WO2011105499A1 - レーザ超音波探傷装置 - Google Patents

レーザ超音波探傷装置 Download PDF

Info

Publication number
WO2011105499A1
WO2011105499A1 PCT/JP2011/054163 JP2011054163W WO2011105499A1 WO 2011105499 A1 WO2011105499 A1 WO 2011105499A1 JP 2011054163 W JP2011054163 W JP 2011054163W WO 2011105499 A1 WO2011105499 A1 WO 2011105499A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
wavelength
laser beam
laser light
light
Prior art date
Application number
PCT/JP2011/054163
Other languages
English (en)
French (fr)
Inventor
石岡 昌人
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to BR112012017860-1A priority Critical patent/BR112012017860B1/pt
Priority to EP11747459.3A priority patent/EP2541241B1/en
Priority to CA2785688A priority patent/CA2785688C/en
Priority to US13/518,926 priority patent/US8978478B2/en
Publication of WO2011105499A1 publication Critical patent/WO2011105499A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2418Probes using optoacoustic interaction with the material, e.g. laser radiation, photoacoustics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • G01N29/348Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with frequency characteristics, e.g. single frequency signals, chirp signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/36Detecting the response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/42Detecting the response signal, e.g. electronic circuits specially adapted therefor by frequency filtering or by tuning to resonant frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0231Composite or layered materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Definitions

  • the present invention relates to a laser ultrasonic flaw detector that is used for nondestructive investigation of defects inside an inspection object.
  • This ultrasonic vibration propagates from the surface of the inspection object to the inside, and when there is a defect inside the inspection object, the ultrasonic vibration is reflected at this defective portion and vibrates the surface of the inspection object again.
  • the second laser light is reflected by the surface of the object to be inspected, and the reflected light is reflected by a defect portion inside the object to be inspected.
  • the ultrasonic vibration that has been performed is superimposed. Therefore, the defect inside the inspection object can be investigated by guiding the reflected light of the second laser light to a laser interferometer or the like and extracting the ultrasonic vibration.
  • such a laser ultrasonic flaw detector has the following problems.
  • the first laser beam output and the pulse width are appropriately increased according to the material and dimensions of the inspection object. It is necessary to adjust it.
  • the output and pulse width of the second laser light are also appropriately large. It is necessary to adjust it.
  • Control of the output and pulse width of the first laser light and the second laser light has been performed by directly adjusting the laser light source that oscillates the first laser light and the second laser light. For this reason, the control range of the laser beam output and the pulse width is limited to a narrow range, and it is possible to sufficiently adjust the laser beam output and the pulse width to an appropriate size according to the type of the inspection object. There was no case.
  • the wavelength of the first laser light is made different from the wavelength of the second laser light, and only the reflected light of the first laser light is removed by the wavelength filter.
  • two types of laser light sources are required, which causes the laser ultrasonic flaw detector to be enlarged.
  • the laser beam was guided by a bulk type optical element such as a lens or a mirror. Therefore, a fixing jig for ensuring alignment accuracy is required for each component through which the laser beam passes in the laser ultrasonic flaw detector, and the degree of freedom of arrangement of these components in the laser ultrasonic flaw detector is increased. It was constrained. As a result, the laser ultrasonic flaw detector has become large and has poor portability. For this reason, when performing a flaw detection inspection on each part of the inspection object, it is necessary to move the inspection object so that each part is applied to the laser ultrasonic inspection device, and particularly the inspection object having a large weight and size. It was difficult to carry out a flaw detection inspection.
  • the present invention has been made in view of such circumstances.
  • the present invention has been made compact and lightweight and can be easily operated, and the laser light output and pulse width control range is wide.
  • An object is to provide a laser ultrasonic flaw detector.
  • the laser ultrasonic flaw detector according to the present invention irradiates the surface of the inspection object with the first laser light, irradiates the surface of the inspection object with the second laser light, and reflects it on the surface of the inspection object.
  • the vibration displacement of the surface of the inspection object excited by the ultrasonic wave generated by the first laser light is acquired, and the inspection object reflected in the vibration displacement is obtained.
  • a laser ultrasonic flaw detector for detecting the presence or absence of defects, a laser light source that oscillates laser light having one type of wavelength, and a laser that includes at least two types of laser light oscillated from the laser light source
  • a wavelength shifter that converts light, and a laser beam converted by the wavelength shifter is split into a laser beam having a first wavelength and a laser beam having a second wavelength different from the first wavelength.
  • Output duplexer A first controller for adjusting an output and a pulse width of the laser beam having the first wavelength output from the duplexer, and a laser beam having the second wavelength output from the duplexer.
  • a second controller for adjusting the output and the pulse width of the laser, the laser light having the first wavelength adjusted by the first controller, and the second controller adjusted by the second controller.
  • Laser light is used as the second laser light.
  • the first laser light for generating an ultrasonic wave on the inspection object and the second laser light for detecting the ultrasonic vibration generated on the inspection object are provided. Since the laser beam is oscillated from the same laser light source, the configuration of the laser ultrasonic flaw detector is compared with the case where the laser light source that oscillates the first laser beam and the laser light source that oscillates the second laser beam are prepared separately It can be simplified.
  • the surface of the inspection object is irradiated with the first laser light and the second laser light as one laser light including both, but the ultrasonic vibration generated on the inspection object is irradiated.
  • the surface of the inspection object is irradiated with one laser light including the first laser light and the second laser light, and the reflected wave reflected by the surface of the inspection object is light having the first wavelength.
  • the laser ultrasonic flaw detector includes a laser beam having a first wavelength, that is, a first controller that adjusts the output and pulse width of the first laser beam, and a laser beam having a second wavelength, A second controller for adjusting the output of the second laser beam and the pulse width is provided. Therefore, the control range of the laser light output and the pulse width can be greatly expanded as compared with the case where the laser light output and the pulse width are adjusted in the laser light source. Further, the adjustment of the output / pulse width of the first laser beam and the adjustment of the output / pulse width of the second laser beam can be performed independently of each other.
  • the output / pulse width of the second laser beam can be easily set to a size suitable for detecting the ultrasonic vibration generated in the inspection object.
  • the laser ultrasonic flaw detector of the present invention at least one of the laser light source, the wavelength shifter, the duplexer, the first controller, the second controller, the multiplexer, and the light guide system.
  • the laser beam transmitted between the two is preferably guided by an optical fiber.
  • the laser light source, the wavelength shifter, the duplexer, the first controller, the second controller, the multiplexer, the light guide system, and the like are transmitted between the components of the laser ultrasonic flaw detector.
  • the degree of freedom of arrangement of each component in the laser ultrasonic flaw detector is increased and the alignment accuracy of each component is increased.
  • a fixing jig or the like for securing is also unnecessary. Therefore, the structure of the laser ultrasonic flaw detector can be simplified and the laser ultrasonic flaw detector can be miniaturized.
  • the laser light source, the wavelength shifter, the duplexer, the first controller, the second controller, and the multiplexer are laser ultrasonic flaw detectors.
  • the laser light housed in the apparatus main body and the light guide system is housed in a flaw detection head operable with respect to the laser ultrasonic flaw detection apparatus main body, and is transmitted between the laser ultrasonic flaw detection apparatus main body and the flaw detection head. Is preferably guided by an optical fiber.
  • the flaw detection head in which the light guide system that guides the laser beam to the surface of the object to be inspected operates with respect to the laser ultrasonic flaw detector main body that stores other components of the laser ultrasonic flaw detector. It is possible.
  • the weight / dimension of the flaw detection head is very small compared to the weight / dimension of the entire laser ultrasonic flaw detection apparatus. Therefore, by operating the flaw detection head with respect to the laser ultrasonic flaw detector main body, it is possible to easily change and adjust the laser light irradiation position to a desired position.
  • the wavelength shifter has a nonlinear induction fiber.
  • the wavelength shifter has a sideband spectrum light modulator.
  • the laser ultrasonic flaw detector of the present invention is a light receiving unit that receives a reflected wave of the one laser beam projected onto the surface of the inspection object by the light projecting unit and reflected by the surface of the inspection object.
  • a wavelength filter that blocks the laser light having the first wavelength among the one laser light received by the light receiving unit and passes the laser light having the second wavelength; and the wavelength filter. It is preferable to further include a laser interferometer that detects the laser beam having the second wavelength that has passed.
  • the configuration of the apparatus is simplified and the apparatus is miniaturized. Therefore, when changing / adjusting the irradiation position of the laser beam on the object to be inspected, Easy to handle.
  • the control range of the laser beam output and the pulse width is wide. It can be.
  • the laser ultrasonic flaw detector according to this embodiment irradiates the surface of an object to be inspected with a first laser beam. Further, the laser ultrasonic flaw detector irradiates the surface of the inspection object with a second laser beam different from the first laser beam. Accordingly, the vibration displacement of the surface of the inspection object excited by the ultrasonic wave generated by the first laser light is superimposed on the reflected wave of the second laser light reflected on the surface of the inspection object.
  • the laser ultrasonic flaw detector acquires the vibration displacement of the surface of the inspection object excited by the ultrasonic wave generated by the first laser light by detecting the reflected wave of the second laser light. It is configured to detect the presence or absence of defects inside the inspection object reflected in the vibration displacement.
  • FIG. 1 shows an overall configuration of a laser ultrasonic flaw detector 1 according to the present embodiment and a usage situation thereof.
  • a laser ultrasonic flaw detector 1 includes a laser ultrasonic flaw detector main body 10, a flaw detection head 20 that can operate with respect to the laser ultrasonic flaw detector main body 10, and a laser ultrasonic flaw detector main body 10.
  • the laser ultrasonic testing device main body 10 and optical fibers 31 and 32 that connect the testing head 20 are configured so as to guide the laser beam to the testing head 20.
  • the internal structure of the laser ultrasonic flaw detector 1 is shown in FIGS.
  • the laser ultrasonic flaw detector 1 oscillates a first laser beam and a second laser beam to irradiate the inspection object 100 (see FIG. 2), and from the surface of the inspection object 100 It is roughly divided into a laser beam receiving system portion (see FIG. 3) that receives and detects the reflected wave.
  • the laser ultrasonic flaw detector main body 10 includes a laser light source 11, a wavelength shifter 12, a duplexer 13, a first controller 14, and a second controller 15.
  • the multiplexer 16, the wavelength filter 17, the laser interferometer 18, and the optical fibers 41 to 48 are configured.
  • the flaw detection head 20 includes a light projecting unit 21 and a light receiving unit 25.
  • the laser light source 11 oscillates a laser beam having one wavelength lambda 0.
  • Laser light oscillated by the laser light source 11 is guided to the wavelength shifter 12 through the optical fiber 41.
  • the wavelength shifter 12 converts a laser beam having one type of wavelength ⁇ 0 oscillated by the laser light source 11 into a laser beam including two types of wavelengths ⁇ 1 and ⁇ 2 .
  • the wavelength conversion method of the laser beam in the wavelength shifter 12 is demonstrated concretely.
  • the wavelength shifter 12 has a nonlinear induction fiber 12A.
  • Nonlinear induced fiber 12A receives an input laser beam having a single type of wavelength lambda 0, the Raman effect and Brillouin effects, two wavelengths lambda 1, and outputs the laser light including lambda 2.
  • ⁇ 1 or ⁇ 2 may be equal to ⁇ 0 .
  • the wavelength shifter 12 has a sideband spectrum light modulator 12B.
  • the sideband spectrum light modulator 12B When receiving the input of laser light having one type of wavelength ⁇ 0 , the sideband spectrum light modulator 12B outputs laser light including a wavelength ⁇ 1 shorter than ⁇ 0 and a wavelength ⁇ 2 longer than ⁇ 0 .
  • Laser light including two types of wavelengths ⁇ 1 and ⁇ 2 obtained by wavelength conversion of laser light having one type of wavelength ⁇ 0 by the wavelength shifter 12 is separated through an optical fiber 42 as shown in FIG. Guided to the waver 13.
  • the demultiplexer 13 demultiplexes the laser light including the two types of wavelengths ⁇ 1 and ⁇ 2 into a laser light having the first wavelength ⁇ 1 and a laser light having the second wavelength ⁇ 2. Output.
  • the laser beam having the first wavelength ⁇ 1 demultiplexed and output by the demultiplexer 13 is guided to the first controller 14 through the optical fiber 43.
  • the first controller 14 adjusts the output pulse width of the laser beam having a wavelength lambda 1 of the first.
  • the laser beam having the second wavelength ⁇ 2 demultiplexed and output by the demultiplexer 13 is guided to the second controller 15 through the optical fiber 44.
  • the second controller 15 adjusts the output pulse width of the laser beam having the second wavelength lambda 2.
  • FIG. 6 shows the adjustment status of the output and pulse width of the laser light having the first wavelength ⁇ 1 and the laser light having the second wavelength ⁇ 2 in the first controller 14 and the second controller 15.
  • the first controller 14 includes an optical modulator 141 and an optical amplifier 142.
  • the optical modulator 14 adjusts the pulse width of the laser beam having the first wavelength lambda 1 (mainly short). Then, the output of the laser light having the first wavelength ⁇ 1 is increased by the optical amplifier 142.
  • the first controller 14 adjusts the output and pulse width of the laser beam having the first wavelength ⁇ 1 in accordance with the material, dimensions, etc. of the inspection object 100.
  • the output of laser light having a first wavelength lambda 1 is damaged ablation such as inspection object 100 It is set to a size that can be easily absorbed by the depth of the film and can cause thermoelastic expansion.
  • the pulse width of the laser light having the first wavelength ⁇ 1 is set to a magnitude sufficient to induce ultrasonic vibration in the inspection object 100.
  • the second controller 15 includes an optical modulator 151 and an optical attenuator 152.
  • the optical modulator 151 is a chirp element that widens the pulse width of laser light having a second wavelength of ⁇ 2. Then, the output of the laser light having the second wavelength ⁇ 2 is lowered by the optical attenuator 152. In this way, the second controller 15 has an output and a pulse width suitable for detecting the ultrasonic vibration generated in the inspection object 100 by the laser light having the first wavelength ⁇ 1. Then, the output and pulse width of the laser beam having the second wavelength ⁇ 2 are adjusted. The output and pulse width of the laser light having the second wavelength ⁇ 2 are adjusted to a size that does not induce ultrasonic vibration of the inspection object 100.
  • the laser light having the first wavelength ⁇ 1 whose output and pulse width are adjusted by the first controller 14 is guided to the multiplexer 16 through the optical fiber 45.
  • the laser light having the second wavelength ⁇ 2 whose output and pulse width are adjusted by the second controller 15 is guided to the multiplexer 16 through the optical fiber 46.
  • the multiplexer 16 includes a laser beam having the first wavelength ⁇ 1 adjusted by the first controller 14 and a laser beam having the second wavelength ⁇ 2 adjusted by the second controller 15. Are combined to output one laser beam including the laser beam having the first wavelength ⁇ 1 and the laser beam having the second wavelength ⁇ 2 .
  • This one laser beam is output from the main body of the laser ultrasonic flaw detector 10 and guided to the light projecting portion 21 of the flaw detection head 20 through the optical fiber 31.
  • the light projecting unit 21 includes lenses 22 and 23 and a scan mirror 24. These lenses 22 and 23 and scan mirror 24, one laser beam and a laser beam having a laser beam and the second wavelength lambda 2 having the first wavelength lambda 1 is guided to the surface of the inspection object 100 .
  • the first laser beam is inspected. Due to thermoelastic expansion when the object 100 absorbs, ultrasonic vibration is generated in the object 100 to be inspected. The ultrasonic vibration generated in the inspection object 100 propagates through the inspection object 100. If there is a defect at the interface or inside of the inspection object 100, it is reflected there and returned to the surface of the inspection object 100, and this reflected ultrasonic wave vibrates the surface of the inspection object 100. As described above, the laser light having the second wavelength ⁇ 2 is not involved in the generation of ultrasonic vibration in the inspection object 100.
  • One laser beam including the laser beam having the first wavelength ⁇ 1 and the laser beam having the second wavelength ⁇ 2 irradiated on the surface of the inspection object 100 is reflected by the surface of the inspection object 100. Then, it returns to the flaw detection head 20 again.
  • laser light having the second wavelength ⁇ 2 that is not involved in the generation of ultrasonic vibration in the inspection object 100 is reflected from the surface of the inspection object 100, the inspection object 100 is inspected. An ultrasonic vibration is generated in the object 100. Therefore, the ultrasonic vibration that is reflected by the defect in the inspection object 100 and returned to the surface of the inspection object 100 is superimposed on the reflected wave of the laser light having the second wavelength ⁇ 2 .
  • the reflected wave of the laser light having the second wavelength ⁇ 2 it is possible to inspect the presence or absence of scratches in the inspection object 100.
  • one laser beam including the laser beam having the first wavelength ⁇ 1 and the laser beam having the second wavelength ⁇ 2 reflected on the surface of the inspection object 100 is detected by the flaw detection head 20.
  • the light is collected by the light receiving lens 26 and the fiber condensing lens 27 of the light receiving unit 22 stored therein, and sent to the laser ultrasonic flaw detector main body 10 through the optical fiber 32.
  • the laser beam sent to the laser ultrasonic flaw detector main body 10 is input to the wavelength filter 17 through the optical fiber 47.
  • the wavelength filter 17 is configured to block light having the first wavelength ⁇ 1 but transmit light having the second wavelength ⁇ 2 . Therefore, only the laser beam having the second wavelength ⁇ 2 is output from the wavelength filter 17 out of the one laser beam reflected by the surface of the inspection object 100. Then, the laser light having the second wavelength ⁇ 2 is input to the laser interferometer 18. As described above, the reflected wave of the laser light having the second wavelength ⁇ 2 is superposed with the ultrasonic vibration reflected by the defect in the inspection object 100 and returning to the surface of the inspection object 100. By extracting the ultrasonic vibration in the laser beam having the second wavelength ⁇ 2 input to the laser interferometer 18, the presence or absence of a defect in the inspection object 100 is detected.
  • the first laser light for causing the inspection object 100 to generate ultrasonic waves and the second laser light for detecting the ultrasonic vibration generated in the inspection object are oscillated from the same laser light source 11, compared with a case where a laser light source that oscillates the first laser light and a laser light source that oscillates the second laser light are separately prepared.
  • the configuration of 1 can be simplified.
  • the surface of the object to be inspected is irradiated with the first laser beam and the second laser beam as one laser beam including both.
  • the surface of the inspection object is irradiated with one laser light including the first laser light and the second laser light, and the reflected wave reflected by the surface of the inspection object is changed to the first wavelength ⁇ 1 .
  • Only the first laser light is removed by passing through a wavelength filter 17 that shields the light having it but transmits the light having the second wavelength ⁇ 2, and only the second laser light that has passed through the wavelength filter 17 is lasered. It can be detected by the interferometer 18.
  • the laser ultrasonic flaw detector 1 includes a first controller 14 that adjusts the output and pulse width of the laser light having the first wavelength ⁇ 1 , that is, the first laser light, and the second wavelength ⁇ 2. And a second controller 15 that adjusts the output and pulse width of the second laser beam. Therefore, the control range of the laser light output and the pulse width can be greatly expanded as compared with the case where the laser light output and the pulse width are adjusted in the laser light source. Further, the adjustment of the output / pulse width of the first laser beam and the adjustment of the output / pulse width of the second laser beam can be performed independently of each other.
  • the output / pulse width of the first laser beam is set to a size that generates appropriate ultrasonic vibrations without causing damage to the inspection object, depending on the type and size of the inspection object 100.
  • the output / pulse width of the second laser light can be easily set to a size suitable for detecting the ultrasonic vibration generated in the inspection object.
  • a laser ultrasonic flaw detector such as a laser light source 11, a wavelength shifter 12, a demultiplexer 13, a first controller 14, a second controller 15, a multiplexer 16, a light projecting unit 21, a light receiving unit 22, etc.
  • the degree of freedom of arrangement of each component in the laser ultrasonic flaw detector 1 is increased as compared with a case where laser light transmitted between each component is guided by a bulk type optical element such as a lens or a mirror.
  • a fixing jig or the like for ensuring the alignment accuracy of each component is not required. Therefore, the structure of the laser ultrasonic flaw detector 1 can be simplified, and the laser ultrasonic flaw detector 1 can be miniaturized.
  • the flaw detection head 20 in which the light guide system 21 that guides the laser beam to the surface of the inspection object 100 accommodates the other constituent elements 11 to 16 of the laser ultrasonic flaw detection apparatus 1. It is possible to operate against.
  • the weight / dimension of the flaw detection head 20 is much higher than the weight / dimension of the entire laser ultrasonic flaw detector 1. small. Therefore, by operating the flaw detection head 20 with respect to the laser ultrasonic flaw detector main body 10, the irradiation position of the laser light can be easily changed / adjusted to a desired position.
  • the inspection object 100 when changing / adjusting the irradiation position of the laser beam, it is not necessary to move the inspection object 100 with respect to the laser ultrasonic flaw detector 1, and the laser is kept while the inspection object 100 remains stationary. Only the flaw detection head 20 of the ultrasonic flaw detection apparatus 1 has to be moved to the inspection target portion of the inspection object 100. In particular, even when the weight or size of the inspection object 100 is large, a desired portion of the inspection object 100 is irradiated with laser light without moving the inspection object 100, and a flaw detection inspection is performed on each part of the inspection object 100. Can be implemented.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

 レーザ光源(11)から発振された1種類の波長(λ)を有するレーザ光が、波長シフタ(12)で少なくとも2種類の波長(λ,λ)を含むレーザ光に変換され、さらに分波器13で、第1の波長(λ)を有するレーザ光と、第2の波長(λ)を有するレーザ光とに分波される。第1の波長(λ)を有するレーザ光の出力とパルス幅は、被検査物(100)に損傷を与えずに超音波振動を生成させるのに適した大きさとなるよう、第1の制御器(14)で調整される。第2の波長λを有するレーザ光の出力とパルス幅は、上記超音波振動を検出するのに適した大きさとなるよう、第2の制御器(15)で調整される。これらを合波器(16)で一のレーザ光にして、被検査物(100)の表面に照射する。

Description

レーザ超音波探傷装置
 本発明は、非破壊で被検査物内部の欠陥などを探査するために用いられるレーザ超音波探傷装置に関する。
 近年、航空宇宙や自動車等の産業において、製品の軽量化を図る等の目的で、複合材料が多用されるようになってきている。このような複合材料等の構造的完全性を非破壊で評価する手法として、レーザ超音波探傷装置が用いられている。
 このレーザ超音波探傷装置の原理を簡単に説明する。まず、被検査物の表面に第1のレーザ光を照射すると、熱弾性効果により超音波振動が発生する。すなわち、第1のレーザ光により被検査物の表面が加熱されて温度が上昇し、この温度上昇に伴って被検査物に体積膨張が生じて応力が発生し、この応力により超音波振動が発生する。
 この超音波振動は、被検査物の表面から内部へ伝搬し、被検査物内部に欠陥があった場合には、この欠陥部位にて超音波振動が反射して被検査物の表面を再び振動させる。この振動する被検査物の表面に第2のレーザ光を照射すると、この第2のレーザ光が被検査物の表面で反射し、その反射光には、被検査物内部の欠陥部位にて反射した超音波振動が重畳されることになる。したがって、第2のレーザ光の反射光をレーザ干渉計等に導いて超音波振動を抽出することにより、被検査物内部の欠陥を探査することができる。この際、第1のレーザ光の反射光をレーザ干渉計に導かずに、第2のレーザ光の反射光のみをレーザ干渉計に導くため、第1のレーザ光の波長と第2のレーザ光の波長を異ならしめ、波長フィルタにて第1のレーザ光の反射光のみを除去するようにする。(特許文献1~3参照)。
米国特許出願公開第2008/0291963号明細書 米国特許出願公開第2008/0016965号明細書 特表2003-508771号公報
 しかし、このようなレーザ超音波探傷装置は、次の課題を有していた。
 被検査物にアブレーション等の損傷を与えることなく適度な超音波振動を発生させるためには、被検査物の材質や寸法等に応じて、第1のレーザ光の出力やパルス幅を適切な大きさに調整する必要がある。また、第1のレーザ光によって被検査物に発生する超音波振動が、第2のレーザ光によって影響を受けないようにするためには、第2のレーザ光の出力やパルス幅も適切な大きさに調整する必要がある。この第1のレーザ光、第2のレーザ光の出力やパルス幅の制御は、これら第1のレーザ光、第2のレーザ光を発振するレーザ光源を直接調整することにより行われていた。このため、レーザ光の出力やパルス幅の制御範囲が狭い範囲に限定されてしまい、被検査物の種類に応じてレーザ光の出力やパルス幅を適切な大きさに調整することが十分に行えない場合があった。
 また、超音波振動を発生させるための第1のレーザ光の反射光をレーザ干渉計に導かずに、超音波振動を検出するための第2のレーザ光の反射光のみをレーザ干渉計に導くため、上記のように、第1のレーザ光の波長と第2のレーザ光の波長を異ならしめ、波長フィルタにて第1のレーザ光の反射光のみを除去するようにしている。この第1のレーザ光と第2のレーザ光とを発生させるためには、2種類のレーザ光源が必要となり、このことが、レーザ超音波探傷装置が大型化する原因となっていた。
 さらに、レーザ超音波探傷装置内では、レンズやミラー等のバルク型光学素子によってレーザ光が導光されていた。したがって、レーザ超音波探傷装置内でレーザ光が通過する各構成要素について、アライメント精度を確保するための固定治具が必要となり、レーザ超音波探傷装置内におけるこれら各構成要素の配置の自由度が制約されていた。この結果、レーザ超音波探傷装置が大型化し、可搬性が乏しいものとなっていた。このため、被検査物の各部位について探傷検査を実施する際に、この各部位をレーザ超音波探傷装置にあてがうようにして被検査物を移動させる必要が生じ、特に重量や寸法が大きい被検査物の探傷検査を実施することが困難であった。
 本発明は、このような事情に鑑みてなされたものであって、装置の構成を簡素化することにより、小型・軽量で取り廻しが良く、しかもレーザ光の出力やパルス幅の制御範囲が広いレーザ超音波探傷装置を提供することを目的とする。
 上記課題を解決するために、本発明は以下の手段を採用する。
 本発明に係るレーザ超音波探傷装置は、第1のレーザ光を被検査物の表面に照射し、第2のレーザ光を前記被検査物の表面に照射して該被検査物の表面で反射した反射波を検知することによって、前記第1のレーザ光によって生成された超音波により励起された前記被検査物の表面の振動変位を取得し、この振動変位に反映された前記被検査物内部の欠陥の有無を検出するレーザ超音波探傷装置であって、1種類の波長を有するレーザ光を発振するレーザ光源と、前記レーザ光源から発振されたレーザ光を、少なくとも2種類の波長を含むレーザ光に変換する波長シフタと、前記波長シフタによって変換されたレーザ光を、第1の波長を有するレーザ光と、前記第1の波長とは異なる第2の波長を有するレーザ光とに分波して出力する分波器と、前記分波器から出力された前記第1の波長を有するレーザ光の出力とパルス幅を調整する第1の制御器と、前記分波器から出力された前記第2の波長を有するレーザ光の出力とパルス幅を調整する第2の制御器と、前記第1の制御器によって調整された前記第1の波長を有するレーザ光と、前記第2の制御器によって調整された前記第2の波長を有するレーザ光とを合波して、これら第1の波長を有するレーザ光と第2の波長を有するレーザ光とを含む一のレーザ光を出力する合波器と、前記合波器によって得られた一のレーザ光を前記被検査物の表面に投光する投光系とを備え、前記第1の波長を有するレーザ光が前記第1のレーザ光として、前記第2の波長を有するレーザ光が前記第2のレーザ光として用いられたものである。
 このレーザ超音波探傷装置によれば、被検査物に超音波を生成させるための第1のレーザ光と、被検査物に生成された超音波振動を検出するための第2のレーザ光とが、同一のレーザ光源から発振されるので、第1のレーザ光を発振するレーザ光源と第2のレーザ光を発振するレーザ光源を別々に用意する場合に比べて、レーザ超音波探傷装置の構成を簡素化できる。
 ここで、被検査物の表面には、第1のレーザ光と第2のレーザ光とが、この両者を含む一のレーザ光として照射されるが、被検査物に生成された超音波振動を取得するためには、第1のレーザ光を検知せずに第2のレーザ光のみを検知する必要がある。そこで、第1のレーザ光と第2のレーザ光とを含む一のレーザ光を被検査物の表面に照射し、該被検査物の表面で反射した反射波を、第1の波長を有する光は遮蔽するが第2の波長を有する光を透過させる波長フィルタに通すことによって、第1のレーザ光のみを除去し、波長フィルタを通過した第2のレーザ光のみを検知することができる。
 さらに、レーザ超音波探傷装置には、第1の波長を有するレーザ光、すなわち第1のレーザ光の出力とパルス幅を調整する第1の制御器と、第2の波長を有するレーザ光、すなわち第2のレーザ光の出力とパルス幅を調整する第2の制御器とが備えられている。したがって、レーザ光の出力とパルス幅とをレーザ光源内で調整する場合に比較して、レーザ光の出力とパルス幅の制御範囲を大幅に広げることができる。また、第1のレーザ光の出力・パルス幅の調整と、第2のレーザ光の出力・パルス幅の調整とを、互いから独立して実施することができる。これにより、被検査物の種類や寸法に応じて、第1のレーザ光の出力・パルス幅を、被検査物にダメージを生じさせることなく適度な超音波振動を生成させるような大きさとするとともに、第2のレーザ光の出力・パルス幅を、被検査物に生成された超音波振動を検知するのに適した大きさとすることが、簡単にできる。
 本発明のレーザ超音波探傷装置においては、前記レーザ光源、前記波長シフタ、前記分波器、前記第1の制御器、前記第2の制御器、前記合波器、前記導光系のうち少なくとも2つの間を伝わる前記レーザ光は、光ファイバによって導かれることが好ましい。
 本構成によれば、レーザ光源、波長シフタ、分波器、第1の制御器、第2の制御器、合波器、導光系など、レーザ超音波探傷装置の各構成要素の間を伝わるレーザ光が、レンズやミラーなどのバルク型光学素子によって導かれる場合に比較して、レーザ超音波探傷装置内における各構成要素の配置の自由度が高められるとともに、各構成要素のアライメントの精度を確保するための固定治具等も不要となる。したがって、レーザ超音波探傷装置の構造を簡素化し、レーザ超音波探傷装置を小型化することができる。
 また、本発明のレーザ超音波探傷装置においては、前記レーザ光源、前記波長シフタ、前記分波器、前記第1の制御器、前記第2の制御器及び前記合波器は、レーザ超音波探傷装置本体に収められ、前記導光系は、前記レーザ超音波探傷装置本体に対して動作可能な探傷ヘッドに収められ、前記レーザ超音波探傷装置本体と前記探傷ヘッドとの間を伝わる前記レーザ光は、光ファイバによって導かれることが好ましい。
 本構成によれば、レーザ光を被検査物の表面に導く導光系が収められた探傷ヘッドが、レーザ超音波探傷装置の他の構成要素を格納するレーザ超音波探傷装置本体に対して動作可能とされている。ここで、探傷ヘッドには導光系のみが収められているので、探傷ヘッドの重量・寸法は、レーザ超音波探傷装置全体の重量・寸法に比べて非常に小さい。よって、探傷ヘッドをレーザ超音波探傷装置本体に対して動作させることによって、レーザ光の照射位置を、所望の位置に変更・調整することが簡単にできる。
 すなわち、レーザ光の照射位置を変更・調整する際には、被検査物をレーザ超音波探傷装置に対して移動させる必要は無く、被検査物を静止させたままの状態で、レーザ超音波探傷装置の探傷ヘッドのみを被検査物の検査対象箇所に移動させればよい。特に、被検査物の重量や寸法が大きい場合にも、被検査物を動かさずに被検査物の所望の箇所にレーザ光を照射し、被検査物の各箇所の探傷検査を実施することができる。
 また、本発明のレーザ超音波探傷装置においては、前記波長シフタは、非線形誘起ファイバを有していることが好ましい。
 あるいは、本発明のレーザ超音波探傷装置においては、前記波長シフタは、サイドバンドスペクトラム光変調器を有していることが好ましい。
 また、本発明のレーザ超音波探傷装置は、前記投光部によって前記被検査物の表面に投光され、該被検査物の表面で反射した前記一のレーザ光の反射波を受光する受光部と、前記受光部によって受光された前記一のレーザ光のうち、前記第1の波長を有するレーザ光を遮蔽して前記第2の波長を有するレーザ光を通過させる波長フィルタと、前記波長フィルタを通過した前記第2の波長を有するレーザ光を検知するレーザ干渉計とをさらに有することが好ましい。
 本発明のレーザ超音波探傷装置によれば、装置の構成が簡素化されているとともに、装置が小型化されているので、被検査物に対するレーザ光の照射位置を変更・調整する際、装置の取り廻しがしやすい。しかも、本発明のレーザ超音波探傷装置によれば、レーザ光の出力とパルス幅の制御範囲が広いので、被検査物の種類や寸法に応じて、レーザ光の出力やパルス幅を最適な大きさとすることができる。
本発明に係るレーザ超音波探傷装置の全体構成及びその使用状況を示す斜視図である。 本発明に係るレーザ超音波探傷装置のレーザ光投光系部分を示す模式図である。 本発明に係るレーザ超音波探傷装置のレーザ光受光系部分を示す模式図である。 波長シフタにおけるレーザ光の波長変換方法を示す模式図である。 波長シフタにおけるレーザ光の波長変換方法の他の例を示す模式図である。 第1の制御器及び第2の制御器の構成を示す模式図である。
 以下に、本発明に係るレーザ超音波探傷装置の一実施形態について、図面を参照して説明する。
 本実施形態に係るレーザ超音波探傷装置は、第1のレーザ光を被検査物の表面に照射する。また、レーザ超音波探傷装置は、第1のレーザ光とは異なる第2のレーザ光を被検査物の表面に照射する。これによって、被検査物の表面で反射した第2のレーザ光の反射波には、第1のレーザ光によって生成された超音波により励起された被検査物の表面の振動変位が重畳される。レーザ超音波探傷装置は、この第2のレーザ光の反射波を検知することによって、第1のレーザ光によって生成された超音波により励起された被検査物の表面の振動変位を取得し、この振動変位に反映された被検査物内部の欠陥の有無を検出するように構成されている。
 図1に、本実施形態に係るレーザ超音波探傷装置1の全体構成及びその使用状況を示す。
 図1に示すように、レーザ超音波探傷装置1は、レーザ超音波探傷装置本体10と、レーザ超音波探傷装置本体10に対して動作可能な探傷ヘッド20と、レーザ超音波探傷装置本体10と探傷ヘッド20との間でレーザ光を導くように、レーザ超音波探傷装置本体10と探傷ヘッド20とを接続する光ファイバ31、32とを含んで構成されている。
 レーザ超音波探傷装置1の内部構成を、図2及び図3に示す。
 レーザ超音波探傷装置1は、第1のレーザ光及び第2のレーザ光を発振して被検査物100に照射するレーザ光投光系部分(図2参照)と、被検査物100の表面からの反射波を受光して検出するレーザ光受光系部分(図3参照)とに大別される。
 図2及び図3に示すように、レーザ超音波探傷装置本体10は、レーザ光源11と、波長シフタ12と、分波器13と、第1の制御器14と、第2の制御器15と、合波器16と、波長フィルタ17と、レーザ干渉計18と、光ファイバ41~48とを含んで構成されている。
 また、図2及び図3に示すように、探傷ヘッド20は、投光部21と、受光部25とを含んで構成されている。
 レーザ光源11は、1種類の波長λを有するレーザ光を発振する。レーザ光源11で発振されたレーザ光は、光ファイバ41を通じて波長シフタ12に導かれる。波長シフタ12は、レーザ光源11で発振された1種類の波長λを有するレーザ光を、2種類の波長λ,λを含むレーザ光に変換する。
 図4、図5を参照して、波長シフタ12におけるレーザ光の波長変換方法を具体的に説明する。
 図4に示す例では、波長シフタ12は、非線形誘起ファイバ12Aを有している。
 非線形誘起ファイバ12Aは、1種類の波長λを有するレーザ光の入力を受けると、ラマン効果やブリルアン効果によって、2種類の波長λ,λを含むレーザ光を出力する。ここで、λ、λのいずれかはλに等しくてもよい。
 図5に示す例では、波長シフタ12は、サイドバンドスペクトラム光変調器12Bを有している。サイドバンドスペクトラム光変調器12Bは、1種類の波長λを有するレーザ光の入力を受けると、λより短い波長λと、λより長い波長λを含むレーザ光を出力する。
 波長シフタ12によって1種類の波長λを有するレーザ光を波長変換して得られた、2種類の波長λ,λを含むレーザ光は、図2に示すように、光ファイバ42を通じて分波器13に導かれる。分波器13は、この2種類の波長λ,λを含むレーザ光を、第1の波長λを有するレーザ光と、第2の波長λを有するレーザ光とに分波して出力する。
 分波器13で分波され出力された、第1の波長λを有するレーザ光は、光ファイバ43を通じて第1の制御器14に導かれる。第1の制御器14は、この第1の波長λを有するレーザ光の出力とパルス幅を調整する。同様に、分波器13で分波され出力された、第2の波長λを有するレーザ光は、光ファイバ44を通じて第2の制御器15に導かれる。第2の制御器15は、この第2の波長λを有するレーザ光の出力とパルス幅を調整する。
 図6に、第1の制御器14及び第2の制御器15における、第1の波長λを有するレーザ光と第2の波長λを有するレーザ光の出力及びパルス幅の調整状況を示す。
 第1の制御器14は、光変調器141と光増幅器142とを有している。光変調器14は、第1の波長λを有するレーザ光のパルス幅を調整する(主として短くする)。そして、光増幅器142によって、第1の波長λを有するレーザ光の出力が高められる。
 これにより、第1の制御器14は、被検査物100の材質や寸法等に応じて、第1の波長λを有するレーザ光の出力とパルス幅を調整する。具体的には、第1の波長λを有するレーザ光の出力は、この第1の波長λを有するレーザ光が被検査物100にアブレーション等の損傷を与えることなく被検査物100の所望の深さに容易に吸収され熱弾性膨張を起こすことのできるような大きさに設定される。第1の波長λを有するレーザ光のパルス幅は、被検査物100に超音波振動を誘起するのに充分な大きさに設定される。
 第2の制御器15は、光変調器151と光減衰器152とを有している。光変調器151は、第2の波長をλを有するレーザ光のパルス幅を広げるチャープ素子である。そして、光減衰器152によって、第2の波長λを有するレーザ光の出力が低められる。
 このようにして、第2の制御器15は、第1の波長λを有するレーザ光によって被検査物100に生成される超音波振動を検出するのに適した出力とパルス幅を有するように、第2の波長λを有するレーザ光の出力とパルス幅を調整する。第2の波長をλを有するレーザ光の出力及びパルス幅は、被検査物100の超音波振動を誘起することのない大きさに調整される。
 図2に示すように、第1の制御器14によって出力とパルス幅が調整された第1の波長λを有するレーザ光は、光ファイバ45を通じて合波器16に導かれる。同様に、第2の制御器15によって出力とパルス幅が調整された第2の波長λを有するレーザ光は、光ファイバ46を通じて合波器16に導かれる。そして、合波器16は、第1の制御器14によって調整された第1の波長λを有するレーザ光と、第2の制御器15によって調整された第2の波長λを有するレーザ光とを合波して、これら第1の波長λを有するレーザ光と第2の波長λを有するレーザ光とを含む一のレーザ光を出力する。
 この一のレーザ光が、レーザ超音波探傷装置10本体から出力されて、光ファイバ31を通じて探傷ヘッド20の投光部21に導かれる。
 投光部21は、レンズ22,23およびスキャンミラー24を有している。これらレンズ22,23およびスキャンミラー24によって、第1の波長λを有するレーザ光と第2の波長λを有するレーザ光とを含む一のレーザ光が、被検査物100の表面に導かれる。
 被検査物100の表面に照射された、第1の波長λを有するレーザ光と第2の波長λを有するレーザ光とを含む一のレーザ光のうち、第1のレーザ光を被検査物100が吸収するときの熱弾性膨張により、被検査物100に超音波振動が発生する。被検査物100に発生した超音波振動は、被検査物100内を伝播する。そして、被検査物100の界面あるいは内部に欠陥があると、そこで反射し被検査物100表面に戻り、この反射超音波が被検査物100表面を振動させる。上記の通り、第2の波長λを有するレーザ光は、被検査物100における超音波振動の生成には関与しない。
 被検査物100の表面に照射された、第1の波長λを有するレーザ光と第2の波長λを有するレーザ光とを含む一のレーザ光は、被検査物100の表面で反射した後、再び探傷ヘッド20に戻る。
 ここで、一のレーザ光のうち、被検査物100における超音波振動の生成には関与しない第2の波長λを有するレーザ光が被検査物100の表面で反射する際には、被検査物100には超音波振動が発生している。したがって、第2の波長λを有するレーザ光の反射波には、被検査物100内の欠陥で反射して被検査物100の表面に戻った超音波振動が重畳される。この結果、第2の波長λを有するレーザ光の反射波を検知することで、被検査物100内の傷の有無を検査することができる。
 図3に示すように、被検査物100の表面で反射した、第1の波長λを有するレーザ光と第2の波長λを有するレーザ光とを含む一のレーザ光は、探傷ヘッド20内に格納された受光部22の受光レンズ26とファイバ集光レンズ27で集光され、光ファイバ32を通じてレーザ超音波探傷装置本体10に送られる。
 レーザ超音波探傷装置本体10に送られたレーザ光は、光ファイバ47を通じて波長フィルタ17に入力される。波長フィルタ17は、第1の波長λを有する光は遮蔽するが第2の波長λを有する光を透過させるように構成されている。したがって、波長フィルタ17からは、被検査物100の表面で反射した一のレーザ光のうち、第2の波長λを有するレーザ光のみが出力される。そして、この第2の波長λを有するレーザ光が、レーザ干渉計18に入力される。上記のように、第2の波長λを有するレーザ光の反射波には、被検査物100内の欠陥で反射して被検査物100の表面に戻った超音波振動が重畳されているので、レーザ干渉計18に入力された第2の波長λを有するレーザ光中の超音波振動を抽出することで、被検査物100内部の欠陥の有無が検出される。
 このレーザ超音波探傷装置1によれば、被検査物100に超音波を生成させるための第1のレーザ光と、被検査物に生成された超音波振動を検出するための第2のレーザ光とが、同一のレーザ光源11から発振されるので、第1のレーザ光を発振するレーザ光源と第2のレーザ光を発振するレーザ光源を別々に用意する場合に比べて、レーザ超音波探傷装置1の構成を簡素化できる。
 ここで、被検査物の表面には、第1のレーザ光と第2のレーザ光とが、この両者を含む一のレーザ光として照射される。
 被検査物100に生成された超音波振動を取得するためには、第1のレーザ光を検知せずに第2のレーザ光のみを検知する必要がある。そこで、第1のレーザ光と第2のレーザ光とを含む一のレーザ光を被検査物の表面に照射し、該被検査物の表面で反射した反射波を、第1の波長λを有する光は遮蔽するが第2の波長λを有する光を透過させる波長フィルタ17に通すことによって、第1のレーザ光のみを除去し、波長フィルタ17を通過した第2のレーザ光のみをレーザ干渉計18で検知することができる。
 さらに、レーザ超音波探傷装置1には、第1の波長λを有するレーザ光、すなわち第1のレーザ光の出力とパルス幅を調整する第1の制御器14と、第2の波長λを有するレーザ光、すなわち第2のレーザ光の出力とパルス幅を調整する第2の制御器15とが備えられている。したがって、レーザ光の出力とパルス幅とをレーザ光源内で調整する場合に比較して、レーザ光の出力とパルス幅の制御範囲を大幅に広げることができる。また、第1のレーザ光の出力・パルス幅の調整と、第2のレーザ光の出力・パルス幅の調整とを、互いから独立して実施することができる。これにより、被検査物100の種類や寸法に応じて、第1のレーザ光の出力・パルス幅を、被検査物にダメージを生じさせることなく適度な超音波振動を生成させるような大きさとするとともに、第2のレーザ光の出力・パルス幅を、被検査物に生成された超音波振動を検知するのに適した大きさとすることが、簡単にできる。
 また、レーザ光源11、波長シフタ12、分波器13、第1の制御器14、第2の制御器15、合波器16、投光部21、受光部22、など、レーザ超音波探傷装置1の各構成要素の間を伝わるレーザ光が、レンズやミラーなどのバルク型光学素子によって導かれる場合に比較して、レーザ超音波探傷装置1内における各構成要素の配置の自由度が高められるとともに、各構成要素のアライメントの精度を確保するための固定治具等も不要となる。したがって、レーザ超音波探傷装置1の構造を簡素化し、レーザ超音波探傷装置1を小型化することができる。
 また、レーザ光を被検査物100の表面に導く導光系21が収められた探傷ヘッド20が、レーザ超音波探傷装置1の他の構成要素11~16を格納するレーザ超音波探傷装置本体10に対して動作可能とされている。ここで、探傷ヘッドには導光系21、受光導光系22のみが収められているので、探傷ヘッド20の重量・寸法は、レーザ超音波探傷装置1全体の重量・寸法に比べて非常に小さい。よって、探傷ヘッド20をレーザ超音波探傷装置本体10に対して動作させることによって、レーザ光の照射位置を、所望の位置に変更・調整することが簡単にできる。
 すなわち、レーザ光の照射位置を変更・調整する際には、被検査物100をレーザ超音波探傷装置1に対して移動させる必要は無く、被検査物100を静止させたままの状態で、レーザ超音波探傷装置1の探傷ヘッド20のみを被検査物100の検査対象箇所に移動させればよい。特に、被検査物100の重量や寸法が大きい場合にも、被検査物100を動かさずに被検査物100の所望の箇所にレーザ光を照射し、被検査物100の各箇所の探傷検査を実施することができる。
 以上、本発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。
 1 レーザ超音波探傷装置
 10 レーザ超音波探傷装置本体
 11 レーザ光源
 12 波長シフタ
 12A 非線形誘起ファイバ
 12B サイドバンドスペクトラム光変調器
 13 分波器
 14 第1の制御器
 15 第2の制御器
 16 合波器
 17 波長フィルタ
 18 レーザ干渉計
 20 探傷ヘッド
 21 投光部
 25 受光部
 31、32、41~48 光ファイバ
 100 被検査物

Claims (6)

  1.  第1のレーザ光を被検査物の表面に照射し、
     第2のレーザ光を前記被検査物の表面に照射して該被検査物の表面で反射した反射波を検知することによって、前記第1のレーザ光によって生成された超音波により励起された前記被検査物の表面の振動変位を取得し、この振動変位に反映された前記被検査物内部の欠陥の有無を検出するレーザ超音波探傷装置であって、
     1種類の波長を有するレーザ光を発振するレーザ光源と、
     前記レーザ光源から発振されたレーザ光を、少なくとも2種類の波長を含むレーザ光に変換する波長シフタと、
     前記波長シフタによって変換されたレーザ光を、第1の波長を有するレーザ光と、前記第1の波長とは異なる第2の波長を有するレーザ光とに分波して出力する分波器と、
     前記分波器から出力された前記第1の波長を有するレーザ光の出力とパルス幅を調整する第1の制御器と、
     前記分波器から出力された前記第2の波長を有するレーザ光の出力とパルス幅を調整する第2の制御器と、
     前記第1の制御器によって調整された前記第1の波長を有するレーザ光と、前記第2の制御器によって調整された前記第2の波長を有するレーザ光とを合波して、これら第1の波長を有するレーザ光と第2の波長を有するレーザ光とを含む一のレーザ光を出力する合波器と、
     前記合波器によって得られた一のレーザ光を前記被検査物の表面に投光する投光部と
    を備え、
     前記第1の波長を有するレーザ光が前記第1のレーザ光として、前記第2の波長を有するレーザ光が前記第2のレーザ光として用いられるレーザ超音波探傷装置。
  2.  前記レーザ光源、前記波長シフタ、前記分波器、前記第1の制御器、前記第2の制御器、前記合波器、前記導光系のうち少なくとも2つの間を伝わる前記レーザ光は、光ファイバによって導かれる請求項1に記載のレーザ超音波探傷装置。
  3.  前記レーザ光源、前記波長シフタ、前記分波器、前記第1の制御器、前記第2の制御器及び前記合波器は、レーザ超音波探傷装置本体に収められ、
     前記導光系は、前記レーザ超音波探傷装置本体に対して動作可能な探傷ヘッドに収められ、
     前記レーザ超音波探傷装置本体と前記探傷ヘッドとの間を伝わる前記レーザ光は、光ファイバによって導かれる請求項1または2に記載のレーザ超音波探傷装置。
  4.  前記波長シフタは、非線形誘起ファイバを有している請求項1から3のいずれかに記載のレーザ超音波探傷装置。
  5.  前記波長シフタは、サイドバンドスペクトラム光変調器を有している請求項1から3のいずれかに記載のレーザ超音波探傷装置。
  6.  前記投光部によって前記被検査物の表面に投光され、該被検査物の表面で反射した前記一のレーザ光の反射波を受光する受光部と、
     前記受光部によって受光された前記一のレーザ光のうち、前記第1の波長を有するレーザ光を遮蔽して前記第2の波長を有するレーザ光を通過させる波長フィルタと、
     前記波長フィルタを通過した前記第2の波長を有するレーザ光を検知するレーザ干渉計と
    をさらに有する請求項1から5のいずれかに記載のレーザ超音波探傷装置。
PCT/JP2011/054163 2010-02-26 2011-02-24 レーザ超音波探傷装置 WO2011105499A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BR112012017860-1A BR112012017860B1 (pt) 2010-02-26 2011-02-24 Aparelho de detecção de falha ultrassônico a laser
EP11747459.3A EP2541241B1 (en) 2010-02-26 2011-02-24 Laser ultrasonic flaw detector
CA2785688A CA2785688C (en) 2010-02-26 2011-02-24 Laser ultrasonic flaw detection apparatus
US13/518,926 US8978478B2 (en) 2010-02-26 2011-02-24 Laser ultrasonic flaw detection apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-043520 2010-02-26
JP2010043520A JP5249975B2 (ja) 2010-02-26 2010-02-26 レーザ超音波探傷装置

Publications (1)

Publication Number Publication Date
WO2011105499A1 true WO2011105499A1 (ja) 2011-09-01

Family

ID=44506901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054163 WO2011105499A1 (ja) 2010-02-26 2011-02-24 レーザ超音波探傷装置

Country Status (6)

Country Link
US (1) US8978478B2 (ja)
EP (1) EP2541241B1 (ja)
JP (1) JP5249975B2 (ja)
BR (1) BR112012017860B1 (ja)
CA (1) CA2785688C (ja)
WO (1) WO2011105499A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6855123B2 (en) 2002-08-02 2005-02-15 Flow Cardia, Inc. Therapeutic ultrasound system
US9955994B2 (en) 2002-08-02 2018-05-01 Flowcardia, Inc. Ultrasound catheter having protective feature against breakage
US7335180B2 (en) 2003-11-24 2008-02-26 Flowcardia, Inc. Steerable ultrasound catheter
US6942677B2 (en) 2003-02-26 2005-09-13 Flowcardia, Inc. Ultrasound catheter apparatus
US7758510B2 (en) 2003-09-19 2010-07-20 Flowcardia, Inc. Connector for securing ultrasound catheter to transducer
US8246643B2 (en) 2006-11-07 2012-08-21 Flowcardia, Inc. Ultrasound catheter having improved distal end
US9250213B1 (en) * 2011-06-14 2016-02-02 The Boeing Company Ultrasound inspection system for inspecting a test object with non-planar features
US8713998B2 (en) 2011-06-14 2014-05-06 The Boeing Company Autonomous non-destructive evaluation system for aircraft structures
JP2013128722A (ja) * 2011-12-22 2013-07-04 Fujifilm Corp 光音響画像化方法および装置
US9603615B2 (en) 2012-01-18 2017-03-28 C.R. Bard, Inc. Vascular re-entry device
US9188566B2 (en) 2012-06-19 2015-11-17 The Boeing Company Ultrasound inspection system of limited access composite structures
JP6293145B2 (ja) * 2012-08-02 2018-03-14 バード・ペリフェラル・バスキュラー・インコーポレーテッド 超音波カテーテルシステム
SE536842C2 (sv) 2012-09-24 2014-09-30 Totalförsvarets Forskningsinstitut FOI Anordning och metod för att på avstånd fastställa impulssvaret hos ett objekt med hjälp av elektromagnetisk strålning
US9933393B2 (en) 2015-12-09 2018-04-03 The Boeing Company Apparatuses, methods, and systems for inspecting a composite end portion of a part
US20180140321A1 (en) 2016-11-23 2018-05-24 C. R. Bard, Inc. Catheter With Retractable Sheath And Methods Thereof
US11596726B2 (en) 2016-12-17 2023-03-07 C.R. Bard, Inc. Ultrasound devices for removing clots from catheters and related methods
US10582983B2 (en) 2017-02-06 2020-03-10 C. R. Bard, Inc. Ultrasonic endovascular catheter with a controllable sheath
JP2019105616A (ja) * 2017-12-15 2019-06-27 株式会社日立製作所 レーザ超音波装置
US11189982B2 (en) * 2018-08-13 2021-11-30 The Boeing Company Pulse stretching technique for laser bond inspection, laser ultrasonic inspection, and laser peening
EP3734267A1 (en) 2019-05-01 2020-11-04 Northrop Grumman Innovation Systems, Inc. Inspection devices with laser emitters and optical microphones, and related systems and methods
US20220326190A1 (en) * 2021-04-07 2022-10-13 The Boeing Company Ultrasound inspection system and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727746A (ja) * 1993-07-13 1995-01-31 Kobe Steel Ltd 光熱変位計測による試料評価方法
JP2003508771A (ja) 1999-07-27 2003-03-04 ロッキード マーティン コーポレイション 調整可能な波長を有する超音波発生レーザ光源を使用した超音波レーザ検査システムと方法
JP2006125996A (ja) * 2004-10-28 2006-05-18 Sii Nanotechnology Inc 薄膜評価装置
US20080016965A1 (en) 2006-07-18 2008-01-24 Lockheed Martin Corporation Fiber laser for ultrasonic testing
US20080291963A1 (en) 2006-09-20 2008-11-27 Lockheed Martin Corporation Fiber-based mid-infrared generation laser for laser ultrasound inspection

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5604592A (en) * 1994-09-19 1997-02-18 Textron Defense Systems, Division Of Avco Corporation Laser ultrasonics-based material analysis system and method using matched filter processing
US5585921A (en) * 1995-03-15 1996-12-17 Hughes Aircraft Company Laser-ultrasonic non-destructive, non-contacting inspection system
US5608166A (en) * 1995-10-12 1997-03-04 National Research Council Of Canada Generation and detection of ultrasound with long pulse lasers
US5724138A (en) * 1996-04-18 1998-03-03 Textron Systems Corporation Wavelet analysis for laser ultrasonic measurement of material properties
EP1007942B1 (en) * 1996-11-22 2006-10-18 Perceptron, Inc. Physical parameter measuring apparatus and method thereof
US20040154402A1 (en) * 1998-06-30 2004-08-12 Lockheed Martin Corporation Remote laser beam delivery system and method for use with a robotic positioning system for ultrasonic testing purposes
KR100576719B1 (ko) * 2003-12-24 2006-05-03 한국전자통신연구원 하부 게이트형 유기박막 트랜지스터의 제조방법
US20070206203A1 (en) * 2004-04-10 2007-09-06 Michael Trainer Methods and Apparatus for Determining Particle Characteristics by Measuring Scattered Light
US20080007717A1 (en) * 2004-03-31 2008-01-10 Force Technology Noise Reduction Of Laser Ultrasound Detection System
US7397596B2 (en) * 2004-07-28 2008-07-08 Ler Technologies, Inc. Surface and subsurface detection sensor
US20060272418A1 (en) * 2005-06-03 2006-12-07 Brown University Opto-acoustic methods and apparatus for perfoming high resolution acoustic imaging and other sample probing and modification operations
EP1742049B1 (en) * 2005-07-07 2009-12-09 Kabushiki Kaisha Toshiba Laser-based maintenance apparatus
US7864338B2 (en) * 2007-11-09 2011-01-04 Bossa Nova Technologies, Llc Interferometric method and apparatus for linear detection of motion from a surface
EP2419710B1 (de) * 2009-04-15 2013-02-13 Dietmar Oberhoff Ultraschallprüfsystem

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727746A (ja) * 1993-07-13 1995-01-31 Kobe Steel Ltd 光熱変位計測による試料評価方法
JP2003508771A (ja) 1999-07-27 2003-03-04 ロッキード マーティン コーポレイション 調整可能な波長を有する超音波発生レーザ光源を使用した超音波レーザ検査システムと方法
JP2006125996A (ja) * 2004-10-28 2006-05-18 Sii Nanotechnology Inc 薄膜評価装置
US20080016965A1 (en) 2006-07-18 2008-01-24 Lockheed Martin Corporation Fiber laser for ultrasonic testing
JP2009544038A (ja) * 2006-07-18 2009-12-10 ロッキード マーティン コーポレイション 超音波レーザー検査のためのファイバー・レーザー
US20080291963A1 (en) 2006-09-20 2008-11-27 Lockheed Martin Corporation Fiber-based mid-infrared generation laser for laser ultrasound inspection

Also Published As

Publication number Publication date
BR112012017860A2 (pt) 2016-04-19
US8978478B2 (en) 2015-03-17
US20120304774A1 (en) 2012-12-06
JP5249975B2 (ja) 2013-07-31
CA2785688C (en) 2016-05-17
CA2785688A1 (en) 2011-09-01
BR112012017860B1 (pt) 2019-07-02
EP2541241B1 (en) 2019-01-02
JP2011179928A (ja) 2011-09-15
EP2541241A4 (en) 2018-01-17
EP2541241A1 (en) 2013-01-02

Similar Documents

Publication Publication Date Title
JP5249975B2 (ja) レーザ超音波探傷装置
JP5649828B2 (ja) レーザ顕微鏡装置
US7684047B2 (en) Apparatus and method for two wave mixing (TWM) based ultrasonic laser testing
JP2010169686A (ja) スペクトル・時間励起成形によるコヒーレント・ラマン顕微鏡法における選択的検出およびイメージングのためのシステムおよび方法
JP5095289B2 (ja) 干渉縞安定化装置およびそれを用いた非破壊検査装置
US9335156B2 (en) Method and device for testing a composite material using laser ultrasonics
JP2021113831A (ja) ハイブリッド光学システム
JP2012163406A (ja) 材料検査補修装置および材料検査補修方法
US20120050733A1 (en) Laser microscope
US10914676B2 (en) Observation apparatus and observation method
JP2007278768A (ja) 顕微鏡装置
US7821646B2 (en) Method and apparatus for generating mid-IR laser beam for ultrasound inspection
Hosoya et al. Measurements of S0 mode Lamb waves using a high-speed polarization camera to detect damage in transparent materials during non-contact excitation based on a laser-induced plasma shock wave
JP2011521230A5 (ja)
AU2009246284B2 (en) Improved mid-IR laser for generation of ultrasound using a CO2 laser and harmonic generation
US8134715B2 (en) Adjustable interferometer for laser ultrasonic measurement
KR101700139B1 (ko) 레이저 기반 비선형인자 측정 장치 및 방법
KR101664470B1 (ko) 빔 스플리터의 후면 반사를 이용한 다중 광경로 레이저 광학계
JP2010096667A (ja) レーザ顕微鏡装置
JP2019105616A (ja) レーザ超音波装置
JP7278979B2 (ja) 非接触振動計測装置および非接触振動計測方法
JP7444257B2 (ja) 欠陥検査装置
TW200641339A (en) Optical apparatus for measuring properties of a material and method for measuring the same
Thomas HIGH-SPEED TIME AVERAGE DIGITAL HOLOGRAPHY FOR NDT OF CURVED SANDWICH STRUCTURES
JP6919887B2 (ja) ガス濃度計測装置および方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11747459

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2785688

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2011747459

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13518926

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012017860

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012017860

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120718