WO2011105469A1 - Electromagnetic wave absorber and method for producing same - Google Patents

Electromagnetic wave absorber and method for producing same Download PDF

Info

Publication number
WO2011105469A1
WO2011105469A1 PCT/JP2011/054091 JP2011054091W WO2011105469A1 WO 2011105469 A1 WO2011105469 A1 WO 2011105469A1 JP 2011054091 W JP2011054091 W JP 2011054091W WO 2011105469 A1 WO2011105469 A1 WO 2011105469A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
wave absorber
slurry
molded body
firing
Prior art date
Application number
PCT/JP2011/054091
Other languages
French (fr)
Japanese (ja)
Inventor
正督 藤
孝 白井
実 高橋
誠治 高橋
恭一 藤本
英樹 岸野
宏三 林
Original Assignee
国立大学法人名古屋工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人名古屋工業大学 filed Critical 国立大学法人名古屋工業大学
Publication of WO2011105469A1 publication Critical patent/WO2011105469A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/007Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore distribution, e.g. inhomogeneous distribution of pores
    • C04B38/0074Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore distribution, e.g. inhomogeneous distribution of pores expressed as porosity percentage
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0001Rooms or chambers
    • H05K9/0003Shielded walls, floors, ceilings, e.g. wallpaper, wall panel, electro-conductive plaster, concrete, cement, mortar
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials

Definitions

  • the present invention relates to an electromagnetic wave absorber that is lightweight and nonflammable and has excellent electromagnetic wave absorption characteristics, and a method for producing the same.
  • This Patent Document 1 discloses an invention of a radio wave acoustic wave absorber formed by laminating a radio wave reflector, a sound absorbing unit, a radio wave absorber, and a plate-shaped radio wave absorber protecting unit made of a dielectric.
  • the radio wave absorber having such a configuration, it has a function of absorbing radio waves and sound waves coming from the radio wave absorber protection part side, and can be used in the field, which was difficult with conventional radio wave absorbers. It can be installed on roads.
  • the invention discloses a radio wave absorber formed by adhering an absorption layer and a radio wave reflection layer, which is a metal plate or metal foil, via an adhesive layer, and a method for manufacturing the same.
  • the thickness of the adhesive layer can be made much smaller than before, and excellent electromagnetic wave absorption characteristics can be exhibited.
  • Patent Document 3 proposes a method for manufacturing a conductive ceramic product in which a conductive path made of a reduced fired product of a polymer compound in a nitrogen gas atmosphere is formed between ceramic particles.
  • the conductive ceramic product is lighter in weight and isotropic in electrical properties than a conductive ceramic product using a conductive material having a high density.
  • a product can be obtained, in order to use this as an electromagnetic wave absorber, further improvement of the electromagnetic wave absorption characteristics was necessary.
  • the present invention has been made to solve such a problem, is lightweight and easy to transport and construct, is nonflammable and can be applied to buildings, and has excellent electromagnetic wave absorption characteristics. It is an object to provide an electromagnetic wave absorber and a method for producing the same.
  • the electromagnetic wave absorber according to the invention of claim 1 is an electromagnetic wave absorber mainly composed of a ceramic sintered body having a porosity in the range of 60% to 80%, wherein the ceramic sintered body is made of a net-like material made of carbon. It has a structure in which conductive paths are stretched and has a radio wave absorption performance at a frequency of 5 to 6 GHz of 20 dB or more.
  • oxide ceramics include silica (SiO 2 ), alumina (Al 2 O 3 ), mullite ( Al 2 O 3 —SiO 2 ), zirconia (ZrO 2 ), etc.
  • non-oxide ceramics include silicon carbide (SiC), silicon nitride (Si 3 N 4 ), aluminum nitride (AlN), boron nitride (BN) Etc. can be used.
  • the electromagnetic wave absorber according to the invention of claim 2 is the structure of claim 1, wherein the ceramic is alumina (Al 2 O 3 ).
  • the electromagnetic wave absorber according to the first or second aspect of the invention, wherein the network-like conductive path made of carbon is a high carbon chain formed by polymerizing a monomer.
  • a network of molecular compounds is formed by reduction firing.
  • the electromagnetic wave absorber according to the first or second aspect of the invention, wherein the network-like conductive path made of carbon is a non-nitrogen gas-containing network of a polymer compound having carbon atoms. It is formed by reduction firing in an active gas atmosphere.
  • the electromagnetic wave absorber according to the invention of claim 5 is the structure of claim 4, wherein the polymer compound is formed by polymerizing a monomer.
  • the method for producing an electromagnetic wave absorber according to the invention of claim 6 is a method for producing an electromagnetic wave absorber mainly comprising a ceramic sintered body having a porosity in the range of 60% to 80%, comprising a ceramic material for sintering. And a slurry adjustment step in which a polymerizable substance that is polymerized to become a polymer is dispersed in a solvent to form a slurry, a bubble introduction step for introducing bubbles into the slurry, and a slurry into which the bubbles are introduced is filled in a mold A molding step of polymerizing the polymerizable substance to form a wet molded body, and a reduction firing step of drying the wet molded body and firing in a reducing atmosphere.
  • the electromagnetic wave absorber has a radio wave absorption performance at a frequency of 5 to 6 GHz of 20 dB or more.
  • the reducing atmosphere is an inert gas atmosphere containing no nitrogen gas.
  • the method for producing an electromagnetic wave absorber according to the invention of claim 8 is a method for producing an electromagnetic wave absorber mainly comprising a ceramic sintered body having a porosity in the range of 60% to 80%, comprising a ceramic material for sintering.
  • a slurry adjustment step in which a polymerizable substance that is polymerized to become a polymer is dispersed in a solvent to form a slurry, a bubble introduction step for introducing bubbles into the slurry, and a slurry into which the bubbles are introduced is filled in a mold
  • the electromagnetic wave absorber manufacturing method includes sintering ceramic powder, a dispersant, and the solvent.
  • Water, a monomer (monomer) as the polymerizable substance, and a crosslinking agent are mixed to form a slurry.
  • a surfactant, a polymerization initiator and / or a polymerization catalyst are added to the slurry.
  • a method for producing an electromagnetic wave absorber according to any one of the sixth to ninth aspects, wherein the ceramic is alumina (Al 2 O 3 ).
  • the method for producing an electromagnetic wave absorber according to the invention of claim 11 is the structure according to any one of claims 6 to 10, wherein the monomer is a methacrylamide.
  • the electromagnetic wave absorber according to the invention of claim 1 is an electromagnetic wave absorber mainly composed of a ceramic sintered body having a porosity in the range of 60% to 80%, and is a netlike conductive material made of carbon in the ceramic sintered body. It has a structure in which roads are stretched, and the radio wave absorption performance at a frequency of 5 to 6 GHz is 20 dB or more.
  • the radio wave absorption performance at a frequency of 5 to 6 GHz is 20 dB or more, it is suitable as an electromagnetic wave absorber used in ITS including ETC.
  • the ceramic is alumina (Al 2 O 3 ), in addition to the effect of the invention of claim 1, it can be fired at a lower temperature, Since the raw material is easily available, the effect that it can be produced at a lower cost is obtained.
  • the net-like conductive path made of carbon is formed by reducing and firing a network of polymer compounds made of carbon chains formed by polymerizing monomers, The conductive path can be formed tightly and uniformly, and an effect of obtaining an electromagnetic wave absorber having excellent electromagnetic wave absorption characteristics can be obtained.
  • the network-like conductive path made of carbon is obtained by reducing and firing a network of polymer compounds having carbon atoms in an inert gas atmosphere not containing nitrogen gas.
  • the effect of obtaining an electromagnetic wave absorber having excellent electromagnetic wave absorption characteristics can be obtained as compared with the case of reducing and firing in a nitrogen gas atmosphere.
  • the network-like conductive path made of carbon is obtained by reducing and firing a network of polymer compounds made of carbon chains formed by polymerizing methacrylamide.
  • the net-like conductive path can be formed tightly and uniformly, and an effect of obtaining an electromagnetic wave absorber having excellent electromagnetic wave absorption characteristics can be obtained.
  • FIG. 1 is a flowchart showing a method of manufacturing an electromagnetic wave absorber according to Example 1 of the present invention.
  • FIG. 2 is a schematic diagram showing a method for measuring the electromagnetic wave absorption characteristics of the electromagnetic wave absorber according to Example 1 of the present invention.
  • FIG. 3 is a graph showing measurement results of electromagnetic wave absorption characteristics of the electromagnetic wave absorber according to Example 1 of the present invention.
  • 4A is a scanning electron microscope (SEM) photograph showing a cross section of the electromagnetic wave absorber according to Example 1 of the present invention
  • FIG. 4B is an SEM photograph in which (a) is further enlarged.
  • FIG. 5 is a graph showing measurement results of electromagnetic wave absorption characteristics of the sintered body according to Comparative Example 1.
  • FIG. 1 is a flowchart showing a method of manufacturing an electromagnetic wave absorber according to Example 1 of the present invention.
  • FIG. 2 is a schematic diagram showing a method for measuring the electromagnetic wave absorption characteristics of the electromagnetic wave absorber according to Example 1 of the present invention.
  • FIG. 6 is a Raman spectrum of the electromagnetic wave absorber according to Example 1 of the present invention.
  • FIGS. 7A and 7B are views showing the installation direction at the time of radio wave absorption evaluation of the electromagnetic wave absorber according to Example 1 of the present invention.
  • FIG. 8 is a graph showing the isotropic evaluation results of the electromagnetic wave absorber according to Example 1 of the present invention.
  • FIG. 9 is a graph showing measurement results of electromagnetic wave absorption characteristics of the electromagnetic wave absorber according to Example 2 of the present invention.
  • FIG. 10 is a Raman spectrum of the electromagnetic wave absorber according to Example 2 of the present invention.
  • various “ceramics” constituting the ceramic sintered body can be used.
  • the oxide ceramics include silica (SiO 2 ), alumina (Al 2 ). O 3 ), mullite (Al 2 O 3 —SiO 2 ), zirconia (ZrO 2 ), etc., as non-oxide ceramics, silicon carbide (SiC), silicon nitride (Si 3 N 4 ), aluminum nitride (AlN) Boron nitride (BN) or the like can be used.
  • alumina (Al 2 O 3 ) is preferably used because it can be fired at a lower temperature and the raw materials are easily available.
  • a powder or granular material of such a ceramic raw material is used, and its size (average particle diameter) is 0.1.
  • the size is about 10 to 10 ⁇ m, preferably about 0.1 to 5 ⁇ m, more preferably about 0.1 to 1 ⁇ m.
  • various methods can be used as a method of stretching a network-like conductive path made of carbon in a ceramic sintered body, but carbon chains formed by polymerizing monomers are used.
  • a method in which a network of polymer compounds made of is formed by reduction firing is preferable.
  • various monomers can be used as long as they can form a polymer compound composed of carbon chains.
  • vinyl unsaturated monomers such as methacrylamide, polyol compounds and isocyanate compounds that form urethane bonds by mixing, phenol compounds that form thermosetting polymers, epoxy compounds, and the like can be used.
  • vinyl unsaturated monomers such as methacrylamide are particularly preferable.
  • a vinyl unsaturated monomer such as methacrylamide
  • a crosslinkable monomer such as N, N′-methylenebisacrylamide
  • a polymerization initiator when forming a polymer network by polymerizing monomers, it is preferable to use a polymerization initiator, a polymerization catalyst, or the like according to the monomers.
  • a polymerization initiator organic peroxides, hydrogen peroxide compounds, azo compounds, diazo compounds, ammonium persulfate, and the like can be used.
  • the polymerization catalyst N, N, N ′, N′-tetramethylethylenediamine or the like can be used.
  • a polymer compound composed of carbon chains can be formed, not only the monomer but also a polymer obtained by polymerizing the monomer to some extent may be used. In short, in the present invention, it is only necessary to form a polymer compound composed of carbon chains by polymerizing a polymerizable substance having a carbon atom in the molecule.
  • the polymerizable substance includes the monomer.
  • a predetermined composition is prepared by blending the polymerizable material with the ceramic raw material, and such a composition is generally contained in a predetermined medium.
  • the ceramic raw material is prepared in the form of an aqueous or non-aqueous slurry in which the ceramic raw material and the like are uniformly dispersed.
  • a medium in which the ceramic raw material or the like is dispersed water (distilled water), an organic solvent, or a mixed solvent thereof can be used. From the viewpoint of easy handling, water is preferably used. (Distilled water) cocoons are used and prepared in the form of a water slurry.
  • a dispersant for the purpose of uniformly dispersing the ceramic raw material particles or powders in the medium.
  • a dispersing agent those according to the types of ceramic raw materials and polymerizable substances are appropriately selected from various conventionally known dispersing agents and used, for example, ammonium polycarboxylate-based dispersion An agent (anionic dispersant) or the like is used.
  • a surfactant, etc., and a thickener and a paste for stably holding the introduced bubbles in the composition can be blended.
  • the foaming agent a protein-based foaming agent, a surfactant-based foaming agent, etc.
  • the surfactant an alkylbenzene sulfonic acid, a higher alkyl amino acid, etc.
  • a thickener or a paste examples include methyl cellulose, polyvinyl alcohol, saccharose, molasses, xanthan gum and the like.
  • the composition thus prepared it is supplied into a mold according to the shape of the target conductive ceramic product, together with a polymerization initiator and a polymerization catalyst as necessary, and for a predetermined time together with the mold.
  • a polymerization initiator and a polymerization catalyst as necessary, and for a predetermined time together with the mold.
  • the composition containing the polymerizable substance When the composition containing the polymerizable substance is allowed to stand at a predetermined temperature for a predetermined time in the mold, the polymerization of the polymerizable substance contained in the composition is effective in the mold.
  • the polymer compound that is a polymer of the polymerizable substance In the molded product obtained by demolding after a lapse of a predetermined time, the polymer compound that is a polymer of the polymerizable substance is uniformly distributed. It presents an existing structure.
  • the molded body obtained as described above contains a large amount of water or an organic solvent, particularly when a slurry-like composition is used. Therefore, it is generally dried before reduction firing.
  • the Rukoto Regarding the drying method and various conditions (drying temperature, drying time, etc.) for drying the molded body, those according to the components contained in the molded body, the medium to be volatilized (water, organic solvent, etc.), etc. Will be selected and adopted.
  • a sintered ceramic body is obtained by firing the molded body obtained as described above.
  • molding die which consists of paper etc. which lose
  • the drying and firing steps may be performed separately, or the drying and firing steps may be performed continuously in the same firing furnace.
  • the reducing airflow atmosphere is an inert gas atmosphere that does not contain nitrogen gas.
  • the inert gas not containing nitrogen gas include rare gases such as argon and helium.
  • the reason for reduction firing in an inert gas atmosphere not containing nitrogen gas is that, as shown in Comparative Example 1 described later, when the reduction firing is performed in a nitrogen gas atmosphere, the obtained ceramic sintered body has excellent electromagnetic wave absorption. This is because the effect of the present invention of having characteristics is not achieved.
  • the content of the polymerizable substance in the molded body is the same, the case where the reduction firing is performed under an inert gas atmosphere not containing nitrogen gas, compared to the case where the reduction firing is performed under a nitrogen gas atmosphere, The amount of conductive carbon generated in the ceramic sintered body increases. This is because, when reducing firing in a nitrogen gas atmosphere, the ceramic particles, the polymerizable substance, and the nitrogen gas react to produce a compound.
  • the ratio of the total carbon amount (mass) of the polymerizable material in the green body before firing is 0.1 to 6 parts by mass with respect to 100 parts by mass of the ceramic raw material, and in an inert gas atmosphere not containing nitrogen gas
  • the carbon component content of the ceramic sintered body was in the range of 0.3 mass% to 1.7 mass%. This carbon component content is calculated from the measured value of the amount of components thermally decomposed and burned by thermal analysis, and is a mass ratio with respect to the mass of the ceramic sintered body.
  • the conductive carbon component content in the ceramic sintered body was 0.2% by mass or less.
  • the carbon component content of the ceramic sintered body is preferably 1.7% by mass or less. This is because if the carbon in the ceramic sintered body increases, the strength of the ceramic sintered body will decrease, and the present inventors have confirmed that sufficient strength can be obtained if it is 1.7% by mass or less. Because it is.
  • an electromagnetic wave absorber 1 mainly composed of alumina ceramics having a porosity of 60% to 80%, and having an electromagnetic wave absorption performance at a frequency of 5 to 6 GHz of 20 dB or more is obtained. can get.
  • FIG. 1 is a flowchart showing a method of manufacturing an electromagnetic wave absorber according to Example 1 of the present invention.
  • FIG. 2 is a schematic diagram showing a method for measuring the electromagnetic wave absorption characteristics of the electromagnetic wave absorber according to Example 1 of the present invention.
  • FIG. 3 is a graph showing measurement results of electromagnetic wave absorption characteristics of the electromagnetic wave absorber according to Example 1 of the present invention.
  • 4A is a scanning electron microscope (SEM) photograph showing a cross section of the electromagnetic wave absorber according to Example 1 of the present invention
  • FIG. 4B is an SEM photograph in which (a) is further enlarged.
  • step S10 primary mixing is performed in which alumina ceramic powder is dispersed in water as a solvent (step S10). That is, alumina ceramic powder 2 (Product No. Al-160SG-4), Dispersant 3 (Product No. D305) and distilled water 4 are put in an alumina pot mill at a compounding ratio shown in Table 1 below, and zirconia is used as a medium. Ball milling is performed for 18 hours using a ball.
  • the monomer 5 (methacrylamide) and the cross-linking agent 6 (N, N′-methylenebisacrylamide), which are materials for forming a polymer compound network, are shown in Table 1 above for this primary mixed slurry.
  • ball mill mixing is further performed as secondary mixing for 30 minutes (step S11).
  • the secondary mixed slurry thus adjusted in the slurry adjustment step is taken out from the alumina pot mill and defoamed (step S12), and then the bubble introduction step is performed.
  • surfactant 7 (trade name “Emulgen 104P” manufactured by Kao Corporation), polymerization initiator 8 (ammonium peroxodisulfate) and polymerization catalyst 9 (N, N, N ′, N′-tetramethylethylenediamine)
  • the bubble introduction rate is represented by ((1-introduced slurry density) / secondary mixed slurry density) ⁇ 100 (%). For example, when 400 ml of secondary mixed slurry is put in a container having a volume of 1000 ml or more and foamed until reaching 1000 ml, the bubble introduction rate is 60 (%).
  • the bubble-introduced slurry is filled in a mold (step S14) and left for 90 to 120 minutes, whereby the monomer (methacrylamide) is cross-linked and gelled to form a wet molded body (step S15). .
  • the wet molded body is removed from the mold (step S16) and then dried at 25 ° C. (step S17). And it puts into a baking furnace and carries out reduction baking in argon gas atmosphere.
  • the firing temperature is 1800 ° C. and the firing time is 2 hours (step S18).
  • the electromagnetic wave absorption characteristics of the electromagnetic wave absorber 1 produced in this way were measured in an anechoic chamber as shown in FIG.
  • the measurement results of the electromagnetic wave absorption characteristics are shown in FIG.
  • the radio wave absorption rate is 20 dB or more in the frequency range of 5.5 GHz to 6.0 GHz within the frequency range of 4 GHz to 8 GHz, and further, the radio wave absorption rate of 25 dB at the frequency of 5.8 GHz. was gotten.
  • FIG. 4 (a) is a SEM photograph which shows the cross section of the electromagnetic wave absorber 1 which concerns on a present Example. As shown in FIG. 4 (a), it can be seen that there is a structure in which a network of carbon (shown whitish) is stretched around the alumina sintered particles (shown blackish). As shown in the SEM photograph of FIG. 4B, which is a further enlarged view of FIG. 4A, it was confirmed that the carbon network was formed of nanocarbon having a thickness of nanometer size.
  • FIG. 5 shows the measurement results of the electromagnetic wave absorption characteristics of the sintered body according to Comparative Example 1.
  • Comparative Example 1 compared to the present example, after forming a molded body by the same process up to Step S17 in the flowchart shown in FIG. 1, reduction firing was performed in a nitrogen gas atmosphere instead of an argon gas atmosphere. It is. The firing temperature is 1800 ° C. and the firing time is 2 hours. As a result, a sintered body mainly composed of alumina ceramics having a porosity of 60% was obtained. The electromagnetic wave absorption characteristics of the obtained sintered body were measured in the same manner as in Example 1.
  • the analysis of the carbon component contained in the electromagnetic wave absorber 1 of the present example was performed by a Raman spectrum analysis and a solid-in-carbon analyzer.
  • the Raman spectrum of the carbon component contained in the electromagnetic wave absorber 1 is shown.
  • the electromagnetic wave absorber 1 contains a carbon component because there are peaks at 1350 cm ⁇ 1 (D-band) and 1580 cm ⁇ 1 (G-band) derived from the graphite structure. Was confirmed.
  • the sample was burned at a high temperature, and the carbon component content of the electromagnetic wave absorber 1 was 0.60% by weight as a result of calculation from the measured value of the solid-in-carbon analyzer that analyzes the generated gas with an infrared analyzer.
  • FIGS. 7A and 7B the installation direction of the sample when the isotropic property of the electromagnetic wave absorption characteristic is evaluated is shown in FIGS. 7A and 7B, and the evaluation result is shown in FIG. Specifically, two types of samples (Example 1-1 and Example 1-2) are prepared, and the installation direction at the time of the radio wave absorption evaluation is vertical as shown in FIGS. 7 (a) and 7 (b). The isotropic orientation of the electromagnetic wave absorption characteristics was evaluated. The vertical direction and the horizontal direction are directions different from each other by 90 degrees. Both samples are the electromagnetic wave absorbers 1 obtained in this example.
  • Example 1-1 is a case where only the electromagnetic wave absorber 1 is used
  • Example 1-2 is a case where a surface hard vinyl chloride plate (thickness 1 mm) is added to the surface of the electromagnetic wave absorber 1.
  • the measurement method and conditions of the electromagnetic wave absorption characteristics are the same as the measurement in FIG.
  • Example 1-1 the electromagnetic wave absorption characteristics of 20 dB or more can be confirmed in the vicinity of the frequency of 5.6 GHz in both the vertical and horizontal directions, and there is almost no difference in characteristics depending on the sample installation direction.
  • Example 1-2 in both the vertical and horizontal directions, the peak of electromagnetic wave absorption characteristics shifts to a frequency near 5.3 GHz, but an electromagnetic wave absorption characteristic of about 20 dB can be confirmed. There is almost no difference.
  • the electromagnetic wave absorber 1 of Example 1 having a porosity of 60% had a bulk density of 1.60 g / cm 3 .
  • the ferrite type is 5.2 to 5.3 g / cm 3
  • the iron / titanium oxide is. 3 to 3.9 g / cm 3
  • the ferrite mortar type (ferrite / cement) is 3.5 to 3.6 g / cm 3 . From this, it can be seen that the electromagnetic wave absorber 1 of Example 1 is lighter than a conventional general ceramic-based electromagnetic wave absorber.
  • a net-like conductive path made of carbon is stretched between ceramic particles in the ceramic sintered body by being manufactured according to the flowchart shown in FIG. It is light in weight, easy to transport and construct, non-combustible, can be applied to buildings, and has excellent electromagnetic wave absorption characteristics.
  • Example 2 The electromagnetic wave absorber according to Example 2 is manufactured according to the flowchart shown in FIG. 1 by changing the mixing ratio of the polymerizable substance and the slurry to Example 1.
  • Table 3 shows the blending ratio (weight ratio) of the bubble-introducing slurry according to Example 2.
  • step S10 ball mill mixing is performed at 60 rpm for 12 hours.
  • an epoxy resin product number Q-265
  • an epoxy catalyst type A manufactured by Chukyo Yushi Co., Ltd.
  • This epoxy catalyst also serves as the polymerization catalyst 9.
  • an epoxy catalyst is added and ball mill mixing is performed for 30 minutes.
  • Step S13 Triethylenetetramine (TETA) as the polymerization initiator 8 and the same surfactant 7 as in Example 1 were added to the secondary mixed slurry. Introduce a large amount of air bubbles. At this time, the addition amount of the surfactant 7 was set to 2 wt% as an outer amount with respect to the slurry weight.
  • TETA Triethylenetetramine
  • Step S14 the bubble-introducing slurry was allowed to stand for 12 hours in a molding die to form a wet molded body.
  • Step S17 the wet molded body was dried with a dryer, and at this time, the wet molded body was reduced at a rate of 5% per day until the relative humidity in the dryer became 90% to 50%.
  • step S18 the reduction firing was performed in an argon gas atmosphere, the firing temperature at this time was 1700 degrees, and the firing time was 2 hours.
  • the electromagnetic wave absorber 1 having a bubble introduction rate of 70% was produced.
  • FIG. 9 shows the measurement results of the electromagnetic wave absorption characteristics of the electromagnetic wave absorber 1 produced in this way.
  • the measurement method and measurement conditions are the same as in Example 1.
  • the radio wave absorption rate is 20 dB or more within the frequency range of 5.5 GHz to 6.0 GHz within the frequency range of 4 GHz to 8 GHz, and further, the radio wave absorption rate of 25 dB at the frequency of 5.8 GHz. was gotten.
  • FIG. 10 shows the Raman spectrum of the carbon component contained in the electromagnetic wave absorber 1 of Example 2.
  • the electromagnetic wave absorber 1 contains a carbon component because there are peaks at 1350 cm ⁇ 1 (D-band) and 1580 cm ⁇ 1 (G-band) derived from the graphite structure. Was confirmed.
  • the carbon component content of the electromagnetic wave absorber 1 of Example 2 was 0.83% by weight. It was 1.71 ohm * cm as a result of measuring the electroconductivity of the electromagnetic wave absorber 1 of Example 2 by the four probe method.
  • the electromagnetic wave absorber 1 of Example 2 having a porosity of 70% had a bulk density of 1.19 g / cm 3 .
  • the porosity was calculated using the density of the primary and secondary slurries in the manufacturing process, but the same result can be obtained by measuring the porosity of the ceramic sintered body.
  • the measured average porosity is 60 to 80%.
  • the method for measuring the porosity include a method for measuring the sintered ceramic density / open porosity of fine ceramics as defined in JIS R1643.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

Disclosed is an electromagnetic wave absorber, which is lightweight, easy to carry and apply, nonflammable, and applicable to buildings, while having excellent electromagnetic wave absorption characteristics. Also disclosed is a method for producing the electromagnetic wave absorber. Specifically, an electromagnetic wave absorber (1), which is mainly composed of alumina having a porosity within the range of 60-80%, can be obtained by: introducing an alumina ceramic powder (2), a dispersant (3) and distilled water (4) into an alumina pot mill and carrying out ball mill mixing for 24 hours (S10); adding a monomer (5) and a crosslinking agent (6) thereinto and carrying out additional ball mill mixing for 24 hours (S11); defoaming the thus-prepared secondary mixed slurry (S12); then adding a surfactant (7), a polymerization initiator (8) and a polymerization catalyst (9) thereinto and introducing a large amount of air bubbles into the secondary mixed slurry by stirring the slurry with a bubble generator (S13); filling the resulting slurry into a mold (S14); leaving the mold at rest in order to gelatinize the slurry, thereby forming a wet molded body (S15); removing the wet molded body from the mold (S16); drying the wet molded body at 25˚C (S17); and then introducing the dried molded body into a firing furnace and carrying out reduction firing (S18).

Description

電磁波吸収体及びその製造方法Electromagnetic wave absorber and method for producing the same
 本発明は、軽量かつ不燃性で電磁波吸収特性に優れた電磁波吸収体及びその製造方法に関するものである。 The present invention relates to an electromagnetic wave absorber that is lightweight and nonflammable and has excellent electromagnetic wave absorption characteristics, and a method for producing the same.
 近年、自動車用道路において利用される電波の帯域は拡大傾向にあり、特にITS(高度道路交通システム)の推進によって、ETC(5.8GHz)で用いられているDSRC(専用狭域通信)の利用分野が広がることによって、この傾向は顕著となっている。このため、DSRCに対応した電波吸収体の需要が拡大している。その一例として、特許文献1に記載の電波音波吸収体の発明がある。 In recent years, the band of radio waves used on automobile roads has been expanding, and in particular, the use of DSRC (dedicated narrow area communication) used in ETC (5.8 GHz) by the promotion of ITS (Intelligent Transport System). This trend has become more pronounced as the field expands. For this reason, the demand of the electromagnetic wave absorber corresponding to DSRC is expanding. As an example, there is an invention of a radio wave absorber described in Patent Document 1.
 この特許文献1においては、電波反射体と吸音部と電波吸収部と誘電体からなる板状の電波吸収部保護部とを積層してなる電波音波吸収体の発明について開示している。かかる構成の電波音波吸収体を用いることによって、電波吸収部保護部側から到来する電波及び音波を吸収する機能を兼ね備えるとともに、従来の電波音波吸収体では困難であった野外での使用が可能になり、道路等にも設置することができるとしている。 This Patent Document 1 discloses an invention of a radio wave acoustic wave absorber formed by laminating a radio wave reflector, a sound absorbing unit, a radio wave absorber, and a plate-shaped radio wave absorber protecting unit made of a dielectric. By using the radio wave absorber having such a configuration, it has a function of absorbing radio waves and sound waves coming from the radio wave absorber protection part side, and can be used in the field, which was difficult with conventional radio wave absorbers. It can be installed on roads.
 また、特許文献2においては、火山噴出物(シラス)の発泡粒子と電波損失材(導電性カーボン)とケイ酸アルカリ水溶液とを混合した電波吸収用混合物に炭酸ガスを接触し固化してなる電波吸収層と、金属板または金属箔である電波反射層とが接着層を介して接着してなる電波吸収体及びその製造方法の発明について開示している。これによって、接着層の厚みを従来よりも格段に小さくすることができ、優れた電磁波吸収特性を発揮することができるとしている。 Further, in Patent Document 2, a radio wave formed by bringing carbon dioxide into contact with an electromagnetic wave absorbing mixture obtained by mixing foam particles of volcanic ejecta (shirasu), a radio wave loss material (conductive carbon), and an aqueous alkali silicate solution, and solidifying the carbon dioxide. The invention discloses a radio wave absorber formed by adhering an absorption layer and a radio wave reflection layer, which is a metal plate or metal foil, via an adhesive layer, and a method for manufacturing the same. Thus, the thickness of the adhesive layer can be made much smaller than before, and excellent electromagnetic wave absorption characteristics can be exhibited.
 また、特許文献3においては、高分子化合物の窒素ガス雰囲気下での還元焼成物よりなる導電路をセラミックス粒子間に形成する導電性セラミックス製品の製造方法が提案されている。 Further, Patent Document 3 proposes a method for manufacturing a conductive ceramic product in which a conductive path made of a reduced fired product of a polymer compound in a nitrogen gas atmosphere is formed between ceramic particles.
特開2004-003259号公報JP 2004-003259 A 特開2003-152381号公報JP 2003-152381 A 特開2005-289695号公報JP 2005-289695 A
 しかしながら、上記特許文献1及び特許文献2のいずれにおいても、電波吸収体の重量が大きくなってしまい、道路周辺(トンネル内、駐車場の天井等)における取付け・施工が困難であり、また電気的に異方性となって等方的な電磁波吸収特性が得られないという問題点があった。これに対して、合成樹脂・合成繊維を主体とした軽量の電波吸収体も種々提案されているが、これらの電波吸収体は建築物に要求される不燃性の要件を満たさないという問題点があった。 However, in both Patent Document 1 and Patent Document 2, the weight of the radio wave absorber is increased, so that it is difficult to mount and construct around the road (in a tunnel, a ceiling of a parking lot, etc.) However, there is a problem that isotropic electromagnetic wave absorption characteristics cannot be obtained. On the other hand, various lightweight wave absorbers mainly composed of synthetic resins and synthetic fibers have been proposed. However, these wave absorbers have a problem that they do not satisfy the incombustibility requirement required for buildings. there were.
 また、特許文献3の導電性セラミックス製品の製造方法によれば、密度の大きな導電性材料を用いた導電性セラミックス製品と比較して軽量であり、電気的性質において等方性を示す導電性セラミックス製品が得られるが、これを電磁波吸収体として利用するためには、電磁波吸収特性のさらなる改善が必要であった。 In addition, according to the method for manufacturing a conductive ceramic product disclosed in Patent Document 3, the conductive ceramic product is lighter in weight and isotropic in electrical properties than a conductive ceramic product using a conductive material having a high density. Although a product can be obtained, in order to use this as an electromagnetic wave absorber, further improvement of the electromagnetic wave absorption characteristics was necessary.
 そこで、本発明は、かかる課題を解決すべくなされたものであって、軽量で運搬・施工が容易であり、不燃性であって建築物にも適用することができ、優れた電磁波吸収特性を有する電磁波吸収体及びその製造方法を提供することを目的とするものである。 Therefore, the present invention has been made to solve such a problem, is lightweight and easy to transport and construct, is nonflammable and can be applied to buildings, and has excellent electromagnetic wave absorption characteristics. It is an object to provide an electromagnetic wave absorber and a method for producing the same.
 請求項1の発明に係る電磁波吸収体は、気孔率が60%~80%の範囲内のセラミックス焼結体を主体とする電磁波吸収体であって、前記セラミックス焼結体内に炭素からなる網状の導電路が張り巡らされた構造を有し、周波数5~6GHzにおける電波吸収性能が20dB以上であるものである。 The electromagnetic wave absorber according to the invention of claim 1 is an electromagnetic wave absorber mainly composed of a ceramic sintered body having a porosity in the range of 60% to 80%, wherein the ceramic sintered body is made of a net-like material made of carbon. It has a structure in which conductive paths are stretched and has a radio wave absorption performance at a frequency of 5 to 6 GHz of 20 dB or more.
 ここで、セラミックス焼結体を構成する「セラミックス」としては、種々のものを用いることが可能であり、酸化物系セラミックスとしては、シリカ(SiO2 )、アルミナ(Al2 O3 )、ムライト(Al23-SiO2 )、ジルコニア(ZrO2 )等を、非酸化物系セラミックスとしては炭化ケイ素(SiC)、窒化ケイ素(Si34 )、窒化アルミニウム(AlN)、窒化ホウ素(BN)等を用いることができる。 Here, various types of “ceramics” constituting the ceramic sintered body can be used. Examples of oxide ceramics include silica (SiO 2 ), alumina (Al 2 O 3 ), mullite ( Al 2 O 3 —SiO 2 ), zirconia (ZrO 2 ), etc., and non-oxide ceramics include silicon carbide (SiC), silicon nitride (Si 3 N 4 ), aluminum nitride (AlN), boron nitride (BN) Etc. can be used.
 請求項2の発明に係る電磁波吸収体は、請求項1の構成において、前記セラミックスはアルミナ(Al2 O3 )であるものである。 The electromagnetic wave absorber according to the invention of claim 2 is the structure of claim 1, wherein the ceramic is alumina (Al 2 O 3 ).
 請求項3の発明に係る電磁波吸収体は、請求項1または請求項2の構成において、前記炭素からなる網状の導電路は、単量体(モノマー)を重合させて形成した炭素鎖からなる高分子化合物のネットワークを還元焼成してなるものである。 According to a third aspect of the present invention, there is provided the electromagnetic wave absorber according to the first or second aspect of the invention, wherein the network-like conductive path made of carbon is a high carbon chain formed by polymerizing a monomer. A network of molecular compounds is formed by reduction firing.
 請求項4の発明に係る電磁波吸収体は、請求項1または請求項2の構成において、前記炭素からなる網状の導電路は、炭素原子を有する高分子化合物のネットワークを、窒素ガスを含有しない不活性ガス雰囲気で還元焼成してなるものである。 According to a fourth aspect of the present invention, there is provided the electromagnetic wave absorber according to the first or second aspect of the invention, wherein the network-like conductive path made of carbon is a non-nitrogen gas-containing network of a polymer compound having carbon atoms. It is formed by reduction firing in an active gas atmosphere.
 請求項5の発明に係る電磁波吸収体は、請求項4の構成において、前記高分子化合物は単量体(モノマー)を重合させて形成したものである。 The electromagnetic wave absorber according to the invention of claim 5 is the structure of claim 4, wherein the polymer compound is formed by polymerizing a monomer.
 請求項6の発明に係る電磁波吸収体の製造方法は、気孔率が60%~80%の範囲内のセラミックス焼結体を主体とする電磁波吸収体の製造方法であって、焼結用セラミックス原料と、重合して高分子となる重合性物質とを溶媒に分散させてスラリーとするスラリー調整工程と、前記スラリーに気泡を導入する気泡導入工程と、気泡を導入した前記スラリーを成形型に充填して静置することにより、前記重合性物質を重合させて湿潤成形体を形成する成形工程と、前記湿潤成形体を乾燥して、還元雰囲気で焼成する還元焼成工程とを具備することを特徴とする周波数5~6GHzにおける電波吸収性能が20dB以上である電磁波吸収体の製造方法である。 The method for producing an electromagnetic wave absorber according to the invention of claim 6 is a method for producing an electromagnetic wave absorber mainly comprising a ceramic sintered body having a porosity in the range of 60% to 80%, comprising a ceramic material for sintering. And a slurry adjustment step in which a polymerizable substance that is polymerized to become a polymer is dispersed in a solvent to form a slurry, a bubble introduction step for introducing bubbles into the slurry, and a slurry into which the bubbles are introduced is filled in a mold A molding step of polymerizing the polymerizable substance to form a wet molded body, and a reduction firing step of drying the wet molded body and firing in a reducing atmosphere. The electromagnetic wave absorber has a radio wave absorption performance at a frequency of 5 to 6 GHz of 20 dB or more.
 請求項7の発明に係る電磁波吸収体の製造方法は、請求項6の構成において、前記還元雰囲気は、窒素ガスを含有しない不活性ガス雰囲気であるものである。 In the method for manufacturing an electromagnetic wave absorber according to the invention of claim 7, in the structure of claim 6, the reducing atmosphere is an inert gas atmosphere containing no nitrogen gas.
 請求項8の発明に係る電磁波吸収体の製造方法は、気孔率が60%~80%の範囲内のセラミックス焼結体を主体とする電磁波吸収体の製造方法であって、焼結用セラミックス原料と、重合して高分子となる重合性物質とを溶媒に分散させてスラリーとするスラリー調整工程と、前記スラリーに気泡を導入する気泡導入工程と、気泡を導入した前記スラリーを成形型に充填して静置することにより、前記重合性物質を重合させて湿潤成形体を形成する成形工程と、前記湿潤成形体を乾燥して、窒素ガスを含有しない不活性ガスの還元雰囲気で焼成する還元焼成工程とを具備するものである。 The method for producing an electromagnetic wave absorber according to the invention of claim 8 is a method for producing an electromagnetic wave absorber mainly comprising a ceramic sintered body having a porosity in the range of 60% to 80%, comprising a ceramic material for sintering. And a slurry adjustment step in which a polymerizable substance that is polymerized to become a polymer is dispersed in a solvent to form a slurry, a bubble introduction step for introducing bubbles into the slurry, and a slurry into which the bubbles are introduced is filled in a mold A molding step of polymerizing the polymerizable substance to form a wet molded body, and a reduction of drying the wet molded body and firing in a reducing atmosphere of an inert gas not containing nitrogen gas And a firing step.
 請求項9の発明に係る電磁波吸収体の製造方法は、請求項6ないし8のいずれか1つの構成において、前記スラリー調整工程は、焼結用セラミックス粉体と、分散剤と、前記溶媒としての水と、前記重合性物質としての単量体(モノマー)と、架橋剤とを混合してスラリーとし、 前記気泡導入工程は、前記スラリーに界面活性剤と重合開始剤及び/または重合触媒とを混合して攪拌して、前記スラリーに気泡を導入し、前記成形工程と前記還元焼成工程との間に、前記成形型から湿潤成形体を取り出す脱型工程と、前記湿潤成形体を乾燥して生成形体とする乾燥工程とを具備し、前記還元焼成工程は、前記生成形体を焼成するものである。 According to a ninth aspect of the present invention, there is provided the electromagnetic wave absorber manufacturing method according to any one of the sixth to eighth aspects, wherein the slurry adjusting step includes sintering ceramic powder, a dispersant, and the solvent. Water, a monomer (monomer) as the polymerizable substance, and a crosslinking agent are mixed to form a slurry. In the bubble introduction step, a surfactant, a polymerization initiator and / or a polymerization catalyst are added to the slurry. Mixing and stirring, introducing bubbles into the slurry, and removing the wet molded body from the mold between the molding step and the reduction firing step; and drying the wet molded body And a drying step for forming the generated shape, and the reduction firing step is for firing the generated shape.
 請求項10の発明に係る電磁波吸収体の製造方法は、請求項6ないし9のいずれか1つの構成において、前記セラミックスはアルミナ(Al2 O3 )であるものである。
請求項11の発明に係る電磁波吸収体の製造方法は、請求項6ないし10のいずれか1つの構成において、前記単量体(モノマー)はメタクリルアミドであるものである。
According to a tenth aspect of the present invention, there is provided a method for producing an electromagnetic wave absorber according to any one of the sixth to ninth aspects, wherein the ceramic is alumina (Al 2 O 3 ).
The method for producing an electromagnetic wave absorber according to the invention of claim 11 is the structure according to any one of claims 6 to 10, wherein the monomer is a methacrylamide.
 請求項1の発明に係る電磁波吸収体は、気孔率が60%~80%の範囲内のセラミックス焼結体を主体とする電磁波吸収体であって、セラミックス焼結体内に炭素からなる網状の導電路が張り巡らされた構造を有し、周波数5~6GHzにおける電波吸収性能が20dB以上である。 The electromagnetic wave absorber according to the invention of claim 1 is an electromagnetic wave absorber mainly composed of a ceramic sintered body having a porosity in the range of 60% to 80%, and is a netlike conductive material made of carbon in the ceramic sintered body. It has a structure in which roads are stretched, and the radio wave absorption performance at a frequency of 5 to 6 GHz is 20 dB or more.
 このように、セラミックス焼結体内に炭素からなる網状の導電路が張り巡らされることによって電波吸収性能を有しているため、等方性の電磁波吸収特性が得られる。また、気孔率が60%~80%の範囲内と大きいため、極めて軽量である。更に、セラミックス焼結体を主体とすることから不燃性であり、また気孔率が大きくても取り扱い上十分な強度を有している。そして、周波数5~6GHzにおける電波吸収性能が20dB以上であることから、ETCを始めとするITSにおいて使用される電磁波吸収体として適している。 As described above, since a net-like conductive path made of carbon is stretched around the sintered ceramic body, it has radio wave absorption performance, so that isotropic electromagnetic wave absorption characteristics can be obtained. Further, since the porosity is as large as 60% to 80%, it is extremely lightweight. Furthermore, since it is mainly composed of a ceramic sintered body, it is nonflammable and has a sufficient strength for handling even if the porosity is large. Since the radio wave absorption performance at a frequency of 5 to 6 GHz is 20 dB or more, it is suitable as an electromagnetic wave absorber used in ITS including ETC.
 このようにして、軽量で運搬・施工が容易であり、不燃性であって建築物にも適用することができ、優れた電磁波吸収特性を有する電磁波吸収体となる。 In this way, it is lightweight, easy to transport and construct, nonflammable, can be applied to buildings, and becomes an electromagnetic wave absorber having excellent electromagnetic wave absorption characteristics.
 請求項2の発明に係る電磁波吸収体においては、前記セラミックスはアルミナ(Al2 O3 )であることから、請求項1に係る発明の効果に加えて、より低温で焼成することができ、しかも原料が入手しやすいことから、より低コストで製造することができるという作用効果が得られる。 In the electromagnetic wave absorber according to the invention of claim 2, since the ceramic is alumina (Al 2 O 3 ), in addition to the effect of the invention of claim 1, it can be fired at a lower temperature, Since the raw material is easily available, the effect that it can be produced at a lower cost is obtained.
 請求項3の発明に係る電磁波吸収体においては、炭素からなる網状の導電路が、単量体を重合させて形成した炭素鎖からなる高分子化合物のネットワークを還元焼成してなることから、網状の導電路を緊密かつ均一に形成することができ、優れた電磁波吸収特性を有する電磁波吸収体となるという作用効果が得られる。 In the electromagnetic wave absorber according to the invention of claim 3, since the net-like conductive path made of carbon is formed by reducing and firing a network of polymer compounds made of carbon chains formed by polymerizing monomers, The conductive path can be formed tightly and uniformly, and an effect of obtaining an electromagnetic wave absorber having excellent electromagnetic wave absorption characteristics can be obtained.
 請求項4の発明に係る電磁波吸収体においては、炭素からなる網状の導電路が、炭素原子を有する高分子化合物のネットワークを、窒素ガスを含有しない不活性ガス雰囲気で還元焼成してなることから、請求項3の発明の効果に加えて、窒素ガス雰囲気で還元焼成した場合よりも、優れた電磁波吸収特性を有する電磁波吸収体となるという作用効果が得られる。 In the electromagnetic wave absorber according to the invention of claim 4, the network-like conductive path made of carbon is obtained by reducing and firing a network of polymer compounds having carbon atoms in an inert gas atmosphere not containing nitrogen gas. In addition to the effect of the invention of claim 3, the effect of obtaining an electromagnetic wave absorber having excellent electromagnetic wave absorption characteristics can be obtained as compared with the case of reducing and firing in a nitrogen gas atmosphere.
 請求項6~9の発明に係る電磁波吸収体の製造方法によれば、湿潤成形体の全体に均一に炭素鎖からなる高分子化合物のネットワークが張り巡らされると同時に、均一に気泡が分布した構造となる。したがって、この湿潤成形体を乾燥して還元雰囲気で焼成することによって、炭素鎖からなる高分子化合物のネットワークが還元焼成されて、炭素からなる網状の導電路がセラミックス焼結体内に張り巡らされるとともに、気孔率が60%~80%の範囲内のセラミックス焼結体となって、不燃性で軽量の電磁波吸収体が得られる。 According to the method for producing an electromagnetic wave absorber according to the inventions of claims 6 to 9, a structure in which a high molecular compound network composed of carbon chains is uniformly stretched throughout the wet molded body and at the same time, bubbles are uniformly distributed. It becomes. Therefore, by drying this wet molded body and firing it in a reducing atmosphere, a network of polymer compounds composed of carbon chains is reduced and fired, and a net-like conductive path composed of carbon is stretched around the ceramic sintered body. A ceramic sintered body having a porosity in the range of 60% to 80% is obtained, and an incombustible and lightweight electromagnetic wave absorber is obtained.
 更に、請求項7、8の発明に係る電磁波吸収体の製造方法によれば、窒素ガスを含有しない不活性ガス雰囲気で還元焼成してなることから、窒素ガス雰囲気で還元焼成した場合よりも、優れた電磁波吸収特性を有する電磁波吸収体となるという作用効果が得られる。 Furthermore, according to the manufacturing method of the electromagnetic wave absorber according to the inventions of claims 7 and 8, since the reduction baking is performed in an inert gas atmosphere not containing nitrogen gas, than the case of reduction baking in a nitrogen gas atmosphere, The effect of becoming an electromagnetic wave absorber having excellent electromagnetic wave absorption characteristics can be obtained.
 このようにして、軽量で運搬・施工が容易であり、不燃性であって建築物にも適用することができ、優れた電磁波吸収特性を有する電磁波吸収体の製造方法となる。 Thus, it is a light-weight, easy to transport and construct, non-combustible, applicable to buildings, and a method for producing an electromagnetic wave absorber having excellent electromagnetic wave absorption characteristics.
 請求項10の発明に係る電磁波吸収体の製造方法においては、前記セラミックスはアルミナ(Al2 O3 )であることから、請求項6~9に係る発明の効果に加えて、より低温で焼成することができ、しかも原料が入手しやすいことから、より低コストで製造することができるという作用効果が得られる。 In the method for producing an electromagnetic wave absorber according to the invention of claim 10, since the ceramic is alumina (Al 2 O 3 ), in addition to the effects of the inventions of claims 6 to 9, firing is performed at a lower temperature. In addition, since the raw material is easily available, the effect of being able to be manufactured at a lower cost is obtained.
 請求項11の発明に係る電磁波吸収体の製造方法においては、炭素からなる網状の導電路が、メタクリルアミドを重合させて形成した炭素鎖からなる高分子化合物のネットワークを還元焼成してなることから、網状の導電路を緊密かつ均一に形成することができ、優れた電磁波吸収特性を有する電磁波吸収体となるという作用効果が得られる。 In the method for producing an electromagnetic wave absorber according to the invention of claim 11, the network-like conductive path made of carbon is obtained by reducing and firing a network of polymer compounds made of carbon chains formed by polymerizing methacrylamide. In addition, the net-like conductive path can be formed tightly and uniformly, and an effect of obtaining an electromagnetic wave absorber having excellent electromagnetic wave absorption characteristics can be obtained.
図1は本発明の実施例1に係る電磁波吸収体の製造方法を示すフローチャートである。FIG. 1 is a flowchart showing a method of manufacturing an electromagnetic wave absorber according to Example 1 of the present invention. 図2は本発明の実施例1に係る電磁波吸収体の電磁波吸収特性の測定方法を示す模式図である。FIG. 2 is a schematic diagram showing a method for measuring the electromagnetic wave absorption characteristics of the electromagnetic wave absorber according to Example 1 of the present invention. 図3は本発明の実施例1に係る電磁波吸収体の電磁波吸収特性の測定結果を示すグラフである。FIG. 3 is a graph showing measurement results of electromagnetic wave absorption characteristics of the electromagnetic wave absorber according to Example 1 of the present invention. 図4(a)は本発明の実施例1に係る電磁波吸収体の断面を示す走査型電子顕微鏡(SEM)写真、(b)は(a)を更に拡大したSEM写真である。4A is a scanning electron microscope (SEM) photograph showing a cross section of the electromagnetic wave absorber according to Example 1 of the present invention, and FIG. 4B is an SEM photograph in which (a) is further enlarged. 図5は比較例1に係る焼結体の電磁波吸収特性の測定結果を示すグラフである。FIG. 5 is a graph showing measurement results of electromagnetic wave absorption characteristics of the sintered body according to Comparative Example 1. 図6は本発明の実施例1に係る電磁波吸収体のラマンスペクトルである。FIG. 6 is a Raman spectrum of the electromagnetic wave absorber according to Example 1 of the present invention. 図7(a)、(b)は本発明の実施例1に係る電磁波吸収体の電波吸収評価時の設置向きを示す図である。FIGS. 7A and 7B are views showing the installation direction at the time of radio wave absorption evaluation of the electromagnetic wave absorber according to Example 1 of the present invention. 図8は本発明の実施例1に係る電磁波吸収体の等方性の評価結果を示すグラフである。FIG. 8 is a graph showing the isotropic evaluation results of the electromagnetic wave absorber according to Example 1 of the present invention. 図9は本発明の実施例2に係る電磁波吸収体の電磁波吸収特性の測定結果を示すグラフである。FIG. 9 is a graph showing measurement results of electromagnetic wave absorption characteristics of the electromagnetic wave absorber according to Example 2 of the present invention. 図10は本発明の実施例2に係る電磁波吸収体のラマンスペクトルである。FIG. 10 is a Raman spectrum of the electromagnetic wave absorber according to Example 2 of the present invention.
 本発明の実施の形態においては、セラミックス焼結体を構成する「セラミックス」としては、種々のものを用いることが可能であり、酸化物系セラミックスとしては、シリカ(SiO2 )、アルミナ(Al2 O3 )、ムライト(Al23-SiO2 )、ジルコニア(ZrO2 )等を、非酸化物系セラミックスとしては炭化ケイ素(SiC)、窒化ケイ素(Si34 )、窒化アルミニウム(AlN)、窒化ホウ素(BN)等を用いることができる。特に、より低温で焼成することができ、しかも原料が入手しやすいことから、アルミナ(Al23 )を用いることが好ましい。 In the embodiment of the present invention, various “ceramics” constituting the ceramic sintered body can be used. Examples of the oxide ceramics include silica (SiO 2 ), alumina (Al 2 ). O 3 ), mullite (Al 2 O 3 —SiO 2 ), zirconia (ZrO 2 ), etc., as non-oxide ceramics, silicon carbide (SiC), silicon nitride (Si 3 N 4 ), aluminum nitride (AlN) Boron nitride (BN) or the like can be used. In particular, alumina (Al 2 O 3 ) is preferably used because it can be fired at a lower temperature and the raw materials are easily available.
 また、そのようなセラミックス原料を用いて所定の組成物を調製する際には、一般に、かかるセラミックス原料の粉状物又は粒状物が用いられるのであり、その大きさ(平均粒径)は、0.1乃至10μm程度、好ましくは0.1乃至5μm程度、更に好ましくは0.1乃至1μm程度の大きさとされる。けだし、粉状物又は粒状物の平均粒径が大きすぎたり、或いは小さすぎたりすると、十分な強度を有する焼結体が得られない恐れがあるからである。
また、本発明の実施の形態においては、セラミックス焼結体内に炭素からなる網状の導電路を張り巡らせる方法として、種々の方法を用いることができるが、単量体を重合させて形成した炭素鎖からなる高分子化合物のネットワークを還元焼成して形成する方法が好ましい。重合させる単量体としては、炭素鎖からなる高分子化合物を形成することができるモノマーでさえあれば、種々のモノマーを使用することができる。
In addition, when preparing a predetermined composition using such a ceramic raw material, generally, a powder or granular material of such a ceramic raw material is used, and its size (average particle diameter) is 0.1. The size is about 10 to 10 μm, preferably about 0.1 to 5 μm, more preferably about 0.1 to 1 μm. However, if the average particle size of the powdery or granular material is too large or too small, a sintered body having sufficient strength may not be obtained.
Further, in the embodiment of the present invention, various methods can be used as a method of stretching a network-like conductive path made of carbon in a ceramic sintered body, but carbon chains formed by polymerizing monomers are used. A method in which a network of polymer compounds made of is formed by reduction firing is preferable. As a monomer to be polymerized, various monomers can be used as long as they can form a polymer compound composed of carbon chains.
 具体的には、メタクリルアミド等のビニル系不飽和単量体、混合することによってウレタン結合を形成するポリオール化合物とイソシアネート化合物、熱硬化性ポリマーを形成するフェノール化合物、エポキシ化合物等を用いることができるが、特にメタクリルアミド等のビニル系不飽和単量体が好ましい。 Specifically, vinyl unsaturated monomers such as methacrylamide, polyol compounds and isocyanate compounds that form urethane bonds by mixing, phenol compounds that form thermosetting polymers, epoxy compounds, and the like can be used. However, vinyl unsaturated monomers such as methacrylamide are particularly preferable.
 また、重合させる単量体としてメタクリルアミド等のビニル系不飽和単量体を用いる際には、同時にN,N′-メチレンビスアクリルアミド等の架橋性単量体を用いることが好ましい。これによって、炭素からなる網状の導電路を三次元的に張り巡らせることができるからである。 Further, when a vinyl unsaturated monomer such as methacrylamide is used as the monomer to be polymerized, it is preferable to use a crosslinkable monomer such as N, N′-methylenebisacrylamide at the same time. This is because a net-like conductive path made of carbon can be stretched three-dimensionally.
 更に、高分子化合物のネットワークを単量体を重合させて形成するに際しては、単量体に応じた重合開始剤や重合触媒等を用いることが好ましい。このような重合開始剤としては、有機過酸化物、過酸化水素化合物、アゾ化合物、ジアゾ化合物、過硫酸アンモニウム等を用いることができる。また、重合触媒としては、N,N,N′,N′-テトラメチルエチレンジアミン等を用いることができる。 Further, when forming a polymer network by polymerizing monomers, it is preferable to use a polymerization initiator, a polymerization catalyst, or the like according to the monomers. As such a polymerization initiator, organic peroxides, hydrogen peroxide compounds, azo compounds, diazo compounds, ammonium persulfate, and the like can be used. As the polymerization catalyst, N, N, N ′, N′-tetramethylethylenediamine or the like can be used.
 なお、炭素鎖からなる高分子化合物を形成することができれば、単量体に限らず、単量体がある程度重合したものを用いても良い。要するに、本発明では、炭素原子を分子中に有する重合性物質を重合させることで、炭素鎖からなる高分子化合物を形成することができれば良い。この重合性物質には上記単量体が含まれる。 Note that, as long as a polymer compound composed of carbon chains can be formed, not only the monomer but also a polymer obtained by polymerizing the monomer to some extent may be used. In short, in the present invention, it is only necessary to form a polymer compound composed of carbon chains by polymerizing a polymerizable substance having a carbon atom in the molecule. The polymerizable substance includes the monomer.
 本発明の実施の形態においては、上記セラミックス原料に対して、上記重合性物質が配合されて、所定の組成物が調製されることとなるが、かかる組成物は、一般に、所定の媒体中にセラミックス原料及び重合性物質を添加し、混合することにより、セラミックス原料等が均一に分散されてなる水系又は非水系のスラリーの形態にて調製される。かかるセラミックス原料等が分散せしめられる媒体としては、水(蒸留水)、有機溶媒、或いはこれらの混合溶媒等の何れも使用することができるが、取扱いが容易である等の観点から、好ましくは水(蒸留水) が用いられ、水スラリーの形態にて調製される。 In an embodiment of the present invention, a predetermined composition is prepared by blending the polymerizable material with the ceramic raw material, and such a composition is generally contained in a predetermined medium. By adding and mixing the ceramic raw material and the polymerizable substance, the ceramic raw material is prepared in the form of an aqueous or non-aqueous slurry in which the ceramic raw material and the like are uniformly dispersed. As a medium in which the ceramic raw material or the like is dispersed, water (distilled water), an organic solvent, or a mixed solvent thereof can be used. From the viewpoint of easy handling, water is preferably used. (Distilled water) cocoons are used and prepared in the form of a water slurry.
 また、そのようなスラリー状の組成物を調製するに際しては、媒体中に、セラミックス原料の粒状物又は粉状物を均一に分散せしめることを目的として、分散剤を用いることが好ましい。かかる分散剤としては、従来より公知の各種分散剤の中から、セラミックス原料や重合性物質等の種類に応じたものが、適宜に選択されて用いられるのであり、例えば、ポリカルボン酸アンモニウム系分散剤(アニオン系分散剤)等が用いられる。 Further, when preparing such a slurry composition, it is preferable to use a dispersant for the purpose of uniformly dispersing the ceramic raw material particles or powders in the medium. As such a dispersing agent, those according to the types of ceramic raw materials and polymerizable substances are appropriately selected from various conventionally known dispersing agents and used, for example, ammonium polycarboxylate-based dispersion An agent (anionic dispersant) or the like is used.
 また、組成物中において気泡を生成せしめるために、起泡剤を配合したり、或いは、スラリー状の組成物中にガスを導入することにより気泡を発生させる場合には、かかる気泡の発生を容易にする界面活性剤等、更には、導入した気泡を組成物中において安定に保持するための増粘剤や糊剤等を、配合することができる。ここで、起泡剤としては、タンパク質系起泡剤や界面活性剤系起泡剤等を、また、界面活性剤としては、アルキルベンゼンスルホン酸や高級アルキルアミノ酸等を、更に、増粘剤や糊剤としては、メチルセルロース、ポリビニルアルコール、サッカロース、糖蜜、キサンタンガム等を、それぞれ例示することができる。 In addition, in order to generate bubbles in the composition, when bubbles are generated by adding a foaming agent or by introducing gas into the slurry composition, the generation of such bubbles is easy. A surfactant, etc., and a thickener and a paste for stably holding the introduced bubbles in the composition can be blended. Here, as the foaming agent, a protein-based foaming agent, a surfactant-based foaming agent, etc., as the surfactant, an alkylbenzene sulfonic acid, a higher alkyl amino acid, etc., and further, a thickener or a paste. Examples of the agent include methyl cellulose, polyvinyl alcohol, saccharose, molasses, xanthan gum and the like.
 そのようにして調製された組成物にあっては、必要に応じて重合開始剤や重合触媒と共に、目的とする導電性セラミックス製品の形状に応じた成形型内に供給され、成形型ごと所定時間、所定温度の下に静置されることにより、かかる成形型内において、組成物中の重合性物質が重合せしめられる。 In the composition thus prepared, it is supplied into a mold according to the shape of the target conductive ceramic product, together with a polymerization initiator and a polymerization catalyst as necessary, and for a predetermined time together with the mold. By allowing the composition to stand at a predetermined temperature, the polymerizable substance in the composition is polymerized in the mold.
 そして、重合性物質を含有する組成物が、成形型内にて所定時間、所定温度の下に静置されると、かかる成形型内においては、組成物に含まれる重合性物質の重合が効果的に、且つ、成形体全体において均一に進行することとなり、以て、所定時間経過後に脱型して得られる成形体にあっては、重合性物質の重合体である高分子化合物が均一に存在せしめられた構造を呈するのである。 When the composition containing the polymerizable substance is allowed to stand at a predetermined temperature for a predetermined time in the mold, the polymerization of the polymerizable substance contained in the composition is effective in the mold. In the molded product obtained by demolding after a lapse of a predetermined time, the polymer compound that is a polymer of the polymerizable substance is uniformly distributed. It presents an existing structure.
 上述の如くして得られた成形体は、特にスラリー状の組成物を用いた場合、多量の水乃至は有機溶媒等を含有するものであるため、一般には、還元焼成される前に乾燥されることとなる。かかる成形体を乾燥させる際の乾燥方法や各種条件(乾燥温度、乾燥時間等)については、成形体に含まれる各成分や揮発させる媒体(水、有機溶媒等)等に応じたものが、適宜に選択されて、採用されることとなる。 The molded body obtained as described above contains a large amount of water or an organic solvent, particularly when a slurry-like composition is used. Therefore, it is generally dried before reduction firing. The Rukoto. Regarding the drying method and various conditions (drying temperature, drying time, etc.) for drying the molded body, those according to the components contained in the molded body, the medium to be volatilized (water, organic solvent, etc.), etc. Will be selected and adopted.
 上述の如くして得られた成形体を焼成することにより、セラミックス焼結体が得られる。なお、燃焼により消失する紙等からなる成形型を用いた場合では、脱型を行わずに、還元焼成しても良い。また、乾燥と焼成の工程を別々に行ったり、同じ焼成炉において、乾燥と焼成の工程を連続して行ったりしても良い。 A sintered ceramic body is obtained by firing the molded body obtained as described above. In addition, when using the shaping | molding die which consists of paper etc. which lose | disappear by combustion, you may carry out reduction | restoration baking without performing mold removal. Further, the drying and firing steps may be performed separately, or the drying and firing steps may be performed continuously in the same firing furnace.
 また、セラミックス焼結体を得るための焼成工程においては、形成された炭素鎖を焼失させないために、還元気流雰囲気中で焼成する還元焼成を実施する必要がある。還元気流雰囲気としては、窒素ガスを含有しない不活性ガス雰囲気とする。窒素ガスを含有しない不活性ガスとしては、アルゴン、ヘリウム等の希ガスが挙げられる。 Further, in the firing step for obtaining the ceramic sintered body, it is necessary to carry out reduction firing in which firing is performed in a reducing air flow atmosphere in order to prevent the formed carbon chains from being burned out. The reducing airflow atmosphere is an inert gas atmosphere that does not contain nitrogen gas. Examples of the inert gas not containing nitrogen gas include rare gases such as argon and helium.
 窒素ガスを含有しない不活性ガス雰囲気下で還元焼成する理由は、後述する比較例1に示すように、窒素ガス雰囲気下で還元焼成した場合、得られたセラミックス焼結体は、優れた電磁波吸収特性を有するという本発明の効果を奏しないからである。 The reason for reduction firing in an inert gas atmosphere not containing nitrogen gas is that, as shown in Comparative Example 1 described later, when the reduction firing is performed in a nitrogen gas atmosphere, the obtained ceramic sintered body has excellent electromagnetic wave absorption. This is because the effect of the present invention of having characteristics is not achieved.
 ここで、成形体中の重合性物質の含有量が同じ場合、窒素ガスを含有しない不活性ガス雰囲気下で還元焼成した場合の方が、窒素ガス雰囲気下で還元焼成した場合と比較して、セラミックス焼結体中の導電性炭素の生成量が多くなる。これは、窒素ガス雰囲気下で還元焼成すると、セラミックス粒子と重合性物質と窒素ガスとが反応して化合物が生じてしまうからである。 Here, when the content of the polymerizable substance in the molded body is the same, the case where the reduction firing is performed under an inert gas atmosphere not containing nitrogen gas, compared to the case where the reduction firing is performed under a nitrogen gas atmosphere, The amount of conductive carbon generated in the ceramic sintered body increases. This is because, when reducing firing in a nitrogen gas atmosphere, the ceramic particles, the polymerizable substance, and the nitrogen gas react to produce a compound.
 例えば、焼成前の成形体における重合性物質全体の炭素量(質量)の割合を、セラミックス原料100 質量部に対して0.1質量部以上6 質量部以下として、窒素ガスを含有しない不活性ガス雰囲気下で還元焼成すると、セラミックス焼結体の炭素成分含有率は0.3質量%以上1.7質量%以下の範囲であった。この炭素成分含有率は、熱分析で熱分解・燃焼する成分量の測定値から算出したものであり、セラミックス焼結体の質量に対する質量割合である。これに対して、同じ成形体を用いて窒素ガス雰囲気下で還元焼成すると、セラミックス焼結体中の導電性の炭素成分含有率は0.2質量%以下であった。 For example, the ratio of the total carbon amount (mass) of the polymerizable material in the green body before firing is 0.1 to 6 parts by mass with respect to 100 parts by mass of the ceramic raw material, and in an inert gas atmosphere not containing nitrogen gas When the reduction firing was performed, the carbon component content of the ceramic sintered body was in the range of 0.3 mass% to 1.7 mass%. This carbon component content is calculated from the measured value of the amount of components thermally decomposed and burned by thermal analysis, and is a mass ratio with respect to the mass of the ceramic sintered body. On the other hand, when the same compact was subjected to reduction firing in a nitrogen gas atmosphere, the conductive carbon component content in the ceramic sintered body was 0.2% by mass or less.
 なお、セラミックス焼結体の炭素成分含有率は1.7質量%以下が好ましい。これは、セラミックス焼結体中の炭素が多くなると、セラミックス焼結体の強度が低下してしまうからであり、1.7質量%以下であれば、十分な強度が得られることを本発明者が確認しているからである。 The carbon component content of the ceramic sintered body is preferably 1.7% by mass or less. This is because if the carbon in the ceramic sintered body increases, the strength of the ceramic sintered body will decrease, and the present inventors have confirmed that sufficient strength can be obtained if it is 1.7% by mass or less. Because it is.
 以上の製造方法によって、気孔率が60%~80%の範囲内のアルミナセラミックスを主体とした電磁波吸収体1であって、周波数5~6GHzにおける電波吸収性能が20dB以上である電磁波吸収体1が得られる。 By the above manufacturing method, an electromagnetic wave absorber 1 mainly composed of alumina ceramics having a porosity of 60% to 80%, and having an electromagnetic wave absorption performance at a frequency of 5 to 6 GHz of 20 dB or more is obtained. can get.
以下、本発明の電磁波吸収体及びその製造方法について、具体的な実施例に即して図面を参照しつつ説明するが、本発明はこれらの実施例によっていかなる限定をも受けるものではない。
(実施例1)
図1は本発明の実施例1に係る電磁波吸収体の製造方法を示すフローチャートである。図2は本発明の実施例1に係る電磁波吸収体の電磁波吸収特性の測定方法を示す模式図である。図3は本発明の実施例1に係る電磁波吸収体の電磁波吸収特性の測定結果を示すグラフである。図4(a)は本発明の実施例1に係る電磁波吸収体の断面を示す走査型電子顕微鏡(SEM)写真、(b)は(a)を更に拡大したSEM写真である。
最初に、本実施例に係る電磁波吸収体の製造方法について、図1のフローチャートを参照して説明する。図1に示されるように、最初にアルミナセラミックス粉体を溶媒としての水に分散させる1次混合を実施する(ステップS10)。すなわち、アルミナセラミックス粉体2(製品番号Al-160SG-4)と分散剤3(製品番号D305)と蒸留水4を、下記表1に示される配合比でアルミナ製ポットミルに入れて、メディアとしてジルコニアボールを用いて、18時間ボールミル混合を行う。
Hereinafter, although the electromagnetic wave absorber of this invention and its manufacturing method are demonstrated in reference to drawings according to a specific Example, this invention does not receive any limitation by these Examples.
Example 1
FIG. 1 is a flowchart showing a method of manufacturing an electromagnetic wave absorber according to Example 1 of the present invention. FIG. 2 is a schematic diagram showing a method for measuring the electromagnetic wave absorption characteristics of the electromagnetic wave absorber according to Example 1 of the present invention. FIG. 3 is a graph showing measurement results of electromagnetic wave absorption characteristics of the electromagnetic wave absorber according to Example 1 of the present invention. 4A is a scanning electron microscope (SEM) photograph showing a cross section of the electromagnetic wave absorber according to Example 1 of the present invention, and FIG. 4B is an SEM photograph in which (a) is further enlarged.
Initially, the manufacturing method of the electromagnetic wave absorber which concerns on a present Example is demonstrated with reference to the flowchart of FIG. As shown in FIG. 1, first, primary mixing is performed in which alumina ceramic powder is dispersed in water as a solvent (step S10). That is, alumina ceramic powder 2 (Product No. Al-160SG-4), Dispersant 3 (Product No. D305) and distilled water 4 are put in an alumina pot mill at a compounding ratio shown in Table 1 below, and zirconia is used as a medium. Ball milling is performed for 18 hours using a ball.
Figure JPOXMLDOC01-appb-T000001
この1次混合スラリーに対して、更に高分子化合物のネットワークの形成材料となる単量体5(メタクリルアミド)と架橋剤6(N,N′-メチレンビスアクリルアミド)を、上記表1に示される配合比で追加して、2次混合として、更に30分間ボールミル混合を実施する(ステップS11)。こうしてスラリー調整工程によって調整された2次混合スラリーを、アルミナ製ポットミルから取り出して脱泡(ステップS12)した後、気泡導入工程を実施する。
すなわち、界面活性剤7(商品名「エマルゲン104P」花王(株)製)と重合開始剤8(ペルオキソ二硫酸アンモニウム)と重合触媒9(N,N,N′,N′-テトラメチルエチレンジアミン)を、下記表2に示される配合比で2次混合スラリーに追加して、気泡発生器で攪拌することによって、2次混合スラリー中に多量の気泡を導入する(ステップS13)。なお、気泡導入率は、((1-導入スラリーの密度)/2次混合スラリーの密度)×100(%)で表される。例えば、容積1000ml以上の容器に400mlの2次混合スラリーを入れ、1000mlに達するまで泡立てた場合、気泡導入率は60(%)となる。
Figure JPOXMLDOC01-appb-T000001
The monomer 5 (methacrylamide) and the cross-linking agent 6 (N, N′-methylenebisacrylamide), which are materials for forming a polymer compound network, are shown in Table 1 above for this primary mixed slurry. In addition to the blending ratio, ball mill mixing is further performed as secondary mixing for 30 minutes (step S11). The secondary mixed slurry thus adjusted in the slurry adjustment step is taken out from the alumina pot mill and defoamed (step S12), and then the bubble introduction step is performed.
That is, surfactant 7 (trade name “Emulgen 104P” manufactured by Kao Corporation), polymerization initiator 8 (ammonium peroxodisulfate) and polymerization catalyst 9 (N, N, N ′, N′-tetramethylethylenediamine) A large amount of bubbles are introduced into the secondary mixed slurry by adding to the secondary mixed slurry at the blending ratio shown in Table 2 below and stirring with the bubble generator (step S13). The bubble introduction rate is represented by ((1-introduced slurry density) / secondary mixed slurry density) × 100 (%). For example, when 400 ml of secondary mixed slurry is put in a container having a volume of 1000 ml or more and foamed until reaching 1000 ml, the bubble introduction rate is 60 (%).
Figure JPOXMLDOC01-appb-T000002
この気泡導入スラリーを成形型に充填して(ステップS14)、90分間~120分間静置することによって、モノマー(メタクリルアミド)が架橋してゲル化し、湿潤成形体が形成される(ステップS15)。この湿潤成形体を成形型から脱型(ステップS16)した後に、25℃で乾燥させる(ステップS17)。そして、焼成炉に入れてアルゴンガス雰囲気中で還元焼成する。焼成温度は1800℃、焼成時間は2時間である(ステップS18)。
このようにして作製した電磁波吸収体1の電磁波吸収特性を、図2に示されるようにして、電波暗室内で測定した。測定方法は、反射電力法とタイムドメイン法との併用であり、測定条件は、周波数4GHz~8GHz、垂直入射(入射角度θ=0度)、測定体(電磁波吸収体1)寸法:150mm×150mm×5mm、裏面反射層10は0.3mm厚さのアルミテープである。電磁波吸収特性の測定結果を、図3に示す。
Figure JPOXMLDOC01-appb-T000002
The bubble-introduced slurry is filled in a mold (step S14) and left for 90 to 120 minutes, whereby the monomer (methacrylamide) is cross-linked and gelled to form a wet molded body (step S15). . The wet molded body is removed from the mold (step S16) and then dried at 25 ° C. (step S17). And it puts into a baking furnace and carries out reduction baking in argon gas atmosphere. The firing temperature is 1800 ° C. and the firing time is 2 hours (step S18).
The electromagnetic wave absorption characteristics of the electromagnetic wave absorber 1 produced in this way were measured in an anechoic chamber as shown in FIG. The measurement method is a combination of the reflected power method and the time domain method, and the measurement conditions are a frequency of 4 GHz to 8 GHz, a normal incidence (incident angle θ = 0 degree), and a measurement body (electromagnetic wave absorber 1) dimensions: 150 mm × 150 mm × 5 mm, the back reflective layer 10 is an aluminum tape having a thickness of 0.3 mm. The measurement results of the electromagnetic wave absorption characteristics are shown in FIG.
 図3に示されるように、周波数4GHz~8GHzの範囲内のうち、周波数5.5GHz~6.0GHzの範囲内で20dB以上の電波吸収率となり、更に周波数5.8GHzにおいては25dBの電波吸収率が得られた。 As shown in FIG. 3, the radio wave absorption rate is 20 dB or more in the frequency range of 5.5 GHz to 6.0 GHz within the frequency range of 4 GHz to 8 GHz, and further, the radio wave absorption rate of 25 dB at the frequency of 5.8 GHz. was gotten.
 この電磁波吸収体1の内部構造を、走査型電子顕微鏡(SEM)で確認した。図4(a)は、本実施例に係る電磁波吸収体1の断面を示すSEM写真である。図4(a)に示されるように、アルミナ焼結粒子(黒っぽく写っている)の周囲に、炭素(白っぽく写っている)のネットワークが張り巡らされた構造を有していることが分かる。図4(a)を更に拡大した図4(b)のSEM写真に示されるように、この炭素の網目はナノメートルサイズの太さを有するナノカーボンで形成されていることが確認された。 The internal structure of the electromagnetic wave absorber 1 was confirmed with a scanning electron microscope (SEM). Fig.4 (a) is a SEM photograph which shows the cross section of the electromagnetic wave absorber 1 which concerns on a present Example. As shown in FIG. 4 (a), it can be seen that there is a structure in which a network of carbon (shown whitish) is stretched around the alumina sintered particles (shown blackish). As shown in the SEM photograph of FIG. 4B, which is a further enlarged view of FIG. 4A, it was confirmed that the carbon network was formed of nanocarbon having a thickness of nanometer size.
 ここで、図5に、比較例1に係る焼結体の電磁波吸収特性の測定結果を示す。比較例1は、本実施例に対して、図1に示すフローチャート内、ステップS17までは同様のプロセスで成形体を作製した後、アルゴンガス雰囲気ではなく、窒素ガス雰囲気で還元焼成を行ったものである。焼成温度は1800℃、焼成時間は2時間である。これによって、気孔率が60%のアルミナセラミックスを主体とした焼結体を得た。そして、この得られた焼結体の電磁波吸収特性を、実施例1と同様に測定した。 Here, FIG. 5 shows the measurement results of the electromagnetic wave absorption characteristics of the sintered body according to Comparative Example 1. FIG. In Comparative Example 1, compared to the present example, after forming a molded body by the same process up to Step S17 in the flowchart shown in FIG. 1, reduction firing was performed in a nitrogen gas atmosphere instead of an argon gas atmosphere. It is. The firing temperature is 1800 ° C. and the firing time is 2 hours. As a result, a sintered body mainly composed of alumina ceramics having a porosity of 60% was obtained. The electromagnetic wave absorption characteristics of the obtained sintered body were measured in the same manner as in Example 1.
 その結果、図5に示されるように、周波数4GHz~8GHzの範囲内のうち、実施例1の電磁波吸収体1に見られた周波数5.5GHz~6.0GHzの範囲内での電波吸収が見られず、反射減衰量も低下した。このことから、窒素雰囲気下での還元焼成よりも、窒素ガスを含有しない不活性ガス雰囲気下での還元焼成が重要であることがわかる。 As a result, as shown in FIG. 5, the radio wave absorption within the frequency range of 5.5 GHz to 6.0 GHz found in the electromagnetic wave absorber 1 of Example 1 was observed within the frequency range of 4 GHz to 8 GHz. The return loss also decreased. This shows that reduction firing in an inert gas atmosphere containing no nitrogen gas is more important than reduction firing in a nitrogen atmosphere.
 また、本実施例の電磁波吸収体1に含有される炭素成分についての分析を、ラマンスペクトル分析、固体中炭素分析装置により行った。 Moreover, the analysis of the carbon component contained in the electromagnetic wave absorber 1 of the present example was performed by a Raman spectrum analysis and a solid-in-carbon analyzer.
 図6に、電磁波吸収体1に含有される炭素成分のラマンスペクトルを示す。図6に示されるように、グラファイト構造由来の1350cm-1(D-band)及び1580cm-1(G-band)のピークが存在することから、電磁波吸収体1に炭素成分が含有されていることが確認された。 In FIG. 6, the Raman spectrum of the carbon component contained in the electromagnetic wave absorber 1 is shown. As shown in FIG. 6, the electromagnetic wave absorber 1 contains a carbon component because there are peaks at 1350 cm −1 (D-band) and 1580 cm −1 (G-band) derived from the graphite structure. Was confirmed.
 試料を高温で燃焼させ、発生するガスを赤外線分析計で分析する固体中炭素分析装置の測定値から算出した結果、電磁波吸収体1の炭素成分含有率は、0.60重量%であった。 The sample was burned at a high temperature, and the carbon component content of the electromagnetic wave absorber 1 was 0.60% by weight as a result of calculation from the measured value of the solid-in-carbon analyzer that analyzes the generated gas with an infrared analyzer.
 また、電磁波吸収特性の等方性について評価したときのサンプルの設置向きを図7(a)、(b)に示し、評価結果を図8に示す。具体的には、2種類のサンプル(実施例1-1、実施例1-2)を用意し、電波吸収評価時の設置向きを図7(a)、(b)に示すように、縦向き、横向きとし、その電磁波吸収特性の等方性について評価した。縦向きと横向きは、互いに90度異なる向きである。どちらの試料も、本実施例で得られた電磁波吸収体1である。また、実施例1-1は、電磁波吸収体1のみの場合であり、実施例1-2は、電磁波吸収体1の表面に表面硬質塩化ビニール板(厚さ1mm)を追加した場合である。また、電磁波吸収特性の測定方法及び条件については、上述の図3の測定と同じである。 Also, the installation direction of the sample when the isotropic property of the electromagnetic wave absorption characteristic is evaluated is shown in FIGS. 7A and 7B, and the evaluation result is shown in FIG. Specifically, two types of samples (Example 1-1 and Example 1-2) are prepared, and the installation direction at the time of the radio wave absorption evaluation is vertical as shown in FIGS. 7 (a) and 7 (b). The isotropic orientation of the electromagnetic wave absorption characteristics was evaluated. The vertical direction and the horizontal direction are directions different from each other by 90 degrees. Both samples are the electromagnetic wave absorbers 1 obtained in this example. Further, Example 1-1 is a case where only the electromagnetic wave absorber 1 is used, and Example 1-2 is a case where a surface hard vinyl chloride plate (thickness 1 mm) is added to the surface of the electromagnetic wave absorber 1. Further, the measurement method and conditions of the electromagnetic wave absorption characteristics are the same as the measurement in FIG.
 図8より、実施例1-1の場合には、縦向き、横向きのどちらも、周波数5.6GHz付近において20dB以上の電磁波吸収特性が確認でき、試料設置向きによる特性差はほとんど生じていない。実施例1-2の場合には、縦向き、横向きのどちらも、電磁波吸収特性のピークが、周波数5.3GHz付近にシフトするが、20dB程度の電磁波吸収特性が確認でき、試料設置向きによる特性差はほとんど生じていない。 From FIG. 8, in the case of Example 1-1, the electromagnetic wave absorption characteristics of 20 dB or more can be confirmed in the vicinity of the frequency of 5.6 GHz in both the vertical and horizontal directions, and there is almost no difference in characteristics depending on the sample installation direction. In the case of Example 1-2, in both the vertical and horizontal directions, the peak of electromagnetic wave absorption characteristics shifts to a frequency near 5.3 GHz, but an electromagnetic wave absorption characteristic of about 20 dB can be confirmed. There is almost no difference.
 また、気孔率が60%である実施例1の電磁波吸収体1は、嵩密度が1.60g/cmであった。これに対して、一般的なセラミックス系電磁波吸収体のうち、フェライト系は 5.2~5.3g/cmであり、鉄/チタン酸化物は.3~3.9 g/cmであり、フェライトモルタル系(フェライト/セメント)は3.5~3.6g/cmである。このことから、実施例1の電磁波吸収体1は、従来の一般的なセラミックス系電磁波吸収体よりも軽量であることがわかる。 Moreover, the electromagnetic wave absorber 1 of Example 1 having a porosity of 60% had a bulk density of 1.60 g / cm 3 . On the other hand, among general ceramic-based electromagnetic wave absorbers, the ferrite type is 5.2 to 5.3 g / cm 3 , and the iron / titanium oxide is. 3 to 3.9 g / cm 3 , and the ferrite mortar type (ferrite / cement) is 3.5 to 3.6 g / cm 3 . From this, it can be seen that the electromagnetic wave absorber 1 of Example 1 is lighter than a conventional general ceramic-based electromagnetic wave absorber.
 このようにして、本実施例に係る電磁波吸収体1においては、図1に示されるフローチャートにしたがって製造されることによって、セラミックス焼結体内のセラミックス粒子間に炭素からなる網状の導電路が張り巡らされた構造を有し、軽量で運搬・施工が容易であり、不燃性であって建築物にも適用することができ、優れた電磁波吸収特性を有するものとなる。
(実施例2)
 実施例2に係る電磁波吸収体は、実施例1に対して、重合性物質及びスラリーの配合比を変更して、図1に示すフローチャートにしたがって製造されるものである。表3に、実施例2に係る気泡導入スラリーの配合比(重量比)を示す。以下、実施例1に対する変更点を主に説明する。
Thus, in the electromagnetic wave absorber 1 according to the present embodiment, a net-like conductive path made of carbon is stretched between ceramic particles in the ceramic sintered body by being manufactured according to the flowchart shown in FIG. It is light in weight, easy to transport and construct, non-combustible, can be applied to buildings, and has excellent electromagnetic wave absorption characteristics.
(Example 2)
The electromagnetic wave absorber according to Example 2 is manufactured according to the flowchart shown in FIG. 1 by changing the mixing ratio of the polymerizable substance and the slurry to Example 1. Table 3 shows the blending ratio (weight ratio) of the bubble-introducing slurry according to Example 2. Hereinafter, changes to the first embodiment will be mainly described.
Figure JPOXMLDOC01-appb-T000003
 具体的には、ステップS10では、60rpmで、12時間ボールミル混合を行う。ステップS11の2次混合では、単量体5としてエポキシ樹脂(製品番号Q-265)を用い、架橋剤6としてエポキシ触媒(株式会社中京油脂製typeA)を用いる。このエポキシ触媒は、重合触媒9としての役割も果たす。このとき、エポキシ触媒を追加して1時間ボールミル混合を実施した後、エポキシ触媒を追加して30分間ボールミル混合を実施する。
Figure JPOXMLDOC01-appb-T000003
Specifically, in step S10, ball mill mixing is performed at 60 rpm for 12 hours. In the secondary mixing in step S11, an epoxy resin (product number Q-265) is used as the monomer 5, and an epoxy catalyst (type A manufactured by Chukyo Yushi Co., Ltd.) is used as the crosslinking agent 6. This epoxy catalyst also serves as the polymerization catalyst 9. At this time, after adding an epoxy catalyst and performing ball mill mixing for 1 hour, an epoxy catalyst is added and ball mill mixing is performed for 30 minutes.
 ステップS13の気泡導入工程で、重合開始剤8としてのTriethylenetetramine (TETA)と実施例1と同じ界面活性剤7とを2次混合スラリーに追加し、実施例1と同様に、2次混合スラリー中に多量の気泡を導入する。このとき、界面活性剤7の添加量をスラリー重量に対し外掛けで2wt%とした。 In the bubble introduction step of Step S13, Triethylenetetramine (TETA) as the polymerization initiator 8 and the same surfactant 7 as in Example 1 were added to the secondary mixed slurry. Introduce a large amount of air bubbles. At this time, the addition amount of the surfactant 7 was set to 2 wt% as an outer amount with respect to the slurry weight.
 そして、ステップS14、15で、気泡導入スラリーを成形型で12時間静置して、湿潤成形体を形成した。ステップS17の乾燥工程では、湿潤成形体を乾燥機で乾燥させ、このとき、乾燥機内の相対湿度が90%から50%となるまで、1日当たり5%の割合にて低下させた。 In steps S14 and S15, the bubble-introducing slurry was allowed to stand for 12 hours in a molding die to form a wet molded body. In the drying step of Step S17, the wet molded body was dried with a dryer, and at this time, the wet molded body was reduced at a rate of 5% per day until the relative humidity in the dryer became 90% to 50%.
 ステップS18の還元焼成工程では、アルゴンガス雰囲気中で還元焼成し、このときの焼成温度を1700度とし、焼成時間を2時間とした。このようにして、気泡導入率70%の電磁波吸収体1を作製した。 In the reduction firing process of step S18, the reduction firing was performed in an argon gas atmosphere, the firing temperature at this time was 1700 degrees, and the firing time was 2 hours. Thus, the electromagnetic wave absorber 1 having a bubble introduction rate of 70% was produced.
 このように作製した電磁波吸収体1の電磁波吸収特性の測定結果を図9に示す。測定方法及び測定条件は実施例1と同様である。 FIG. 9 shows the measurement results of the electromagnetic wave absorption characteristics of the electromagnetic wave absorber 1 produced in this way. The measurement method and measurement conditions are the same as in Example 1.
 図9に示されるように、周波数4GHz~8GHzの範囲内のうち、周波数5.5GHz~6.0GHzの範囲内で20dB以上の電波吸収率となり、更に周波数5.8GHzにおいては25dBの電波吸収率が得られた。 As shown in FIG. 9, the radio wave absorption rate is 20 dB or more within the frequency range of 5.5 GHz to 6.0 GHz within the frequency range of 4 GHz to 8 GHz, and further, the radio wave absorption rate of 25 dB at the frequency of 5.8 GHz. was gotten.
 また、図10に、実施例2の電磁波吸収体1に含有される炭素成分のラマンスペクトルを示す。図6に示されるように、グラファイト構造由来の1350cm-1(D-band)及び1580cm-1(G-band)のピークが存在することから、電磁波吸収体1に炭素成分が含有されていることが確認された。 FIG. 10 shows the Raman spectrum of the carbon component contained in the electromagnetic wave absorber 1 of Example 2. As shown in FIG. 6, the electromagnetic wave absorber 1 contains a carbon component because there are peaks at 1350 cm −1 (D-band) and 1580 cm −1 (G-band) derived from the graphite structure. Was confirmed.
 固体中炭素分析装置の測定値から算出した結果、実施例2の電磁波吸収体1の炭素成分含有率は、0.83重量%であった。実施例2の電磁波吸収体1の導電性を四端子法で測定した結果、1.71Ω・cmであった。また、気孔率が70%である実施例2の電磁波吸収体1は、嵩密度が1.19g/cmであった。 As a result of calculating from the measured value of the solid carbon analyzer, the carbon component content of the electromagnetic wave absorber 1 of Example 2 was 0.83% by weight. It was 1.71 ohm * cm as a result of measuring the electroconductivity of the electromagnetic wave absorber 1 of Example 2 by the four probe method. In addition, the electromagnetic wave absorber 1 of Example 2 having a porosity of 70% had a bulk density of 1.19 g / cm 3 .
 なお、実施例では、気孔率を、製造工程における1次、2次スラリーの密度を用いて算出したが、セラミックス焼結体の気孔率を測定しても同じ結果となる。この場合、測定した平均気孔率が60~80%となる。気孔率の測定方法としては、JIS R 1643に規定されるファインセラミックスの焼結体密度・開気孔率の測定方法が挙げられる。 In the examples, the porosity was calculated using the density of the primary and secondary slurries in the manufacturing process, but the same result can be obtained by measuring the porosity of the ceramic sintered body. In this case, the measured average porosity is 60 to 80%. Examples of the method for measuring the porosity include a method for measuring the sintered ceramic density / open porosity of fine ceramics as defined in JIS R1643.
 本発明を実施するに際しては、電磁波吸収体のその他の部分の構成、成分、形状、数量、材質、大きさ、製造方法等についても、電磁波吸収体の製造方法のその他の工程についても、上記実施例に限定されるものではない。 In carrying out the present invention, the configuration, components, shape, quantity, material, size, manufacturing method, etc. of other parts of the electromagnetic wave absorber, and other steps of the electromagnetic wave absorber manufacturing method are also described above. It is not limited to examples.
 なお、本発明の実施例で挙げている数値は、臨界値を示すものではなく、実施に好適な適正値を示すものであるから、上記数値を若干変更してもその実施を否定するものではない。 In addition, since the numerical value quoted in the embodiment of the present invention does not indicate a critical value but indicates an appropriate value suitable for implementation, even if the numerical value is slightly changed, the implementation is not denied. Absent.
 1 電磁波吸収体
 2 セラミックス粉体
 3 分散剤
 4 蒸留水
 5 単量体
 6 架橋剤
 7 界面活性剤
 8 重合開始剤
 9 重合触媒
DESCRIPTION OF SYMBOLS 1 Electromagnetic wave absorber 2 Ceramic powder 3 Dispersant 4 Distilled water 5 Monomer 6 Crosslinking agent 7 Surfactant 8 Polymerization initiator 9 Polymerization catalyst

Claims (11)

  1.  気孔率が60%~80%の範囲内のセラミックス焼結体を主体とする電磁波吸収体であって、
    前記セラミックス焼結体内に炭素からなる網状の導電路が張り巡らされた構造を有し、周波数5~6GHzにおける電波吸収性能が20dB以上であることを特徴とする電磁波吸収体。
    An electromagnetic wave absorber mainly composed of a ceramic sintered body having a porosity of 60% to 80%,
    An electromagnetic wave absorber having a structure in which a net-like conductive path made of carbon is stretched in the ceramic sintered body and having a radio wave absorption performance at a frequency of 5 to 6 GHz of 20 dB or more.
  2.  前記セラミックスはアルミナ(Al2 O3 )であることを特徴とする請求項1に記載の電磁波吸収体。 The electromagnetic wave absorber according to claim 1, wherein the ceramic is alumina (Al 2 O 3 ).
  3.  前記炭素からなる網状の導電路は、単量体(モノマー)を重合させて形成した高分子化合物のネットワークを還元焼成してなることを特徴とする請求項1または請求項2に記載の電磁波吸収体。 3. The electromagnetic wave absorption according to claim 1, wherein the network-like conductive path made of carbon is formed by reducing and firing a network of a polymer compound formed by polymerizing a monomer (monomer). 4. body.
  4.  前記炭素からなる網状の導電路は、炭素原子を有する高分子化合物のネットワークを、窒素ガスを含有しない不活性ガス雰囲気で還元焼成してなることを特徴とする請求項1または請求項2に記載の電磁波吸収体。 The network-like conductive path made of carbon is formed by reducing and firing a network of a polymer compound having a carbon atom in an inert gas atmosphere not containing nitrogen gas. Electromagnetic wave absorber.
  5.  前記高分子化合物は単量体(モノマー)を重合させて形成したものであることを特徴とする請求項4に記載の電磁波吸収体。 The electromagnetic wave absorber according to claim 4, wherein the polymer compound is formed by polymerizing a monomer.
  6.  気孔率が60%~80%の範囲内のセラミックス焼結体を主体とする電磁波吸収体の製造方法であって、
     焼結用セラミックス原料と、重合して高分子となる重合性物質とを溶媒に分散させてスラリーとするスラリー調整工程と、
     前記スラリーに気泡を導入する気泡導入工程と、
     気泡を導入した前記スラリーを成形型に充填して静置することにより、前記重合性物質を重合させて湿潤成形体を形成する成形工程と、
     前記湿潤成形体を乾燥して、還元雰囲気で焼成する還元焼成工程と
    を具備することを特徴とする周波数5~6GHzにおける電波吸収性能が20dB以上である電磁波吸収体の製造方法。
    A method for producing an electromagnetic wave absorber mainly comprising a ceramic sintered body having a porosity of 60% to 80%,
    A slurry adjustment step in which a ceramic material for sintering and a polymerizable material that is polymerized to become a polymer are dispersed in a solvent to form a slurry;
    A bubble introduction step for introducing bubbles into the slurry;
    A molding step of polymerizing the polymerizable substance to form a wet molded body by filling the slurry into which bubbles have been introduced and allowing to stand,
    A method for producing an electromagnetic wave absorber having a radio wave absorption performance of 20 dB or more at a frequency of 5 to 6 GHz, comprising: a reduction firing step of drying the wet molded body and firing in a reducing atmosphere.
  7.  前記還元雰囲気は、窒素ガスを含有しない不活性ガス雰囲気であることを特徴とする請求項6に記載の電磁波吸収体の製造方法。 The method for producing an electromagnetic wave absorber according to claim 6, wherein the reducing atmosphere is an inert gas atmosphere containing no nitrogen gas.
  8.  気孔率が60%~80%の範囲内のセラミックス焼結体を主体とする電磁波吸収体の製造方法であって、
     焼結用セラミックス原料と、重合して高分子となる重合性物質とを溶媒に分散させてスラリーとするスラリー調整工程と、
     前記スラリーに気泡を導入する気泡導入工程と、
     気泡を導入した前記スラリーを成形型に充填して静置することにより、前記重合性物質を重合させて湿潤成形体を形成する成形工程と、
     前記湿潤成形体を乾燥して、窒素ガスを含有しない不活性ガスの還元雰囲気で焼成する還元焼成工程と
    を具備することを特徴とする電磁波吸収体の製造方法。
    A method for producing an electromagnetic wave absorber mainly comprising a ceramic sintered body having a porosity of 60% to 80%,
    A slurry adjustment step in which a ceramic material for sintering and a polymerizable material that is polymerized to become a polymer are dispersed in a solvent to form a slurry;
    A bubble introduction step for introducing bubbles into the slurry;
    A molding step of polymerizing the polymerizable substance to form a wet molded body by filling the slurry into which bubbles have been introduced and allowing to stand,
    A method for producing an electromagnetic wave absorber, comprising: a reduction firing step of drying the wet molded body and firing in a reducing atmosphere of an inert gas not containing nitrogen gas.
  9.  前記スラリー調整工程は、焼結用セラミックス粉体と、分散剤と、前記溶媒としての水と、前記重合性物質としての単量体(モノマー)と、架橋剤とを混合してスラリーとし、
     前記気泡導入工程は、前記スラリーに界面活性剤と重合開始剤及び/または重合触媒とを混合して攪拌して、前記スラリーに気泡を導入し、
     前記成形工程と前記還元焼成工程との間に、前記成形型から湿潤成形体を取り出す脱型工程と、前記湿潤成形体を乾燥して生成形体とする乾燥工程とを具備し、
     前記還元焼成工程は、前記生成形体を焼成することを特徴とする請求項6ないし8のいずれか1つに記載の電磁波吸収体の製造方法。
    In the slurry adjustment step, a ceramic powder for sintering, a dispersant, water as the solvent, a monomer (monomer) as the polymerizable substance, and a crosslinking agent are mixed to form a slurry,
    In the bubble introduction step, a surfactant and a polymerization initiator and / or a polymerization catalyst are mixed and stirred in the slurry to introduce bubbles into the slurry.
    Between the molding step and the reduction firing step, a demolding step of taking out a wet molded body from the molding die, and a drying step of drying the wet molded body into a generated shape,
    The method for producing an electromagnetic wave absorber according to any one of claims 6 to 8, wherein in the reduction firing step, the generated shaped body is fired.
  10.  前記セラミックスはアルミナ(Al2 O3 )であることを特徴とする請求項6ないし9のいずれか1つに記載の電磁波吸収体の製造方法。 The method for manufacturing an electromagnetic wave absorber according to any one of claims 6 to 9, wherein the ceramic is alumina (Al 2 O 3 ).
  11.  前記重合性物質はメタクリルアミドであることを特徴とする請求項6ないし10のいずれか1つに記載の電磁波吸収体の製造方法。 The method for producing an electromagnetic wave absorber according to any one of claims 6 to 10, wherein the polymerizable substance is methacrylamide.
PCT/JP2011/054091 2010-02-24 2011-02-24 Electromagnetic wave absorber and method for producing same WO2011105469A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010038817A JP2011176101A (en) 2010-02-24 2010-02-24 Electromagnetic wave absorbing body and method of manufacturing the same
JP2010-038817 2010-02-24

Publications (1)

Publication Number Publication Date
WO2011105469A1 true WO2011105469A1 (en) 2011-09-01

Family

ID=44506869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054091 WO2011105469A1 (en) 2010-02-24 2011-02-24 Electromagnetic wave absorber and method for producing same

Country Status (2)

Country Link
JP (1) JP2011176101A (en)
WO (1) WO2011105469A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115991611A (en) * 2022-12-07 2023-04-21 中国科学院上海硅酸盐研究所 MoS (MoS) 2 /Si 3 N 4 Composite wave-absorbing ceramic and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9394418B2 (en) 2014-05-27 2016-07-19 Qatar University Sol-gel templates formed with infusion of gas bubbles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004238253A (en) * 2003-02-06 2004-08-26 Taiheiyo Cement Corp Porous structure and electromagnetic wave filter
JP2005289695A (en) * 2004-03-31 2005-10-20 Nagoya Kogyo Univ Conductive ceramic product and method of manufacturing the same
JP2006192875A (en) * 2004-12-15 2006-07-27 Toshiba Ceramics Co Ltd Electric wave absorber and its manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007247155A (en) * 2006-03-13 2007-09-27 Toyo Denka Kogyo Co Ltd Electromagnetic wave absorbing/humidity conditioning building material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004238253A (en) * 2003-02-06 2004-08-26 Taiheiyo Cement Corp Porous structure and electromagnetic wave filter
JP2005289695A (en) * 2004-03-31 2005-10-20 Nagoya Kogyo Univ Conductive ceramic product and method of manufacturing the same
JP2006192875A (en) * 2004-12-15 2006-07-27 Toshiba Ceramics Co Ltd Electric wave absorber and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115991611A (en) * 2022-12-07 2023-04-21 中国科学院上海硅酸盐研究所 MoS (MoS) 2 /Si 3 N 4 Composite wave-absorbing ceramic and preparation method thereof
CN115991611B (en) * 2022-12-07 2024-02-06 中国科学院上海硅酸盐研究所 MoS (MoS) 2 /Si 3 N 4 Composite wave-absorbing ceramic and preparation method thereof

Also Published As

Publication number Publication date
JP2011176101A (en) 2011-09-08

Similar Documents

Publication Publication Date Title
Li et al. Sol-gel derived porous ultra-high temperature ceramics
Chen et al. Porous ceramics: Light in weight but heavy in energy and environment technologies
Wu et al. Processing, microstructures and mechanical properties of aqueous gelcasted and solid-state-sintered porous SiC ceramics
Du et al. Highly porous silica foams prepared via direct foaming with mixed surfactants and their sound absorption characteristics
CN105645967A (en) Preparation method of porous silicon nitride ceramic material with highly oriented through holes
JPWO2005090263A1 (en) Ceramic porous body and method for producing molded body
CN104311116B (en) A kind of magnesium aluminate spinel foamed ceramics and preparation method thereof
CN108947568B (en) Method for preparing alumina hollow ball brick by using pore-forming agent
Meng et al. Hierarchically porous lanthanum zirconate foams with low thermal conductivity from particle‐stabilized foams
RU2744611C2 (en) Production of ceramic matrix composites containing carbon nanotubes and graphene
CN107337453A (en) A kind of method that combination gas-solid reaction method prepares recrystallized silicon carbide porous ceramics
WO2011105469A1 (en) Electromagnetic wave absorber and method for producing same
CN103613402B (en) O-Sialon porous material prepared by gel-casting and preparation method thereof
CN107353015A (en) A kind of porous composite ceramics preparation method of silicon carbide nitride silicon
JP5183901B2 (en) Ceramic matrix composite and manufacturing method thereof
WO2021201061A1 (en) Composite material and method for manufacturing composite material
JP4375987B2 (en) Molded body for radio wave absorber, method for producing the same, and radio wave absorber
JP4572290B2 (en) Manufacturing method of conductive ceramic products
WO2021200973A1 (en) Method for producing composite body
Ganesh Novel composites of β-SiAlON and radome manufacturing technology developed at ARCI, Hyderabad, for hypervelocity vehicles
JPH1121182A (en) Production of porous ceramic
RU2545585C1 (en) Radiation-proof structural concrete and method for production thereof
JP2004250307A (en) Alumina porous ceramic and its manufacturing method
JP4967111B2 (en) Alumina-based porous ceramics and method for producing the same
JPH05186280A (en) Production of ceramic porous body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11747429

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11747429

Country of ref document: EP

Kind code of ref document: A1