WO2011105325A1 - Joining method, program, and computer recording medium - Google Patents

Joining method, program, and computer recording medium Download PDF

Info

Publication number
WO2011105325A1
WO2011105325A1 PCT/JP2011/053670 JP2011053670W WO2011105325A1 WO 2011105325 A1 WO2011105325 A1 WO 2011105325A1 JP 2011053670 W JP2011053670 W JP 2011053670W WO 2011105325 A1 WO2011105325 A1 WO 2011105325A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
wafer
bonding
holding member
region
Prior art date
Application number
PCT/JP2011/053670
Other languages
French (fr)
Japanese (ja)
Inventor
孝浩 西林
圭蔵 廣瀬
直人 吉高
殖也 北山
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2011105325A1 publication Critical patent/WO2011105325A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/185Joining of semiconductor bodies for junction formation
    • H01L21/187Joining of semiconductor bodies for junction formation by direct bonding

Definitions

  • the present invention relates to a bonding method, a program, and a computer storage medium for bonding substrates together.
  • the bonding apparatus includes a chamber that accommodates two wafers arranged vertically (hereinafter, the upper wafer is referred to as an “upper wafer” and the lower wafer is referred to as a “lower wafer”), And a push pin that presses the center portion of the upper wafer, and a spacer that supports the outer periphery of the upper wafer and can be retracted from the outer periphery of the upper wafer.
  • the wafers are bonded to each other in a vacuum atmosphere in order to suppress the generation of voids between the wafers. Specifically, first, in a state where the upper wafer is supported by the spacer, the central portion of the upper wafer is pressed by the push pin, and the central portion is brought into contact with the lower wafer. Thereafter, the spacer supporting the upper wafer is retracted, and the entire surface of the upper wafer is brought into contact with the entire surface of the lower wafer and bonded together (Patent Document 1).
  • the present invention has been made in view of such a point, and an object thereof is to appropriately and efficiently join substrates together while suppressing generation of voids between the substrates.
  • the present invention is a bonding method for bonding substrates, and is provided above a first substrate held by a first holding member and the first holding member.
  • a bonding step of sequentially bringing the second substrate into contact with the first substrate and bonding the first substrate and the second substrate from the portion side toward the other end portion side.
  • the second substrate in a state where one end of the first substrate and one end of the second substrate are pressed, the second substrate is directed from one end to the other end of the second substrate. Are sequentially brought into contact with the first substrate. Therefore, for example, even when air that can be a void exists between the first substrate and the second substrate, the air is always outside the portion where the second substrate is in contact with the first substrate, that is, It exists in the other end side, and the air can be released in one direction from between the substrates. Therefore, according to the present invention, it is possible to appropriately bond the substrates while suppressing generation of voids between the substrates.
  • the present invention it is not necessary to use a vacuum atmosphere when bonding the substrates as in the prior art, so that the substrates can be bonded efficiently in a short time, and the throughput of the substrate bonding process is improved. Can be made. Furthermore, according to the present invention, the second substrate can be brought into contact with the one end portion of the second substrate and the one end portion of the first substrate while being held by the second holding member. The position of the second substrate relative to the other substrate is not shifted, and the substrates can be bonded appropriately.
  • the surface of the first substrate and the surface of the second substrate are activated and hydrophilized, respectively, and in the bonding step, the first substrate and the second substrate are made to have van der Waals force and You may join by a hydrogen bond.
  • the surface of the substrate refers to a bonding surface to which the substrate is bonded.
  • the second holding member evacuates and holds the second substrate by vacuuming, and the second holding member is partitioned into a plurality of regions, and the evacuation of the second substrate can be set for each region.
  • the evacuation of the second substrate is sequentially stopped for each of the regions from one end side to the other end side of the second substrate, and the second substrate is moved to the first side. You may make it contact
  • the bonding method may be performed in an atmosphere of positive pressure with respect to external pressure.
  • At least the first holding member or the second holding member has a cooling mechanism that cools at least the first substrate or the second substrate, and the bonding step includes at least the first substrate or the second substrate by the cooling mechanism. It may be performed while cooling the second substrate.
  • the horizontal direction of the first substrate and the horizontal direction of the second substrate may be adjusted.
  • a guide member that supports the other end of the second substrate and is movable in the horizontal direction is disposed, and the guide member is brought into contact with the first substrate. May be moved from one end side to the other end side of the second substrate.
  • the surface of the first substrate and the surface of the second substrate are imaged, respectively, and the reference point of the first substrate in the captured image and the reference point of the second substrate in the captured image
  • the relative horizontal positions of the first substrate and the second substrate may be adjusted so that the two match.
  • a program that operates on a computer of a control unit that controls a bonding apparatus in order to cause the bonding apparatus to execute a bonding method for bonding substrates to each other.
  • the disposing step of opposingly arranging the first substrate held by the holding member and the second substrate held by the second holding member provided above the first holding member at a predetermined interval And then a pressing step of pressing and pressing one end of the first substrate and one end of the second substrate facing the one end of the first substrate, and then the first substrate In a state where one end of the second substrate and one end of the second substrate are pressed, the second substrate is sequentially brought into contact with the first substrate from one end to the other end of the second substrate.
  • the material evacuates and holds the second substrate by vacuuming, and the second holding member is partitioned into a plurality of regions, and evacuation of the second substrate can be set for each region,
  • the evacuation of the second substrate is sequentially stopped for each region from the one end side to the other end side of the second substrate, and the second substrate is applied to the first substrate. Make contact.
  • Another aspect of the present invention is a readable computer storage medium that stores a program that operates on a computer of a control unit that controls a bonding apparatus in order to cause the bonding apparatus to execute a bonding method for bonding substrates.
  • the joining method includes: a first substrate held by a first holding member; and a second substrate held by a second holding member provided above the first holding member. , A placement step of facing each other at a predetermined interval, and then pressing the one end portion of the first substrate and the one end portion of the second substrate facing the one end portion of the first substrate in contact with each other And then, in a state where one end of the first substrate and one end of the second substrate are pressed, the second substrate is directed from one end to the other end of the second substrate.
  • the substrate is sequentially brought into contact with the first substrate, and the first substrate and the first substrate
  • the second holding member evacuates and holds the second substrate, and the second holding member is partitioned into a plurality of regions.
  • the second substrate can be evacuated for each region, and in the bonding step, the second substrate is evacuated for each region from one end side to the other end side of the second substrate. Are sequentially stopped to bring the second substrate into contact with the first substrate.
  • the present invention it is possible to appropriately and efficiently bond the substrates together while suppressing the generation of voids between the substrates.
  • FIG. 1 is a plan view showing an outline of a configuration of a joining system 1 including a joining apparatus that performs the joining method according to the present embodiment.
  • FIG. 2 is a side view illustrating the outline of the internal configuration of the joining system 1.
  • the wafer disposed on the upper side is referred to as “upper wafer W U ” as the second substrate
  • the wafer disposed on the lower side is referred to as “lower wafer W L ” as the first substrate.
  • a bonding surface to which the upper wafer W U is bonded is referred to as “front surface W U1 ”
  • a surface opposite to the front surface W U1 is referred to as “back surface W U2 ”.
  • the bonding surface to which the lower wafer W L is bonded is referred to as “front surface W L1 ”, and the surface opposite to the front surface W L1 is referred to as “back surface W L2 ”. Then, in the bonding system 1, by joining the upper wafer W U and the lower wafer W L, to form the overlapped wafer W T as a polymerization substrate.
  • the bonding system 1 carries in and out cassettes C U , C L , and C T that can accommodate a plurality of wafers W U and W L and a plurality of superposed wafers W T , respectively, with the outside.
  • the loading / unloading station 2 and the processing station 3 including various processing apparatuses that perform predetermined processing on the wafers W U , W L , and the overlapped wafer W T are integrally connected.
  • the loading / unloading station 2 is provided with a cassette mounting table 10.
  • the cassette mounting table 10 is provided with a plurality of, for example, four cassette mounting plates 11.
  • the cassette mounting plates 11 are arranged in a line in the horizontal X direction (vertical direction in FIG. 1). These cassette mounting plates 11, cassettes C U to the outside of the interface system 1, C L, when loading and unloading the C T, a cassette C U, C L, it is possible to place the C T .
  • carry-out station 2 a wafer over multiple W U, a plurality of lower wafer W L, and is configured to be held by a plurality of overlapped wafer W T.
  • the number of cassette mounting plates 11 is not limited to the present embodiment, and can be arbitrarily determined.
  • One of the cassettes may be used for collecting defective wafers. That is a cassette a wafer caused a problem with the bonding of the upper wafer W U and the lower wafer W L, it can be separated from the other normal overlapped wafer W T by various factors.
  • a cassette a wafer caused a problem with the bonding of the upper wafer W U and the lower wafer W L, it can be separated from the other normal overlapped wafer W T by various factors.
  • using a one cassette C T for the recovery of the fault wafer, and using other cassettes C T for the accommodation of a normal overlapped wafer W T are examples of the cassettes C T.
  • a wafer transfer unit 20 is provided adjacent to the cassette mounting table 10.
  • the wafer transfer unit 20 is provided with a wafer transfer device 22 that is movable on a transfer path 21 extending in the X direction.
  • the wafer transfer device 22 is also movable in the vertical direction and around the vertical axis ( ⁇ direction), and includes cassettes C U , C L , C T on each cassette mounting plate 11 and a third of the processing station 3 described later.
  • the wafers W U and W L and the superposed wafer W T can be transferred between the transition devices 50 and 51 in the processing block G3.
  • the processing station 3 is provided with a plurality of, for example, three processing blocks G1, G2, G3 provided with various devices.
  • a first processing block G1 is provided on the front side of the processing station 3 (X direction negative direction side in FIG. 1), and on the back side of the processing station 3 (X direction positive direction side in FIG. 1)
  • Two processing blocks G2 are provided.
  • a third processing block G3 is provided on the loading / unloading station 2 side of the processing station 3 (Y direction negative direction side in FIG. 1).
  • a surface activation device 30 that activates the surfaces W U1 and W L1 of the wafers W U and W L is arranged.
  • the second processing block G2 includes, for example, a surface hydrophilizing device 40 that hydrophilizes the surfaces W U1 and W L1 of the wafers W U and W L with pure water and cleans the surfaces W U1 and W L1.
  • a surface hydrophilizing device 40 that hydrophilizes the surfaces W U1 and W L1 of the wafers W U and W L with pure water and cleans the surfaces W U1 and W L1.
  • U, bonding device 41 for bonding the W L are arranged side by side in the horizontal direction of the Y-direction in this order from the carry-out station 2 side.
  • the third processing block G3, the wafer W U as shown in FIG. 2, W L, a transition unit 50, 51 of the overlapped wafer W T are provided in two tiers from the bottom in order.
  • a wafer transfer region 60 is formed in a region surrounded by the first processing block G1 to the third processing block G3.
  • a wafer transfer device 61 is disposed in the wafer transfer region 60.
  • the wafer transfer device 61 has, for example, a transfer arm that can move around the vertical direction, horizontal direction (Y direction, X direction), and vertical axis.
  • the wafer transfer device 61 moves in the wafer transfer region 60, and adds wafers W U , W L , and W to predetermined devices in the surrounding first processing block G1, second processing block G2, and third processing block G3. You can transfer the overlapping wafer W T.
  • the bonding apparatus 41 includes a processing container 70 that can be sealed inside.
  • the side surface of the wafer transfer area 60 side of the processing container 70, the wafer W U, W L, the transfer port 71 of the overlapped wafer W T is formed, close shutter 72 is provided in the transfer port 71.
  • an air flow that is called a downward flow is generated.
  • the atmosphere inside the processing container 70 is exhausted from the exhaust port 73 formed in the bottom face of the conveyance area
  • the inside of the processing container 70 is partitioned into a transport region T1 and a processing region T2 by an inner wall 74.
  • the carry-in / out port 71 described above is formed on the side surface of the processing container 70 in the transfer region T1.
  • a loading / unloading port 75 for the wafers W U and W L and the overlapped wafer W T is formed on the inner wall 74.
  • a transition 80 for temporarily placing the wafers W U and W L and the superposed wafer W T is provided on the positive side in the X direction of the transfer region T1.
  • the transition 80 is formed, for example, in two stages, and any two of the wafers W U , W L , and the superposed wafer W T can be placed at the same time.
  • a wafer transfer body 82 that is movable on a transfer path 81 extending in the X direction is provided. As shown in FIGS. 4 and 5, the wafer transfer body is also movable in the vertical direction and the vertical axis, and the wafers W U , W L in the transfer area T1 or between the transfer area T1 and the processing area T2. , it can transfer the overlapping wafer W T.
  • a position adjustment mechanism 90 that adjusts the horizontal direction of the wafers W U and W L is provided on the negative side in the X direction of the transfer region T1.
  • Position adjusting mechanism 90 includes a base 91 as shown in FIG. 6, a holding portion 92 for rotating the wafer W U, the W L adsorbed and held, detection for detecting a position of the notch portion of the wafer W U, W L Part 93. Then, the position adjusting mechanism 90, the wafer W U sucked and held by the holding portion 92, the detection unit 93 while rotating the W L by detecting the position of the notch portion of the wafer W U, W L, the notch Are adjusted to adjust the horizontal orientation of the wafers W U and W L.
  • the processing region T2 the lower chuck 100 as a first holding member for holding by placing the lower wafer W L with the upper surface as shown in FIGS. 4 and 5, for attracting and holding the upper wafer W U with lower surface
  • An upper chuck 101 as a second holding member is provided.
  • the upper chuck 101 is provided above the lower chuck 100 and is configured so as to be opposed to the lower chuck 100. That is, the upper wafer W U held in the lower wafer W L and the upper chuck 101 held by the lower chuck 100 is adapted to be placed opposite.
  • a suction pipe (not shown) communicating with a vacuum pump (not shown) is provided inside the lower chuck 100. By suction through the suction pipe, it attracts and holds the lower wafer W L on the upper surface of the lower chuck 100.
  • a chuck driving unit 103 is provided via a shaft 102 as shown in FIG.
  • the lower chuck 100 can be raised and lowered by the chuck driving unit 103.
  • the lower chuck 100 may be movable in the horizontal direction by the chuck driving unit 103, and may be further rotatable about the vertical axis.
  • the upper chuck 101 is formed with two notches 110 and 111 as shown in FIG.
  • the 1st notch part 110 is formed so that it may not interfere with the holding arm 131 of the inversion mechanism 130 mentioned later.
  • the 2nd notch part 111 is formed so that it may not interfere with the pushing member 120 mentioned later.
  • the inside of the upper chuck 101 is partitioned into a plurality of, for example, three regions 101a, 101b, and 101c as shown in FIG.
  • Each region 101a, 101b, the 101c, the suction pipe 112a for sucking and holding the upper wafer W U, 112b, 112c are provided independently.
  • the suction pipes 112a, 112b, and 112c are connected to different vacuum pumps 113a, 113b, and 113c, respectively.
  • a rail 114 extending along the Y direction is provided above the upper chuck 101 as shown in FIG.
  • the upper chuck 101 is movable on the rail 114 by a chuck driving unit 115.
  • the upper chuck 101 may be movable in the vertical direction by the chuck driving unit 115, and may be further rotatable around the vertical axis.
  • a push member 120 is provided in the processing region T2.
  • the pushing member 120 is configured to be movable up and down by a driving unit 121 such as a cylinder. Then, the pressing member 120, the wafer W U to be described later, at the time of bonding of W L, one end portion of the lower wafer W L, the one end portion of the upper wafer W U facing the one end of the lower wafer W L equivalent It can be pressed in contact.
  • the transfer region T1 is reversing mechanism 130 which moves between the transfer region T1 and the processing region T2, to and reverses the front and rear surfaces of the upper wafer W U is provided.
  • Reversing mechanism 130 has a holding arm 131 which holds the upper wafer W U as shown in FIG. On the holding arm 131, the suction pads 132 held horizontally by suction on the wafer W U is provided.
  • the holding arm 131 is supported by the first driving unit 133. By this first drive unit 133, the holding arm 131 is rotatable about a horizontal axis and can be expanded and contracted in the horizontal direction.
  • a second drive unit 134 is provided below the first drive unit 133.
  • the first drive unit 133 is rotatable about the vertical axis and can be moved up and down in the vertical direction.
  • the second drive unit 134 is attached to a rail 135 extending in the Y direction shown in FIGS. 4 and 5.
  • the rail 135 extends from the processing area T2 to the transport area T1.
  • the reversing mechanism 130 can move between the position adjusting mechanism 90 and the upper chuck 101 along the rail 135 by the second driving unit 134.
  • the configuration of the reversing mechanism 130 is not limited to the configuration of the above embodiment, it is sufficient to invert the front and rear surfaces of the upper wafer W U. Further, the reversing mechanism 130 may be provided in the processing region T2. Further, a reversing mechanism may be added to the wafer transport body 82, and another transport means may be provided at the position of the reversing mechanism 130.
  • an upper imaging member for imaging the surface W U1 of the lower imaging member and the upper wafer W U is provided for imaging the surface W L1 of W L.
  • a wide-angle CCD camera is used for the lower imaging member and the upper imaging member.
  • the bonding device 41 when joining the wafer W U, W L in the bonding apparatus 41 configured as described above, the bonding device 41, the outside of the joint device 41, that air flow generated between the wafer transfer area 60, and The airflow generated in the joining device 41 will be described with reference to FIG.
  • the arrow in FIG. 10 has shown the direction of the airflow.
  • the pressure in the bonding apparatus 41 is positive with respect to the pressure in the wafer transfer region 60. Therefore, when the opening / closing shutter 71 is opened, an air flow from the bonding apparatus 41 toward the wafer transfer region 60 is generated.
  • the atmosphere inside the processing container 70 is exhausted from the exhaust port 73 of the transfer region T1. Accordingly, an airflow is generated from the processing region T2 toward the transfer region T1 via the loading / unloading port 75.
  • the above joining system 1 is provided with a control unit 200 as shown in FIG.
  • the control unit 200 is a computer, for example, and has a program storage unit (not shown).
  • the program storage unit stores a program for controlling processing of the wafers W U and W L and the overlapped wafer W T in the bonding system 1.
  • the program storage unit also stores a program for controlling the operation of drive systems such as the above-described various processing apparatuses and transfer apparatuses to realize the below-described joining process in the joining system 1.
  • the program is recorded on a computer-readable storage medium H such as a computer-readable hard disk (HD), a flexible disk (FD), a compact disk (CD), a magnetic optical desk (MO), or a memory card. May have been installed in the control unit 200 from the storage medium H.
  • FIG. 11 is a flowchart showing an example of main steps of the wafer bonding process.
  • the cassette C U, the cassette C L accommodating the lower wafer W L of the plurality, and the empty cassette C T is a predetermined cassette mounting plate 11 of the carry-out station 2 accommodating the wafers W U on the plurality Placed on. Thereafter, the upper wafer W U in the cassette C U is taken out by the wafer transfer device 22 is conveyed to the transition unit 50 of the third processing block G3 in the processing station 3.
  • the upper wafer W U is transported to the first processing block surface activation device G1 30 by the wafer transfer apparatus 61.
  • the surface W U1 of the wafer W U is activated using radicals obtained by plasma-exciting the processing gas (step S ⁇ b> 1 in FIG. 11).
  • the upper wafer W U is transferred to a surface hydrophilizing apparatus 40 of the second processing block G2 by the wafer transfer apparatus 61.
  • the surface hydrophilizing apparatus 40 for example by supplying pure water onto the upper wafer W U, the surface W U1 and hydroxyl groups on the surface W U1 of the on wafer W U is attached is hydrophilized. Further, the surface W U1 of the upper wafer W U is cleaned by this pure water (step S2 in FIG. 11).
  • the upper wafer W U is transferred to the bonding apparatus 41 of the second processing block G2 by the wafer transfer apparatus 61.
  • Upper wafer W U which is carried into the joining device 41 is conveyed to the position adjusting mechanism 90 by the wafer carrier 82 via a transition 80.
  • the position adjustment mechanism 90 the horizontal orientation of the upper wafer W U is adjusted (step S3 in FIG. 11).
  • the upper wafer W U is transferred from the position adjusting mechanism 90 to the holding arm 131 of the reversing mechanism 130. Subsequently, in transfer region T1, by reversing the holding arm 131, the front and back surfaces of the upper wafer W U is inverted (step S4 in FIG. 11). That is, the surface W U1 of the upper wafer W U is directed downward. Thereafter, the reversing mechanism 130 is moved to the upper chuck 101, the upper wafer W U is transferred from the inverting mechanism 130 in the upper chuck 101. Upper wafer W U, the back surface W U2 on the upper chuck 101 is held by suction.
  • the upper chuck 101 is moved by the chuck driving unit 115 to a position above the lower chuck 100 and facing the lower chuck 100.
  • the upper wafer W U the process waits at the upper chuck 101 to the lower wafer W L is transported to the bonding apparatus 41 described later. Note that the reversal of the front and back surfaces of the upper wafer W U may be performed while the reversing mechanism 130 is moving.
  • the processing of the lower wafer W L Following the on wafer W U is performed.
  • the lower wafer W L in the cassette C L is taken out by the wafer transfer device 22 is conveyed to the transition unit 50 in the processing station 3.
  • step S5 the surface W L1 of the lower wafer W L is activated (step S5 in FIG. 11). Note that activation of the surface W L1 of the lower wafer W L in step S5, the same as the process S1 described above.
  • step S6 hydrophilic and cleaning of the surface W L1 of the lower wafer W L in step S6 is the same as step S2 of the above-described.
  • the lower wafer W L is transported to the bonding apparatus 41 by the wafer transfer apparatus 61.
  • Lower wafer W L which is transported to the bonding unit 41 is conveyed to the position adjusting mechanism 90 by the wafer carrier 82 via a transition 80.
  • the position adjustment mechanism 90, the horizontal orientation of the lower wafer W L are adjusted (step S7 in FIG. 11).
  • the lower wafer W L is transferred to the lower chuck 100 by the wafer transfer body 82 is attracted and held by the lower chuck 100.
  • the surface W L1 of the lower wafer W L is to face upwards
  • the back surface W L2 of the lower wafer W L is held by the lower chuck 100.
  • the upper surface of the lower chuck 100 fits a groove in the shape of the wafer transfer body 82 is formed, and a wafer carrier 82 during the transfer of the lower wafer W L and the lower chuck 100 is interfering May be avoided.
  • the adjusted horizontal positions of the upper wafer W U held in the lower wafer W L and the upper chuck 101 held by the lower chuck 100 As shown in FIG. 12, a plurality of predetermined reference points A are formed on the surface W L1 of the lower wafer W L , and similarly, a plurality of predetermined reference points B are formed on the surface W U1 of the upper wafer W U. Is formed. Then, by moving the lower imaging member 140 in the horizontal direction, the surface W L1 of the lower wafer W L is imaged. Further, the upper imaging member 141 is moved in the horizontal direction, and the surface W U1 of the upper wafer W U is imaged.
  • the horizontal position of the upper wafer W U is regulated by the upper chuck 101.
  • Horizontal position of the upper wafer W U and the lower wafer W L is adjusted in this way (step S8 in FIG. 11).
  • the lower chuck 100 is horizontally movable by the chuck drive unit 103 may adjust the horizontal position of the lower wafer W L by the lower chuck 100 and lower chuck 100 and upper chuck
  • the relative horizontal position of the lower wafer W L and the upper wafer W U may be adjusted by both 101.
  • the chuck drive unit 103 raises the lower chuck 100 as shown in FIG. 13, to place the lower wafer W L to a predetermined position.
  • the distance D between the surface W U1 of the surface W L1 and the upper wafer W U of the lower wafer W L is a predetermined distance, for example 0.5 mm, placing the lower wafer W L.
  • Vertical position of the upper wafer W U and the lower wafer W L is adjusted in this way (step S9 in FIG. 11).
  • step S10 in FIG. 11 pressed by abutting the one end portion of the one end and the upper wafer W U of the lower wafer W L to lower the pressing member 120 as shown in FIG. 14 (step S10 in FIG. 11).
  • all regions 101a of the upper chuck 101, 101b, in 101c, are evacuated upper wafer W U.
  • step S1 and S5 Since the surface W U1 of the upper wafer W U and the surface W L1 of the lower wafer W L are activated in steps S1 and S5, respectively, first, van der Waals force is generated between the surfaces W U1 and W L1. The surfaces W U1 and W L1 are joined to each other. Thereafter, the surface W U1 of the upper wafer W U and the surface W L1 of the lower wafer W L are hydrophilized in steps S2 and S6, respectively, so that the hydrophilic group between the surfaces W U1 and W L1 is hydrogen-bonded. U1 and WL1 are firmly joined to each other. Thus the upper wafer W U and the lower wafer W L is bonded (step S11 in FIG. 11).
  • the region 101a in the present embodiment, 101b have been stopped evacuation of the upper wafer W U in the order of 101c, how to stop evacuation is not limited thereto.
  • the evacuation may be stopped simultaneously in the regions 101a and 101b, and then the evacuation may be stopped in the region 101c.
  • the time interval for stopping the evacuation between the regions 101a, 101b, and 101c may be changed.
  • the evacuation in the region 101b is stopped 1 second after the evacuation in the region 101a is stopped, and the evacuation in the region 101c is stopped 2 seconds after the evacuation in the region 101b is further stopped. May be.
  • the upper wafer W U and the lower wafer W L overlapped wafer bonded W T is transferred to the transition unit 51 by the wafer transfer apparatus 61, then carry out by the wafer transfer apparatus 22 of the station 2 of a predetermined cassette mounting plate 11 It is conveyed to the cassette C T.
  • a series of wafers W U, bonding process of W L is completed.
  • the step S11 in the bonding apparatus 41 in a state where one end portion of the one end and the upper wafer W U of the lower wafer W L is pressed, the other from one end side of the upper wafer W U toward the end portion side, by sequentially contacting the on wafer W U to the lower wafer W L.
  • the air can be a void between the lower wafer W L and the upper wafer W U is present, always outside the places air to the upper wafer W U is in contact with the lower wafer W L, i.e. It exists on the other end side, and the air can be released in one direction from between the wafers W U and W L.
  • the lower wafer in a state in which the upper wafer W U is held in the upper chuck 101, since it is possible to contact the one end of the one end portion and the lower wafer W L of the upper wafer W U, the lower wafer The position of the upper wafer W U with respect to W L is not shifted, and the wafers W U and W L can be appropriately joined.
  • the upper chuck 101 of the joining device 41 a plurality of regions 101a, 101b, is divided into 101c, the area 101a, 101b, since it is possible to set the vacuum of the upper wafer W U per 101c, in step S11, from one end side of the upper wafer W U toward the other end side, the on wafer W U can reliably turn contacts the lower wafer W L. Therefore, it is possible to escape the air between the wafer W U, W L, to reliably suppress generation of voids between the wafer W U, W L.
  • the surfaces of the wafers W U and W L are activated in steps S1 and S4 in the surface activation device 30, and the surfaces W U1 and W of the wafers W U and W L in steps S2 and S5 in the surface hydrophilization device 40.
  • L1 is hydrophilized and hydroxylated on the surfaces W U1 and W L1 .
  • the surfaces W U1 and W L1 of the activated wafers W U and W L are bonded to each other by van der Waals force, and then the surfaces of the wafers W U and W L that have been hydrophilized.
  • the hydroxyl groups of W U1 and W L1 can be hydrogen bonded to bond the wafers W U and W L firmly together.
  • the wafer W U in step S3, S6 of the joining device 41 to adjust the respective horizontal orientation of W L, to adjust the position of the horizontal and vertical directions of the wafer W U, W L in step S8, S9 ing. Therefore, the wafers W U and W L can be appropriately bonded in the subsequent step S11.
  • the pressure in the bonding apparatus 41 is a positive pressure relative to the pressure in the wafer transfer area 60, so that an air flow from the bonding apparatus 41 toward the wafer transfer area 60 is generated. That is, no atmosphere flows into the bonding apparatus 41 from the outside. Therefore, without particles or the like is introduced from the outside into the junction device 41, the wafer W U, the junction of the W L can be appropriately performed.
  • the cooling mechanism 210 may be provided on the lower surface side of the lower chuck 100, and the cooling mechanism 211 may be provided on the upper surface side of the upper chuck 101.
  • the cooling mechanisms 210 and 211 incorporate cooling members (not shown) such as cooling water and Peltier elements. Cooling temperature of the cooling mechanism 210 and 211 is controlled by a control unit 200 for example, lower wafer W L held by the lower chuck 100 is cooled to a predetermined temperature below room temperature (23 ° C.), also held by the upper chuck 101 the upper wafer W U were it is cooled to a predetermined temperature below room temperature (23 ° C.).
  • the cooling mechanisms 210 and 211 are provided in both the lower chuck 100 and the upper chuck 101.
  • the cooling mechanism 210 may be provided only in the lower chuck 100, or only in the upper chuck 101.
  • a cooling mechanism 211 may be provided.
  • in the third processing block G3 in the processing station 3 be provided with a cooling device for cooling the bonded overlapped wafer W T are laminated in the transition unit 50, 51 Good.
  • the wafer W U, W L are joined.
  • the wafers W U and W L are cooled to a room temperature or lower, bonding and hydrogen bonding by the van der Waals forces of the surfaces W U1 and W L1 of the wafers W U and W L are promoted. Therefore, the throughput of the wafer bonding process can be further improved.
  • a guide member 220 that is movable in the horizontal direction between the lower chuck 100 and the upper chuck 101 may be disposed as shown in FIG.
  • the guide member 220 is disposed to face the pushing member 120.
  • the guide member 220 supports the other end of the upper wafer W U held by the upper chuck 101, that is, the end facing the one end of the upper wafer W U pressed by the pushing member 120. Supporting surface of the upper wafer W U in the guide member 220 is inclined from the horizontal direction. Further, the guide member 220 is provided so as not to abut against the lower wafer W L held by the lower chuck 100.
  • the guide member 220 toward the one end side of the upper wafer W U to the other end side, the upper wafer W U can reliably turn contacts the lower wafer W L. Therefore, it is possible to escape the air between the wafer W U, W L, to reliably suppress generation of voids between the wafer W U, W L.
  • the present invention can also be applied to the bonding apparatus other than the bonding apparatus 41 as long as the configuration can perform the step S11. That is, from one end portion side of the upper wafer W U to the other end, if it is possible to reliably turn abuts the upper wafer W U to the lower wafer W L, configuration of the bonding apparatus 41 in this embodiment It is not limited.
  • the substrate is a wafer W U, the case has been described where a W L, the invention, other than the wafer FPD (Flat Panel Display), other substrates such as a mask reticle for photomask It can also be applied to
  • the present invention is useful when bonding substrates such as semiconductor wafers.

Abstract

In the disclosed joining method, a first substrate and a second substrate are surface activated, surface hydrophilized, and cleaned, and then are conveyed to a joining device. In the joining device, the horizontal orientation of the first substrate and the second substrate are adjusted, and the first substrate and the second substrate are respectively held by a first holding member and a second holding member. At this time, the front and back surfaces of the second substrate are inverted. Next, after adjusting the horizontal position of the first substrate and the second substrate, the first substrate and the second substrate are disposed facing each other across a predetermined gap. Next, one end of the first substrate and one end of the second substrate are put into contact and pressed together. Next, in the state where one end of the first substrate and one end of the second substrate are pressed together, the second substrate is successively brought into contact with the first substrate from the side of said one end of said second substrate towards the other end, joining the first substrate and the second substrate.

Description

接合方法、プログラム及びコンピュータ記憶媒体Joining method, program, and computer storage medium
 本発明は、基板同士を接合する接合方法、プログラム及びコンピュータ記憶媒体に関する。 The present invention relates to a bonding method, a program, and a computer storage medium for bonding substrates together.
 近年、半導体デバイスの高集積化が進んでいる。高集積化した複数の半導体デバイスを水平面内で配置し、これら半導体デバイスを配線で接続して製品化する場合、配線長が増大し、それにより配線の抵抗が大きくなること、また配線遅延が大きくなることが懸念される。 In recent years, higher integration of semiconductor devices has progressed. When a plurality of highly integrated semiconductor devices are arranged in a horizontal plane and these semiconductor devices are connected by wiring to produce a product, the wiring length increases, thereby increasing the wiring resistance and wiring delay. There is concern about becoming.
 そこで、半導体デバイスを3次元に積層する3次元集積技術を用いることが提案されている。この3次元集積技術においては、例えば貼り合わせ装置を用いて、2枚の半導体ウェハ(以下、「ウェハ」という。)の接合が行われる。例えば貼り合わせ装置は、2枚のウェハを上下に配置した状態(以下、上側のウェハを「上ウェハ」といい、下側のウェハを「下ウェハ」という。)で収容するチャンバーと、チャンバー内に設けられ、上ウェハの中心部分を押圧する押動ピンと、上ウェハの外周を支持すると共に、当該上ウェハの外周から退避可能なスペーサと、を有している。かかる貼り合わせ装置を用いた場合、ウェハ間のボイドの発生を抑制するため、チャンバー内を真空雰囲気にしてウェハ同士の接合が行われる。具体的には、先ず、上ウェハをスペーサで支持した状態で、押動ピンにより上ウェハの中心部分を押圧し、当該中心部分を下ウェハに当接させる。その後、上ウェハを支持しているスペーサを退避させて、上ウェハの全面を下ウェハの全面に当接させて貼り合わせる(特許文献1)。 Therefore, it has been proposed to use a three-dimensional integration technique in which semiconductor devices are three-dimensionally stacked. In this three-dimensional integration technique, two semiconductor wafers (hereinafter referred to as “wafers”) are bonded using, for example, a bonding apparatus. For example, the bonding apparatus includes a chamber that accommodates two wafers arranged vertically (hereinafter, the upper wafer is referred to as an “upper wafer” and the lower wafer is referred to as a “lower wafer”), And a push pin that presses the center portion of the upper wafer, and a spacer that supports the outer periphery of the upper wafer and can be retracted from the outer periphery of the upper wafer. When such a bonding apparatus is used, the wafers are bonded to each other in a vacuum atmosphere in order to suppress the generation of voids between the wafers. Specifically, first, in a state where the upper wafer is supported by the spacer, the central portion of the upper wafer is pressed by the push pin, and the central portion is brought into contact with the lower wafer. Thereafter, the spacer supporting the upper wafer is retracted, and the entire surface of the upper wafer is brought into contact with the entire surface of the lower wafer and bonded together (Patent Document 1).
日本国特開2004-207436号公報Japanese Unexamined Patent Publication No. 2004-207436
 しかしながら、特許文献1に記載の貼り合わせ装置を用いた場合、チャンバー内全体を真空雰囲気にする必要があるため、ウェハをチャンバー内に収容してから真空雰囲気を形成するのに多大な時間を要する。この結果、ウェハ接合処理全体のスループットが低下することがあった。 However, when the bonding apparatus described in Patent Document 1 is used, it is necessary to make the entire chamber in a vacuum atmosphere, so it takes a long time to form the vacuum atmosphere after the wafer is accommodated in the chamber. . As a result, the throughput of the entire wafer bonding process may be reduced.
 また、かかる貼り合わせ装置を用いた場合、押動ピンにより上ウェハの中心部分を押圧する際、当該上ウェハはスペーサで支持されているだけなので、下ウェハに対する上ウェハの位置がずれるおそれがあった。 In addition, when such a bonding apparatus is used, when the center portion of the upper wafer is pressed by the push pin, the upper wafer is only supported by the spacer, and therefore the position of the upper wafer may be shifted with respect to the lower wafer. It was.
 本発明は、かかる点に鑑みてなされたものであり、基板間のボイドの発生を抑制しつつ、基板の同士の接合を適切に効率よく行うことを目的とする。 The present invention has been made in view of such a point, and an object thereof is to appropriately and efficiently join substrates together while suppressing generation of voids between the substrates.
 前記の目的を達成するため、本発明は、基板同士を接合する接合方法であって、第1の保持部材に保持された第1の基板と、前記第1の保持部材の上方に設けられた第2の保持部材に保持された第2の基板とを、所定の間隔で対向配置する配置工程と、その後、第1の基板の一端部と、当該第1の基板の一端部に対向する第2の基板の一端部とを当接させて押圧する押圧工程と、その後、前記第1の基板の一端部と第2の基板の一端部が押圧された状態で、前記第2の基板の一端部側から他端部側に向けて、当該第2の基板を第1の基板に順次当接させ、第1の基板と第2の基板を接合する接合工程と、を有する。 In order to achieve the above object, the present invention is a bonding method for bonding substrates, and is provided above a first substrate held by a first holding member and the first holding member. An arrangement step of arranging the second substrate held by the second holding member so as to face each other at a predetermined interval, and thereafter, one end portion of the first substrate and a first portion facing the one end portion of the first substrate. One end of the second substrate in a state in which the one end of the first substrate and the one end of the second substrate are pressed. A bonding step of sequentially bringing the second substrate into contact with the first substrate and bonding the first substrate and the second substrate from the portion side toward the other end portion side.
 本発明によれば、第1の基板の一端部と第2の基板の一端部が押圧された状態で、第2の基板の一端部側から他端部側に向けて、当該第2の基板を第1の基板に順次当接させている。したがって、例えば第1の基板と第2の基板との間にボイドとなりうる空気が存在している場合でも、空気は第2の基板が第1の基板と当接している箇所より常に外側、すなわち他端部側に存在することになり、当該空気を基板間から一方向に逃がすことができる。したがって、本発明によれば、基板間のボイドの発生を抑制しつつ、基板同士を適切に接合することができる。しかも、本発明によれば、従来のように基板を接合する際の雰囲気を真空雰囲気にする必要がないので、基板の接合を短時間で効率よく行うことができ、基板接合処理のスループットを向上させることができる。さらに本発明によれば、第2の基板が第2の保持部材に保持された状態で、第2の基板の一端部と第1の基板の一端部に当接させることができるので、第1の基板に対する第2の基板の位置がずれることがなく、基板の接合を適切に行うことができる。 According to the present invention, in a state where one end of the first substrate and one end of the second substrate are pressed, the second substrate is directed from one end to the other end of the second substrate. Are sequentially brought into contact with the first substrate. Therefore, for example, even when air that can be a void exists between the first substrate and the second substrate, the air is always outside the portion where the second substrate is in contact with the first substrate, that is, It exists in the other end side, and the air can be released in one direction from between the substrates. Therefore, according to the present invention, it is possible to appropriately bond the substrates while suppressing generation of voids between the substrates. Moreover, according to the present invention, it is not necessary to use a vacuum atmosphere when bonding the substrates as in the prior art, so that the substrates can be bonded efficiently in a short time, and the throughput of the substrate bonding process is improved. Can be made. Furthermore, according to the present invention, the second substrate can be brought into contact with the one end portion of the second substrate and the one end portion of the first substrate while being held by the second holding member. The position of the second substrate relative to the other substrate is not shifted, and the substrates can be bonded appropriately.
 前記配置工程前に、第1の基板の表面と第2の基板の表面は、それぞれ活性化され且つ親水化され、前記接合工程において、第1の基板と第2の基板をファンデルワールス力及び水素結合によって接合してもよい。なお、基板の表面とは、基板が接合される接合面をいう。 Before the placing step, the surface of the first substrate and the surface of the second substrate are activated and hydrophilized, respectively, and in the bonding step, the first substrate and the second substrate are made to have van der Waals force and You may join by a hydrogen bond. Note that the surface of the substrate refers to a bonding surface to which the substrate is bonded.
 第2の保持部材は、第2の基板を真空引きして吸着保持し、且つ当該第2の保持部材は、複数の領域に区画され、当該領域毎に第2の基板の真空引きを設定可能であり、前記接合工程において、前記第2の基板の一端部側から他端部側に向けて、前記領域毎に第2の基板の真空引きを順次停止し、当該第2の基板を第1の基板に当接させてもよい。 The second holding member evacuates and holds the second substrate by vacuuming, and the second holding member is partitioned into a plurality of regions, and the evacuation of the second substrate can be set for each region. In the bonding step, the evacuation of the second substrate is sequentially stopped for each of the regions from one end side to the other end side of the second substrate, and the second substrate is moved to the first side. You may make it contact | abut.
 前記接合方法は、外部の圧力に対して陽圧の雰囲気下で行われてもよい。 The bonding method may be performed in an atmosphere of positive pressure with respect to external pressure.
 少なくとも前記第1の保持部材又は前記第2の保持部材は、少なくとも第1の基板又は第2の基板を冷却する冷却機構を有し、前記接合工程は、前記冷却機構によって少なくとも第1の基板又は第2の基板を冷却しながら行われてもよい。 At least the first holding member or the second holding member has a cooling mechanism that cools at least the first substrate or the second substrate, and the bonding step includes at least the first substrate or the second substrate by the cooling mechanism. It may be performed while cooling the second substrate.
 前記配置工程前に、第1の基板の水平方向の向きと第2の基板の水平方向の向きを調節してもよい。 Before the placement step, the horizontal direction of the first substrate and the horizontal direction of the second substrate may be adjusted.
 前記接合工程において、前記第2の基板の他端部を支持し、且つ水平方向に移動自在のガイド部材が配置され、第2の基板を第1の基板に当接させる際に、前記ガイド部材を前記第2の基板の一端部側から他端部側に向けて移動させてもよい。 In the bonding step, a guide member that supports the other end of the second substrate and is movable in the horizontal direction is disposed, and the guide member is brought into contact with the first substrate. May be moved from one end side to the other end side of the second substrate.
 前記配置工程前に、第1の基板の表面と第2の基板の表面をそれぞれ撮像し、撮像された画像における第1の基板の基準点と撮像された画像における第2の基板の基準点とが合致するように第1の基板と第2の基板の相対的な水平方向の位置を調節してもよい。 Before the placing step, the surface of the first substrate and the surface of the second substrate are imaged, respectively, and the reference point of the first substrate in the captured image and the reference point of the second substrate in the captured image The relative horizontal positions of the first substrate and the second substrate may be adjusted so that the two match.
 別な観点による本発明は、基板同士を接合する接合方法を接合装置によって実行させるために、当該接合装置を制御する制御部のコンピュータ上で動作するプログラムであって、前記接合方法は、第1の保持部材に保持された第1の基板と、前記第1の保持部材の上方に設けられた第2の保持部材に保持された第2の基板とを、所定の間隔で対向配置する配置工程と、その後、第1の基板の一端部と、当該第1の基板の一端部に対向する第2の基板の一端部とを当接させて押圧する押圧工程と、その後、前記第1の基板の一端部と第2の基板の一端部が押圧された状態で、前記第2の基板の一端部側から他端部側に向けて、当該第2の基板を第1の基板に順次当接させ、第1の基板と第2の基板を接合する接合工程と、を有し、第2の保持部材は、第2の基板を真空引きして吸着保持し、且つ当該第2の保持部材は、複数の領域に区画され、当該領域毎に第2の基板の真空引きを設定可能であり、前記接合工程において、前記第2の基板の一端部側から他端部側に向けて、前記領域毎に第2の基板の真空引きを順次停止し、当該第2の基板を第1の基板に当接させる。 According to another aspect of the present invention, there is provided a program that operates on a computer of a control unit that controls a bonding apparatus in order to cause the bonding apparatus to execute a bonding method for bonding substrates to each other. The disposing step of opposingly arranging the first substrate held by the holding member and the second substrate held by the second holding member provided above the first holding member at a predetermined interval And then a pressing step of pressing and pressing one end of the first substrate and one end of the second substrate facing the one end of the first substrate, and then the first substrate In a state where one end of the second substrate and one end of the second substrate are pressed, the second substrate is sequentially brought into contact with the first substrate from one end to the other end of the second substrate. And joining the first substrate and the second substrate, and holding the second substrate The material evacuates and holds the second substrate by vacuuming, and the second holding member is partitioned into a plurality of regions, and evacuation of the second substrate can be set for each region, In the bonding step, the evacuation of the second substrate is sequentially stopped for each region from the one end side to the other end side of the second substrate, and the second substrate is applied to the first substrate. Make contact.
 また別な観点による本発明は、基板同士を接合する接合方法を接合装置によって実行させるために、当該接合装置を制御する制御部のコンピュータ上で動作するプログラムを格納した読み取り可能なコンピュータ記憶媒体であって、前記接合方法は、第1の保持部材に保持された第1の基板と、前記第1の保持部材の上方に設けられた第2の保持部材に保持された第2の基板とを、所定の間隔で対向配置する配置工程と、その後、第1の基板の一端部と、当該第1の基板の一端部に対向する第2の基板の一端部とを当接させて押圧する押圧工程と、その後、前記第1の基板の一端部と第2の基板の一端部が押圧された状態で、前記第2の基板の一端部側から他端部側に向けて、当該第2の基板を第1の基板に順次当接させ、第1の基板と第2の基板を接合する接合工程と、を有し、第2の保持部材は、第2の基板を真空引きして吸着保持し、且つ当該第2の保持部材は、複数の領域に区画され、当該領域毎に第2の基板の真空引きを設定可能であり、前記接合工程において、前記第2の基板の一端部側から他端部側に向けて、前記領域毎に第2の基板の真空引きを順次停止し、当該第2の基板を第1の基板に当接させる。 Another aspect of the present invention is a readable computer storage medium that stores a program that operates on a computer of a control unit that controls a bonding apparatus in order to cause the bonding apparatus to execute a bonding method for bonding substrates. The joining method includes: a first substrate held by a first holding member; and a second substrate held by a second holding member provided above the first holding member. , A placement step of facing each other at a predetermined interval, and then pressing the one end portion of the first substrate and the one end portion of the second substrate facing the one end portion of the first substrate in contact with each other And then, in a state where one end of the first substrate and one end of the second substrate are pressed, the second substrate is directed from one end to the other end of the second substrate. The substrate is sequentially brought into contact with the first substrate, and the first substrate and the first substrate The second holding member evacuates and holds the second substrate, and the second holding member is partitioned into a plurality of regions. The second substrate can be evacuated for each region, and in the bonding step, the second substrate is evacuated for each region from one end side to the other end side of the second substrate. Are sequentially stopped to bring the second substrate into contact with the first substrate.
 本発明によれば、基板間のボイドの発生を抑制しつつ、基板の同士の接合を適切に効率よく行うことができる。 According to the present invention, it is possible to appropriately and efficiently bond the substrates together while suppressing the generation of voids between the substrates.
本実施の形態にかかる接合方法を実施する接合装置を備えた接合システムの構成の概略を示す平面図である。It is a top view which shows the outline of a structure of the joining system provided with the joining apparatus which enforces the joining method concerning this Embodiment. 本実施の形態にかかる接合方法を実施する接合装置を備えた接合システムの内部構成の概略を示す側面図である。It is a side view which shows the outline of the internal structure of the joining system provided with the joining apparatus which enforces the joining method concerning this Embodiment. 上ウェハと下ウェハの側面図である。It is a side view of an upper wafer and a lower wafer. 接合装置の構成の概略を示す横断面図である。It is a cross-sectional view which shows the outline of a structure of a joining apparatus. 接合装置の構成の概略を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline of a structure of a joining apparatus. 位置調節機構の側面図である。It is a side view of a position adjustment mechanism. 上部チャックの平面図である。It is a top view of an upper chuck | zipper. 上部チャックの縦断面図である。It is a longitudinal cross-sectional view of an upper chuck. 反転機構の側面図である。It is a side view of a reversing mechanism. 接合装置に生じるに生じる気流の説明図である。It is explanatory drawing of the air flow which arises in a joining apparatus. ウェハ接合処理の主な工程を示すフローチャートである。It is a flowchart which shows the main processes of a wafer joining process. 上ウェハと下ウェハの水平方向の位置を調節する様子を示す説明図である。It is explanatory drawing which shows a mode that the position of the horizontal direction of an upper wafer and a lower wafer is adjusted. 上ウェハと下ウェハの鉛直方向の位置を調節する様子を示す説明図である。It is explanatory drawing which shows a mode that the position of the vertical direction of an upper wafer and a lower wafer is adjusted. 押動部材により上ウェハの一端部と下ウェハの一端部を押圧する様子を示す説明図である。It is explanatory drawing which shows a mode that the one end part of an upper wafer and the one end part of a lower wafer are pressed by a pushing member. 上部チャックの真空引きを領域毎に停止する様子を示す説明図である。It is explanatory drawing which shows a mode that the evacuation of an upper chuck | zipper stops for every area | region. 上ウェハと下ウェハが接合された様子を示す説明図である。It is explanatory drawing which shows a mode that the upper wafer and the lower wafer were joined. 他の実施の形態にかかる接合装置の構成の概略を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline of a structure of the joining apparatus concerning other embodiment. 他の実施の形態にかかる接合装置の上部チャック及び下部チャック付近の様子を示す説明図である。It is explanatory drawing which shows the mode of the upper chuck | zipper and lower chuck | zipper vicinity of the joining apparatus concerning other embodiment.
 以下、本発明の実施の形態について説明する。図1は、本実施の形態にかかる接合方法を実施する接合装置を備えた接合システム1の構成の概略を示す平面図である。図2は、接合システム1の内部構成の概略を示す側面図である。 Hereinafter, embodiments of the present invention will be described. FIG. 1 is a plan view showing an outline of a configuration of a joining system 1 including a joining apparatus that performs the joining method according to the present embodiment. FIG. 2 is a side view illustrating the outline of the internal configuration of the joining system 1.
 接合システム1では、図3に示すように例えば2枚の基板としてのウェハW、Wを接合する。以下、上側に配置されるウェハを、第2の基板としての「上ウェハW」といい、下側に配置されるウェハを、第1の基板としての「下ウェハW」という。また、上ウェハWが接合される接合面を「表面WU1」といい、当該表面WU1と反対側の面を「裏面WU2」という。同様に、下ウェハWが接合される接合面を「表面WL1」といい、当該表面WL1と反対側の面を「裏面WL2」という。そして、接合システム1では、上ウェハWと下ウェハWを接合して、重合基板としての重合ウェハWを形成する。 In the interface system 1, bonding the wafer W U, W L as substrate, for example two as shown in FIG. Hereinafter, the wafer disposed on the upper side is referred to as “upper wafer W U ” as the second substrate, and the wafer disposed on the lower side is referred to as “lower wafer W L ” as the first substrate. Further, a bonding surface to which the upper wafer W U is bonded is referred to as “front surface W U1 ”, and a surface opposite to the front surface W U1 is referred to as “back surface W U2 ”. Similarly, the bonding surface to which the lower wafer W L is bonded is referred to as “front surface W L1 ”, and the surface opposite to the front surface W L1 is referred to as “back surface W L2 ”. Then, in the bonding system 1, by joining the upper wafer W U and the lower wafer W L, to form the overlapped wafer W T as a polymerization substrate.
 接合システム1は、図1に示すように例えば外部との間で複数のウェハW、W、複数の重合ウェハWをそれぞれ収容可能なカセットC、C、Cが搬入出される搬入出ステーション2と、ウェハW、W、重合ウェハWに対して所定の処理を施す各種処理装置を備えた処理ステーション3とを一体に接続した構成を有している。 As shown in FIG. 1, the bonding system 1 carries in and out cassettes C U , C L , and C T that can accommodate a plurality of wafers W U and W L and a plurality of superposed wafers W T , respectively, with the outside. The loading / unloading station 2 and the processing station 3 including various processing apparatuses that perform predetermined processing on the wafers W U , W L , and the overlapped wafer W T are integrally connected.
 搬入出ステーション2には、カセット載置台10が設けられている。カセット載置台10には、複数、例えば4つのカセット載置板11が設けられている。カセット載置板11は、水平方向のX方向(図1中の上下方向)に一列に並べて配置されている。これらのカセット載置板11には、接合システム1の外部に対してカセットC、C、Cを搬入出する際に、カセットC、C、Cを載置することができる。このように、搬入出ステーション2は、複数の上ウェハW、複数の下ウェハW、複数の重合ウェハWを保有可能に構成されている。なお、カセット載置板11の個数は、本実施の形態に限定されず、任意に決定することができる。また、カセットの1つを不具合ウェハの回収用として用いてもよい。すなわち、種々の要因で上ウェハWと下ウェハWとの接合に不具合が生じたウェハを、他の正常な重合ウェハWと分離することができるカセットである。本実施の形態においては、複数のカセットCのうち、1つのカセットCを不具合ウェハの回収用として用い、他のカセットCを正常な重合ウェハWの収容用として用いている。 The loading / unloading station 2 is provided with a cassette mounting table 10. The cassette mounting table 10 is provided with a plurality of, for example, four cassette mounting plates 11. The cassette mounting plates 11 are arranged in a line in the horizontal X direction (vertical direction in FIG. 1). These cassette mounting plates 11, cassettes C U to the outside of the interface system 1, C L, when loading and unloading the C T, a cassette C U, C L, it is possible to place the C T . Thus, carry-out station 2, a wafer over multiple W U, a plurality of lower wafer W L, and is configured to be held by a plurality of overlapped wafer W T. The number of cassette mounting plates 11 is not limited to the present embodiment, and can be arbitrarily determined. One of the cassettes may be used for collecting defective wafers. That is a cassette a wafer caused a problem with the bonding of the upper wafer W U and the lower wafer W L, it can be separated from the other normal overlapped wafer W T by various factors. In the present embodiment, among the plurality of cassettes C T, using a one cassette C T for the recovery of the fault wafer, and using other cassettes C T for the accommodation of a normal overlapped wafer W T.
 搬入出ステーション2には、カセット載置台10に隣接してウェハ搬送部20が設けられている。ウェハ搬送部20には、X方向に延伸する搬送路21上を移動自在なウェハ搬送装置22が設けられている。ウェハ搬送装置22は、鉛直方向及び鉛直軸周り(θ方向)にも移動自在であり、各カセット載置板11上のカセットC、C、Cと、後述する処理ステーション3の第3の処理ブロックG3のトランジション装置50、51との間でウェハW、W、重合ウェハWを搬送できる。 In the loading / unloading station 2, a wafer transfer unit 20 is provided adjacent to the cassette mounting table 10. The wafer transfer unit 20 is provided with a wafer transfer device 22 that is movable on a transfer path 21 extending in the X direction. The wafer transfer device 22 is also movable in the vertical direction and around the vertical axis (θ direction), and includes cassettes C U , C L , C T on each cassette mounting plate 11 and a third of the processing station 3 described later. The wafers W U and W L and the superposed wafer W T can be transferred between the transition devices 50 and 51 in the processing block G3.
 処理ステーション3には、各種装置を備えた複数例えば3つの処理ブロックG1、G2、G3が設けられている。例えば処理ステーション3の正面側(図1のX方向負方向側)には、第1の処理ブロックG1が設けられ、処理ステーション3の背面側(図1のX方向正方向側)には、第2の処理ブロックG2が設けられている。また、処理ステーション3の搬入出ステーション2側(図1のY方向負方向側)には、第3の処理ブロックG3が設けられている。 The processing station 3 is provided with a plurality of, for example, three processing blocks G1, G2, G3 provided with various devices. For example, a first processing block G1 is provided on the front side of the processing station 3 (X direction negative direction side in FIG. 1), and on the back side of the processing station 3 (X direction positive direction side in FIG. 1) Two processing blocks G2 are provided. Further, a third processing block G3 is provided on the loading / unloading station 2 side of the processing station 3 (Y direction negative direction side in FIG. 1).
 例えば第1の処理ブロックG1には、ウェハW、Wの表面WU1、WL1を活性化する表面活性化装置30が配置されている。 For example, in the first processing block G1, a surface activation device 30 that activates the surfaces W U1 and W L1 of the wafers W U and W L is arranged.
 例えば第2の処理ブロックG2には、例えば純水によってウェハW、Wの表面WU1、WL1を親水化すると共に当該表面WU1、WL1を洗浄する表面親水化装置40、ウェハW、Wを接合する接合装置41が、搬入出ステーション2側からこの順で水平方向のY方向に並べて配置されている。 For example, the second processing block G2 includes, for example, a surface hydrophilizing device 40 that hydrophilizes the surfaces W U1 and W L1 of the wafers W U and W L with pure water and cleans the surfaces W U1 and W L1. U, bonding device 41 for bonding the W L are arranged side by side in the horizontal direction of the Y-direction in this order from the carry-out station 2 side.
 例えば第3の処理ブロックG3には、図2に示すようにウェハW、W、重合ウェハWのトランジション装置50、51が下から順に2段に設けられている。 For example, the third processing block G3, the wafer W U as shown in FIG. 2, W L, a transition unit 50, 51 of the overlapped wafer W T are provided in two tiers from the bottom in order.
 図1に示すように第1の処理ブロックG1~第3の処理ブロックG3に囲まれた領域には、ウェハ搬送領域60が形成されている。ウェハ搬送領域60には、例えばウェハ搬送装置61が配置されている。 As shown in FIG. 1, a wafer transfer region 60 is formed in a region surrounded by the first processing block G1 to the third processing block G3. For example, a wafer transfer device 61 is disposed in the wafer transfer region 60.
 ウェハ搬送装置61は、例えば鉛直方向、水平方向(Y方向、X方向)及び鉛直軸周りに移動自在な搬送アームを有している。ウェハ搬送装置61は、ウェハ搬送領域60内を移動し、周囲の第1の処理ブロックG1、第2の処理ブロックG2及び第3の処理ブロックG3内の所定の装置にウェハW、W、重合ウェハWを搬送できる。 The wafer transfer device 61 has, for example, a transfer arm that can move around the vertical direction, horizontal direction (Y direction, X direction), and vertical axis. The wafer transfer device 61 moves in the wafer transfer region 60, and adds wafers W U , W L , and W to predetermined devices in the surrounding first processing block G1, second processing block G2, and third processing block G3. You can transfer the overlapping wafer W T.
 次に、上述した接合装置41の構成について説明する。接合装置41は、図4に示すように内部を密閉可能な処理容器70を有している。処理容器70のウェハ搬送領域60側の側面には、ウェハW、W、重合ウェハWの搬入出口71が形成され、当該搬入出口71には開閉シャッタ72が設けられている。なお、処理容器70の内部には、ダウンフローと呼ばれる鉛直下方向に向かう気流を発生させている。そして、処理容器70の内部の雰囲気は、後述する搬送領域T1の底面に形成された排気口73から排気される。 Next, the structure of the joining apparatus 41 mentioned above is demonstrated. As shown in FIG. 4, the bonding apparatus 41 includes a processing container 70 that can be sealed inside. The side surface of the wafer transfer area 60 side of the processing container 70, the wafer W U, W L, the transfer port 71 of the overlapped wafer W T is formed, close shutter 72 is provided in the transfer port 71. In addition, in the processing container 70, an air flow that is called a downward flow is generated. And the atmosphere inside the processing container 70 is exhausted from the exhaust port 73 formed in the bottom face of the conveyance area | region T1 mentioned later.
 処理容器70の内部は、内壁74によって、搬送領域T1と処理領域T2に区画されている。上述した搬入出口71は、搬送領域T1における処理容器70の側面に形成されている。また、内壁74にも、ウェハW、W、重合ウェハWの搬入出口75が形成されている。 The inside of the processing container 70 is partitioned into a transport region T1 and a processing region T2 by an inner wall 74. The carry-in / out port 71 described above is formed on the side surface of the processing container 70 in the transfer region T1. In addition, on the inner wall 74, a loading / unloading port 75 for the wafers W U and W L and the overlapped wafer W T is formed.
 搬送領域T1のX方向正方向側には、ウェハW、W、重合ウェハWを一時的に載置するためのトランジション80が設けられている。トランジション80は、例えば2段に形成され、ウェハW、W、重合ウェハWのいずれか2つを同時に載置することができる。 A transition 80 for temporarily placing the wafers W U and W L and the superposed wafer W T is provided on the positive side in the X direction of the transfer region T1. The transition 80 is formed, for example, in two stages, and any two of the wafers W U , W L , and the superposed wafer W T can be placed at the same time.
 搬送領域T1には、X方向に延伸する搬送路81上を移動自在なウェハ搬送体82が設けられている。ウェハ搬送体は、図4及び図5に示すように鉛直方向及び鉛直軸周りにも移動自在であり、搬送領域T1内、又は搬送領域T1と処理領域T2との間でウェハW、W、重合ウェハWを搬送できる。 In the transfer region T1, a wafer transfer body 82 that is movable on a transfer path 81 extending in the X direction is provided. As shown in FIGS. 4 and 5, the wafer transfer body is also movable in the vertical direction and the vertical axis, and the wafers W U , W L in the transfer area T1 or between the transfer area T1 and the processing area T2. , it can transfer the overlapping wafer W T.
 搬送領域T1のX方向負方向側には、ウェハW、Wの水平方向の向きを調節する位置調節機構90が設けられている。位置調節機構90は、図6に示すように基台91と、ウェハW、Wを吸着保持して回転させる保持部92と、ウェハW、Wのノッチ部の位置を検出する検出部93と、を有している。そして、位置調節機構90では、保持部92に吸着保持されたウェハW、Wを回転させながら検出部93でウェハW、Wのノッチ部の位置を検出することで、当該ノッチ部の位置を調節してウェハW、Wの水平方向の向きを調節している。 A position adjustment mechanism 90 that adjusts the horizontal direction of the wafers W U and W L is provided on the negative side in the X direction of the transfer region T1. Position adjusting mechanism 90 includes a base 91 as shown in FIG. 6, a holding portion 92 for rotating the wafer W U, the W L adsorbed and held, detection for detecting a position of the notch portion of the wafer W U, W L Part 93. Then, the position adjusting mechanism 90, the wafer W U sucked and held by the holding portion 92, the detection unit 93 while rotating the W L by detecting the position of the notch portion of the wafer W U, W L, the notch Are adjusted to adjust the horizontal orientation of the wafers W U and W L.
 処理領域T2には、図4及び図5に示すように下ウェハWを上面で載置して保持する第1の保持部材としての下部チャック100と、上ウェハWを下面で吸着保持する第2の保持部材としての上部チャック101とが設けられている。上部チャック101は、下部チャック100の上方に設けられ、下部チャック100と対向配置可能に構成されている。すなわち、下部チャック100に保持された下ウェハWと上部チャック101に保持された上ウェハWは対向して配置可能となっている。 The processing region T2, the lower chuck 100 as a first holding member for holding by placing the lower wafer W L with the upper surface as shown in FIGS. 4 and 5, for attracting and holding the upper wafer W U with lower surface An upper chuck 101 as a second holding member is provided. The upper chuck 101 is provided above the lower chuck 100 and is configured so as to be opposed to the lower chuck 100. That is, the upper wafer W U held in the lower wafer W L and the upper chuck 101 held by the lower chuck 100 is adapted to be placed opposite.
 下部チャック100の内部には、真空ポンプ(図示せず)に連通する吸引管(図示せず)が設けられている。この吸引管からの吸引により、下ウェハWを下部チャック100の上面に吸着保持できる。 A suction pipe (not shown) communicating with a vacuum pump (not shown) is provided inside the lower chuck 100. By suction through the suction pipe, it attracts and holds the lower wafer W L on the upper surface of the lower chuck 100.
 下部チャック100の下方には、図5に示すようにシャフト102を介してチャック駆動部103が設けられている。このチャック駆動部103により、下部チャック100は昇降自在になっている。なお、チャック駆動部103によって、下部チャック100は水平方向に移動自在であってもよく、さらに鉛直軸周りに回転自在であってもよい。 Below the lower chuck 100, a chuck driving unit 103 is provided via a shaft 102 as shown in FIG. The lower chuck 100 can be raised and lowered by the chuck driving unit 103. Note that the lower chuck 100 may be movable in the horizontal direction by the chuck driving unit 103, and may be further rotatable about the vertical axis.
 上部チャック101には、図7に示すように2つの切欠き部110、111が形成されている。第1の切欠き部110は、後述する反転機構130の保持アーム131と干渉しないように形成されている。また、第2の切欠き部111は、後述する押動部材120と干渉しないように形成されている。 The upper chuck 101 is formed with two notches 110 and 111 as shown in FIG. The 1st notch part 110 is formed so that it may not interfere with the holding arm 131 of the inversion mechanism 130 mentioned later. Moreover, the 2nd notch part 111 is formed so that it may not interfere with the pushing member 120 mentioned later.
 上部チャック101の内部は、図8に示すように複数、例えば3つの領域101a、101b、101cに区画されている。各領域101a、101b、101cには、上ウェハWを吸着保持するための吸引管112a、112b、112cがそれぞれ独立して設けられている。各吸引管112a、112b、112cには、異なる真空ポンプ113a、113b、113cにそれぞれ接続されている。したがって、上部チャック101は、各領域101a、101b、101c毎に上ウェハWの真空引きを設定可能に構成されている。 The inside of the upper chuck 101 is partitioned into a plurality of, for example, three regions 101a, 101b, and 101c as shown in FIG. Each region 101a, 101b, the 101c, the suction pipe 112a for sucking and holding the upper wafer W U, 112b, 112c are provided independently. The suction pipes 112a, 112b, and 112c are connected to different vacuum pumps 113a, 113b, and 113c, respectively. Thus, the upper chuck 101, each region 101a, 101b, and is configured to be set the vacuum of the upper wafer W U per 101c.
 上部チャック101の上方には、図5に示すようにY方向に沿って延伸するレール114が設けられている。上部チャック101は、チャック駆動部115によりレール114上を移動自在になっている。なお、チャック駆動部115によって、上部チャック101は鉛直方向に移動自在であってもよく、さらに鉛直軸周りに回転自在であってもよい。 A rail 114 extending along the Y direction is provided above the upper chuck 101 as shown in FIG. The upper chuck 101 is movable on the rail 114 by a chuck driving unit 115. The upper chuck 101 may be movable in the vertical direction by the chuck driving unit 115, and may be further rotatable around the vertical axis.
 処理領域T2には、図4及び図5に示すように押動部材120が設けられている。押動部材120は、例えばシリンダ等の駆動部121によって昇降自在に構成されている。そして、押動部材120は、後述するウェハW、Wの接合時に、下ウェハWの一端部と、当該下ウェハWの一端部に対向する上ウェハWの一端部とを当接させて押圧することができる。 As shown in FIGS. 4 and 5, a push member 120 is provided in the processing region T2. The pushing member 120 is configured to be movable up and down by a driving unit 121 such as a cylinder. Then, the pressing member 120, the wafer W U to be described later, at the time of bonding of W L, one end portion of the lower wafer W L, the one end portion of the upper wafer W U facing the one end of the lower wafer W L equivalent It can be pressed in contact.
 搬送領域T1には、当該搬送領域T1と処理領域T2との間を移動し、且つ上ウェハWの表裏面を反転させる反転機構130が設けられている。反転機構130は、図9に示すように上ウェハWを保持する保持アーム131を有している。保持アーム131上には、上ウェハWを吸着して水平に保持する吸着パッド132が設けられている。保持アーム131は、第1の駆動部133に支持されている。この第1の駆動部133により、保持アーム131は水平軸周りに回動自在であり、且つ水平方向に伸縮できる。第1の駆動部133の下方には、第2の駆動部134が設けられている。この第2の駆動部134により、第1の駆動部133は鉛直軸周りに回転自在であり、且つ鉛直方向に昇降できる。さらに、第2の駆動部134は、図4及び図5に示すY方向に延伸するレール135に取り付けられている。レール135は、処理領域T2から搬送領域T1まで延伸している。この第2の駆動部134により、反転機構130は、レール135に沿って位置調節機構90と上部チャック101との間を移動可能になっている。なお、反転機構130の構成は、上記実施の形態の構成に限定されず、上ウェハWの表裏面を反転させることができればよい。また、反転機構130は、処理領域T2に設けられていてもよい。また、ウェハ搬送体82に反転機構を付与し、反転機構130の位置に別の搬送手段を設けてもよい。 The transfer region T1 is reversing mechanism 130 which moves between the transfer region T1 and the processing region T2, to and reverses the front and rear surfaces of the upper wafer W U is provided. Reversing mechanism 130 has a holding arm 131 which holds the upper wafer W U as shown in FIG. On the holding arm 131, the suction pads 132 held horizontally by suction on the wafer W U is provided. The holding arm 131 is supported by the first driving unit 133. By this first drive unit 133, the holding arm 131 is rotatable about a horizontal axis and can be expanded and contracted in the horizontal direction. A second drive unit 134 is provided below the first drive unit 133. By this second drive unit 134, the first drive unit 133 is rotatable about the vertical axis and can be moved up and down in the vertical direction. Further, the second drive unit 134 is attached to a rail 135 extending in the Y direction shown in FIGS. 4 and 5. The rail 135 extends from the processing area T2 to the transport area T1. The reversing mechanism 130 can move between the position adjusting mechanism 90 and the upper chuck 101 along the rail 135 by the second driving unit 134. The configuration of the reversing mechanism 130 is not limited to the configuration of the above embodiment, it is sufficient to invert the front and rear surfaces of the upper wafer W U. Further, the reversing mechanism 130 may be provided in the processing region T2. Further, a reversing mechanism may be added to the wafer transport body 82, and another transport means may be provided at the position of the reversing mechanism 130.
 なお、処理領域T2には、後述するように下部チャック100に保持された下ウェハWと上部チャック101に保持された上ウェハWとの水平方向の位置調節を行うため、後述する下ウェハWの表面WL1を撮像する下部撮像部材と上ウェハWの表面WU1を撮像する上部撮像部材とが設けられている。下部撮像部材と上部撮像部材には、例えば広角型のCCDカメラが用いられる。 The processing in the region T2, for performing position adjustment in the horizontal direction between the upper wafer W U held in the lower wafer W L and the upper chuck 101 held by the lower chuck 100 as will be described later, the lower will be described later wafer an upper imaging member for imaging the surface W U1 of the lower imaging member and the upper wafer W U is provided for imaging the surface W L1 of W L. For example, a wide-angle CCD camera is used for the lower imaging member and the upper imaging member.
 次に、以上のように構成された接合装置41においてウェハW、Wを接合する際、接合装置41と、当該接合装置41の外部、すなわちウェハ搬送領域60との間に生じる気流、及び接合装置41内に生じる気流について図10に基づいて説明する。なお、図10中の矢印は気流の方向を示している。 Then, when joining the wafer W U, W L in the bonding apparatus 41 configured as described above, the bonding device 41, the outside of the joint device 41, that air flow generated between the wafer transfer area 60, and The airflow generated in the joining device 41 will be described with reference to FIG. In addition, the arrow in FIG. 10 has shown the direction of the airflow.
 接合装置41内の圧力は、ウェハ搬送領域60内の圧力に対して陽圧となっている。したがって、開閉シャッタ71を開けると、接合装置41からウェハ搬送領域60に向かう気流が生じる。 The pressure in the bonding apparatus 41 is positive with respect to the pressure in the wafer transfer region 60. Therefore, when the opening / closing shutter 71 is opened, an air flow from the bonding apparatus 41 toward the wafer transfer region 60 is generated.
 また、接合装置41内において、処理容器70の内部の雰囲気は搬送領域T1の排気口73から排気される。したがって、処理領域T2から搬入出口75を介して搬送領域T1に向かう気流が生じる。 In the joining apparatus 41, the atmosphere inside the processing container 70 is exhausted from the exhaust port 73 of the transfer region T1. Accordingly, an airflow is generated from the processing region T2 toward the transfer region T1 via the loading / unloading port 75.
 以上の接合システム1には、図1に示すように制御部200が設けられている。制御部200は、例えばコンピュータであり、プログラム格納部(図示せず)を有している。プログラム格納部には、接合システム1におけるウェハW、W、重合ウェハWの処理を制御するプログラムが格納されている。また、プログラム格納部には、上述の各種処理装置や搬送装置などの駆動系の動作を制御して、接合システム1における後述の接合処理を実現させるためのプログラムも格納されている。なお、前記プログラムは、例えばコンピュータ読み取り可能なハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディスク(CD)、マグネットオプティカルデスク(MO)、メモリーカードなどのコンピュータに読み取り可能な記憶媒体Hに記録されていたものであって、その記憶媒体Hから制御部200にインストールされたものであってもよい。 The above joining system 1 is provided with a control unit 200 as shown in FIG. The control unit 200 is a computer, for example, and has a program storage unit (not shown). The program storage unit stores a program for controlling processing of the wafers W U and W L and the overlapped wafer W T in the bonding system 1. The program storage unit also stores a program for controlling the operation of drive systems such as the above-described various processing apparatuses and transfer apparatuses to realize the below-described joining process in the joining system 1. The program is recorded on a computer-readable storage medium H such as a computer-readable hard disk (HD), a flexible disk (FD), a compact disk (CD), a magnetic optical desk (MO), or a memory card. May have been installed in the control unit 200 from the storage medium H.
 次に、以上のように構成された接合システム1を用いて行われるウェハW、Wの接合処理方法について説明する。図11は、かかるウェハ接合処理の主な工程の例を示すフローチャートである。 Next, a method for bonding the wafers W U and W L performed using the bonding system 1 configured as described above will be described. FIG. 11 is a flowchart showing an example of main steps of the wafer bonding process.
 先ず、複数枚の上ウェハWを収容したカセットC、複数枚の下ウェハWを収容したカセットC、及び空のカセットCが、搬入出ステーション2の所定のカセット載置板11に載置される。その後、ウェハ搬送装置22によりカセットC内の上ウェハWが取り出され、処理ステーション3の第3の処理ブロックG3のトランジション装置50に搬送される。 First, the cassette C U, the cassette C L accommodating the lower wafer W L of the plurality, and the empty cassette C T is a predetermined cassette mounting plate 11 of the carry-out station 2 accommodating the wafers W U on the plurality Placed on. Thereafter, the upper wafer W U in the cassette C U is taken out by the wafer transfer device 22 is conveyed to the transition unit 50 of the third processing block G3 in the processing station 3.
 次に上ウェハWは、ウェハ搬送装置61によって第1の処理ブロックG1の表面活性化装置30に搬送される。表面活性化装置30では、例えば処理ガスをプラズマ励起させたラジカルを用いてウェハWの表面WU1が活性化される(図11の工程S1)。 Then the upper wafer W U is transported to the first processing block surface activation device G1 30 by the wafer transfer apparatus 61. In the surface activation device 30, for example, the surface W U1 of the wafer W U is activated using radicals obtained by plasma-exciting the processing gas (step S <b> 1 in FIG. 11).
 次に上ウェハWは、ウェハ搬送装置61によって第2の処理ブロックG2の表面親水化装置40に搬送される。表面親水化装置40では、例えば上ウェハW上に純水を供給して、当該上ウェハWの表面WU1に水酸基が付着して当該表面WU1が親水化される。また、この純水によって上ウェハWの表面WU1が洗浄される(図11の工程S2)。 Then the upper wafer W U is transferred to a surface hydrophilizing apparatus 40 of the second processing block G2 by the wafer transfer apparatus 61. In the surface hydrophilizing apparatus 40, for example by supplying pure water onto the upper wafer W U, the surface W U1 and hydroxyl groups on the surface W U1 of the on wafer W U is attached is hydrophilized. Further, the surface W U1 of the upper wafer W U is cleaned by this pure water (step S2 in FIG. 11).
 次に上ウェハWは、ウェハ搬送装置61によって第2の処理ブロックG2の接合装置41に搬送される。接合装置41に搬入された上ウェハWは、トランジション80を介してウェハ搬送体82により位置調節機構90に搬送される。そして位置調節機構90によって、上ウェハWの水平方向の向きが調節される(図11の工程S3)。 Then the upper wafer W U is transferred to the bonding apparatus 41 of the second processing block G2 by the wafer transfer apparatus 61. Upper wafer W U which is carried into the joining device 41 is conveyed to the position adjusting mechanism 90 by the wafer carrier 82 via a transition 80. And the position adjustment mechanism 90, the horizontal orientation of the upper wafer W U is adjusted (step S3 in FIG. 11).
 その後、位置調節機構90から反転機構130の保持アーム131に上ウェハWが受け渡される。続いて搬送領域T1において、保持アーム131を反転させることにより、上ウェハWの表裏面が反転される(図11の工程S4)。すなわち、上ウェハWの表面WU1が下方に向けられる。その後、反転機構130が上部チャック101側に移動し、反転機構130から上部チャック101に上ウェハWが受け渡される。上ウェハWは、上部チャック101にその裏面WU2が吸着保持される。その後、上部チャック101は、チャック駆動部115によって下部チャック100の上方であって当該下部チャック100に対向する位置まで移動する。そして、上ウェハWは、後述する下ウェハWが接合装置41に搬送されるまで上部チャック101で待機する。なお、上ウェハWの表裏面の反転は、反転機構130の移動中に行われてもよい。 Thereafter, the upper wafer W U is transferred from the position adjusting mechanism 90 to the holding arm 131 of the reversing mechanism 130. Subsequently, in transfer region T1, by reversing the holding arm 131, the front and back surfaces of the upper wafer W U is inverted (step S4 in FIG. 11). That is, the surface W U1 of the upper wafer W U is directed downward. Thereafter, the reversing mechanism 130 is moved to the upper chuck 101, the upper wafer W U is transferred from the inverting mechanism 130 in the upper chuck 101. Upper wafer W U, the back surface W U2 on the upper chuck 101 is held by suction. Thereafter, the upper chuck 101 is moved by the chuck driving unit 115 to a position above the lower chuck 100 and facing the lower chuck 100. The upper wafer W U, the process waits at the upper chuck 101 to the lower wafer W L is transported to the bonding apparatus 41 described later. Note that the reversal of the front and back surfaces of the upper wafer W U may be performed while the reversing mechanism 130 is moving.
 上ウェハWに上述した工程S1~S4の処理が行われている間、当該上ウェハWに続いて下ウェハWの処理が行われる。先ず、ウェハ搬送装置22によりカセットC内の下ウェハWが取り出され、処理ステーション3のトランジション装置50に搬送される。 During the processing of steps S1 ~ S4 described above on the wafer W U is being performed, the processing of the lower wafer W L Following the on wafer W U is performed. First, the lower wafer W L in the cassette C L is taken out by the wafer transfer device 22 is conveyed to the transition unit 50 in the processing station 3.
 次に下ウェハWは、ウェハ搬送装置61によって表面活性化装置30に搬送され、下ウェハWの表面WL1が活性化される(図11の工程S5)。なお、工程S5における下ウェハWの表面WL1の活性化は、上述した工程S1と同様である。 Lower wafer W L is then transported to the surface activation device 30 by the wafer transfer apparatus 61, the surface W L1 of the lower wafer W L is activated (step S5 in FIG. 11). Note that activation of the surface W L1 of the lower wafer W L in step S5, the same as the process S1 described above.
 その後、下ウェハWは、ウェハ搬送装置61によって表面親水化装置40に搬送され、下ウェハWの表面WL1が親水化されると共に当該表面WL1が洗浄される(図11の工程S6)。なお、工程S6における下ウェハWの表面WL1の親水化及び洗浄は、上述した工程S2と同様である。 Thereafter, the lower wafer W L is transferred to the surface hydrophilizing apparatus 40 by the wafer transfer apparatus 61, the surface W L1 of the lower wafer W L is the surface W L1 are cleaned with the hydrophilic (Figure 11 step S6 ). Incidentally, hydrophilic and cleaning of the surface W L1 of the lower wafer W L in step S6 is the same as step S2 of the above-described.
 その後、下ウェハWは、ウェハ搬送装置61によって接合装置41に搬送される。接合装置41に搬入された下ウェハWは、トランジション80を介してウェハ搬送体82により位置調節機構90に搬送される。そして位置調節機構90によって、下ウェハWの水平方向の向きが調節される(図11の工程S7)。 Thereafter, the lower wafer W L is transported to the bonding apparatus 41 by the wafer transfer apparatus 61. Lower wafer W L which is transported to the bonding unit 41 is conveyed to the position adjusting mechanism 90 by the wafer carrier 82 via a transition 80. And the position adjustment mechanism 90, the horizontal orientation of the lower wafer W L are adjusted (step S7 in FIG. 11).
 その後、下ウェハWは、ウェハ搬送体82によって下部チャック100に搬送され、下部チャック100に吸着保持される。このとき、下ウェハWの表面WL1が上方を向くように、当該下ウェハWの裏面WL2が下部チャック100に保持される。なお、下部チャック100の上面にはウェハ搬送体82の形状に適合する溝(図示せず)が形成され、下ウェハWの受け渡しの際にウェハ搬送体82と下部チャック100とが干渉するのを避けるようにしてもよい。 Thereafter, the lower wafer W L is transferred to the lower chuck 100 by the wafer transfer body 82 is attracted and held by the lower chuck 100. At this time, the surface W L1 of the lower wafer W L is to face upwards, the back surface W L2 of the lower wafer W L is held by the lower chuck 100. Note that the upper surface of the lower chuck 100 (not shown) fits a groove in the shape of the wafer transfer body 82 is formed, and a wafer carrier 82 during the transfer of the lower wafer W L and the lower chuck 100 is interfering May be avoided.
 次に、下部チャック100に保持された下ウェハWと上部チャック101に保持された上ウェハWとの水平方向の位置調節を行う。図12に示すように下ウェハWの表面WL1には予め定められた複数の基準点Aが形成され、同様に上ウェハWの表面WU1には予め定められた複数の基準点Bが形成されている。そして、下部撮像部材140を水平方向に移動させ、下ウェハWの表面WL1が撮像される。また、上部撮像部材141を水平方向に移動させ、上ウェハWの表面WU1が撮像される。その後、下部撮像部材140が撮像した画像に表示される下ウェハWの基準点Aの位置と、上部撮像部材141が撮像した画像に表示される上ウェハWの基準点Bの位置とが合致するように、上部チャック101によって上ウェハWの水平方向の位置が調節される。こうして上ウェハWと下ウェハWとの水平方向の位置が調節される(図11の工程S8)。なお、下部チャック100がチャック駆動部103によって水平方向に移動自在である場合には、当該下部チャック100によって下ウェハWの水平方向の位置を調節してもよく、また下部チャック100及び上部チャック101の両方で下ウェハWと上ウェハWの相対的な水平方向の位置を調節してもよい。 Next, the adjusted horizontal positions of the upper wafer W U held in the lower wafer W L and the upper chuck 101 held by the lower chuck 100. As shown in FIG. 12, a plurality of predetermined reference points A are formed on the surface W L1 of the lower wafer W L , and similarly, a plurality of predetermined reference points B are formed on the surface W U1 of the upper wafer W U. Is formed. Then, by moving the lower imaging member 140 in the horizontal direction, the surface W L1 of the lower wafer W L is imaged. Further, the upper imaging member 141 is moved in the horizontal direction, and the surface W U1 of the upper wafer W U is imaged. Thereafter, the position of the reference point A of the lower wafer W L of the lower imaging member 140 is displayed in the image captured, and the position of the reference point B of the wafer W U on the upper imaging member 141 are displayed on the image captured Consistently, the horizontal position of the upper wafer W U is regulated by the upper chuck 101. Horizontal position of the upper wafer W U and the lower wafer W L is adjusted in this way (step S8 in FIG. 11). Note that when the lower chuck 100 is horizontally movable by the chuck drive unit 103 may adjust the horizontal position of the lower wafer W L by the lower chuck 100 and lower chuck 100 and upper chuck The relative horizontal position of the lower wafer W L and the upper wafer W U may be adjusted by both 101.
 その後、チャック駆動部103によって、図13に示すように下部チャック100を上昇させ、下ウェハWを所定の位置に配置する。このとき、下ウェハWの表面WL1と上ウェハWの表面WU1との間の間隔Dが所定の距離、例えば0.5mmになるように、下ウェハWを配置する。こうして上ウェハWと下ウェハWとの鉛直方向の位置が調節される(図11の工程S9)。 Thereafter, the chuck drive unit 103 raises the lower chuck 100 as shown in FIG. 13, to place the lower wafer W L to a predetermined position. In this case, as the distance D between the surface W U1 of the surface W L1 and the upper wafer W U of the lower wafer W L is a predetermined distance, for example 0.5 mm, placing the lower wafer W L. Vertical position of the upper wafer W U and the lower wafer W L is adjusted in this way (step S9 in FIG. 11).
 その後、図14に示すように押動部材120を下降させ下ウェハWの一端部と上ウェハWの一端部とを当接させて押圧する(図11の工程S10)。このとき、上部チャック101のすべての領域101a、101b、101cにおいて、上ウェハWを真空引きしている。 Then, pressed by abutting the one end portion of the one end and the upper wafer W U of the lower wafer W L to lower the pressing member 120 as shown in FIG. 14 (step S10 in FIG. 11). In this case, all regions 101a of the upper chuck 101, 101b, in 101c, are evacuated upper wafer W U.
 その後、図15に示すように押動部材120によって下ウェハWの一端部と上ウェハWの一端部が押圧された状態で、上部チャック101の領域101aにおける上ウェハWの真空引きを停止する。そうすると、領域101aに保持されていた上ウェハWが下ウェハW上に落下する。そして、上ウェハWの一端側から他端側に向けて、領域101a、101b、101cの順で上ウェハWの真空引きを停止し、上ウェハWを下ウェハWに順次当接させる。こうして、図16に示すように上ウェハWの表面WU1と下ウェハWの表面WL1が全面で当接する。当接した上ウェハWの表面WU1と下ウェハWの表面WL1はそれぞれ工程S1、S5において活性化されているため、先ず、表面WU1、WL1間にファンデルワールス力が生じ、当該表面WU1、WL1同士が接合される。その後、上ウェハWの表面WU1と下ウェハWの表面WL1はそれぞれ工程S2、S6において親水化されているため、表面WU1、WL1間の親水基が水素結合し、表面WU1、WL1同士が強固に接合される。こうして上ウェハWと下ウェハWが接合される(図11の工程S11)。 Then, in a state where one end portion is pushed in one end and the upper wafer W U of the lower wafer W L by the pressing member 120 as shown in FIG. 15, the evacuation of the upper wafer W U in the region 101a of the upper chuck 101 Stop. Then, the upper wafer W U held in the region 101a falls onto the lower wafer W L. Then, toward the one end side of the upper wafer W U at the other end, areas 101a, 101b, evacuation of the upper wafer W U in the order of 101c stops, sequentially contacting the upper wafer W U to the lower wafer W L Let In this way, as shown in FIG. 16, the surface W U1 of the upper wafer W U and the surface W L1 of the lower wafer W L abut all over. Since the surface W U1 of the upper wafer W U and the surface W L1 of the lower wafer W L are activated in steps S1 and S5, respectively, first, van der Waals force is generated between the surfaces W U1 and W L1. The surfaces W U1 and W L1 are joined to each other. Thereafter, the surface W U1 of the upper wafer W U and the surface W L1 of the lower wafer W L are hydrophilized in steps S2 and S6, respectively, so that the hydrophilic group between the surfaces W U1 and W L1 is hydrogen-bonded. U1 and WL1 are firmly joined to each other. Thus the upper wafer W U and the lower wafer W L is bonded (step S11 in FIG. 11).
 なお、本実施の形態では領域101a、101b、101cの順で上ウェハWの真空引きを停止したが、真空引きの停止方法はこれに限定されない。例えば領域101a、101bにおいて同時に真空引きを停止し、その後領域101cにおいて真空引きを停止してもよい。また、各領域101a、101b、101c間における真空引きを停止する時間間隔を変えてもよい。例えば領域101aでの真空引きを停止してから1秒後に領域101bでの真空引きを停止し、さらにこの領域101bでの真空引きを停止してから2秒後に領域101cでの真空引きの停止をしてもよい。 The region 101a in the present embodiment, 101b, have been stopped evacuation of the upper wafer W U in the order of 101c, how to stop evacuation is not limited thereto. For example, the evacuation may be stopped simultaneously in the regions 101a and 101b, and then the evacuation may be stopped in the region 101c. Further, the time interval for stopping the evacuation between the regions 101a, 101b, and 101c may be changed. For example, the evacuation in the region 101b is stopped 1 second after the evacuation in the region 101a is stopped, and the evacuation in the region 101c is stopped 2 seconds after the evacuation in the region 101b is further stopped. May be.
 上ウェハWと下ウェハWが接合された重合ウェハWは、ウェハ搬送装置61によってトランジション装置51に搬送され、その後搬入出ステーション2のウェハ搬送装置22によって所定のカセット載置板11のカセットCに搬送される。こうして、一連のウェハW、Wの接合処理が終了する。 The upper wafer W U and the lower wafer W L overlapped wafer bonded W T is transferred to the transition unit 51 by the wafer transfer apparatus 61, then carry out by the wafer transfer apparatus 22 of the station 2 of a predetermined cassette mounting plate 11 It is conveyed to the cassette C T. Thus, a series of wafers W U, bonding process of W L is completed.
 以上の実施の形態によれば、接合装置41での工程S11において、下ウェハWの一端部と上ウェハWの一端部が押圧された状態で、上ウェハWの一端部側から他端部側に向けて、当該上ウェハWを下ウェハWに順次当接させている。したがって、例えば下ウェハWと上ウェハWとの間にボイドとなりうる空気が存在している場合でも、空気は上ウェハWが下ウェハWと当接している箇所より常に外側、すなわち他端部側に存在することになり、当該空気をウェハW、W間から一方向に逃がすことができる。したがって、本実施の形態によれば、ウェハW、W間のボイドの発生を抑制しつつ、ウェハW、W同士を適切に接合することができる。しかも、本実施の形態によれば、従来のようにウェハW、Wを接合する際の雰囲気を真空雰囲気にする必要がないので、ウェハW、Wの接合を短時間で効率よく行うことができ、ウェハ接合処理のスループットを向上させることができる。さらに本実施の形態によれば、上ウェハWが上部チャック101に保持された状態で、上ウェハWの一端部と下ウェハWの一端部に当接させることができるので、下ウェハWに対する上ウェハWの位置がずれることがなく、ウェハW、Wの接合を適切に行うことができる。 According to the above embodiment, in the step S11 in the bonding apparatus 41, in a state where one end portion of the one end and the upper wafer W U of the lower wafer W L is pressed, the other from one end side of the upper wafer W U toward the end portion side, by sequentially contacting the on wafer W U to the lower wafer W L. Thus, for example, even if the air can be a void between the lower wafer W L and the upper wafer W U is present, always outside the places air to the upper wafer W U is in contact with the lower wafer W L, i.e. It exists on the other end side, and the air can be released in one direction from between the wafers W U and W L. Therefore, according to this embodiment, while suppressing the generation of voids between the wafer W U, W L, it can be suitably joined wafers W U, the W L together. In addition, according to the present embodiment, it is not necessary to use a vacuum atmosphere for bonding the wafers W U and W L as in the prior art, so that the bonding of the wafers W U and W L can be performed efficiently in a short time. And the throughput of the wafer bonding process can be improved. Further, according to the present embodiment, in a state in which the upper wafer W U is held in the upper chuck 101, since it is possible to contact the one end of the one end portion and the lower wafer W L of the upper wafer W U, the lower wafer The position of the upper wafer W U with respect to W L is not shifted, and the wafers W U and W L can be appropriately joined.
 また、接合装置41の上部チャック101は、複数の領域101a、101b、101cに区画され、当該領域101a、101b、101c毎に上ウェハWの真空引きを設定可能であるので、工程S11において、上ウェハWの一端部側から他端部側に向けて、当該上ウェハWを下ウェハWに確実に順次当接させることができる。したがって、ウェハW、W間の空気を逃がし、当該ウェハW、W間のボイドの発生を確実に抑制することができる。 The upper chuck 101 of the joining device 41, a plurality of regions 101a, 101b, is divided into 101c, the area 101a, 101b, since it is possible to set the vacuum of the upper wafer W U per 101c, in step S11, from one end side of the upper wafer W U toward the other end side, the on wafer W U can reliably turn contacts the lower wafer W L. Therefore, it is possible to escape the air between the wafer W U, W L, to reliably suppress generation of voids between the wafer W U, W L.
 また、表面活性化装置30での工程S1、S4においてウェハW、Wの表面を活性化し、表面親水化装置40での工程S2、S5においてウェハW、Wの表面WU1、WL1を親水化して当該表面WU1、WL1に水酸基している。このため、接合装置41での工程S11において、活性化したウェハW、Wの表面WU1、WL1同士をファンデルワールス力によって接合した後、親水化したウェハW、Wの表面WU1、WL1の水酸基を水素結合させて、ウェハW、W同士を強固に接合することができる。したがって、例えばウェハを重ね合わせた状態で押圧する必要がない。このため、押圧によるウェハの破損を抑制することができる。さらに、ウェハW、W同士はファンデルワールス力と水素結合のみによって接合されるので、接合に要する時間を短縮することができ、ウェハ接合処理のスループットを向上させることができる。 Further, the surfaces of the wafers W U and W L are activated in steps S1 and S4 in the surface activation device 30, and the surfaces W U1 and W of the wafers W U and W L in steps S2 and S5 in the surface hydrophilization device 40. L1 is hydrophilized and hydroxylated on the surfaces W U1 and W L1 . For this reason, in step S11 in the bonding apparatus 41, the surfaces W U1 and W L1 of the activated wafers W U and W L are bonded to each other by van der Waals force, and then the surfaces of the wafers W U and W L that have been hydrophilized. The hydroxyl groups of W U1 and W L1 can be hydrogen bonded to bond the wafers W U and W L firmly together. Therefore, for example, it is not necessary to press in a state where the wafers are overlapped. For this reason, damage to the wafer due to pressing can be suppressed. Further, the wafer W U, since W L together are joined only by van der Waals forces and hydrogen bonds, it is possible to shorten the time required for the bonding, it is possible to improve the throughput of the wafer bonding process.
 また、接合装置41での工程S3、S6においてウェハW、Wの水平方向の向きをそれぞれ調節し、工程S8、S9においてウェハW、Wの水平方向及び鉛直方向の位置を調節している。したがって、その後工程S11においてウェハW、Wを適切に接合することができる。 Further, the wafer W U in step S3, S6 of the joining device 41, to adjust the respective horizontal orientation of W L, to adjust the position of the horizontal and vertical directions of the wafer W U, W L in step S8, S9 ing. Therefore, the wafers W U and W L can be appropriately bonded in the subsequent step S11.
 また、接合システム1において、接合装置41内の圧力はウェハ搬送領域60内の圧力に対して陽圧となっているので、接合装置41からウェハ搬送領域60に向かう気流が生じる。すなわち、接合装置41内に外部から雰囲気が流入することがない。したがって、接合装置41内に外部からパーティクル等が流入することがなく、ウェハW、Wの接合を適切に行うことができる。 In the bonding system 1, the pressure in the bonding apparatus 41 is a positive pressure relative to the pressure in the wafer transfer area 60, so that an air flow from the bonding apparatus 41 toward the wafer transfer area 60 is generated. That is, no atmosphere flows into the bonding apparatus 41 from the outside. Therefore, without particles or the like is introduced from the outside into the junction device 41, the wafer W U, the junction of the W L can be appropriately performed.
 以上の実施の形態の接合装置41において、下部チャック100の下面側に冷却機構210を設け、上部チャック101の上面側に冷却機構211を設けてもよい。冷却機構210、211には、例えば冷却水やペルチェ素子などの冷却部材(図示せず)が内蔵されている。冷却機構210、211の冷却温度は例えば制御部200により制御され、下部チャック100に保持された下ウェハWが常温(23℃)以下の所定の温度に冷却され、また上部チャック101に保持された上ウェハWが常温(23℃)以下の所定の温度に冷却される。なお、本実施の形態では、下部チャック100と上部チャック101の両方に冷却機構210、211が設けられているが、下部チャック100にのみ冷却機構210を設けてもよく、また上部チャック101にのみ冷却機構211を設けてもよい。さらに、これら冷却機構210、211に代えて、処理ステーション3の第3の処理ブロックG3内に、接合された重合ウェハWを冷却する冷却装置をトランジション装置50、51に積層して設けてもよい。 In the bonding apparatus 41 of the above embodiment, the cooling mechanism 210 may be provided on the lower surface side of the lower chuck 100, and the cooling mechanism 211 may be provided on the upper surface side of the upper chuck 101. The cooling mechanisms 210 and 211 incorporate cooling members (not shown) such as cooling water and Peltier elements. Cooling temperature of the cooling mechanism 210 and 211 is controlled by a control unit 200 for example, lower wafer W L held by the lower chuck 100 is cooled to a predetermined temperature below room temperature (23 ° C.), also held by the upper chuck 101 the upper wafer W U were it is cooled to a predetermined temperature below room temperature (23 ° C.). In this embodiment, the cooling mechanisms 210 and 211 are provided in both the lower chuck 100 and the upper chuck 101. However, the cooling mechanism 210 may be provided only in the lower chuck 100, or only in the upper chuck 101. A cooling mechanism 211 may be provided. Moreover, instead of these cooling mechanisms 210 and 211, in the third processing block G3 in the processing station 3, be provided with a cooling device for cooling the bonded overlapped wafer W T are laminated in the transition unit 50, 51 Good.
 かかる場合、上述した工程S11において、下部チャック100に保持された下ウェハWと上部チャック101に保持された上ウェハWをそれぞれ所定の温度、例えば10℃に冷却しながら、ウェハW、Wが接合される。このとき、ウェハW、Wが常温以下に冷却されているので、ウェハW、Wの表面WU1、WL1のファンデルワールス力による接合と水素結合が促進される。したがって、ウェハ接合処理のスループットをさらに向上させることができる。 In such a case, in the step S11 described above, while cooling the upper wafer W U held in the lower wafer W L and the upper chuck 101 held by the lower chuck 100 each predetermined temperature, for example, 10 ° C., the wafer W U, W L are joined. At this time, since the wafers W U and W L are cooled to a room temperature or lower, bonding and hydrogen bonding by the van der Waals forces of the surfaces W U1 and W L1 of the wafers W U and W L are promoted. Therefore, the throughput of the wafer bonding process can be further improved.
 以上の実施の形態の接合装置41において、図18に示すように下部チャック100と上部チャック101の間で水平方向に移動自在のガイド部材220を配置してもよい。ガイド部材220は、押動部材120に対向して配置されている。また、ガイド部材220は、上部チャック101に保持された上ウェハWの他端部、すなわち押動部材120に押圧された上ウェハWの一端部に対向する端部を支持している。このガイド部材220における上ウェハWの支持面は、水平方向から傾斜している。さらに、ガイド部材220は、下部チャック100に保持された下ウェハWに当接しないように設けられている。 In the joining device 41 of the above embodiment, a guide member 220 that is movable in the horizontal direction between the lower chuck 100 and the upper chuck 101 may be disposed as shown in FIG. The guide member 220 is disposed to face the pushing member 120. The guide member 220 supports the other end of the upper wafer W U held by the upper chuck 101, that is, the end facing the one end of the upper wafer W U pressed by the pushing member 120. Supporting surface of the upper wafer W U in the guide member 220 is inclined from the horizontal direction. Further, the guide member 220 is provided so as not to abut against the lower wafer W L held by the lower chuck 100.
 かかる場合、上述した工程S11において、上ウェハWの一端部側から他端部側に向けて、当該上ウェハWを下ウェハWに順次当接させる際、上ウェハWの動きに合わせて、ガイド部材220を上ウェハWの一端部側から他端部側に向けて移動させる。本実施の形態によれば、ガイド部材220により、上ウェハWの一端部側から他端部側に向けて、上ウェハWを下ウェハWに確実に順次当接させることができる。したがって、ウェハW、W間の空気を逃がし、当該ウェハW、W間のボイドの発生を確実に抑制することができる。 In such a case, in the step S11 described above, toward the one end side of the upper wafer W U to the other end, when to sequentially contact the on wafer W U to the lower wafer W L, the movement of the upper wafer W U together, it moves toward the other end side of the guide member 220 from one end side of the upper wafer W U. According to this embodiment, the guide member 220, toward the one end side of the upper wafer W U to the other end side, the upper wafer W U can reliably turn contacts the lower wafer W L. Therefore, it is possible to escape the air between the wafer W U, W L, to reliably suppress generation of voids between the wafer W U, W L.
 以上、添付図面を参照しながら本発明の好適な実施の形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。本発明はこの例に限らず種々の態様を採りうるものである。 The preferred embodiments of the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious for those skilled in the art that various modifications or modifications can be conceived within the scope of the idea described in the claims, and these naturally belong to the technical scope of the present invention. It is understood. The present invention is not limited to this example and can take various forms.
 例えば以上の実施の形態では、接合装置41を用いてウェハW、W同士を接合したが、工程S11を実行できる構成であれば接合装置41以外の接合装置にも本発明を適用できる。すなわち、上ウェハWの一端部側から他端部側に向けて、上ウェハWを下ウェハWに確実に順次当接させることができれば、接合装置41の構成は本実施の形態に限定されない。 For example, in the above embodiment, the wafer W U by using the bonding apparatus 41 has been bonded to W L together, the present invention can also be applied to the bonding apparatus other than the bonding apparatus 41 as long as the configuration can perform the step S11. That is, from one end portion side of the upper wafer W U to the other end, if it is possible to reliably turn abuts the upper wafer W U to the lower wafer W L, configuration of the bonding apparatus 41 in this embodiment It is not limited.
 また、以上の実施の形態では、基板がウェハW、Wである場合について説明したが、本発明は、ウェハ以外のFPD(フラットパネルディスプレイ)、フォトマスク用のマスクレチクルなどの他の基板である場合にも適用できる。 Further, in the above embodiment, the substrate is a wafer W U, the case has been described where a W L, the invention, other than the wafer FPD (Flat Panel Display), other substrates such as a mask reticle for photomask It can also be applied to
 本発明は、例えば半導体ウェハ等の基板同士を接合する際に有用である。 The present invention is useful when bonding substrates such as semiconductor wafers.
  1  接合システム
  30 表面活性化装置
  40 表面親水化装置
  41 接合装置
  70 処理容器
  73 排気口
  80 トランジション
  81 搬送路
  82 ウェハ搬送体
  90 位置調節機構
  100 下部チャック
  101 上部チャック
  101a、101b、101c 領域
  112a、112b、112c 吸引管
  113a、113b、113c 真空ポンプ
  120 押動機構
  130 反転機構
  140 下部撮像部材
  141 上部撮像部材
  200 制御部
  210、211 冷却機構
  220 ガイド部材
  A、B 基準点
  W  上ウェハ
  WU1  表面
  W  下ウェハ
  WL1  表面
  W  重合ウェハ
DESCRIPTION OF SYMBOLS 1 Bonding system 30 Surface activation apparatus 40 Surface hydrophilization apparatus 41 Bonding apparatus 70 Processing container 73 Exhaust port 80 Transition 81 Transfer path 82 Wafer transfer body 90 Position adjustment mechanism 100 Lower chuck 101 Upper chuck 101a, 101b, 101c area 112a, 112b , 112c Suction tubes 113a, 113b, 113c Vacuum pump 120 Pushing mechanism 130 Reversing mechanism 140 Lower imaging member 141 Upper imaging member 200 Control unit 210, 211 Cooling mechanism 220 Guide member A, B Reference point W U upper wafer W U1 surface W L lower wafer W L1 surface W T superposition wafer

Claims (10)

  1. 基板同士を接合する接合方法であって、
    第1の保持部材に保持された第1の基板と、前記第1の保持部材の上方に設けられた第2の保持部材に保持された第2の基板とを、所定の間隔で対向配置する配置工程と、
    その後、第1の基板の一端部と、当該第1の基板の一端部に対向する第2の基板の一端部とを当接させて押圧する押圧工程と、
    その後、前記第1の基板の一端部と第2の基板の一端部が押圧された状態で、前記第2の基板の一端部側から他端部側に向けて、当該第2の基板を第1の基板に順次当接させ、第1の基板と第2の基板を接合する接合工程と、を有する。
    A bonding method for bonding substrates,
    The first substrate held by the first holding member and the second substrate held by the second holding member provided above the first holding member are arranged to face each other at a predetermined interval. The placement process;
    Thereafter, a pressing step of pressing and pressing one end of the first substrate and one end of the second substrate facing the one end of the first substrate;
    Then, in a state where one end of the first substrate and one end of the second substrate are pressed, the second substrate is moved from one end to the other end of the second substrate. A bonding step of sequentially contacting the first substrate and bonding the first substrate and the second substrate.
  2. 請求項1に記載の接合方法であって、
    前記配置工程前に、第1の基板の表面と第2の基板の表面は、それぞれ活性化され且つ親水化され、
    前記接合工程において、第1の基板と第2の基板をファンデルワールス力及び水素結合によって接合する。
    The joining method according to claim 1,
    Before the placing step, the surface of the first substrate and the surface of the second substrate are activated and hydrophilized, respectively.
    In the bonding step, the first substrate and the second substrate are bonded by van der Waals force and hydrogen bonding.
  3. 請求項2に記載の接合方法であって、
    第2の保持部材は、第2の基板を真空引きして吸着保持し、且つ当該第2の保持部材は、複数の領域に区画され、当該領域毎に第2の基板の真空引きを設定可能であり、
    前記接合工程において、前記第2の基板の一端部側から他端部側に向けて、前記領域毎に第2の基板の真空引きを順次停止し、当該第2の基板を第1の基板に当接させる。
    The joining method according to claim 2,
    The second holding member evacuates and holds the second substrate by vacuuming, and the second holding member is partitioned into a plurality of regions, and the evacuation of the second substrate can be set for each region. And
    In the bonding step, the evacuation of the second substrate is sequentially stopped for each region from one end side to the other end side of the second substrate, and the second substrate becomes the first substrate. Make contact.
  4. 請求項3に記載の接合方法であって、
    前記接合方法は、外部の圧力に対して陽圧の雰囲気下で行われる。
    The joining method according to claim 3,
    The bonding method is performed in an atmosphere of positive pressure with respect to external pressure.
  5. 請求項3に記載の接合方法であって、
    少なくとも前記第1の保持部材又は前記第2の保持部材は、少なくとも第1の基板又は第2の基板を冷却する冷却機構を有し、
    前記接合工程は、前記冷却機構によって少なくとも第1の基板又は第2の基板を冷却しながら行われる。
    The joining method according to claim 3,
    At least the first holding member or the second holding member has a cooling mechanism that cools at least the first substrate or the second substrate,
    The bonding step is performed while cooling at least the first substrate or the second substrate by the cooling mechanism.
  6. 請求項3に記載の接合方法であって、
    前記配置工程前に、第1の基板の水平方向の向きと第2の基板の水平方向の向きを調節する。
    The joining method according to claim 3,
    Prior to the placement step, the horizontal orientation of the first substrate and the horizontal orientation of the second substrate are adjusted.
  7. 請求項3に記載の接合方法であって、
    前記接合工程において、前記第2の基板の他端部を支持し、且つ水平方向に移動自在のガイド部材が配置され、第2の基板を第1の基板に当接させる際に、前記ガイド部材を前記第2の基板の一端部側から他端部側に向けて移動させる。
    The joining method according to claim 3,
    In the bonding step, a guide member that supports the other end of the second substrate and is movable in the horizontal direction is disposed, and the guide member is brought into contact with the first substrate. Is moved from one end side to the other end side of the second substrate.
  8. 請求項3に記載の接合方法であって、
    前記配置工程前に、第1の基板の表面と第2の基板の表面をそれぞれ撮像し、撮像された画像における第1の基板の基準点と撮像された画像における第2の基板の基準点とが合致するように第1の基板と第2の基板の相対的な水平方向の位置を調節する。
    The joining method according to claim 3,
    Before the placing step, the surface of the first substrate and the surface of the second substrate are imaged, respectively, and the reference point of the first substrate in the captured image and the reference point of the second substrate in the captured image The relative horizontal positions of the first substrate and the second substrate are adjusted so as to match.
  9. 基板同士を接合する接合方法を接合装置によって実行させるために、当該接合装置を制御する制御部のコンピュータ上で動作するプログラムであって、
    前記接合方法は、
    第1の保持部材に保持された第1の基板と、前記第1の保持部材の上方に設けられた第2の保持部材に保持された第2の基板とを、所定の間隔で対向配置する配置工程と、
    その後、第1の基板の一端部と、当該第1の基板の一端部に対向する第2の基板の一端部とを当接させて押圧する押圧工程と、
    その後、前記第1の基板の一端部と第2の基板の一端部が押圧された状態で、前記第2の基板の一端部側から他端部側に向けて、当該第2の基板を第1の基板に順次当接させ、第1の基板と第2の基板を接合する接合工程と、を有し、
    第2の保持部材は、第2の基板を真空引きして吸着保持し、且つ当該第2の保持部材は、複数の領域に区画され、当該領域毎に第2の基板の真空引きを設定可能であり、
    前記接合工程において、前記第2の基板の一端部側から他端部側に向けて、前記領域毎に第2の基板の真空引きを順次停止し、当該第2の基板を第1の基板に当接させる。
    A program that operates on a computer of a control unit that controls the bonding apparatus in order to cause the bonding apparatus to execute a bonding method for bonding substrates.
    The joining method is:
    The first substrate held by the first holding member and the second substrate held by the second holding member provided above the first holding member are arranged to face each other at a predetermined interval. The placement process;
    Thereafter, a pressing step of pressing and pressing one end of the first substrate and one end of the second substrate facing the one end of the first substrate;
    Then, in a state where one end of the first substrate and one end of the second substrate are pressed, the second substrate is moved from one end to the other end of the second substrate. A bonding step of sequentially contacting the first substrate and bonding the first substrate and the second substrate;
    The second holding member evacuates and holds the second substrate by vacuuming, and the second holding member is partitioned into a plurality of regions, and the evacuation of the second substrate can be set for each region. And
    In the bonding step, the evacuation of the second substrate is sequentially stopped for each region from one end side to the other end side of the second substrate, and the second substrate becomes the first substrate. Make contact.
  10. 基板同士を接合する接合方法を接合装置によって実行させるために、当該接合装置を制御する制御部のコンピュータ上で動作するプログラムを格納した読み取り可能なコンピュータ記憶媒体であって、
    前記接合方法は、
    第1の保持部材に保持された第1の基板と、前記第1の保持部材の上方に設けられた第2の保持部材に保持された第2の基板とを、所定の間隔で対向配置する配置工程と、
    その後、第1の基板の一端部と、当該第1の基板の一端部に対向する第2の基板の一端部とを当接させて押圧する押圧工程と、
    その後、前記第1の基板の一端部と第2の基板の一端部が押圧された状態で、前記第2の基板の一端部側から他端部側に向けて、当該第2の基板を第1の基板に順次当接させ、第1の基板と第2の基板を接合する接合工程と、を有し、
    第2の保持部材は、第2の基板を真空引きして吸着保持し、且つ当該第2の保持部材は、複数の領域に区画され、当該領域毎に第2の基板の真空引きを設定可能であり、
    前記接合工程において、前記第2の基板の一端部側から他端部側に向けて、前記領域毎に第2の基板の真空引きを順次停止し、当該第2の基板を第1の基板に当接させる。
    A readable computer storage medium storing a program that operates on a computer of a control unit that controls the bonding apparatus in order to cause the bonding apparatus to execute a bonding method for bonding substrates.
    The joining method is:
    The first substrate held by the first holding member and the second substrate held by the second holding member provided above the first holding member are arranged to face each other at a predetermined interval. The placement process;
    Thereafter, a pressing step of pressing and pressing one end of the first substrate and one end of the second substrate facing the one end of the first substrate;
    Then, in a state where one end of the first substrate and one end of the second substrate are pressed, the second substrate is moved from one end to the other end of the second substrate. A bonding step of sequentially contacting the first substrate and bonding the first substrate and the second substrate;
    The second holding member evacuates and holds the second substrate by vacuuming, and the second holding member is partitioned into a plurality of regions, and the evacuation of the second substrate can be set for each region. And
    In the bonding step, the evacuation of the second substrate is sequentially stopped for each region from one end side to the other end side of the second substrate, and the second substrate becomes the first substrate. Make contact.
PCT/JP2011/053670 2010-02-26 2011-02-21 Joining method, program, and computer recording medium WO2011105325A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-043371 2010-02-26
JP2010043371A JP2011181632A (en) 2010-02-26 2010-02-26 Joining method, program, and computer recording medium

Publications (1)

Publication Number Publication Date
WO2011105325A1 true WO2011105325A1 (en) 2011-09-01

Family

ID=44506733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053670 WO2011105325A1 (en) 2010-02-26 2011-02-21 Joining method, program, and computer recording medium

Country Status (3)

Country Link
JP (1) JP2011181632A (en)
TW (1) TW201205707A (en)
WO (1) WO2011105325A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI567849B (en) * 2011-09-13 2017-01-21 東京威力科創股份有限公司 Bonding apparatus and bonding system and bonding method and computer strage medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6382769B2 (en) * 2014-08-07 2018-08-29 東京エレクトロン株式会社 Joining apparatus, joining system, joining method, program, and computer storage medium

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0246722A (en) * 1988-08-09 1990-02-16 Nippon Soken Inc Manufacture of semiconductor device
JPH05198549A (en) * 1991-08-26 1993-08-06 Nippondenso Co Ltd Manufacture of semiconductor substrate
JPH076937A (en) * 1993-06-16 1995-01-10 Canon Inc Semiconductor substrate laminating device
JPH10256107A (en) * 1997-03-13 1998-09-25 Canon Inc Device and method for treating wafer and manufacture of wafer
JP2001093787A (en) * 1999-09-21 2001-04-06 Komatsu Electronic Metals Co Ltd Method and device for bonding soi wafers to be bonded
JP2004207436A (en) * 2002-12-25 2004-07-22 Ayumi Kogyo Kk Wafer prealignment method and its device, and wafer bonding method and its device
JP2004266071A (en) * 2003-02-28 2004-09-24 Canon Inc Laminating system
JP2005347302A (en) * 2004-05-31 2005-12-15 Canon Inc Manufacturing method of substrate
JP2007201196A (en) * 2006-01-26 2007-08-09 Matsushita Electric Works Ltd Wafer laminating device and wafer laminating method
JP2009049081A (en) * 2007-08-15 2009-03-05 Nikon Corp Bonding apparatus
JP2009141043A (en) * 2007-12-05 2009-06-25 Nikon Corp Supporting apparatus, heating and pressing apparatus, and heating and pressing method
JP2009200156A (en) * 2008-02-20 2009-09-03 Citizen Holdings Co Ltd Bonding apparatus
WO2009139190A1 (en) * 2008-05-15 2009-11-19 株式会社ニコン Position detector and substrate overlapping apparatus
JP2010010628A (en) * 2008-06-30 2010-01-14 Nikon Corp Bonding apparatus and bonding method
JP2010034445A (en) * 2008-07-31 2010-02-12 Sumco Corp Automatic wafer bonding device, and automatic wafer bonding method
JP2010045071A (en) * 2008-08-08 2010-02-25 Nikon Corp Detecting device, substrate holding member, transfer device, and bonding device

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0246722A (en) * 1988-08-09 1990-02-16 Nippon Soken Inc Manufacture of semiconductor device
JPH05198549A (en) * 1991-08-26 1993-08-06 Nippondenso Co Ltd Manufacture of semiconductor substrate
JPH076937A (en) * 1993-06-16 1995-01-10 Canon Inc Semiconductor substrate laminating device
JPH10256107A (en) * 1997-03-13 1998-09-25 Canon Inc Device and method for treating wafer and manufacture of wafer
JP2001093787A (en) * 1999-09-21 2001-04-06 Komatsu Electronic Metals Co Ltd Method and device for bonding soi wafers to be bonded
JP2004207436A (en) * 2002-12-25 2004-07-22 Ayumi Kogyo Kk Wafer prealignment method and its device, and wafer bonding method and its device
JP2004266071A (en) * 2003-02-28 2004-09-24 Canon Inc Laminating system
JP2005347302A (en) * 2004-05-31 2005-12-15 Canon Inc Manufacturing method of substrate
JP2007201196A (en) * 2006-01-26 2007-08-09 Matsushita Electric Works Ltd Wafer laminating device and wafer laminating method
JP2009049081A (en) * 2007-08-15 2009-03-05 Nikon Corp Bonding apparatus
JP2009141043A (en) * 2007-12-05 2009-06-25 Nikon Corp Supporting apparatus, heating and pressing apparatus, and heating and pressing method
JP2009200156A (en) * 2008-02-20 2009-09-03 Citizen Holdings Co Ltd Bonding apparatus
WO2009139190A1 (en) * 2008-05-15 2009-11-19 株式会社ニコン Position detector and substrate overlapping apparatus
JP2010010628A (en) * 2008-06-30 2010-01-14 Nikon Corp Bonding apparatus and bonding method
JP2010034445A (en) * 2008-07-31 2010-02-12 Sumco Corp Automatic wafer bonding device, and automatic wafer bonding method
JP2010045071A (en) * 2008-08-08 2010-02-25 Nikon Corp Detecting device, substrate holding member, transfer device, and bonding device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI567849B (en) * 2011-09-13 2017-01-21 東京威力科創股份有限公司 Bonding apparatus and bonding system and bonding method and computer strage medium

Also Published As

Publication number Publication date
TW201205707A (en) 2012-02-01
JP2011181632A (en) 2011-09-15

Similar Documents

Publication Publication Date Title
JP5355451B2 (en) Joining device
TWI594308B (en) Joining device, joining system, joining method, and computer storage medium
JP5421825B2 (en) Joining system, joining method, program, and computer storage medium
TWI595593B (en) Joining apparatus and joining system
TWI612595B (en) Joining device, joining system, joining method and computer storage medium
KR102073996B1 (en) Joining device, joining system, joining method and computer storage medium
WO2012121046A1 (en) Bonding device, bonding system and bonding method
JP5829171B2 (en) Peeling system, peeling method, program, and computer storage medium
JP2015119088A (en) Bonding method, program, computer storage medium, bonding device and bonding system
JP2015018919A (en) Joining device, joining system, joining method, program and computer storage medium
JP2015018920A (en) Joining device, joining system, joining method, program and computer storage medium
WO2012114825A1 (en) Junction device, junction system and junction method
JP2015015269A (en) Bonding device, bonding system, bonding method, program, and computer storage medium
JP2017034107A (en) Joining device, joining system, joining method, program and computer storage medium
WO2011105325A1 (en) Joining method, program, and computer recording medium
JP6120749B2 (en) Joining method, program, computer storage medium, joining apparatus and joining system
JP2014229787A (en) Bonding device, bonding system, bonding method, program, and computer storage medium
JP6382765B2 (en) Joining apparatus and joining system
JP2013232685A (en) Bonding apparatus
JP6382764B2 (en) Joining apparatus and joining system
WO2011089826A1 (en) Bonding apparatus, bonding method, and computer storage medium
JP2015095649A (en) Bonding device and bonding system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11747286

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11747286

Country of ref document: EP

Kind code of ref document: A1