WO2011102528A1 - Mobile robot - Google Patents

Mobile robot Download PDF

Info

Publication number
WO2011102528A1
WO2011102528A1 PCT/JP2011/053818 JP2011053818W WO2011102528A1 WO 2011102528 A1 WO2011102528 A1 WO 2011102528A1 JP 2011053818 W JP2011053818 W JP 2011053818W WO 2011102528 A1 WO2011102528 A1 WO 2011102528A1
Authority
WO
WIPO (PCT)
Prior art keywords
screw
leg
traveling
runner
arm
Prior art date
Application number
PCT/JP2011/053818
Other languages
French (fr)
Japanese (ja)
Inventor
康之 内田
Original Assignee
学校法人日本大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人日本大学 filed Critical 学校法人日本大学
Priority to JP2012500691A priority Critical patent/JP5692932B2/en
Publication of WO2011102528A1 publication Critical patent/WO2011102528A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/024Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members specially adapted for moving on inclined or vertical surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B15/00Wheels or wheel attachments designed for increasing traction
    • B60B15/18Wheels with ground-engaging plate-like shoes
    • B60B15/22Wheels with ground-engaging plate-like shoes connected by links to the hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B19/00Wheels not otherwise provided for or having characteristics specified in one of the subgroups of this group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2310/00Manufacturing methods
    • B60B2310/30Manufacturing methods joining
    • B60B2310/305Manufacturing methods joining by screwing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/20Off-Road Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/40Special vehicles

Definitions

  • the present invention relates to a traveling leg-wheel type traveling robot that is excellent in rough terrain traveling performance.
  • the emergency team may not be able to enter immediately to prevent secondary disasters. Therefore, at disaster sites, in order to ensure the safety of victims and rescue teams, it is important to collect information such as searching for safe routes and searching for dangerous goods and victims in advance.
  • the environment in which these occur is not limited to a relatively flat place in an urban area or a building, but also a natural environment such as sand or grass, or a place with many artificial irregularities such as a subway yard or an underground passage.
  • a robot that collects dangerous information on behalf of humans a robot that is compact, lightweight, easy to carry, and capable of stably traveling in any environment is desired.
  • This mobile robot has a total length of 0.437 [m], a total width of 0.350 [m], a total height of 0.152 [m], a mass of about 12 [kg], and a traveling speed of about 1.1 [m / s]. Fast and rough terrain.
  • RECON ROBOTICS (USA) has developed a small, lightweight and practical RECON SCOUT THROWBOT and is conducting practical tests at the police (see Non-Patent Document 2 below).
  • Wheel diameter is 0.076 [m]
  • overall width is 0.187 [m]
  • balancer (tail) length is 0.102 [m]
  • mass is about 0.6 [kg]
  • traveling speed is about 0.3 [m / s].
  • the balancer (tail) attached to the rear portion has no power, and thus is a resistance during traveling. If the balancer (tail) is damaged, the balancer (tail) cannot travel. Structurally, various impacts during traveling are directly transmitted to the motor, and the power transmission unit is likely to fail.
  • variable SPINY BALL developed by DRAPER Laboratories (USA) is carried around the size of a softball and spreads the stab from the wheel during use to improve rough road running. Since it cannot be changed steplessly, it cannot cope with the narrow environment (see Non-Patent Document 3 below).
  • an object of the present invention is to provide a traveling robot that is also excellent in rough terrain traveling performance.
  • a traveling robot includes a main body portion having a substantially cylindrical shape, a rotating frame that is rotatably mounted around the main body portion via a bearing, and a relative relationship between the main body portion. And a traveling part provided on each side part.
  • the travel unit includes a drive unit that rotates a rotating frame attached to the main body unit via a bearing, a first leg arm that has one end rotatably attached to the rotating frame, and the one end that is the first unit.
  • a deployable leg having a second leg arm rotatably attached to the leg arm is provided with a plurality of deployable leg wheels provided at equal intervals on the rotary frame, and a screw portion formed around the deployable leg, and is rotated by a drive source.
  • the screw, the runner engaged with the screw portion of the screw and moving in the axial direction of the screw, the first and second leg arms and the runner are connected, and the runner moves as described above.
  • the operation mechanism rotates the first leg arm and the second leg arm to open and close the unfolding leg wheel,
  • the rotating frame is rotated by the driving unit, the unfolded leg wheel attached to the rotating frame rotates and travels.
  • the operating mechanism includes, for example, a first operating arm having one end rotatably attached to the runner and the other end rotatably attached to the first leg arm, and one end being the first
  • the second operation arm is rotatably attached to one operation arm and the other end is rotatably attached to the second leg arm.
  • the operation mechanism is connected to an annular bearing mechanism integrated with the runner, and rotates together with the developing leg wheel.
  • the drive source of the screw is one drive motor, and the screw has a first screw portion formed on one side and a second screw portion formed on the other side, and the first screw The part and the second screw part are formed in opposite directions.
  • the screw is rotated by the one drive motor, the runner is engaged with each of the first screw portion and the second screw portion, and when the screw is rotated, the runners are close to each other. Move in the direction you want. Thereby, the said operation mechanism opens and closes the expansion
  • the first screw portion and the second screw portion are formed in the same direction.
  • the screw is rotated by the one drive motor, the runner is engaged with each of the first screw portion and the second screw portion, and when the screw is rotated, each runner is connected to the screw.
  • the operation mechanism opens and closes the developing leg wheels of the traveling parts so that the opening and closing directions are opposite to each other so that the traveling robot can bend. This is particularly effective when the drive unit that rotates the rotating frame is configured by a single drive motor.
  • the screw may be disposed in the same direction as the axis of the rotation shaft of the development leg wheel, and the tip of the screw may be rotatably supported on the side surface of the main body.
  • the screw is plural, and is rotated synchronously by the one drive source, and the runner is engaged with each of the first screw portion and the second screw portion of each screw, and When an operating mechanism that rotates the first leg arm and the second leg arm according to the movement of the runner is provided between the runner and the first and second leg arms, and the screw rotates.
  • the operation mechanism may open and close the developing leg wheels of the traveling portions.
  • the directions of the first screw portion and the second screw portion of each screw may be opposite or the same.
  • the drive unit may be a skid steer system having a drive motor for each of the traveling units provided on the side surfaces of the main body unit, and may be capable of super turning.
  • a plurality of the traveling robots are connected by a connecting mechanism, and when the preceding traveling robot goes up the step, the preceding traveling robot is reduced in diameter so as to close the unfolded leg wheel, and travels under the step.
  • the robot increases the diameter so as to open the deploying leg wheel. Thereby, the vertical fluctuation of a main-body part can be made small.
  • the diameter of the deployable leg wheel with the rotating frame attached to the main body via the bearing mechanism is opened and closed to change the diameter, the size of the unevenness and the traveling speed that can be overcome can be increased. Efficient traveling according to the road surface condition can be performed.
  • FIG. 1 is a partially cutaway perspective view of a traveling robot to which the present invention is applied.
  • FIG. 2 is a cross-sectional view showing the principle of the deploying leg wheel system of the traveling robot to which the present invention is applied.
  • FIG. 3 is a side view showing a state in which the deployment leg wheel is most closed.
  • FIG. 4 is a side view showing a state in which the deployment leg wheel is most closed.
  • FIG. 5 is a side view showing a state where the connected traveling robot rides up a step.
  • FIG. 6 is a sectional view of a traveling robot to which a runner moves in the same direction as a modification of the traveling robot to which the present invention is applied.
  • FIG. 7 is a cross-sectional view showing a modification of FIG.
  • FIG. 8 is a cross-sectional view showing a modification of FIG. 6 and shows an example in which the directions of the first screw portion and the second screw of the two screws are the same.
  • the traveling speed should be about 0.3 to 1.1 [m / s].
  • the wheel diameter can be arbitrarily doubled depending on the road surface so that small irregularities such as cables and steps in the building, sandy ground, grassland, and puddles outside can be stably driven. It can be changed. And it is set as the skid steer system of the two-wheel independent drive which enables a super turn in a narrow space.
  • a traveling robot 1 to which the present invention is applied has a main body 11 having a substantially cylindrical shape.
  • the main body 11 is provided with an imaging unit 12 for imaging a travel location, a battery 13 serving as a power source, a plurality of drive motors, a motor driver 14 for driving and controlling the drive motor, and the like.
  • the imaging unit 12 is a small camera using, for example, a CCD (Charge-Coupled Device) or CMOS (Complementary Metal-Oxide Semiconductor) sensor as an imaging element, and is attached so that the imaging lens faces the outside from the main body unit 11. ing.
  • CCD Charge-Coupled Device
  • CMOS Complementary Metal-Oxide Semiconductor
  • the battery 13 is, for example, a lithium ion secondary battery or a nickel hydride secondary battery.
  • the battery 13 may be a primary battery.
  • the main body 11 configured as described above includes a wireless unit that transmits and receives imaging data and control data, a controller that controls the overall operation, and the like.
  • the wireless unit exchanges data with the remote operation device wirelessly, transmits and receives control data for running, stopping, and the like of the traveling robot 1 and transmits the moving image data captured by the imaging unit 12 to the remote operation device. Send to.
  • the controller receives the control data of the drive motor by a wireless unit
  • the controller outputs the received control data to the motor driver 14, and drives and controls the drive motor by the motor driver 14.
  • the controller transmits imaging data such as moving image data captured by the imaging unit 12 to a remote control device or the like via the wireless unit.
  • the traveling robot 1 may be provided with other units such as a GPS (Galileo positioning system, Global Positioning System) unit, a microphone unit, and a light in addition to the units described above.
  • the communication with the remote control device may be wired or infrared communication.
  • the transmission / reception data may be encrypted.
  • an encryption processing unit is provided in the transmitter, and a decryption processing unit is provided in the receiver.
  • a rotating frame 22 is rotatably attached around the main body 11 having a substantially cylindrical shape.
  • the rotating frame 22 is attached via bearing mechanisms 23 and 23.
  • the bearing mechanisms 23 and 23 are configured by sandwiching a ball 23c between an outer ring 23a and an inner ring 23b.
  • the outer ring 23a is attached to the rotating frame 22, and the inner ring 23b is attached to the main body frame 15 of the main body 11. ing.
  • the rotary frame 22 is attached to a drive shaft 24a of a travel drive motor 24 provided inside the main body 11 at the side surface 22a.
  • the drive shaft 24 a of the travel drive motor 24 in the main body 11 passes through the through hole 15 b of the side surface 15 a of the main body frame 15 and is fixed to the center of the side surface 22 a of the rotary frame 22. Therefore, the rotating frame 22 rotates around the main body frame 15 of the main body 11 via the bearing mechanism 23 with the traveling drive motor 24 as a drive source.
  • the driving motor 24 for traveling is provided according to the development leg wheel in the side part which the main-body part 11 opposes, respectively, and is independently controlled. Therefore, the traveling robot 1 can perform a super turn.
  • the rotation frame 22 is provided with a deployment leg wheel 25.
  • the deployment leg wheel 25 has a plurality of deployment legs 28 composed of a first leg arm 26 and a second leg arm 27.
  • a plurality of, in this case, eight, deployment legs 28 are provided on the outer peripheral portion of the rotary frame 22 at equal intervals.
  • the first leg arm 26 constituting each deploying leg 28 is a linear rod-like member, and one end thereof is attached to the outer peripheral portion of the rotary frame 22 so as to be rotatable about the rotation shaft 26a.
  • one end portion of the second leg arm 27 is attached to the other end portion side of the first leg arm 26 so as to be rotatable about the rotation shaft 27a.
  • the second leg arm 27 is also a linear rod-shaped member, and the other end portion serves as a ground contact end portion to the ground.
  • the tip end portion may be bent to be substantially parallel to the ground so that the traveling robot 1 can maintain a stable posture.
  • the first leg arm 26 rotates about the rotation axis 26a and the second leg arm 27 rotates about the rotation axis 27a. By moving, it can be opened and closed and the diameter of the wheel can be varied.
  • a deployment leg drive motor 31 is provided in the main body 11 as a drive source for opening and closing the rotary leg, and the screw 32 is rotated by the deployment leg drive motor 31.
  • a first gear 33 is attached to the drive shaft 31 a of the development leg drive motor 31, and the first gear 33 is meshed with a second gear 34 fixed substantially at the center in the longitudinal direction of the screw 32. Yes.
  • the screw 32 is disposed over the longitudinal direction of the main body 11, and is a developed leg wheel of the traveling unit 21 provided on the one side surface 22 a side of the main body 11 on one side from the approximate center.
  • a first screw portion 35 for opening and closing the opening 25 is provided, and for opening and closing the development leg wheel 25 of the traveling portion 21 provided on the other side surface portion 22a side of the main body portion 11 on the other side from the approximate center.
  • the second screw portion 36 is provided.
  • the first screw part 35 and the second screw part 36 are formed with thread grooves in opposite directions.
  • a first runner 37 and a second runner 38 are attached to the first screw portion 35 and the second screw portion 36, respectively.
  • the first and second runners 37 and 38 each have a nut portion formed on the inner peripheral surface of the through hole, and the nut portion is engaged with the first and second screw portions 35 and 36. Therefore, when the screw 32 is rotated, the first runner 37 and the second runner 38 move in a direction of approaching and separating from each other.
  • An annular bearing mechanism 39 is attached to each of the first runner 37 and the second runner 38.
  • the bearing mechanism 39 is, for example, a dry bearing, and an inner ring 39 a is attached to each of the first runner 37 and the second runner 38.
  • the outer ring 39b is attached so that one end portion of the first operation arm 42 of the same number of operation mechanisms as the deployment legs 28 can be rotated around the rotation shaft 42a corresponding to the number of the deployment legs 28. . Therefore, the bearing mechanism 39 moves integrally with the first and second runners 37 and 38 in the axial direction of the screw 32, and the outer ring 39 b rotates with the rotating frame 22 relative to the main body 11. Become.
  • the outer ring 39b of the bearing mechanism 39 is provided with an operation mechanism 41 that is connected to the first and second leg arms 26 and 27 and rotates the respective arms 26 and 27.
  • the operation mechanism 41 connects the outer ring 39b of the bearing mechanism 39 and the first leg arm 26 by the first operation arm 42, and the first operation arm 42 and the second leg by the second operation arm 43.
  • the arm 27 is connected.
  • the first operating arm 42 is a linear rod-shaped member, and one end portion is centered on the outer ring 39b of the bearing mechanism 39 integrated with the first and second runners 37 and 38 with the rotation shaft 42a as the center. It is attached to be pivotable. Further, the other end is attached to the middle of the first leg arm 26 so as to be rotatable about the rotation shaft 42b.
  • the second operation arm 43 is attached to one end of the second operation arm 43 so as to be rotatable about the rotation shaft 43 a in the middle of the first operation arm 42, and the other end is rotated to one end of the second leg arm 27. It is attached so as to be rotatable around a shaft 43b.
  • the wheel diameter can be arbitrarily changed within a range of, for example, 0.12 to 0.24 [m].
  • the main body frame 15 and the rotary frame 22 of the main body 11 have an opening 44 and / or an opening 45 that allows the bearing mechanism 39 and the operation mechanism 41 to be exposed to the outside, and the movement of the first and second runners 37 and 38. It is formed over a range. Both ends of the opening 44 and / or the opening 45 in the moving direction of the first and second runners 37 and 38 serve as mechanical ends that restrict the moving range of the first and second runners 37 and 38. ing.
  • the main body 11 is provided with a balancer 29 serving as a tail on the upstream side in the traveling direction, so that the traveling robot 1 can travel with two wheels.
  • the rotating frame 22 rotates when the driving motor 24 for driving normally or reversely drives.
  • the deployment leg wheels 25 and 25 attached to the rotating frame 22 rotate in the same direction as the rotating direction of the rotating frame 22.
  • the first operating arm 42 and the second operating arm 41 of the operating mechanism 41 for connecting the first and second runners 37 and 38 and the first and second leg arms 26 and 27 in the main body 11 on the fixed side. Since the operating arm 43 is attached to the outer ring 39b of the bearing mechanism 39, it rotates in the same manner as the deploying leg wheel 25.
  • the wheel diameter can be changed according to the road surface condition such as flat or rough terrain. Therefore, it is possible to enter a narrow space such as under the vehicle by reducing the wheel diameter, and on uneven terrain such as sand, grassland, or a puddle, it can efficiently run by increasing the wheel diameter, It will have high ground adaptability.
  • this traveling robot 1 since the wheel diameter can be expanded up to about twice in this design, the size of the unevenness that can be overcome and the traveling speed can be increased up to about twice, so that the traveling robot 1 can efficiently travel according to the road surface condition. It can be carried out. Further, as will be described below, by applying this to a four-wheeled vehicle, a six-wheeled vehicle, or the like, it is possible to further improve the traveling performance of rough terrain.
  • the controller uses the motor driver 14 to drive the traveling drive motors 24 of the traveling units 21 and 21 in the same direction at the same speed, and when the traveling direction is bent, the controller develops left and right.
  • the rotational speed of the leg wheels 25, 25 is changed. Specifically, the traveling robot 1 bends in the direction in which the speed of the deployment leg wheel 25 is decreased.
  • the controller causes the motor driver 14 to rotate the driving motors 24 of the traveling units 21 and 21 opposite to each other at the same speed.
  • the inventors made a prototype of the traveling robot 1 shown in Table 1 specifically.
  • the traveling robot 1 to which the present invention is applied As described above, in the traveling robot 1 to which the present invention is applied, the total length of 0.264 [m], the total width of 0.234 [m], and the total height of 0.120 [m] that can reduce the burden when the rescuer is carried. And downsizing, mass 1.46 [kg], downsizing and weight reduction, it has excellent high ground adaptability.
  • the traveling robots 1 a and 1 a to which the present invention is applied are connected to link mechanisms 46 and 46.
  • Each of the traveling robots 1a and 1a is provided with multi-degree-of-freedom link mechanisms 46a and 46a in the main body 11 of the traveling robot 1 using FIGS. 1 to 4, and the multi-degree-of-freedom link mechanisms 46a and 46a are, for example, flexible It is connected by connecting members 47 and 47 having the property.
  • the leading traveling robot 1a preceding the step 50 has a small diameter of the deploying leg wheel 25 and a large diameter of the deploying leg wheel 25 of the traveling robot 1a that has not overcome the step 50.
  • the amount of change in the height of the main body 11 of the traveling robot 1a that has overcome the step 50 and the traveling robot 1a that has not overcome the step 50 can be reduced.
  • the traveling robot 1a has the imaging unit 12
  • the image blur in the height direction of the imaging data can be reduced by reducing the amount of change in the height of the main body unit 11.
  • the traveling robot 1a when the traveling robot 1a is connected, the number of wheels becomes four or more, so that the balancer 29 serving as a tail is not necessary.
  • the screw 32 may be configured so that the first and second screw portions 51 and 52 are formed with screw grooves in the same direction.
  • the first runner 37 and the second runner 38 move in the same direction in the axial direction of the screw 32. That is, when the screw 32 rotates in the direction of arrow A in FIG. 6, both the first and second runners 37 and 38 move in the direction of arrow C in FIG. 25 opens in the direction of arrow E in FIG. 6, that is, the diameter increases, and the deployable leg wheel 25 on the second runner 38 side closes in the direction of arrow F in FIG. 6, that is, the diameter decreases.
  • the left and right deployable leg wheels 25 and 25 have different sizes, and the traveling direction of the traveling robot 1 can be bent even if the traveling drive motor 24 has the same rotation speed.
  • the first and second screw portions 51 and 52 are formed by screw grooves in the same direction so that the first runner 37 and the second runner 38 move in the same direction. This is particularly effective when the traveling drive motor 24 that rotates the rotary frame 22 is provided as one and the left and right development leg wheels are driven by the single drive motor 24.
  • FIG. 6 shows an example in which the deployment leg wheels 25, 25 on both sides are opened and closed via the operation mechanism 41 by rotating one screw 32 has been described, but as shown in FIG.
  • a plurality of screws 32 may be used so that the development leg wheels 25, 25 can be opened and closed smoothly.
  • FIG. 7 shows an example in which the unfolded leg wheel type screw 32 shown in FIG. 2 is used.
  • the second gears 34 and 34 are respectively provided on the two screws 32 and 32 that are parallel to each other, and the second gears 34 and 34 are the first gears of the development leg drive motor 31.
  • each screw 32 and 32 is attached to the main body frame 15 in a stable and freely rotatable manner in parallel to the deployable leg wheels 25 and 25 and the rotation axis, while being long. Also in the example of FIG.
  • each tip portion of the screw 32 may be rotatably supported on the side surface portion 15 a of the main body frame 15 constituting the main body portion 11.
  • the first screw portion 35 and the second screw portion 36 of each screw 32, 32 are formed with mutually opposite thread grooves, as in the case of FIG. 2.
  • the 1st runner 37 and the 2nd runner 38 are attached to the 1st screw part 35 and the 2nd screw part 36 of each screw 32 and 32, respectively.
  • An annular bearing mechanism 39 is attached to each of the first runner 37 and the second runner 38.
  • an inner ring 39 a is attached to each of the first runner 37 and the second runner 38. Further, the outer ring 39b is attached so that one end portion of the first operation arm 42 of the same number of operation mechanisms as the deployment legs 28 can be rotated around the rotation shaft 42a corresponding to the number of the deployment legs 28. . Accordingly, the bearing mechanism 39 moves integrally with the first and second runners 37 and 38 in the axial direction of the screws 32 and 32, and the outer ring 39 b rotates with the rotary frame 22 relative to the main body 11. It will be.
  • the outer ring 39 b of the bearing mechanism 39 is provided with an operation mechanism 41 that is connected to the first and second leg arms 26 and 27 and that rotates the arms 26 and 27.
  • the operation mechanism 41 connects the outer ring 39b of the bearing mechanism 39 and the first leg arm 26 by the first operation arm 42, and the first operation arm 42 and the second leg by the second operation arm 43.
  • the arm 27 is connected.
  • One end of the first operation arm 42 is attached to an outer ring 39b of a bearing mechanism 39 integral with the first and second runners 37 and 38 so as to be rotatable about a rotation shaft 42a. Further, the other end is attached to the middle of the first leg arm 26 so as to be rotatable about the rotation shaft 42b.
  • the second operation arm 43 is attached to one end of the second operation arm 43 so as to be rotatable about the rotation shaft 43 a in the middle of the first operation arm 42, and the other end is rotated to one end of the second leg arm 27.
  • FIG. 7 is different from the unfolded leg wheels 25, 25 by opening and closing the unfolded leg wheels 25, 25 by the first and second runners 37, 38 of the single screw 32 of FIG. Can be opened and closed stably and smoothly.
  • FIG. 8 is a modification of FIG. 6 and FIG. 7, wherein a plurality of screws 32 are used, and the development leg wheels 25 and 25 can be opened and closed smoothly, and the first and second screws of each screw 32.
  • the portions 51 and 52 are formed by screw grooves in the same direction so that the first runner 37 and the second runner 38 move in the same direction. Also in the example of FIG.
  • the second gears 34 and 34 are provided for the two screws 32 and 32 that are parallel to each other, and the second gears 34 and 34 are the first gears of the development leg drive motor 31. Is engaged with the gear 33. Thereby, the two screws 32 and 32 rotate in synchronization with the same direction.
  • each screw 32, 32 is rotatably supported at the side surface portion 15 a of the main body frame 15 constituting the main body portion 11, and in the main body frame 15, each screw 32, 32 is parallel to the deployment leg wheels 25, 25 and the rotation axis. In addition, it can be mounted in a stable and rotatable state. In the example shown in FIG.
  • each tip portion of the screw 32 may be rotatably supported on the side surface portion 15 a of the main body frame 15 constituting the main body portion 11.
  • the first runner 37 and the second runner 38 move in the same direction in the axial direction of the screw 32. That is, when the screws 32, 32 rotate in the direction of arrow A in FIG. 8, both the first and second runners 37, 38 move in the direction of arrow C in FIG.
  • the leg wheel 25 opens in the direction of arrow E in FIG. 8, that is, the diameter increases, and the development leg wheel 25 on the second runner 38 side closes in the direction of arrow F in FIG.
  • the screws 32 and 32 are rotated in the direction of arrow B in FIG.
  • the first and second runners 37 and 38 are both moved in the direction of arrow D in FIG.
  • the deployment leg wheel 25 on the 37 side closes in the direction of arrow F in FIG. 8, that is, the diameter decreases, and the deployment leg wheel 25 on the second runner 38 side opens in the direction of arrow E in FIG.
  • Become. 8 has the same effect as that of the example of FIG. 6, and the opening and closing of the developing leg wheels 25, 25 is provided in each of the plurality of screws 32, 32.
  • the first and second runners 37 and 38 are used.
  • the unfolded leg wheel system of FIG. 8 is different from the unfolded leg wheel 25, 25 by opening and closing the unfolded leg wheel 25, 25 by the first and second runners 37, 38 of the single screw 32 of FIG. Can be opened and closed stably and smoothly.
  • the present invention is excellent not only in flat ground but also in rough terrain, and has excellent running resistance and impact resistance. It is also small and lightweight. Therefore, the present invention can be applied to information collecting robots and work robots that support various kinds of work in disaster sites and confined places such as under the ceiling and under the vehicle. Further, the present invention can also be applied as a traveling robot for entertainment such as a hobby toy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Manipulator (AREA)

Abstract

Disclosed is a mobile robot provided with: a rotating frame (22) that can rotate with respect to a body (11) via a bearing mechanism (39); a plurality of extending legged wheels (25) provided at equal intervals on the rotating frame (22), each of said extending legged wheels having a first leg segment (26), one end of which is attached to the rotating frame (22) so as to be able to revolve, and a second leg segment (27), one end of which is attached to the first leg segment (26) so as to be able to revolve; a screw (32), on which threaded sections (35 and 36) are formed, that rotates and thereby moves runners (37 and 38); and a control mechanism (41) that couples the first and second arm segments (26 and 27) to the runners (37 and 38), causing the first and second arm segments (26 and 27) to revolve as the runners (37 and 38) move. When the screw (32) rotates and the runners (37 and 38) move, the extending legged wheels (25) open/close and the rotating frame (22) rotates, causing the extending legged wheels (25) to rotate. The disclosed mobile robot is small and portable, in addition to handing uneven terrain well.

Description

走行ロボットTraveling robot
 本発明は、不整地走破性に優れる展開脚車輪方式の走行ロボットに関する。
 本出願は、日本国において2010年2月22日に出願された日本特許出願番号特願2010-036548を基礎として優先権を主張するものであり、この出願を参照することにより、本出願に援用される。
The present invention relates to a traveling leg-wheel type traveling robot that is excellent in rough terrain traveling performance.
This application claims priority on the basis of Japanese Patent Application No. 2010-036548 filed on Feb. 22, 2010 in Japan, and is incorporated herein by reference. Is done.
 大規模地震等の大規模災害が発生した現場では、二次災害の防止のため、救急隊も直ちに突入することができないことがある。そこで、災害現場では、被害者や救助隊の安全確保のためにも、事前に、安全な経路の探索、危険物や被害者の捜索等の情報収集が重要である。これらが生起する環境は、市街地や建物内の比較的平坦な場所ばかりではなく、砂地や草地等の自然環境、地下鉄構内や地下道等人工的な凹凸の多い場所も想定される。人に代わって危険な情報収集を行うロボットとして、小型・軽量で携行性も良く、どのような環境でも安定的に走行できる対地適応性の高い走行ロボットが望まれる。 In a site where a large-scale disaster such as a large-scale earthquake has occurred, the emergency team may not be able to enter immediately to prevent secondary disasters. Therefore, at disaster sites, in order to ensure the safety of victims and rescue teams, it is important to collect information such as searching for safe routes and searching for dangerous goods and victims in advance. The environment in which these occur is not limited to a relatively flat place in an urban area or a building, but also a natural environment such as sand or grass, or a place with many artificial irregularities such as a subway yard or an underground passage. As a robot that collects dangerous information on behalf of humans, a robot that is compact, lightweight, easy to carry, and capable of stably traveling in any environment is desired.
 これまで様々な情報収集ロボットの開発がされてきたが、近年の傾向としては、装備として隊員の負担にならない程度の小型・軽量のものが増えつつある。 A variety of information gathering robots have been developed so far, but as a trend in recent years, there is an increasing number of small and lightweight robots that are not burdened by crew members.
 例えば、三菱電機特機システム株式会社と総務省消防庁は、クローラー型の移動ロボットとしてFRIGO-Mを共同開発した(下記非特許文献1参照)。この移動ロボットは、全長0.437[m]、全幅0.350[m]、全高0.152[m]、質量約12[kg]であり、走行速度は約1.1[m/s]と速く、不整地走破性も高い。 For example, Mitsubishi Electric Special Equipment System Co., Ltd. and the Ministry of Internal Affairs and Communications Fire Agency jointly developed FRIGO-M as a crawler type mobile robot (see Non-Patent Document 1 below). This mobile robot has a total length of 0.437 [m], a total width of 0.350 [m], a total height of 0.152 [m], a mass of about 12 [kg], and a traveling speed of about 1.1 [m / s]. Fast and rough terrain.
 しかしながら、携行に人員一名を要するため携行性が良いとは言い難い。 However, it is difficult to say that portability is good because it requires one person to carry.
 また、RECON ROBOTICS社(米国)は、小型・軽量で実用的なRECON SCOUT THROWBOTを開発し、警察等で実用試験を行っている(下記非特許文献2参照)。車輪径0.076[m]、全幅0.187[m]、バランサ(尻尾)長0.102[m]、質量約0.6[kg]であり、走行速度は約0.3[m/s]である。非常に小型・軽量で構造も簡素であるが、二輪型であるため、建物内にあるケーブル等の小さな凹凸も乗り越えることが難しく、不整地走破性が低い。また、後部についているバランサ(尻尾)は、動力を持たないため走行中は抵抗であり、バランサ(尻尾)を破損してしまった場合には、走行不可能となってしまう。構造的にも、走行中の様々な衝撃をモータに直接に伝えてしまい、動力伝達部の故障を引き起こしやすい。 Also, RECON ROBOTICS (USA) has developed a small, lightweight and practical RECON SCOUT THROWBOT and is conducting practical tests at the police (see Non-Patent Document 2 below). Wheel diameter is 0.076 [m], overall width is 0.187 [m], balancer (tail) length is 0.102 [m], mass is about 0.6 [kg], and traveling speed is about 0.3 [m / s]. Although it is very small and lightweight and has a simple structure, it is a two-wheeled type, so it is difficult to get over small irregularities such as cables in the building, and the ability to run on uneven terrain is low. In addition, the balancer (tail) attached to the rear portion has no power, and thus is a resistance during traveling. If the balancer (tail) is damaged, the balancer (tail) cannot travel. Structurally, various impacts during traveling are directly transmitted to the motor, and the power transmission unit is likely to fail.
 更に、また、DRAPER研究所(米国)が開発した可変型のSPINY BALLは、ソフトボール程度の大きさで携行し、使用時に車輪から刺を広げ不整地走破性を向上させるものだが、車輪径を無段階に変更できないため、環境の狭隘状況に細かく対応できない(下記非特許文献3参照)。 In addition, the variable SPINY BALL developed by DRAPER Laboratories (USA) is carried around the size of a softball and spreads the stab from the wheel during use to improve rough road running. Since it cannot be changed steplessly, it cannot cope with the narrow environment (see Non-Patent Document 3 below).
 なお、これら2つのロボットは、災害、犯罪現場のほか、車下、床下、天井裏等狭隘な空間での情報収集を目的としている。 These two robots are intended to collect information not only in disasters and crime scenes but also in confined spaces such as under the vehicle, under the floor, and behind the ceiling.
特開2007-237991号公報JP 2007-237991 A
 そこで、本発明は、不整地走破性にも優れた走行ロボットを提供することを目的とする。 Therefore, an object of the present invention is to provide a traveling robot that is also excellent in rough terrain traveling performance.
 上述した課題を解決するために、本発明に係る走行ロボットは、略円筒形状をなす本体部と、上記本体部の周囲にベアリングを介して回転自在に取り付けられる回転枠と、上記本体部の相対する各側面部に設けられる走行部とを備える。 In order to solve the above-described problems, a traveling robot according to the present invention includes a main body portion having a substantially cylindrical shape, a rotating frame that is rotatably mounted around the main body portion via a bearing, and a relative relationship between the main body portion. And a traveling part provided on each side part.
 上記走行部は、上記本体部にベアリングを介して取り付けられた回転枠を回転する駆動部と、一端が上記回転枠に回動可能に取り付けられる第1の脚アームと上記一端が上記第1の脚アームに回動可能に取り付けられる第2の脚アームとを有する展開脚が、上記回転枠に等間隔に複数設けられた展開脚車輪と、周囲にねじ部が形成され、駆動源によって回転するスクリューと、上記スクリューのねじ部に係合されて、上記スクリューの軸線方向に移動するランナと、上記第1及び第2の脚アームと上記ランナとの間を連結し、上記ランナの移動に従って上記第1の脚アームと上記第2の脚アームを回動する操作機構とを有する。 The travel unit includes a drive unit that rotates a rotating frame attached to the main body unit via a bearing, a first leg arm that has one end rotatably attached to the rotating frame, and the one end that is the first unit. A deployable leg having a second leg arm rotatably attached to the leg arm is provided with a plurality of deployable leg wheels provided at equal intervals on the rotary frame, and a screw portion formed around the deployable leg, and is rotated by a drive source. The screw, the runner engaged with the screw portion of the screw and moving in the axial direction of the screw, the first and second leg arms and the runner are connected, and the runner moves as described above. A first leg arm and an operation mechanism for rotating the second leg arm;
 上記スクリューが回転し、上記ランナが上記軸線方向に移動することで、上記操作機構は、上記第1の脚アームと第2の脚アームとをそれぞれ回動して上記展開脚車輪を開閉し、上記駆動部によって、上記回転枠が回転することで、上記回転枠に取り付けられている上記展開脚車輪が回転し、走行する。 When the screw rotates and the runner moves in the axial direction, the operation mechanism rotates the first leg arm and the second leg arm to open and close the unfolding leg wheel, When the rotating frame is rotated by the driving unit, the unfolded leg wheel attached to the rotating frame rotates and travels.
 上記操作機構は、例えば、一端部が上記ランナに回動可能に取り付けられ、他端部が上記第1の脚アームに回動可能に取り付けられた第1の操作アームと、一端部が上記第1の操作アームに回動可能に取り付けられ、他端部が上記第2の脚アームに回動可能に取り付けられた第2の操作アームとを有する。 The operating mechanism includes, for example, a first operating arm having one end rotatably attached to the runner and the other end rotatably attached to the first leg arm, and one end being the first The second operation arm is rotatably attached to one operation arm and the other end is rotatably attached to the second leg arm.
 また、上記操作機構は、上記ランナと一体の環状のベアリング機構と接続され、展開脚車輪とともに回転するようになっている。 Further, the operation mechanism is connected to an annular bearing mechanism integrated with the runner, and rotates together with the developing leg wheel.
 上記スクリューの駆動源は、一の駆動モータであり、上記スクリューは、一方の側に、第1のねじ部が形成され、他方の側に第2のねじ部が形成され、上記第1のねじ部と第2のねじ部は、互いに逆向きに形成されている。上記スクリューは、上記一の駆動モータによって回転され、上記第1のねじ部と上記第2のねじ部のそれぞれに上記ランナが係合され、上記スクリューが回転したとき、それぞれのランナが互いに近接離間する方向に移動する。これにより、上記操作機構は、それぞれの上記走行部の展開脚車輪を同期して開閉する。 The drive source of the screw is one drive motor, and the screw has a first screw portion formed on one side and a second screw portion formed on the other side, and the first screw The part and the second screw part are formed in opposite directions. The screw is rotated by the one drive motor, the runner is engaged with each of the first screw portion and the second screw portion, and when the screw is rotated, the runners are close to each other. Move in the direction you want. Thereby, the said operation mechanism opens and closes the expansion | deployment leg wheel of each said traveling part synchronously.
 また、上記第1のねじ部と第2のねじ部は、互いに同じ向きに形成されている。上記スクリューは、上記一の駆動モータによって回転され、上記第1のねじ部と上記第2のねじ部のそれぞれに上記ランナが係合され、上記スクリューが回転したとき、それぞれのランナが上記スクリューの軸線方向を同方向に移動する。これにより、上記操作機構は、それぞれの上記走行部の展開脚車輪を開閉方向が互いに逆向きとなるように開閉し、該走行ロボットが曲がることできるようにする。これは、回転枠を回転する駆動部が一つの駆動モータで構成されるときに、特に有効である。
 また、上記スクリューは、上記展開脚車輪の回転軸の軸線と同方向に配置されており、上記スクリューの先端部は、上記本体部の側面部に回転自在に支持されていても良い。
 また、上記スクリューは、複数であり、上記一の駆動源によって同期して回転され、それぞれのスクリューの第1のねじ部と第2のねじ部のそれぞれに上記ランナが係合され、それぞれの上記ランナと上記第1及び第2の脚アームとの間に、上記ランナの移動に従って上記第1の脚アームと上記第2の脚アームを回動する操作機構が設けられ、上記スクリューが回転したとき、上記スクリューの軸線方向に移動することで、上記操作機構が、それぞれの上記走行部の展開脚車輪を開閉するようにしても良い。この場合の各スクリューの第1のねじ部と第2のねじ部の向きは、逆向きでも、同じ向きであっても良い。
 更に、上記駆動部は、上記本体部の各側面部に設けられた走行部のそれぞれに対して、駆動モータを有するスキッドステア方式とし、超信地旋回を可能としても良い。
The first screw portion and the second screw portion are formed in the same direction. The screw is rotated by the one drive motor, the runner is engaged with each of the first screw portion and the second screw portion, and when the screw is rotated, each runner is connected to the screw. Move the axis direction in the same direction. Thereby, the operation mechanism opens and closes the developing leg wheels of the traveling parts so that the opening and closing directions are opposite to each other so that the traveling robot can bend. This is particularly effective when the drive unit that rotates the rotating frame is configured by a single drive motor.
The screw may be disposed in the same direction as the axis of the rotation shaft of the development leg wheel, and the tip of the screw may be rotatably supported on the side surface of the main body.
In addition, the screw is plural, and is rotated synchronously by the one drive source, and the runner is engaged with each of the first screw portion and the second screw portion of each screw, and When an operating mechanism that rotates the first leg arm and the second leg arm according to the movement of the runner is provided between the runner and the first and second leg arms, and the screw rotates. By moving in the axial direction of the screw, the operation mechanism may open and close the developing leg wheels of the traveling portions. In this case, the directions of the first screw portion and the second screw portion of each screw may be opposite or the same.
Furthermore, the drive unit may be a skid steer system having a drive motor for each of the traveling units provided on the side surfaces of the main body unit, and may be capable of super turning.
 また、該走行ロボットは、連結機構によって、複数台連結され、先行する走行ロボットが段差を上がったとき、該先行する走行ロボットは、上記展開脚車輪を閉じるように小径化し、上記段差下の走行ロボットは、上記展開脚車輪を開くように大径化する。これにより、本体部の上下変動を小さくすることができる。 Further, a plurality of the traveling robots are connected by a connecting mechanism, and when the preceding traveling robot goes up the step, the preceding traveling robot is reduced in diameter so as to close the unfolded leg wheel, and travels under the step. The robot increases the diameter so as to open the deploying leg wheel. Thereby, the vertical fluctuation of a main-body part can be made small.
 本発明によれば、本体部に対してベアリング機構を介して回転可能な回転枠が取り付けられた展開脚車輪が開閉して直径が変化することから、乗り越えられる凹凸の大きさや走行速度を早くできる等、路面の状況に応じた効率のよい走行を行うことができる。 According to the present invention, since the diameter of the deployable leg wheel with the rotating frame attached to the main body via the bearing mechanism is opened and closed to change the diameter, the size of the unevenness and the traveling speed that can be overcome can be increased. Efficient traveling according to the road surface condition can be performed.
図1は、本発明が適用された走行ロボットの一部切り欠き斜視図である。FIG. 1 is a partially cutaway perspective view of a traveling robot to which the present invention is applied. 図2は、本発明が適用された走行ロボットの展開脚車輪方式の原理を示す断面図である。FIG. 2 is a cross-sectional view showing the principle of the deploying leg wheel system of the traveling robot to which the present invention is applied. 図3は、展開脚車輪が最も閉じた状態を示す側面図である。FIG. 3 is a side view showing a state in which the deployment leg wheel is most closed. 図4は、展開脚車輪が最も閉じた状態を示す側面図である。FIG. 4 is a side view showing a state in which the deployment leg wheel is most closed. 図5は、連結された走行ロボットが段差を乗り上げる状態を示す側面図である。FIG. 5 is a side view showing a state where the connected traveling robot rides up a step. 図6は、本発明が適用された走行ロボットの変形例であり、ランナが互いに同方向に移動する走行ロボットの断面図である。FIG. 6 is a sectional view of a traveling robot to which a runner moves in the same direction as a modification of the traveling robot to which the present invention is applied. 図7は、図2の変形例を示す断面図であり、2本のスクリューの第1のねじ部と第2のねじの向きが逆向きの例を示す。FIG. 7 is a cross-sectional view showing a modification of FIG. 2 and shows an example in which the directions of the first screw portion and the second screw of the two screws are reversed. 図8は、図6の変形例を示す断面図であり、2本のスクリューの第1のねじ部と第2のねじの向きが同じの例を示す。FIG. 8 is a cross-sectional view showing a modification of FIG. 6 and shows an example in which the directions of the first screw portion and the second screw of the two screws are the same.
 以下、本発明が適用された走行ロボットについて、図面を参照しながら詳細に説明する。なお、説明は以下の順序で行う。
1.走行ロボットの概要
2.走行ロボットの構成
 2-1 全体構成
 2-2 展開脚車輪方式
3.変形例
 3-1 変形例1
 3-2 変形例2
 3-3 変形例3
 3-4 変形例4
 3-5 変形例5
Hereinafter, a traveling robot to which the present invention is applied will be described in detail with reference to the drawings. The description will be given in the following order.
1. 1. Outline of traveling robot 2. Configuration of traveling robot 2-1 Overall configuration 2-2 Unfolding leg wheel system Modification 3-1 Modification 1
3-2 Modification 2
3-3 Modification 3
3-4 Modification 4
3-5 Modification 5
 1.走行ロボットの概要
 発明者らが、ここで提案する走行ロボットは次の通りである。
1. Outline of the traveling robot The traveling robot proposed by the inventors is as follows.
 (1) 小型:爆発物等の不審物は、車下に設置されることも多く、この様な狭隘な場所の捜索を可能とするため、ロボットの全高は、一般的な自動車の最低地上高を考慮した0.12[m]以下とする。 (1) Small size: Suspicious objects such as explosives are often installed underneath the vehicle, and the total height of the robot is the minimum ground clearance of a typical car so that it is possible to search such a narrow place. Is set to 0.12 [m] or less.
 (2) 軽量:救助隊員は、約26~27[kg]にもなる様々な救助器材を携行しなければならない。隊員一人が携行できる限界質量は約30[kg]と言われている。すなわち、新たな装備となるロボットに許される質量は、数kg程度と考えられる。そこで、隊員の負担を極力軽減させるために、ロボットの質量は、1.5[kg]以下とする。 (2) Lightweight: Rescue crews must carry various rescue equipment that can reach approximately 26-27 [kg]. The limit mass that one member can carry is said to be about 30 [kg]. In other words, the mass allowed for a robot to be newly equipped is considered to be about several kg. Therefore, in order to reduce the burden on the members as much as possible, the mass of the robot is set to 1.5 [kg] or less.
 (3) 機動性:協働する隊員の歩行速度と操縦性を考慮し、走行速度は0.3~1.1[m/s]程度とする。また、建物内にあるケーブルや段差等の小さな凹凸、屋外にある砂地、草地、水溜り等の不整地を安定的に走破できるように、路面の状況に応じて車輪径を2倍まで任意に変更可能とする。そして、狭隘な空間で超信地旋回を可能とする2輪独立駆動のスキッドステア方式とする。 (3) Mobility: Considering the walking speed and maneuverability of cooperating members, the traveling speed should be about 0.3 to 1.1 [m / s]. In addition, the wheel diameter can be arbitrarily doubled depending on the road surface so that small irregularities such as cables and steps in the building, sandy ground, grassland, and puddles outside can be stably driven. It can be changed. And it is set as the skid steer system of the two-wheel independent drive which enables a super turn in a narrow space.
 2.走行ロボットの構成
 (2-1) 全体構成
 図1に示すように、本発明が適用された走行ロボット1は、略円筒形状をなす本体部11を有する。この本体部11は、内部に、走行箇所を撮像する撮像部12、電源となるバッテリ13、複数の駆動モータ、駆動モータを駆動制御するモータドライバ14等が設けられている。
2. Configuration of Traveling Robot (2-1) Overall Configuration As shown in FIG. 1, a traveling robot 1 to which the present invention is applied has a main body 11 having a substantially cylindrical shape. The main body 11 is provided with an imaging unit 12 for imaging a travel location, a battery 13 serving as a power source, a plurality of drive motors, a motor driver 14 for driving and controlling the drive motor, and the like.
 撮像部12は、例えば、CCD(Charge Coupled Devices)やCMOS(Complementary Metal Oxide Semiconductor)センサを撮像素子に用いた小型カメラであって、撮像レンズを、本体部11より外部に臨ませるように取り付けられている。 The imaging unit 12 is a small camera using, for example, a CCD (Charge-Coupled Device) or CMOS (Complementary Metal-Oxide Semiconductor) sensor as an imaging element, and is attached so that the imaging lens faces the outside from the main body unit 11. ing.
 バッテリ13は、例えば、リチウムイオン二次電池やニッケル水素二次電池等である。なお、バッテリ13は、一次電池であっても良い。 The battery 13 is, for example, a lithium ion secondary battery or a nickel hydride secondary battery. The battery 13 may be a primary battery.
 以上のように構成された本体部11内には、図示しないが、撮像データや制御データの送受信を行う無線ユニット、全体の動作を制御するコントローラ等が内蔵されている。無線ユニットは、遠隔操作装置と無線でデータをやりとりするものであり、走行ロボット1を走行、停止等させるための制御データを送受信するとともに、撮像部12で撮像した動画像データを、遠隔操作装置に送信する。また、コントローラは、例えば、無線ユニットで、駆動モータの制御データを受信すると、受信した制御データをモータドライバ14に出力し、モータドライバ14によって駆動モータを駆動制御する。また、コントローラは、撮像部12で撮像した動画像データ等の撮像データを、無線ユニットを介して遠隔操作装置等に送信する。 Although not shown, the main body 11 configured as described above includes a wireless unit that transmits and receives imaging data and control data, a controller that controls the overall operation, and the like. The wireless unit exchanges data with the remote operation device wirelessly, transmits and receives control data for running, stopping, and the like of the traveling robot 1 and transmits the moving image data captured by the imaging unit 12 to the remote operation device. Send to. Further, for example, when the controller receives the control data of the drive motor by a wireless unit, the controller outputs the received control data to the motor driver 14, and drives and controls the drive motor by the motor driver 14. Further, the controller transmits imaging data such as moving image data captured by the imaging unit 12 to a remote control device or the like via the wireless unit.
 なお、走行ロボット1には、以上説明したユニットの他に、又は選択的に、GPS(Galileo positioning system,Global Positioning System)ユニットやマイクユニットやライト等の他のユニットを設けるようにしても良い。また、遠隔操作装置との通信は、有線や赤外線通信であっても良い。また、送受信データは、暗号化されていても良い。この場合、送信機に暗号化処理部を設け、受信機に復号処理部を設けるようにする。 The traveling robot 1 may be provided with other units such as a GPS (Galileo positioning system, Global Positioning System) unit, a microphone unit, and a light in addition to the units described above. The communication with the remote control device may be wired or infrared communication. The transmission / reception data may be encrypted. In this case, an encryption processing unit is provided in the transmitter, and a decryption processing unit is provided in the receiver.
 (2-2) 展開脚車輪方式
 図1及び図2に示すように、この走行ロボット1では、略円筒状をなす本体部11の相対する側面部に走行部21,21が設けられ、それぞれの走行部21に、展開脚車輪方式が採用されている。なお、走行部21,21のそれぞれは、同じ構成を備えているため、以下の説明では、一方の走行部21を例に取り説明する。
(2-2) Unfolding leg wheel system As shown in FIGS. 1 and 2, in this traveling robot 1, traveling portions 21 and 21 are provided on opposite side portions of the main body portion 11 having a substantially cylindrical shape. The traveling leg wheel system is adopted for the traveling unit 21. In addition, since each of the traveling units 21 and 21 has the same configuration, the following description will be given by taking one traveling unit 21 as an example.
 略円筒形状をなす本体部11には、周囲に、回転枠22が回転自在に取り付けられている。この回転枠22は、ベアリング機構23,23を介して取り付けられている。ベアリング機構23,23は、外輪23aと内輪23bとでボール23cを挟み込んで構成されており、ここでは、外輪23aが回転枠22に取り付けられ、内輪23bが本体部11の本体枠15に取り付けられている。 A rotating frame 22 is rotatably attached around the main body 11 having a substantially cylindrical shape. The rotating frame 22 is attached via bearing mechanisms 23 and 23. The bearing mechanisms 23 and 23 are configured by sandwiching a ball 23c between an outer ring 23a and an inner ring 23b. Here, the outer ring 23a is attached to the rotating frame 22, and the inner ring 23b is attached to the main body frame 15 of the main body 11. ing.
 この回転枠22は、側面部22aにおいて、本体部11の内部に設けられた走行用駆動モータ24の駆動軸24aに取り付けられている。具体的に、本体部11内の走行用駆動モータ24の駆動軸24aは、本体枠15の側面部15aの貫通孔15bを貫通して、回転枠22の側面部22aの中心に固定される。したがって、回転枠22は、走行用駆動モータ24を駆動源として、本体部11の本体枠15の周囲を、ベアリング機構23を介して回転する。走行用駆動モータ24は、本体部11の相対する側面部にある展開脚車輪に応じてそれぞれ設けられており、独立制御される。したがって、この走行ロボット1では、超信地旋回が可能となっている。 The rotary frame 22 is attached to a drive shaft 24a of a travel drive motor 24 provided inside the main body 11 at the side surface 22a. Specifically, the drive shaft 24 a of the travel drive motor 24 in the main body 11 passes through the through hole 15 b of the side surface 15 a of the main body frame 15 and is fixed to the center of the side surface 22 a of the rotary frame 22. Therefore, the rotating frame 22 rotates around the main body frame 15 of the main body 11 via the bearing mechanism 23 with the traveling drive motor 24 as a drive source. The driving motor 24 for traveling is provided according to the development leg wheel in the side part which the main-body part 11 opposes, respectively, and is independently controlled. Therefore, the traveling robot 1 can perform a super turn.
 この回転枠22には、展開脚車輪25が設けられている。この展開脚車輪25は、第1の脚アーム26と第2の脚アーム27とで構成される展開脚28を複数有する。そして、この展開脚28は、回転枠22の外周部に、等間隔に複数、ここでは8つ設けられている。各展開脚28を構成する第1の脚アーム26は、直線状の棒状部材であり、一端部が回転枠22の外周部に、回動軸26aを中心に回動可能に取り付けられている。また、第1の脚アーム26の他端部側には、第2の脚アーム27の一端部が回動軸27aを中心に回動可能に取り付けられている。この第2の脚アーム27も、直線状の棒状部材であり、他端部が、地面への接地端部となる。この接地端部は、走行ロボット1が安定した姿勢を維持できるように、例えば先端部を折り曲げて地面と略平行となるようにしても良い。また、接地端部には、弾性体等を取り付けても良い。 The rotation frame 22 is provided with a deployment leg wheel 25. The deployment leg wheel 25 has a plurality of deployment legs 28 composed of a first leg arm 26 and a second leg arm 27. A plurality of, in this case, eight, deployment legs 28 are provided on the outer peripheral portion of the rotary frame 22 at equal intervals. The first leg arm 26 constituting each deploying leg 28 is a linear rod-like member, and one end thereof is attached to the outer peripheral portion of the rotary frame 22 so as to be rotatable about the rotation shaft 26a. Further, one end portion of the second leg arm 27 is attached to the other end portion side of the first leg arm 26 so as to be rotatable about the rotation shaft 27a. The second leg arm 27 is also a linear rod-shaped member, and the other end portion serves as a ground contact end portion to the ground. For example, the tip end portion may be bent to be substantially parallel to the ground so that the traveling robot 1 can maintain a stable posture. Moreover, you may attach an elastic body etc. to the earthing | grounding edge part.
 以上のような展開脚28を複数備えた展開脚車輪25は、第1の脚アーム26が回動軸26aを中心に回動するとともに第2の脚アーム27が回動軸27aを中心に回動することで、開閉し、車輪の直径を可変することができる。 In the deployment leg wheel 25 having a plurality of deployment legs 28 as described above, the first leg arm 26 rotates about the rotation axis 26a and the second leg arm 27 rotates about the rotation axis 27a. By moving, it can be opened and closed and the diameter of the wheel can be varied.
 本体部11内には、この回転脚を開閉操作するための駆動源として、展開脚用駆動モータ31が設けられ、この展開脚用駆動モータ31によって、スクリュー32が回転されるようになっている。この展開脚用駆動モータ31の駆動軸31aには、第1のギヤ33が取り付けられ、第1のギヤ33は、スクリュー32の長手方向略中央に固定された第2のギヤ34と噛合されている。 A deployment leg drive motor 31 is provided in the main body 11 as a drive source for opening and closing the rotary leg, and the screw 32 is rotated by the deployment leg drive motor 31. . A first gear 33 is attached to the drive shaft 31 a of the development leg drive motor 31, and the first gear 33 is meshed with a second gear 34 fixed substantially at the center in the longitudinal direction of the screw 32. Yes.
 スクリュー32は、本体部11の長手方向に亘って配設されるものであり、略中央より一方の側に、本体部11の一方の側面部22a側に設けられた走行部21の展開脚車輪25を開閉するための第1のねじ部35が設けられ、略中央より他方の側に、本体部11の他方の側面部22a側に設けられた走行部21の展開脚車輪25を開閉するための第2のねじ部36が設けられている。第1のねじ部35と第2のねじ部36とは、互いに逆向きのねじ溝が形成されている。 The screw 32 is disposed over the longitudinal direction of the main body 11, and is a developed leg wheel of the traveling unit 21 provided on the one side surface 22 a side of the main body 11 on one side from the approximate center. A first screw portion 35 for opening and closing the opening 25 is provided, and for opening and closing the development leg wheel 25 of the traveling portion 21 provided on the other side surface portion 22a side of the main body portion 11 on the other side from the approximate center. The second screw portion 36 is provided. The first screw part 35 and the second screw part 36 are formed with thread grooves in opposite directions.
 第1のねじ部35と第2のねじ部36とには、それぞれ第1のランナ37と第2のランナ38が取り付けられている。 A first runner 37 and a second runner 38 are attached to the first screw portion 35 and the second screw portion 36, respectively.
 第1及び第2のランナ37,38は、それぞれ貫通孔の内周面に、ナット部が形成されており、ナット部が第1及び第2のねじ部35,36と係合されている。したがって、第1のランナ37と第2のランナ38は、スクリュー32が回転されると、互いに近接離間する方向に移動する。 The first and second runners 37 and 38 each have a nut portion formed on the inner peripheral surface of the through hole, and the nut portion is engaged with the first and second screw portions 35 and 36. Therefore, when the screw 32 is rotated, the first runner 37 and the second runner 38 move in a direction of approaching and separating from each other.
 第1のランナ37と第2のランナ38のそれぞれには、環状のベアリング機構39が取り付けられている。ベアリング機構39は、例えばドライベアリングであって、内輪39aが第1のランナ37と第2のランナ38のそれぞれに取り付けられている。また、外輪39bは、展開脚28の数に対応して、展開脚28と同数の操作機構の第1の操作アーム42の一端部が回動軸42aを中心に回動可能に取り付けられている。したがって、このベアリング機構39は、第1及び第2のランナ37,38と一体的にスクリュー32の軸線方向に移動し、更に、外輪39bが回転枠22とともに本体部11に対して回転することになる。 An annular bearing mechanism 39 is attached to each of the first runner 37 and the second runner 38. The bearing mechanism 39 is, for example, a dry bearing, and an inner ring 39 a is attached to each of the first runner 37 and the second runner 38. Further, the outer ring 39b is attached so that one end portion of the first operation arm 42 of the same number of operation mechanisms as the deployment legs 28 can be rotated around the rotation shaft 42a corresponding to the number of the deployment legs 28. . Therefore, the bearing mechanism 39 moves integrally with the first and second runners 37 and 38 in the axial direction of the screw 32, and the outer ring 39 b rotates with the rotating frame 22 relative to the main body 11. Become.
 このベアリング機構39の外輪39bには、第1及び第2の脚アーム26,27と連結し、それぞれのアーム26,27を回動操作する操作機構41が設けられている。操作機構41は、第1の操作アーム42によって、ベアリング機構39の外輪39bと第1の脚アーム26とを接続し、第2の操作アーム43によって、第1の操作アーム42と第2の脚アーム27とを接続する。 The outer ring 39b of the bearing mechanism 39 is provided with an operation mechanism 41 that is connected to the first and second leg arms 26 and 27 and rotates the respective arms 26 and 27. The operation mechanism 41 connects the outer ring 39b of the bearing mechanism 39 and the first leg arm 26 by the first operation arm 42, and the first operation arm 42 and the second leg by the second operation arm 43. The arm 27 is connected.
 具体的に、第1の操作アーム42は、直線状の棒状部材であり、一端部が第1及び第2のランナ37,38と一体的なベアリング機構39の外輪39bに回動軸42aを中心に回動可能に取り付けられている。また、他端部が第1の脚アーム26の中程に、回動軸42bを中心に回動可能に取り付けられている。第2の操作アーム43は、一端部が第1の操作アーム42の中程に回動軸43aを中心に回動可能に取り付けられ、他端部が第2の脚アーム27一端部に回動軸43bを中心に回動可能に取り付けられている。 Specifically, the first operating arm 42 is a linear rod-shaped member, and one end portion is centered on the outer ring 39b of the bearing mechanism 39 integrated with the first and second runners 37 and 38 with the rotation shaft 42a as the center. It is attached to be pivotable. Further, the other end is attached to the middle of the first leg arm 26 so as to be rotatable about the rotation shaft 42b. The second operation arm 43 is attached to one end of the second operation arm 43 so as to be rotatable about the rotation shaft 43 a in the middle of the first operation arm 42, and the other end is rotated to one end of the second leg arm 27. It is attached so as to be rotatable around a shaft 43b.
 以上のように構成される展開脚車輪25は、車輪径を、例えば0.12~0.24[m]の範囲で任意に変更できる。 For the deployable leg wheel 25 configured as described above, the wheel diameter can be arbitrarily changed within a range of, for example, 0.12 to 0.24 [m].
 ところで、本体部11の本体枠15や回転枠22には、ベアリング機構39や操作機構41を外部に臨ませる開口部44及び/又は開口部45が第1及び第2のランナ37,38の移動範囲に亘って形成されている。そして、開口部44及び/又は開口部45の第1及び第2のランナ37,38の移動方向の両端部は、第1及び第2のランナ37,38の移動範囲を規制するメカ端となっている。 By the way, the main body frame 15 and the rotary frame 22 of the main body 11 have an opening 44 and / or an opening 45 that allows the bearing mechanism 39 and the operation mechanism 41 to be exposed to the outside, and the movement of the first and second runners 37 and 38. It is formed over a range. Both ends of the opening 44 and / or the opening 45 in the moving direction of the first and second runners 37 and 38 serve as mechanical ends that restrict the moving range of the first and second runners 37 and 38. ing.
 なお、本体部11には、図1に示すように、進行方向上流側に尻尾となるバランサ29が設けられ、二輪で、走行ロボット1が走行できるようになっている。 As shown in FIG. 1, the main body 11 is provided with a balancer 29 serving as a tail on the upstream side in the traveling direction, so that the traveling robot 1 can travel with two wheels.
 以上のように構成された展開脚車輪方式では、図2に示すように、展開脚用駆動モータ31が駆動されて、スクリュー32が図2中矢印A方向に回転すると、第1及び第2のランナ37,38は互いに離間する図2中矢印C方向に移動する。すると、回転枠22に回動可能に取り付けられている第1の脚アーム26と第2の脚アーム27は、ともに、開く方向に回動する。これにより、展開脚車輪25は、図2中矢印E方向に開く、すなわち直径が大きくなり、図3に示す状態となる。 In the deployment leg wheel system configured as described above, as shown in FIG. 2, when the deployment leg drive motor 31 is driven and the screw 32 rotates in the direction of arrow A in FIG. The runners 37 and 38 move in the direction of arrow C in FIG. Then, both the first leg arm 26 and the second leg arm 27 that are rotatably attached to the rotary frame 22 rotate in the opening direction. Thereby, the expansion | deployment leg wheel 25 opens in the arrow E direction in FIG. 2, ie, a diameter becomes large, and will be in the state shown in FIG.
 一方、スクリュー32が図2中矢印B方向に回転すると、第1及び第2のランナ37,38は互いに近接する図2中矢印D方向に移動する。すると、回転枠22に回動可能に取り付けられている第1の脚アーム26と第2の脚アーム27は、ともに、閉じる方向に回動する。これにより、展開脚車輪25は、図2中矢印F方向に閉じる、すなわち直径が小さくなり、図4に示す状態となる。 On the other hand, when the screw 32 rotates in the direction of arrow B in FIG. 2, the first and second runners 37 and 38 move in the direction of arrow D in FIG. Then, both the first leg arm 26 and the second leg arm 27 that are rotatably attached to the rotary frame 22 rotate in the closing direction. Thereby, the expansion | deployment leg wheel 25 closes in the arrow F direction in FIG. 2, ie, a diameter becomes small, and will be in the state shown in FIG.
 以上のように、展開脚車輪25が開閉する展開脚車輪方式において、走行用駆動モータ24が正転又は逆転駆動することによって、回転枠22は、回転する。これにより、回転枠22に取り付けられている展開脚車輪25,25は、回転枠22の回転方向と同方向に回転することになる。この際、固定側の本体部11内部の第1及び第2のランナ37,38と第1及び第2の脚アーム26,27とを接続する操作機構41の第1の操作アーム42と第2の操作アーム43は、ベアリング機構39外輪39bに取り付けられているので、展開脚車輪25と同じように回転する。 As described above, in the deployable leg wheel system in which the deployable leg wheel 25 opens and closes, the rotating frame 22 rotates when the driving motor 24 for driving normally or reversely drives. Thereby, the deployment leg wheels 25 and 25 attached to the rotating frame 22 rotate in the same direction as the rotating direction of the rotating frame 22. At this time, the first operating arm 42 and the second operating arm 41 of the operating mechanism 41 for connecting the first and second runners 37 and 38 and the first and second leg arms 26 and 27 in the main body 11 on the fixed side. Since the operating arm 43 is attached to the outer ring 39b of the bearing mechanism 39, it rotates in the same manner as the deploying leg wheel 25.
 以上のような展開脚車輪方式では、平地や不整地など路面の状況に応じて車輪径を変更できる。したがって、車下等の狭隘な空間には車輪径を縮小することで侵入でき、また、砂地、草地、水溜りなど凹凸のある不整地では、車輪径を拡大することで効率的に走行でき、高い対地適応性を有することになる。また、この走行ロボット1では、車輪径も本設計では約2倍まで拡大できるため、乗り越えられる凹凸の大きさや走行速度を2倍程度まで速くできる等、路面の状況に応じた効率のよい走行を行うことができる。また、これを、以下に説明するように、4輪車や6輪車等に応用することで、不整地の走破性を更に向上させることもできる。 In the above-mentioned development leg wheel system, the wheel diameter can be changed according to the road surface condition such as flat or rough terrain. Therefore, it is possible to enter a narrow space such as under the vehicle by reducing the wheel diameter, and on uneven terrain such as sand, grassland, or a puddle, it can efficiently run by increasing the wheel diameter, It will have high ground adaptability. Moreover, in this traveling robot 1, since the wheel diameter can be expanded up to about twice in this design, the size of the unevenness that can be overcome and the traveling speed can be increased up to about twice, so that the traveling robot 1 can efficiently travel according to the road surface condition. It can be carried out. Further, as will be described below, by applying this to a four-wheeled vehicle, a six-wheeled vehicle, or the like, it is possible to further improve the traveling performance of rough terrain.
 なお、直線走行する場合、コントローラは、モータドライバ14によって、走行部21,21のそれぞれの走行用駆動モータ24を同方向に同速度して駆動し、進行方向を曲げる場合には、左右の展開脚車輪25,25の回転速度を変える。具体的に、走行ロボット1は、展開脚車輪25の速度を遅くした方に曲がることになる。また、超信地旋回をする場合、コントローラは、モータドライバ14によって、走行部21,21の走行用駆動モータ24を同速度で互いに反対に回転させることになる。 When the vehicle travels in a straight line, the controller uses the motor driver 14 to drive the traveling drive motors 24 of the traveling units 21 and 21 in the same direction at the same speed, and when the traveling direction is bent, the controller develops left and right. The rotational speed of the leg wheels 25, 25 is changed. Specifically, the traveling robot 1 bends in the direction in which the speed of the deployment leg wheel 25 is decreased. In addition, when making a super turn, the controller causes the motor driver 14 to rotate the driving motors 24 of the traveling units 21 and 21 opposite to each other at the same speed.
 なお、発明者らは、具体的に表1に示す走行ロボット1を試作した。 The inventors made a prototype of the traveling robot 1 shown in Table 1 specifically.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 以上のように、本発明が適用された走行ロボット1では、救助隊員が携行する際の負担を軽減できる全長0.264[m]、全幅0.234[m]、全高0.120[m]と小型化、質量1.46[kg]と小型化、軽量化が図れ、優れた高い対地適応性を有することになる。 As described above, in the traveling robot 1 to which the present invention is applied, the total length of 0.264 [m], the total width of 0.234 [m], and the total height of 0.120 [m] that can reduce the burden when the rescuer is carried. And downsizing, mass 1.46 [kg], downsizing and weight reduction, it has excellent high ground adaptability.
 3.変形例
 (3-1) 変形例1
 なお、ここでは、1本のスクリュー32に第1及び第2のねじ部35,36を設け、展開脚用駆動モータ31を1つとした例を説明したが、第1及び第2のねじ部35,36に応じて、スクリュー32を2本設け、展開脚用駆動モータ31を2本のスクリュー32に応じて2つ設けるようにしても良い。この場合には、左右で展開脚車輪25の直径を個別に変えることができ、これにより、走行用駆動モータ24の回転速度が同じであっても、走行ロボット1の進行方向を曲げることができる。
 (3-2) 変形例2
 以上のように構成された走行ロボット1は、更に複数台を連結することで、単体では走破できない大きな障害を走破できるようになる。
3. Modification (3-1) Modification 1
Here, an example in which the first and second screw portions 35 and 36 are provided on one screw 32 and the deployment leg drive motor 31 is provided is described. However, the first and second screw portions 35 are described. , 36, two screws 32 may be provided, and two development leg drive motors 31 may be provided according to the two screws 32. In this case, the diameter of the deployable leg wheel 25 can be individually changed on the left and right, so that the traveling direction of the traveling robot 1 can be bent even if the rotational speed of the traveling drive motor 24 is the same. .
(3-2) Modification 2
The traveling robot 1 configured as described above can further run through a large obstacle that cannot be run alone by connecting a plurality of robots.
 すなわち、図5に示すように、本発明が適用された走行ロボット1a,1aは、リンク機構46,46に連結されている。各走行ロボット1a,1aは、上記図1-図4を用いた走行ロボット1の本体部11に、多自由度リンク機構46a,46aが設けられ、多自由度リンク機構46a,46aは、例えば柔軟性を有する連結部材47,47によって連結されている。 That is, as shown in FIG. 5, the traveling robots 1 a and 1 a to which the present invention is applied are connected to link mechanisms 46 and 46. Each of the traveling robots 1a and 1a is provided with multi-degree-of-freedom link mechanisms 46a and 46a in the main body 11 of the traveling robot 1 using FIGS. 1 to 4, and the multi-degree-of-freedom link mechanisms 46a and 46a are, for example, flexible It is connected by connecting members 47 and 47 having the property.
 また、段差50を乗り越える場合、段差50を乗り越えた先行する先頭の走行ロボット1aは、展開脚車輪25を小径にし、段差50を乗り越えていない走行ロボット1aの展開脚車輪25を大径にする。これにより、段差50を乗り越えた走行ロボット1aと段差50を乗り越えていない走行ロボット1aの本体部11の高さの変化量を小さくすることができる。例えば、走行ロボット1aが撮像部12を有する場合には、本体部11の高さの変化量を小さくすることで、撮像データの高さ方向の像ぶれを小さくすることができる。 Further, when the step 50 is to be overcome, the leading traveling robot 1a preceding the step 50 has a small diameter of the deploying leg wheel 25 and a large diameter of the deploying leg wheel 25 of the traveling robot 1a that has not overcome the step 50. Thereby, the amount of change in the height of the main body 11 of the traveling robot 1a that has overcome the step 50 and the traveling robot 1a that has not overcome the step 50 can be reduced. For example, when the traveling robot 1a has the imaging unit 12, the image blur in the height direction of the imaging data can be reduced by reducing the amount of change in the height of the main body unit 11.
 なお、以上のように、走行ロボット1aを連結した場合には、4輪以上となることから、尻尾となるバランサ29は不要となる。 As described above, when the traveling robot 1a is connected, the number of wheels becomes four or more, so that the balancer 29 serving as a tail is not necessary.
 (3-3) 変形例3
 図6に示すように、スクリュー32は、第1及び第2のねじ部51,52を同じ向きのねじ溝で形成するようにしても良い。この場合には、スクリュー32が一方向に回転すると、第1のランナ37と第2のランナ38とはスクリュー32の軸線方向に同じ向きに移動することになる。すなわち、スクリュー32が図6中矢印A方向に回転したとき、第1及び第2のランナ37,38は、ともに、図6中矢印C方向に移動し、第1のランナ37側の展開脚車輪25は、図6中矢印E方向に開く、すなわち直径が大きくなり、第2のランナ38側の展開脚車輪25は、図6中矢印F方向に閉じる、すなわち直径が小さくなる。
(3-3) Modification 3
As shown in FIG. 6, the screw 32 may be configured so that the first and second screw portions 51 and 52 are formed with screw grooves in the same direction. In this case, when the screw 32 rotates in one direction, the first runner 37 and the second runner 38 move in the same direction in the axial direction of the screw 32. That is, when the screw 32 rotates in the direction of arrow A in FIG. 6, both the first and second runners 37 and 38 move in the direction of arrow C in FIG. 25 opens in the direction of arrow E in FIG. 6, that is, the diameter increases, and the deployable leg wheel 25 on the second runner 38 side closes in the direction of arrow F in FIG. 6, that is, the diameter decreases.
 これとは逆に、スクリュー32が図6中矢印B方向に回転したとき、第1及び第2のランナ37,38は、ともに、図6中矢印D方向に移動し、第1のランナ37側の展開脚車輪25は、図6中矢印F方向に閉じる、すなわち直径が小さくなり、第2のランナ38側の展開脚車輪25は、図6中矢印E方向に開き、すなわち直径が大きくなる。 On the contrary, when the screw 32 rotates in the direction of arrow B in FIG. 6, both the first and second runners 37 and 38 move in the direction of arrow D in FIG. 6 expands in the direction of arrow F in FIG. 6, that is, the diameter decreases, and the expansion leg wheel 25 on the second runner 38 side opens in the direction of arrow E in FIG. 6, that is, increases in diameter.
 以上のように、左右の展開脚車輪25,25は、大きさが異なることになり、走行用駆動モータ24の回転数が同じであっても、走行ロボット1の進行方向を曲げることができる。図6の例のように、第1及び第2のねじ部51,52を同じ向きのねじ溝で形成し第1のランナ37と第2のランナ38とが同じ方向に移動するようにした場合、回転枠22を回転する走行用駆動モータ24を1つにし、この1つの駆動モータ24で左右の展開脚車輪を駆動するようにしたときに、特に有効である。 As described above, the left and right deployable leg wheels 25 and 25 have different sizes, and the traveling direction of the traveling robot 1 can be bent even if the traveling drive motor 24 has the same rotation speed. As in the example of FIG. 6, the first and second screw portions 51 and 52 are formed by screw grooves in the same direction so that the first runner 37 and the second runner 38 move in the same direction. This is particularly effective when the traveling drive motor 24 that rotates the rotary frame 22 is provided as one and the left and right development leg wheels are driven by the single drive motor 24.
 なお、図6に示す走行ロボット1についても、図5に示すように、リンク機構46で複数台を連結するようにしても良い。
 (3-4) 変形例4
 また、上述した図2及び図6では、1本のスクリュー32を回転させることによって、操作機構41を介して両側の展開脚車輪25,25を開閉させる例を説明したが、図7に示すように、スクリュー32を複数本用いるようにし、展開脚車輪25,25を円滑に開閉できるようにしても良い。
 ここで、図7は、図2に示した展開脚車輪方式のスクリュー32を2本にした例を示している。図7の例では、互いに平行な2本のスクリュー32,32のそれぞれに第2のギヤ34,34が設けられており、第2のギヤ34,34は、展開脚用駆動モータ31の第1のギヤ33と噛合されている。これにより、2本のスクリュー32,32は、同方向に同期して回転する。
 各スクリュー32,32の各先端部は、本体部11を構成する本体枠15の側面部15aに回転自在に支持されている。具体的に、各スクリュー32,32の先端部は、ドライベアリングやボールベアリグといったベアリング32a,32aに取り付けられている。これにより、各スクリュー32,32は、長尺でありながら、本体枠15内に、展開脚車輪25,25と回転軸線と平行に、回転自在に安定した状態で取り付けられる。なお、上記図2の例においても、スクリュー32の各先端部を、本体部11を構成する本体枠15の側面部15aに回転自在に支持するようにしても良い。
 図7の例では、各スクリュー32,32の第1のねじ部35と第2のねじ部36とは、図2の場合と同様に、互いに逆向きのねじ溝が形成されている。そして、それぞれのスクリュー32,32の第1のねじ部35と第2のねじ部36には、それぞれ第1のランナ37と第2のランナ38が取り付けられている。第1のランナ37と第2のランナ38は、スクリュー32,32が回転されると、互いに近接離間する方向に移動する。
 第1のランナ37と第2のランナ38のそれぞれには、環状のベアリング機構39が取り付けられている。ベアリング機構39は、内輪39aが第1のランナ37と第2のランナ38のそれぞれに取り付けられている。また、外輪39bは、展開脚28の数に対応して、展開脚28と同数の操作機構の第1の操作アーム42の一端部が回動軸42aを中心に回動可能に取り付けられている。したがって、このベアリング機構39は、第1及び第2のランナ37,38と一体的にスクリュー32,32の軸線方向に移動し、更に、外輪39bが回転枠22とともに本体部11に対して回転することになる。
 そして、このベアリング機構39の外輪39bには、第1及び第2の脚アーム26,27と連結し、それぞれのアーム26,27を回動操作する操作機構41が設けられている。操作機構41は、第1の操作アーム42によって、ベアリング機構39の外輪39bと第1の脚アーム26とを接続し、第2の操作アーム43によって、第1の操作アーム42と第2の脚アーム27とを接続する。第1の操作アーム42は、一端部が第1及び第2のランナ37,38と一体的なベアリング機構39の外輪39bに回動軸42aを中心に回動可能に取り付けられている。また、他端部が第1の脚アーム26の中程に、回動軸42bを中心に回動可能に取り付けられている。第2の操作アーム43は、一端部が第1の操作アーム42の中程に回動軸43aを中心に回動可能に取り付けられ、他端部が第2の脚アーム27一端部に回動軸43bを中心に回動可能に取り付けられている。
 以上のように構成された展開脚車輪方式では、スクリュー32,32が図7中矢印A方向に回転すると、スクリュー32,32のそれぞれの第1及び第2のランナ37,38は互いに離間する図7中矢印C方向に移動する。すると、回転枠22に回動可能に取り付けられている第1の脚アーム26と第2の脚アーム27は、ともに、開く方向に回動する。これにより、展開脚車輪25は、図2中矢印E方向に開く、すなわち直径が大きくなり、図3に示す状態となる。一方、スクリュー32が図7中矢印B方向に回転すると、スクリュー32,32のそれぞれの第1及び第2のランナ37,38は互いに近接する図7中矢印D方向に移動する。すると、回転枠22に回動可能に取り付けられている第1の脚アーム26と第2の脚アーム27は、ともに、閉じる方向に回動する。これにより、展開脚車輪25は、図7中矢印F方向に閉じる、すなわち直径が小さくなり、図4に示す状態となる。
 以上のような図7の展開脚車輪方式は、図2の例と同様な効果を有することに加え、展開脚車輪25,25の開閉を、複数のスクリュー32,32のそれぞれに設けられている第1及び第2のランナ37,38で行うようにしている。このため、図7の展開脚車輪方式は、図2の1本のスクリュー32の第1及び第2のランナ37,38で展開脚車輪25,25の開閉を行うより、展開脚車輪25,25の開閉を安定して円滑に行うことができる。
 (3-5) 変形例5
 図8は、図6及び図7の変形例であり、スクリュー32を複数本用いるようにし、展開脚車輪25,25を円滑に開閉できるようにしながら、各スクリュー32の第1及び第2のねじ部51,52を同じ向きのねじ溝で形成し第1のランナ37と第2のランナ38とが同じ方向に移動するようにしたものである。
 図8の例でも、互いに平行な2本のスクリュー32,32のそれぞれに第2のギヤ34,34が設けられており、第2のギヤ34,34は、展開脚用駆動モータ31の第1のギヤ33と噛合されている。これにより、2本のスクリュー32,32は、同方向に同期して回転する。また、各スクリュー32,32は、各先端部が本体部11を構成する本体枠15の側面部15aに回転自在に支持され、本体枠15内に、展開脚車輪25,25と回転軸線と平行に、回転自在に安定した状態で取り付けられる。なお、上記図6の例においても、スクリュー32の各先端部を、本体部11を構成する本体枠15の側面部15aに回転自在に支持するようにしても良い。
 この場合、スクリュー32が一方向に回転すると、第1のランナ37と第2のランナ38とはスクリュー32の軸線方向に同じ向きに移動する。すなわち、スクリュー32,32が図8中矢印A方向に回転したとき、第1及び第2のランナ37,38は、ともに、図8中矢印C方向に移動し、第1のランナ37側の展開脚車輪25は、図8中矢印E方向に開く、すなわち直径が大きくなり、第2のランナ38側の展開脚車輪25は、図8中矢印F方向に閉じる、すなわち直径が小さくなる。
 これとは逆に、スクリュー32,32が図8中矢印B方向に回転したとき、第1及び第2のランナ37,38は、ともに、図8中矢印D方向に移動し、第1のランナ37側の展開脚車輪25は、図8中矢印F方向に閉じる、すなわち直径が小さくなり、第2のランナ38側の展開脚車輪25は、図8中矢印E方向に開き、すなわち直径が大きくなる。
 以上のような図8の展開脚車輪方式は、図6の例と同様な効果を有することに加え、展開脚車輪25,25の開閉を、複数のスクリュー32,32のそれぞれに設けられている第1及び第2のランナ37,38で行うようにしている。このため、図8の展開脚車輪方式は、図6の1本のスクリュー32の第1及び第2のランナ37,38で展開脚車輪25,25の開閉を行うより、展開脚車輪25,25の開閉を安定して円滑に行うことができる。
As for the traveling robot 1 shown in FIG. 6, a plurality of units may be connected by a link mechanism 46 as shown in FIG.
(3-4) Modification 4
2 and 6 described above, an example in which the deployment leg wheels 25, 25 on both sides are opened and closed via the operation mechanism 41 by rotating one screw 32 has been described, but as shown in FIG. In addition, a plurality of screws 32 may be used so that the development leg wheels 25, 25 can be opened and closed smoothly.
Here, FIG. 7 shows an example in which the unfolded leg wheel type screw 32 shown in FIG. 2 is used. In the example of FIG. 7, the second gears 34 and 34 are respectively provided on the two screws 32 and 32 that are parallel to each other, and the second gears 34 and 34 are the first gears of the development leg drive motor 31. Is engaged with the gear 33. Thereby, the two screws 32 and 32 rotate in synchronization with the same direction.
The distal end portions of the screws 32 and 32 are rotatably supported by the side surface portion 15 a of the main body frame 15 constituting the main body portion 11. Specifically, the tip portions of the screws 32 and 32 are attached to bearings 32a and 32a such as dry bearings and ball bear rigs. Thereby, each screw 32 and 32 is attached to the main body frame 15 in a stable and freely rotatable manner in parallel to the deployable leg wheels 25 and 25 and the rotation axis, while being long. Also in the example of FIG. 2 described above, each tip portion of the screw 32 may be rotatably supported on the side surface portion 15 a of the main body frame 15 constituting the main body portion 11.
In the example of FIG. 7, the first screw portion 35 and the second screw portion 36 of each screw 32, 32 are formed with mutually opposite thread grooves, as in the case of FIG. 2. And the 1st runner 37 and the 2nd runner 38 are attached to the 1st screw part 35 and the 2nd screw part 36 of each screw 32 and 32, respectively. When the screws 32 are rotated, the first runner 37 and the second runner 38 move toward and away from each other.
An annular bearing mechanism 39 is attached to each of the first runner 37 and the second runner 38. In the bearing mechanism 39, an inner ring 39 a is attached to each of the first runner 37 and the second runner 38. Further, the outer ring 39b is attached so that one end portion of the first operation arm 42 of the same number of operation mechanisms as the deployment legs 28 can be rotated around the rotation shaft 42a corresponding to the number of the deployment legs 28. . Accordingly, the bearing mechanism 39 moves integrally with the first and second runners 37 and 38 in the axial direction of the screws 32 and 32, and the outer ring 39 b rotates with the rotary frame 22 relative to the main body 11. It will be.
The outer ring 39 b of the bearing mechanism 39 is provided with an operation mechanism 41 that is connected to the first and second leg arms 26 and 27 and that rotates the arms 26 and 27. The operation mechanism 41 connects the outer ring 39b of the bearing mechanism 39 and the first leg arm 26 by the first operation arm 42, and the first operation arm 42 and the second leg by the second operation arm 43. The arm 27 is connected. One end of the first operation arm 42 is attached to an outer ring 39b of a bearing mechanism 39 integral with the first and second runners 37 and 38 so as to be rotatable about a rotation shaft 42a. Further, the other end is attached to the middle of the first leg arm 26 so as to be rotatable about the rotation shaft 42b. The second operation arm 43 is attached to one end of the second operation arm 43 so as to be rotatable about the rotation shaft 43 a in the middle of the first operation arm 42, and the other end is rotated to one end of the second leg arm 27. It is attached so as to be rotatable around a shaft 43b.
In the developed leg wheel system configured as described above, when the screws 32 and 32 rotate in the direction of arrow A in FIG. 7, the first and second runners 37 and 38 of the screws 32 and 32 are separated from each other. 7 Move in the direction of arrow C. Then, both the first leg arm 26 and the second leg arm 27 that are rotatably attached to the rotary frame 22 rotate in the opening direction. Thereby, the expansion | deployment leg wheel 25 opens in the arrow E direction in FIG. 2, ie, a diameter becomes large, and will be in the state shown in FIG. On the other hand, when the screw 32 rotates in the direction of arrow B in FIG. 7, the first and second runners 37 and 38 of the screws 32 and 32 move in the direction of arrow D in FIG. Then, both the first leg arm 26 and the second leg arm 27 that are rotatably attached to the rotary frame 22 rotate in the closing direction. Thereby, the expansion | deployment leg wheel 25 closes in the arrow F direction in FIG. 7, ie, a diameter becomes small, and will be in the state shown in FIG.
7 has the same effect as the example of FIG. 2, and the opening and closing of the developing leg wheels 25, 25 is provided in each of the plurality of screws 32, 32. The first and second runners 37 and 38 are used. For this reason, the unfolded leg wheel system of FIG. 7 is different from the unfolded leg wheels 25, 25 by opening and closing the unfolded leg wheels 25, 25 by the first and second runners 37, 38 of the single screw 32 of FIG. Can be opened and closed stably and smoothly.
(3-5) Modification 5
FIG. 8 is a modification of FIG. 6 and FIG. 7, wherein a plurality of screws 32 are used, and the development leg wheels 25 and 25 can be opened and closed smoothly, and the first and second screws of each screw 32. The portions 51 and 52 are formed by screw grooves in the same direction so that the first runner 37 and the second runner 38 move in the same direction.
Also in the example of FIG. 8, the second gears 34 and 34 are provided for the two screws 32 and 32 that are parallel to each other, and the second gears 34 and 34 are the first gears of the development leg drive motor 31. Is engaged with the gear 33. Thereby, the two screws 32 and 32 rotate in synchronization with the same direction. In addition, each screw 32, 32 is rotatably supported at the side surface portion 15 a of the main body frame 15 constituting the main body portion 11, and in the main body frame 15, each screw 32, 32 is parallel to the deployment leg wheels 25, 25 and the rotation axis. In addition, it can be mounted in a stable and rotatable state. In the example shown in FIG. 6 as well, each tip portion of the screw 32 may be rotatably supported on the side surface portion 15 a of the main body frame 15 constituting the main body portion 11.
In this case, when the screw 32 rotates in one direction, the first runner 37 and the second runner 38 move in the same direction in the axial direction of the screw 32. That is, when the screws 32, 32 rotate in the direction of arrow A in FIG. 8, both the first and second runners 37, 38 move in the direction of arrow C in FIG. The leg wheel 25 opens in the direction of arrow E in FIG. 8, that is, the diameter increases, and the development leg wheel 25 on the second runner 38 side closes in the direction of arrow F in FIG.
On the contrary, when the screws 32 and 32 are rotated in the direction of arrow B in FIG. 8, the first and second runners 37 and 38 are both moved in the direction of arrow D in FIG. The deployment leg wheel 25 on the 37 side closes in the direction of arrow F in FIG. 8, that is, the diameter decreases, and the deployment leg wheel 25 on the second runner 38 side opens in the direction of arrow E in FIG. Become.
8 has the same effect as that of the example of FIG. 6, and the opening and closing of the developing leg wheels 25, 25 is provided in each of the plurality of screws 32, 32. The first and second runners 37 and 38 are used. For this reason, the unfolded leg wheel system of FIG. 8 is different from the unfolded leg wheel 25, 25 by opening and closing the unfolded leg wheel 25, 25 by the first and second runners 37, 38 of the single screw 32 of FIG. Can be opened and closed stably and smoothly.
 本発明は、平地のみならず不整地においても、走破性に優れ、また、耐衝撃性にも優れる。また、小型で軽量である。したがって、災害現場や、天井裏や車下等の狭隘な場所での各種作業を支援する情報収集ロボットや作業ロボットに適用することができる。また、ホビー玩具等の娯楽用途の走行ロボットとしても適用可能である。 The present invention is excellent not only in flat ground but also in rough terrain, and has excellent running resistance and impact resistance. It is also small and lightweight. Therefore, the present invention can be applied to information collecting robots and work robots that support various kinds of work in disaster sites and confined places such as under the ceiling and under the vehicle. Further, the present invention can also be applied as a traveling robot for entertainment such as a hobby toy.
1 走行ロボット、1a 走行ロボット、11 本体部、12 撮像部、13 バッテリ、14 モータドライバ、15 本体枠、15a 側面部、21 走行部、22 回転枠、22a 側面部、23 ベアリング機構、23a 外輪、23b 内輪、23c ボール、24 走行用駆動モータ、24a 駆動軸、25 展開脚車輪、26 第1の脚アーム、26a 回動軸、27 第2の脚アーム、27a 回動軸、28 展開脚、29 バランサ、31 展開脚用駆動モータ、31a 駆動軸、32 スクリュー、32a ベアリング、33 第1のギヤ、34 第2のギヤ、35 第1のねじ部、36 第2のねじ部、37 第1のランナ、38 第2のランナ、39 ベアリング機構、39a 内輪、39b 外輪、41 操作機構、42 第1の操作アーム、42a 回動軸、42b 回動軸、43 第2の操作アーム、43a 回動軸、43b 回動軸、44,45 開口部、46,46 リンク機構、46a,46a 多自由度リンク機構、47,47 連結部材、50 段差、51 第1のねじ部、52 第2のねじ部 1 traveling robot, 1a traveling robot, 11 body section, 12 imaging section, 13 battery, 14 motor driver, 15 body frame, 15a side section, 21 traveling section, 22 rotating frame, 22a side section, 23 bearing mechanism, 23a outer ring, 23b inner ring, 23c ball, 24 driving motor, 24a drive shaft, 25 unfolding leg wheel, 26 first leg arm, 26a rotating shaft, 27 second leg arm, 27a rotating shaft, 28 unfolding leg, 29 Balancer, 31 Deploying leg drive motor, 31a drive shaft, 32 screw, 32a bearing, 33 first gear, 34 second gear, 35 first screw part, 36 second screw part, 37 first runner 38 second runner, 39 bearing mechanism, 39a inner ring, 39b outer ring, 41 controller , 42 1st operation arm, 42a rotation axis, 42b rotation axis, 43 2nd operation arm, 43a rotation axis, 43b rotation axis, 44, 45 opening, 46, 46 link mechanism, 46a, 46a Multi-degree-of-freedom link mechanism, 47, 47 connecting member, 50 steps, 51 first threaded part, 52 second threaded part

Claims (9)

  1.  略円筒形状をなす本体部と、
     上記本体部の周囲にベアリングを介して回転自在に取り付けられる回転枠と、
     上記本体部の相対する各側面部に設けられる走行部とを備え、
     上記走行部は、
     上記本体部にベアリングを介して取り付けられた回転枠を回転する駆動部と、
     一端が上記回転枠に回動可能に取り付けられる第1の脚アームと上記一端が上記第1の脚アームに回動可能に取り付けられる第2の脚アームとを有する展開脚が、上記回転枠に等間隔に複数設けられた展開脚車輪と、
     周囲にねじ部が形成され、駆動源によって回転するスクリューと、
     上記スクリューのねじ部に係合されて、上記スクリューの軸線方向に移動するランナと、
     上記第1及び第2の脚アームと上記ランナとの間を連結し、上記ランナの移動に従って上記第1の脚アームと上記第2の脚アームを回動する操作機構とを有し、
     上記スクリューが回転し、上記ランナが上記軸線方向に移動することで、上記操作機構は、上記第1の脚アームと第2の脚アームとをそれぞれ回動して上記展開脚車輪を開閉し、
     上記駆動部によって、上記回転枠が回転することで、上記回転枠に取り付けられている上記展開脚車輪が回転し、走行する走行ロボット。
    A substantially cylindrical main body,
    A rotating frame rotatably attached to the periphery of the main body via a bearing;
    A traveling part provided on each of the opposing side parts of the main body part,
    The traveling part is
    A drive unit for rotating a rotating frame attached to the main body unit via a bearing;
    A deployable leg having a first leg arm having one end rotatably attached to the rotating frame and a second leg arm having one end rotatably attached to the first leg arm is attached to the rotating frame. A plurality of deployment leg wheels provided at equal intervals;
    A screw formed around and rotated by a drive source;
    A runner engaged with the screw portion of the screw and moving in the axial direction of the screw;
    An operation mechanism for connecting the first and second leg arms and the runner, and rotating the first leg arm and the second leg arm according to the movement of the runner;
    When the screw rotates and the runner moves in the axial direction, the operation mechanism rotates the first leg arm and the second leg arm to open and close the unfolding leg wheel,
    A traveling robot that travels by rotating the unfolded leg wheel attached to the rotating frame by rotating the rotating frame by the driving unit.
  2.  上記操作機構は、一端部が上記ランナに回動可能に取り付けられ、他端部が上記第1の脚アームに回動可能に取り付けられた第1の操作アームと、一端部が上記第1の操作アームに回動可能に取り付けられ、他端部が上記第2の脚アームに回動可能に取り付けられた第2の操作アームとを有する請求項1記載の走行ロボット。 The operating mechanism includes a first operating arm having one end rotatably attached to the runner and the other end rotatably attached to the first leg arm, and one end being the first The traveling robot according to claim 1, further comprising: a second operation arm that is rotatably attached to the operation arm and has the other end rotatably attached to the second leg arm.
  3.  上記操作機構は、上記ランナと一体の環状のベアリング機構と接続されている請求項1記載の走行ロボット。 The traveling robot according to claim 1, wherein the operation mechanism is connected to an annular bearing mechanism integrated with the runner.
  4.  上記駆動源は、一の駆動モータであり、
     上記スクリューは、一方の側に、第1のねじ部が形成され、他方の側に第2のねじ部が形成され、
     上記第1のねじ部と第2のねじ部は、互いに逆向きであり、
     上記スクリューは、上記一の駆動モータによって回転され、
     上記第1のねじ部と上記第2のねじ部のそれぞれに上記ランナが係合され、上記スクリューが回転したとき、それぞれのランナが互いに近接離間する方向に移動することで、上記操作機構は、それぞれの上記走行部の展開脚車輪を同期して開閉する請求項1記載の走行ロボット。
    The drive source is a drive motor,
    The screw has a first threaded portion formed on one side and a second threaded portion formed on the other side,
    The first screw portion and the second screw portion are opposite to each other,
    The screw is rotated by the one drive motor,
    When the runner is engaged with each of the first screw portion and the second screw portion, and the screw rotates, the runners move in directions approaching and separating from each other, whereby the operation mechanism is The traveling robot according to claim 1, wherein the developing leg wheels of each of the traveling units are opened and closed in synchronization.
  5.  上記駆動源は、一の駆動モータであり、
     上記スクリューは、一方の側に、第1のねじ部が形成され、他方の側に第2のねじ部が形成され、
     上記第1のねじ部と第2のねじ部は、互いに同じ向きであり、
     上記スクリューは、上記一の駆動モータによって回転され、
     上記第1のねじ部と上記第2のねじ部のそれぞれに上記ランナが係合され、上記スクリューが回転したとき、それぞれのランナが上記スクリューの軸線方向を同方向に移動することで、上記操作機構は、それぞれの上記走行部の展開脚車輪を開閉方向が互いに逆向きとなるように開閉し、該走行ロボットが曲がることできるようにした請求項1記載の走行ロボット。
    The drive source is a drive motor,
    The screw has a first threaded portion formed on one side and a second threaded portion formed on the other side,
    The first screw portion and the second screw portion are in the same direction,
    The screw is rotated by the one drive motor,
    When the runner is engaged with each of the first screw portion and the second screw portion and the screw rotates, the runner moves in the same direction in the axial direction of the screw. The traveling robot according to claim 1, wherein the mechanism opens and closes the development leg wheels of each of the traveling units so that the opening and closing directions are opposite to each other so that the traveling robot can bend.
  6.  上記スクリューの先端部は、上記本体部の側面部に回転自在に支持されている
     請求項1記載の走行ロボット。
    The traveling robot according to claim 1, wherein a distal end portion of the screw is rotatably supported on a side surface portion of the main body portion.
  7.  上記スクリューは、複数であり、上記一の駆動源によって同期して回転され、
     それぞれのスクリューの第1のねじ部と第2のねじ部のそれぞれに上記ランナが係合され、
     それぞれの上記ランナと上記第1及び第2の脚アームとの間に、上記ランナの移動に従って上記第1の脚アームと上記第2の脚アームを回動する操作機構が設けられ、
     上記スクリューが回転したとき、上記スクリューの軸線方向に移動することで、上記操作機構は、それぞれの上記走行部の展開脚車輪を開閉する請求項4又は請求項5記載の走行ロボット。
    The screw is plural and is rotated synchronously by the one drive source,
    The runner is engaged with each of the first screw portion and the second screw portion of each screw,
    An operation mechanism for rotating the first leg arm and the second leg arm according to the movement of the runner is provided between each runner and the first and second leg arms,
    The traveling robot according to claim 4 or 5, wherein when the screw rotates, the operation mechanism opens and closes a deployment leg wheel of each traveling unit by moving in the axial direction of the screw.
  8.  上記駆動部は、上記本体部の各側面部に設けられた走行部のそれぞれに対して、駆動モータを有するスキッドステア方式である
     請求項1記載の走行ロボット。
    The traveling robot according to claim 1, wherein the driving unit is a skid steer system having a driving motor for each of the traveling units provided on each side surface of the main body.
  9.  該走行ロボットは、連結機構によって、複数台連結され、
     先行する走行ロボットが段差を上がったとき、該先行する走行ロボットは、上記展開脚車輪を閉じるように小径化し、上記段差下の走行ロボットは、上記展開脚車輪を開くように大径化する請求項1記載の走行ロボット。
    A plurality of the traveling robots are connected by a connecting mechanism,
    When the preceding traveling robot goes up the step, the preceding traveling robot is reduced in diameter so as to close the unfolded leg wheel, and the traveling robot below the step is increased in diameter so as to open the unfolded leg wheel. The traveling robot according to Item 1.
PCT/JP2011/053818 2010-02-22 2011-02-22 Mobile robot WO2011102528A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012500691A JP5692932B2 (en) 2010-02-22 2011-02-22 Traveling robot

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-036548 2010-02-22
JP2010036548 2010-02-22

Publications (1)

Publication Number Publication Date
WO2011102528A1 true WO2011102528A1 (en) 2011-08-25

Family

ID=44483111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053818 WO2011102528A1 (en) 2010-02-22 2011-02-22 Mobile robot

Country Status (2)

Country Link
JP (1) JP5692932B2 (en)
WO (1) WO2011102528A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102424074A (en) * 2011-11-22 2012-04-25 中国科学院合肥物质科学研究院 Cylindrical amoeba-like moving robot body structure
GB2526314A (en) * 2014-05-20 2015-11-25 Dublin Inst Of Technology A wheel
CN107719510A (en) * 2017-11-07 2018-02-23 深圳雅尔卑斯动力有限公司 Hexapod Robot
CN108032921A (en) * 2018-01-25 2018-05-15 天津职业技术师范大学 A kind of wheel assembly that can be cleared the jumps and the car-like robots with the wheel assembly
CN113446458A (en) * 2021-06-28 2021-09-28 北京林业大学 Intelligent pipeline walking robot
CN113548125A (en) * 2021-07-13 2021-10-26 天津大学 Wheel-leg mixed quadruped robot

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS604456A (en) * 1983-06-22 1985-01-10 三菱重工業株式会社 Self-advancing device
JPS6325988B2 (en) * 1982-01-26 1988-05-27 Tokyo Shibaura Electric Co
JPH017652Y2 (en) * 1982-01-30 1989-03-01
JPH08276876A (en) * 1995-04-04 1996-10-22 Chubu Electric Power Co Inc Robot running mechanism

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6325988B2 (en) * 1982-01-26 1988-05-27 Tokyo Shibaura Electric Co
JPH017652Y2 (en) * 1982-01-30 1989-03-01
JPS604456A (en) * 1983-06-22 1985-01-10 三菱重工業株式会社 Self-advancing device
JPH08276876A (en) * 1995-04-04 1996-10-22 Chubu Electric Power Co Inc Robot running mechanism

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102424074A (en) * 2011-11-22 2012-04-25 中国科学院合肥物质科学研究院 Cylindrical amoeba-like moving robot body structure
CN102424074B (en) * 2011-11-22 2013-01-16 中国科学院合肥物质科学研究院 Cylindrical amoeba-like moving robot body structure
GB2526314A (en) * 2014-05-20 2015-11-25 Dublin Inst Of Technology A wheel
CN107719510A (en) * 2017-11-07 2018-02-23 深圳雅尔卑斯动力有限公司 Hexapod Robot
CN108032921A (en) * 2018-01-25 2018-05-15 天津职业技术师范大学 A kind of wheel assembly that can be cleared the jumps and the car-like robots with the wheel assembly
CN108032921B (en) * 2018-01-25 2024-03-15 天津职业技术师范大学 Wheel device capable of crossing obstacle and vehicle type robot with wheel device
CN113446458A (en) * 2021-06-28 2021-09-28 北京林业大学 Intelligent pipeline walking robot
CN113548125A (en) * 2021-07-13 2021-10-26 天津大学 Wheel-leg mixed quadruped robot

Also Published As

Publication number Publication date
JP5692932B2 (en) 2015-04-01
JPWO2011102528A1 (en) 2013-06-17

Similar Documents

Publication Publication Date Title
JP5692931B2 (en) Traveling robot
JP5692932B2 (en) Traveling robot
JP3834651B2 (en) Traveling robot
US8030873B2 (en) Walk and roll robot
JP6385942B2 (en) Snake robot crawler
US7726422B2 (en) Spherical walking robot
US7011171B1 (en) Rugged terrain robot
US7137465B1 (en) Crawler device
CN102672701B (en) Master-slave robot for high obstacle crossing and accurate bomb disposal and explosion elimination
EP2726256B1 (en) Mobile robot
JP5017589B2 (en) Hand throwing robot
JP2011105137A (en) Crawler type traveling device
Kang et al. ROBHAZ-DT2: Design and integration of passive double tracked mobile manipulator system for explosive ordnance disposal
CN102773860B (en) Throwable variable structure spherical robot
Voyles TerminatorBot: a robot with dual-use arms for manipulation and locomotion
KR20140111162A (en) Multi joint robot to drive rough terrain
Yao et al. A portable off‐road crawling hexapod robot
KR101871339B1 (en) Throw type reconnaissance robot
TWI421185B (en) Unmanned vehicle using vibration damping system
WO2007029800A1 (en) Remote-controlled mobile machine using flexible shafts
CN1982143A (en) Polling microrobot for leg-crawler composite moving mechanism
Tsukagoshi et al. Fast accessible rescue device by using a flexible sliding actuator
JP2006247819A (en) Articulated walking device
Schempf Self-rappelling robot system for inspection and reconnaissance in search and rescue applications
TWI547394B (en) Reconnaissance and replenishment robot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11744814

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012500691

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11744814

Country of ref document: EP

Kind code of ref document: A1