WO2011104687A1 - Antagonist anti-il-7 receptor antibodies and methods - Google Patents
Antagonist anti-il-7 receptor antibodies and methods Download PDFInfo
- Publication number
- WO2011104687A1 WO2011104687A1 PCT/IB2011/050792 IB2011050792W WO2011104687A1 WO 2011104687 A1 WO2011104687 A1 WO 2011104687A1 IB 2011050792 W IB2011050792 W IB 2011050792W WO 2011104687 A1 WO2011104687 A1 WO 2011104687A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antibody
- seq
- antagonist
- antibodies
- amino acid
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 158
- 239000005557 antagonist Substances 0.000 title claims description 275
- 108010038498 Interleukin-7 Receptors Proteins 0.000 claims abstract description 373
- 102000010782 Interleukin-7 Receptors Human genes 0.000 claims abstract description 372
- 230000027455 binding Effects 0.000 claims abstract description 121
- 208000009329 Graft vs Host Disease Diseases 0.000 claims abstract description 45
- 208000024908 graft versus host disease Diseases 0.000 claims abstract description 45
- 239000000427 antigen Substances 0.000 claims abstract description 41
- 108091007433 antigens Proteins 0.000 claims abstract description 37
- 102000036639 antigens Human genes 0.000 claims abstract description 37
- 206010039073 rheumatoid arthritis Diseases 0.000 claims abstract description 23
- 206010025135 lupus erythematosus Diseases 0.000 claims abstract description 21
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 claims abstract description 20
- 201000006417 multiple sclerosis Diseases 0.000 claims abstract description 16
- 208000001072 type 2 diabetes mellitus Diseases 0.000 claims abstract description 16
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 12
- 102000039446 nucleic acids Human genes 0.000 claims abstract description 10
- 108020004707 nucleic acids Proteins 0.000 claims abstract description 10
- 241000282414 Homo sapiens Species 0.000 claims description 123
- 210000004027 cell Anatomy 0.000 claims description 109
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 95
- 210000001744 T-lymphocyte Anatomy 0.000 claims description 41
- 208000024891 symptom Diseases 0.000 claims description 30
- 108010029477 STAT5 Transcription Factor Proteins 0.000 claims description 24
- 102000001712 STAT5 Transcription Factor Human genes 0.000 claims description 24
- 230000002829 reductive effect Effects 0.000 claims description 22
- 230000000295 complement effect Effects 0.000 claims description 20
- 230000026731 phosphorylation Effects 0.000 claims description 19
- 238000006366 phosphorylation reaction Methods 0.000 claims description 19
- 238000003556 assay Methods 0.000 claims description 16
- 102000005962 receptors Human genes 0.000 claims description 13
- 108020003175 receptors Proteins 0.000 claims description 13
- 101100454807 Caenorhabditis elegans lgg-1 gene Proteins 0.000 claims description 12
- 208000023275 Autoimmune disease Diseases 0.000 claims description 11
- 239000008194 pharmaceutical composition Substances 0.000 claims description 11
- 229910052717 sulfur Inorganic materials 0.000 claims description 11
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 claims description 9
- 230000004913 activation Effects 0.000 claims description 8
- 229910052739 hydrogen Inorganic materials 0.000 claims description 6
- 239000004472 Lysine Substances 0.000 claims description 5
- 101001043807 Homo sapiens Interleukin-7 Proteins 0.000 claims description 4
- 210000004899 c-terminal region Anatomy 0.000 claims description 4
- 102000052622 human IL7 Human genes 0.000 claims description 4
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 238000011282 treatment Methods 0.000 abstract description 45
- 238000002560 therapeutic procedure Methods 0.000 abstract description 9
- 230000002265 prevention Effects 0.000 abstract description 3
- 230000003042 antagnostic effect Effects 0.000 abstract 1
- 208000026278 immune system disease Diseases 0.000 abstract 1
- 108090000623 proteins and genes Proteins 0.000 description 78
- 108090000765 processed proteins & peptides Proteins 0.000 description 77
- 241000699670 Mus sp. Species 0.000 description 70
- 102000004196 processed proteins & peptides Human genes 0.000 description 70
- 229920001184 polypeptide Polymers 0.000 description 68
- 235000001014 amino acid Nutrition 0.000 description 64
- 239000000203 mixture Substances 0.000 description 63
- 102000040430 polynucleotide Human genes 0.000 description 63
- 108091033319 polynucleotide Proteins 0.000 description 63
- 239000002157 polynucleotide Substances 0.000 description 63
- 230000000694 effects Effects 0.000 description 48
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 47
- 238000006467 substitution reaction Methods 0.000 description 47
- 239000008103 glucose Substances 0.000 description 46
- 108020004414 DNA Proteins 0.000 description 45
- 229940024606 amino acid Drugs 0.000 description 45
- 241001465754 Metazoa Species 0.000 description 44
- 150000001413 amino acids Chemical group 0.000 description 44
- 201000002491 encephalomyelitis Diseases 0.000 description 40
- 210000004369 blood Anatomy 0.000 description 39
- 239000008280 blood Substances 0.000 description 39
- 108010002586 Interleukin-7 Proteins 0.000 description 31
- 102000000704 Interleukin-7 Human genes 0.000 description 31
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 31
- 229940100994 interleukin-7 Drugs 0.000 description 31
- 239000013598 vector Substances 0.000 description 31
- 108060003951 Immunoglobulin Proteins 0.000 description 30
- 241000699666 Mus <mouse, genus> Species 0.000 description 30
- 102000018358 immunoglobulin Human genes 0.000 description 30
- 108010047041 Complementarity Determining Regions Proteins 0.000 description 29
- 201000010099 disease Diseases 0.000 description 29
- 239000012634 fragment Substances 0.000 description 29
- 235000018102 proteins Nutrition 0.000 description 29
- 102000004169 proteins and genes Human genes 0.000 description 29
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 25
- 239000002953 phosphate buffered saline Substances 0.000 description 25
- 230000035772 mutation Effects 0.000 description 23
- 230000004927 fusion Effects 0.000 description 22
- 230000004048 modification Effects 0.000 description 22
- 238000012986 modification Methods 0.000 description 22
- 239000003795 chemical substances by application Substances 0.000 description 21
- 239000013604 expression vector Substances 0.000 description 21
- 206010012601 diabetes mellitus Diseases 0.000 description 20
- 230000001404 mediated effect Effects 0.000 description 20
- 230000001225 therapeutic effect Effects 0.000 description 20
- 210000004408 hybridoma Anatomy 0.000 description 18
- 238000010172 mouse model Methods 0.000 description 18
- 230000006870 function Effects 0.000 description 17
- 230000013595 glycosylation Effects 0.000 description 17
- 238000006206 glycosylation reaction Methods 0.000 description 17
- 125000003729 nucleotide group Chemical group 0.000 description 17
- -1 e.g. Substances 0.000 description 16
- 239000000463 material Substances 0.000 description 16
- 239000000546 pharmaceutical excipient Substances 0.000 description 16
- 238000007912 intraperitoneal administration Methods 0.000 description 15
- 239000003814 drug Substances 0.000 description 14
- 230000001976 improved effect Effects 0.000 description 14
- 230000003993 interaction Effects 0.000 description 14
- 239000002773 nucleotide Substances 0.000 description 14
- 230000003442 weekly effect Effects 0.000 description 14
- 241000283984 Rodentia Species 0.000 description 13
- 238000013459 approach Methods 0.000 description 13
- 238000001727 in vivo Methods 0.000 description 13
- 210000004698 lymphocyte Anatomy 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 13
- 239000000243 solution Substances 0.000 description 13
- 241000700159 Rattus Species 0.000 description 12
- 238000009472 formulation Methods 0.000 description 12
- 238000002347 injection Methods 0.000 description 12
- 239000007924 injection Substances 0.000 description 12
- 239000002609 medium Substances 0.000 description 12
- 238000012216 screening Methods 0.000 description 12
- 230000010056 antibody-dependent cellular cytotoxicity Effects 0.000 description 11
- 230000004071 biological effect Effects 0.000 description 11
- 230000003053 immunization Effects 0.000 description 11
- 238000002649 immunization Methods 0.000 description 11
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 11
- 235000000346 sugar Nutrition 0.000 description 11
- 239000003981 vehicle Substances 0.000 description 11
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 10
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 10
- 125000000539 amino acid group Chemical group 0.000 description 10
- 210000003719 b-lymphocyte Anatomy 0.000 description 10
- 230000037396 body weight Effects 0.000 description 10
- 239000000872 buffer Substances 0.000 description 10
- 238000011161 development Methods 0.000 description 10
- 230000018109 developmental process Effects 0.000 description 10
- 238000010494 dissociation reaction Methods 0.000 description 10
- 230000005593 dissociations Effects 0.000 description 10
- 125000005647 linker group Chemical group 0.000 description 10
- 238000002703 mutagenesis Methods 0.000 description 10
- 231100000350 mutagenesis Toxicity 0.000 description 10
- 230000011664 signaling Effects 0.000 description 10
- 210000000952 spleen Anatomy 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 230000004988 N-glycosylation Effects 0.000 description 9
- 230000001154 acute effect Effects 0.000 description 9
- 238000007792 addition Methods 0.000 description 9
- 230000007423 decrease Effects 0.000 description 9
- 230000003247 decreasing effect Effects 0.000 description 9
- 229940079593 drug Drugs 0.000 description 9
- 239000012636 effector Substances 0.000 description 9
- 239000000839 emulsion Substances 0.000 description 9
- 230000028993 immune response Effects 0.000 description 9
- 229940072221 immunoglobulins Drugs 0.000 description 9
- 238000002823 phage display Methods 0.000 description 9
- 230000009467 reduction Effects 0.000 description 9
- NFGXHKASABOEEW-UHFFFAOYSA-N 1-methylethyl 11-methoxy-3,7,11-trimethyl-2,4-dodecadienoate Chemical compound COC(C)(C)CCCC(C)CC=CC(C)=CC(=O)OC(C)C NFGXHKASABOEEW-UHFFFAOYSA-N 0.000 description 8
- 101100454808 Caenorhabditis elegans lgg-2 gene Proteins 0.000 description 8
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 8
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 8
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 8
- 108091028043 Nucleic acid sequence Proteins 0.000 description 8
- 210000001185 bone marrow Anatomy 0.000 description 8
- 239000000969 carrier Substances 0.000 description 8
- 230000001900 immune effect Effects 0.000 description 8
- 238000000338 in vitro Methods 0.000 description 8
- 239000002502 liposome Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 8
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 7
- 102000006496 Immunoglobulin Heavy Chains Human genes 0.000 description 7
- 108010019476 Immunoglobulin Heavy Chains Proteins 0.000 description 7
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 7
- 230000001684 chronic effect Effects 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- 238000012217 deletion Methods 0.000 description 7
- 230000037430 deletion Effects 0.000 description 7
- 238000003018 immunoassay Methods 0.000 description 7
- 210000001165 lymph node Anatomy 0.000 description 7
- 239000013642 negative control Substances 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 238000010186 staining Methods 0.000 description 7
- 150000008163 sugars Chemical class 0.000 description 7
- 238000003786 synthesis reaction Methods 0.000 description 7
- 239000004475 Arginine Substances 0.000 description 6
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 6
- BPYKTIZUTYGOLE-IFADSCNNSA-N Bilirubin Chemical compound N1C(=O)C(C)=C(C=C)\C1=C\C1=C(C)C(CCC(O)=O)=C(CC2=C(C(C)=C(\C=C/3C(=C(C=C)C(=O)N\3)C)N2)CCC(O)=O)N1 BPYKTIZUTYGOLE-IFADSCNNSA-N 0.000 description 6
- 238000002965 ELISA Methods 0.000 description 6
- 206010015150 Erythema Diseases 0.000 description 6
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 241001529936 Murinae Species 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- 239000004480 active ingredient Substances 0.000 description 6
- 238000010171 animal model Methods 0.000 description 6
- 150000001720 carbohydrates Chemical class 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 238000010367 cloning Methods 0.000 description 6
- 230000009089 cytolysis Effects 0.000 description 6
- 238000000684 flow cytometry Methods 0.000 description 6
- 210000000987 immune system Anatomy 0.000 description 6
- 230000002401 inhibitory effect Effects 0.000 description 6
- 210000003734 kidney Anatomy 0.000 description 6
- 125000001360 methionine group Chemical group N[C@@H](CCSC)C(=O)* 0.000 description 6
- 230000037361 pathway Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 239000011780 sodium chloride Substances 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 239000006228 supernatant Substances 0.000 description 6
- 108700028369 Alleles Proteins 0.000 description 5
- 102000053602 DNA Human genes 0.000 description 5
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 5
- 208000009386 Experimental Arthritis Diseases 0.000 description 5
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 5
- 108090000288 Glycoproteins Proteins 0.000 description 5
- 102000003886 Glycoproteins Human genes 0.000 description 5
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 5
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 5
- 102000003993 Phosphatidylinositol 3-kinases Human genes 0.000 description 5
- 108090000430 Phosphatidylinositol 3-kinases Proteins 0.000 description 5
- 206010035226 Plasma cell myeloma Diseases 0.000 description 5
- 239000002202 Polyethylene glycol Substances 0.000 description 5
- 241000288906 Primates Species 0.000 description 5
- 125000000217 alkyl group Chemical group 0.000 description 5
- 238000009175 antibody therapy Methods 0.000 description 5
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 5
- 230000001276 controlling effect Effects 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 5
- 231100000673 dose–response relationship Toxicity 0.000 description 5
- 239000003937 drug carrier Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 231100000321 erythema Toxicity 0.000 description 5
- 108020001507 fusion proteins Proteins 0.000 description 5
- 102000037865 fusion proteins Human genes 0.000 description 5
- 238000001415 gene therapy Methods 0.000 description 5
- 239000001963 growth medium Substances 0.000 description 5
- 230000036541 health Effects 0.000 description 5
- 235000009200 high fat diet Nutrition 0.000 description 5
- 238000012744 immunostaining Methods 0.000 description 5
- 238000001990 intravenous administration Methods 0.000 description 5
- 238000013507 mapping Methods 0.000 description 5
- 210000003071 memory t lymphocyte Anatomy 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 5
- 201000000050 myeloid neoplasm Diseases 0.000 description 5
- 239000013612 plasmid Substances 0.000 description 5
- 229920001223 polyethylene glycol Polymers 0.000 description 5
- 238000010188 recombinant method Methods 0.000 description 5
- 239000003381 stabilizer Substances 0.000 description 5
- 230000000638 stimulation Effects 0.000 description 5
- 230000004083 survival effect Effects 0.000 description 5
- 230000008961 swelling Effects 0.000 description 5
- 239000003826 tablet Substances 0.000 description 5
- 238000001890 transfection Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 208000004998 Abdominal Pain Diseases 0.000 description 4
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 4
- 210000001266 CD8-positive T-lymphocyte Anatomy 0.000 description 4
- 108091026890 Coding region Proteins 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- 208000002705 Glucose Intolerance Diseases 0.000 description 4
- 206010018429 Glucose tolerance impaired Diseases 0.000 description 4
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 4
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 4
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 4
- LRQKBLKVPFOOQJ-YFKPBYRVSA-N L-norleucine Chemical compound CCCC[C@H]([NH3+])C([O-])=O LRQKBLKVPFOOQJ-YFKPBYRVSA-N 0.000 description 4
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Natural products OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- 108010076504 Protein Sorting Signals Proteins 0.000 description 4
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 4
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- 239000002671 adjuvant Substances 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 235000014633 carbohydrates Nutrition 0.000 description 4
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 4
- 230000021615 conjugation Effects 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 235000018417 cysteine Nutrition 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 239000002552 dosage form Substances 0.000 description 4
- 229940088598 enzyme Drugs 0.000 description 4
- 210000001035 gastrointestinal tract Anatomy 0.000 description 4
- 210000004602 germ cell Anatomy 0.000 description 4
- 238000009396 hybridization Methods 0.000 description 4
- 230000002163 immunogen Effects 0.000 description 4
- 230000001771 impaired effect Effects 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 239000003446 ligand Substances 0.000 description 4
- 210000004072 lung Anatomy 0.000 description 4
- RLSSMJSEOOYNOY-UHFFFAOYSA-N m-cresol Chemical compound CC1=CC=CC(O)=C1 RLSSMJSEOOYNOY-UHFFFAOYSA-N 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 239000003094 microcapsule Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 150000002482 oligosaccharides Chemical class 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- AQIXEPGDORPWBJ-UHFFFAOYSA-N pentan-3-ol Chemical compound CCC(O)CC AQIXEPGDORPWBJ-UHFFFAOYSA-N 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 239000006187 pill Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical compound CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 4
- 238000000159 protein binding assay Methods 0.000 description 4
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 239000001509 sodium citrate Substances 0.000 description 4
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 230000009870 specific binding Effects 0.000 description 4
- 230000002269 spontaneous effect Effects 0.000 description 4
- 238000010561 standard procedure Methods 0.000 description 4
- 239000004094 surface-active agent Substances 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 230000003612 virological effect Effects 0.000 description 4
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide Chemical compound CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 description 3
- 201000004384 Alopecia Diseases 0.000 description 3
- 208000006820 Arthralgia Diseases 0.000 description 3
- 102100032912 CD44 antigen Human genes 0.000 description 3
- 102220504838 Choline transporter-like protein 4_N29D_mutation Human genes 0.000 description 3
- 102000004127 Cytokines Human genes 0.000 description 3
- 108090000695 Cytokines Proteins 0.000 description 3
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 3
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 3
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 3
- 229920002307 Dextran Polymers 0.000 description 3
- 208000003556 Dry Eye Syndromes Diseases 0.000 description 3
- 206010013774 Dry eye Diseases 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 208000010201 Exanthema Diseases 0.000 description 3
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 3
- 239000004471 Glycine Substances 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 101000868273 Homo sapiens CD44 antigen Proteins 0.000 description 3
- 101001018097 Homo sapiens L-selectin Proteins 0.000 description 3
- 102000009490 IgG Receptors Human genes 0.000 description 3
- 108010073807 IgG Receptors Proteins 0.000 description 3
- 102100033467 L-selectin Human genes 0.000 description 3
- 241000124008 Mammalia Species 0.000 description 3
- 229930195725 Mannitol Natural products 0.000 description 3
- 241001049988 Mycobacterium tuberculosis H37Ra Species 0.000 description 3
- 108091061960 Naked DNA Proteins 0.000 description 3
- 208000008589 Obesity Diseases 0.000 description 3
- 108091007960 PI3Ks Proteins 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- 206010033799 Paralysis Diseases 0.000 description 3
- 206010037660 Pyrexia Diseases 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- 230000004075 alteration Effects 0.000 description 3
- 230000000692 anti-sense effect Effects 0.000 description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 3
- 238000004166 bioassay Methods 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 238000004113 cell culture Methods 0.000 description 3
- 210000003169 central nervous system Anatomy 0.000 description 3
- 239000002738 chelating agent Substances 0.000 description 3
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 3
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 238000003745 diagnosis Methods 0.000 description 3
- 239000003623 enhancer Substances 0.000 description 3
- 201000005884 exanthem Diseases 0.000 description 3
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 3
- 210000004744 fore-foot Anatomy 0.000 description 3
- 238000001476 gene delivery Methods 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 3
- 238000007446 glucose tolerance test Methods 0.000 description 3
- 208000024963 hair loss Diseases 0.000 description 3
- 230000003676 hair loss Effects 0.000 description 3
- 210000000548 hind-foot Anatomy 0.000 description 3
- 238000001802 infusion Methods 0.000 description 3
- 238000002372 labelling Methods 0.000 description 3
- 239000000594 mannitol Substances 0.000 description 3
- 235000010355 mannitol Nutrition 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 210000001616 monocyte Anatomy 0.000 description 3
- 210000000822 natural killer cell Anatomy 0.000 description 3
- 231100000252 nontoxic Toxicity 0.000 description 3
- 230000003000 nontoxic effect Effects 0.000 description 3
- 235000020824 obesity Nutrition 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 235000019198 oils Nutrition 0.000 description 3
- 229920001542 oligosaccharide Polymers 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 238000004091 panning Methods 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- 150000003904 phospholipids Chemical class 0.000 description 3
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 3
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 3
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 3
- 230000035755 proliferation Effects 0.000 description 3
- 230000000069 prophylactic effect Effects 0.000 description 3
- 230000002797 proteolythic effect Effects 0.000 description 3
- 230000002285 radioactive effect Effects 0.000 description 3
- 206010037844 rash Diseases 0.000 description 3
- 238000012552 review Methods 0.000 description 3
- 239000012146 running buffer Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 210000003491 skin Anatomy 0.000 description 3
- 231100000046 skin rash Toxicity 0.000 description 3
- 239000000600 sorbitol Substances 0.000 description 3
- 235000010356 sorbitol Nutrition 0.000 description 3
- 239000005720 sucrose Substances 0.000 description 3
- 241000701161 unidentified adenovirus Species 0.000 description 3
- 230000003827 upregulation Effects 0.000 description 3
- 230000004580 weight loss Effects 0.000 description 3
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 2
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 2
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 2
- 102100021569 Apoptosis regulator Bcl-2 Human genes 0.000 description 2
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 2
- 206010003694 Atrophy Diseases 0.000 description 2
- 208000032116 Autoimmune Experimental Encephalomyelitis Diseases 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 101100217502 Caenorhabditis elegans lgg-3 gene Proteins 0.000 description 2
- 241000282472 Canis lupus familiaris Species 0.000 description 2
- 241000283707 Capra Species 0.000 description 2
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 2
- 108020004705 Codon Proteins 0.000 description 2
- 208000002881 Colic Diseases 0.000 description 2
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 2
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 2
- 241000702421 Dependoparvovirus Species 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 241000283073 Equus caballus Species 0.000 description 2
- 206010016228 Fasciitis Diseases 0.000 description 2
- 108010087819 Fc receptors Proteins 0.000 description 2
- 102000009109 Fc receptors Human genes 0.000 description 2
- 241000282326 Felis catus Species 0.000 description 2
- 229920001917 Ficoll Polymers 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 2
- 102100026120 IgG receptor FcRn large subunit p51 Human genes 0.000 description 2
- 101710177940 IgG receptor FcRn large subunit p51 Proteins 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical class C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 102000009786 Immunoglobulin Constant Regions Human genes 0.000 description 2
- 108010009817 Immunoglobulin Constant Regions Proteins 0.000 description 2
- 102000013463 Immunoglobulin Light Chains Human genes 0.000 description 2
- 108010065825 Immunoglobulin Light Chains Proteins 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- 102100021593 Interleukin-7 receptor subunit alpha Human genes 0.000 description 2
- 108091092195 Intron Proteins 0.000 description 2
- 206010023126 Jaundice Diseases 0.000 description 2
- 206010023230 Joint stiffness Diseases 0.000 description 2
- 206010023232 Joint swelling Diseases 0.000 description 2
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 2
- 229930182816 L-glutamine Natural products 0.000 description 2
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- 108010000817 Leuprolide Proteins 0.000 description 2
- 208000019693 Lung disease Diseases 0.000 description 2
- 108010021466 Mutant Proteins Proteins 0.000 description 2
- 102000008300 Mutant Proteins Human genes 0.000 description 2
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- 230000004989 O-glycosylation Effects 0.000 description 2
- 206010029888 Obliterative bronchiolitis Diseases 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 206010057041 Poikiloderma Diseases 0.000 description 2
- 229920001213 Polysorbate 20 Polymers 0.000 description 2
- 101150094745 Ptk2b gene Proteins 0.000 description 2
- 206010037868 Rash maculo-papular Diseases 0.000 description 2
- 108020004511 Recombinant DNA Proteins 0.000 description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- 208000034189 Sclerosis Diseases 0.000 description 2
- XZKQVQKUZMAADP-IMJSIDKUSA-N Ser-Ser Chemical compound OC[C@H](N)C(=O)N[C@@H](CO)C(O)=O XZKQVQKUZMAADP-IMJSIDKUSA-N 0.000 description 2
- 108010071390 Serum Albumin Proteins 0.000 description 2
- 102000007562 Serum Albumin Human genes 0.000 description 2
- 108091027967 Small hairpin RNA Proteins 0.000 description 2
- 108020004459 Small interfering RNA Proteins 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 2
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 2
- 206010047700 Vomiting Diseases 0.000 description 2
- 102220532005 WW domain-binding protein 11_K84N_mutation Human genes 0.000 description 2
- 230000001594 aberrant effect Effects 0.000 description 2
- 230000021736 acetylation Effects 0.000 description 2
- 238000006640 acetylation reaction Methods 0.000 description 2
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical compound C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 2
- 150000001412 amines Chemical group 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 210000000628 antibody-producing cell Anatomy 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- 239000000074 antisense oligonucleotide Substances 0.000 description 2
- 238000012230 antisense oligonucleotides Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 229960005070 ascorbic acid Drugs 0.000 description 2
- 235000010323 ascorbic acid Nutrition 0.000 description 2
- 239000011668 ascorbic acid Substances 0.000 description 2
- 229960001230 asparagine Drugs 0.000 description 2
- 235000009582 asparagine Nutrition 0.000 description 2
- 230000037444 atrophy Effects 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229960000686 benzalkonium chloride Drugs 0.000 description 2
- 229960001950 benzethonium chloride Drugs 0.000 description 2
- UREZNYTWGJKWBI-UHFFFAOYSA-M benzethonium chloride Chemical compound [Cl-].C1=CC(C(C)(C)CC(C)(C)C)=CC=C1OCCOCC[N+](C)(C)CC1=CC=CC=C1 UREZNYTWGJKWBI-UHFFFAOYSA-M 0.000 description 2
- 235000019445 benzyl alcohol Nutrition 0.000 description 2
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 2
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 2
- 238000001574 biopsy Methods 0.000 description 2
- HUTDDBSSHVOYJR-UHFFFAOYSA-H bis[(2-oxo-1,3,2$l^{5},4$l^{2}-dioxaphosphaplumbetan-2-yl)oxy]lead Chemical compound [Pb+2].[Pb+2].[Pb+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O HUTDDBSSHVOYJR-UHFFFAOYSA-H 0.000 description 2
- 230000017531 blood circulation Effects 0.000 description 2
- 229940098773 bovine serum albumin Drugs 0.000 description 2
- 201000003848 bronchiolitis obliterans Diseases 0.000 description 2
- 208000023367 bronchiolitis obliterans with obstructive pulmonary disease Diseases 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N butyl alcohol Substances CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 201000011510 cancer Diseases 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 230000011712 cell development Effects 0.000 description 2
- 230000004663 cell proliferation Effects 0.000 description 2
- 239000006285 cell suspension Substances 0.000 description 2
- 230000036755 cellular response Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 2
- 239000003405 delayed action preparation Substances 0.000 description 2
- 210000004443 dendritic cell Anatomy 0.000 description 2
- 229960002086 dextran Drugs 0.000 description 2
- UQLDLKMNUJERMK-UHFFFAOYSA-L di(octadecanoyloxy)lead Chemical compound [Pb+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O UQLDLKMNUJERMK-UHFFFAOYSA-L 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 150000002016 disaccharides Chemical class 0.000 description 2
- 208000035475 disorder Diseases 0.000 description 2
- 230000003828 downregulation Effects 0.000 description 2
- 238000012377 drug delivery Methods 0.000 description 2
- 206010013781 dry mouth Diseases 0.000 description 2
- 238000004520 electroporation Methods 0.000 description 2
- 239000012055 enteric layer Substances 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 230000002327 eosinophilic effect Effects 0.000 description 2
- 210000003527 eukaryotic cell Anatomy 0.000 description 2
- 230000007717 exclusion Effects 0.000 description 2
- 208000012997 experimental autoimmune encephalomyelitis Diseases 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 210000004700 fetal blood Anatomy 0.000 description 2
- 238000001502 gel electrophoresis Methods 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 230000004190 glucose uptake Effects 0.000 description 2
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 229940093915 gynecological organic acid Drugs 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 208000006454 hepatitis Diseases 0.000 description 2
- 231100000283 hepatitis Toxicity 0.000 description 2
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 2
- 208000010726 hind limb paralysis Diseases 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- 229920001477 hydrophilic polymer Polymers 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 2
- 230000005847 immunogenicity Effects 0.000 description 2
- 231100001039 immunological change Toxicity 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 210000001503 joint Anatomy 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- RGLRXNKKBLIBQS-XNHQSDQCSA-N leuprolide acetate Chemical compound CC(O)=O.CCNC(=O)[C@@H]1CCCN1C(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1NC(=O)CC1)CC1=CC=C(O)C=C1 RGLRXNKKBLIBQS-XNHQSDQCSA-N 0.000 description 2
- 201000011486 lichen planus Diseases 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 239000012669 liquid formulation Substances 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 210000003141 lower extremity Anatomy 0.000 description 2
- 210000005210 lymphoid organ Anatomy 0.000 description 2
- 210000002540 macrophage Anatomy 0.000 description 2
- 208000012965 maculopapular rash Diseases 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 210000004962 mammalian cell Anatomy 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 210000004379 membrane Anatomy 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- 229930182817 methionine Natural products 0.000 description 2
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 2
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 description 2
- 229960002216 methylparaben Drugs 0.000 description 2
- 210000000274 microglia Anatomy 0.000 description 2
- 239000004005 microsphere Substances 0.000 description 2
- 235000013336 milk Nutrition 0.000 description 2
- 239000008267 milk Substances 0.000 description 2
- 210000004080 milk Anatomy 0.000 description 2
- 210000005087 mononuclear cell Anatomy 0.000 description 2
- 150000002772 monosaccharides Chemical class 0.000 description 2
- 210000004877 mucosa Anatomy 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 239000002736 nonionic surfactant Substances 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- LXCFILQKKLGQFO-UHFFFAOYSA-N p-hydroxybenzoic acid methyl ester Natural products COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 230000001575 pathological effect Effects 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 238000003752 polymerase chain reaction Methods 0.000 description 2
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 2
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000013641 positive control Substances 0.000 description 2
- 230000002516 postimmunization Effects 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 2
- 239000004405 propyl p-hydroxybenzoate Substances 0.000 description 2
- 229960003415 propylparaben Drugs 0.000 description 2
- 125000006239 protecting group Chemical group 0.000 description 2
- 238000002818 protein evolution Methods 0.000 description 2
- ZCCUUQDIBDJBTK-UHFFFAOYSA-N psoralen Chemical compound C1=C2OC(=O)C=CC2=CC2=C1OC=C2 ZCCUUQDIBDJBTK-UHFFFAOYSA-N 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 230000028527 righting reflex Effects 0.000 description 2
- 102220101655 rs376560419 Human genes 0.000 description 2
- FGDZQCVHDSGLHJ-UHFFFAOYSA-M rubidium chloride Chemical compound [Cl-].[Rb+] FGDZQCVHDSGLHJ-UHFFFAOYSA-M 0.000 description 2
- 238000002741 site-directed mutagenesis Methods 0.000 description 2
- 239000004055 small Interfering RNA Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000008247 solid mixture Substances 0.000 description 2
- 239000003549 soybean oil Substances 0.000 description 2
- 235000012424 soybean oil Nutrition 0.000 description 2
- 102000009076 src-Family Kinases Human genes 0.000 description 2
- 108010087686 src-Family Kinases Proteins 0.000 description 2
- 238000012409 standard PCR amplification Methods 0.000 description 2
- SFVFIFLLYFPGHH-UHFFFAOYSA-M stearalkonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCC[N+](C)(C)CC1=CC=CC=C1 SFVFIFLLYFPGHH-UHFFFAOYSA-M 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 230000002459 sustained effect Effects 0.000 description 2
- 238000013268 sustained release Methods 0.000 description 2
- 239000012730 sustained-release form Substances 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 2
- 229940104230 thymidine Drugs 0.000 description 2
- 210000001541 thymus gland Anatomy 0.000 description 2
- 230000009261 transgenic effect Effects 0.000 description 2
- 238000002054 transplantation Methods 0.000 description 2
- 210000005239 tubule Anatomy 0.000 description 2
- 241001430294 unidentified retrovirus Species 0.000 description 2
- 239000013603 viral vector Substances 0.000 description 2
- 230000008673 vomiting Effects 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 208000016261 weight loss Diseases 0.000 description 2
- 239000000080 wetting agent Substances 0.000 description 2
- XMQUEQJCYRFIQS-YFKPBYRVSA-N (2s)-2-amino-5-ethoxy-5-oxopentanoic acid Chemical compound CCOC(=O)CC[C@H](N)C(O)=O XMQUEQJCYRFIQS-YFKPBYRVSA-N 0.000 description 1
- KYBXNPIASYUWLN-WUCPZUCCSA-N (2s)-5-hydroxypyrrolidine-2-carboxylic acid Chemical compound OC1CC[C@@H](C(O)=O)N1 KYBXNPIASYUWLN-WUCPZUCCSA-N 0.000 description 1
- JLPULHDHAOZNQI-ZTIMHPMXSA-N 1-hexadecanoyl-2-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCC\C=C/C\C=C/CCCCC JLPULHDHAOZNQI-ZTIMHPMXSA-N 0.000 description 1
- NHBKXEKEPDILRR-UHFFFAOYSA-N 2,3-bis(butanoylsulfanyl)propyl butanoate Chemical compound CCCC(=O)OCC(SC(=O)CCC)CSC(=O)CCC NHBKXEKEPDILRR-UHFFFAOYSA-N 0.000 description 1
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 1
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 1
- 125000000979 2-amino-2-oxoethyl group Chemical group [H]C([*])([H])C(=O)N([H])[H] 0.000 description 1
- VXGRJERITKFWPL-UHFFFAOYSA-N 4',5'-Dihydropsoralen Natural products C1=C2OC(=O)C=CC2=CC2=C1OCC2 VXGRJERITKFWPL-UHFFFAOYSA-N 0.000 description 1
- TVZGACDUOSZQKY-LBPRGKRZSA-N 4-aminofolic acid Chemical compound C1=NC2=NC(N)=NC(N)=C2N=C1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 TVZGACDUOSZQKY-LBPRGKRZSA-N 0.000 description 1
- 229940117976 5-hydroxylysine Drugs 0.000 description 1
- 208000035657 Abasia Diseases 0.000 description 1
- 206010067484 Adverse reaction Diseases 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 230000007730 Akt signaling Effects 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 235000019489 Almond oil Nutrition 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 241000710929 Alphavirus Species 0.000 description 1
- 208000000044 Amnesia Diseases 0.000 description 1
- 102000013142 Amylases Human genes 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- 208000019901 Anxiety disease Diseases 0.000 description 1
- OMLWNBVRVJYMBQ-YUMQZZPRSA-N Arg-Arg Chemical compound NC(N)=NCCC[C@H](N)C(=O)N[C@@H](CCCN=C(N)N)C(O)=O OMLWNBVRVJYMBQ-YUMQZZPRSA-N 0.000 description 1
- JSLGXODUIAFWCF-WDSKDSINSA-N Arg-Asn Chemical compound NC(N)=NCCC[C@H](N)C(=O)N[C@@H](CC(N)=O)C(O)=O JSLGXODUIAFWCF-WDSKDSINSA-N 0.000 description 1
- RJUHZPRQRQLCFL-IMJSIDKUSA-N Asn-Asn Chemical compound NC(=O)C[C@H](N)C(=O)N[C@@H](CC(N)=O)C(O)=O RJUHZPRQRQLCFL-IMJSIDKUSA-N 0.000 description 1
- FRYULLIZUDQONW-IMJSIDKUSA-N Asp-Asp Chemical compound OC(=O)C[C@H](N)C(=O)N[C@@H](CC(O)=O)C(O)=O FRYULLIZUDQONW-IMJSIDKUSA-N 0.000 description 1
- 101710192393 Attachment protein G3P Proteins 0.000 description 1
- 241000972773 Aulopiformes Species 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- 108091008875 B cell receptors Proteins 0.000 description 1
- 102000019260 B-Cell Antigen Receptors Human genes 0.000 description 1
- 108010012919 B-Cell Antigen Receptors Proteins 0.000 description 1
- 244000063299 Bacillus subtilis Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 101150017888 Bcl2 gene Proteins 0.000 description 1
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 1
- 201000004569 Blindness Diseases 0.000 description 1
- 229920002799 BoPET Polymers 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 206010067982 Butterfly rash Diseases 0.000 description 1
- 102100031650 C-X-C chemokine receptor type 4 Human genes 0.000 description 1
- 238000011740 C57BL/6 mouse Methods 0.000 description 1
- QCMYYKRYFNMIEC-UHFFFAOYSA-N COP(O)=O Chemical class COP(O)=O QCMYYKRYFNMIEC-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- 101710169873 Capsid protein G8P Proteins 0.000 description 1
- 102000000844 Cell Surface Receptors Human genes 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 206010008479 Chest Pain Diseases 0.000 description 1
- 241000251730 Chondrichthyes Species 0.000 description 1
- 108010077544 Chromatin Proteins 0.000 description 1
- PHEDXBVPIONUQT-UHFFFAOYSA-N Cocarcinogen A1 Natural products CCCCCCCCCCCCCC(=O)OC1C(C)C2(O)C3C=C(C)C(=O)C3(O)CC(CO)=CC2C2C1(OC(C)=O)C2(C)C PHEDXBVPIONUQT-UHFFFAOYSA-N 0.000 description 1
- 108700010070 Codon Usage Proteins 0.000 description 1
- 102000000503 Collagen Type II Human genes 0.000 description 1
- 108010041390 Collagen Type II Proteins 0.000 description 1
- 102000029816 Collagenase Human genes 0.000 description 1
- 108060005980 Collagenase Proteins 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- 208000034656 Contusions Diseases 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 241000699802 Cricetulus griseus Species 0.000 description 1
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 1
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 206010012735 Diarrhoea Diseases 0.000 description 1
- 235000019739 Dicalciumphosphate Nutrition 0.000 description 1
- 208000000059 Dyspnea Diseases 0.000 description 1
- 206010013975 Dyspnoeas Diseases 0.000 description 1
- 102000001301 EGF receptor Human genes 0.000 description 1
- 108060006698 EGF receptor Proteins 0.000 description 1
- 238000012286 ELISA Assay Methods 0.000 description 1
- 102000016942 Elastin Human genes 0.000 description 1
- 108010014258 Elastin Proteins 0.000 description 1
- 101000895909 Elizabethkingia meningoseptica Endo-beta-N-acetylglucosaminidase F1 Proteins 0.000 description 1
- 101000895912 Elizabethkingia meningoseptica Endo-beta-N-acetylglucosaminidase F2 Proteins 0.000 description 1
- 101000895922 Elizabethkingia meningoseptica Endo-beta-N-acetylglucosaminidase F3 Proteins 0.000 description 1
- 206010066919 Epidemic polyarthritis Diseases 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000282324 Felis Species 0.000 description 1
- 241000724791 Filamentous phage Species 0.000 description 1
- 208000003098 Ganglion Cysts Diseases 0.000 description 1
- KOSRFJWDECSPRO-WDSKDSINSA-N Glu-Glu Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(O)=O KOSRFJWDECSPRO-WDSKDSINSA-N 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- JZNWSCPGTDBMEW-UHFFFAOYSA-N Glycerophosphorylethanolamin Natural products NCCOP(O)(=O)OCC(O)CO JZNWSCPGTDBMEW-UHFFFAOYSA-N 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 108700023372 Glycosyltransferases Proteins 0.000 description 1
- 102000051366 Glycosyltransferases Human genes 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 208000031886 HIV Infections Diseases 0.000 description 1
- 208000037357 HIV infectious disease Diseases 0.000 description 1
- 102100031573 Hematopoietic progenitor cell antigen CD34 Human genes 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 101000971171 Homo sapiens Apoptosis regulator Bcl-2 Proteins 0.000 description 1
- 101000922348 Homo sapiens C-X-C chemokine receptor type 4 Proteins 0.000 description 1
- 101100220044 Homo sapiens CD34 gene Proteins 0.000 description 1
- 101000777663 Homo sapiens Hematopoietic progenitor cell antigen CD34 Proteins 0.000 description 1
- 101001078133 Homo sapiens Integrin alpha-2 Proteins 0.000 description 1
- 238000012450 HuMAb Mouse Methods 0.000 description 1
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 1
- 108700005091 Immunoglobulin Genes Proteins 0.000 description 1
- 102000012745 Immunoglobulin Subunits Human genes 0.000 description 1
- 108010079585 Immunoglobulin Subunits Proteins 0.000 description 1
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 1
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 1
- 102100025305 Integrin alpha-2 Human genes 0.000 description 1
- 238000012695 Interfacial polymerization Methods 0.000 description 1
- 108010066719 Interleukin Receptor Common gamma Subunit Proteins 0.000 description 1
- 102000018682 Interleukin Receptor Common gamma Subunit Human genes 0.000 description 1
- 108010002350 Interleukin-2 Proteins 0.000 description 1
- 230000004163 JAK-STAT signaling pathway Effects 0.000 description 1
- 241001138401 Kluyveromyces lactis Species 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 206010067125 Liver injury Diseases 0.000 description 1
- 208000008771 Lymphadenopathy Diseases 0.000 description 1
- NVGBPTNZLWRQSY-UWVGGRQHSA-N Lys-Lys Chemical compound NCCCC[C@H](N)C(=O)N[C@H](C(O)=O)CCCCN NVGBPTNZLWRQSY-UWVGGRQHSA-N 0.000 description 1
- 239000004907 Macro-emulsion Substances 0.000 description 1
- 101710125418 Major capsid protein Proteins 0.000 description 1
- 101710156564 Major tail protein Gp23 Proteins 0.000 description 1
- 208000026139 Memory disease Diseases 0.000 description 1
- 208000034819 Mobility Limitation Diseases 0.000 description 1
- 229930191564 Monensin Natural products 0.000 description 1
- GAOZTHIDHYLHMS-UHFFFAOYSA-N Monensin A Natural products O1C(CC)(C2C(CC(O2)C2C(CC(C)C(O)(CO)O2)C)C)CCC1C(O1)(C)CCC21CC(O)C(C)C(C(C)C(OC)C(C)C(O)=O)O2 GAOZTHIDHYLHMS-UHFFFAOYSA-N 0.000 description 1
- 208000010428 Muscle Weakness Diseases 0.000 description 1
- 206010028372 Muscular weakness Diseases 0.000 description 1
- 239000005041 Mylar™ Substances 0.000 description 1
- OVRNDRQMDRJTHS-CBQIKETKSA-N N-Acetyl-D-Galactosamine Chemical compound CC(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@H](O)[C@@H]1O OVRNDRQMDRJTHS-CBQIKETKSA-N 0.000 description 1
- OVRNDRQMDRJTHS-UHFFFAOYSA-N N-acelyl-D-glucosamine Natural products CC(=O)NC1C(O)OC(CO)C(O)C1O OVRNDRQMDRJTHS-UHFFFAOYSA-N 0.000 description 1
- MBLBDJOUHNCFQT-UHFFFAOYSA-N N-acetyl-D-galactosamine Natural products CC(=O)NC(C=O)C(O)C(O)C(O)CO MBLBDJOUHNCFQT-UHFFFAOYSA-N 0.000 description 1
- OVRNDRQMDRJTHS-RTRLPJTCSA-N N-acetyl-D-glucosamine Chemical compound CC(=O)N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-RTRLPJTCSA-N 0.000 description 1
- MBLBDJOUHNCFQT-LXGUWJNJSA-N N-acetylglucosamine Natural products CC(=O)N[C@@H](C=O)[C@@H](O)[C@H](O)[C@H](O)CO MBLBDJOUHNCFQT-LXGUWJNJSA-N 0.000 description 1
- 206010028813 Nausea Diseases 0.000 description 1
- 108700019961 Neoplasm Genes Proteins 0.000 description 1
- 102000048850 Neoplasm Genes Human genes 0.000 description 1
- 244000061176 Nicotiana tabacum Species 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 1
- 108010038807 Oligopeptides Proteins 0.000 description 1
- 102000015636 Oligopeptides Human genes 0.000 description 1
- 108700026244 Open Reading Frames Proteins 0.000 description 1
- 208000007117 Oral Ulcer Diseases 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 108090000526 Papain Proteins 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 102000007079 Peptide Fragments Human genes 0.000 description 1
- 108010033276 Peptide Fragments Proteins 0.000 description 1
- 102100038551 Peptide-N(4)-(N-acetyl-beta-glucosaminyl)asparagine amidase Human genes 0.000 description 1
- 102000000447 Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase Human genes 0.000 description 1
- 108010055817 Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase Proteins 0.000 description 1
- 108010081690 Pertussis Toxin Proteins 0.000 description 1
- 206010057249 Phagocytosis Diseases 0.000 description 1
- JMCOUWKXLXDERB-WMZOPIPTSA-N Phe-Trp Chemical compound C([C@H](N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(O)=O)C1=CC=CC=C1 JMCOUWKXLXDERB-WMZOPIPTSA-N 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical group OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- 206010035664 Pneumonia Diseases 0.000 description 1
- 206010035742 Pneumonitis Diseases 0.000 description 1
- 241000276498 Pollachius virens Species 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920002535 Polyethylene Glycol 1500 Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920001214 Polysorbate 60 Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 102000006437 Proprotein Convertases Human genes 0.000 description 1
- 108010044159 Proprotein Convertases Proteins 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 108010090931 Proto-Oncogene Proteins c-bcl-2 Proteins 0.000 description 1
- 102000013535 Proto-Oncogene Proteins c-bcl-2 Human genes 0.000 description 1
- 206010037714 Quadriplegia Diseases 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- 208000012322 Raynaud phenomenon Diseases 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 1
- 241000710942 Ross River virus Species 0.000 description 1
- 238000011803 SJL/J (JAX™ mice strain) Methods 0.000 description 1
- 235000019485 Safflower oil Nutrition 0.000 description 1
- 241000710961 Semliki Forest virus Species 0.000 description 1
- 229920001800 Shellac Polymers 0.000 description 1
- 241000710960 Sindbis virus Species 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- 208000021386 Sjogren Syndrome Diseases 0.000 description 1
- 244000258044 Solanum gilo Species 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- 101000895926 Streptomyces plicatus Endo-beta-N-acetylglucosaminidase H Proteins 0.000 description 1
- 108091027544 Subgenomic mRNA Proteins 0.000 description 1
- 208000005400 Synovial Cyst Diseases 0.000 description 1
- 230000006044 T cell activation Effects 0.000 description 1
- 230000006052 T cell proliferation Effects 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical class OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 1
- DSGIVWSDDRDJIO-ZXXMMSQZSA-N Thr-Thr Chemical compound C[C@@H](O)[C@H](N)C(=O)N[C@@H]([C@@H](C)O)C(O)=O DSGIVWSDDRDJIO-ZXXMMSQZSA-N 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 108010034949 Thyroglobulin Proteins 0.000 description 1
- 102000009843 Thyroglobulin Human genes 0.000 description 1
- 206010044565 Tremor Diseases 0.000 description 1
- 101710162629 Trypsin inhibitor Proteins 0.000 description 1
- 229940122618 Trypsin inhibitor Drugs 0.000 description 1
- JAQGKXUEKGKTKX-HOTGVXAUSA-N Tyr-Tyr Chemical compound C([C@H](N)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)C1=CC=C(O)C=C1 JAQGKXUEKGKTKX-HOTGVXAUSA-N 0.000 description 1
- 208000025865 Ulcer Diseases 0.000 description 1
- 101150117115 V gene Proteins 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- 241000710959 Venezuelan equine encephalitis virus Species 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 208000021017 Weight Gain Diseases 0.000 description 1
- 229940081735 acetylcellulose Drugs 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 208000024340 acute graft versus host disease Diseases 0.000 description 1
- 125000002015 acyclic group Chemical group 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000006838 adverse reaction Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 230000009824 affinity maturation Effects 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 238000012867 alanine scanning Methods 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 239000008168 almond oil Substances 0.000 description 1
- 108010082017 alpha chain interleukin-7 receptor Proteins 0.000 description 1
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- KOSRFJWDECSPRO-UHFFFAOYSA-N alpha-L-glutamyl-L-glutamic acid Natural products OC(=O)CCC(N)C(=O)NC(CCC(O)=O)C(O)=O KOSRFJWDECSPRO-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 230000001668 ameliorated effect Effects 0.000 description 1
- 229940059260 amidate Drugs 0.000 description 1
- 229960003896 aminopterin Drugs 0.000 description 1
- 238000012870 ammonium sulfate precipitation Methods 0.000 description 1
- 235000019418 amylase Nutrition 0.000 description 1
- 229940025131 amylases Drugs 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 230000002924 anti-infective effect Effects 0.000 description 1
- 230000009830 antibody antigen interaction Effects 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 230000036506 anxiety Effects 0.000 description 1
- 208000002399 aphthous stomatitis Diseases 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 1
- 108010068380 arginylarginine Proteins 0.000 description 1
- 206010003246 arthritis Diseases 0.000 description 1
- 125000000613 asparagine group Chemical group N[C@@H](CC(N)=O)C(=O)* 0.000 description 1
- 108010040443 aspartyl-aspartic acid Proteins 0.000 description 1
- OHDRQQURAXLVGJ-HLVWOLMTSA-N azane;(2e)-3-ethyl-2-[(e)-(3-ethyl-6-sulfo-1,3-benzothiazol-2-ylidene)hydrazinylidene]-1,3-benzothiazole-6-sulfonic acid Chemical compound [NH4+].[NH4+].S/1C2=CC(S([O-])(=O)=O)=CC=C2N(CC)C\1=N/N=C1/SC2=CC(S([O-])(=O)=O)=CC=C2N1CC OHDRQQURAXLVGJ-HLVWOLMTSA-N 0.000 description 1
- OHDRQQURAXLVGJ-AXMZSLBLSA-N azane;(2z)-3-ethyl-2-[(z)-(3-ethyl-6-sulfo-1,3-benzothiazol-2-ylidene)hydrazinylidene]-1,3-benzothiazole-6-sulfonic acid Chemical compound [NH4+].[NH4+].S/1C2=CC(S([O-])(=O)=O)=CC=C2N(CC)C\1=N\N=C1/SC2=CC(S([O-])(=O)=O)=CC=C2N1CC OHDRQQURAXLVGJ-AXMZSLBLSA-N 0.000 description 1
- WZSDNEJJUSYNSG-UHFFFAOYSA-N azocan-1-yl-(3,4,5-trimethoxyphenyl)methanone Chemical compound COC1=C(OC)C(OC)=CC(C(=O)N2CCCCCCC2)=C1 WZSDNEJJUSYNSG-UHFFFAOYSA-N 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 208000013404 behavioral symptom Diseases 0.000 description 1
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 230000002146 bilateral effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 238000006664 bond formation reaction Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 150000004657 carbamic acid derivatives Chemical class 0.000 description 1
- 125000002837 carbocyclic group Chemical group 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 230000007910 cell fusion Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000009134 cell regulation Effects 0.000 description 1
- 230000006364 cellular survival Effects 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- 230000005591 charge neutralization Effects 0.000 description 1
- 230000009920 chelation Effects 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 210000003483 chromatin Anatomy 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 239000013611 chromosomal DNA Substances 0.000 description 1
- 208000017760 chronic graft versus host disease Diseases 0.000 description 1
- 230000004087 circulation Effects 0.000 description 1
- 239000013599 cloning vector Substances 0.000 description 1
- 238000005354 coacervation Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229960002424 collagenase Drugs 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 238000012875 competitive assay Methods 0.000 description 1
- 230000004540 complement-dependent cytotoxicity Effects 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 210000004351 coronary vessel Anatomy 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000012866 crystallographic experiment Methods 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 208000004921 cutaneous lupus erythematosus Diseases 0.000 description 1
- 125000000392 cycloalkenyl group Chemical group 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 229960004397 cyclophosphamide Drugs 0.000 description 1
- 150000001945 cysteines Chemical class 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 230000006240 deamidation Effects 0.000 description 1
- 230000003808 decrease of hair loss Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- YSMODUONRAFBET-UHFFFAOYSA-N delta-DL-hydroxylysine Natural products NCC(O)CCC(N)C(O)=O YSMODUONRAFBET-UHFFFAOYSA-N 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 230000000779 depleting effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 229960000633 dextran sulfate Drugs 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 230000001904 diabetogenic effect Effects 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- NEFBYIFKOOEVPA-UHFFFAOYSA-K dicalcium phosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])([O-])=O NEFBYIFKOOEVPA-UHFFFAOYSA-K 0.000 description 1
- 229910000390 dicalcium phosphate Inorganic materials 0.000 description 1
- 229940038472 dicalcium phosphate Drugs 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 230000009266 disease activity Effects 0.000 description 1
- 238000002224 dissection Methods 0.000 description 1
- 125000002228 disulfide group Chemical group 0.000 description 1
- NAGJZTKCGNOGPW-UHFFFAOYSA-N dithiophosphoric acid Chemical class OP(O)(S)=S NAGJZTKCGNOGPW-UHFFFAOYSA-N 0.000 description 1
- 210000001198 duodenum Anatomy 0.000 description 1
- 229920002549 elastin Polymers 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 239000012149 elution buffer Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000008393 encapsulating agent Substances 0.000 description 1
- 230000012202 endocytosis Effects 0.000 description 1
- 238000001839 endoscopy Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000002702 enteric coating Substances 0.000 description 1
- YSMODUONRAFBET-UHNVWZDZSA-N erythro-5-hydroxy-L-lysine Chemical compound NC[C@H](O)CC[C@H](N)C(O)=O YSMODUONRAFBET-UHNVWZDZSA-N 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- NPUKDXXFDDZOKR-LLVKDONJSA-N etomidate Chemical compound CCOC(=O)C1=CN=CN1[C@H](C)C1=CC=CC=C1 NPUKDXXFDDZOKR-LLVKDONJSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 210000003499 exocrine gland Anatomy 0.000 description 1
- 210000003414 extremity Anatomy 0.000 description 1
- 206010016256 fatigue Diseases 0.000 description 1
- 210000003754 fetus Anatomy 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000009459 flexible packaging Methods 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 210000002683 foot Anatomy 0.000 description 1
- 210000003194 forelimb Anatomy 0.000 description 1
- 239000012737 fresh medium Substances 0.000 description 1
- 230000005714 functional activity Effects 0.000 description 1
- 238000002825 functional assay Methods 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229960002989 glutamic acid Drugs 0.000 description 1
- 108010055341 glutamyl-glutamic acid Proteins 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 230000003394 haemopoietic effect Effects 0.000 description 1
- 210000002837 heart atrium Anatomy 0.000 description 1
- 231100000234 hepatic damage Toxicity 0.000 description 1
- 238000010231 histologic analysis Methods 0.000 description 1
- 230000003284 homeostatic effect Effects 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 229940116978 human epidermal growth factor Drugs 0.000 description 1
- 208000033519 human immunodeficiency virus infectious disease Diseases 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 229920001600 hydrophobic polymer Polymers 0.000 description 1
- 125000002349 hydroxyamino group Chemical group [H]ON([H])[*] 0.000 description 1
- 229920003063 hydroxymethyl cellulose Polymers 0.000 description 1
- 229940031574 hydroxymethyl cellulose Drugs 0.000 description 1
- 230000006951 hyperphosphorylation Effects 0.000 description 1
- 230000002519 immonomodulatory effect Effects 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 238000010185 immunofluorescence analysis Methods 0.000 description 1
- 238000003125 immunofluorescent labeling Methods 0.000 description 1
- 238000001114 immunoprecipitation Methods 0.000 description 1
- 230000002637 immunotoxin Effects 0.000 description 1
- 239000002596 immunotoxin Substances 0.000 description 1
- 231100000608 immunotoxin Toxicity 0.000 description 1
- 229940051026 immunotoxin Drugs 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000012678 infectious agent Substances 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000012482 interaction analysis Methods 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 230000008863 intramolecular interaction Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007919 intrasynovial administration Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- PGHMRUGBZOYCAA-UHFFFAOYSA-N ionomycin Natural products O1C(CC(O)C(C)C(O)C(C)C=CCC(C)CC(C)C(O)=CC(=O)C(C)CC(C)CC(CCC(O)=O)C)CCC1(C)C1OC(C)(C(C)O)CC1 PGHMRUGBZOYCAA-UHFFFAOYSA-N 0.000 description 1
- PGHMRUGBZOYCAA-ADZNBVRBSA-N ionomycin Chemical compound O1[C@H](C[C@H](O)[C@H](C)[C@H](O)[C@H](C)/C=C/C[C@@H](C)C[C@@H](C)C(/O)=C/C(=O)[C@@H](C)C[C@@H](C)C[C@@H](CCC(O)=O)C)CC[C@@]1(C)[C@@H]1O[C@](C)([C@@H](C)O)CC1 PGHMRUGBZOYCAA-ADZNBVRBSA-N 0.000 description 1
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 108010045069 keyhole-limpet hemocyanin Proteins 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 229960004338 leuprorelin Drugs 0.000 description 1
- 239000002960 lipid emulsion Substances 0.000 description 1
- 230000029226 lipidation Effects 0.000 description 1
- 238000001638 lipofection Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000008818 liver damage Effects 0.000 description 1
- 230000003908 liver function Effects 0.000 description 1
- 229940087857 lupron Drugs 0.000 description 1
- 208000018555 lymphatic system disease Diseases 0.000 description 1
- 210000003563 lymphoid tissue Anatomy 0.000 description 1
- 239000008176 lyophilized powder Substances 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 108010054155 lysyllysine Proteins 0.000 description 1
- 150000002671 lyxoses Chemical class 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 230000008774 maternal effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 230000006984 memory degeneration Effects 0.000 description 1
- 208000023060 memory loss Diseases 0.000 description 1
- 229940071648 metered dose inhaler Drugs 0.000 description 1
- DFTAZNAEBRBBKP-UHFFFAOYSA-N methyl 4-sulfanylbutanimidate Chemical compound COC(=N)CCCS DFTAZNAEBRBBKP-UHFFFAOYSA-N 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 229960005358 monensin Drugs 0.000 description 1
- GAOZTHIDHYLHMS-KEOBGNEYSA-N monensin A Chemical compound C([C@@](O1)(C)[C@H]2CC[C@@](O2)(CC)[C@H]2[C@H](C[C@@H](O2)[C@@H]2[C@H](C[C@@H](C)[C@](O)(CO)O2)C)C)C[C@@]21C[C@H](O)[C@@H](C)[C@@H]([C@@H](C)[C@@H](OC)[C@H](C)C(O)=O)O2 GAOZTHIDHYLHMS-KEOBGNEYSA-N 0.000 description 1
- 208000018962 mouth sore Diseases 0.000 description 1
- 210000004165 myocardium Anatomy 0.000 description 1
- 239000002088 nanocapsule Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 230000008693 nausea Effects 0.000 description 1
- 230000000269 nucleophilic effect Effects 0.000 description 1
- 239000002777 nucleoside Substances 0.000 description 1
- 150000003833 nucleoside derivatives Chemical class 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 238000013116 obese mouse model Methods 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 239000002751 oligonucleotide probe Substances 0.000 description 1
- 238000002515 oligonucleotide synthesis Methods 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 238000006213 oxygenation reaction Methods 0.000 description 1
- 229940055729 papain Drugs 0.000 description 1
- 235000019834 papain Nutrition 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 208000010713 partial hind limb paralysis Diseases 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 108040002068 peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase activity proteins Proteins 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 210000003516 pericardium Anatomy 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 210000004303 peritoneum Anatomy 0.000 description 1
- 230000008782 phagocytosis Effects 0.000 description 1
- 239000008024 pharmaceutical diluent Substances 0.000 description 1
- 108010083476 phenylalanyltryptophan Proteins 0.000 description 1
- PHEDXBVPIONUQT-RGYGYFBISA-N phorbol 13-acetate 12-myristate Chemical compound C([C@]1(O)C(=O)C(C)=C[C@H]1[C@@]1(O)[C@H](C)[C@H]2OC(=O)CCCCCCCCCCCCC)C(CO)=C[C@H]1[C@H]1[C@]2(OC(C)=O)C1(C)C PHEDXBVPIONUQT-RGYGYFBISA-N 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 1
- 150000008104 phosphatidylethanolamines Chemical class 0.000 description 1
- 150000004713 phosphodiesters Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000729 poly(L-lysine) polymer Polymers 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920002338 polyhydroxyethylmethacrylate Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000004853 protein function Effects 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- 201000001474 proteinuria Diseases 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- NGVDGCNFYWLIFO-UHFFFAOYSA-N pyridoxal 5'-phosphate Chemical compound CC1=NC=C(COP(O)(O)=O)C(C=O)=C1O NGVDGCNFYWLIFO-UHFFFAOYSA-N 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000003127 radioimmunoassay Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 238000002702 ribosome display Methods 0.000 description 1
- 229940102127 rubidium chloride Drugs 0.000 description 1
- 235000005713 safflower oil Nutrition 0.000 description 1
- 239000003813 safflower oil Substances 0.000 description 1
- 235000019515 salmon Nutrition 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 238000002821 scintillation proximity assay Methods 0.000 description 1
- 238000007423 screening assay Methods 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 150000003341 sedoheptuloses Chemical class 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000012883 sequential measurement Methods 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 229940113147 shellac Drugs 0.000 description 1
- 239000004208 shellac Substances 0.000 description 1
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 1
- 235000013874 shellac Nutrition 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 208000013220 shortness of breath Diseases 0.000 description 1
- 239000013605 shuttle vector Substances 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 230000009131 signaling function Effects 0.000 description 1
- 238000007390 skin biopsy Methods 0.000 description 1
- 230000037380 skin damage Effects 0.000 description 1
- 206010040882 skin lesion Diseases 0.000 description 1
- 231100000444 skin lesion Toxicity 0.000 description 1
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 239000012064 sodium phosphate buffer Substances 0.000 description 1
- 229940048086 sodium pyrophosphate Drugs 0.000 description 1
- RPENMORRBUTCPR-UHFFFAOYSA-M sodium;1-hydroxy-2,5-dioxopyrrolidine-3-sulfonate Chemical compound [Na+].ON1C(=O)CC(S([O-])(=O)=O)C1=O RPENMORRBUTCPR-UHFFFAOYSA-M 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 210000001082 somatic cell Anatomy 0.000 description 1
- 230000000392 somatic effect Effects 0.000 description 1
- 229940083466 soybean lecithin Drugs 0.000 description 1
- 239000008347 soybean phospholipid Substances 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 210000004989 spleen cell Anatomy 0.000 description 1
- 210000004988 splenocyte Anatomy 0.000 description 1
- 238000013223 sprague-dawley female rat Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000012289 standard assay Methods 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 238000011146 sterile filtration Methods 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 229940014800 succinic anhydride Drugs 0.000 description 1
- 239000001797 sucrose acetate isobutyrate Substances 0.000 description 1
- 235000010983 sucrose acetate isobutyrate Nutrition 0.000 description 1
- UVGUPMLLGBCFEJ-SWTLDUCYSA-N sucrose acetate isobutyrate Chemical compound CC(C)C(=O)O[C@H]1[C@H](OC(=O)C(C)C)[C@@H](COC(=O)C(C)C)O[C@@]1(COC(C)=O)O[C@@H]1[C@H](OC(=O)C(C)C)[C@@H](OC(=O)C(C)C)[C@H](OC(=O)C(C)C)[C@@H](COC(C)=O)O1 UVGUPMLLGBCFEJ-SWTLDUCYSA-N 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 230000009747 swallowing Effects 0.000 description 1
- 230000002889 sympathetic effect Effects 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000007910 systemic administration Methods 0.000 description 1
- 230000009392 systemic autoimmunity Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 1
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 1
- VUYXVWGKCKTUMF-UHFFFAOYSA-N tetratriacontaethylene glycol monomethyl ether Chemical compound COCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCO VUYXVWGKCKTUMF-UHFFFAOYSA-N 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 125000000341 threoninyl group Chemical group [H]OC([H])(C([H])([H])[H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 229960002175 thyroglobulin Drugs 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 238000003146 transient transfection Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000014621 translational initiation Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 239000002753 trypsin inhibitor Substances 0.000 description 1
- 208000035408 type 1 diabetes mellitus 1 Diseases 0.000 description 1
- 108010003137 tyrosyltyrosine Proteins 0.000 description 1
- 231100000397 ulcer Toxicity 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 210000000689 upper leg Anatomy 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 230000004584 weight gain Effects 0.000 description 1
- 235000019786 weight gain Nutrition 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 150000003742 xyloses Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2866—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for cytokines, lymphokines, interferons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/04—Drugs for skeletal disorders for non-specific disorders of the connective tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/06—Immunosuppressants, e.g. drugs for graft rejection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/10—Immunoglobulins specific features characterized by their source of isolation or production
- C07K2317/14—Specific host cells or culture conditions, e.g. components, pH or temperature
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/30—Immunoglobulins specific features characterized by aspects of specificity or valency
- C07K2317/34—Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/51—Complete heavy chain or Fd fragment, i.e. VH + CH1
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/515—Complete light chain, i.e. VL + CL
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/52—Constant or Fc region; Isotype
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/56—Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/56—Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
- C07K2317/565—Complementarity determining region [CDR]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/76—Antagonist effect on antigen, e.g. neutralization or inhibition of binding
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/90—Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
- C07K2317/92—Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
Definitions
- the present invention relates to antibodies, e.g., full length antibodies or antigen- binding portions thereof, that antagonize the activity of interleukin-7 receptor (IL-7R), including its interaction with IL-7.
- the invention further relates to compositions comprising an IL-7R antagonist, such as an antagonist IL-7R antibody, and methods of using the IL-7R antagonist as a medicament.
- the IL-7R antagonist can be used in the prevention and/or treatment of type 2 diabetes, graft-versus-host disease (GVHD), and autoimmune disorders, including type 1 diabetes, multiple sclerosis, rheumatoid arthritis, and lupus.
- the IL-7R complex is a heterodimeric receptor made up of the IL-7R alpha chain (IL-7Ra) and the common gamma chain (yc) (Mazzucchelli et al., Nat Rev Immunol., 2007, 7:144-54).
- IL-7R is bound by interleukin-7 (IL-7), a cytokine essential to the development and homeostatic maintenance of T and B lymphocytes (Fry et al., J Immunol., 2005, 174:6571-6). Binding of IL-7 to IL-7R activates multiple pathways that regulate lymphocyte survival, glucose uptake, proliferation and differentiation.
- IL-7 interleukin-7
- IL-7R is expressed on both dendritic cells and monocytes and appears to act in multiple hematopoietic lineages (Reche PA, et al., J Immunol., 2001 , 167:336-43). In dendritic cells, IL-7R plays an immunomodulatory role, whereas lymphocytes require IL-7R signaling for survival, proliferation and differentiation. Both the Jak-Stat and PI3K-Akt pathways are activated by the binding of IL-7 to IL-7R (Jian et al., Cytokine Growth Factor Rev., 2005, 16:513-533). These pathways involve signaling crosstalk, shared interaction domains, feedback loops, integrated gene regulation, mulitimerization and ligand competition.
- IL-7 signaling includes Bcl2 and Pyk2, contribute to cellular survival.
- Other targets such as PI3 kinase, src family kinases (lck and fyn) and STAT5, contribute to cellular proliferation.
- the transcription factor STAT5 contributes to activation of multiple different downstream genes in B and T cells and may contribute to VDJ recombination through alteration of chromatin structure.
- the cell survival and cell proliferation signals induced by IL-7 combine to induce normal T cell development. Details of the complex I L-7 signaling network and its interaction with other signaling cascades in cells of the immune system have not yet been fully elucidated.
- Antagonist antibodies that selectively interact with and inhibit IL-7R function are provided. It is demonstrated for the first time that certain antagonist IL-7R antibodies are effective in vivo to treat type 1 diabetes, type 2 diabetes, rheumatoid arthritis, GVHD and lupus.
- antagonist antibodies that selectively interact with and inhibit IL-7R function are provided.
- the antibody specifically binds to IL-7R and comprises an antigen binding region that competes with a monoclonal antibody selected from the group consisting of C1 GM, C2M3, P3A9, P4B3, P2D2, P2E1 1 , HAL403a and HAL403b, for binding to IL-7R.
- the antibody comprises a polypeptide having the amino acid sequence shown in SEQ ID NO: 42 or SEQ ID NO: 43.
- the antibody specifically binds to IL-7R and recognizes an epitope which overlaps an epitope of IL-7R that is recognized by a monoclonal antibody selected from the group consisting of C1 GM, C2M3, P3A9, P4B3, P2D2, P2E1 1 , HAL403a and HAL403b.
- the antibody the antibody binds to an epitope comprising residues I82, K84, K100, T105, and Y192 of interleukin-7 receptor alpha (I L-7Ra).
- the epitope further comprises one or more additional residues selected from the group consisting of residues D190, H191 , and K194 of human I L-7Ra.
- the IL-7R is human IL-7R.
- the antibody specifically binds to interleukin-7 receptor alpha (IL-7Ra) and comprises a heavy chain variable region (VH) complementary determining region one (CDR1 ) having the amino acid sequence X-
- the framework region between VH CDR2 and VH CDR3 comprises the amino acid sequence alanine- arginine, wherein the arginine is adjacent to the first amino acid residue of VH CDR3. In some embodiments, the framework region between VH CDR2 and VH CDR3 comprises the amino acid sequence cysteine-alanine-arginine, wherein the arginine is adjacent to the first amino acid residue of VH CDR3.
- the antibody comprises a heavy chain CDR contact region one having the amino acid sequence X-
- the antibody specifically binds to IL-7Ra and comprises a heavy chain variable region (VH) complementary determining region one (CDR1 ) having the amino acid sequence DSVMH (SEQ ID NO: 19), GFTFDDS (SEQ ID NO: 46), or GFTFDDSVMH (SEQ ID NO: 47), a VH CDR2 having the amino acid sequence LVGWDGFFTYYADSVKG (SEQ ID NO: 23) or GWDGFF (SEQ ID NO: 48), and a VH CDR3 having the amino acid sequence QGDYMGNN (SEQ ID NO: 49), or a variant thereof having one or more conservative amino acid substitutions in CDR1 , CDR2, and/or CDR3.
- VH heavy chain variable region
- the antibody comprises a light chain variable region (VL) CDR1 having the amino acid sequence TRSSGSIDSSYVQ (SEQ ID NO: 29), a VL CDR2 having the amino acid sequence EDDQRPS (SEQ ID NO: 31 ), and/or VL CDR3 having the amino acid sequence QSYDFHHLV (SEQ ID NO: 36), or a variant thereof having one or more conservative amino acid substitutions in CDR1 , CDR2, and/or CDR3.
- VL light chain variable region
- the antibody further comprises a VH CDR1 having the amino acid sequence shown in SEQ ID NO: 19, 46 or 47, a VH CDR2 having the amino acid sequence shown in SEQ ID NO: 23, or 48, and a VH CDR3 having the amino acid sequence shown in SEQ ID NO: 49, or a variant thereof having one or more conservative amino acid substitutions in CDR1 , CDR2, and/or CDR3.
- the antibody specifically binds to IL-7Ra and comprises a heavy chain variable region (VH) complementary determining region one (CDR1 ) having the amino acid sequence shown in SEQ ID NO: 19, 46 or 47, a VH CDR2 having the amino acid sequence shown in SEQ I D NO: 23, or 48, and a VH CDR3 having the amino acid sequence shown in SEQ ID NO: 49, a light chain variable region (VL) CDR1 having the amino acid sequence shown in SEQ ID NO: 29, a VL CDR2 having the amino acid sequence shown in SEQ ID NO: 31 , and a VL CDR3 having the amino acid sequence shown in SEQ ID NO: 36.
- VH heavy chain variable region
- CDR1 complementary determining region one
- the VH region comprises the amino acid sequence EVQLVESGGGLVKPGGSLRLSCAASGFTFDDSVMHWVRQAPGKGLEWVSLVGWDG FFTYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARQGDYMGNNWGQGTL VTVSS (SEQ ID NO: 40) and the VL region comprises the amino acid sequence NFMLTQPHSVSESPGKTVTISCTRSSGSIDSSYVQWYQQRPGSSPTTVIYEDDQRPSG VPDRFSGSIDSSSNSASLTISGLKTEDEADYYCQSYDFHHLVFGGGTKLTVL (SEQ ID NO: 41 ).
- the antibody comprises a light chain having the amino acid sequence NFMLTQPHSVSESPGKTVTISCTRSSGSIDSSYVQWYQQRPGSSPTTVIYEDDQRPSG VPDRFSGSIDSSSNSASLTISGLKTEDEADYYCQSYDFHHLVFGGGTKLTVLQPKAAPS VTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKY AASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS (SEQ ID NO: 43) and a heavy chain having the amino acid sequence
- the antibody can be a human antibody, a humanized antibody, or a chimeric antibody. In some embodiments, the antibody is a monoclonal antibody.
- the antibody comprises a constant region. In some embodiments, the antibody is of the human lgG1 or lgG2Aa subclass. In some embodiments, the antibody comprises a glycosylated constant region. In some embodiments, the antibody comprises a constant region having increased binding affinity to a human Fc gamma receptor.
- a pharmaceutical composition comprising an antibody that selectively interacts with and inhibits I L-7R function is provided.
- a cell line that recombinantly produces an antibody that selectively interacts with and inhibits IL-7R function is provided.
- nucleic acid encoding an antibody that selectively interacts with and inhibits IL-7R function is provided.
- methods of lowering blood glucose levels in an individual comprise administering a therapeutically effective amount of an antagonist IL-7R antibody to an individual in need of such treatment, thereby lowering blood glucose levels.
- methods of improving glucose tolerance in an individual comprise administering a therapeutically effective amount of an antagonist IL-7R antibody to an individual in need of such treatment, thereby improving glucose tolerance.
- methods of preventing or treating type 1 diabetes in an individual comprise administering a therapeutically effective amount of an antagonist IL-7R antibody to an individual in need of such treatment, thereby preventing or treating one or more symptoms of type 1 diabetes.
- methods of preventing or treating type 2 diabetes in an individual comprise administering a therapeutically effective amount of an IL-7R antagonist to an individual in need of such treatment, thereby preventing or treating one or more symptoms of type 2 diabetes.
- the I L-7R antagonist is an antagonist IL-7R antibody.
- methods of preventing or treating rheumatoid arthritis in an individual comprise administering a therapeutically effective amount of an antagonist IL-7R antibody to an individual in need of such treatment, thereby preventing or treating one or more symptoms of rheumatoid arthritis.
- methods of preventing or treating graft-versus-host disease (GVHD) in an individual comprise administering a therapeutically effective amount of an antagonist IL-7R antibody to an individual in need of such treatment, thereby preventing or treating one or more symptoms of GVHD.
- GVHD graft-versus-host disease
- the GVHD is chronic GVHD or acute GVHD.
- methods of preventing or treating lupus in an individual comprise administering a therapeutically effective amount of an antagonist IL-7R antibody to an individual in need of such treatment, thereby preventing or treating one or more symptoms of lupus.
- the lupus is cutaneous lupus erythematosus, systemic lupus erythematosus, drug-induced erythematosus or neonatal lupus.
- methods of preventing or treating multiple sclerosis in an individual comprise administering a therapeutically effective amount of an antagonist IL-7R antibody to an individual in need of such treatment, thereby preventing or treating one or more symptoms of multiple sclerosis and reducing and/or depleting the naive and/or activated T cell populations in the individual.
- the reduced or depleted T cell populations in the individual comprise T H 1 and/or T H 17 cells.
- administration of the antagonist IL-7R antibody does not result in expansion of T H 17 cell population in the individual.
- the antibody can be administered parenterally.
- the individual is a human.
- Figure 1 depicts the dose-dependent effect of antagonist IL-7R monoclonal antibodies P2D2, P2E1 1 and HAL403a on IL-7-mediated STAT5 phosphorylation in human peripheral blood mononuclear cell (PBMCs).
- the x-axis indicates the percentage of CD4+ cells expressing phospho-STAT5 (p-STAT).
- Figure 2 depicts the effect of antagonist IL-7R monoclonal antibody 28G9 on development of diabetes in non-obese diabetic (NOD) mice.
- Figure 3 depicts the effect of antagonist IL-7R monoclonal antibody 28G9 on (A) blood glucose levels (mg/dL) and (B) body weight (g) in NOD mice.
- Figure 4 depicts the effect of antagonist IL-7R monoclonal antibody 28G9 on (A) naive CD8+ T cell and (B) memory CD8+ T cell populations in NOD mice.
- the total CD8+ T cell population was set as 100%.
- Figure 5 depicts the effect of antagonist IL-7R monoclonal antibody 28G9 on naive CD4+ T cell population in NOD mice.
- the total CD4+ T cell population was set as 100%.
- Figure 6 depicts the effect of antagonist IL-7R monoclonal antibodies 28B6 and 28G9 on clinical severity of EAE animals.
- Clinical severity of EAE was assessed daily with a 0 to 5 point scoring system: 0, normal; 1 , flaccid tail; 2, partial hind-limb paralysis; 3, total hind-limb paralysis; 4, quadriplegia; 5, moribund state or dead.
- Figure 7 depicts the dose-dependent effect of antagonist IL-7R monoclonal antibody 28G9 on clinical severity of EAE animals.
- Figure 8 depicts the effect of antagonist IL-7R monoclonal antibody 28G9 on clinical severity of EAE animals.
- Figure 9 depicts the effect of antagonist IL-7R monoclonal antibody 28G9 in animals with established EAE.
- Figure 10 depicts the effect of antagonist I L-7R monoclonal antibody 28G9 at lower dose in animals with established EAE.
- Figure 1 1 depicts the effect of antagonist IL-7R monoclonal antibodies 28G9 and 28B6 on (A) CD4 T cell and (B) CD8 T cell populations from bone marrow (BM), spleen, blood and lymph nodes (LNs) of EAE animals.
- BM bone marrow
- LNs lymph nodes
- the total lymphocyte population was set as 100%.
- Figures 12A-C depict the effect of antagonist IL-7R monoclonal antibody 28G9 on (A) naive T cell, (B) memory T cell, and (C) activated T cell populations from bone marrow, spleen, blood and lymph nodes of EAE animals.
- the CD8+ T cell population was set as 100%.
- Figure 13 depicts the effect of antagonist IL-7R monoclonal antibody 28G9 on T eff cell (left graph) and T reg cell (right graph) populations from bone marrow, spleen, blood and lymph nodes of EAE animals.
- the CD4+ T cell population was set as 100%.
- * indicates P ⁇ 0.05 as compared to control.
- Figure 14 depicts the effect of antagonist IL-7R monoclonal antibody 28G9 on blood glucose levels (mg/dL) in high fat diet-induced obesity (DIO) mice.
- Figure 15 depicts the effect of antagonist IL-7R monoclonal antibody 28G9 on glucose intolerance in high fat diet-induced obesity (DIO) mice.
- IL-7R antagonists e.g., antagonist IL-7R antibodies
- MS multiple sclerosis
- rheumatoid arthritis type 1 diabetes, and lupus.
- an “antibody” is an immunoglobulin molecule capable of specific binding to a target, such as a carbohydrate, polynucleotide, lipid, polypeptide, etc., through at least one antigen recognition site, located in the variable region of the immunoglobulin molecule.
- a target such as a carbohydrate, polynucleotide, lipid, polypeptide, etc.
- the term encompasses not only intact polyclonal or monoclonal antibodies, but also fragments thereof (such as Fab, Fab', F(ab')2, Fv), single chain (ScFv) and domain antibodies (including, for example, shark and camelid antibodies), and fusion proteins comprising an antibody, and any other modified configuration of the immunoglobulin molecule that comprises an antigen recognition site.
- An antibody includes an antibody of any class, such as IgG, IgA, or IgM (or sub-class thereof), and the antibody need not be of any particular class.
- immunoglobulins can be assigned to different classes. There are five major classes of immunoglobulins: IgA, IgD, IgE, IgG, and IgM, and several of these may be further divided into subclasses (isotypes), e.g., lgG1 , lgG2, lgG3, lgG4, lgA1 and lgA2.
- the heavy-chain constant regions that correspond to the different classes of immunoglobulins are called alpha, delta, epsilon, gamma, and mu, respectively.
- the subunit structures and three-dimensional configurations of different classes of immunoglobulins are well known.
- “monoclonal antibody” refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally-occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic site.
- each monoclonal antibody is directed against a single determinant on the antigen.
- the modifier "monoclonal” indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method.
- the monoclonal antibodies to be used in accordance with the present invention may be made by the hybridoma method first described by Kohler and Milstein, 1975, Nature 256:495, or may be made by recombinant DNA methods such as described in U.S. Pat. No. 4,816,567.
- the monoclonal antibodies may also be isolated from phage libraries generated using the techniques described in McCafferty et al., 1990, Nature 348:552-554, for example.
- humanized antibody refers to forms of non-human (e.g. murine) antibodies that are chimeric immunoglobulins, immunoglobulin chains, or fragments thereof (such as Fv, Fab, Fab', F(ab')2 or other antigen-binding subsequences of antibodies) that contain minimal sequence derived from non-human immunoglobulin.
- humanized antibodies are human immunoglobulins (recipient antibody) in which residues from a complementary determining region (CDR) of the recipient are replaced by residues from a CDR of a non-human species (donor antibody) such as mouse, rat, or rabbit having the desired specificity, affinity, and capacity.
- CDR complementary determining region
- Fv framework region (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues.
- the humanized antibody may comprise residues that are found neither in the recipient antibody nor in the imported CDR or framework sequences, but are included to further refine and optimize antibody performance.
- the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the FR regions are those of a human immunoglobulin consensus sequence.
- the humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region or domain (Fc), typically that of a human immunoglobulin.
- CDR L1 , CDR L2, CDR L3, CDR H1 , CDR H2, or CDR H3 are altered with respect to the original antibody, which are also termed one or more CDRs "derived from" one or more CDRs from the original antibody.
- human antibody means an antibody having an amino acid sequence corresponding to that of an antibody produced by a human and/or which has been made using any of the techniques for making human antibodies known to those skilled in the art or disclosed herein.
- This definition of a human antibody includes antibodies comprising at least one human heavy chain polypeptide or at least one human light chain polypeptide.
- One such example is an antibody comprising murine light chain and human heavy chain polypeptides.
- Human antibodies can be produced using various techniques known in the art. In one embodiment, the human antibody is selected from a phage library, where that phage library expresses human antibodies (Vaughan et al., 1996, Nature Biotechnology, 14:309-314; Sheets et al., 1998, Proc. Natl.
- Human antibodies can also be made by immunization of animals into which human immunoglobulin loci have been transgenically introduced in place of the endogenous loci, e.g., mice in which the endogenous immunoglobulin genes have been partially or completely inactivated. This approach is described in U.S. Patent Nos. 5,545,807; 5,545,806; 5,569,825; 5,625, 126; 5,633,425; and 5,661 ,016.
- the human antibody may be prepared by immortalizing human B lymphocytes that produce an antibody directed against a target antigen (such B lymphocytes may be recovered from an individual or may have been immunized in vitro). See, e.g., Cole et al. Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, p. 77, 1985; Boerner et al., 1991 , J. Immunol., 147 (1 ):86-95; and U.S. Patent No. 5,750,373.
- IL-7R refers to any form of IL-7R and variants thereof that retain at least part of the activity of IL-7R. Unless indicated differently, such as by specific reference to human IL-7R, IL-7R includes all mammalian species of native sequence IL-7R, e.g., human, canine, feline, equine, and bovine.
- an "IL-7R antagonist” refers to an antibody or molecule that is able to inhibit IL-7R biological activity and/or downstream pathway(s) mediated by IL-7R signaling, including binding to IL-7, phosphorylation of STAT5, Src kinases, PI3 kinase and Pyk2, and upregulation of Bcl2 protein.
- IL-7R antagonists include, without limitation, antagonist IL-7R antibodies, IL-7R siRNA, IL-7R shRNA, and IL-7R antisense oligonucleotides.
- Antagonist IL-7R antibodies encompass antibodies that block, antagonize, suppress or reduce (to any degree including significantly) IL-7R biological activity, including downstream pathways mediated by IL-7R signaling, such interaction with IL-7 and/or elicitation of a cellular response to IL-7.
- an antagonist IL-7R antibody encompasses all the previously identified terms, titles, and functional states and characteristics whereby the IL-7R itself, an IL-7R biological activity (including but not limited to interaction with IL-7, its ability to mediate any aspect of phosphorylation of STAT5, phosphatidylinositol-3-kinase (PI3K)-Akt pathway activation, p27 Ki 1 downregulation, Bcl-2 upregulation, Rb hyperphosphorylation, and CXCR4 upregulation), or the consequences of the biological activity, are substantially nullified, decreased, or neutralized in any meaningful degree.
- an antagonist IL-7R antibody binds I L-7R and prevents interaction with IL-7. Examples of antagonist IL-7R antibodies are provided herein.
- a "full antagonist” is an antagonist which, at an effective concentration, essentially completely blocks a measurable effect of IL-7R.
- a partial antagonist is meant an antagonist that is capable of partially blocking a measurable effect, but that, even at a highest concentration is not a full antagonist.
- essentially completely is meant at least about 80%, preferably, at least about 90%, more preferably, at least about 95%, and most preferably, at least about 98% of the measurable effect is blocked.
- polypeptide oligopeptide
- peptide protein
- the terms “polypeptide”, “oligopeptide”, “peptide” and “protein” are used interchangeably herein to refer to chains of amino acids of any length, preferably, relatively short (e.g., 10-100 amino acids).
- the chain may be linear or branched, it may comprise modified amino acids, and/or may be interrupted by non-amino acids.
- the terms also encompass an amino acid chain that has been modified naturally or by intervention; for example, disulfide bond formation, glycosylation, lipidation, acetylation, phosphorylation, or any other manipulation or modification, such as conjugation with a labeling component.
- polypeptides containing one or more analogs of an amino acid including, for example, unnatural amino acids, etc.
- polypeptides can occur as single chains or associated chains.
- polynucleotide or “nucleic acid,” as used interchangeably herein, refer to chains of nucleotides of any length, and include DNA and RNA.
- the nucleotides can be deoxyribonucleotides, ribonucleotides, modified nucleotides or bases, and/or their analogs, or any substrate that can be incorporated into a chain by DNA or RNA polymerase.
- a polynucleotide may comprise modified nucleotides, such as methylated nucleotides and their analogs. If present, modification to the nucleotide structure may be imparted before or after assembly of the chain.
- the sequence of nucleotides may be interrupted by non-nucleotide components.
- a polynucleotide may be further modified after polymerization, such as by conjugation with a labeling component.
- Other types of modifications include, for example, "caps", substitution of one or more of the naturally occurring nucleotides with an analog, internucleotide modifications such as, for example, those with uncharged linkages (e.g., methyl phosphonates, phosphotriesters, phosphoamidates, carbamates, etc.) and with charged linkages (e.g., phosphorothioates, phosphorodithioates, etc.), those containing pendant moieties, such as, for example, proteins (e.g., nucleases, toxins, antibodies, signal peptides, poly-L-lysine, etc.), those with intercalators (e.g., acridine, psoralen, etc.), those containing chelators (e.g., metal
- any of the hydroxyl groups ordinarily present in the sugars may be replaced, for example, by phosphonate groups, phosphate groups, protected by standard protecting groups, or activated to prepare additional linkages to additional nucleotides, or may be conjugated to solid supports.
- the 5' and 3' terminal OH can be phosphorylated or substituted with amines or organic capping group moieties of from 1 to 20 carbon atoms.
- Other hydroxyls may also be derivatized to standard protecting groups.
- Polynucleotides can also contain analogous forms of ribose or deoxyribose sugars that are generally known in the art, including, for example, 2'-0-methyl-, 2'-0-allyl, 2'-fluoro- or 2'-azido-ribose, carbocyclic sugar analogs, alpha- or beta-anomeric sugars, epimeric sugars such as arabinose, xyloses or lyxoses, pyranose sugars, furanose sugars, sedoheptuloses, acyclic analogs and abasic nucleoside analogs such as methyl riboside.
- One or more phosphodiester linkages may be replaced by alternative linking groups.
- linking groups include, but are not limited to, embodiments wherein phosphate is replaced by P(0)S("thioate”), P(S)S ("dithioate”), (0)NR 2 ("amidate”), P(0)R, P(0)OR', CO or CH 2 ("formacetal”), in which each R or R' is independently H or substituted or unsubstituted alkyl (1 -20 C) optionally containing an ether (-0-) linkage, aryl, alkenyl, cycloalkyl, cycloalkenyl or araldyl. Not all linkages in a polynucleotide need be identical. The preceding description applies to all polynucleotides referred to herein, including RNA and DNA.
- variable region of an antibody refers to the variable region of the antibody light chain or the variable region of the antibody heavy chain, either alone or in combination.
- variable regions of the heavy and light chain each consist of four framework regions (FR) connected by three complementarity determining regions (CDRs) also known as hypervariable regions.
- FR framework regions
- CDRs complementarity determining regions
- the CDRs in each chain are held together in close proximity by the FRs and, with the CDRs from the other chain, contribute to the formation of the antigen-binding site of antibodies.
- a CDR may refer to CDRs defined by either approach or by a combination of both approaches.
- a "constant region" of an antibody refers to the constant region of the antibody light chain or the constant region of the antibody heavy chain, either alone or in combination.
- an antibody "interacts with" IL-7R when the equilibrium dissociation constant is equal to or less than 20 nM, preferably less than about 6 nM, more preferably less than about 1 nM, most preferably less than about 0.2 nM, as measured by the methods disclosed herein in Example 2.
- An epitope that "preferentially binds” or “specifically binds” (used interchangeably herein) to an antibody or a polypeptide is a term well understood in the art, and methods to determine such specific or preferential binding are also well known in the art.
- a molecule is said to exhibit "specific binding” or “preferential binding” if it reacts or associates more frequently, more rapidly, with greater duration and/or with greater affinity with a particular cell or substance than it does with alternative cells or substances.
- An antibody “specifically binds” or “preferentially binds” to a target if it binds with greater affinity, avidity, more readily, and/or with greater duration than it binds to other substances.
- an antibody that specifically or preferentially binds to an IL-7R epitope is an antibody that binds this epitope with greater affinity, avidity, more readily, and/or with greater duration than it binds to other IL-7R epitopes or non-IL-7R epitopes. It is also understood that by reading this definition, for example, an antibody (or moiety or epitope) that specifically or preferentially binds to a first target may or may not specifically or preferentially bind to a second target. As such, “specific binding” or “preferential binding” does not necessarily require (although it can include) exclusive binding. Generally, but not necessarily, reference to binding means preferential binding.
- substantially pure refers to material which is at least 50% pure
- a "host cell” includes an individual cell or cell culture that can be or has been a recipient for vector(s) for incorporation of polynucleotide inserts.
- Host cells include progeny of a single host cell, and the progeny may not necessarily be completely identical (in morphology or in genomic DNA complement) to the original parent cell due to natural, accidental, or deliberate mutation.
- a host cell includes cells transfected in vivo with a polynucleotide(s) of this invention.
- Fc region is used to define a C-terminal region of an immunoglobulin heavy chain.
- the "Fc region” may be a native sequence Fc region or a variant Fc region.
- the human IgG heavy chain Fc region is usually defined to stretch from an amino acid residue at position Cys226, or from Pro230, to the carboxyl- terminus thereof.
- the numbering of the residues in the Fc region is that of the EU index as in Kabat. Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md., 1991.
- the Fc region of an immunoglobulin generally comprises two constant regions, CH2 and CH3.
- Fc receptor and “FcR” describe a receptor that binds to the Fc region of an antibody.
- the preferred FcR is a native sequence human FcR.
- a preferred FcR is one which binds an IgG antibody (a gamma receptor) and includes receptors of the FcyRI, FcyRII, and FcyRIII subclasses, including allelic variants and alternatively spliced forms of these receptors.
- FcyRI I receptors include FcyRIIA (an “activating receptor”) and FcyRI IB (an “inhibiting receptor”), which have similar amino acid sequences that differ primarily in the cytoplasmic domains thereof. FcRs are reviewed in Ravetch and Kinet, 1991 , Ann. Rev. Immunol., 9:457-92; Capel et al., 1994, Immunomethods, 4:25-34; and de Haas et al., 1995, J. Lab. Clin. Med., 126:330-41 . "FcR” also includes the neonatal receptor, FcRn, which is responsible for the transfer of maternal IgGs to the fetus (Guyer et al., 1976, J. Immunol., 1 17:587; and Kim et al., 1994, J. Immunol., 24:249).
- Compet means that a first antibody, or an antigen-binding portion thereof, binds to an epitope in a manner sufficiently similar to the binding of a second antibody, or an antigen-binding portion thereof, such that the result of binding of the first antibody with its cognate epitope is detectably decreased in the presence of the second antibody compared to the binding of the first antibody in the absence of the second antibody.
- the alternative, where the binding of the second antibody to its epitope is also detectably decreased in the presence of the first antibody can, but need not be the case. That is, a first antibody can inhibit the binding of a second antibody to its epitope without that second antibody inhibiting the binding of the first antibody to its respective epitope.
- each antibody detectably inhibits the binding of the other antibody with its cognate epitope or ligand, whether to the same, greater, or lesser extent, the antibodies are said to "cross-compete" with each other for binding of their respective epitope(s).
- Both competing and cross-competing antibodies are encompassed by the present invention. Regardless of the mechanism by which such competition or cross-competition occurs (e.g., steric hindrance, conformational change, or binding to a common epitope, or portion thereof), the skilled artisan would appreciate, based upon the teachings provided herein, that such competing and/or cross-competing antibodies are encompassed and can be useful for the methods disclosed herein.
- a “functional Fc region” possesses at least one effector function of a native sequence Fc region.
- exemplary “effector functions” include C1 q binding; complement dependent cytotoxicity; Fc receptor binding; antibody-dependent cell-mediated cytotoxicity; phagocytosis; down-regulation of cell surface receptors (e.g. B cell receptor), etc.
- Such effector functions generally require the Fc region to be combined with a binding domain (e.g. an antibody variable domain) and can be assessed using various assays known in the art for evaluating such antibody effector functions.
- a “native sequence Fc region” comprises an amino acid sequence identical to the amino acid sequence of an Fc region found in nature.
- a “variant Fc region” comprises an amino acid sequence which differs from that of a native sequence Fc region by virtue of at least one amino acid modification, yet retains at least one effector function of the native sequence Fc region.
- the variant Fc region has at least one amino acid substitution compared to a native sequence Fc region or to the Fc region of a parent polypeptide, e.g. from about one to about ten amino acid substitutions, and preferably, from about one to about five amino acid substitutions in a native sequence Fc region or in the Fc region of the parent polypeptide.
- the variant Fc region herein will preferably possess at least about 80% sequence identity with a native sequence Fc region and/or with an Fc region of a parent polypeptide, and most preferably, at least about 90% sequence identity therewith, more preferably, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99% sequence identity therewith.
- beneficial or desired clinical results include, but are not limited to, one or more of the following: enhancement of glucose clearance, lowering blood glucose levels, improving glucose tolerance, reducing incidence of high blood glucose levels resulting from type 1 or type 2 diabetes, reducing incidence or amelioration of one or more symptoms of rheumatoid arthritis, reducing incidence or amelioration of one or more symptoms of GVHD, reducing incidence or amelioration of one or more symptoms of lupus, and reducing incidence or amerlioration of one or more symptoms of multiple sclerosis.
- Reducing incidence means any of reducing severity (which can include reducing need for and/or amount of (e.g., exposure to) other drugs and/or therapies generally used for this condition.
- individuals may vary in terms of their response to treatment, and, as such, for example, a "method of reducing incidence” reflects administering the IL-7R antagonist based on a reasonable expectation that such administration may likely cause such a reduction in incidence in that particular individual.
- “Ameliorating” means a lessening or improvement of one or more symptoms as compared to not administering an IL-7R antagonist. “Ameliorating” also includes shortening or reduction in duration of a symptom.
- an "effective dosage” or “effective amount” of drug, compound, or pharmaceutical composition is an amount sufficient to effect any one or more beneficial or desired results.
- beneficial or desired results include eliminating or reducing the risk, lessening the severity, or delaying the outset of the disease, including biochemical, histological and/or behavioral symptoms of the disease, its complications and intermediate pathological phenotypes presenting during development of the disease.
- beneficial or desired results include clinical results such as reducing blood glucose levels, reducing incidence or amelioration of one or more symptoms of type 1 diabetes, type 2 diabetes, rheumatoid arthritis, GVHD, lupus or multiple sclerosis, decreasing the dose of other medications required to treat the disease, enhancing the effect of another medication, and/or delaying the progression of the disease of patients.
- An effective dosage can be administered in one or more administrations.
- an effective dosage of drug, compound, or pharmaceutical composition is an amount sufficient to accomplish prophylactic or therapeutic treatment either directly or indirectly.
- an effective dosage of a drug, compound, or pharmaceutical composition may or may not be achieved in conjunction with another drug, compound, or pharmaceutical composition.
- an "effective dosage" may be considered in the context of administering one or more therapeutic agents, and a single agent may be considered to be given in an effective amount if, in conjunction with one or more other agents, a desirable result may be or is achieved.
- mammals are mammals, more preferably, a human. Mammals also include, but are not limited to, farm animals, sport animals, pets, primates, horses, dogs, cats, mice and rats.
- vector means a construct, which is capable of delivering, and, preferably, expressing, one or more gene(s) or sequence(s) of interest in a host cell.
- vectors include, but are not limited to, viral vectors, naked DNA or RNA expression vectors, plasmid, cosmid or phage vectors, DNA or RNA expression vectors associated with cationic condensing agents, DNA or RNA expression vectors encapsulated in liposomes, and certain eukaryotic cells, such as producer cells.
- expression control sequence means a nucleic acid sequence that directs transcription of a nucleic acid.
- An expression control sequence can be a promoter, such as a constitutive or an inducible promoter, or an enhancer.
- the expression control sequence is operably linked to the nucleic acid sequence to be transcribed.
- pharmaceutically acceptable carrier or “pharmaceutical acceptable excipient” includes any material which, when combined with an active ingredient, allows the ingredient to retain biological activity and is non-reactive with the subject's immune system.
- examples include, but are not limited to, any of the standard pharmaceutical carriers such as a phosphate buffered saline solution, water, emulsions such as oil/water emulsion, and various types of wetting agents.
- Preferred diluents for aerosol or parenteral administration are phosphate buffered saline (PBS) or normal (0.9%) saline.
- Compositions comprising such carriers are formulated by well known conventional methods (see, for example, Remington's Pharmaceutical Sciences, 18th edition, A. Gennaro, ed., Mack Publishing Co., Easton, PA, 1990; and Remington, The Science and Practice of Pharmacy 20th Ed. Mack Publishing, 2000).
- k on refers to the rate constant for association of an antibody to an antigen. Specifically, the rate constants (k on and k off ) and equilibrium dissociation constants are measured using Fab antibody fragments (i.e. univalent) and IL-7R.
- k 0 ff refers to the rate constant for dissociation of an antibody from the antibody/antigen complex.
- KD refers to the equilibrium dissociation constant of an antibody-antigen interaction.
- references to "about” a value or parameter herein includes (and describes) embodiments that are directed to that value or parameter per se. For example, description referring to "about X” includes description of "X.” Numeric ranges are inclusive of the numbers defining the range.
- the invention provides a method for treating or preventing type 2 diabetes in an individual comprising administering to the individual an effective amount of an IL-7R antagonist such as, for example, an antagonist IL-7R antibody.
- an IL-7R antagonist such as, for example, an antagonist IL-7R antibody.
- the invention provides a method for treating or preventing an autoimmune disease, such as type 1 diabetes, rheumatoid arthritis, lupus or multiple sclerosis, in an individual, the method comprising administering to the individual an effective amount of an I L-7R antagonist.
- the invention provides a method for treating or preventing GVHD in an individual comprising administering to the individual an effective amount of an IL-7R antagonist.
- therapeutic administration of the IL-7R antagonist advantageously results in lower blood glucose level and improved glucose tolerance. In other embodiments, therapeutic administration of the IL-7R antagonist advantageously maintains blood glucose at desirable levels. In some embodiments, therapeutic administration of the IL-7R antagonist advantageously results in reduced incidence and/or amelioration of one or more symptoms of rheumatoid arthritis including, for example without limitation, joint stiffness, joint swelling, joint pain, and joint redness and warmth.
- therapeutic administration of the IL-7R antagonist advantageously results in reduced incidence and/or amelioration of one or more symptoms of lupus including, for example without limitation, fatigue, fever, weight loss, weight gain, joint pain, joint stiffness, joint swelling, malar rash, skin lesions, mouth sores, nose ulcers, hair loss, Raynaud's phenomenon, shortness of breath, chest pain, dry eyes, bruising, anxiety, depression and memory loss.
- therapeutic administration of the IL-7R antagonist advantageously results in reduced incidence and/or amelioration of one or more symptoms of multiple sclerosis including, for example without limitation, limb paralysis, tremors, difficulty walking, swallowing difficulties, blindness, blurring vision, and muscle weakness.
- therapeutic administration of the IL-7R antagonist advantageously results in reduced incidence and/or amelioration of one or more symptoms of GVHD including, for example without limitation, abdominal pain, abdominal cramps, fever, jaundice, skin rash, vomiting, weight loss, dry eyes, dry mouth, hair loss, hepatitis, lung disorders, and digestive tract disorders.
- therapeutic administration of the IL-7R antagonist advantageously results in reduced incidence and/or amelioration of one or more symptoms of acute GVHD including, for example without limitation, pneumonitis, intestinal inflammation, diarrhea, abdominal pain, abdominal cramps, fever, jaundice, nausea, vomiting, liver damage, skin rash, skin damage, damage to the mucosa, sloughing of the mucosal membrane, damage to the gastrointestinal tract, weight loss, maculopapular rash, elevated bilirubin levels, morbidity and mortality.
- acute GVHD including, for example without limitation, pneumonitis, intestinal inflammation, diarrhea, abdominal pain, abdominal cramps, fever, jaundice, nausea, vomiting, liver damage, skin rash, skin damage, damage to the mucosa, sloughing of the mucosal membrane, damage to the gastrointestinal tract, weight loss, maculopapular rash, elevated bilirubin levels, morbidity and mortality.
- therapeutic administration of the IL-7R antagonist advantageously results in reduced incidence and/or amelioration of one or more symptoms of chronic GVHD including, for example without limitation, dry eyes, dry mouth, hair loss, hepatitis, lung disorders, digestive tract disorders, skin rash, oral ulcer, oral atrophy, onchodystrophy, sicca syndrome, sclerosis, lichen-planus-like lesions, poikiloderma, esophageal webs, fasciitis and bronchiolitis obliterans, and damage to the liver, skin and mucosa, connective tissue, exocrine glands and/or the gastrointestinal tract.
- chronic GVHD including, for example without limitation, dry eyes, dry mouth, hair loss, hepatitis, lung disorders, digestive tract disorders, skin rash, oral ulcer, oral atrophy, onchodystrophy, sicca syndrome, sclerosis, lichen-planus-like lesions, poikiloderma, esophageal webs, fasciitis and bronchiolitis ob
- a diabetic individual requiring lower blood glucose levels can be treated with an IL-7R antagonist such as, for example, an antagonist IL-7R antibody.
- An individual suitable for antibody therapy is selected using clinical criteria and prognostic indicators of diabetes that are well known in the art.
- An individual at risk of developing diabetes as assessed by known prognostic indicators such as family history, fasting blood glucose levels, or decreased glucose tolerance also warrants administration of an IL-7R antagonist.
- One skilled in the art would recognize or know how to diagnose an individual with diabetes or disregulated glucose uptake and, depending upon the degree or severity of the disease, can make the appropriate determination of when to administer the antibody and can also select the most desirable mode of administration.
- An individual suffering from rheumatoid arthritis can be treated with an IL-7R antagonist such as, for example, an antagonist IL-7R antibody.
- An individual suitable for IL-7R antagonist therapy is selected using clinical criteria and prognostic indicators of rheumatoid arthritis that are well known in the art. Diagnosis or assessment of rheumatoid arthritis is well-established in the art. Assessment of severity may be performed based on measures known in the art, such as the rheumatoid arthritis severity scale (RASS). Bardwell et al., Rheumatology, 2002, 41 :38-45. In some embodiments, ameliorating, controlling, reducing incidence of, or delaying the development or progression of rheumatoid arthritis and/or symptoms of rheumatoid arthritis is measured by RASS.
- RASS rheumatoid arthritis severity scale
- An individual suffering from lupus can be treated with an IL-7R antagonist such as, for example, an antagonist IL-7R antibody.
- an individual suitable for IL-7R antagonist therapy is selected using clinical criteria and prognostic indicators of lupus that are well known in the art. One skilled in the art would recognize or know how to diagnose an individual with lupus and, depending upon the degree or severity of the disease, can make the appropriate determination of when to administer the IL-7R antagonist and can also select the most desirable mode of administration.
- An individual suffering from multiple sclerosis can be treated with an IL-7R antagonist such as, for example, an antagonist IL-7R antibody.
- An individual suitable for IL-7R antagonist therapy is selected using clinical criteria and prognostic indicators of multiple sclerosis that are well known in the art.
- An individual at risk of developing multiple sclerosis as assessed by known prognostic indicators such as family history or symptom history also warrants administration of an IL-7R antagonist.
- One skilled in the art would recognize or know how to diagnose an individual with multiple sclerosis and, depending upon the degree or severity of the disease, can make the appropriate determination of when to administer the IL-7R antagonist and can also select the most desirable mode of administration.
- An individual suffering from GVHD can be treated with an IL-7R antagonist such as, for example, an antagonist IL-7R antibody.
- An individual suitable for IL-7R antagonist therapy is selected using clinical criteria and prognostic indicators of GVHD that are well known in the art. Diagnosis or assessment of GVHD is well-established in the art. Tests for GVHD usually depend on the symptoms, but may include gastrointesting endoscopy, with or without a biopsy, liver functions tests (AST, ALP, and bilirubin levels will be increased), livery biopsy, lung x-rays, and/or skin biopsy.
- Acute liver GVHD may be measured by, for example, the bilirubin level in acute patients.
- Acute skin GVHD may result in a diffuse maculopapular rash.
- Assessment of GVHD severity may be performed based on measures known in the art.
- ameliorating, controlling, reducing incidence of, or delaying the development or progression of GVHD and/or symptoms of GVHD is measured by overall grade (skin-liver-gut) with each organ staged individually from a low of 1 to a high of 4. In some embodiments, ameliorating, controlling, reducing incidence of, or delaying the development or progression of GVHD and/or symptoms of GVHD is measured by monitoring body weight.
- compositions comprising one or more additional agents.
- These compositions may further comprise suitable excipients, such as pharmaceutically acceptable excipients including buffers, which are well known in the art.
- suitable excipients such as pharmaceutically acceptable excipients including buffers, which are well known in the art.
- the present invention can be used alone or in combination with other conventional methods of treatment.
- the IL-7R antagonist can be administered to an individual via any suitable route. It should be apparent to a person skilled in the art that the examples described herein are not intended to be limiting but to be illustrative of the techniques available. Accordingly, in some embodiments, the IL-7R antagonist is administered to an individual in accord with known methods, such as intravenous administration, e.g., as a bolus or by continuous infusion over a period of time, by intramuscular, intraperitoneal, intracerebrospinal, transdermal, subcutaneous, intra-articular, sublingually, intrasynovial, via insufflation, intrathecal, oral, inhalation or topical routes.
- intravenous administration e.g., as a bolus or by continuous infusion over a period of time
- intramuscular, intraperitoneal, intracerebrospinal transdermal
- subcutaneous intra-articular
- sublingually intrasynovial
- intrasynovial via insufflation
- Administration can be systemic, e.g., intravenous administration, or localized.
- Commercially available nebulizers for liquid formulations including jet nebulizers and ultrasonic nebulizers are useful for administration.
- Liquid formulations can be directly nebulized and lyophilized powder can be nebulized after reconstitution.
- an IL-7R antagonist can be aerosolized using a fluorocarbon formulation and a metered dose inhaler, or inhaled as a lyophilized and milled powder.
- an IL-7R antagonist is administered via site-specific or targeted local delivery techniques.
- site-specific or targeted local delivery techniques include various implantable depot sources of the IL-7R antagonist or local delivery catheters, such as infusion catheters, indwelling catheters, or needle catheters, synthetic grafts, adventitial wraps, shunts and stents or other implantable devices, site specific carriers, direct injection, or direct application. See, e.g., PCT Publication No. WO 00/5321 1 and U.S. Patent No. 5,981 ,568.
- an IL-7R antagonist may be used for administration.
- the IL-7R antagonist may be administered neat.
- IL-7R antagonist and a pharmaceutically acceptable excipient may be in various formulations.
- Pharmaceutically acceptable excipients are known in the art, and are relatively inert substances that facilitate administration of a pharmacologically effective substance.
- an excipient can give form or consistency, or act as a diluent.
- Suitable excipients include but are not limited to stabilizing agents, wetting and emulsifying agents, salts for varying osmolarity, encapsulating agents, buffers, and skin penetration enhancers. Excipients as well as formulations for parenteral and nonparenteral drug delivery are set forth in Remington, The Science and Practice of Pharmacy 20th Ed. Mack Publishing, 2000.
- these agents are formulated for administration by injection
- these agents can be combined with pharmaceutically acceptable vehicles such as saline, Ringer's solution, dextrose solution, and the like.
- pharmaceutically acceptable vehicles such as saline, Ringer's solution, dextrose solution, and the like.
- the particular dosage regimen, i.e., dose, timing and repetition, will depend on the particular individual and that individual's medical history.
- an IL-7R antagonist can be administered using any suitable method, including by injection (e.g., intraperitoneally, intravenously, subcutaneously, intramuscularly, etc.).
- IL-7R antibodies can also be administered via inhalation, as described herein.
- an initial candidate dosage can be about 2 mg/kg.
- a typical daily dosage might range from about any of 3 ⁇ g/kg to 30 ⁇ g/kg to 300 ⁇ g/kg to 3 mg/kg, to 30 mg/kg, to 100 mg/kg or more, depending on the factors mentioned above. For example, dosage of about 1 mg/kg, about 2.5 mg/kg, about 5 mg/kg, about 10 mg/kg, and about 25 mg/kg may be used.
- An exemplary dosing regimen comprises administering an initial dose of about 2 mg/kg, followed by a weekly maintenance dose of about 1 mg/kg of the IL-7R antibody, or followed by a maintenance dose of about 1 mg/kg every other week.
- other dosage regimens may be useful, depending on the pattern of pharmacokinetic decay that the practitioner wishes to achieve. For example, in some embodiments, dosing from one to four times a week is contemplated. In other embodiments dosing once a month or once every other month or every three months is contemplated. The progress of this therapy is easily monitored by conventional techniques and assays.
- the dosing regimen (including the IL-7R antagonist(s) used) can vary over time.
- an IL-7R antagonist for the purpose of the present invention, the appropriate dosage of an IL-7R antagonist will depend on the IL-7R antagonist (or compositions thereof) employed, the type and severity of symptoms to be treated, whether the agent is administered for preventive or therapeutic purposes, previous therapy, the patient's clinical history and response to the agent, the patient's clearance rate for the administered agent, and the discretion of the attending physician.
- the clinician will administer an I L-7R antagonist until a dosage is reached that achieves the desired result. Dose and/or frequency can vary over course of treatment. Empirical considerations, such as the half-life, generally will contribute to the determination of the dosage.
- antibodies that are compatible with the human immune system may be used to prolong half-life of the antibody and to prevent the antibody being attacked by the host's immune system.
- Frequency of administration may be determined and adjusted over the course of therapy, and is generally, but not necessarily, based on treatment and/or suppression and/or amelioration and/or delay of symptoms, e.g., high blood glucose levels, joint pain, etc.
- sustained continuous release formulations of antagonist IL-7R antibodies may be appropriate.
- formulations and devices for achieving sustained release are known in the art.
- dosages for an IL-7R antagonist may be determined empirically in individuals who have been given one or more administration(s) of an IL-7R antagonist. Individuals are given incremental dosages of an I L-7R antagonist. To assess efficacy, an indicator of the disease can be followed.
- Administration of an IL-7R antagonist in accordance with the method in the present invention can be continuous or intermittent, depending, for example, upon the recipient's physiological condition, whether the purpose of the administration is therapeutic or prophylactic, and other factors known to skilled practitioners.
- the administration of an IL-7R antagonist may be essentially continuous over a preselected period of time or may be in a series of spaced doses.
- more than one IL-7R antagonist may be present. At least one, at least two, at least three, at least four, at least five different, or more IL-7R antagonists can be present. Generally, those I L-7R antagonists may have complementary activities that do not adversely affect each other. For example, one or more of the following IL-7R antagonists may be used: an antagonist IL-7R antibody, an anti-sense molecule directed to an IL-7R (including an anti-sense molecule directed to a nucleic acid encoding IL-7R), an IL-7R inhibitory compound, and an IL-7R structural analog. An IL-7R antagonist can also be used in conjunction with other agents that serve to enhance and/or complement the effectiveness of the agents.
- Therapeutic formulations of the IL-7R antagonist used in accordance with the present invention are prepared for storage by mixing an antibody having the desired degree of purity with optional pharmaceutically acceptable carriers, excipients or stabilizers (Remington, The Science and Practice of Pharmacy 20th Ed. Mack Publishing, 2000), in the form of lyophilized formulations or aqueous solutions.
- Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and may comprise buffers such as phosphate, citrate, and other organic acids; salts such as sodium chloride; antioxidants including ascorbic acid and methionine; preservatives (such as octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride, benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens, such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine,
- Liposomes containing the I L-7R antagonist are prepared by methods known in the art, such as described in Epstein, et al., Proc. Natl. Acad. Sci. USA 82:3688, 1985; Hwang, et al., Proc. Natl Acad. Sci. USA 77:4030, 1980; and U.S. Pat. Nos. 4,485,045 and 4,544,545. Liposomes with enhanced circulation time are disclosed in U.S. Patent No. 5,013,556. Particularly useful liposomes can be generated by the reverse phase evaporation method with a lipid composition comprising phosphatidylcholine, cholesterol and PEG-derivatized phosphatidylethanolamine (PEG-PE). Liposomes are extruded through filters of defined pore size to yield liposomes with the desired diameter.
- PEG-PE PEG-derivatized phosphatidylethanolamine
- the active ingredients may also be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacrylate) microcapsules, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules) or in macroemulsions.
- colloidal drug delivery systems for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules
- Sustained-release preparations may be prepared. Suitable examples of sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing the antibody, which matrices are in the form of shaped articles, e.g. films, or microcapsules. Examples of sustained-release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate), or 'poly(vinylalcohol)), polylactides (U.S. Pat. No.
- copolymers of L-glutamic acid and 7 ethyl-L- glutamate copolymers of L-glutamic acid and 7 ethyl-L- glutamate, non-degradable ethylene-vinyl acetate, degradable lactic acid-glycolic acid copolymers such as the LUPRON DEPOTTM (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), sucrose acetate isobutyrate, and poly-D-(-)-3-hydroxybutyric acid.
- LUPRON DEPOTTM injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate
- sucrose acetate isobutyrate sucrose acetate isobutyrate
- poly-D-(-)-3-hydroxybutyric acid poly-D-(-)-3-hydroxybutyric acid.
- compositions to be used for in vivo administration must be sterile. This is readily accomplished by, for example, filtration through sterile filtration membranes.
- Therapeutic I L-7R antagonist compositions are generally placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.
- compositions according to the present invention may be in unit dosage forms such as tablets, pills, capsules, powders, granules, solutions or suspensions, or suppositories, for oral, parenteral or rectal administration, or administration by inhalation or insufflation.
- the principal active ingredient is mixed with a pharmaceutical carrier, e.g. conventional tableting ingredients such as corn starch, lactose, sucrose, sorbitol, talc, stearic acid, magnesium stearate, dicalcium phosphate or gums, and other pharmaceutical diluents, e.g. water, to form a solid preformulation composition containing a homogeneous mixture of a compound of the present invention, or a non-toxic pharmaceutically acceptable salt thereof.
- a pharmaceutical carrier e.g. conventional tableting ingredients such as corn starch, lactose, sucrose, sorbitol, talc, stearic acid, magnesium stearate, dicalcium phosphate or gums, and other pharmaceutical diluents, e.g. water
- a pharmaceutical carrier e.g. conventional tableting ingredients such as corn starch, lactose, sucrose, sorbitol, talc, stearic acid, magnesium stearate, dicalcium
- This solid preformulation composition is then subdivided into unit dosage forms of the type described above containing from 0.1 to about 500 mg of the active ingredient of the present invention.
- the tablets or pills of the novel composition can be coated or otherwise compounded to provide a dosage form affording the advantage of prolonged action.
- the tablet or pill can comprise an inner dosage and an outer dosage component, the latter being in the form of an envelope over the former.
- the two components can be separated by an enteric layer that serves to resist disintegration in the stomach and permits the inner component to pass intact into the duodenum or to be delayed in release.
- enteric layers or coatings such materials including a number of polymeric acids and mixtures of polymeric acids with such materials as shellac, cetyl alcohol and cellulose acetate.
- Suitable surface-active agents include, in particular, non-ionic agents, such as polyoxyethylenesorbitans (e.g. TweenTM 20, 40, 60, 80 or 85) and other sorbitans (e.g. SpanTM 20, 40, 60, 80 or 85).
- Compositions with a surface-active agent will conveniently comprise between 0.05 and 5% surface-active agent, and can be between 0.1 and 2.5%. It will be appreciated that other ingredients may be added, for example mannitol or other pharmaceutically acceptable vehicles, if necessary.
- Suitable emulsions may be prepared using commercially available fat emulsions, such as IntralipidTM, LiposynTM, InfonutrolTM, LipofundinTM and LipiphysanTM.
- the active ingredient may be either dissolved in a pre-mixed emulsion composition or alternatively it may be dissolved in an oil (e.g. soybean oil, safflower oil, cottonseed oil, sesame oil, corn oil or almond oil) and an emulsion formed upon mixing with a phospholipid (e.g. egg phospholipids, soybean phospholipids or soybean lecithin) and water.
- an oil e.g. soybean oil, safflower oil, cottonseed oil, sesame oil, corn oil or almond oil
- a phospholipid e.g. egg phospholipids, soybean phospholipids or soybean lecithin
- other ingredients may be added, for example glycerol or glucose, to adjust the tonicity of the emulsion.
- Suitable emulsions will typically contain up to 20% oil, for example, between 5 and 20%.
- the fat emulsion can comprise fat droplets between 0.1 and 1.0 ⁇ , particularly 0.1 and 0.5 ⁇ , and have a pH in the range of 5.5 to 8.0.
- the emulsion compositions can be those prepared by mixing an IL-7R antagonist with IntralipidTM or the components thereof (soybean oil, egg phospholipids, glycerol and water).
- compositions for inhalation or insufflation include solutions and suspensions in pharmaceutically acceptable, aqueous or organic solvents, or mixtures thereof, and powders.
- the liquid or solid compositions may contain suitable pharmaceutically acceptable excipients as set out above.
- the compositions are administered by the oral or nasal respiratory route for local or systemic effect.
- Compositions in preferably sterile pharmaceutically acceptable solvents may be nebulised by use of gases. Nebulised solutions may be breathed directly from the nebulising device or the nebulising device may be attached to a face mask, tent or intermittent positive pressure breathing machine.
- Solution, suspension or powder compositions may be administered, preferably orally or nasally, from devices which deliver the formulation in an appropriate manner.
- IL-7R antagonists IL-7R antagonists
- IL-7R antagonist refers to any protein, peptide or nucleic acid molecule that blocks, suppresses or reduces (including significantly reduces) IL-7R biological activity, including downstream pathways mediated by IL-7R signaling, such as elicitation of a cellular response to I L-7R.
- IL-7R antagonists include, without limitation, antagonist I L-7R antibodies, IL-7R siRNA, IL-7R shRNA, and IL-7R antisense oligonucleotides.
- An IL-7R antagonist should exhibit any one or more of the following characteristics: (a) bind to I L-7R; (b) block IL-7R interaction with IL-7; (c) block or decrease IL-7-mediated STAT5 phosphorylation; (d) decrease blood glucose levels in vivo; (e) increase glucose tolerance in vivo; (f) reduce disease severity in experimental autoimmune encephalomyelitis (EAE); (g) block or decrease PI3K phosphorylation; (h) block or decrease AKT phosphorylation; and (i) block IL-7R interaction with other yet to be identified factors.
- EAE experimental autoimmune encephalomyelitis
- the IL-7R antagonist is an antagonist IL-7R antibody.
- the antagonist IL-7R antibody preferably reacts with IL-7Ra in a manner that inhibits IL-7R signaling function and IL-7 interaction.
- the antagonist IL-7R antibody specifically recognizes primate I L-7R.
- the antagonist IL-7R antibody binds primate and rodent IL-7R.
- the antibodies useful in the present invention can encompass monoclonal antibodies, polyclonal antibodies, antibody fragments (e.g., Fab, Fab', F(ab')2, Fv, Fc, etc.), chimeric antibodies, bispecific antibodies, heteroconjugate antibodies, single chain (ScFv), mutants thereof, fusion proteins comprising an antibody portion (e.g., a domain antibody), humanized antibodies, and any other modified configuration of the immunoglobulin molecule that comprises an antigen recognition site of the required specificity, including glycosylation variants of antibodies, amino acid sequence variants of antibodies, and covalently modified antibodies.
- the antibodies may be murine, rat, human, or any other origin (including chimeric or humanized antibodies).
- the antagonist I L-7R antibody is a monoclonal antibody.
- the antagonist IL-7R antibody can also be humanized.
- the antibody is human.
- the antibody comprises a modified constant region, such as, for example without limitation, a constant region that has increased potential for provoking an immune response.
- the constant region may be modified to have increased affinity to an Fc gamma receptor such as, e.g., FcyRI or FcyRIIA.
- the antibody comprises a modified constant region, such as a constant region that is immunologically inert, that is, having a reduced potential for provoking an immune response.
- the constant region is modified as described in Eur. J. Immunol., 1999, 29:2613-2624; PCT Application No. PCT/GB99/01441 ; and/or UK Patent Application No. 9809951.8.
- the Fc can be human human lgG1 , human lgG2 or human lgG4.
- the Fc can be human lgG2 containing the mutation A330P331 to S330S331 (lgG2Aa), in which the amino acid residues are numbered with reference to the wild type lgG2 sequence.
- the antibody comprises a constant region of lgG 4 comprising the following mutations (Armour et al., 2003, Molecular Immunology 40 585- 593): E233F234L235 to P233V234A235 (lgG4Ac), in which the numbering is with reference to wild type lgG4.
- the Fc is human lgG4 E233F234L235 to P233V234A235 with deletion G236 (lgG4Ab).
- the Fc is any human lgG4 Fc (lgG4, lgG4Ab or lgG4Ac) containing hinge stabilizing mutation S228 to P228 (Aalberse et al., 2002, Immunology 105, 9-19).
- the Fc can be aglycosylated Fc.
- the constant region is aglycosylated by mutating the oligosaccharide attachment residue (such as Asn297) and/or flanking residues that are part of the glycosylation recognition sequence in the constant region.
- the constant region is aglycosylated for N-linked glycosylation enzymatically.
- the constant region may be aglycosylated for N-linked glycosylation enzymatically or by expression in a glycosylation deficient host cell.
- the binding affinity (K D ) of an antagonist IL-7R antibody to IL-7R can be about 0.002 to about 200 nM.
- the binding affinity is any of about 200 nM, about 100 nM, about 50 nM, about 10 nM, about 1 nM, about 500 pM, about 100 pM, about 60 pM, about 50 pM, about 20 pM, about 15 pM, about 10 pM, about 5 pM, or about 2 pM.
- the binding affinity is less than any of about 250 nM, about 200 nM, about 100 nM, about 50 nM, about 10 nM, about 1 nM, about 500 pM, about 100 pM, about 50 pM, about 20 pM, about 10 pM, about 5 pM, or about 2 pM.
- One way of determining binding affinity of antibodies to I L-7R is by measuring binding affinity of monofunctional Fab fragments of the antibody.
- an antibody for example, IgG
- an antibody can be cleaved with papain or expressed recombinantly.
- the affinity of an IL-7R Fab fragment of an antibody can be determined by surface plasmon resonance (BiacoreTM3000TM surface plasmon resonance (SPR) system, BiacoreTM, INC, Piscataway NJ) equipped with pre- immobilized streptavidin sensor chips (SA) using HBS-EP running buffer (0.01 M HEPES, pH 7.4, 0.15 NaCI, 3 mM EDTA, 0.005% v/v Surfactant P20).
- Biotinylated human IL-7R (or any other IL-7R) can be diluted into HBS-EP buffer to a concentration of less than 0.5 ⁇ g/mL and injected across the individual chip channels using variable contact times, to achieve two ranges of antigen density, either 50-200 response units (RU) for detailed kinetic studies or 800-1 ,000 RU for screening assays. Regeneration studies have shown that 25 mM NaOH in 25% v/v ethanol effectively removes the bound Fab while keeping the activity of IL-7R on the chip for over 200 injections.
- RU response units
- Equilibrium dissociation constant (K D ) values are calculated as k off /k on .
- This protocol is suitable for use in determining binding affinity of an antibody to any IL-7R, including human IL-7R, IL-7R of another mammal (such as mouse I L-7R, rat IL-7R, primate IL-7R), as well as different forms of IL-7R. Binding affinity of an antibody is generally measured at 25°C, but can also be measured at 37°C.
- the antagonist IL-7R antibodies may be made by any method known in the art, including the method as provided in Example 1 .
- the route and schedule of immunization of the host animal are generally in keeping with established and conventional techniques for antibody stimulation and production, as further described herein.
- General techniques for production of human and mouse antibodies are known in the art and/or are described herein.
- any mammalian subject including humans or antibody producing cells therefrom can be manipulated to serve as the basis for production of mammalian, including human, hybridoma cell lines.
- the host animal is inoculated intraperitoneally, intramuscularly, orally, subcutaneously, intraplantar, and/or intradermally with an amount of immunogen, including as described herein.
- Hybridomas can be prepared from the lymphocytes and immortalized myeloma cells using the general somatic cell hybridization technique of Kohler, B. and Milstein, C, 1975, Nature 256:495-497 or as modified by Buck, D. W., et al., In Vitro, 18:377-381 , 1982. Available myeloma lines, including but not limited to X63-Ag8.653 and those from the Salk Institute, Cell Distribution Center, San Diego, Calif., USA, may be used in the hybridization. Generally, the technique involves fusing myeloma cells and lymphoid cells using a fusogen such as polyethylene glycol, or by electrical means well known to those skilled in the art.
- a fusogen such as polyethylene glycol
- the cells are separated from the fusion medium and grown in a selective growth medium, such as hypoxanthine-aminopterin-thymidine (HAT) medium, to eliminate unhybridized parent cells.
- a selective growth medium such as hypoxanthine-aminopterin-thymidine (HAT) medium
- HAT hypoxanthine-aminopterin-thymidine
- Any of the media described herein, supplemented with or without serum, can be used for culturing hybridomas that secrete monoclonal antibodies.
- EBV immortalized B cells may be used to produce the IL-7R monoclonal antibodies of the subject invention.
- hybridomas are expanded and subcloned, if desired, and supernatants are assayed for anti-immunogen activity by conventional immunoassay procedures (e.g., radioimmunoassay, enzyme immunoassay, or fluorescence immunoassay).
- immunoassay procedures e.g., radioimmunoassay, enzyme immunoassay, or fluorescence immunoassay.
- Hybridomas that may be used as source of antibodies encompass all derivatives, progeny cells of the parent hybridomas that produce monoclonal antibodies specific for IL-7R, or a portion thereof.
- Hybridomas that produce such antibodies may be grown in vitro or in vivo using known procedures.
- the monoclonal antibodies may be isolated from the culture media or body fluids, by conventional immunoglobulin purification procedures such as ammonium sulfate precipitation, gel electrophoresis, dialysis, chromatography, and ultrafiltration, if desired.
- Undesired activity, if present, can be removed, for example, by running the preparation over adsorbents made of the immunogen attached to a solid phase and eluting or releasing the desired antibodies off the immunogen.
- a protein that is immunogenic in the species to be immunized e.g., keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, or
- the antagonist IL-7R antibody (monoclonal or polyclonal) of interest may be sequenced and the polynucleotide sequence may then be cloned into a vector for expression or propagation.
- the sequence encoding the antibody of interest may be maintained in vector in a host cell and the host cell can then be expanded and frozen for future use.
- Production of recombinant monoclonal antibodies in cell culture can be carried out through cloning of antibody genes from B cells by means known in the art. See, e.g. Tiller et al., 2008, J. Immunol. Methods 329, 1 12; US Patent No. 7,314,622.
- the polynucleotide sequence may be used for genetic manipulation to "humanize” the antibody or to improve the affinity, or other characteristics of the antibody.
- the constant region may be engineered to more nearly resemble human constant regions to avoid immune response if the antibody is used in clinical trials and treatments in humans. It may be desirable to genetically manipulate the antibody sequence to obtain greater affinity to IL-7R and greater efficacy in inhibiting I L-7R. It will be apparent to one of skill in the art that one or more polynucleotide changes can be made to the antagonist IL-7R antibody and still maintain its binding ability to IL-7R.
- a number of "humanized" antibody molecules comprising an antigen-binding site derived from a non-human immunoglobulin have been described, including chimeric antibodies having rodent or modified rodent V regions and their associated CDRs fused to human constant regions. See, for example, Winter et al. Nature 349:293-299, 1991 , Lobuglio et al. Proc. Nat. Acad. Sci. USA 86:4220-4224, 1989, Shaw et al. J Immunol. 138:4534-4538, 1987, and Brown et al. Cancer Res. 47:3577-3583, 1987. Other references describe rodent CDRs grafted into a human supporting framework region (FR) prior to fusion with an appropriate human antibody constant region.
- FR human supporting framework region
- Fully human antibodies may be obtained by using commercially available mice that have been engineered to express specific human immunoglobulin proteins.
- Transgenic animals that are designed to produce a more desirable (e.g., fully human antibodies) or more robust immune response may also be used for generation of humanized or human antibodies. Examples of such technology are XenomouseTM from Abgenix, Inc. (Fremont, CA) and HuMAb-Mouse® and TC MouseTM from Medarex, Inc. (Princeton, NJ).
- antibodies may be made recombinantly and expressed using any method known in the art.
- antibodies may be made recombinantly by phage display technology. See, for example, U.S. Patent Nos.
- phage display technology can be used to produce human antibodies and antibody fragments in vitro, from immunoglobulin variable (V) domain gene repertoires from unimmunized donors.
- V domain genes are cloned in-frame into either a major or minor coat protein gene of a filamentous bacteriophage, such as M13 or fd, and displayed as functional antibody fragments on the surface of the phage particle.
- the filamentous particle contains a single-stranded DNA copy of the phage genome, selections based on the functional properties of the antibody also result in selection of the gene encoding the antibody exhibiting those properties.
- the phage mimics some of the properties of the B cell.
- Phage display can be performed in a variety of formats; for review see, e.g., Johnson, Kevin S. and Chiswell, David J., Current Opinion in Structural Biology 3:564-571 , 1993.
- V-gene segments can be used for phage display.
- Antibodies may be made recombinantly by first isolating the antibodies and antibody producing cells from host animals, obtaining the gene sequence, and using the gene sequence to express the antibody recombinantly in host cells (e.g., CHO cells). Another method which may be employed is to express the antibody sequence in plants (e.g., tobacco) or transgenic milk. Methods for expressing antibodies recombinantly in plants or milk have been disclosed. See, for example, Peeters, et al. Vaccine 19:2756, 2001 ; Lonberg, N. and D. Huszar Int. Rev. Immunol 13:65, 1995; and Pollock, et al., J Immunol Methods 231 :147, 1999. Methods for making derivatives of antibodies, e.g., humanized, single chain, etc. are known in the art.
- Immunoassays and flow cytometry sorting techniques such as fluorescence activated cell sorting (FACS) can also be employed to isolate antibodies that are specific for IL-7R.
- FACS fluorescence activated cell sorting
- the antibodies can be bound to many different carriers.
- Carriers can be active and/or inert. Examples of well-known carriers include polypropylene, polystyrene, polyethylene, dextran, nylon, amylases, glass, natural and modified celluloses, polyacrylamides, agaroses and magnetite. The nature of the carrier can be either soluble or insoluble for purposes of the invention. Those skilled in the art will know of other suitable carriers for binding antibodies, or will be able to ascertain such, using routine experimentation.
- the carrier comprises a moiety that targets the myocardium.
- DNA encoding the monoclonal antibodies is readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of the monoclonal antibodies).
- the hybridoma cells serve as a preferred source of such DNA.
- the DNA may be placed into expression vectors (such as expression vectors disclosed in PCT Publication No. WO 87/04462), which are then transfected into host cells such as E. coli cells, simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells.
- expression vectors such as expression vectors disclosed in PCT Publication No. WO 87/04462
- host cells such as E. coli cells, simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells
- the DNA also may be modified, for example, by substituting the coding sequence for human heavy and light chain constant regions in place of the homologous murine sequences, Morrison et al., Proc. Nat. Acad. Sci. 81 :6851 , 1984, or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide.
- "chimeric" or “hybrid” antibodies are prepared that have the binding specificity of an IL- 7R monoclonal antibody herein.
- Antagonist IL-7R antibodies can be identified or characterized using methods known in the art, whereby reduction, amelioration, or neutralization of IL-7R biological activity is detected and/or measured.
- an antagonist IL-7R antibody is identified by incubating a candidate agent with IL-7R and monitoring binding and/or attendant reduction or neutralization of a biological activity of IL-7R.
- the binding assay may be performed with purified IL-7R polypeptide(s), or with cells naturally expressing, or transfected to express, I L-7R polypeptide(s).
- the binding assay is a competitive binding assay, where the ability of a candidate antibody to compete with a known IL-7R antagonist for IL-7R binding is evaluated.
- the assay may be performed in various formats, including the ELISA format.
- an antagonist IL-7R antibody is identified by incubating a candidate agent with IL-7R and monitoring binding and attendant inhibition of STAT5 phorphorylation.
- a candidate antagonist IL-7R antibody can be further confirmed and refined by bioassays, known to test the targeted biological activities. Alternatively, bioassays can be used to screen candidates directly. Some of the methods for identifying and characterizing antagonist IL-7R antibodies are described in detail in the Examples. Antagonist IL-7R antibodies may be characterized using methods well known in the art.
- one method is to identify the epitope to which it binds, or "epitope mapping.”
- epitope mapping There are many methods known in the art for mapping and characterizing the location of epitopes on proteins, including solving the crystal structure of an antibody-antigen complex, competition assays, gene fragment expression assays, and synthetic peptide-based assays, as described, for example, in Chapter 1 1 of Harlow and Lane, Using Antibodies, a Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1999.
- epitope mapping can be used to determine the sequence to which an antagonist IL-7R antibody binds.
- Epitope mapping is commercially available from various sources, for example, Pepscan Systems (Edelhertweg 15, 8219 PH Lelystad, The Netherlands).
- the epitope can be a linear epitope, i.e., contained in a single stretch of amino acids, or a conformational epitope formed by a three-dimensional interaction of amino acids that may not necessarily be contained in a single stretch.
- Peptides of varying lengths e.g., at least 4-6 amino acids long
- the epitope to which the antagonist IL-7R antibody binds can be determined in a systematic screening by using overlapping peptides derived from the IL-7R sequence and determining binding by the antagonist I L-7R antibody.
- the open reading frame encoding IL-7R is fragmented either randomly or by specific genetic constructions and the reactivity of the expressed fragments of IL-7R with the antibody to be tested is determined.
- the gene fragments may, for example, be produced by PCR and then transcribed and translated into protein in vitro, in the presence of radioactive amino acids. The binding of the antibody to the radioactively labeled IL-7R fragments is then determined by immunoprecipitation and gel electrophoresis.
- Certain epitopes can also be identified by using large libraries of random peptide sequences displayed on the surface of phage particles (phage libraries). Alternatively, a defined library of overlapping peptide fragments can be tested for binding to the test antibody in simple binding assays. In an additional example, mutagenesis of an antigen binding domain, domain swapping experiments and alanine scanning mutagenesis can be performed to identify residues required, sufficient, and/or necessary for epitope binding.
- domain swapping experiments can be performed using a mutant IL-7R in which various fragments of the IL-7R polypeptide have been replaced (swapped) with sequences from IL-7R from another species, or a closely related, but antigenically distinct protein (such as another member of the proprotein convertase family).
- a mutant IL-7R in which various fragments of the IL-7R polypeptide have been replaced (swapped) with sequences from IL-7R from another species, or a closely related, but antigenically distinct protein (such as another member of the proprotein convertase family).
- Yet another method which can be used to characterize an antagonist IL-7R antibody is to use competition assays with other antibodies known to bind to the same antigen, i.e., various fragments on IL-7R, to determine if the antagonist I L-7R antibody binds to the same epitope as other antibodies.
- Competition assays are well known to those of skill in the art.
- An expression vector can be used to direct expression of an antagonist IL-7R antibody.
- One skilled in the art is familiar with administration of expression vectors to obtain expression of an exogenous protein in vivo. See, e.g., U.S. Patent Nos. 6,436,908; 6,413,942; and 6,376,471.
- Administration of expression vectors includes local or systemic administration, including injection, oral administration, particle gun or catheterized administration, and topical administration.
- the expression vector is administered directly to the sympathetic trunk or ganglion, or into a coronary artery, atrium, ventrical, or pericardium.
- Targeted delivery of therapeutic compositions containing an expression vector, or subgenomic polynucleotides can also be used.
- Receptor-mediated DNA delivery techniques are described in, for example, Findeis et al., Trends Biotechnol., 1993, 1 1 :202; Chiou et al., Gene Therapeutics: Methods And Applications Of Direct Gene Transfer, J.A. Wolff, ed., 1994; Wu et al., J. Biol. Chem., 1988, 263:621 ; Wu et al., J. Biol. Chem., 1994, 269:542; Zenke et al., Proc. Natl. Acad. Sci.
- compositions containing a polynucleotide are administered in a range of about 100 ng to about 200 mg of DNA for local administration in a gene therapy protocol. Concentration ranges of about 500 ng to about 50 mg, about 1 ⁇ g to about 2 mg, about 5 ⁇ g to about 500 ⁇ g, and about 20 ⁇ g to about 100 ⁇ g of DNA can also be used during a gene therapy protocol.
- the therapeutic polynucleotides and polypeptides can be delivered using gene delivery vehicles.
- the gene delivery vehicle can be of viral or non-viral origin (see generally, Jolly, Cancer Gene Therapy, 1994, 1 :51 ; Kimura, Human Gene Therapy, 1994, 5:845; Connelly, Human Gene Therapy, 1995, 1 : 185; and Kaplitt, Nature Genetics, 1994, 6:148). Expression of such coding sequences can be induced using endogenous mammalian or heterologous promoters. Expression of the coding sequence can be either constitutive or regulated.
- Viral-based vectors for delivery of a desired polynucleotide and expression in a desired cell are well known in the art.
- Exemplary viral-based vehicles include, but are not limited to, recombinant retroviruses (see, e.g., PCT Publication Nos. WO 90/07936; WO 94/03622; WO 93/25698; WO 93/25234; WO 93/1 1230; WO 93/10218; WO 91/02805; U.S. Patent Nos. 5, 219,740 and 4,777, 127; GB Patent No. 2,200,651 ; and EP Patent No.
- alphavirus-based vectors e.g., Sindbis virus vectors, Semliki forest virus (ATCC VR-67; ATCC VR-1247), Ross River virus (ATCC VR-373; ATCC VR-1246) and Venezuelan equine encephalitis virus (ATCC VR-923; ATCC VR-1250; ATCC VR 1249; ATCC VR-532)
- AAV adeno-associated virus
- Non-viral delivery vehicles and methods can also be employed, including, but not limited to, polycationic condensed DNA linked or unlinked to killed adenovirus alone (see, e.g., Curiel, Hum. Gene Ther., 1992, 3:147); ligand-linked DNA (see, e.g., Wu, J. Biol. Chem., 1989, 264:16985); eukaryotic cell delivery vehicles cells (see, e.g., U.S. Patent No. 5,814,482; PCT Publication Nos. WO 95/07994; WO 96/17072; WO 95/30763; and WO 97/42338) and nucleic charge neutralization or fusion with cell membranes. Naked DNA can also be employed.
- Exemplary naked DNA introduction methods are described in PCT Publication No. WO 90/1 1092 and U.S. Patent No. 5,580,859.
- Liposomes that can act as gene delivery vehicles are described in U.S. Patent No. 5,422, 120; PCT Publication Nos. WO 95/13796; WO 94/23697; WO 91/14445; and EP 0524968. Additional approaches are described in Philip, Mol. Cell Biol., 1994, 14:241 1 , and in Woffendin, Proc. Natl. Acad. Sci., 1994, 91 :1581.
- compositions comprising antibodies described herein or made by the methods and having the characteristics described herein.
- compositions comprise one or more antibodies that antagonize the interaction of IL-7R with IL-7, and/or one or more polynucleotides comprising sequences encoding one or more these antibodies.
- compositions may further comprise suitable excipients, such as pharmaceutically acceptable excipients including buffers, which are well known in the art.
- the antagonist IL-7R antibodies of the invention are characterized by any (one or more) of the following characteristics: (a) bind to IL-7R; (b) block IL-7R interaction with IL-7; (c) block or decrease IL-7-mediated STAT5 phosphorylation; (d) decrease blood glucose levels in vivo; (e) improve glucose tolerance in vivo; and (f) reduce disease severity in EAE.
- antagonist IL-7R antibodies have two or more of these features. More preferably, the antibodies have three or more of the features. More preferably, the antibodies have four or more of the features. More preferably, the antibodies have five or more of the features. Most preferably, the antibodies have all six characteristics.
- compositions comprising any of the following: (a) an antibody having a partial light chain sequence of
- TKLTVLC (SEQ ID NO: 1 ) NO: 2)
- CTRSSGSIDSSYVQWYQQRP GFTFDDSVMHWVRQAPGKGLEWLS GNSPTTVIYEDDQRPSGVPDR LVGWDGFFTYYADSVKGRFTISRDN
- TKLTVLC (SEQ ID NO: 5) NO: 6)
- CTRSSGSIDSSYVQWYQQRP GFTFDDSVMHWVRQAPGKGLEWLS GNSPTTVIYEDDQRPSGVPDR LVGWDGFFTYYADSVKGRFTISRDN
- TKLTVLC (SEQ ID NO: 7) NO: 8)
- TKLTVLC (SEQ ID NO: 9) NO: 10)
- TKLTVLC (SEQ ID NO: 1 1 ) NO: 12)
- CTRSSGSIDSSYVQWYQQRP GFTFDDSVMHWVRQAPGKGLEWVS GSSPTTVIYEDDQRPSGVPDR LVGWDGFFTYYADSVKGRFTISRDN
- TKLTVL (SEQ ID NO: 41 ) NO: 40)
- CTRSSGSIDSSYVQWYQQRP GFTFDDSVMHWVRQAPGKGLEWVS GSSPTTVIYEDDQRPSGVPDR LVGWDGFFTYYADSVKGRFTISRDN
- underlined sequences are CDR sequences according to Kabat and in bold according to Chothia.
- the invention also provides CDR portions of antibodies to IL-7R (including Chothia, Kabat CDRs, and CDR contact regions). Determination of CDR regions is well within the skill of the art. It is understood that in some embodiments, CDRs can be a combination of the Kabat and Chothia CDR (also termed “combined CRs" or “extended CDRs”). In some embodiments, the CDRs are the Kabat CDRs. In other embodiments, the CDRs are the Chothia CDRs. In other words, in embodiments with more than one CDR, the CDRs may be any of Kabat, Chothia, combination CDRs, or combinations thereof. Table 2 provides examples of CDR sequences provided herein.
- P2D2 DSVMH (SEQ ID LVGWDGFFTYYADSVKG QGDYVFNN (SEQ ID NO: 19) (SEQ ID NO: 23) ID NO: 26)
- HAL DSVMH (SEQ ID LVGWDGFFTYYADSVKG QGDYMGNN (SEQ 403a NO: 19) (SEQ ID NO: 23) ID NO: 28)
- HAL DSVMH (SEQ ID LVGWDGFFTYYADSVKG QGDYMGNN (SEQ 403b NO: 19) (SEQ ID NO: 23) ID NO: 28)
- Heavy X X 2 VMH wherein XiX 2 X3X 4 X 5 GX 6 X 7 TYYADSV Xi X 2 X3X4X5X6X 7 X8 , Chain X-i is D or N; X 2 is S KG, wherein Xi is L or A; X 2 wherein Xi is Q or consen or Y (SEQ ID NO: is V or I; X 3 is G or S; X 4 is W D; X 2 is G or I; X 3 is sus 50) or G; X 5 is D or S; X 6 is F, G D or S; X 4 is Y or G;
- X 7 is F, A or S (SEQ ID X 5 is M, V or G; X 6 NO: 51 ) is G or F; X 7 is N, D or M; X 8 is N, Y or D (SEQ ID NO: 52)
- X 5 is H or S
- X 6 is H or S
- X 7 is V or W (SEQ ID NO: 55)
- CDR contact regions are regions of an antibody that imbue specificity to the antibody for an antigen.
- CDR contact regions include the residue positions in the CDRs and Vernier zones which are constrained in order to maintain proper loop structure for the antibody to bind a specific antigen. See, e.g., Makabe et al., 2007, "Thermodynamic Consequences of Mutations in Vernier Zone Residues of a Humanized Anti-human Epidermal Growth Factor Receptor Murine Antibody," Journal of Biological Chemistry, 283: 1 156-1 166. Determination of CDR contact regions is well within the skill of the art.
- an antagonist IL-7R antibody comprises one or more CDR contact regions comprising an amino acid sequence selected from the group consisting of FTFDDSVM (SEQ ID NO: 56), GWDGFF (SEQ ID NO: 57), ARX 1 X 2 X 3 X 4 wherein Xi, X 2 , X 3 , and X 4 can be any amino acid, (SEQ ID NO: 58), SGSIDSSY (SEQ ID NO: 59), EDDQRPSGV (SEQ ID NO: 60), and FHHL (SEQ ID NO: 61 ).
- the binding affinity (KD) of an antagonist IL-7R antibody to IL-7R can be about 0.002 to about 200 nM.
- the binding affinity is any of about 200 nM, 100 nM, about 50 nM, about 10 nM, about 1 nM, about 500 pM, about 100 pM, about 60 pM, about 50 pM, about 20 pM, about 15 pM, about 10 pM, about 5 pM, or about 2 pM.
- the binding affinity is less than any of about 250 nM, about 200 nM, about 100 nM, about 50 nM, about 10 nM, about 1 nM, about 500 pM, about 100 pM, or about 50 pM.
- the invention also provides methods of making any of these antibodies.
- the antibodies of this invention can be made by procedures known in the art.
- the polypeptides can be produced by proteolytic or other degradation of the antibodies, by recombinant methods (i.e., single or fusion polypeptides) as described above or by chemical synthesis.
- Polypeptides of the antibodies, especially shorter polypeptides up to about 50 amino acids, are conveniently made by chemical synthesis. Methods of chemical synthesis are known in the art and are commercially available.
- an antibody could be produced by an automated polypeptide synthesizer employing the solid phase method. See also, U.S. Patent Nos. 5,807,715; 4,816,567; and 6,331 ,415.
- a polynucleotide comprises a sequence encoding the heavy chain and/or the light chain variable regions of antibody P3A9, P4B3, P2D2, P2E1 1 , HAL403a, HAL403b, C1 GM, or C2M3.
- the sequence encoding the antibody of interest may be maintained in a vector in a host cell and the host cell can then be expanded and frozen for future use.
- Vectors (including expression vectors) and host cells are further described herein.
- the invention also encompasses scFv of antibodies of this invention.
- Single chain variable region fragments are made by linking light and/or heavy chain variable regions by using a short linking peptide (Bird et al., 1988, Science 242:423-426).
- An example of a linking peptide is (GGGGS) 3 (SEQ ID NO: 13), which bridges approximately 3.5 nm between the carboxy terminus of one variable region and the amino terminus of the other variable region.
- Linkers of other sequences have been designed and used (Bird et al., 1988, supra). Linkers should be short, flexible polypeptides and preferably comprised of less than about 20 amino acid residues.
- Linkers can in turn be modified for additional functions, such as attachment of drugs or attachment to solid supports.
- the single chain variants can be produced either recombinantly or synthetically.
- an automated synthesizer can be used for synthetic production of scFv.
- a suitable plasmid containing polynucleotide that encodes the scFv can be introduced into a suitable host cell, either eukaryotic, such as yeast, plant, insect or mammalian cells, or prokaryotic, such as E. coli.
- Polynucleotides encoding the scFv of interest can be made by routine manipulations such as ligation of polynucleotides.
- the resultant scFv can be isolated using standard protein purification techniques known in the art.
- Diabodies are bivalent, bispecific antibodies in which heavy chain variable (VH) and light chain variable (VL) domains are expressed on a single polypeptide chain, but using a linker that is too short to allow for pairing between the two domains on the same chain, thereby forcing the domains to pair with complementary domains of another chain and creating two antigen binding sites (see e.g., Holliger, P., et al., 1993, Proc. Natl. Acad Sci. USA 90:6444-6448; Poljak, R. J., et al., 1994, Structure 2:1 121 -1 123).
- VH heavy chain variable
- VL light chain variable
- bispecific antibodies monoclonal antibodies that have binding specificities for at least two different antigens
- Methods for making bispecific antibodies are known in the art (see, e.g., Suresh et al., 1986, Methods in Enzymology 121 :210).
- the recombinant production of bispecific antibodies was based on the coexpression of two immunoglobulin heavy chain-light chain pairs, with the two heavy chains having different specificities (Millstein and Cuello, 1983, Nature 305, 537-539).
- antibody variable domains with the desired binding specificities are fused to immunoglobulin constant region sequences.
- the fusion preferably is with an immunoglobulin heavy chain constant region, comprising at least part of the hinge, CH2 and CH3 regions. It is preferred to have the first heavy chain constant region (CH1 ), containing the site necessary for light chain binding, present in at least one of the fusions.
- DNAs encoding the immunoglobulin heavy chain fusions and, if desired, the immunoglobulin light chain are inserted into separate expression vectors, and are cotransfected into a suitable host organism.
- the bispecific antibodies are composed of a hybrid immunoglobulin heavy chain with a first binding specificity in one arm, and a hybrid immunoglobulin heavy chain-light chain pair (providing a second binding specificity) in the other arm.
- This asymmetric structure, with an immunoglobulin light chain in only one half of the bispecific molecule, facilitates the separation of the desired bispecific compound from unwanted immunoglobulin chain combinations. This approach is described in PCT Publication No. WO 94/04690.
- Heteroconjugate antibodies comprising two covalently joined antibodies, are also within the scope of the invention. Such antibodies have been used to target immune system cells to unwanted cells (U.S. Patent No. 4,676,980), and for treatment of HIV infection (PCT Publication Nos. WO 91/00360 and WO 92/200373; EP 03089). Heteroconjugate antibodies may be made using any convenient cross-linking methods. Suitable cross-linking agents and techniques are well known in the art, and are described in U.S. Patent No. 4,676,980.
- Chimeric or hybrid antibodies also may be prepared in vitro using known methods of synthetic protein chemistry, including those involving cross-linking agents.
- immunotoxins may be constructed using a disulfide exchange reaction or by forming a thioether bond.
- suitable reagents for this purpose include iminothiolate and methyl-4-mercaptobutyrimidate.
- Humanized antibodies can be made using any methods know in the art. For example, four general steps may be used to humanize a monoclonal antibody. These are: (1 ) determining the nucleotide and predicted amino acid sequence of the starting antibody light and heavy variable domains (2) designing the humanized antibody, i.e., deciding which antibody framework region to use during the humanizing process (3) the actual humanizing methodologies/techniques and (4) the transfection and expression of the humanized antibody. See, for example, U.S. Patent Nos. 4,816,567; 5,807,715; 5,866,692; 6,331 ,415; 5,530, 101 ; 5,693,761 ; 5,693,762; 5,585,089; and 6, 180,370.
- the Fey portion can be modified to avoid interaction with Fey receptor and the complement and immune systems.
- the techniques for preparation of such antibodies are described in WO 99/58572.
- the constant region may be engineered to more resemble human constant regions to avoid immune response if the antibody is used in clinical trials and treatments in humans. See, for example, U.S. Patent Nos. 5,997,867 and 5,866,692.
- the invention encompasses modifications to the antibodies and polypeptides of the invention variants shown in Table 1 , including functionally equivalent antibodies which do not significantly affect their properties and variants which have enhanced or decreased activity and/or affinity.
- the amino acid sequence may be mutated to obtain an antibody with the desired binding affinity to IL-7R.
- modified polypeptides include polypeptides with conservative substitutions of amino acid residues, one or more deletions or additions of amino acids which do not significantly deleteriously change the functional activity, or which mature (enhance) the affinity of the polypeptide for its ligand, or use of chemical analogs.
- Amino acid sequence insertions include amino- and/or carboxyl-terminal fusions ranging in length from one residue to polypeptides containing a hundred or more residues, as well as intrasequence insertions of single or multiple amino acid residues.
- terminal insertions include an antibody with an N-terminal methionyl residue or the antibody fused to an epitope tag.
- Other insertional variants of the antibody molecule include the fusion to the N- or C-terminus of the antibody of an enzyme or a polypeptide which increases the half-life of the antibody in the blood circulation.
- Substitution variants have at least one amino acid residue in the antibody molecule removed and a different residue inserted in its place.
- the sites of greatest interest for substitutional mutagenesis include the hypervariable regions, but FR alterations are also contemplated.
- Conservative substitutions are shown in Table 3 under the heading of "conservative substitutions.” If such substitutions result in a change in biological activity, then more substantial changes, denominated "exemplary substitutions" in Table 3, or as further described below in reference to amino acid classes, may be introduced and the products screened.
- Substantial modifications in the biological properties of the antibody are accomplished by selecting substitutions that differ significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain.
- Naturally occurring residues are divided into groups based on common side-chain properties:
- Non-conservative substitutions are made by exchanging a member of one of these classes for another class. Any cysteine residue not involved in maintaining the proper conformation of the antibody also may be substituted, generally with serine, to improve the oxidative stability of the molecule and prevent aberrant cross-linking. Conversely, cysteine bond(s) may be added to the antibody to improve its stability, particularly where the antibody is an antibody fragment such as an Fv fragment.
- Amino acid modifications can range from changing or modifying one or more amino acids to complete redesign of a region, such as the variable region. Changes in the variable region can alter binding affinity and/or specificity. In some embodiments, no more than one to five conservative amino acid substitutions are made within a CDR domain. In other embodiments, no more than one to three conservative amino acid substitutions are made within a CDR domain. In still other embodiments, the CDR domain is CDR H3 and/or CDR L3.
- Modifications also include glycosylated and nonglycosylated polypeptides, as well as polypeptides with other post-translational modifications, such as, for example, glycosylation with different sugars, acetylation, and phosphorylation.
- Antibodies are glycosylated at conserved positions in their constant regions (Jefferis and Lund, 1997, Chem. Immunol. 65:1 1 1 -128; Wright and Morrison, 1997, TibTECH 15:26-32).
- the oligosaccharide side chains of the immunoglobulins affect the protein's function (Boyd et al., 1996, Mol. Immunol. 32:131 1 -1318; Wittwe and Howard, 1990, Biochem.
- Oligosaccharides may also serve to target a given glycoprotein to certain molecules based upon specific recognition structures. Glycosylation of antibodies has also been reported to affect antibody-dependent cellular cytotoxicity (ADCC).
- CHO cells with tetracycline-regulated expression of 3(1 ,4)-N-acetylglucosaminyltransferase III (GnTIII), a glycosyltransferase catalyzing formation of bisecting GlcNAc, was reported to have improved ADCC activity (Umana et al., 1999, Mature Biotech. 17: 176-180).
- N-linked refers to the attachment of the carbohydrate moiety to the side chain of an asparagine residue.
- the tripeptide sequences asparagine-X-serine, asparagine-X-threonine, and asparagine-X-cysteine, where X is any amino acid except proline, are the recognition sequences for enzymatic attachment of the carbohydrate moiety to the asparagine side chain.
- O-linked glycosylation refers to the attachment of one of the sugars N-acetylgalactosamine, galactose, or xylose to a hydroxyamino acid, most commonly serine or threonine, although 5-hydroxyproline or 5-hydroxylysine may also be used.
- glycosylation sites to the antibody is conveniently accomplished by altering the amino acid sequence such that it contains one or more of the above- described tripeptide sequences (for N-linked glycosylation sites).
- the alteration may also be made by the addition of, or substitution by, one or more serine or threonine residues to the sequence of the original antibody (for O-linked glycosylation sites).
- glycosylation pattern of antibodies may also be altered without altering the underlying nucleotide sequence. Glycosylation largely depends on the host cell used to express the antibody. Since the cell type used for expression of recombinant glycoproteins, e.g. antibodies, as potential therapeutics is rarely the native cell, variations in the glycosylation pattern of the antibodies can be expected (see, e.g. Hse et al., 1997, J. Biol. Chem. 272:9062-9070).
- factors that affect glycosylation during recombinant production of antibodies include growth mode, media formulation, culture density, oxygenation, pH, purification schemes and the like.
- Various methods have been proposed to alter the glycosylation pattern achieved in a particular host organism including introducing or overexpressing certain enzymes involved in oligosaccharide production (U.S. Patent Nos. 5,047,335; 5,510,261 and 5,278,299).
- Glycosylation or certain types of glycosylation, can be enzymatically removed from the glycoprotein, for example, using endoglycosidase H (Endo H), N-glycosidase F, endoglycosidase F1 , endoglycosidase F2, endoglycosidase F3.
- Endo H endoglycosidase H
- N-glycosidase F N-glycosidase F
- endoglycosidase F1 endoglycosidase F2
- endoglycosidase F3 endoglycosidase F3
- the recombinant host cell can be genetically engineered to be defective in processing certain types of polysaccharides.
- Modifications include using coupling techniques known in the art, including, but not limited to, enzymatic means, oxidative substitution and chelation. Modifications can be used, for example, for attachment of labels for immunoassay. Modified polypeptides are made using established procedures in the art and can be screened using standard assays known in the art, some of which are described below and in the Examples.
- the antibody comprises a modified constant region, such as a constant region that has increased affinity to a human Fc gamma receptor, is immunologically inert or partially inert, e.g., does not trigger complement mediated lysis, does not stimulate antibody-dependent cell mediated cytotoxicity (ADCC), or does not activate microglia; or has reduced activities (compared to the unmodified antibody) in any one or more of the following: triggering complement mediated lysis, stimulating antibody-dependent cell mediated cytotoxicity (ADCC), or activating microglia.
- Different modifications of the constant region may be used to achieve optimal level and/or combination of effector functions.
- the constant region is modified as described in Eur. J. Immunol., 1999, 29:2613-2624; PCT Application No. PCT/GB99/01441 ; and/or UK Patent Application No. 9809951.8.
- the antibody comprises a human heavy chain lgG2 constant region comprising the following mutations: A330P331 to S330S331 (amino acid numbering with reference to the wild type lgG2 sequence). Eur. J. Immunol., 1999, 29:2613-2624.
- the constant region is aglycosylated for N-linked glycosylation.
- the constant region is aglycosylated for N-linked glycosylation by mutating the glycosylated amino acid residue or flanking residues that are part of the N-glycosylation recognition sequence in the constant region.
- N-glycosylation site N297 may be mutated to A, Q, K, or H.
- the constant region is aglycosylated for N-linked glycosylation.
- the constant region may be aglycosylated for N-linked glycosylation enzymatically (such as removing carbohydrate by enzyme PNGase), or by expression in a glycosylation deficient host cell.
- antibody modifications include antibodies that have been modified as described in PCT Publication No. WO 99/58572. These antibodies comprise, in addition to a binding domain directed at the target molecule, an effector domain having an amino acid sequence substantially homologous to all or part of a constant region of a human immunoglobulin heavy chain. These antibodies are capable of binding the target molecule without triggering significant complement dependent lysis, or cell-mediated destruction of the target. In some embodiments, the effector domain is capable of specifically binding FcRn and/or FcYRIIb. These are typically based on chimeric domains derived from two or more human immunoglobulin heavy chain CH2 domains. Antibodies modified in this manner are particularly suitable for use in chronic antibody therapy, to avoid inflammatory and other adverse reactions to conventional antibody therapy.
- affinity matured antibodies can be produced by procedures known in the art (Marks et al., 1992, Bio/Technology, 10:779-783; Barbas et al., 1994, Proc Nat. Acad. Sci, USA 91 :3809- 3813; Schier et al., 1995, Gene, 169: 147-155; Yelton et al., 1995, J. Immunol., 155:1994-2004; Jackson et al., 1995, J. Immunol., 154(7):3310-9; Hawkins et al., 1992, J. Mol. Biol., 226:889-896; and PCT Publication No. WO2004/058184).
- library scanning mutagenesis One way of characterizing a CDR of an antibody and/or altering (such as improving) the binding affinity of a polypeptide, such as an antibody, termed "library scanning mutagenesis".
- library scanning mutagenesis works as follows. One or more amino acid positions in the CDR are replaced with two or more (such as 3, 4, 5, 6, 7, 8, 9, 10, 1 1 , 12, 13, 14, 15, 16, 17, 18, 19, or 20) amino acids using art recognized methods. This generates small libraries of clones (in some embodiments, one for every amino acid position that is analyzed), each with a complexity of two or more members (if two or more amino acids are substituted at every position).
- the library also includes a clone comprising the native (unsubstituted) amino acid.
- a small number of clones, e.g., about 20-80 clones (depending on the complexity of the library), from each library are screened for binding affinity to the target polypeptide (or other binding target), and candidates with increased, the same, decreased, or no binding are identified. Methods for determining binding affinity are well-known in the art. Binding affinity may be determined using BiacoreTM surface plasmon resonance analysis, which detects differences in binding affinity of about 2-fold or greater. BiacoreTM is particularly useful when the starting antibody already binds with a relatively high affinity, for example a K D of about 10 nM or lower.
- Binding affinity may be determined using Kinexa Biocensor, scintillation proximity assays, ELISA, ORIGEN immunoassay (IGEN), fluorescence quenching, fluorescence transfer, and/or yeast display. Binding affinity may also be screened using a suitable bioassay.
- every amino acid position in a CDR is replaced (in some embodiments, one at a time) with all 20 natural amino acids using art recognized mutagenesis methods (some of which are described herein). This generates small libraries of clones (in some embodiments, one for every amino acid position that is analyzed), each with a complexity of 20 members (if all 20 amino acids are substituted at every position).
- the library to be screened comprises substitutions in two or more positions, which may be in the same CDR or in two or more CDRs.
- the library may comprise substitutions in two or more positions in one CDR.
- the library may comprise substitution in two or more positions in two or more CDRs.
- the library may comprise substitution in 3, 4, 5, or more positions, said positions found in two, three, four, five or six CDRs.
- the substitution may be prepared using low redundancy codons. See, e.g., Table 2 of Balint et al., 1993, Gene 137(1 ):109-18.
- the CDR may be CDRH3 and/or CDRL3.
- the CDR may be one or more of CDRL1 , CDRL2, CDRL3, CDRH1 , CDRH2, and/or CDRH3.
- the CDR may be a Kabat CDR, a Chothia CDR, or an extended CDR.
- Candidates with improved binding may be sequenced, thereby identifying a CDR substitution mutant which results in improved affinity (also termed an "improved" substitution).
- Candidates that bind may also be sequenced, thereby identifying a CDR substitution which retains binding.
- candidates each comprising an amino acid substitution at one or more position of one or more CDR
- candidates with improved binding are also useful for the design of a second library containing at least the original and substituted amino acid at each improved CDR position (i.e., amino acid position in the CDR at which a substitution mutant showed improved binding).
- Preparation, and screening or selection of this library is discussed further below.
- Library scanning mutagenesis also provides a means for characterizing a CDR, in so far as the frequency of clones with improved binding, the same binding, decreased binding or no binding also provide information relating to the importance of each amino acid position for the stability of the antibody-antigen complex. For example, if a position of the CDR retains binding when changed to all 20 amino acids, that position is identified as a position that is unlikely to be required for antigen binding. Conversely, if a position of CDR retains binding in only a small percentage of substitutions, that position is identified as a position that is important to CDR function.
- the library scanning mutagenesis methods generate information regarding positions in the CDRs that can be changed to many different amino acids (including all 20 amino acids), and positions in the CDRs which cannot be changed or which can only be changed to a few amino acids.
- Candidates with improved affinity may be combined in a second library, which includes the improved amino acid, the original amino acid at that position, and may further include additional substitutions at that position, depending on the complexity of the library that is desired, or permitted using the desired screening or selection method.
- adjacent amino acid position can be randomized to at least two or more amino acids. Randomization of adjacent amino acids may permit additional conformational flexibility in the mutant CDR, which may in turn, permit or facilitate the introduction of a larger number of improving mutations.
- the library may also comprise substitution at positions that did not show improved affinity in the first round of screening.
- the second library is screened or selected for library members with improved and/or altered binding affinity using any method known in the art, including screening using BiacoreTM surface plasmon resonance analysis, and selection using any method known in the art for selection, including phage display, yeast display, and ribosome display.
- fusion proteins comprising one or more fragments or regions from the antibodies of this invention.
- a fusion polypeptide is provided that comprises at least 10 contiguous amino acids of the variable light chain region shown in SEQ ID NOs: 1 , 3, 5, 7, 9, 1 1 , 41 or 44 and/or at least 10 amino acids of the variable heavy chain region shown in SEQ I D NOs: 2, 4, 6, 8, 10, 12 or 40.
- a fusion polypeptide is provided that comprises at least about 10, at least about 15, at least about 20, at least about 25, or at least about 30 contiguous amino acids of the variable light chain region and/or at least about 10, at least about 15, at least about 20, at least about 25, or at least about 30 contiguous amino acids of the variable heavy chain region.
- the fusion polypeptide comprises a light chain variable region and/or a heavy chain variable region, as shown in any of the sequence pairs selected from among SEQ ID NOs: 1 and 2, 3 and 4, 5 and 6, 7 and 8, 9 and 10, 1 1 and 12, 41 and 40, and 44 and 40.
- the fusion polypeptide comprises one or more CDR(s).
- the fusion polypeptide comprises CDR H3 (VH CDR3) and/or CDR L3 (VL CDR3).
- a fusion protein contains one or more antibodies and another amino acid sequence to which it is not attached in the native molecule, for example, a heterologous sequence or a homologous sequence from another region.
- Exemplary heterologous sequences include, but are not limited to a "tag" such as a FLAG tag or a 6His tag. Tags are well known in the art.
- a fusion polypeptide can be created by methods known in the art, for example, synthetically or recombinantly.
- the fusion proteins of this invention are made by preparing an expressing a polynucleotide encoding them using recombinant methods described herein, although they may also be prepared by other means known in the art, including, for example, chemical synthesis.
- compositions comprising antibodies conjugated (for example, linked) to an agent that facilitate coupling to a solid support (such as biotin or avidin).
- a solid support such as biotin or avidin.
- Conjugation generally refers to linking these components as described herein.
- the linking (which is generally fixing these components in proximate association at least for administration) can be achieved in any number of ways. For example, a direct reaction between an agent and an antibody is possible when each possesses a substituent capable of reacting with the other.
- a nucleophilic group such as an amino or sulfhydryl group
- a carbonyl-containing group such as an anhydride or an acid halide, or with an alkyl group containing a good leaving group (e.g., a halide) on the other.
- An antibody or polypeptide of this invention may be linked to a labeling agent such as a fluorescent molecule, a radioactive molecule or any others labels known in the art. Labels are known in the art which generally provide (either directly or indirectly) a signal.
- the invention also provides compositions (including pharmaceutical compositions) and kits comprising, as this disclosure makes clear, any or all of the antibodies and/or polypeptides described herein.
- the invention also provides isolated polynucleotides encoding the antibodies of the invention, and vectors and host cells comprising the polynucleotide.
- the invention provides polynucleotides (or compositions, including pharmaceutical compositions), comprising polynucleotides encoding any of the following: the antibodies C1 GM, C2M3, P3A9, P4B3, P2D2, P2E1 1 , HAL403a and HAL403b, or any fragment or part thereof having the ability to antagonize IL-7R.
- the invention provides polynucleotides encoding any of the antibodies (including antibody fragments) and polypeptides described herein, such as antibodies and polypeptides having impaired effector function.
- Polynucleotides can be made and expressed by procedures known in the art.
- the invention provides compositions (such as a pharmaceutical compositions) comprising any of the polynucleotides of the invention.
- the composition comprises an expression vector comprising a polynucleotide encoding the antibody as described herein.
- the composition comprises an expression vector comprising a polynucleotide encoding any of the antibodies described herein.
- the composition comprises either or both of the polynucleotides shown in SEQ ID NO: 38 and SEQ ID NO: 39 below:
- composition comprises either or both of the polynucleotides shown in SEQ ID NO: 14 and SEQ ID NO: 15 below:
- the invention provides a method of making any of the polynucleotides described herein.
- Polynucleotides complementary to any such sequences are also encompassed by the present invention.
- Polynucleotides may be single-stranded (coding or antisense) or double-stranded, and may be DNA (genomic, cDNA or synthetic) or RNA molecules.
- RNA molecules include HnRNA molecules, which contain introns and correspond to a DNA molecule in a one-to-one manner, and mRNA molecules, which do not contain introns. Additional coding or non-coding sequences may, but need not, be present within a polynucleotide of the present invention, and a polynucleotide may, but need not, be linked to other molecules and/or support materials.
- Polynucleotides may comprise a native sequence (i.e., an endogenous sequence that encodes an antibody or a portion thereof) or may comprise a variant of such a sequence.
- Polynucleotide variants contain one or more substitutions, additions, deletions and/or insertions such that the immunoreactivity of the encoded polypeptide is not diminished, relative to a native immunoreactive molecule. The effect on the immunoreactivity of the encoded polypeptide may generally be assessed as described herein.
- Variants preferably exhibit at least about 70% identity, more preferably, at least about 80% identity, yet more preferably, at least about 90% identity, and most preferably, at least about 95% identity to a polynucleotide sequence that encodes a native antibody or a portion thereof.
- Two polynucleotide or polypeptide sequences are said to be “identical” if the sequence of nucleotides or amino acids in the two sequences is the same when aligned for maximum correspondence as described below. Comparisons between two sequences are typically performed by comparing the sequences over a comparison window to identify and compare local regions of sequence similarity.
- a “comparison window” as used herein refers to a segment of at least about 20 contiguous positions, usually 30 to about 75, or 40 to about 50, in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned.
- Optimal alignment of sequences for comparison may be conducted using the Megalign program in the Lasergene suite of bioinformatics software (DNASTAR, Inc., Madison, Wl), using default parameters.
- This program embodies several alignment schemes described in the following references: Dayhoff, M.O., 1978, A model of evolutionary change in proteins - Matrices for detecting distant relationships. In Dayhoff, M.O. (ed.) Atlas of Protein Sequence and Structure, National Biomedical Research Foundation, Washington DC Vol. 5, Suppl. 3, pp. 345-358; Hein J., 1990, Unified Approach to Alignment and Phylogenes pp. 626-645 Methods in Enzymology vol.
- the "percentage of sequence identity” is determined by comparing two optimally aligned sequences over a window of comparison of at least 20 positions, wherein the portion of the polynucleotide or polypeptide sequence in the comparison window may comprise additions or deletions (i.e., gaps) of 20 percent or less, usually 5 to 15 percent, or 10 to 12 percent, as compared to the reference sequences (which does not comprise additions or deletions) for optimal alignment of the two sequences.
- the percentage is calculated by determining the number of positions at which the identical nucleic acid bases or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the reference sequence (i.e. the window size) and multiplying the results by 100 to yield the percentage of sequence identity.
- Variants may also, or alternatively, be substantially homologous to a native gene, or a portion or complement thereof.
- Such polynucleotide variants are capable of hybridizing under moderately stringent conditions to a naturally occurring DNA sequence encoding a native antibody (or a complementary sequence).
- Suitable “moderately stringent conditions” include prewashing in a solution of 5 X SSC, 0.5% SDS, 1.0 mM EDTA (pH 8.0); hybridizing at 50°C-65°C, 5 X SSC, overnight; followed by washing twice at 65°C for 20 minutes with each of 2X, 0.5X and 0.2X SSC containing 0.1 % SDS.
- highly stringent conditions or “high stringency conditions” are those that: (1 ) employ low ionic strength and high temperature for washing, for example 0.015 M sodium chloride/0.0015 M sodium citrate/0.1 % sodium dodecyl sulfate at 50°C; (2) employ during hybridization a denaturing agent, such as formamide, for example, 50% (v/v) formamide with 0.1 % bovine serum albumin/0.1 % Ficoll/0.1 % polyvinylpyrrolidone/50 mM sodium phosphate buffer at pH 6.5 with 750 mM sodium chloride, 75 mM sodium citrate at 42°C; or (3) employ 50% formamide, 5 x SSC (0.75 M NaCI, 0.075 M sodium citrate), 50 mM sodium phosphate (pH 6.8), 0.1 % sodium pyrophosphate, 5 x Denhardt's solution, sonicated salmon sperm DNA (50 g/ml), 0.1 % SDS, and
- nucleotide sequences that encode a polypeptide as described herein. Some of these polynucleotides bear minimal homology to the nucleotide sequence of any native gene. Nonetheless, polynucleotides that vary due to differences in codon usage are specifically contemplated by the present invention. Further, alleles of the genes comprising the polynucleotide sequences provided herein are within the scope of the present invention. Alleles are endogenous genes that are altered as a result of one or more mutations, such as deletions, additions and/or substitutions of nucleotides. The resulting mRNA and protein may, but need not, have an altered structure or function. Alleles may be identified using standard techniques (such as hybridization, amplification and/or database sequence comparison).
- polynucleotides of this invention can be obtained using chemical synthesis, recombinant methods, or PCR. Methods of chemical polynucleotide synthesis are well known in the art and need not be described in detail herein. One of skill in the art can use the sequences provided herein and a commercial DNA synthesizer to produce a desired DNA sequence.
- a polynucleotide comprising a desired sequence can be inserted into a suitable vector, and the vector in turn can be introduced into a suitable host cell for replication and amplification, as further discussed herein.
- Polynucleotides may be inserted into host cells by any means known in the art. Cells are transformed by introducing an exogenous polynucleotide by direct uptake, endocytosis, transfection, F-mating or electroporation. Once introduced, the exogenous polynucleotide can be maintained within the cell as a non-integrated vector (such as a plasmid) or integrated into the host cell genome.
- the polynucleotide so amplified can be isolated from the host cell by methods well known within the art. See, e.g., Sambrook et al., 1989.
- PCR allows reproduction of DNA sequences.
- PCR technology is well known in the art and is described in U.S. Patent Nos. 4,683,195, 4,800,159, 4,754,065 and 4,683,202, as well as PCR: The Polymerase Chain Reaction, Mullis et al. eds., Birkauswer Press, Boston, 1994.
- RNA can be obtained by using the isolated DNA in an appropriate vector and inserting it into a suitable host cell. When the cell replicates and the DNA is transcribed into RNA, the RNA can then be isolated using methods well known to those of skill in the art, as set forth in Sambrook et al., 1989, supra, for example.
- Suitable cloning vectors may be constructed according to standard techniques, or may be selected from a large number of cloning vectors available in the art. While the cloning vector selected may vary according to the host cell intended to be used, useful cloning vectors will generally have the ability to self-replicate, may possess a single target for a particular restriction endonuclease, and/or may carry genes for a marker that can be used in selecting clones containing the vector.
- Suitable examples include plasmids and bacterial viruses, e.g., pUC18, pUC19, Bluescript (e.g., pBS SK+) and its derivatives, mp18, mp19, pBR322, pMB9, ColE1 , pCR1 , RP4, phage DNAs, and shuttle vectors such as pSA3 and pAT28.
- Bluescript e.g., pBS SK+
- shuttle vectors such as pSA3 and pAT28.
- Expression vectors generally are replicable polynucleotide constructs that contain a polynucleotide according to the invention. It is implied that an expression vector must be replicable in the host cells either as episomes or as an integral part of the chromosomal DNA. Suitable expression vectors include but are not limited to plasmids, viral vectors, including adenoviruses, adeno-associated viruses, retroviruses, cosmids, and expression vector(s) disclosed in PCT Publication No. WO 87/04462.
- Vector components may generally include, but are not limited to, one or more of the following: a signal sequence; an origin of replication; one or more marker genes; suitable transcriptional controlling elements (such as promoters, enhancers and terminator). For expression (i.e., translation), one or more translational controlling elements are also usually required, such as ribosome binding sites, translation initiation sites, and stop codons.
- the vectors containing the polynucleotides of interest can be introduced into the host cell by any of a number of appropriate means, including electroporation, transfection employing calcium chloride, rubidium chloride, calcium phosphate, DEAE- dextran, or other substances; microprojectile bombardment; lipofection; and infection (e.g., where the vector is an infectious agent such as vaccinia virus).
- electroporation employing calcium chloride, rubidium chloride, calcium phosphate, DEAE- dextran, or other substances
- microprojectile bombardment e.g., where the vector is an infectious agent such as vaccinia virus.
- infection e.g., where the vector is an infectious agent such as vaccinia virus.
- the choice of introducing vectors or polynucleotides will often depend on features of the host cell.
- the invention also provides host cells comprising any of the polynucleotides described herein. Any host cells capable of over-expressing heterologous DNAs can be used for the purpose of isolating the genes encoding the antibody, polypeptide or protein of interest.
- mammalian host cells include but not limited to COS, HeLa, and CHO cells. See also PCT Publication No. WO 87/04462.
- Suitable non-mammalian host cells include prokaryotes (such as E. coli or B. subtillis) and yeast (such as S. cerevisae, S. pombe; or K. lactis).
- the host cells express the cDNAs at a level of about 5 fold higher, more preferably, 10 fold higher, even more preferably, 20 fold higher than that of the corresponding endogenous antibody or protein of interest, if present, in the host cells.
- Screening the host cells for a specific binding to IL-7R or an IL-7R domain is effected by an immunoassay or FACS.
- a cell overexpressing the antibody or protein of interest can be identified.
- compositions used in the methods of the invention comprise an effective amount of an antagonist IL-7R antibody, an antagonist IL-7R antibody derived polypeptide, or other IL-7R antagonists described herein. Examples of such compositions, as well as how to formulate, are also described in an earlier section and below.
- the composition comprises one or more IL-7R antagonist antibodies.
- the antagonist IL-7R antibody recognizes human IL-7Ra.
- the antagonist IL-7R antibody is a human antibody.
- the antagonist IL-7R antibody is a humanized antibody.
- the antagonist IL-7R antibody comprises a constant region that is capable of triggering a desired immune response, such as antibody-mediated lysis or ADCC.
- the antagonist IL-7R antibody comprises a constant region that does not trigger an unwanted or undesirable immune response, such as antibody-mediated lysis or ADCC.
- the antagonist IL-7R antibody comprises one or more CDR(s) of the antibody (such as one, two, three, four, five, or, in some embodiments, all six CDRs).
- compositions can comprise more than one antagonist IL- 7R antibody (e.g., a mixture of antagonist IL-7R antibodies that recognize different epitopes of IL-7R).
- Other exemplary compositions comprise more than one antagonist IL-7R antibody that recognize the same epitope(s), or different species of antagonist IL- 7R antibodies that bind to different epitopes of IL-7R.
- the composition used in the present invention can further comprise pharmaceutically acceptable carriers, excipients, or stabilizers (Remington: The Science and practice of Pharmacy 20th Ed., 2000, Lippincott Williams and Wilkins, Ed. K. E. Hoover), in the form of lyophilized formulations or aqueous solutions.
- Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations, and may comprise buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid and methionine; preservatives (such as octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride, benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, histidine,
- the antagonist IL-7R antibody and compositions thereof can also be used in conjunction with other agents that serve to enhance and/or complement the effectiveness of the agents.
- Kits of the invention include one or more containers comprising an IL-7R antagonist (such as, for example, a human antibody) described herein and instructions for use in accordance with any of the methods of the invention described herein.
- these instructions comprise a description of administration of the IL-7R antagonist for the above described therapeutic treatments.
- the IL-7R antagonist is an antagonist IL-7R antibody.
- the antibody is a human antibody.
- the antibody is a humanized antibody.
- the antibody is a monoclonal antibody.
- the instructions relating to the use of an antagonist IL-7R antibody generally include information as to dosage, dosing schedule, and route of administration for the intended treatment.
- the containers may be unit doses, bulk packages (e.g., multi-dose packages) or sub-unit doses. Instructions supplied in the kits of the invention are typically written instructions on a label or package insert (e.g., a paper sheet included in the kit), but machine-readable instructions (e.g., instructions carried on a magnetic or optical storage disk) are also acceptable.
- kits of this invention are in suitable packaging.
- suitable packaging includes, but is not limited to, vials, bottles, jars, flexible packaging (e.g., sealed Mylar or plastic bags), and the like.
- packages for use in combination with a specific device such as an inhaler, nasal administration device (e.g., an atomizer) or an infusion device such as a minipump.
- a kit may have a sterile access port (for example the container may be an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle).
- the container may also have a sterile access port (for example the container may be an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle).
- At least one active agent in the composition is an antagonist IL-7R antibody.
- the container may further comprise a second pharmaceutically active agent.
- Kits may optionally provide additional components such as buffers and interpretive information.
- the kit comprises a container and a label or package insert(s) on or associated with the container.
- DNA fragments encoding VH and VL regions can first be obtained using any of the methods described above.
- Various modifications, e.g. mutations, deletions, and/or additions can also be introduced into the DNA sequences using standard methods known to those of skill in the art.
- mutagenesis can be carried out using standard methods, such as PCR-mediated mutagenesis, in which the mutated nucleotides are incorporated into the PCR primers such that the PCR product contains the desired mutations or site-directed mutagenesis.
- substitution for example, that may be made is to change one or more cysteines in the antibody, which may be chemically reactive, to another residue, such as, without limitation, alanine or serine.
- alanine or serine for example, there can be a substitution of a non-canonical cysteine.
- the substitution can be made in a CDR or framework region of a variable domain or in the constant region of an antibody.
- the cysteine is canonical.
- the antibodies may also be modified, e.g. in the variable domains of the heavy and/or light chains, e.g., to alter a binding property of the antibody.
- a mutation may be made in one or more of the CDR regions to increase or decrease the K D of the antibody for IL-7R, to increase or decrease k 0ff , or to alter the binding specificity of the antibody.
- Techniques in site-directed mutagenesis are well-known in the art. See, e.g., Sambrook et al. and Ausubel et al., supra.
- a modification or mutation may also be made in a framework region or constant region to increase the half-life of an I L-7R antibody. See, e.g., PCT Publication No. WO 00/09560.
- a mutation in a framework region or constant region can also be made to alter the immunogenicity of the antibody, to provide a site for covalent or non-covalent binding to another molecule, or to alter such properties as complement fixation, FcR binding and antibody-dependent cell-mediated cytotoxicity.
- a single antibody may have mutations in any one or more of the CDRs or framework regions of the variable domain or in the constant region.
- VH and VL sequences can be mutated to match those found naturally in germline VH and V L sequences.
- the amino acid sequences of the framework regions in the VH and VL sequences can be mutated to match the germline sequences to reduce the risk of immunogenicity when the antibody is administered.
- Germline DNA sequences for human VH and VL genes are known in the art (see e.g., the "Vbase” human germline sequence database; see also Kabat, E. A., et al., 1991 , Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91 -3242; Tomlinson et al., 1992, J. Mol. Biol. 227:776-798; and Cox et al., 1994, Eur. J. Immunol. 24:827-836.
- Another type of amino acid substitution that may be made is to remove potential proteolytic sites in the antibody. Such sites may occur in a CDR or framework region of a variable domain or in the constant region of an antibody. Substitution of cysteine residues and removal of proteolytic sites may decrease the risk of heterogeneity in the antibody product and thus increase its homogeneity.
- Another type of amino acid substitution is to eliminate asparagine-glycine pairs, which form potential deamidation sites, by altering one or both of the residues.
- the C-terminal lysine of the heavy chain of an IL-7R antibody of the invention can be cleaved.
- the heavy and light chains of the IL-7R antibodies may optionally include a signal sequence.
- DNA fragments encoding the VH and VL segments of the present invention can be further manipulated by standard recombinant DNA techniques, for example to convert the variable region genes to full- length antibody chain genes, to Fab fragment genes, or to a scFv gene.
- a VL- or VH-encoding DNA fragment is operatively linked to another DNA fragment encoding another protein, such as an antibody constant region or a flexible linker.
- the term "operatively linked”, as used in this context, is intended to mean that the two DNA fragments are joined such that the amino acid sequences encoded by the two DNA fragments remain in-frame.
- the isolated DNA encoding the VH region can be converted to a full-length heavy chain gene by operatively linking the VH-encoding DNA to another DNA molecule encoding heavy chain constant regions (CH1 , CH2 and CH3).
- the sequences of human heavy chain constant region genes are known in the art (see e.g., Kabat, E. A., et al., 1991 , Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242) and DNA fragments encompassing these regions can be obtained by standard PCR amplification.
- the heavy chain constant region can be an lgG1 , lgG2, lgG3, lgG4, IgA, IgE, IgM or IgD constant region, but most preferably is an lgG1 or lgG2 constant region.
- the IgG constant region sequence can be any of the various alleles or allotypes known to occur among different individuals, such as Gm(1 ), Gm(2), Gm(3), and Gm(17). These allotypes represent naturally occurring amino acid substitution in the lgG1 constant regions.
- the V H -encoding DNA can be operatively linked to another DNA molecule encoding only the heavy chain CH 1 constant region.
- the CH1 heavy chain constant region may be derived from any of the heavy chain genes.
- the isolated DNA encoding the VL region can be converted to a full-length light chain gene (as well as a Fab light chain gene) by operatively linking the VL-encoding DNA to another DNA molecule encoding the light chain constant region, CL.
- the sequences of human light chain constant region genes are known in the art (see e.g., Kabat, E. A., et al., 1991 , Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242) and DNA fragments encompassing these regions can be obtained by standard PCR amplification.
- the light chain constant region can be a kappa or lambda constant region.
- the kappa constant region may be any of the various alleles known to occur among different individuals, such as lnv(1 ), lnv(2), and lnv(3).
- the lambda constant region may be derived from any of the three lambda genes.
- the VH- and VL-encoding DNA fragments are operatively linked to another fragment encoding a flexible linker, e.g., encoding the amino acid sequence (Gly 4 -Ser) 3 , (SEQ ID NO: 16) such that the VH and VL sequences can be expressed as a contiguous single-chain protein, with the VL and VH regions joined by the flexible linker (See e.g., Bird et al., 1988, Science 242:423-426; Huston et al., 1988, Proc. Natl. Acad. Sci. USA 85:5879-5883; McCafferty et al., 1990, Nature 348:552-554.
- a flexible linker e.g., encoding the amino acid sequence (Gly 4 -Ser) 3 , (SEQ ID NO: 16) such that the VH and VL sequences can be expressed as a contiguous single-chain protein, with the VL and VH regions joined by the
- the single chain antibody may be monovalent, if only a single VH and VL are used, bivalent, if two VH and VL are used, or polyvalent, if more than two VH and VL are used. Bispecific or polyvalent antibodies may be generated that bind specifically to IL- 7R and to another molecule.
- a fusion antibody or immunoadhesin may be made that comprises all or a portion of an IL-7R antibody of the invention linked to another polypeptide.
- only the variable domains of the IL-7R antibody are linked to the polypeptide.
- the VH domain of an IL-7R antibody is linked to a first polypeptide, while the VL domain of an IL-7R antibody is linked to a second polypeptide that associates with the first polypeptide in a manner such that the VH and VL domains can interact with one another to form an antigen binding site.
- the VH domain is separated from the VL domain by a linker such that the VH and VL domains can interact with one another.
- VH-linker- VL antibody is then linked to the polypeptide of interest.
- fusion antibodies can be created in which two (or more) single-chain antibodies are linked to one another. This is useful if one wants to create a divalent or polyvalent antibody on a single polypeptide chain, or if one wants to create a bispecific antibody.
- other modified antibodies may be prepared using IL-7R antibody encoding nucleic acid molecules.
- “Kappa bodies” III et al., 1997, Protein Eng. 10:949-57
- “Minibodies” Martin et al., 1994, EMBO J. 13:5303-9
- “Diabodies” Holliger et al., 1993, Proc. Natl. Acad. Sci. USA 90:6444-6448
- “Janusins” (Traunecker et al., 1991 , EMBO J. 10:3655-3659 and Traunecker et al., 1992, Int. J. Cancer (Suppl.) 7:51-52) may be prepared using standard molecular biological techniques following the teachings of the specification.
- Bispecific antibodies or antigen-binding fragments can be produced by a variety of methods including fusion of hybridomas or linking of Fab' fragments. See, e.g., Songsivilai & Lachmann, 1990, Clin. Exp. Immunol. 79:315-321 , Kostelny et al., 1992, J. Immunol. 148:1547-1553.
- bispecific antibodies may be formed as "diabodies" or "Janusins.”
- the bispecific antibody binds to two different epitopes of IL-7R.
- the modified antibodies described above are prepared using one or more of the variable domains or CDR regions from a human IL-7R antibody provided herein. Generation of antigen-specific antibodies
- Monoclonal antibodies raised against recombinant mouse IL-7Ra/CD127/Fc chimera (R&D Systems Cat. No. 747-MR), and human antibodies obtained by biopanning a human naive antibody library with recombinant IL-7Ra were evaluated for their ability to bind mouse and human IL-7R.
- Antibodies were further screened for their ability to block IL-7-mediated STAT5 phosphorylation in human peripheral blood mononuclear cells (PBMCs) and/or monkey PBMCs. This manner of antibody preparation yielded antagonist antibodies that show blocking of IL-7-mediated STAT5 phosphorylation, as shown in Example 1.
- Representative materials of the present invention were deposited in the American Type Culture Collection (ATCC) on February 9, 201 1.
- Vector C1 GM-VH having ATCC Accession No. PTA- is a polynucleotide encoding the C1 GM heavy chain variable region
- vector C1 GM-VL having ATCC Accession No. PTA- is a polynucleotide encoding the C1 GM light chain variable region.
- the deposits were made under the provisions of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure and Regulations thereunder (Budapest Treaty). This assures maintenance of a viable curlture of the deposit for 30 years from the date of deposit.
- Example 1 Generating and Screening Antagonist IL-7R Antibodies
- This example illustrates the generation and screening of antagonist IL-7R antibodies.
- a 2-month old female Sprague Dawley rat was immunized with 50 ug recombinant mouse IL-7Ra/CD127/Fc chimera, which includes mouse IL-7Ra (Glu21- Asp239), hCD33 signal peptide (Met 1 -Ala 16), and human IgG (Pro100-Lys330) (R&D Systems Cat. No. 747-MR).
- the antigen was prepared for immunization by mixing 50 ug antigen in 100 ul PBS with 100 ul Sigma Adjuvant System (Cat. No. S6322). The antigen mixture was vortexed and injected into the hind footpads and peritoneum on days 0, 2, 5 and 7.
- spleen cells were prepared as a single cell suspension and fused with P3x63Ag8.653 mouse myeloma cells following a standard fusion protocol using 40% PEG 1500 (Boeringer Mannheim Biochemicals #783641 ). The fused cells were resuspended in medium containing 18% FBS, 2 mM L-glutamine, pen/strep, hypoxanthine, aminopterin and thymidine (HAT) (Sigma H0262) and 10% hybridoma fusion and cloning supplement (HFCS) (Cat. No.
- Supernatant media from growing hybridoma clones were screened separately for their ability to bind the recombinant mouse (rm) IL-7R.
- the assays were performed with 96-well plates coated overnight with 50 ⁇ of a 1 ⁇ g/ml solution of the antigen. Fifty-five coated plates were washed 4 times with PBS with 0.05% Tween and then 50 ul PBS with 0.5% BSA was added to each well. 5 ul from each well of the hybridoma plates were added to the assay plates, and the plates were incubated at room temperature for 2 hrs to allow binding. Excess reagents were washed from the wells between each step with PBS containing 0.05% Tween-20.
- HRP horseradish peroxidase
- F(ab')2, Fc specific Jackson #1 15-036-008
- 50 ul horseradish peroxidase (HRP) conjugated goat-anti mouse, F(ab')2, Fc specific was added to bind to the mouse antibodies bound to the antigen.
- 50 ul ABTS, 2,2'-Azino-bis(3- ethyl benzothiazoline-6-sulfonic acid) diammonium salt was added as substrate.
- the plates were read after 30 mins at 405 nm using a Molecular Devices THERMOmaxTM instrument.
- Hybridoma clones that secreted antibodies that were capable of binding to mouse I L-7R were selected for further analysis.
- Anti-human IL-7Ra human antibodies were isolated from a phage display human naive scFv antibody library (Glanville G. et al., 2009, Proc Natl Acad Sci USA, 106(48):20216-20221 ) by a series of four rounds of bio-panning against human IL-7Ra (R&D Systems ® ). For each round of panning, 1 ml IL-7Ra (10 ug/ml in PBS) was coated on an immunotube at 4 ° C overnight. The IL-7Ra coated immunotube was washed three times with PBST. 10 13 phage (1 ml) were added to the immunotube and incubated at room temperature for 1 hour to allow binding.
- the immunotube was washed eight times with PBST. Bound phage were eluted and used to infect freshly grown TG1 cells. After the fourth round of panning, the positive binders were screened against both human IL-7Ra and mouse IL-7R by ELISA. The antibodies binding to both human and mouse IL-7R were further studied for their affinities and blocking function, and antibodies were selected for affinity maturation.
- Hybridoma clones secreting human or mouse IL-7R binding antibodies were expanded and supernatants were harvested.
- Total IgGs were purified from approximately 10 ml of the supernatant using protein A beads, dialyzed into PBS buffer, and the final volume reduced to yield solutions with 0.7-1 mg/ml of antibodies. Purified antibodies were then used to test their ability to block IL-7-mediated STAT5 phosphorylation in human PBMCs.
- PBMC preparation whole blood cells were collected through Ficoll gradient. Cells were maintained at 37°C in 5% CO2 in conical tubes (to prevent monocyte/macrophage adherence) for 1-2 h before stimulation with IL-2.
- human PBMCs were preincubated for 5 minutes with test antibodies (10 Mg/ml) prior to addition of IL-7.
- test antibodies (10 Mg/ml)
- a non-reactive isotype-matched antibody was used as a negative control (isotype control).
- Cells were stimulated with human IL-7 (0.1 ng/ml, R&D Systems ® ) for 15 minutes.
- formaldehyde was added directly to the culture medium to a final concentration of 1.6%. Cells were fixed for 15 min at room temperature. Methanol was then added directly to a final concentration of 80%, and samples were stored at 4°C for 30 minutes to 1 hour before being immunostained.
- Figure 1 illustrates the effect of antagonist IL-7R fully human monoclonal antibodies P2D2 and P2E1 1 , and HAL403a on IL-7-mediated STAT5 phosphorylation in human PBMCs.
- a mouse anti-human IL-7R monoclonal antibody, 13A2F4 was used as a positive control, and a nonreactive isotype-matched antibody was used as a negative control (isotype control).
- Human PBMCs were preincubated for 5 minutes with each of the test antibodies or 13A2F4 at the following concentrations: 0.001 , 0.01 , 0.1 , 1 , and 10 ⁇ g/ml. The isotype control antibody was used at the highest concentration, 10 ⁇ g/ml.
- Cells were stimulated with human IL-7 (0.1 ng/ml) for 15 minutes, then fixed and immunostained as described above.
- human antibodies P2D2, P2E1 1 , HAL403a C1 GM, C1 GM-2 and C2M3 block human IL-7 mediated signaling in a dose-dependent manner ( Figure 1 and data not shown).
- the isotype control was set as 100% p-STAT5 staining.
- HAL403a blocked STAT5 phosophorylation very effectively ( Figure 1 ).
- C1 GM, C1 GM-2 and C2M3 blocked STAT5 phosophorylation comparable to HAL403a (data not shown).
- the amino acid sequence of antagonist IL-7R antibody C1 GM heavy chain (SEQ ID NO: 42) is shown below.
- amino acid sequence of antagonist IL-7R antibody C1 GM light chain (SEQ ID NO: 43) is shown below.
- the amino acid sequence of antagonist IL-7R antibody C1 GM-2 light chain (SEQ ID NO: 43) is shown below.
- the amino acid sequence of antagonist IL-7R antibody HAL403a heavy chain (SEQ ID NO: 17) is shown below.
- This example illustrates the determination of antibody binding affinity for antagonist IL-7R antibodies.
- the affinities of antagonist I L-7R antibodies to human I L-7R were measured on a surface plasmon resonance BiacoreTM 2000 or 3000 biosensor equipped with a research-grade CM5 sensor chip (BiacoreTM AB, Uppsala, Sweden - now GE Healthcare).
- Goat polyclonal anti-human F(ab')2 fragments were amine- coupled at saturating levels onto all four flow cells using a standard N- hydroxysuccinimide/ ethyldimethylaminopropyl carbodiimide (NHS/EDC) chemistry in HBS-P running buffer (from BiacoreTM). The buffer was switched to HBS-P containing 1 mg/mL BSA.
- Human IL-7R-hFc antigen (R&D systems, Minneapolis, USA) was diluted to about 30 ⁇ g/mL and captured for 3 min at 5 ⁇ _/ ⁇ to give levels of about 500-1000 RU per flow cell, leaving one blank to serve as a reference channel.
- Fab, hlgG1 , or hlgG2AA formats of the antibodies were injected in duplicates as a 5-membered 3-fold series starting at 2 ⁇ and a 5-membered 4-fold series starting at 0.4 ⁇ for 3 min at 20-50 ⁇ _/ ⁇ . Dissociation was monitored for 5 min.
- This example illustrates the effect of antagonist IL-7R antibodies in a mouse model for type 1 diabetes.
- a rat anti-mouse antagonist IL-7R antibody, 28G9 (Rinat) was tested in NOD mice.
- NOD mice exhibit a susceptibility to spontaneous development of automimmune insulin dependent diabetes mellitus (IDDM, type 1 diabetes) (Kikutani et al., 1992, Adv. Immunol. 51 : 285-322).
- IDDM automimmune insulin dependent diabetes mellitus
- 28G9 blocks IL-7-mediated STAT5 phosphorylation in mouse splenocytes and cross-competes with antagonist IL-7R human antibodies C1 GM, C2M3, HAL403a, HAL403b, P3A9, P4B3, P2D2 and P2E1 1 in BiacoreTM.
- PBS or non-reactive isotype matched rat monoclonal antibody (isotype) were used as negative controls.
- the isotype antibody was administered at 10 mg/kg body weight. Mice were monitored two times per week for body weight and blood glucose. Diabetes was considered established when blood glucose level was at or over positive readings, i.e., over 250 mg/dL for two consecutive monitorings. The onset of diabetes was dated from the first of the sequential measurements.
- mice treated with 28G9 at 10 mg/kg developed diabetes even at 18 weeks of age. In contrast, 75-80% of the PBS and isotype-treated mice developed diabetes ( Figure 2). Although not all mice treated with 28G9 at 3 mg/kg were diabetes-free at the end of the study, a significantly reduced diabetes incidence compared to the PBS and isotype controls was observed, demonstrating the inhibitory effect of 28G9 on diabetes development was dose-dependent ( Figure 2). Treatment with 28G9 at 10 mg/kg significantly reduced blood glucose level compared to isotype or PBS controls ( Figure 3A). Mouse development during antagonist IL-7R antibody treatment was monitored by tracking body weight and mortality.
- antagonist IL-7R antibodies reduce blood glucose levels and inhibit diabetes progression in NOD animals. These results demonstrate that antagonist IL-7R antibodies are effective in preventing and slowing the progression of type 1 diabetes.
- CD4+ and CD8+ T cells were immunostained for the activation markers CD44 and CD62L and analyzed by flow cytometry.
- CD4+ and CD8+ T cells were isolated from the peripheral blood of PBS-treated, 28G9-treated, or isotype-treated mice.
- the percentage of naive CD8+ T cells (B220- CD8+CD44 l0 CD62L hi ) in mice treated with 28G9 at 10 mg/kg was significantly lower, and the percentage of memory CD8+ T cells (B220-CD8+CD44 hi CD62L hi ) were significantly higher ( Figures 4A and 4B).
- naive CD4+ T cells B220- CD4+CD44 l0 CD62L hi ) were not significantly depleted in antagonist IL-7R antibody treated mice compared to isotype control ( Figure 5). These results indicate that antagonist IL-7R antibodies reduce blood glucose levels through naive CD8+ T cell depletion.
- This example illustrates the effect of antagonist IL-7R antibodies in a mouse model for multiple sclerosis, experimental autoimmune encephalomyelitis (EAE).
- the STAT5 activation assay was used to identify antagonist IL-7R antibodies.
- Spleens from B6 or BALB/c were homogenized in PBS and lysed in ACK lysis buffer (Invitrogen) for 2 min and then filtered through 100- ⁇ pore size mesh, pelleted, and resuspended at 5 x 10 6 cells/ml in room temperature to 37°C RPMI 1640 containing 10% FBS, penicillin (100 U/ml), streptomycin (100 g/ml), and L-glutamine. Cells were maintained at 37°C in 5% CO2 in conical tubes (to prevent monocyte/macrophage adherence) for 1-2 h before stimulation. Cells were preincubated with test antibody for 5 minutes prior to stimulation with IL-7.
- Active EAE was induced in 6- to 8-week-old female B6 mice by subcutaneous immunization with 100 of MOG35-55 peptide (MEVGWYRSPFSRVVHLYRNGK (SEQ ID NO: 15)) emulsified in CFA containing 1 mg/ml of heat-killed Mycobacterium tuberculosis H37RA (Difco) on day 0 (see, Steinman and Zamvil, 2006). Additionally, mice received 400 ng of pertussis toxin (Calbiochem) i.v. in 0.1 ml of PBS on days 0 and 2.
- This example illustrates immunological changes in EAE mice after antagonist IL-7R antibody treatment.
- lymphocyte populations from treated and control animals were analyzed by immunostaining and flow cytometry.
- MOG immunized EAE animals were treated weekly with antagonist IL-7R antibody 28G9 (10 mg/kg), 28B6 (10 mg/kg) or vehicle (non-reactive isotype-matched antibody, 10 mg/kg).
- IL-7R antibody 28G9 10 mg/kg
- 28B6 10 mg/kg
- vehicle non-reactive isotype-matched antibody
- Immunostained lymphocytes were analyzed by flow cytometry. T cell populations in the BM, spleen, blood and thymus from EAE animals treated with antagonist I L-7R antibodies were significantly reduced compared to vehicle controls. As shown in Figure 1 1 , both CD4 T cell (Figure 1 1 A) and CD8 T cell ( Figure 1 1 B) populations from BM, spleen, blood and lymph nodes were significantly reduced in antagonist IL-7R antibody treated EAE animals. This is consistent with the role of IL-7R in both CD4 and CD8 T cell development. However, B cell populations were not significantly reduced in all of peripheral lymphoid organs. This result differs from the mouse genetic data from the IL-7R knockout, which lacks both T and B cells.
- CD44 l0 CD62L hi represents naive T cells
- CD44 hi CD62L l0 represents activated T cells
- CD44 hl CD62L hl represent memory T cells.
- antagonist IL-7R antibody treated mice had significantly depleted naive T cell and activated T cell populations ( Figures 12A and 12C). However, memory T cell populations were not significantly depleted ( Figure 12B).
- naive T cell depletion can block nascent autoAg-specific T cell activation, in turn preventing EAE.
- Memory T cells are not depleted, and thus, anti-infection immunity is preserved.
- CNS central nervous system
- CNS tissues were digested with collagenase D (2.5 mg/ml; Roche Diagnostics) and DNasel (1 mg/ml; Roche Diagnostics) at 37°C for 45 minutes.
- Mononuclear cells were isolated by passing the tissue through 70- ⁇ cell strainers (BD Biosciences), followed by Percoll gradient (70%/37%) centrifugation.
- Lymphocytes were collected from the 37%/70% interface and washed.
- the following antibodies were used for immunostaining: FITC-, PE- or PE-Cy5-conjugated CD3 (17A2), CD4 (H129.19), CD8 (53-6.7), CD62L (MEL14), CD44 (IM7), B220 (H1.2F3), IgM (11/41 ), DX5 (CD49b) (all from BD Biosciences).
- lymphocytes were stimulated in vitro with phorbol 12-myristate 13-acetate (20 ng/ml; Sigma-Aldrich) and ionomycin (1 ⁇ g/ml; Sigma-Aldrich) in the presence of GolgiStopTM (monensin) (5ug/ml) for 5 hours before staining.
- MOGse- IAb tetramer and control tetramer (CLIP/IAb) were constructed and supplied by the NIH Tetramer Core Facility. Background staining was assessed using nonreactive, isotype-matched control mAbs.
- 2- or 3-color immunofluorescence analysis single-cell suspensions (10 6 cells) were stained at 4°C using predetermined optimal concentrations of mAb for 20 minutes. For tetramer staining, lymphocytes were stained for 3 hours at 37°C.
- Example 7 Antagonist IL-7R Antibodies Ameliorate Glucose Intolerance in Diet-Induced Obesity (DIO) Animals
- This example illustrates the effect of antagonist IL-7R antibodies in a mouse model for type 2 diabetes.
- Example 8 Antagonist IL-7R Antibodies Reduce Disease Severity in a Mouse Model for Rheumatoid Arthritis
- This example illustrates the effect of antagonist IL-7R antibodies in a mouse model for rheumatoid arthritis (RA).
- Collagen induced arthritis is a widely used animal model sharing many pathological and histological similarities with RA.
- CIA Collagen induced arthritis
- 6-8 week old male B10.RIII mice (stock # 000457, The Jackson Laboratory) were immunized with 150 ug of Type II collagen (Elastin Products) emulsified in Freund's complete adjuvant containing 4 mg/ml heat-killed Mycobacterium tuberculosis H37RA (Difco) on day 0 and day 15.
- Mice were injected i.p. with 1 , 3 or 10 mg/kg of antagonist IL-7R antibody 28G9 or nonreactive isotype- matched control antibodies on day -1 , day 1 , day 8, day 15 and day 22.
- This example illustrates efficicacy of antagonist IL-7R antibodies in a mouse model for established EAE.
- EAE was induced in SJL/J mice by immunization with 200 ⁇ g of PLP(p139-151 ) dissolved in complete Freund's adjuvant containing 4 mg/ml of heat-killed
- Mycobacterium tuberculosis H37Ra (Difco Laboratories). Mice were examined daily for bodyweight measurements and clinical signs of EAE and scored as follows: 0, no paralysis; 1 , loss of tail tone; 2, hindlimb weakness; 3, hindlimb paralysis; 4, hindlimb and forelimb paralysis; 5, moribund or dead.
- mice having a EAE clinical score of 2-3 were treated with 28G9 (10 mg/kg, i.p.),
- SB/14 (10 mg/kg, i.p.) or control IgG (10 mg/kg, i.p.) once a week for 2 weeks (on days
- 28G9 is rat lgG1 antibody and SB/14 (BD Biosciences) is a rat lgG2a antibody. Clinical scores were monitored daily until day 61.
- the mice treated with 28G9 maintained clinical scores of about 2 until the end of the study
- IL-7R antibodies are effective in reducing disease severity in established autoimmune disease.
- Example 10 Antagonist IL-7R Antibodies Reduce Blood Glucose Levels in Animals with Newly Onset Diabetes
- This example illustrates the efficacy of antagonist IL-7R antibodies in reversing newly onset diabetes in a mouse model for type 1 diabetes.
- 28G9 is a rat lgG1 monoclonal antibody
- 28G9-mlgG2a is an antibody having the 28G9 variable regions with mouse lgG2a constant region
- agly-28G9 is an aglycosylated antibody having the 28G9 variable regions with mouse lgG2a N297A.
- the VH and Vk gene of rat monoclonal antibody 28G9 were amplified by PCR, cloned into pARC mouse lgG2a and pARC mouse kappa mammalian expression vectors, and cotransfected into 293F cells by LipofectaminTM (InvitrogenTM). After 5 days of post-transfection, the culture media was harvested and the 28G9 mouse lgG2a was purified by using MabselectTM (GE) resin.
- agly-28G9 For construction and expression of agly-28G9, the VH of rat 28G9 was cloned into an engineered pARC mouse lgG2a vector in which Asn-297 of the CH2 domain was replaced by Ala (pARC mouse lgG2a-N297A). An aglycosylated m28G9 (agly-28G9) was obtained by cotransfection of 293F cells with pARC mouse lgG2a-N297A and pARC-28G9 mouse kappa vector.
- Spontaneous new onset diabetic NOD mice i.e., two consecutive blood glucose concentrations over 250 mg/dl
- 28G9-mlgG2a 10 mg/kg, i.p.
- 28G9 10 mg/kg, i.p.
- agly-28G9 10 mg/kg, i.p.
- control IgG 10 mg/kg, i.p.
- Blood glucose levels were monitored daily for 140 days after disease onset.
- mice treated with 28G9-mlgG2a 100% remission was observed.
- blood glucose levels were maintained below 250 mg/dl with weekly 28G9-mlgG2a injections.
- 28G9 also showed some efficicacy in reducing blood glucose levels compared to control IgG.
- mice treated with just two or three doses of antagonist IL-7R antibodies maintained blood glucose levels lower than 250 mg/dL for several months after antibody was administered.
- Example 1 Antagonist IL-7R Antibodies Reduce Disease Severity in Mouse Models for Graft-Versus-Host Disease (GVHD)
- This example illustrates the effect of antagonist IL-7R antibodies in mouse models for acute and chronic graft-versus-host disease (GVHD).
- GVHD graft-versus-host disease
- Chronic GVHD For the chronic GVHD mouse model, human cord blood cells containing a small (1 -5%) percentage of CD3+ T cells were transplanted into newborn irradiated NOD.SCID IL2Ry-/- mice. Briefly, human CD34+ cord blood (AHCells, LLC, Emeryville, CA) was depleted of CD3+ T cells using human CD3 selection beads (Miltenyi Biotec GmBH, Germany, CAT #130-050-101 ) For the transplantation, about 300,000 to 400,000 CD34+ cells containing about 1-5% CD3+ T cells (in a volume of 50 ⁇ ) were intracardially injected per newborn irradiated NOD.SCID IL2Ry-/- mouse (The Jackson Laboratory). cGVHD developed 16-20 weeks post-transplantation.
- mice were sacrificed at about 28-32 weeks old, after about 4 to 8 weeks of antagonist IL-7R antibody or PBS treatment.
- Mice treated with antagonist IL-7R fully human lgG1 antibody had significantly less hair loss than mice injected with PBS. Histologic analysis showed kidneys of PBS-treated mice were generally more severely affected than kidneys of antagonist I L-7R antibody-treated mice. For example, kidneys of control (PBS-treated) mice had markedly thickened capillary loops with increased amounts of eosinophilic material. In contrast, kidneys of mice treated with antagonist IL- 7R antibody had mildly thickened capillary loops with increased amount of eosinophilic material.
- kidneys of mice treated with antagonist IL-7R antibody had fewer dilated tubules compared to kidneys of mice treated with isotype control, which showed many dilated tubules.
- Lung histology revealed substantially reduced bronchial associated lymphoid tissue (BALT) in lungs of mice treated with antagonist I L-7R antibody compared to lungs of control mice, which had some BALT present.
- Severe lymphoid atrophy was observed in spleen of mice treated with antagonist IL-7 R antibody, compared to the mild to moderate change in spleen of mice treated with PBS.
- This example illustrates the effect of antagonist IL-7R antibodies in a mouse model for lupus.
- MRL/MpJ-Fas 7J mice (The Jackson Laboratory) were used. Commonly referred to as Ipr mutants, these mice are homozygous for the lymphoproliferation spontaneous mutation (Fas l r ) and show systemic autoimmunity, massive lymphadenopathy associated with proliferation of aberrant T cells, arthritis, and immune complex glomerulonephrosis.
- the MRL/MpJ-Fas l 7J mice are useful as a model for systemic lupus erythematosus.
- mice were dosed i.p. weekly with 1 , 3, or 10 mg/kg 28G9-mlgG2a antagonist IL-7R antibody (see Example 10), 1 mg/kg agly- 28G9 antagonist I L-7R antibody, an isotype control IgG (negative control) or cyclophosphamide (positive control).
- IL-7R antibody 1 mg/kg agly- 28G9 antagonist I L-7R antibody
- IgG negative control
- cyclophosphamide positive control
- Disease severity was monitored by measuring proteinuria levels, activity levels, and assessing the righting reflex. I n assessing the righting reflex, mice that failed to right themselves within 30 seconds were sacrificed. Suvival rate is summarized in Table 7 below.
- mice treated with 1 mg/kg agly-28G9, 3 mg/kg 28G9- mlgG2a or 10 mg/kg 28G9-mlgG2a had an increased survival rate compared to mice treated with isotype control IgG.
- Example 13 Epitope Mapping/Binding of Antagonist IL-7R Antibodies
- This example illustrates structure-guided mutagenesis to map antibody binding epitopes.
- a panel of IL-7Ra single point mutants (his-tagged) were prepared as follows.
- the twenty-three IL-7Ra single point mutants described above were generated from the previously described wild-type DNA construct (McElroy et al., 2009, supra) using standard DNA techniques.
- the mutant proteins were expressed using transient transfection in HEK293T cells and secreted into the cell media.
- the mutant proteins were purified by Ni 2+ column chromatography. Protein concentrations were measured by spectrophotometry (NanoDropTM).
- IL-7Ra Interaction analysis of IL-7Ra was performed at 25 °C using a surface-plasmon resonance-based ProteOnTM XPR36 biosensor equipped with a GLM sensor chip (Bio- Rad, Hercules, CA, USA).
- HBST running buffer (10 mM Hepes pH7.4, 150 mM NaCI, 0.05% v/v Tween-20) was used throughout.
- Full-length IL-7R antibodies HAL403a or HAL403b
- HAL403a or HAL403b were amine-coupled onto separate "vertical" channels of the chip via standard EDC/sulfo-NHS-mediated chemistry to levels of about 2000-5000 RU.
- the panel of IL-7Ra mutants (including wild-type IL-7Ra) was screened in the "horizontal" direction at 100 nM using association and dissociation phases of 3 and 10 mins respectively at 30 uL/min. Surfaces were regenerated with 2/1 v/v Pierce immunopure elution buffer (pH2.8) /4M NaCI. Most injections were duplicated to confirm that the assay was reproducible.
- Table 8 summarizes the impact of the single point mutations in the IL-7Ra mutants on antibody binding compared to wild-type IL-7Ra.
- the IL-7Ra mutants displaying weakened antibody binding compared to wild-type IL-7Ra were identified as having a point mutation at a residue involved in mAb binding.
- the binding residues of IL-7Ra to antibody HAL403a in descending order of mutant effects were identified as follows: I82 (high impact on binding), K84 (medium impact), K100 (medium impact), T105 (medium impact), Y192 (medium impact), D190 (small impact), H191 (small impact), and K194 (small impact).
- the binding residues of I L-7Ra to antibody HAL403b in descending order of mutant effects were identified as follows: I82 (high impact on binding), K84 (medium impact), K100 (medium impact), T105 (medium impact), Y192 (medium impact), D190 (small impact), H191 (small impact), and K194 (small impact).
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biomedical Technology (AREA)
- Diabetes (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Rheumatology (AREA)
- Physical Education & Sports Medicine (AREA)
- Zoology (AREA)
- Neurosurgery (AREA)
- Endocrinology (AREA)
- Pain & Pain Management (AREA)
- Neurology (AREA)
- Obesity (AREA)
- Mycology (AREA)
- Epidemiology (AREA)
- Physics & Mathematics (AREA)
- Hematology (AREA)
- Orthopedic Medicine & Surgery (AREA)
Abstract
Description
Claims
Priority Applications (15)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES11711673T ES2780374T3 (en) | 2010-02-24 | 2011-02-24 | Anti-IL-7 Receptor Antagonist Antibodies and Procedures |
AU2011219488A AU2011219488B2 (en) | 2010-02-24 | 2011-02-24 | Antagonist anti-IL-7 receptor antibodies and methods |
RU2012136234/10A RU2533809C9 (en) | 2010-02-24 | 2011-02-24 | Antagonist anti-il-7 receptor antibodies and methods |
NZ601586A NZ601586A (en) | 2010-02-24 | 2011-02-24 | Antagonist anti-il-7 receptor antibodies and methods |
KR1020147004734A KR20140033246A (en) | 2010-02-24 | 2011-02-24 | Antagonist anti-il-7 receptor antibodies and methods |
JP2012554463A JP5602885B2 (en) | 2010-02-24 | 2011-02-24 | Antagonist anti-IL-7 receptor antibodies and methods |
CN201180011149.4A CN103038254B (en) | 2010-02-24 | 2011-02-24 | The anti-IL-7 receptor antibody of Antagonism and method |
KR1020127022056A KR101509874B1 (en) | 2010-02-24 | 2011-02-24 | Antagonist anti-il-7 receptor antibodies and methods |
BR112012021433A BR112012021433A2 (en) | 2010-02-24 | 2011-02-24 | anti-7 receptor antagonist antibodies and methods. |
SG2012056610A SG182811A1 (en) | 2010-02-24 | 2011-02-24 | Antagonist anti-il-7 receptor antibodies and methods |
CA2789132A CA2789132C (en) | 2010-02-24 | 2011-02-24 | Antagonist il-7 receptor antibodies to treat type 2 diabetes and immunological disorders |
MX2012009497A MX2012009497A (en) | 2010-02-24 | 2011-02-24 | Antagonist anti-il-7 receptor antibodies and methods. |
EP11711673.1A EP2539369B1 (en) | 2010-02-24 | 2011-02-24 | Antagonist anti-il-7 receptor antibodies and methods |
IL221620A IL221620A (en) | 2010-02-24 | 2012-08-23 | Antagonist anti-il-7 receptor antibodies and methods |
HK13111421.1A HK1184168A1 (en) | 2010-02-24 | 2013-10-10 | Antagonist anti-il-7 receptor antibodies and methods il-7 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US30767010P | 2010-02-24 | 2010-02-24 | |
US61/307,670 | 2010-02-24 | ||
US201161438205P | 2011-01-31 | 2011-01-31 | |
US61/438,205 | 2011-01-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011104687A1 true WO2011104687A1 (en) | 2011-09-01 |
Family
ID=44476676
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2011/050792 WO2011104687A1 (en) | 2010-02-24 | 2011-02-24 | Antagonist anti-il-7 receptor antibodies and methods |
Country Status (22)
Country | Link |
---|---|
US (5) | US8298535B2 (en) |
EP (1) | EP2539369B1 (en) |
JP (3) | JP5602885B2 (en) |
KR (2) | KR101509874B1 (en) |
CN (2) | CN103038254B (en) |
AR (1) | AR080291A1 (en) |
AU (1) | AU2011219488B2 (en) |
BR (1) | BR112012021433A2 (en) |
CA (1) | CA2789132C (en) |
CO (1) | CO6561843A2 (en) |
ES (1) | ES2780374T3 (en) |
HK (1) | HK1184168A1 (en) |
IL (1) | IL221620A (en) |
MX (1) | MX2012009497A (en) |
MY (1) | MY164755A (en) |
NZ (1) | NZ601586A (en) |
PE (1) | PE20130646A1 (en) |
RU (2) | RU2533809C9 (en) |
SA (1) | SA114360064B1 (en) |
SG (1) | SG182811A1 (en) |
TW (2) | TWI596114B (en) |
WO (1) | WO2011104687A1 (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101453516B1 (en) | 2011-09-20 | 2014-10-24 | 가톨릭대학교 산학협력단 | Composition for preventing and treating autoimmune diseases comprising anti-VEGF antibody |
EP2955196A1 (en) | 2014-06-10 | 2015-12-16 | Effimune | Antibodies directed against CD127 |
WO2016059512A1 (en) | 2014-10-18 | 2016-04-21 | Pfizer Inc. | Anti-il-7r antibody compositions |
US9447182B2 (en) | 2011-10-19 | 2016-09-20 | Ose Immunotherapeutics | Antibodies directed against the alpha chain of IL7 receptor—their use for the preparation of drug candidates |
WO2017055966A1 (en) | 2015-10-01 | 2017-04-06 | Pfizer Inc. | Low viscosity antibody compositions |
WO2017149394A1 (en) | 2016-02-29 | 2017-09-08 | Ose Immunotherapeutics | Non-antagonistic antibodies directed against the alpha chain of the il7 receptor extracellular domain and use thereof in cancer treatment |
WO2018019897A1 (en) * | 2016-07-26 | 2018-02-01 | Polichem S.A. | Anti-hsv synergistic activity of antibodies and antiviral agents |
WO2018104483A1 (en) | 2016-12-09 | 2018-06-14 | Ose Immunotherapeutics | Antibodies and polypeptides directed against cd127 |
WO2020154293A1 (en) | 2019-01-22 | 2020-07-30 | Bristol-Myers Squibb Company | Antibodies against il-7r alpha subunit and uses thereof |
WO2020254827A1 (en) | 2019-06-21 | 2020-12-24 | Vhsquared Limited | Polypeptides |
WO2020254828A1 (en) | 2019-06-21 | 2020-12-24 | Vhsquared Limited | Compositions |
US11623952B2 (en) | 2019-06-21 | 2023-04-11 | Sorriso Pharmaceuticals, Inc. | IL-23 and TNF-alpha binding bi-specific heavy chain polypeptides |
WO2024146956A1 (en) | 2023-01-06 | 2024-07-11 | Twain Therapeutics Pte. Ltd. | Antigen-binding molecules |
WO2024146955A1 (en) | 2023-01-06 | 2024-07-11 | Twain Therapeutics Pte. Ltd. | Antigen-binding molecules |
WO2024200826A1 (en) | 2023-03-30 | 2024-10-03 | Ose Immunotherapeutics | Lipid-based nanoparticle targeted at activated immune cells for the expression of immune cell inhibiting molecule and use thereof |
WO2024200823A1 (en) | 2023-03-30 | 2024-10-03 | Ose Immunotherapeutics | Lipid-based nanoparticle targeted at activated immune cells for the expression of immune cell enhancing molecule and use thereof |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AR080291A1 (en) * | 2010-02-24 | 2012-03-28 | Rinat Neuroscience Corp | ANTI-BODIES ANTAGONISTS ANTI RECEIVER OF IL-7 AND PROCEDURES |
EP3352790A1 (en) * | 2015-09-22 | 2018-08-01 | Pfizer Inc | Method of preparing a therapeutic protein formulation and antibody formulation produced by such a method |
WO2017062748A1 (en) * | 2015-10-07 | 2017-04-13 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Il-7r-alpha specific antibodies for treating acute lymphoblastic leukemia |
WO2018156649A1 (en) * | 2017-02-22 | 2018-08-30 | Flagship Pioneering, Inc. | Compositions of t cell modulator (tcm) molecules and uses thereof |
WO2022020637A1 (en) * | 2020-07-22 | 2022-01-27 | Nektar Therapeutics | Il-7 receptor agonist composition and related methods and uses |
WO2024040194A1 (en) | 2022-08-17 | 2024-02-22 | Capstan Therapeutics, Inc. | Conditioning for in vivo immune cell engineering |
CN117050178B (en) * | 2023-10-13 | 2024-01-12 | 北京百普赛斯生物科技股份有限公司 | Antibody for specifically detecting IL-7 and application thereof |
Citations (79)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3773919A (en) | 1969-10-23 | 1973-11-20 | Du Pont | Polylactide-drug mixtures |
EP0003089A1 (en) | 1978-01-06 | 1979-07-25 | Bernard David | Drier for silkscreen printed sheets |
US4485045A (en) | 1981-07-06 | 1984-11-27 | Research Corporation | Synthetic phosphatidyl cholines useful in forming liposomes |
US4544545A (en) | 1983-06-20 | 1985-10-01 | Trustees University Of Massachusetts | Liposomes containing modified cholesterol for organ targeting |
US4676980A (en) | 1985-09-23 | 1987-06-30 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Target specific cross-linked heteroantibodies |
US4683202A (en) | 1985-03-28 | 1987-07-28 | Cetus Corporation | Process for amplifying nucleic acid sequences |
US4683195A (en) | 1986-01-30 | 1987-07-28 | Cetus Corporation | Process for amplifying, detecting, and/or-cloning nucleic acid sequences |
WO1987004462A1 (en) | 1986-01-23 | 1987-07-30 | Celltech Limited | Recombinant dna sequences, vectors containing them and method for the use thereof |
US4754065A (en) | 1984-12-18 | 1988-06-28 | Cetus Corporation | Precursor to nucleic acid probe |
GB2200651A (en) | 1987-02-07 | 1988-08-10 | Al Sumidaie Ayad Mohamed Khala | A method of obtaining a retrovirus-containing fraction from retrovirus-containing cells |
US4777127A (en) | 1985-09-30 | 1988-10-11 | Labsystems Oy | Human retrovirus-related products and methods of diagnosing and treating conditions associated with said retrovirus |
US4800159A (en) | 1986-02-07 | 1989-01-24 | Cetus Corporation | Process for amplifying, detecting, and/or cloning nucleic acid sequences |
US4816567A (en) | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
EP0345242A2 (en) | 1988-06-03 | 1989-12-06 | Smithkline Biologicals S.A. | Expression of gag proteins from retroviruses in eucaryotic cells |
WO1990007936A1 (en) | 1989-01-23 | 1990-07-26 | Chiron Corporation | Recombinant therapies for infection and hyperproliferative disorders |
WO1990011092A1 (en) | 1989-03-21 | 1990-10-04 | Vical, Inc. | Expression of exogenous polynucleotide sequences in a vertebrate |
WO1991000360A1 (en) | 1989-06-29 | 1991-01-10 | Medarex, Inc. | Bispecific reagents for aids therapy |
WO1991002805A2 (en) | 1989-08-18 | 1991-03-07 | Viagene, Inc. | Recombinant retroviruses delivering vector constructs to target cells |
US5013556A (en) | 1989-10-20 | 1991-05-07 | Liposome Technology, Inc. | Liposomes with enhanced circulation time |
US5047335A (en) | 1988-12-21 | 1991-09-10 | The Regents Of The University Of Calif. | Process for controlling intracellular glycosylation of proteins |
WO1991014445A1 (en) | 1990-03-21 | 1991-10-03 | Research Development Foundation | Heterovesicular liposomes |
WO1992020373A1 (en) | 1991-05-14 | 1992-11-26 | Repligen Corporation | Heteroconjugate antibodies for treatment of hiv infection |
EP0519596A1 (en) | 1991-05-17 | 1992-12-23 | Merck & Co. Inc. | A method for reducing the immunogenicity of antibody variable domains |
WO1993003769A1 (en) | 1991-08-20 | 1993-03-04 | THE UNITED STATES OF AMERICA, represented by THE SECRETARY, DEPARTEMENT OF HEALTH AND HUMAN SERVICES | Adenovirus mediated transfer of genes to the gastrointestinal tract |
WO1993006213A1 (en) | 1991-09-23 | 1993-04-01 | Medical Research Council | Production of chimeric antibodies - a combinatorial approach |
WO1993010218A1 (en) | 1991-11-14 | 1993-05-27 | The United States Government As Represented By The Secretary Of The Department Of Health And Human Services | Vectors including foreign genes and negative selective markers |
WO1993011230A1 (en) | 1991-12-02 | 1993-06-10 | Dynal As | Modified mammalian stem cell blocking viral replication |
US5219740A (en) | 1987-02-13 | 1993-06-15 | Fred Hutchinson Cancer Research Center | Retroviral gene transfer into diploid fibroblasts for gene therapy |
WO1993019191A1 (en) | 1992-03-16 | 1993-09-30 | Centre National De La Recherche Scientifique | Defective recombinant adenoviruses expressing cytokines for use in antitumoral treatment |
WO1993025234A1 (en) | 1992-06-08 | 1993-12-23 | The Regents Of The University Of California | Methods and compositions for targeting specific tissue |
WO1993025698A1 (en) | 1992-06-10 | 1993-12-23 | The United States Government As Represented By The | Vector particles resistant to inactivation by human serum |
US5278299A (en) | 1991-03-18 | 1994-01-11 | Scripps Clinic And Research Foundation | Method and composition for synthesizing sialylated glycosyl compounds |
WO1994003622A1 (en) | 1992-07-31 | 1994-02-17 | Imperial College Of Science, Technology & Medicine | D-type retroviral vectors, based on mpmv |
WO1994004690A1 (en) | 1992-08-17 | 1994-03-03 | Genentech, Inc. | Bispecific immunoadhesins |
WO1994012649A2 (en) | 1992-12-03 | 1994-06-09 | Genzyme Corporation | Gene therapy for cystic fibrosis |
WO1994023697A1 (en) | 1993-04-22 | 1994-10-27 | Depotech Corporation | Cyclodextrin liposomes encapsulating pharmacologic compounds and methods for their use |
WO1994028938A1 (en) | 1993-06-07 | 1994-12-22 | The Regents Of The University Of Michigan | Adenovirus vectors for gene therapy sponsorship |
WO1995000655A1 (en) | 1993-06-24 | 1995-01-05 | Mc Master University | Adenovirus vectors for gene therapy |
WO1995007994A2 (en) | 1993-09-15 | 1995-03-23 | Viagene, Inc. | Recombinant alphavirus vectors |
WO1995011984A2 (en) | 1993-10-25 | 1995-05-04 | Canji, Inc. | Recombinant adenoviral vector and methods of use |
WO1995013796A1 (en) | 1993-11-16 | 1995-05-26 | Depotech Corporation | Vesicles with controlled release of actives |
US5422120A (en) | 1988-05-30 | 1995-06-06 | Depotech Corporation | Heterovesicular liposomes |
WO1995030763A2 (en) | 1994-05-09 | 1995-11-16 | Chiron Viagene, Inc. | Retroviral vectors having a reduced recombination rate |
US5510261A (en) | 1991-11-21 | 1996-04-23 | The Board Of Trustees Of The Leland Stanford Juniot University | Method of controlling the degradation of glycoprotein oligosaccharides produced by cultured Chinese hamster ovary cells |
WO1996017072A2 (en) | 1994-11-30 | 1996-06-06 | Chiron Viagene, Inc. | Recombinant alphavirus vectors |
US5530101A (en) | 1988-12-28 | 1996-06-25 | Protein Design Labs, Inc. | Humanized immunoglobulins |
US5545806A (en) | 1990-08-29 | 1996-08-13 | Genpharm International, Inc. | Ransgenic non-human animals for producing heterologous antibodies |
US5545807A (en) | 1988-10-12 | 1996-08-13 | The Babraham Institute | Production of antibodies from transgenic animals |
US5565332A (en) | 1991-09-23 | 1996-10-15 | Medical Research Council | Production of chimeric antibodies - a combinatorial approach |
US5569825A (en) | 1990-08-29 | 1996-10-29 | Genpharm International | Transgenic non-human animals capable of producing heterologous antibodies of various isotypes |
US5580717A (en) | 1990-05-01 | 1996-12-03 | Affymax Technologies N.V. | Recombinant library screening methods |
US5580859A (en) | 1989-03-21 | 1996-12-03 | Vical Incorporated | Delivery of exogenous DNA sequences in a mammal |
US5625126A (en) | 1990-08-29 | 1997-04-29 | Genpharm International, Inc. | Transgenic non-human animals for producing heterologous antibodies |
US5633425A (en) | 1990-08-29 | 1997-05-27 | Genpharm International, Inc. | Transgenic non-human animals capable of producing heterologous antibodies |
US5661016A (en) | 1990-08-29 | 1997-08-26 | Genpharm International Inc. | Transgenic non-human animals capable of producing heterologous antibodies of various isotypes |
WO1997042338A1 (en) | 1996-05-06 | 1997-11-13 | Chiron Corporation | Crossless retroviral vectors |
US5733743A (en) | 1992-03-24 | 1998-03-31 | Cambridge Antibody Technology Limited | Methods for producing members of specific binding pairs |
US5750373A (en) | 1990-12-03 | 1998-05-12 | Genentech, Inc. | Enrichment method for variant proteins having altered binding properties, M13 phagemids, and growth hormone variants |
US5807715A (en) | 1984-08-27 | 1998-09-15 | The Board Of Trustees Of The Leland Stanford Junior University | Methods and transformed mammalian lymphocyte cells for producing functional antigen-binding protein including chimeric immunoglobulin |
US5814482A (en) | 1993-09-15 | 1998-09-29 | Dubensky, Jr.; Thomas W. | Eukaryotic layered vector initiation systems |
US5866692A (en) | 1991-09-18 | 1999-02-02 | Kyowa Hakko Kogyo Co., Ltd. | Process for producing humanized chimera antibody |
US5981568A (en) | 1993-01-28 | 1999-11-09 | Neorx Corporation | Therapeutic inhibitor of vascular smooth muscle cells |
WO1999058572A1 (en) | 1998-05-08 | 1999-11-18 | Cambridge University Technical Services Limited | Binding molecules derived from immunoglobulins which do not trigger complement mediated lysis |
US5997867A (en) | 1991-07-16 | 1999-12-07 | Waldmann; Herman | Method of using humanized antibody against CD18 |
WO2000009560A2 (en) | 1998-08-17 | 2000-02-24 | Abgenix, Inc. | Generation of modified molecules with increased serum half-lives |
US6054297A (en) | 1991-06-14 | 2000-04-25 | Genentech, Inc. | Humanized antibodies and methods for making them |
WO2000053211A2 (en) | 1999-03-09 | 2000-09-14 | University Of Southern California | Method of promoting myocyte proliferation and myocardial tissue repair |
US6180377B1 (en) | 1993-06-16 | 2001-01-30 | Celltech Therapeutics Limited | Humanized antibodies |
US6210671B1 (en) | 1992-12-01 | 2001-04-03 | Protein Design Labs, Inc. | Humanized antibodies reactive with L-selectin |
WO2001027160A1 (en) | 1999-10-14 | 2001-04-19 | Applied Molecular Evolution, Inc. | Methods of optimizing antibody variable region binding affinity |
US6265150B1 (en) | 1995-06-07 | 2001-07-24 | Becton Dickinson & Company | Phage antibodies |
US6350861B1 (en) | 1992-03-09 | 2002-02-26 | Protein Design Labs, Inc. | Antibodies with increased binding affinity |
US6376471B1 (en) | 1997-10-10 | 2002-04-23 | Johns Hopkins University | Gene delivery compositions and methods |
US6413942B1 (en) | 1989-03-21 | 2002-07-02 | Vical, Inc. | Methods of delivering a physiologically active polypeptide to a mammal |
US6436908B1 (en) | 1995-05-30 | 2002-08-20 | Duke University | Use of exogenous β-adrenergic receptor and β-adrenergic receptor kinase gene constructs to enhance myocardial function |
WO2004058184A2 (en) | 2002-12-24 | 2004-07-15 | Rinat Neuroscience Corp. | Anti-ngf antibodies and methods using same |
US7314622B2 (en) | 2005-04-15 | 2008-01-01 | Neogenix Oncology, Inc. | Recombinant monoclonal antibodies and corresponding antigens for colon and pancreatic cancers |
WO2010017468A1 (en) * | 2008-08-08 | 2010-02-11 | Glaxo Wellcome Manufacturing Pte Ltd | Treatment of autoimmune and inflammatory disease |
WO2010085643A1 (en) * | 2009-01-22 | 2010-07-29 | University Of Miami | Targeting il-7 signaling as a therapy for multiple sclerosis and other il-7 signaling dependent disorders |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2033082A1 (en) | 1989-06-15 | 1990-12-16 | Linda S. Park | Interleukin-7 receptors |
US5859205A (en) * | 1989-12-21 | 1999-01-12 | Celltech Limited | Humanised antibodies |
WO1994028160A1 (en) * | 1993-06-01 | 1994-12-08 | Toray Industries, Inc. | Monoclonal antibody, process for producing the same, and use thereof |
FR2745185B1 (en) | 1996-02-28 | 1998-05-15 | Sanofi Sa | USE OF IL-7 IN THE TREATMENT OF AUTOIMMUNE DISEASES, PARTICULARLY INSULIN-DEPENDENT DIABETES MELLITUS |
RU2430927C2 (en) * | 2000-10-20 | 2011-10-10 | Тугаи Сейяку Кабусики Кайся | Atomic compound capable of specifically identifying and cross linkinking cell surface molecule or intracellular molecule |
US20050054054A1 (en) * | 2002-11-12 | 2005-03-10 | Foss Francine M. | Interleukin-7 molecules with altered biological properties |
WO2006052660A2 (en) | 2004-11-04 | 2006-05-18 | Childrens Hospital Los Angeles Research Institute | Il-7 receptor blockade to suppress immunity |
CA2513350A1 (en) | 2005-03-02 | 2006-09-02 | Sydney West Area Health Service | Treatment for multiple sclerosis |
US7833527B2 (en) * | 2006-10-02 | 2010-11-16 | Amgen Inc. | Methods of treating psoriasis using IL-17 Receptor A antibodies |
AR080291A1 (en) * | 2010-02-24 | 2012-03-28 | Rinat Neuroscience Corp | ANTI-BODIES ANTAGONISTS ANTI RECEIVER OF IL-7 AND PROCEDURES |
-
2011
- 2011-02-23 AR ARP110100552A patent/AR080291A1/en not_active Application Discontinuation
- 2011-02-23 US US13/033,491 patent/US8298535B2/en active Active
- 2011-02-23 TW TW103117043A patent/TWI596114B/en not_active IP Right Cessation
- 2011-02-23 TW TW100106090A patent/TWI552760B/en not_active IP Right Cessation
- 2011-02-23 SA SA114360064A patent/SA114360064B1/en unknown
- 2011-02-24 AU AU2011219488A patent/AU2011219488B2/en not_active Ceased
- 2011-02-24 ES ES11711673T patent/ES2780374T3/en active Active
- 2011-02-24 CN CN201180011149.4A patent/CN103038254B/en not_active Expired - Fee Related
- 2011-02-24 SG SG2012056610A patent/SG182811A1/en unknown
- 2011-02-24 KR KR1020127022056A patent/KR101509874B1/en active IP Right Grant
- 2011-02-24 CA CA2789132A patent/CA2789132C/en active Active
- 2011-02-24 NZ NZ601586A patent/NZ601586A/en not_active IP Right Cessation
- 2011-02-24 RU RU2012136234/10A patent/RU2533809C9/en not_active IP Right Cessation
- 2011-02-24 JP JP2012554463A patent/JP5602885B2/en active Active
- 2011-02-24 BR BR112012021433A patent/BR112012021433A2/en not_active Application Discontinuation
- 2011-02-24 EP EP11711673.1A patent/EP2539369B1/en active Active
- 2011-02-24 KR KR1020147004734A patent/KR20140033246A/en not_active Application Discontinuation
- 2011-02-24 PE PE2012001367A patent/PE20130646A1/en active IP Right Grant
- 2011-02-24 MY MYPI2012003767A patent/MY164755A/en unknown
- 2011-02-24 CN CN201610073133.0A patent/CN105859887A/en active Pending
- 2011-02-24 WO PCT/IB2011/050792 patent/WO2011104687A1/en active Application Filing
- 2011-02-24 MX MX2012009497A patent/MX2012009497A/en active IP Right Grant
-
2012
- 2012-08-23 IL IL221620A patent/IL221620A/en not_active IP Right Cessation
- 2012-08-24 CO CO12144298A patent/CO6561843A2/en unknown
- 2012-09-26 US US13/627,601 patent/US8637273B2/en active Active
-
2013
- 2013-10-10 HK HK13111421.1A patent/HK1184168A1/en not_active IP Right Cessation
- 2013-12-17 US US14/109,267 patent/US9346885B2/en active Active
-
2014
- 2014-06-02 JP JP2014113768A patent/JP6230488B2/en active Active
- 2014-09-05 RU RU2014136103A patent/RU2653430C2/en not_active IP Right Cessation
-
2016
- 2016-04-22 US US15/136,584 patent/US10059772B2/en active Active
- 2016-09-29 JP JP2016191490A patent/JP2017061454A/en active Pending
-
2018
- 2018-07-20 US US16/040,945 patent/US20180327503A1/en not_active Abandoned
Patent Citations (87)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3773919A (en) | 1969-10-23 | 1973-11-20 | Du Pont | Polylactide-drug mixtures |
EP0003089A1 (en) | 1978-01-06 | 1979-07-25 | Bernard David | Drier for silkscreen printed sheets |
US4485045A (en) | 1981-07-06 | 1984-11-27 | Research Corporation | Synthetic phosphatidyl cholines useful in forming liposomes |
US4816567A (en) | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
US6331415B1 (en) | 1983-04-08 | 2001-12-18 | Genentech, Inc. | Methods of producing immunoglobulins, vectors and transformed host cells for use therein |
US4544545A (en) | 1983-06-20 | 1985-10-01 | Trustees University Of Massachusetts | Liposomes containing modified cholesterol for organ targeting |
US5807715A (en) | 1984-08-27 | 1998-09-15 | The Board Of Trustees Of The Leland Stanford Junior University | Methods and transformed mammalian lymphocyte cells for producing functional antigen-binding protein including chimeric immunoglobulin |
US4754065A (en) | 1984-12-18 | 1988-06-28 | Cetus Corporation | Precursor to nucleic acid probe |
US4683202B1 (en) | 1985-03-28 | 1990-11-27 | Cetus Corp | |
US4683202A (en) | 1985-03-28 | 1987-07-28 | Cetus Corporation | Process for amplifying nucleic acid sequences |
US4676980A (en) | 1985-09-23 | 1987-06-30 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Target specific cross-linked heteroantibodies |
US4777127A (en) | 1985-09-30 | 1988-10-11 | Labsystems Oy | Human retrovirus-related products and methods of diagnosing and treating conditions associated with said retrovirus |
WO1987004462A1 (en) | 1986-01-23 | 1987-07-30 | Celltech Limited | Recombinant dna sequences, vectors containing them and method for the use thereof |
US4683195A (en) | 1986-01-30 | 1987-07-28 | Cetus Corporation | Process for amplifying, detecting, and/or-cloning nucleic acid sequences |
US4683195B1 (en) | 1986-01-30 | 1990-11-27 | Cetus Corp | |
US4800159A (en) | 1986-02-07 | 1989-01-24 | Cetus Corporation | Process for amplifying, detecting, and/or cloning nucleic acid sequences |
GB2200651A (en) | 1987-02-07 | 1988-08-10 | Al Sumidaie Ayad Mohamed Khala | A method of obtaining a retrovirus-containing fraction from retrovirus-containing cells |
US5219740A (en) | 1987-02-13 | 1993-06-15 | Fred Hutchinson Cancer Research Center | Retroviral gene transfer into diploid fibroblasts for gene therapy |
US5422120A (en) | 1988-05-30 | 1995-06-06 | Depotech Corporation | Heterovesicular liposomes |
EP0345242A2 (en) | 1988-06-03 | 1989-12-06 | Smithkline Biologicals S.A. | Expression of gag proteins from retroviruses in eucaryotic cells |
US5545807A (en) | 1988-10-12 | 1996-08-13 | The Babraham Institute | Production of antibodies from transgenic animals |
US5047335A (en) | 1988-12-21 | 1991-09-10 | The Regents Of The University Of Calif. | Process for controlling intracellular glycosylation of proteins |
US5530101A (en) | 1988-12-28 | 1996-06-25 | Protein Design Labs, Inc. | Humanized immunoglobulins |
US5585089A (en) | 1988-12-28 | 1996-12-17 | Protein Design Labs, Inc. | Humanized immunoglobulins |
US5693761A (en) | 1988-12-28 | 1997-12-02 | Protein Design Labs, Inc. | Polynucleotides encoding improved humanized immunoglobulins |
US5693762A (en) | 1988-12-28 | 1997-12-02 | Protein Design Labs, Inc. | Humanized immunoglobulins |
US6180370B1 (en) | 1988-12-28 | 2001-01-30 | Protein Design Labs, Inc. | Humanized immunoglobulins and methods of making the same |
WO1990007936A1 (en) | 1989-01-23 | 1990-07-26 | Chiron Corporation | Recombinant therapies for infection and hyperproliferative disorders |
WO1990011092A1 (en) | 1989-03-21 | 1990-10-04 | Vical, Inc. | Expression of exogenous polynucleotide sequences in a vertebrate |
US6413942B1 (en) | 1989-03-21 | 2002-07-02 | Vical, Inc. | Methods of delivering a physiologically active polypeptide to a mammal |
US5580859A (en) | 1989-03-21 | 1996-12-03 | Vical Incorporated | Delivery of exogenous DNA sequences in a mammal |
WO1991000360A1 (en) | 1989-06-29 | 1991-01-10 | Medarex, Inc. | Bispecific reagents for aids therapy |
WO1991002805A2 (en) | 1989-08-18 | 1991-03-07 | Viagene, Inc. | Recombinant retroviruses delivering vector constructs to target cells |
US5013556A (en) | 1989-10-20 | 1991-05-07 | Liposome Technology, Inc. | Liposomes with enhanced circulation time |
EP0524968A1 (en) | 1990-03-21 | 1993-02-03 | Res Dev Foundation | Heterovesicular liposomes. |
WO1991014445A1 (en) | 1990-03-21 | 1991-10-03 | Research Development Foundation | Heterovesicular liposomes |
US5580717A (en) | 1990-05-01 | 1996-12-03 | Affymax Technologies N.V. | Recombinant library screening methods |
US5661016A (en) | 1990-08-29 | 1997-08-26 | Genpharm International Inc. | Transgenic non-human animals capable of producing heterologous antibodies of various isotypes |
US5569825A (en) | 1990-08-29 | 1996-10-29 | Genpharm International | Transgenic non-human animals capable of producing heterologous antibodies of various isotypes |
US5625126A (en) | 1990-08-29 | 1997-04-29 | Genpharm International, Inc. | Transgenic non-human animals for producing heterologous antibodies |
US5545806A (en) | 1990-08-29 | 1996-08-13 | Genpharm International, Inc. | Ransgenic non-human animals for producing heterologous antibodies |
US5633425A (en) | 1990-08-29 | 1997-05-27 | Genpharm International, Inc. | Transgenic non-human animals capable of producing heterologous antibodies |
US5750373A (en) | 1990-12-03 | 1998-05-12 | Genentech, Inc. | Enrichment method for variant proteins having altered binding properties, M13 phagemids, and growth hormone variants |
US5278299A (en) | 1991-03-18 | 1994-01-11 | Scripps Clinic And Research Foundation | Method and composition for synthesizing sialylated glycosyl compounds |
WO1992020373A1 (en) | 1991-05-14 | 1992-11-26 | Repligen Corporation | Heteroconjugate antibodies for treatment of hiv infection |
EP0519596A1 (en) | 1991-05-17 | 1992-12-23 | Merck & Co. Inc. | A method for reducing the immunogenicity of antibody variable domains |
US6054297A (en) | 1991-06-14 | 2000-04-25 | Genentech, Inc. | Humanized antibodies and methods for making them |
US5997867A (en) | 1991-07-16 | 1999-12-07 | Waldmann; Herman | Method of using humanized antibody against CD18 |
WO1993003769A1 (en) | 1991-08-20 | 1993-03-04 | THE UNITED STATES OF AMERICA, represented by THE SECRETARY, DEPARTEMENT OF HEALTH AND HUMAN SERVICES | Adenovirus mediated transfer of genes to the gastrointestinal tract |
US5866692A (en) | 1991-09-18 | 1999-02-02 | Kyowa Hakko Kogyo Co., Ltd. | Process for producing humanized chimera antibody |
US5565332A (en) | 1991-09-23 | 1996-10-15 | Medical Research Council | Production of chimeric antibodies - a combinatorial approach |
WO1993006213A1 (en) | 1991-09-23 | 1993-04-01 | Medical Research Council | Production of chimeric antibodies - a combinatorial approach |
WO1993010218A1 (en) | 1991-11-14 | 1993-05-27 | The United States Government As Represented By The Secretary Of The Department Of Health And Human Services | Vectors including foreign genes and negative selective markers |
US5510261A (en) | 1991-11-21 | 1996-04-23 | The Board Of Trustees Of The Leland Stanford Juniot University | Method of controlling the degradation of glycoprotein oligosaccharides produced by cultured Chinese hamster ovary cells |
WO1993011230A1 (en) | 1991-12-02 | 1993-06-10 | Dynal As | Modified mammalian stem cell blocking viral replication |
US6350861B1 (en) | 1992-03-09 | 2002-02-26 | Protein Design Labs, Inc. | Antibodies with increased binding affinity |
WO1993019191A1 (en) | 1992-03-16 | 1993-09-30 | Centre National De La Recherche Scientifique | Defective recombinant adenoviruses expressing cytokines for use in antitumoral treatment |
US5733743A (en) | 1992-03-24 | 1998-03-31 | Cambridge Antibody Technology Limited | Methods for producing members of specific binding pairs |
WO1993025234A1 (en) | 1992-06-08 | 1993-12-23 | The Regents Of The University Of California | Methods and compositions for targeting specific tissue |
WO1993025698A1 (en) | 1992-06-10 | 1993-12-23 | The United States Government As Represented By The | Vector particles resistant to inactivation by human serum |
WO1994003622A1 (en) | 1992-07-31 | 1994-02-17 | Imperial College Of Science, Technology & Medicine | D-type retroviral vectors, based on mpmv |
WO1994004690A1 (en) | 1992-08-17 | 1994-03-03 | Genentech, Inc. | Bispecific immunoadhesins |
US6210671B1 (en) | 1992-12-01 | 2001-04-03 | Protein Design Labs, Inc. | Humanized antibodies reactive with L-selectin |
WO1994012649A2 (en) | 1992-12-03 | 1994-06-09 | Genzyme Corporation | Gene therapy for cystic fibrosis |
US5981568A (en) | 1993-01-28 | 1999-11-09 | Neorx Corporation | Therapeutic inhibitor of vascular smooth muscle cells |
WO1994023697A1 (en) | 1993-04-22 | 1994-10-27 | Depotech Corporation | Cyclodextrin liposomes encapsulating pharmacologic compounds and methods for their use |
WO1994028938A1 (en) | 1993-06-07 | 1994-12-22 | The Regents Of The University Of Michigan | Adenovirus vectors for gene therapy sponsorship |
US6180377B1 (en) | 1993-06-16 | 2001-01-30 | Celltech Therapeutics Limited | Humanized antibodies |
WO1995000655A1 (en) | 1993-06-24 | 1995-01-05 | Mc Master University | Adenovirus vectors for gene therapy |
US5814482A (en) | 1993-09-15 | 1998-09-29 | Dubensky, Jr.; Thomas W. | Eukaryotic layered vector initiation systems |
WO1995007994A2 (en) | 1993-09-15 | 1995-03-23 | Viagene, Inc. | Recombinant alphavirus vectors |
WO1995011984A2 (en) | 1993-10-25 | 1995-05-04 | Canji, Inc. | Recombinant adenoviral vector and methods of use |
WO1995013796A1 (en) | 1993-11-16 | 1995-05-26 | Depotech Corporation | Vesicles with controlled release of actives |
WO1995030763A2 (en) | 1994-05-09 | 1995-11-16 | Chiron Viagene, Inc. | Retroviral vectors having a reduced recombination rate |
WO1996017072A2 (en) | 1994-11-30 | 1996-06-06 | Chiron Viagene, Inc. | Recombinant alphavirus vectors |
US6436908B1 (en) | 1995-05-30 | 2002-08-20 | Duke University | Use of exogenous β-adrenergic receptor and β-adrenergic receptor kinase gene constructs to enhance myocardial function |
US6265150B1 (en) | 1995-06-07 | 2001-07-24 | Becton Dickinson & Company | Phage antibodies |
WO1997042338A1 (en) | 1996-05-06 | 1997-11-13 | Chiron Corporation | Crossless retroviral vectors |
US6376471B1 (en) | 1997-10-10 | 2002-04-23 | Johns Hopkins University | Gene delivery compositions and methods |
WO1999058572A1 (en) | 1998-05-08 | 1999-11-18 | Cambridge University Technical Services Limited | Binding molecules derived from immunoglobulins which do not trigger complement mediated lysis |
WO2000009560A2 (en) | 1998-08-17 | 2000-02-24 | Abgenix, Inc. | Generation of modified molecules with increased serum half-lives |
WO2000053211A2 (en) | 1999-03-09 | 2000-09-14 | University Of Southern California | Method of promoting myocyte proliferation and myocardial tissue repair |
WO2001027160A1 (en) | 1999-10-14 | 2001-04-19 | Applied Molecular Evolution, Inc. | Methods of optimizing antibody variable region binding affinity |
WO2004058184A2 (en) | 2002-12-24 | 2004-07-15 | Rinat Neuroscience Corp. | Anti-ngf antibodies and methods using same |
US7314622B2 (en) | 2005-04-15 | 2008-01-01 | Neogenix Oncology, Inc. | Recombinant monoclonal antibodies and corresponding antigens for colon and pancreatic cancers |
WO2010017468A1 (en) * | 2008-08-08 | 2010-02-11 | Glaxo Wellcome Manufacturing Pte Ltd | Treatment of autoimmune and inflammatory disease |
WO2010085643A1 (en) * | 2009-01-22 | 2010-07-29 | University Of Miami | Targeting il-7 signaling as a therapy for multiple sclerosis and other il-7 signaling dependent disorders |
Non-Patent Citations (135)
Title |
---|
"Animal Cell Culture", 1987 |
"Antibodies: a practical approach", 1988, IRL PRESS |
"Cell and Tissue Culture: Laboratory Procedures", 1993, J. WILEY AND SONS |
"Cell Biology: A Laboratory Notebook", 1998, ACADEMIC PRESS |
"Current Protocols in Immunology", 1991 |
"Current Protocols in Molecular Biology", 1987 |
"Gene Transfer Vectors for Mammalian Cells", 1987 |
"Handbook of Experimental Immunology" |
"Introduction to Cell and Tissue Culture", 1998, PLENUM PRESS |
"Methods in Enzymology", ACADEMIC PRESS, INC. |
"Methods in Molecular Biology", HUMANA PRESS |
"Monoclonal antibodies: a practical approach", 2000, OXFORD UNIVERSITY PRESS |
"Oligonucleotide Synthesis", 1984 |
"PCR: The Polymerase Chain Reaction", 1994 |
"PCR: The Polymerase Chain Reaction", 1994, BIRKAUSWER PRESS |
"Remington: The Science and practice of Pharmacy", 2000, LIPPINCOTT WILLIAMS AND WILKINS |
"Remington's Pharmaceutical Sciences", 1990, MACK PUBLISHING CO. |
"Short Protocols in Molecular Biology", 1999, WILEY AND SONS |
"The Antibodies", 1995, HARWOOD ACADEMIC PUBLISHERS |
AALBERSE ET AL., IMMUNOLOGY, vol. 105, 2002, pages 9 - 19 |
AL-LAZIKANI ET AL., J. MOLEC. BIOL., vol. 273, 1997, pages 927 - 948 |
ARMOUR ET AL., MOLECULAR IMMUNOLOGY, vol. 40, 2003, pages 585 - 593 |
BALINT ET AL., GENE, vol. 137, no. 1, 1993, pages 109 - 18 |
BARBAS ET AL., PROC NAT. ACAD. SCI, USA, vol. 91, 1994, pages 3809 - 3813 |
BARDWELL ET AL., RHEUMATOLOGY, vol. 41, 2002, pages 38 - 45 |
BIRD ET AL., SCIENCE, vol. 242, 1988, pages 423 - 426 |
BOERNER ET AL., J. IMMUNOL., vol. 147, no. 1, 1991, pages 86 - 95 |
BOYD ET AL., MOL. IMMUNOL., vol. 32, 1996, pages 1311 - 1318 |
BROWN ET AL., CANCER RES., vol. 47, 1987, pages 3577 - 3583 |
BUCK, D. W. ET AL., IN VITRO, vol. 18, 1982, pages 377 - 381 |
C.A. JANEWAY, P. TRAVERS, IMMUNOBIOLOGY, 1997 |
CAPEL ET AL., IMMUNOMETHODS, vol. 4, 1994, pages 25 - 34 |
CHIOU ET AL.: "Gene Therapeutics: Methods And Applications Of Direct Gene Transfer", 1994 |
CHUNG BRILE ET AL: "Prevention of graft-versus-host disease by anti IL-7R.alpha. antibody", BLOOD, AMERICAN SOCIETY OF HEMATOLOGY, US, vol. 110, no. 8, 15 October 2007 (2007-10-15), pages 2803 - 2810, XP002560035, ISSN: 0006-4971, [retrieved on 20070626], DOI: DOI:10.1182/BLOOD-2006-11-055673 * |
CLACKSON ET AL., NATURE, vol. 352, 1991, pages 624 - 628 |
COLE ET AL.: "Monoclonal Antibodies and Cancer Therapy", 1985, ALAN R. LISS, pages: 77 |
CONNELLY, HUMAN GENE THERAPY, vol. 1, 1995, pages 185 |
COX ET AL., EUR. J. IMMUNOL., vol. 24, 1994, pages 827 - 836 |
DAUGHERTY ET AL., NUCL. ACIDS RES., vol. 19, 1991, pages 2471 - 2476 |
DAYHOFF, M.O.: "Atlas of Protein Sequence and Structure", vol. 5, 1978, NATIONAL BIOMEDICAL RESEARCH FOUNDATION, article "A model of evolutionary change in proteins - Matrices for detecting distant relationships", pages: 345 - 358 |
DE HAAS ET AL., J. LAB. CLIN. MED., vol. 126, 1995, pages 330 - 41 |
E. HARLOW, D. LANE: "Using antibodies: a laboratory manual", 1999, COLD SPRING HARBOR LABORATORY PRESS |
EPSTEIN ET AL., PROC. NATL. ACAD. SCI. USA, vol. 82, 1985, pages 3688 |
EUR. J. IMMUNOL., vol. 29, 1999, pages 2613 - 2624 |
FINDEIS ET AL., TRENDS BIOTECHNOL., vol. 11, 1993, pages 202 |
FRY ET AL., J IMMUNOL., vol. 174, 2005, pages 6571 - 6 |
GLANVILLE G. ET AL., PROC NATL ACAD SCI USA, vol. 106, no. 48, 2009, pages 20216 - 20221 |
GRIFFITH ET AL., EMBO J., vol. 12, 1993, pages 725 - 734 |
GUYER ET AL., J. IMMUNOL., vol. 117, 1976, pages 587 |
HARLOW, LANE: "Using Antibodies, a Laboratory Manual", 1999, COLD SPRING HARBOR LABORATORY PRESS |
HAWKINS ET AL., J. MOL. BIOL., vol. 226, 1992, pages 889 - 896 |
HEIN J.: "Methods in Enzymology", vol. 183, 1990, ACADEMIC PRESS, INC., article "Unified Approach to Alignment and Phylogenes", pages: 626 - 645 |
HIGGINS, D.G., SHARP, P.M., CABIOS, vol. 5, 1989, pages 151 - 153 |
HOLLIGER ET AL., PROC. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 6444 - 6448 |
HOLLIGER, P. ET AL., PROC. NATL. ACAD SCI. USA, vol. 90, 1993, pages 6444 - 6448 |
HOOGENBOOM, WINTER, J. MOL. BIOL., vol. 227, 1991, pages 381 |
HSE ET AL., J. BIOL. CHEM., vol. 272, 1997, pages 9062 - 9070 |
HUSTON ET AL., PROC. NATL. ACAD. SCI. USA, vol. 85, 1988, pages 5879 - 5883 |
HWANG ET AL., PROC. NATL ACAD. SCI. USA, vol. 77, 1980, pages 4030 |
IDUSOGIE ET AL., J. IMMUNOLOGY, vol. 164, 2000, pages 4178 - 4184 |
III ET AL., PROTEIN ENG., vol. 10, 1997, pages 949 - 57 |
JACKSON ET AL., J. IMMUNOL., vol. 154, no. 7, 1995, pages 3310 - 9 |
JEFFERIS ET AL., IMMUNOLOGICAL REVIEWS, vol. 163, 1998, pages 59 - 76 |
JEFFERIS, LUND, CHEM. IMMUNOL., vol. 65, 1997, pages 111 - 128 |
JIAN ET AL., CYTOKINE GROWTH FACTOR REV., vol. 16, 2005, pages 513 - 533 |
JOHNSON, KEVIN S., CHISWELL, DAVID J., CURRENT OPINION IN STRUCTURAL BIOLOGY, vol. 3, 1993, pages 564 - 571 |
JOLLY, CANCER GENE THERAPY, vol. 1, 1994, pages 51 |
JONES ET AL., NATURE, vol. 321, 1986, pages 522 - 525 |
KABAT ET AL.: "Sequences of Proteins of Immunological Interest", 1991, NATIONAL INSTITUTES OF HEALTH |
KABAT, E. A. ET AL.: "Sequences of Proteins of Immunological Interest", 1991, NIH PUBLICATION NO. 91-3242 |
KABAT. KABAT ET AL.: "Sequences of Proteins of Immunological Interest", 1991, NATIONAL INSTITUTES OF HEALTH |
KAPLITT, NATURE GENETICS, vol. 6, 1994, pages 148 |
KIKUTANI ET AL., ADV. IMMUNOL., vol. 51, 1992, pages 285 - 322 |
KIM ET AL., J. IMMUNOL., vol. 24, 1994, pages 249 |
KIMURA, HUMAN GENE THERAPY, vol. 5, 1994, pages 845 |
KOHLER, B., MILSTEIN, C., NATURE, vol. 256, 1975, pages 495 - 497 |
KOHLER, MILSTEIN, NATURE, vol. 256, 1975, pages 495 |
KOSTELNY ET AL., J. IMMUNOL., vol. 148, 1992, pages 1547 - 1553 |
LEET, FLOWERS, HEMATOLOGY, vol. 2008, January 2008 (2008-01-01), pages 134 - 141 |
LOBUGLIO ET AL., PROC. NAT. ACAD. SCI. USA, vol. 86, 1989, pages 4220 - 4224 |
LONBERG, N., D. HUSZAR, INT. REV. IMMUNOL, vol. 13, 1995, pages 65 |
LUND ET AL., J. IMMUNOLOGY, vol. 157, 1996, pages 4963 - 9 |
MAKABE ET AL.: "Thermodynamic Consequences of Mutations in Vernier Zone Residues of a Humanized Anti-human Epidermal Growth Factor Receptor Murine Antibody", JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 283, 2007, pages 1156 - 1166 |
MARK ET AL., J. MOL. BIOL., vol. 222, 1991, pages 581 - 597 |
MARKS ET AL., BIO/TECHNOL., vol. 10, 1992, pages 779 - 783 |
MARKS ET AL., BIO/TECHNOLOGY, vol. 10, 1992, pages 779 - 783 |
MARKS ET AL., J. MOL. BIOL., vol. 222, 1991, pages 581 |
MARTIN, EMBO J., vol. 13, 1994, pages 5303 - 9 |
MAZZUCCHELLI ET AL., NAT REV IMMUNOL., vol. 7, 2007, pages 144 - 54 |
MCCAFFERTY ET AL., NATURE, vol. 348, 1990, pages 552 - 553 |
MCCAFFERTY ET AL., NATURE, vol. 348, 1990, pages 552 - 554 |
MCELROY ET AL., STRUCTURE, vol. 17, no. 1, 2009, pages 54 - 65 |
MILLSTEIN, CUELLO, NATURE, vol. 305, 1983, pages 537 - 539 |
MORGAN ET AL., IMMUNOLOGY, vol. 86, 1995, pages 319 - 324 |
MORRISON ET AL., PROC. NAT. ACAD. SCI., vol. 81, 1984, pages 6851 |
MYERS, E.W., MULLER W., CABIOS, vol. 4, 1988, pages 11 - 17 |
P. FINCH, ANTIBODIES, 1997 |
PEETERS ET AL., VACCINE, vol. 19, 2001, pages 2756 |
PHILIP, MOL. CELL BIOL., vol. 14, 1994, pages 2411 |
POLJAK, R. J. ET AL., STRUCTURE, vol. 2, 1994, pages 1121 - 1123 |
POLLOCK ET AL., J IMMUNOL METHODS, vol. 231, 1999, pages 147 |
RAVETCH, KINET, ANN. REV. IMMUNOL., vol. 9, 1991, pages 457 - 92 |
RECHE PA ET AL., J IMMUNOL., vol. 167, 2001, pages 336 - 43 |
REMINGTON: "The Science and Practice of Pharmacy", 2000, MACK PUBLISHING |
RIECHMANN ET AL., NATURE, vol. 332, 1988, pages 323 - 327 |
ROBINSON, E.D., COMB. THEOR., vol. 11, 1971, pages 105 |
SAMBROOK ET AL.: "Molecular Cloning: A Laboratory Manual", 1989, COLD SPRING HARBOR PRESS |
SANTOU, N., NES, M., MOL. BIOL. EVOL., vol. 4, 1987, pages 406 - 425 |
SCHIER ET AL., GENE, vol. 169, 1995, pages 147 - 155 |
SHAW ET AL., J IMMUNOL., vol. 138, 1987, pages 4534 - 4538 |
SHEETS ET AL., PROC. NATL. ACAD. SCI. (USA), vol. 95, 1998, pages 6157 - 6162 |
SNEATH, P.H.A., SOKAL, R.R.: "Numerical Taxonomy the Principles and Practice of Numerical Taxonomy", 1973, FREEMAN PRESS |
SONGSIVILAI, LACHMANN, CLIN. EXP. IMMUNOL., vol. 79, 1990, pages 315 - 321 |
SURESH ET AL., METHODS IN ENZYMOLOGY, vol. 121, 1986, pages 210 |
TAO ET AL., J. IMMUNOLOGY, vol. 143, 1989, pages 2595 - 2601 |
TILLER ET AL., J. IMMUNOL. METHODS, vol. 329, 2008, pages 112 |
TOMLINSON ET AL., J. MOL. BIOL., vol. 227, 1992, pages 776 - 798 |
TRAUNECKER ET AL., EMBO J., vol. 10, 1991, pages 3655 - 3659 |
TRAUNECKER ET AL., INT. J. CANCER, vol. 7, 1992, pages 51 - 52 |
UMANA ET AL., MATURE BIOTECH., vol. 17, 1999, pages 176 - 180 |
VAUGHAN ET AL., NATURE BIOTECHNOLOGY, vol. 14, 1996, pages 309 - 314 |
VERHOEYEN ET AL., SCIENCE, vol. 239, 1988, pages 1534 - 1536 |
WATERHOUSE ET AL., NUCL. ACIDS RES., vol. 21, 1993, pages 2265 - 2266 |
WILBUR, W.J., LIPMAN, D.J., PROC. NATL. ACAD. SCI. USA, vol. 80, 1983, pages 726 - 730 |
WINTER ET AL., ANNU. REV. IMMUNOL, vol. 12, 1994, pages 433 - 455 |
WINTER ET AL., NATURE, vol. 349, 1991, pages 293 - 299 |
WITTWE, HOWARD, BIOCHEM., vol. 29, 1990, pages 4175 - 4180 |
WOFFENDIN, PROC. NATL. ACAD. SCI., vol. 91, 1994, pages 1581 |
WRIGHT, MORRISON, TIBTECH, vol. 15, 1997, pages 26 - 32 |
WU ET AL., J. BIOL. CHEM., vol. 263, 1988, pages 621 |
WU ET AL., J. BIOL. CHEM., vol. 266, 1991, pages 338 |
WU ET AL., J. BIOL. CHEM., vol. 269, 1994, pages 542 |
WYSS, WAGNER, CURRENT OPIN. BIOTECH., vol. 7, 1996, pages 409 - 416 |
YELTON ET AL., J. IMMUNOL., vol. 155, 1995, pages 1994 - 2004 |
ZENKE ET AL., PROC. NATL. ACAD. SCI. USA, vol. 87, 1990, pages 3655 |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101453516B1 (en) | 2011-09-20 | 2014-10-24 | 가톨릭대학교 산학협력단 | Composition for preventing and treating autoimmune diseases comprising anti-VEGF antibody |
US9447182B2 (en) | 2011-10-19 | 2016-09-20 | Ose Immunotherapeutics | Antibodies directed against the alpha chain of IL7 receptor—their use for the preparation of drug candidates |
RU2734076C2 (en) * | 2014-06-10 | 2020-10-12 | Осе Иммунотерапеутикс | Antibodies directed to cd127 |
AU2015273532B2 (en) * | 2014-06-10 | 2021-03-04 | Ose Immunotherapeutics | Antibodies directed against CD127 |
EP2955196A1 (en) | 2014-06-10 | 2015-12-16 | Effimune | Antibodies directed against CD127 |
AU2015273532C1 (en) * | 2014-06-10 | 2021-07-15 | Ose Immunotherapeutics | Antibodies directed against CD127 |
WO2015189302A1 (en) * | 2014-06-10 | 2015-12-17 | Effimune | Antibodies directed against cd127 |
US11440964B2 (en) | 2014-06-10 | 2022-09-13 | Ose Immunotherapeutics | Method for treating a pathological condition involving the activation or proliferation of CD127 positive cells with an anti-CD127 antibody |
EA039303B1 (en) * | 2014-06-10 | 2022-01-11 | Осе Иммунотерапеутикс | Antibodies directed against cd127 |
US10428152B2 (en) | 2014-06-10 | 2019-10-01 | Ose Immunotherapeutics | Antibodies directed against CD127 |
WO2016059512A1 (en) | 2014-10-18 | 2016-04-21 | Pfizer Inc. | Anti-il-7r antibody compositions |
WO2017055966A1 (en) | 2015-10-01 | 2017-04-06 | Pfizer Inc. | Low viscosity antibody compositions |
US11230602B2 (en) | 2016-02-29 | 2022-01-25 | Ose Immunotherapeutics | Non-antagonistic antibodies directed against the alpha chain of the IL7 receptor extracellular domain and use thereof in cancer treatment |
WO2017149394A1 (en) | 2016-02-29 | 2017-09-08 | Ose Immunotherapeutics | Non-antagonistic antibodies directed against the alpha chain of the il7 receptor extracellular domain and use thereof in cancer treatment |
WO2018019897A1 (en) * | 2016-07-26 | 2018-02-01 | Polichem S.A. | Anti-hsv synergistic activity of antibodies and antiviral agents |
US10899824B2 (en) | 2016-07-26 | 2021-01-26 | Polichem S.A. | Anti-HSV synergistic activity of antibodies and antiviral agents |
WO2018104483A1 (en) | 2016-12-09 | 2018-06-14 | Ose Immunotherapeutics | Antibodies and polypeptides directed against cd127 |
US11926671B2 (en) | 2016-12-09 | 2024-03-12 | Ose Immunotherapeutics | Antibodies and polypeptides directed against CD127 |
KR20190090005A (en) * | 2016-12-09 | 2019-07-31 | 오제 이뮈노테라프틱스 | Antibodies and polypeptides directed against CD127 |
US11098128B2 (en) | 2016-12-09 | 2021-08-24 | Ose Immunotherapeutics | Antibodies and polypeptides directed against CD127 |
KR102306366B1 (en) | 2016-12-09 | 2021-09-29 | 오제 이뮈노테라프틱스 | Antibodies and Polypeptides directed against CD127 |
AU2017373819B2 (en) * | 2016-12-09 | 2022-03-31 | Ose Immunotherapeutics | Antibodies and polypeptides directed against CD127 |
RU2769352C2 (en) * | 2016-12-09 | 2022-03-30 | Осе Иммьюнотерапьютикс | Antibodies and polypeptides against cd127 |
WO2020154293A1 (en) | 2019-01-22 | 2020-07-30 | Bristol-Myers Squibb Company | Antibodies against il-7r alpha subunit and uses thereof |
US11919962B2 (en) | 2019-01-22 | 2024-03-05 | Bristol Myers-Squibb Company | Antibodies against IL-7R alpha subunit and uses thereof |
US11008395B2 (en) | 2019-01-22 | 2021-05-18 | Bristol Myers-Squibb Company | Antibodies against IL-7R alpha subunit and uses thereof |
WO2020254827A1 (en) | 2019-06-21 | 2020-12-24 | Vhsquared Limited | Polypeptides |
WO2020254828A1 (en) | 2019-06-21 | 2020-12-24 | Vhsquared Limited | Compositions |
US11623952B2 (en) | 2019-06-21 | 2023-04-11 | Sorriso Pharmaceuticals, Inc. | IL-23 and TNF-alpha binding bi-specific heavy chain polypeptides |
US11667719B2 (en) | 2019-06-21 | 2023-06-06 | Sorriso Pharmaceuticals, Inc. | VHH immunoglobulin chain variable domain that binds to IL-7R and methods of use thereof for treating autoimmune and/or inflammatory diseases |
WO2024146956A1 (en) | 2023-01-06 | 2024-07-11 | Twain Therapeutics Pte. Ltd. | Antigen-binding molecules |
WO2024146955A1 (en) | 2023-01-06 | 2024-07-11 | Twain Therapeutics Pte. Ltd. | Antigen-binding molecules |
WO2024200826A1 (en) | 2023-03-30 | 2024-10-03 | Ose Immunotherapeutics | Lipid-based nanoparticle targeted at activated immune cells for the expression of immune cell inhibiting molecule and use thereof |
WO2024200823A1 (en) | 2023-03-30 | 2024-10-03 | Ose Immunotherapeutics | Lipid-based nanoparticle targeted at activated immune cells for the expression of immune cell enhancing molecule and use thereof |
WO2024200820A1 (en) | 2023-03-30 | 2024-10-03 | Ose Immunotherapeutics | Method of synthesis of targeted lipid nanoparticle and uses thereof |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10059772B2 (en) | Antagonist anti-IL-7 receptor antibodies and methods | |
US9175093B2 (en) | PCSK9 antagonists | |
US9249224B2 (en) | Human growth hormone receptor antagonist antibodies and methods of use thereof | |
AU2014201648B2 (en) | Antagonist anti-il-7 receptor antibodies and methods | |
AU2015200427B2 (en) | PCSK9 antagonists |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180011149.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11711673 Country of ref document: EP Kind code of ref document: A1 |
|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2011219488 Country of ref document: AU |
|
ENP | Entry into the national phase |
Ref document number: 2789132 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 6966/DELNP/2012 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12012501617 Country of ref document: PH |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2012/009497 Country of ref document: MX |
|
ENP | Entry into the national phase |
Ref document number: 2011219488 Country of ref document: AU Date of ref document: 20110224 Kind code of ref document: A Ref document number: 20127022056 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 221620 Country of ref document: IL |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012554463 Country of ref document: JP Ref document number: 12144298 Country of ref document: CO Ref document number: 001367-2012 Country of ref document: PE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011711673 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012136234 Country of ref document: RU |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112012021433 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112012021433 Country of ref document: BR Kind code of ref document: A2 Effective date: 20120824 |