exceeds the reference value It can be determined that the person is a cancer patient. In contrast, it is possible to determine that the subject who is the provider of the specimen whose detected value of the “tumor marker of the present invention” is below the reference value is not a cancer patient. Preferably, it is possible to determine whether or not the subject who is the specimen provider is a cancer patient based on the presence or absence of the tumor marker of the present invention.
 被検者は、特に限定されない。例えば現在の腫瘍マーカー(CA19-9、CEA、PSA等)と同じように通常定期的に行われるような健康診断の受診者を被験者とすることが挙げられる。このような健康診断の受診者を被験者とできるということは、結局のところ、すべての人を被験者とできるということを意味している。 The subject is not particularly limited. For example, the subject may be a health checkup patient who is regularly performed in the same manner as current tumor markers (CA19-9, CEA, PSA, etc.). The fact that such health check-up recipients can be subjects means that all people can be subjects.
 また、被験者としては、腫瘍の有無の判定が必要な人、又は癌手術を受けた人であって、再発の診断が必要とされる人も挙げられる。腫瘍の有無の判定が必要な人とは、特に限定されないが、例えば、食欲不振、急激な体重減少、咳、又は下血等の症状がみられたり、各種画像、又は血液検査等で異常が出た人を挙げることができる。例えば、大腸癌の場合は、便潜血陽性、又は画像診断等で異常が疑われた人等が挙げられる。胃癌の場合は、胃部X線検査等で異常が疑われた人等が挙げられる。膵臓癌又は胆嚢癌の場合は、腹部超音波検査、又はCT等で異常が疑われた人等が挙げられる。肺癌の場合は、胸部X線検査等で異常が疑われた人等が挙げられる。さらに膵臓癌の場合は、血中のアミラーゼ又はリパーゼが異常高値である人等が挙げられる。 In addition, examples of the subject include a person who needs to determine whether or not a tumor exists, or a person who has undergone cancer surgery and needs a diagnosis of recurrence. The person who needs to determine whether or not there is a tumor is not particularly limited.For example, symptoms such as loss of appetite, rapid weight loss, cough, or melena, or abnormalities in various images, blood tests, etc. You can list people who have left. For example, in the case of colorectal cancer, fecal occult blood is positive, or a person suspected of having an abnormality in image diagnosis or the like. In the case of gastric cancer, a person who is suspected of being abnormal in a stomach X-ray examination or the like can be mentioned. In the case of pancreatic cancer or gallbladder cancer, examples include those suspected of being abnormal by abdominal ultrasonography or CT. In the case of lung cancer, examples include those suspected of having abnormalities in chest X-ray examinations. Furthermore, in the case of pancreatic cancer, examples include those who have abnormally high levels of amylase or lipase in the blood.
 後に詳述するように、本発明の腫瘍マーカーは、特にLewis(-)の個体の腫瘍において、高発現が認められる。よって、本発明の腫瘍マーカーを検出することによって、特にLewis(-)である個体由来の腫瘍を好ましく検出することができる。したがって、Lewis(-)である人を好ましく被験者とすることができる。 As described in detail later, the tumor marker of the present invention is highly expressed particularly in the tumor of Lewis (-) individuals. Therefore, by detecting the tumor marker of the present invention, it is possible to preferably detect a tumor derived from an individual who is especially Lewis (−). Therefore, a person who is Lewis (-) can be preferably a subject.
 検体としては、特に限定されないが、例えば、血液由来検体、膵液由来検体、胆汁由来検体、及び尿由来検体等が挙げられる。血液由来検体としては、例えば、血清又は血漿等が挙げられる。 The specimen is not particularly limited, and examples thereof include blood-derived specimens, pancreatic juice-derived specimens, bile-derived specimens, and urine-derived specimens. Examples of blood-derived specimens include serum or plasma.
 血液由来検体が癌患者に由来するものであれば、その血液由来検体には癌細胞から分泌されたST1H付加糖タンパク質、及びST1H付加糖脂質が含まれている。したがって、血液由来検体を検体として用いる場合、ST1H付加糖タンパク質、又はST1H付加糖脂質を直接検出することによって腫瘍を検出することができる。 If the blood-derived specimen is derived from a cancer patient, the blood-derived specimen contains ST1H-added glycoprotein and ST1H-added glycolipid secreted from cancer cells. Therefore, when a blood-derived specimen is used as a specimen, a tumor can be detected by directly detecting ST1H-added glycoprotein or ST1H-added glycolipid.
 血液由来検体を検体として用いる場合は、必要に応じて予め抗凝固剤を添加してもよい。抗凝固剤としては、特に限定されないが、例えば、EDTA-二カリウム、クエン酸ナトリウム及びヘパリンナトリウム等が挙げられる。 When using a blood-derived sample as a sample, an anticoagulant may be added in advance if necessary. The anticoagulant is not particularly limited, and examples thereof include EDTA-dipotassium, sodium citrate, and heparin sodium.
 「本発明の腫瘍マーカー」を検出する工程は、「本発明の腫瘍マーカー」を検出できればよく限定されない。例えば、「本発明の腫瘍マーカー」を検出する抗体を利用して抗原抗体反応を行う工程、「本発明の腫瘍マーカー」を認識するレクチンで検出する工程、液体クロマトグラフィー法(LC法)を利用して検出する工程、質量分析法(MS法)を利用して検出する工程、核磁気共鳴法を利用して検出する工程等を挙げることができる。 The step of detecting the “tumor marker of the present invention” is not limited as long as the “tumor marker of the present invention” can be detected. For example, a step of performing an antigen-antibody reaction using an antibody that detects the “tumor marker of the present invention”, a step of detecting with a lectin that recognizes the “tumor marker of the present invention”, and a liquid chromatography method (LC method) And a step of detecting using a mass spectrometry method (MS method), a step of detecting using a nuclear magnetic resonance method, and the like.
 「本発明の腫瘍マーカー」を検出する抗体を利用する場合、その具体的な手法は、「本発明の腫瘍マーカー」が検出されればよく特に限定されない。例えば、RIA(Radioimmunoassay)法又はEIA(Enzyme immunoassay)法等の他、公知の手法を利用して行うことができる。EIA法としてはELISA法を利用することができる。ELISA法としては、例えばサンドイッチELISA法等を利用することができる。サンドイッチELISA法としては、例えば2ステップサンドイッチ法を利用することができる。 When using an antibody that detects the “tumor marker of the present invention”, the specific technique is not particularly limited as long as the “tumor marker of the present invention” is detected. For example, in addition to the RIA (Radioimmunoassay) method or the EIA (Enzyme immunoassay) method, it can be performed using a known method. The ELISA method can be used as the EIA method. As the ELISA method, for example, a sandwich ELISA method can be used. As the sandwich ELISA method, for example, a two-step sandwich method can be used.
 2ステップサンドイッチ法は、例えば、次のような手順で行うことができる。「本発明の腫瘍マーカー」(以下、単に「腫瘍マーカー」ということがある。)を検出するモノクローナル抗体(以下、単に「モノクローナル抗体」ということがある。)として、磁石等の方法によって回収可能な粒子に結合させてなる「抗体結合粒子」、及び酵素と結合させてなる「酵素標識抗体」の二種類を用意する。第一反応として、抗体結合粒子に結合したモノクローナル抗体と検体中に含まれる腫瘍マーカーによる第一次免疫複合体を形成させる。その後、磁石等によって第一次免疫複合体を回収し、反応液を除去して第一次免疫複合体を洗浄する。第二反応として、抗体結合粒子にモノクローナル抗体を介して結合した腫瘍マーカーと、酵素標識抗体による第二次免疫複合体を形成させる。その後再び磁石等によって第二次免疫複合体を回収し、反応液を除去して第二次免疫複合体を洗浄する。最後に「基質液」(酵素標識抗体中の酵素の基質を含有する溶液)を第二次免疫複合体に対して添加し、酵素反応を検出することによって、検体中の腫瘍マーカー存在量を測定する。抗体結合粒子としては、限定されないが、例えば、抗体が結合したフェライト粒子を挙げることができる。酵素標識抗体としては、限定されないが、例えば、アルカリホスファターゼ(ALP)で標識された抗体を挙げることができる。ALP標識抗体を用いる場合、基質液としては、例えば、3-(2'- スピロアダマンタン)-4- メトキシ-4-(3''- ホスホリルオキシ) フェニル-1,2- ジオキセタン・2 ナトリウム塩(3-(2'-spiroadamantane)-4-methoxy-4-(3''-phosphoryloxy)phenyl-1,2-dioxetane disodium salt;AMPPD)を挙げることができる。 The 2-step sandwich method can be performed, for example, by the following procedure. As a monoclonal antibody (hereinafter sometimes simply referred to as “monoclonal antibody”) for detecting the “tumor marker of the present invention” (hereinafter sometimes simply referred to as “tumor marker”), it can be recovered by a method such as a magnet. Two types are prepared: “antibody-bound particles” bound to particles and “enzyme-labeled antibodies” bound to enzymes. As a first reaction, a primary immune complex is formed by a monoclonal antibody bound to antibody-bound particles and a tumor marker contained in a specimen. Thereafter, the primary immune complex is recovered with a magnet or the like, the reaction solution is removed, and the primary immune complex is washed. As a second reaction, a secondary immune complex is formed by an enzyme-labeled antibody and a tumor marker bound to antibody-bound particles via a monoclonal antibody. Thereafter, the secondary immune complex is recovered again with a magnet or the like, the reaction solution is removed, and the secondary immune complex is washed. Finally, a “substrate solution” (solution containing the enzyme substrate in the enzyme-labeled antibody) is added to the secondary immune complex, and the amount of tumor marker present in the sample is measured by detecting the enzyme reaction. To do. Examples of antibody-bound particles include, but are not limited to, ferrite particles to which antibodies are bound. Examples of enzyme-labeled antibodies include, but are not limited to, antibodies labeled with alkaline phosphatase (ALP). When an ALP-labeled antibody is used, as a substrate solution, for example, 3- (2′- spiroadamantane) -4- methoxy-4- (3 ″-phosphoryloxy) phenyl-1,2- dioxetane · 2 sodium salt ( 3- (2′-spiroadamantane) -4-methoxy-4- (3 ″ -phosphoryloxy) phenyl-1,2-dioxetane disodium salt; AMPPD).
 LC法を利用する場合は、例えば、順相カラム及び逆相カラムのHPLCで分離してから、2次元糖鎖マッピング法による解析を行って検出してもよい。詳細には、実施例に記載の方法により行うことができる。また、必要に応じて複数の工程を組み合わせて行ってもよい。例えば、液体クロマトグラフィーを利用して検出する工程と質量分析を利用して検出する工程を組み合わせる方法(LC-MS法)を利用してもよい。詳細には、実施例に記載の方法により行うことができる。 When using the LC method, for example, it may be detected by performing analysis by a two-dimensional sugar chain mapping method after separation by HPLC of a normal phase column and a reverse phase column. In detail, it can carry out by the method as described in an Example. Moreover, you may carry out combining several processes as needed. For example, a method (LC-MS method) combining a step of detecting using liquid chromatography and a step of detecting using mass spectrometry may be used. In detail, it can carry out by the method as described in an Example.
 レクチンを利用する場合は、例えば、レクチンカラムクロマトグラフィー又はレクチンブロットによって検出することができる。 When a lectin is used, it can be detected by, for example, lectin column chromatography or lectin blot.
 検出値とは、検出方法によって異なるが、検出機器によって直接検出された測定値そのものであってもよいし、その測定値を基にして特定の計算式に従って算出された計算値であってもよい。計算値としては、例えば「本発明の腫瘍マーカー」の量、濃度等が挙げられる。「本発明の腫瘍マーカー」の量又は濃度は、例えば、「本発明の腫瘍マーカー」の量又は濃度が予め分かっている標準検体を用いて得られた検出値に基づいて検量線(標準曲線;Standard curve)を作成することにより計算することができる。 The detection value differs depending on the detection method, but may be a measurement value directly detected by a detection device, or may be a calculation value calculated according to a specific calculation formula based on the measurement value. . Examples of the calculated value include the amount and concentration of the “tumor marker of the present invention”. The amount or concentration of the “tumor marker of the present invention” is, for example, a standard curve (standard curve; based on a detection value obtained using a standard specimen in which the amount or concentration of the “tumor marker of the present invention” is known in advance. It can be calculated by creating a Standard curve.
 判定の指標となる基準値は、同じ被検者の正常組織又は他の健常者を対照とし、これらにおける「本発明の腫瘍マーカー」の検出値に基づいて設定できる。例えば、複数種の対照を用意し、それらにおける「本発明の腫瘍マーカー」の検出値の平均値を基にして設定してもよい。平均値を算出するために用意する対照の数は特に限定されない。また、例えば「健常者の平均値」+(α×標準偏差)により設定することもできる。ここで、αは適宜設定することができる。 The reference value that serves as an index for determination can be set based on the detected value of the “tumor marker of the present invention” using normal tissues of the same subject or other healthy subjects as controls. For example, a plurality of types of controls may be prepared and set based on the average value of the detected values of the “tumor marker of the present invention”. The number of controls prepared for calculating the average value is not particularly limited. Alternatively, for example, “average value of healthy persons” + (α × standard deviation) can be set. Here, α can be set as appropriate.
 3.腫瘍検出キット
本発明の腫瘍検出キットは、前述の「本発明の腫瘍マーカー」を検出するために必要な材料を含むキットである。
3. Tumor detection kit The tumor detection kit of the present invention is a kit containing a material necessary for detecting the aforementioned "tumor marker of the present invention".
 本発明の腫瘍検出キットは、前述の「本発明の腫瘍検出方法」のために使用される。 The tumor detection kit of the present invention is used for the aforementioned “tumor detection method of the present invention”.
 「本発明の腫瘍マーカー」を検出するために必要な材料とは、「本発明の腫瘍検出方法」のために実質的に必要な試薬又は機器等の一部又は全部をいう。試薬の一部又は全部であってもよいし、機器の一部又は全部であってもよい。また、試薬の一部又は全部と機器の一部又は全部との組み合わせであってもよい。 The material necessary for detecting the “tumor marker of the present invention” refers to a part or all of reagents or equipment substantially necessary for the “tumor detection method of the present invention”. It may be part or all of the reagent, or part or all of the device. Further, a combination of a part or all of the reagent and a part or all of the device may be used.
 「本発明の腫瘍マーカー」を検出するために必要な材料は、「本発明の腫瘍検出方法」における腫瘍マーカーを検出する工程の種類によって異なる。 The material necessary for detecting the “tumor marker of the present invention” varies depending on the type of the step of detecting the tumor marker in the “tumor detection method of the present invention”.
 例えば、「本発明の腫瘍検出方法」における腫瘍マーカーを検出する工程が、抗体を利用した抗原抗体反応である場合、「本発明の腫瘍マーカー」を検出するために必要な材料の一例として、その抗体が挙げられる。さらに、例えば、抗原抗体反応が前述のサンドイッチELISA法(2ステップサンドイッチ法)である場合には、「本発明の腫瘍マーカー」を検出するために必要な材料の一例として、その抗体を含んでなる、抗体結合粒子及び酵素標識抗体が挙げられる。この場合、さらに基質液(酵素標識抗体中の酵素の基質を含有する溶液)を含んでいてもよい。 For example, when the step of detecting a tumor marker in the “tumor detection method of the present invention” is an antigen-antibody reaction using an antibody, as an example of the material necessary for detecting “the tumor marker of the present invention” An antibody is mentioned. Further, for example, when the antigen-antibody reaction is the above-described sandwich ELISA method (two-step sandwich method), the antibody is included as an example of a material necessary for detecting the “tumor marker of the present invention”. Antibody-binding particles and enzyme-labeled antibodies. In this case, a substrate solution (a solution containing the enzyme substrate in the enzyme-labeled antibody) may further be included.
 「本発明の腫瘍マーカー」を検出するために必要な材料にはさらに、検出を行う手順を示した指示書が含まれていてもよい。 The material necessary for detecting the “tumor marker of the present invention” may further include instructions indicating the procedure for performing the detection.
 4.抗体
 本発明の抗体は、前述の「本発明の腫瘍マーカー」に対する抗体である。
4). Antibody The antibody of the present invention is an antibody against the aforementioned “tumor marker of the present invention”.
 本発明の抗体は、「本発明の腫瘍マーカー」に対する特異的な抗体であれば好ましい。 The antibody of the present invention is preferably a specific antibody against the “tumor marker of the present invention”.
 本発明の抗体は、ポリクローナル抗体であってもよいし、モノクローナル抗体であってもよい。好ましくはモノクローナル抗体である。 The antibody of the present invention may be a polyclonal antibody or a monoclonal antibody. A monoclonal antibody is preferable.
 本発明の抗体は、前述の「抗体結合粒子」又は「酵素標識抗体」に組み込まれていてもよい。 The antibody of the present invention may be incorporated in the aforementioned “antibody-binding particle” or “enzyme-labeled antibody”.
 本発明の抗体を用いた抗原抗体反応を利用することで、検体中に含まれる「本発明の腫瘍マーカー」を検出することができる。 By utilizing an antigen-antibody reaction using the antibody of the present invention, the “tumor marker of the present invention” contained in a specimen can be detected.
 本発明の抗体を用いた抗原抗体反応は、前述の通り行うことができる。 The antigen-antibody reaction using the antibody of the present invention can be performed as described above.
 本発明のポリクローナル抗体の製造方法としては、本発明のポリクローナル抗体を製造できさえすればよく特に限定されない。例えば次の方法を挙げることができる。 The method for producing the polyclonal antibody of the present invention is not particularly limited as long as the polyclonal antibody of the present invention can be produced. For example, the following method can be mentioned.
 免疫原としては、例えば次を挙げることができる。例えば、ST1H付加糖脂質にコレステロール及びホスファチジルコリンからなるリポソーム等をキャリアー物質として、完全Freund 又はリピドA等のアジュバントとともに免疫する。あるいはST1H付加糖脂質をSalmonella minnesota等の菌体に吸着させたものを免疫する。そのほかに、糖脂質ではなく、糖鎖部分をキャリアーを用いてBSA(bovine serum albumin)に結合させたものを免疫原とする方法も挙げられる。 Examples of immunogens include the following. For example, ST1H-added glycolipid is immunized with a liposome comprising cholesterol and phosphatidylcholine as a carrier substance together with an adjuvant such as complete Freund® or lipid A. Alternatively, immunized with ST1H-added glycolipid adsorbed on cells such as Salmonella minnesota. In addition, there is also a method using an immunogen that is not a glycolipid but a glycan portion bound to BSA (bovineserumalbumin) using a carrier.
 免疫方法としては、例えば次を挙げることができる。家兎やニワトリ等に免疫原を皮下注射し、3-4日おきに追加免疫を数回行い、最終免疫後、1週間後に採血を行う。 Examples of immunization methods include the following. Rabbits and chickens are injected subcutaneously with the immunogen, boosted several times every 3-4 days, and blood is collected one week after the final immunization.
 ポリクローナル抗体の確認手段としては、例えばELISA法を利用することができる。 As a means for confirming polyclonal antibodies, for example, ELISA can be used.
 本発明のモノクローナル抗体の製造方法としては、本発明のモノクローナル抗体を製造できさえすればよく特に限定されない。例えば次の方法を挙げることができる。 The method for producing the monoclonal antibody of the present invention is not particularly limited as long as the monoclonal antibody of the present invention can be produced. For example, the following method can be mentioned.
 免疫原としては、例えば次を挙げることができる。ST1H付加糖脂質にコレステロール及びホスファチジルコリンからなるリポソーム等をキャリアー物質として、完全Freund 又はリピドA等のアジュバントとともに免疫する方法がある。あるいはST1H付加糖脂質をSalmonella minnesota等の菌体に吸着させたものを免疫原とする。免疫方法としては、例えば次を挙げることができる。数匹のマウスに免疫原を腹腔内投与し、3-4日おきに追加免疫を数回行い、最終免疫後、1週間後に採血を行う。ELISA法で血清の抗体力価を測定し、力価の最も高いマウスを選び、通常の細胞融合に用いる。マウスより脾細胞を抽出し、ミエローマ細胞とPEG(ポリエチレングリコール)法などで細胞融合させ、ハイブリドーマ選択培地(HAT培地)にて培養し、ハイブリドーマを選択する。陽性クローンのスクリーニング、クローニング、抗体価の測定には主にELISA法が用いられるが、そのほかに、補体結合反応法などもある。 Examples of immunogens include the following. There is a method in which ST1H-added glycolipid is immunized with a liposome comprising cholesterol and phosphatidylcholine as a carrier substance together with an adjuvant such as complete Freund or lipid A. Alternatively, an ST1H-added glycolipid adsorbed on cells such as Salmonella minnesota is used as an immunogen. Examples of immunization methods include the following. Several mice are given the immunogen intraperitoneally, boosted several times every 3-4 days, and blood is collected one week after the final immunization. Serum antibody titer is measured by ELISA, and the mouse with the highest titer is selected and used for normal cell fusion. Spleen cells are extracted from mice, fused with myeloma cells by the PEG (polyethylene glycol) method, etc., cultured in a hybridoma selection medium (HAT medium), and hybridomas are selected. The ELISA method is mainly used for screening positive clones, cloning, and antibody titer measurement, but there are also complement binding reaction methods.
 ELISA法では、抗原の糖脂質とコレステロール及びホスファチジルコリンの混合物を96穴プレートに固相化し、ハイブリドーマの上清を加えて反応させる。洗浄後、例えばペルオキシダーゼなどで標識されたGoat抗マウス免疫グロブリンを反応させる。さらに洗浄後、TMB(3,3’,5,5’-tetramethylbenzidine)等のペルオキシダーゼ発色基質を用いて発色させ、プレートリーダーにて発色を読み取る。 In the ELISA method, a mixture of antigen glycolipid, cholesterol and phosphatidylcholine is immobilized on a 96-well plate, and the hybridoma supernatant is added and reacted. After washing, for example, a Goat anti-mouse immunoglobulin labeled with peroxidase or the like is reacted. Further, after washing, color is developed using a peroxidase chromogenic substrate such as TMB (3,3 ', 5,5'-tetramethylbenzidine), and the color development is read with a plate reader.
 糖鎖を認識するモノクローナル抗体作成方法は、次の文献の記載を参照して行うこともできる。
(1)Kannagi, R. 2000. Monoclonal anti-glycoshingolipid antibodies. Methods Enzymol. 312: 160-179.
(2)鈴木康夫、安藤 進 編著、生物化学実験法35、ガングリオシド研究法I、学会出版センター、p209-p237.。
A method for producing a monoclonal antibody that recognizes a sugar chain can also be carried out with reference to the following literature.
(1) Kannagi, R. 2000. Monoclonal anti-glycoshingolipid antibodies. Methods Enzymol. 312: 160-179.
(2) Yasuo Suzuki, Susumu Ando, Biochemical Experimental Method 35, Ganglioside Research Method I, Academic Publishing Center, p209-p237.
 「抗体結合粒子」又は「酵素標識抗体」は、それぞれ公知の方法に従って製造することができる。 “Antibody-binding particles” or “enzyme-labeled antibodies” can be produced according to known methods, respectively.
5.レクチン
 本発明のレクチンは、前述の「本発明の腫瘍マーカー」を認識するレクチンである。
5. Lectin The lectin of the present invention is a lectin that recognizes the aforementioned “tumor marker of the present invention”.
 本発明のレクチンは、例えば、次のようにして取得することができる。 The lectin of the present invention can be obtained, for example, as follows.
 レクチンの抽出、精製法は、一般的なタンパク質の精製法と基本的には同じである。例えば、「山崎信行、八木史郎、小田達也、畠山智充、小川智久 編著、生物化学実験法52、レクチン研究法、学会出版センター、p19-p77.」に記載の方法にしたがって行うこともできる。 Lectin extraction and purification methods are basically the same as general protein purification methods. For example, it can be carried out according to the method described in “Nobuyuki Yamazaki, Shiro Yagi, Tatsuya Oda, Tomomitsu Hatakeyama, Tomohisa Ogawa, Biochemical Experimental Method 52, Lectin Research Method, Society Publishing Center, p19-p77.”
 抽出材料としては、動物組織、植物の種子、無脊椎動物の体液及び殻並びに菌類等が挙げられる。それらを例えば、リン酸緩衝液、Tris-HCl緩衝液又は緩衝化していない食塩水等(Triton X-100等のdetergent、EDTA又は各種プロテアーゼ阻害剤を適宜、含有することがある)中でホモジナイズして、レクチンを抽出する。精製には主に、糖鎖をリガンドとしたアフィニティークロマトグラフィーが用いられる。糖鎖をリガンドとして担体に固定化するための樹脂の活性化には、エポキシ活性化の他、カルボニルジイミダゾール又はジビニルスルホン等を用いる方法がある。上記の方法を用いてST1Hを固定化したアフィニティーゲルを作成し、レクチンを含む粗抽出物をゲルにアプライし、レクチンを結合させた後、ゲルを洗浄し、過剰量のST1Hを含む液、あるいは強酸性の液等で溶出することによりレクチンを得ることができる。また、アフィニティークロマトグラフィーの他、通常のタンパク質の精製と同様に、ゲルろ過クロマトグラフィーやイオン交換クロマトグラフィー等を組み合わせて精製することもできる。 Extraction materials include animal tissues, plant seeds, invertebrate body fluids and shells, and fungi. They are homogenized in, for example, phosphate buffer, Tris-HCl buffer or unbuffered saline (which may contain detergent such as Triton X-100, EDTA or various protease inhibitors as appropriate). Extract the lectin. For the purification, affinity chromatography using a sugar chain as a ligand is mainly used. For the activation of the resin for immobilizing the sugar chain on the carrier as a ligand, there is a method using carbonyldiimidazole or divinylsulfone in addition to epoxy activation. Create an affinity gel immobilized with ST1H using the above method, apply a crude extract containing lectin to the gel, bind the lectin, wash the gel, and a solution containing excess ST1H, or Lectins can be obtained by elution with a strongly acidic solution or the like. In addition to affinity chromatography, purification can be performed by combining gel filtration chromatography, ion exchange chromatography, and the like in the same manner as normal protein purification.
 レクチン活性の測定は、例えば、「山崎信行、八木史郎、小田達也、畠山智充、小川智久 編著、生物化学実験法52、レクチン研究法、学会出版センター、p19-p77.」に記載の方法にしたがって行うこともできる。レクチン活性の測定には、レクチンと糖リガンド(ST1H)との結合を測定する方法等が用いられる。ST1Hを、ジビニルスルホン等を用いてマイクロタイタープレートに固定化する。次にレクチン溶液をプレート上のウェルに加え、反応させた後、洗浄し、ウェルにコロイド金溶液を加えて反応させた後、620nmでの吸光度を測定し、結合レクチン量を測定する。 The measurement of lectin activity is, for example, the method described in “Nobuyuki Yamazaki, Shiro Yagi, Tatsuya Oda, Tomomitsu Sasayama, Tomohisa Ogawa, Biochemical Experimental Method 52, Lectin Research Method, Society Publishing Center, p19-p77.” It can therefore be done. For the measurement of lectin activity, a method of measuring the binding between lectin and a sugar ligand (ST1H) is used. ST1H is immobilized on a microtiter plate using divinyl sulfone or the like. Next, the lectin solution is added to the wells on the plate, allowed to react, washed, and the colloidal gold solution is added to the wells to react, and then the absorbance at 620 nm is measured to determine the amount of bound lectin.
6.抗腫瘍化合物のスクリーニング方法
 本発明の腫瘍マーカーは、抗腫瘍化合物をスクリーニングするための指標として用いることができる。よって、本発明は、本発明の腫瘍マーカーを指標として抗腫瘍化合物をスクリーニングする方法も包含する。抗腫瘍化合物とは、抗腫瘍効果を有する化合物である。
6). Screening Method for Antitumor Compound The tumor marker of the present invention can be used as an index for screening an antitumor compound. Therefore, the present invention also includes a method for screening an antitumor compound using the tumor marker of the present invention as an index. An antitumor compound is a compound having an antitumor effect.
 具体的には、当該スクリーニング方法は、本発明の腫瘍マーカーが発現した腫瘍細胞に対して、(好ましくは複数の)候補化合物を適用し、当該腫瘍マーカー量が減少する又は消失する場合に、用いた候補化合物を抗腫瘍化合物として選定する方法である。つまり、当該スクリーニング方法は(i)本発明の腫瘍マーカーが発現した腫瘍細胞に対して、候補化合物を適用する工程、及び(ii)前記腫瘍細胞の本発明の腫瘍マーカー発現が減少又は消失した場合に、用いた候補化合物を抗腫瘍化合物として選定する工程、を含む。 Specifically, the screening method is used when a candidate compound (preferably a plurality) is applied to tumor cells expressing the tumor marker of the present invention, and the amount of the tumor marker decreases or disappears. This is a method for selecting a candidate compound as an antitumor compound. That is, the screening method includes (i) a step of applying a candidate compound to a tumor cell in which the tumor marker of the present invention is expressed, and (ii) when the expression of the tumor marker of the present invention in the tumor cell is reduced or eliminated And a step of selecting the used candidate compound as an antitumor compound.
 より具体的には、例えば、Lewis(-)の人由来の大腸癌細胞(本発明の腫瘍マーカーが発現している)を培養して株化し、当該細胞の本発明の腫瘍マーカーの発現量を測定した後、候補化合物を培地に加えて一定時間培養した後、再度本発明の腫瘍マーカー発現量を測定する、という手順が例示される。 More specifically, for example, a colon cancer cell derived from a person of Lewis (-) (cultured with the tumor marker of the present invention) is cultured and established, and the expression level of the tumor marker of the present invention in the cell is determined. After the measurement, a procedure is exemplified in which the candidate compound is added to the medium and cultured for a certain period of time, and then the expression level of the tumor marker of the present invention is measured again.
 なお、上記の腫瘍検出キットは、当該スクリーニング方法における本発明の腫瘍マーカーの検出を行うために用いることもできる。 The tumor detection kit described above can also be used for detecting the tumor marker of the present invention in the screening method.
 7.癌の状態(病状)のモニタリング方法
 本発明の腫瘍マーカーは、癌患者の病状(癌の状態)をモニタリンググするための指標として用いることができる。よって、本発明は、本発明の腫瘍マーカーを指標として癌患者の病状をモニタリングする方法も包含する。
7). Method for Monitoring Cancer State (Disease State) The tumor marker of the present invention can be used as an index for monitoring a disease state (cancer state) of a cancer patient. Therefore, the present invention also includes a method for monitoring the pathology of cancer patients using the tumor marker of the present invention as an index.
 当該モニタリング方法は、本発明の腫瘍マーカーが発現した腫瘍を有する患者の病状をモニタリングする方法である。具体的には、前記患者から(好ましくは定期的に)本発明の腫瘍マーカーが発現した腫瘍を検体として採取し、該検体の本発明の腫瘍マーカーの発現を測定し、以前又は以後の測定結果と比較することで、当該患者の癌の状態(進行度合)をモニタリングする方法である。つまり、当該モニタリング方法は(i)本発明の腫瘍マーカーが発現した腫瘍を有する患者から当該腫瘍を検体として採取する工程、及び(ii)該検体の本発明の腫瘍マーカーの発現を測定し、以前又は以後の測定結果と比較する工程、を含む。 The monitoring method is a method for monitoring the medical condition of a patient having a tumor in which the tumor marker of the present invention is expressed. Specifically, a tumor in which the tumor marker of the present invention is expressed from the patient (preferably periodically) is collected as a sample, and the expression of the tumor marker of the present invention in the sample is measured. It is a method of monitoring the cancer state (degree of progression) of the patient by comparing with. That is, the monitoring method comprises (i) a step of collecting the tumor as a specimen from a patient having a tumor in which the tumor marker of the present invention is expressed, and (ii) measuring the expression of the tumor marker of the present invention in the specimen, Or a step of comparing with subsequent measurement results.
 なお、上記の腫瘍検出キットは、当該モニタリング方法における本発明の腫瘍マーカーの検出を行うために用いることもできる。 Note that the above-described tumor detection kit can also be used to detect the tumor marker of the present invention in the monitoring method.
 以下に実施例により本発明をさらに詳細に説明するが、本発明は以下の例にのみ限定されるものではない。 Hereinafter, the present invention will be described in more detail by way of examples. However, the present invention is not limited to the following examples.
 全65症例(大腸癌60例、膵臓癌5例)に由来する組織検体を用いた。癌組織から癌細胞を抽出し、さらに癌細胞から糖脂質を抽出した。糖脂質から糖鎖を切り出し、さらに蛍光標識した。蛍光標識された糖鎖をHPLCで順相カラムおよび逆相カラムのHPLCで分離し、2次元糖鎖マッピング法による解析を行い、スタンダードと一致しない新規の糖鎖の有無を検証した。さらに質量分析法及び酵素消化法を用いてこの新規の糖鎖構造を同定した。各手順は次の通り行った。 Tissue samples derived from all 65 cases (60 cases of colon cancer and 5 cases of pancreatic cancer) were used. Cancer cells were extracted from the cancer tissue, and glycolipids were further extracted from the cancer cells. A sugar chain was cut out from the glycolipid and further fluorescently labeled. Fluorescently labeled sugar chains were separated by HPLC using normal phase columns and reverse phase columns by HPLC, and analyzed by a two-dimensional sugar chain mapping method to verify the presence or absence of new sugar chains that did not match the standard. Furthermore, this novel sugar chain structure was identified using mass spectrometry and enzyme digestion. Each procedure was performed as follows.
 (1)癌組織からの癌細胞の抽出
(i)新鮮な癌組織(大腸癌、膵臓癌)、正常組織(大腸正常粘膜、膵臓正常組織)を、実体顕微鏡下で、フェザー刃でできるだけ薄くスライスした。
(ii)スライスしたもの に2mg/ml Collagenase を含むDMEM/F12培地、約10mlを加え、37℃ 、 30分インキュベーションした。
(iii)反応液を、500μmステンレスメッシュでこして、未消化物を除去し、ろ過した液をPBSにて洗浄し、1500rpm、5分遠心して、supを完全に除き、cell pelletにした。
(iv)PBE (PBS, 0.5% BSA, 2mM EDTA) 1300μlでCell pelletをsuspensionし、FcR Blocking Reagent 100μl、CD326 MicroBeads (Milteny Biotec )100μlを加え、4℃ 、30分インキュベーションした(Milteny Biotecのプロトコールに従った。)。
(v)反応液をPBEにて洗浄し、MACS separation columnにてCD326 positiveな細胞を分離した(CD326 positiveが癌細胞、あるいは、正常粘膜上皮細胞に相当する)。
(1) Extraction of cancer cells from cancer tissue (i) Slice fresh cancer tissue (colon cancer, pancreatic cancer) and normal tissue (colon normal mucosa, normal pancreas tissue) as thin as possible with a feather blade under a stereomicroscope did.
(Ii) About 10 ml of DMEM / F12 medium containing 2 mg / ml Collagenase was added to the sliced piece and incubated at 37 ° C. for 30 minutes.
(Iii) The reaction solution was rubbed with a 500 μm stainless mesh to remove undigested matter, and the filtered solution was washed with PBS, centrifuged at 1500 rpm for 5 minutes to completely remove sup, and a cell pellet was obtained.
(Iv) Suspension the cell pellet with 1300 μl of PBE (PBS, 0.5% BSA, 2 mM EDTA), add 100 μl of FcR Blocking Reagent and 100 μl of CD326 MicroBeads (Milteny Biotec), and incubate at 4 ° C. for 30 minutes (Milteny Biotec protocol I followed.)
(V) The reaction solution was washed with PBE, and CD326 positive cells were separated with a MACS separation column (CD326 positive corresponds to cancer cells or normal mucosal epithelial cells).
 (2)癌細胞・正常粘膜上皮細胞の糖脂質の構造解析
以下の論文の記載に従って行った。
Misonou, Y.; Shida, K.; Korekane, H.; Seki, Y.; Noura, S.; Ohue, M.; Miyamoto, Y., Comprehensive Clinico-Glycomic Study of 16 Colorectal Cancer Specimens: Elucidation of Aberrant Glycosylation and Its Mechanistic Causes in Colorectal Cancer Cells. J Proteome Res 2009, 8, (6), 2990-3005.
(2) Structural analysis of glycolipids of cancer cells and normal mucosal epithelial cells The analysis was performed as described in the following paper.
Misonou, Y .; Shida, K .; Korekane, H .; Seki, Y .; Noura, S .; Ohue, M .; Miyamoto, Y., Comprehensive Clinico-Glycomic Study of 16 Colorectal Cancer Specimens: Elucidation of Aberrant Glycosylation and Its Mechanistic Causes in Colorectal Cancer Cells.J Proteome Res 2009, 8, (6), 2990-3005.
 (3)糖脂質の抽出方法
(i)クロロフォルム:メタノール(2:1) 600μlを細胞のpelletに加え、37℃で2時間インキュベートした。遠心後、上清を回収した。また、再度、pelletにクロロフォルム:メタノール:水(1:2:0.8)を550μl加え、37℃で2時間インキュベートし、遠心後、上清を回収した。二つの抽出物をたして(総脂質)total lipidとした。
(ii)イオン交換カラム(DEAE)により中性脂質と酸性脂質とに分離した。DEAE Sephadex A25 (Amersham-Pharmacia Biotec)gel 0.1mlをミニカラムに充填し、クロロフォルム:メタノール:水(30:60:8)で平衡化した。
(iii)抽出した総脂質を1ml/minでカラムにアプライした。100% メタノール0.8 mlで洗浄し、溶出液をあわせて中性脂質画分とした。200mM 酢酸アンモニウムを含む メタノール1mlで酸性脂質画分を溶出した。両者は遠心濃縮機で乾固させた。
(iv)乾固した酸性脂質画分は50μlのクロロフォルム:メタノール:水(5:5:1)に溶解した。乾固した中性脂質画分は50μlのクロロフォルム:メタノール(2:1)で完全に溶解し、1000μlのアセトンを加えて、4℃に2時間静置後、15000rpm で15分、遠心した。上清を除き、沈殿をすばやく遠心濃縮機で乾固した。0.1N NaOH を含むクロロフォルム:メタノール:水(5:5:1) 50μlを加えて、37℃で1時間インキュベート後、酢酸原液をクロロフォルム:メタノール(5:5:1)で20倍希釈したものを6μl加えて中和した。
(v)ゲルろ過クロマトグラフィーで脱塩と組織由来の不純物の除去を行う。
(vi)ゲルろ過クロマトグラフィー用担体Toyopearl HW40C(TOSOH)を クロロフォルム:メタノール:水(5:5:1)で平衡化し、1mlをカラムに充填した。
(vii)中性脂質画分、酸性脂質画分をカラムにかけ、クロロフォルム:メタノール:水(5:5:1)で溶出した。300μl-800μlに糖脂質が溶出される。それらを遠心濃縮機で乾固させた。
(3) Glycolipid extraction method (i) Chloroform: methanol (2: 1) 600 μl was added to the cell pellet and incubated at 37 ° C. for 2 hours. After centrifugation, the supernatant was collected. Again, 550 μl of chloroform: methanol: water (1: 2: 0.8) was added to the pellet, incubated at 37 ° C. for 2 hours, centrifuged, and the supernatant was recovered. The two extracts were combined to give a total lipid (total lipid).
(Ii) Neutral lipids and acidic lipids were separated by an ion exchange column (DEAE). DEAE Sephadex A25 (Amersham-Pharmacia Biotec) gel (0.1 ml) was packed in a minicolumn and equilibrated with chloroform: methanol: water (30: 60: 8).
(Iii) The extracted total lipid was applied to the column at 1 ml / min. This was washed with 0.8 ml of 100% methanol, and the eluates were combined to obtain a neutral lipid fraction. The acidic lipid fraction was eluted with 1 ml of methanol containing 200 mM ammonium acetate. Both were dried with a centrifugal concentrator.
(Iv) The dried acidic lipid fraction was dissolved in 50 μl of chloroform: methanol: water (5: 5: 1). The dried neutral lipid fraction was completely dissolved in 50 μl of chloroform: methanol (2: 1), added with 1000 μl of acetone, allowed to stand at 4 ° C. for 2 hours, and then centrifuged at 15000 rpm for 15 minutes. The supernatant was removed and the precipitate was quickly dried with a centrifugal concentrator. Add 50 μl of chloroform: methanol: water (5: 5: 1) containing 0.1N NaOH, incubate at 37 ° C for 1 hour, and then dilute the acetic acid stock solution 20 times with chloroform: methanol (5: 5: 1). 6 μl was added to neutralize.
(V) Desalting and removal of tissue-derived impurities by gel filtration chromatography.
(Vi) The support for gel filtration chromatography Toyopearl HW40C (TOSOH) was equilibrated with chloroform: methanol: water (5: 5: 1), and 1 ml was packed in the column.
(Vii) The neutral lipid fraction and acidic lipid fraction were applied to a column and eluted with chloroform: methanol: water (5: 5: 1). Glycolipid is eluted in 300μl-800μl. They were dried with a centrifugal concentrator.
 (4)糖脂質からの糖鎖の切り出し
(i)乾固させた酸性、中性糖脂質に45μl の30mM 酢酸ナトリウム(pH 5.0),0.1% taurodeoxycholate (1mg/ml)を加えて溶解した。
(ii)recombinant Endoglycoceramidase II(TAKARA ,2 mU/μl)を5μl加え、37℃で一晩反応させた。
(4) Glycan chain excision from glycolipid (i) 45 μl of 30 mM sodium acetate (pH 5.0), 0.1% taurodeoxycholate (1 mg / ml) was added to the dried acidic and neutral glycolipid and dissolved.
(Ii) 5 μl of recombinant Endoglycoceramidase II (TAKARA, 2 mU / μl) was added and reacted at 37 ° C. overnight.
 (5)2-アミノピリジンによる糖鎖の蛍光標識 (PA化)
(i)反応液をReacti Vial(Plerce)に移し、凍結乾燥させた。
(ii)凍結乾燥した試料にピリジルアミノ化試薬(2-アミノピリジン552mgを酢酸200μlに溶かして作成した)を20μl加えて、90℃、1時間反応させた。
(iii)その後、還元試薬(ボラン-ジメチルアミン100mgを酢酸40μl、水25μlに溶解して作成した)70μlを加え、80℃、35分反応させた。
(iv)反応終了後、過剰の2-アミノピリジンを、フェノール-クロロフォルム抽出、陽イオン交換樹脂Dowex 50W-X8 (NH4+型)などを用いて除去した。
(5) Fluorescent labeling of sugar chains with 2-aminopyridine (PA)
(I) The reaction solution was transferred to Reacti Vial (Plerce) and freeze-dried.
(Ii) 20 μl of a pyridylamination reagent (prepared by dissolving 552 mg of 2-aminopyridine in 200 μl of acetic acid) was added to the lyophilized sample and reacted at 90 ° C. for 1 hour.
(Iii) Thereafter, 70 μl of a reducing reagent (prepared by dissolving 100 mg of borane-dimethylamine in 40 μl of acetic acid and 25 μl of water) was added and reacted at 80 ° C. for 35 minutes.
(Iv) After completion of the reaction, excess 2-aminopyridine was removed using phenol-chloroform extraction, cation exchange resin Dowex 50W-X8 (NH4 + type) and the like.
 (6)ピリジルアミノ化(PA化)糖鎖の分離、同定
ピリジルアミノ化(PA化)糖鎖を順相カラムおよび逆相カラムのHPLCで分離し、2次元糖鎖マッピング法、質量分析法、および、酵素消化法を用いて構造の同定を行う。
順相および逆相のHPLCで分離する際、同時にPA化グルコースオリゴマー(1~15)を解析し,各オリゴ糖の溶出位置(分)を測定し、グルコース.Unitを算出した。
逆相カラムでのグルコース.Unitを横軸に,順相カラムでのグルコース.Unitを縦軸にプロットして2次元糖鎖マップを作成した。スタンダードとなる既知のPA化糖鎖の2次元糖鎖マップと比較して糖鎖構造を推定した(図2参照)。さらに、質量分析をおこない、推定したものと同じ質量であることを確認した。2次元糖鎖マップで推定できない糖鎖は、必要に応じて特定の糖鎖構造を切断する酵素(エキソグリコシダーゼ)でPA化糖鎖を分解し、構造を推定した。
(6) Separation and identification of pyridylaminated (PA) sugar chain Pyridylaminated (PA) sugar chain was separated by normal phase column and reverse phase column HPLC, two-dimensional sugar chain mapping method, mass spectrometry The structure is identified using the method and enzymatic digestion method.
When separating by normal phase and reverse phase HPLC, PA-oligoglucose oligomers (1 to 15) were simultaneously analyzed, and the elution position (minute) of each oligosaccharide was measured to calculate glucose.Unit.
A two-dimensional sugar chain map was created by plotting glucose.Unit on the reverse phase column on the horizontal axis and glucose.Unit on the normal phase column on the vertical axis. The sugar chain structure was estimated by comparison with a standard two-dimensional sugar chain map of a known PA sugar chain (see FIG. 2). Furthermore, mass spectrometry was performed and it was confirmed that the mass was the same as that estimated. For sugar chains that could not be estimated by the two-dimensional sugar chain map, the PA sugar chain was decomposed with an enzyme (exoglycosidase) that cleaves a specific sugar chain structure as necessary, and the structure was estimated.
 最初に順相のHPLCにてPA化糖鎖を分離した。
TSK amide-80 2.0 X 250mm (TOSOH)を使用した。
分離液
A: acetonitrile: 0.5M 酢酸トリエチルアミン (pH 7.3), 10% acetonitrile 75:15B: acetonitrile: 0.5M 酢酸トリエチルアミン (pH 7.3), 10% acetonitrile 40:50流速は0.2ml/minで、分離液Bを0%にし、試料を注入後、100分で分離液Bを100%になるように直線的に上昇させた。
First, PA sugar chains were separated by normal phase HPLC.
TSK amide-80 2.0 X 250mm (TOSOH) was used.
Separation liquid
A: acetonitrile: 0.5M triethylamine acetate (pH 7.3), 10% acetonitrile 75: 15B: acetonitrile: 0.5M triethylamine acetate (pH 7.3), 10% acetonitrile 40:50 Flow rate is 0.2ml / min, separation B is 0 %, And 100 minutes after injection of the sample, the separation liquid B was linearly raised to 100%.
 蛍光検出器は励起波長 310nm, 蛍光波長 380nmにセットした。 The fluorescence detector was set to an excitation wavelength of 310 nm and a fluorescence wavelength of 380 nm.
 順相のHPLCにて分離したそれぞれのピーク(PA化糖鎖)を回収し、遠心濃縮機で乾固させた後、適量の水に溶解し、逆相のHPLCにてさらに分離した。
ODS-80TS 2.0 X 150mm (TOSOH)を使用した。
分離液
A: 50mM酢酸トリエチルアミン (pH 6.0) 
B: 50mM酢酸トリエチルアミン (pH 6.0), 20% acetonitrile
流速は0.2ml/minで、分離液Bを0%にし、試料を注入後、54分で分離液Bを18%になるように直線的に上昇させた。
Each peak (PA sugar chain) separated by normal-phase HPLC was collected, dried with a centrifugal concentrator, dissolved in an appropriate amount of water, and further separated by reverse-phase HPLC.
ODS-80TS 2.0 X 150mm (TOSOH) was used.
Separation liquid
A: 50 mM triethylamine acetate (pH 6.0)
B: 50 mM triethylamine acetate (pH 6.0), 20% acetonitrile
The flow rate was 0.2 ml / min, the separation liquid B was 0%, and after the sample was injected, the separation liquid B was linearly increased to 18% in 54 minutes.
 蛍光検出器は励起波長 315nm, 蛍光波長 400nmにセットした。
逆相のHPLCにて分離したそれぞれのピーク(PA化糖鎖)を回収し、遠心濃縮機で乾固させた後、適量の水に溶解しnano-LC/LCQ Deca XP(ESI-ion trap)で質量分析測定を行った。
The fluorescence detector was set at an excitation wavelength of 315 nm and a fluorescence wavelength of 400 nm.
Recover each peak (PA sugar chain) separated by reversed-phase HPLC, dry with a centrifugal concentrator, dissolve in an appropriate amount of water, and then add nano-LC / LCQ Deca XP (ESI-ion trap) The mass spectrometric measurement was performed.
 (7)新規腫瘍マーカーの発見、及びその検出
2症例(大腸癌1名、膵臓癌1名)において、新規の糖鎖構造を発見した。
2名の患者の癌細胞の糖脂質の分離パターンを図1に示す。
(7) Discovery of a novel tumor marker and its detection In two cases (one colorectal cancer and one pancreatic cancer), a novel sugar chain structure was discovered.
The separation pattern of glycolipids of cancer cells of two patients is shown in FIG.
 ピークの中でA8-2以外のすべてのPA化糖鎖は、既知のスタンダードとなるPA化糖鎖と2次元糖鎖マップで合致するとともに、質量分析においても合致したため、構造の推定が可能であった(表1~4)。 All PA sugar chains other than A8-2 in the peak match the PA standard sugar chain that is a known standard in the 2D sugar chain map and also in mass spectrometry, so the structure can be estimated. (Tables 1 to 4).
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 しかし、A8-2は、今まで有するスタンダードとは合致せず、未知の糖鎖の可能性が大であった(図2)。また、質量分析においては、Sialyl Lex, Sialyl Lea, ST2Hと異性体であった。構造決定のため、A8-2をエキソグリコシダーゼで切断した(図2;方法は後述)。A8-2をNeuraminidase(α-sialidase from Arthrobacter ureafaciens) (Nacalai)で切断すると、スタンダードのType1Hと2次元マップで合致した。また、A8-2をα-fucosidase(from bovine kidney) (Sigma)で切断すると、未知のシアル酸付加糖鎖に変わったが、それをさらにα2-3 sialydase from Salmonella typhimurium (Takara Bio Inc.)で切断すると、スタンダードのLc4と2次元マップで合致した。ただし、α2-3 sialydaseでの切断であるが、α2-3結合を特異的に切断する条件ではシアル酸は切断されなかったが、α2-3結合、α2-6結合の両方を切断する条件では切断されたことより、シアル酸はterminalのgalactoseにα2-6結合していることが示された。以上の結果から、この新規糖鎖構造は、NeuAcα2-6(Fucα1-2)Galβ1-3GlcNAcβ1-3Galβ1-4Glcであると同定できた。 However, A8-2 did not match the standard that it had so far, and the possibility of an unknown sugar chain was great (Fig. 2). In mass spectrometry, it was an isomer with Sialyl Le x , Sialyl Le a , ST2H. To determine the structure, A8-2 was cleaved with exoglycosidase (FIG. 2; method will be described later). When A8-2 was cut with Neuraminidase (α-sialidase from Arthrobacter ureafaciens) (Nacalai), it matched with the standard Type1H on a two-dimensional map. In addition, when A8-2 was cleaved with α-fucosidase (from bovine kidney) (Sigma), it was changed to an unknown sialic acid-added sugar chain, which was further converted into α2-3 sialydase from Salmonella typhimurium (Takara Bio Inc.). When cut, it matches the standard Lc4 on the 2D map. However, although it was cleaved with α2-3 sialydase, sialic acid was not cleaved under conditions that specifically cleave α2-3 bonds, but under conditions that cleave both α2-3 and α2-6 bonds. Cleavage showed that sialic acid was α2-6 linked to terminal galactose. From the above results, this novel sugar chain structure could be identified as NeuAcα2-6 (Fucα1-2) Galβ1-3GlcNAcβ1-3Galβ1-4Glc.
 この新規糖鎖構造 This new sugar chain structure
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
(式中、Rは糖残基を示す(前記に同じ))
を、ST1H(α2-6 sialylated type 1Hの略)と名付けた。ST1Hは、正常粘膜上皮細胞では1例も検出できなかった。
(Wherein R represents a sugar residue (same as above))
Was named ST1H (abbreviation of α2-6 sialylated type 1H). ST1H could not be detected in any case of normal mucosal epithelial cells.
 エキソグリコシダーゼによる切断は、次の通り行った。2 U/mlのα2,3-sialidase from Salmonella typhimurium (Takara)あるいは 2 U/mlのα-sialidase from Arthrobacter ureafaciens (Nacalai)をエキソグリコシダーゼとして用い、100 mM sodium acetate buffer, pH 5.5, for 2 hr at 37℃ (条件1)にて反応させた。条件1ではα2,3-sialidase はterminalのgalactoseにα2,3結合したシアル酸を特異的に切断したが、α2,6結合したシアル酸は切断しなかった。しかし、Arthrobacterα-sialidase はシアル酸の付加位置に関わらず、α2,3、α2,6 結合のシアル酸の両方を切断した。α2,3-sialidase from Salmonella typhimurium (Takara)を10 U/ml for 16 h(条件2)で反応させると、terminalのgalactoseにα2,3、α2,6結合したシアル酸、ともに切断した。 Cleavage with exoglycosidase was performed as follows. Using 2 U / ml α2,3-sialidase from Salmonella typhimurium (Takara) or 2 U / ml α-sialidase from Arthrobacter ureafaciens (Nacalai) as exoglycosidase, 100 mM sodium acetate buffer, pH 5.5, for 2 hr The reaction was carried out at 37 ° C. (condition 1). Under condition 1, α2,3-sialidase specifically cleaved α2,3-linked sialic acid to terminal galactose, but did not cleave α2,6-linked sialic acid. However, Arthrobacter α-sialidase cleaved both α2,3 and α2,6 -linked sialic acids regardless of the position of sialic acid addition. When α2,3-sialidase from Salmonella phi typhimurium (Takara) was reacted at 10 U / ml for 16 terminal h (condition 2), both sialic acids α2,3 and α2,6-linked to terminal galactose were cleaved.
 10 U/ml of α-fucosidase from bovine kidney (Sigma) を100 mM sodium acetate buffer, pH 5.5, for 16 hr at 37℃の条件で反応させると、ガラクトースにα1,2結合したフコース、N-アセチルグルコサミンにα1,3、α1,4結合したフコースを切断することができる。 10 / ml of α-fucosidase from bovine kidney (Sigma) under conditions of 100 mM sodium acetate buffer, pH 5.5, for 16 hr at 37 ° C, fucose, N-acetylglucosamine bound to galactose, α1,2 It is possible to cut fucose bonded to α1,3 and α1,4.
 予想されるST1Hの生合成経路を、他の主要な糖脂質の経路と併せて図3に示す。図3には、癌細胞と正常細胞における予想される糖脂質の合成経路を示してある。実線矢印は、正常細胞における経路を示す。一方、波線矢印は、癌細胞における経路を示す。ST1Hは、その前駆体であるType1Hにおいてそのガラクトースがシアル化されることによって生成すると考えられる。この反応が癌細胞特異的な反応であると考えられる。Lewis(+)正常細胞における主要な糖脂質は、Lea とLeb である。これに対して、Lewis(-)正常細胞における主要な糖脂質は、Lc4 と Type1Hである。悪性腫瘍では、Type 2の存在量、α2-3及び/又はα2-6シアル化、並びにα1-2フコシル化の割合が増大する。このため、Type 2としてはLex、Ley、LST-c、SLex及びST2H等、Type 1としてはSLea、SLec及びST1H等の多様な糖鎖構造が出現することとなる。そして、特筆すべきことは、Lewis(-)癌細胞においてはフコシルトランスフェラーゼ3(FUT3:図3では「4F」で表される経路の反応を進める)の活性がみられないため、Lea、SLea及びLebが産生されず、その代わりにSLec及び/又はST1Hが特に増加するということである。 The predicted biosynthesis pathway of ST1H is shown in FIG. 3 along with other major glycolipid pathways. FIG. 3 shows a predicted glycolipid synthesis pathway in cancer cells and normal cells. Solid arrows indicate pathways in normal cells. On the other hand, a wavy arrow indicates a route in cancer cells. ST1H is considered to be produced by sialylating the galactose in its precursor Type 1H. This reaction is considered to be a cancer cell specific reaction. The major glycolipids in Lewis (+) normal cells are Le a and Le b . In contrast, Lewis (-) key glycolipid in normal cells is Lc 4 and Type1H. In malignant tumors, Type 2 abundance, α2-3 and / or α2-6 sialylation, and α1-2 fucosylation rates are increased. For this reason, various sugar chain structures such as Le x , Le y , LST-c, SLe x and ST2H as Type 2 and SLe a , SLe c and ST1H as Type 1 appear. And it should be noted that Lewis (-) cancer cells do not show the activity of fucosyltransferase 3 (FUT3: advancing the reaction of the pathway represented by "4F" in FIG. 3), so Le a , SLe a and Le b are not produced, but instead SLe c and / or ST1H are specifically increased.
 SLea糖鎖構造(NeuAcα2-3Galβ1-3(Fucα1-4)GlcNAcβ1-R)及びsLe糖鎖構造(NeuAcα2-3Galβ1-3GlcNAcβ1-R)は、それぞれCA19-9抗体及びDU-PAN-2抗体によって認識される。 SLe a sugar chain structure (NeuAcα2-3Galβ1-3 (Fucα1-4) GlcNAcβ1-R ) and sLe c carbohydrate structures (NeuAcα2-3Galβ1-3GlcNAcβ1-R), depending respectively CA19-9 antibody and DU-PAN-2 antibody Be recognized.
 全65症例中、59症例(大腸癌56例、膵臓癌3例)は、(理由1)糖鎖に非常に高いLea構造が認められたこと、また(理由2)CA19-9がすべて5U/ml以上であったことから、Lewis positive(Lewis(+))であると判断した。大腸癌60症例中4症例、膵臓癌細胞5症例中2症例は、(理由1)糖鎖構造の中でLea構造を認めないか、あるいは極めて発現が低かったこと、(理由2)CA19-9がO U/mlであったこと、(理由3)ゲノムを調べると、6名とも今まで知られているmutant alleleのホモであったこと、また(理由4)Lewis enzymeの活性が検出限界以下であったことから、Lewis negative(Lewis(-))と判断した。なお、Lewis(-)の存在割合は約10%と言われており、65症例中6症例がLewis(-)というのは、当該割合によく合致している。 In all 65 patients, (example colon cancer 56, pancreatic cancer 3 cases) 59 cases, (Reason 1) very high that Le a structure was observed in the sugar chain, also is (Reason 2) CA19-9 All 5U Since it was more than / ml, it was judged to be Lewis positive (Lewis (+)). Colon cancer 60 cases in 4 cases, pancreatic cancer cells five cases 2 cases (Reason 1) or not acknowledged Le a structure in sugar chain structure, or very that the expression was low, (Reason 2) CA19- 9 was OU / ml, (Reason 3) Examining the genome, all 6 were homozygous of mutant allele, and (Reason 4) Lewis enzyme activity was below detection limit Therefore, it was judged as Lewis negative (Lewis (-)). Note that the presence ratio of Lewis (-) is said to be about 10%, and six out of 65 cases are said to be Lewis (-), which is in good agreement with the ratio.
 現時点では、全65症例の中で3症例の癌にのみST1Hが発現していた。この頻度は、ST1H がLewis(-)の人の癌に発現しやすいと仮定すると決して低い頻度とは言えない。大腸癌60症例中4症例、膵臓癌細胞5症例中2症例がLewis(-)であり、Lewis(-)6症例の中で3症例にST1Hが発現していたからである。ただし、解析症例数を増やすことで、Lewis(+)の人の癌でもST1Hの発現を認める可能性は十分に存在する。 At present, ST1H was expressed only in 3 of the 65 cases. This frequency is by no means low, assuming that ST1H や す い is likely to develop in cancer in Lewis (−) people. This is because 4 out of 60 cases of colorectal cancer and 2 out of 5 cases of pancreatic cancer cells were Lewis (−), and ST1H was expressed in 3 out of 6 cases of Lewis (−). However, by increasing the number of cases analyzed, there is a good possibility that ST1H expression is observed even in Lewis (+) human cancer.
 次の理由から、ST1HはLewis(-)の人の癌に発現しやすいと考えられる。図3に示す通り、Lewis(+)の人では、Lewis enzymeの活性が強いため、Lc4、Type1Hがそのまま存在することが少なく、Lea、Lebに変化する。また癌では、SLecを経てSLeaとなる。よってSLeaが腫瘍マーカーとなり、その検出のためにそれを認識する抗体CA19-9抗体が利用されている。一方、Lewis(-)の人の癌ではSLea の前駆体であるSLec (DU-PAN-2値)が上昇することが知られており、腫瘍マーカーとして使用されている。Lewis(-)の人では、Lewis enzyme(FUT3)の活性がないため、Lc4、Type1Hが主生成物となる。癌ではLc4からSLecが作成されるが、それがSLeaに変換されることがないため、SLec量が上昇する。このため、Lewis(-)に対しては、SLec構造を認識するDU-PAN-2抗体がCA19-9抗体の代わりに用いられている。今回の発見によれば、Lewis(-)の人の癌で、Type1HからST1Hが合成される可能性が示唆された。このことは、ST1Hを、SLec構造と同様に、Lewis(-)の人に対してより優れた腫瘍マーカーとして利用できることを示している。 For the following reasons, ST1H is likely to be expressed in Lewis (-) human cancer. As shown in FIG. 3, in the Lewis (+) person, the activity of Lewis enzyme is strong, so that Lc 4 and Type 1H rarely exist as they are, and change to Le a and Le b . In cancer, it becomes SLe a via SLe c . Therefore, the antibody CA19-9 that recognizes SLe a as a tumor marker and recognizes it is used. On the other hand, it is known that SLe c (DU-PAN-2 value), which is a precursor of SLe a , is increased in Lewis (−) human cancer, and is used as a tumor marker. In the case of Lewis (-), Lc 4 and Type 1H are the main products because Lewis enzyme (FUT3) has no activity. In cancer, SLe c is created from Lc 4 , but it is not converted to SLe a , so the amount of SLe c increases. Thus, Lewis (-) with respect to recognize SLe c structure DU-PAN-2 antibodies are used in place of CA19-9 antibody. This discovery suggests that ST1H may be synthesized from Type1H in Lewis (-) human cancer. This indicates that ST1H can be used as a better tumor marker for Lewis (-) individuals, similar to the SLe c structure.
 すなわち、DU-PAN-2同様に、ST1Hも、一般的な腫瘍マーカーとしても利用可能であると同時に、Lewis(-)の人に対してより優れた腫瘍マーカーとなりうる。 That is, like DU-PAN-2, ST1H can be used as a general tumor marker, and at the same time can be a better tumor marker for Lewis (-) people.

Claims (8)

  1. 以下の式(3)で表される糖鎖を有する、腫瘍マーカー。
    Figure JPOXMLDOC01-appb-C000001
    (式中、NeuAcはN-アセチルノイラミン酸残基を、Fucはフコース残基を、Galはガラクトース残基を、GlcNAcはN-アセチルグルコサミン残基を、α2-6はα2-6グリコシド結合を、α1-2はα1-2グリコシド結合を、β1-3はβ1-3グリコシド結合を、Rは糖残基をそれぞれ示す。)
    A tumor marker having a sugar chain represented by the following formula (3).
    Figure JPOXMLDOC01-appb-C000001
    (Where NeuAc is the N-acetylneuraminic acid residue, Fuc is the fucose residue, Gal is the galactose residue, GlcNAc is the N-acetylglucosamine residue, α2-6 is the α2-6 glycosidic bond. Α1-2 represents an α1-2 glycoside bond, β1-3 represents a β1-3 glycoside bond, and R represents a sugar residue.)
  2. 請求項1記載の腫瘍マーカーに対する抗体。 An antibody against the tumor marker according to claim 1.
  3. モノクローナル抗体である、請求項2記載の抗体。 The antibody according to claim 2, which is a monoclonal antibody.
  4. 請求項1記載の腫瘍マーカーを認識するレクチン。 A lectin that recognizes the tumor marker according to claim 1.
  5. 請求項1記載の腫瘍マーカーを検出するために必要な材料を含む、腫瘍検出キット。 A tumor detection kit comprising a material necessary for detecting the tumor marker according to claim 1.
  6. 腫瘍マーカーを検出するために必要な材料が請求項1記載の腫瘍マーカーに対する抗体又は請求項1記載の腫瘍マーカーを認識するレクチンである、項5記載の腫瘍検出キット。 The tumor detection kit according to claim 5, wherein the material necessary for detecting the tumor marker is an antibody against the tumor marker according to claim 1 or a lectin that recognizes the tumor marker according to claim 1.
  7. 検体が癌患者由来であるか否かを判定する方法であって、検体中の請求項1記載の腫瘍マーカーを検出し、その検出値が健常者より採取した検体中の該腫瘍マーカーの検出値に基づいて設定された基準値を超える検体を癌患者由来であると判定する方法。 A method for determining whether or not a specimen is derived from a cancer patient, wherein the tumor marker according to claim 1 is detected in the specimen, and the detected value is a detected value of the tumor marker in the specimen collected from a healthy subject A method for determining that a sample that exceeds a reference value set based on the above is derived from a cancer patient.
  8. (i)請求項1に記載の腫瘍マーカーが発現した腫瘍細胞に対して、候補化合物を適用する工程、及び(ii)前記腫瘍細胞の当該腫瘍マーカー発現が減少又は消失した場合に、用いた候補化合物を抗腫瘍化合物として選定する工程、を含む、抗腫瘍化合物のスクリーニング方法。 (I) a step of applying a candidate compound to the tumor cell in which the tumor marker according to claim 1 is expressed; and (ii) a candidate used when the expression of the tumor marker in the tumor cell is reduced or eliminated. A method for screening an antitumor compound, comprising a step of selecting the compound as an antitumor compound.
PCT/JP2011/054261 2010-02-26 2011-02-25 Tumor marker, antibody to same, detection kit for same, and method for detecting same WO2011105544A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-041859 2010-02-26
JP2010041859A JP2013100233A (en) 2010-02-26 2010-02-26 Tumor marker, antibody against the same, detection kit for the same, and method for detecting the same

Publications (1)

Publication Number Publication Date
WO2011105544A1 true WO2011105544A1 (en) 2011-09-01

Family

ID=44506941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054261 WO2011105544A1 (en) 2010-02-26 2011-02-25 Tumor marker, antibody to same, detection kit for same, and method for detecting same

Country Status (2)

Country Link
JP (1) JP2013100233A (en)
WO (1) WO2011105544A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015091953A (en) * 2013-10-01 2015-05-14 Jcrファーマ株式会社 Method for labeling carbohydrate chain by 2-aminopyridine
WO2018143336A1 (en) * 2017-02-03 2018-08-09 住友化学株式会社 Pancreatic cancer detection method
JP2020516892A (en) * 2017-04-14 2020-06-11 ジュノー セラピューティクス インコーポレイテッド Method for assessing cell surface glycosylation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0283337A (en) * 1988-09-18 1990-03-23 Nichirei Corp Diagnostic agent for cancer and recovery of tumor marker using the same agent

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0283337A (en) * 1988-09-18 1990-03-23 Nichirei Corp Diagnostic agent for cancer and recovery of tumor marker using the same agent

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
KANNAGI R. ET AL: "Carbohydrate-mediated cell adhesion in cancer metastasis and angiogenesis", CANCER SCIENCE, vol. 95, no. 5, 2004, pages 377 - 384 *
KOREKANE H. ET AL: "Novel fucogangliosides found in human colon adenocarcinoma tissues by means of glycomic analysis", ANAL BIOCHEM., vol. 364, no. 1, 2007, pages 37 - 50 *
MISONOU Y. ET AL: "Comprehensive clinico- glycomic study of 16 colorectal cancer specimens: elucidation of aberrant glycosylation and its mechanistic causes in colorectal cancer cells", J. PROTEOME RES., vol. 8, no. 6, 2009, pages 2990 - 3005 *
NARIMATSU H. ET AL: "Genetic evidence for the Lewis enzyme, which synthesizes type-1 Lewis antigens in colon tissue, and intracellular localization of the enzyme", CANCER RES., vol. 56, no. 2, 1996, pages 330 - 338 *
SHIDA K. ET AL: "Novel ganglioside found in adenocarcinoma cells of Lewis-negative patients", GLYCOBIOLOGY, vol. 20, no. 12, December 2010 (2010-12-01), pages 1594 - 1606 *
SHIDA K. ET AL: "Unusual accumulation of sulfated glycosphingolipids in colon cancer cells", GLYCOBIOLOGY, vol. 19, no. 9, 2009, pages 1018 - 1033 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015091953A (en) * 2013-10-01 2015-05-14 Jcrファーマ株式会社 Method for labeling carbohydrate chain by 2-aminopyridine
WO2018143336A1 (en) * 2017-02-03 2018-08-09 住友化学株式会社 Pancreatic cancer detection method
JPWO2018143336A1 (en) * 2017-02-03 2019-11-21 住友化学株式会社 Examination method of pancreatic cancer
JP2020516892A (en) * 2017-04-14 2020-06-11 ジュノー セラピューティクス インコーポレイテッド Method for assessing cell surface glycosylation
JP7355650B2 (en) 2017-04-14 2023-10-03 ジュノー セラピューティクス インコーポレイテッド Methods for assessing cell surface glycosylation
US11796534B2 (en) 2017-04-14 2023-10-24 Juno Therapeutics, Inc. Methods for assessing cell surface glycosylation

Also Published As

Publication number Publication date
JP2013100233A (en) 2013-05-23

Similar Documents

Publication Publication Date Title
Kailemia et al. Recent advances in the mass spectrometry methods for glycomics and cancer
Arnold et al. Novel glycan biomarkers for the detection of lung cancer
Fujimura et al. Glycosylation status of haptoglobin in sera of patients with prostate cancer vs. benign prostate disease or normal subjects
Drake et al. Sweetening the pot: adding glycosylation to the biomarker discovery equation
Yang et al. Targeted identification of metastasis-associated cell-surface sialoglycoproteins in prostate cancer
Nakano et al. Site‐specific analysis of N‐glycans on haptoglobin in sera of patients with pancreatic cancer: a novel approach for the development of tumor markers
Tian et al. Altered expression of sialylated glycoproteins in breast cancer using hydrazide chemistry and mass spectrometry
EP2431743B1 (en) Cancer specific glycans and use thereof
US8003392B2 (en) Diagnostic test for the detection of early stage liver cancer
Peracaula et al. Glycosylation of human pancreatic ribonuclease: differences between normal and tumor states
US7335512B2 (en) Marker for measuring liver cirrhosis
Satomaa et al. Analysis of the human cancer glycome identifies a novel group of tumor-associated N-acetylglucosamine glycan antigens
US20170219590A1 (en) Hepatocellular carcinoma marker
Robbe-Masselot et al. Expression of a core 3 disialyl-Lex hexasaccharide in human colorectal cancers: a potential marker of malignant transformation in colon
Yang et al. Abnormal Galactosylated–Glycans recognized by Bandeiraea Simplicifolia Lectin I in saliva of patients with breast Cancer
JP5544640B2 (en) Methods for identifying glycoproteins using specific lectin precipitation methods
Yabu et al. Accumulation of free Neu5Ac-containing complex-type N-glycans in human pancreatic cancers
Xu et al. Protein glycosylation in urine as a biomarker of diseases
EP2993184B1 (en) Monoclonal antibody recognizing sialylated sugar chains
Xu et al. The next “sweet” spot for pancreatic ductal adenocarcinoma: Glycoprotein for early detection
WO2011105544A1 (en) Tumor marker, antibody to same, detection kit for same, and method for detecting same
US20030082654A1 (en) Novel cancer marker and uses therefor in the diagnosis of cancer
JP2010540953A (en) Glycosylation markers for pancreatitis, sepsis and pancreatic cancer
Doud et al. Mass spectrometry-based glycoproteomic workflows for cancer biomarker discovery
Teng et al. Lamprey immunity protein enables early detection and recurrence monitoring for bladder cancer through recognizing Neu5Gc-modified uromodulin glycoprotein in urine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11747500

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11747500

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP