WO2011102409A1 - Battery - Google Patents

Battery Download PDF

Info

Publication number
WO2011102409A1
WO2011102409A1 PCT/JP2011/053353 JP2011053353W WO2011102409A1 WO 2011102409 A1 WO2011102409 A1 WO 2011102409A1 JP 2011053353 W JP2011053353 W JP 2011053353W WO 2011102409 A1 WO2011102409 A1 WO 2011102409A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
battery
water
active material
manganese dioxide
Prior art date
Application number
PCT/JP2011/053353
Other languages
French (fr)
Japanese (ja)
Inventor
千慶 鈴木
Original Assignee
株式会社アクモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アクモ filed Critical 株式会社アクモ
Publication of WO2011102409A1 publication Critical patent/WO2011102409A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte

Definitions

  • the present invention relates to a battery using water as a positive electrode active material.
  • Patent Document 1 discloses a metal negative electrode outer cylinder, a powder filler made of an oxidant filled in the negative electrode outer cylinder, and a rod-like positive electrode made of carbon inserted into the powder filler.
  • a battery including a current collector and a water absorbing member injected into the negative electrode outer cylinder for absorbing water and supplying it to the powder filler is disclosed.
  • the battery described in Patent Document 1 uses an oxidizing substance having a strong oxidizing power such as manganese dioxide as a positive electrode active material, and water is merely used as a solvent for an electrolytic solution, and water is directly used as a positive electrode active material. It is not used as.
  • water is widely present in nature and can be easily obtained, and the reduction potential is ⁇ 0.83 V vs.
  • SHE has a high reduction potential and a large theoretical capacity of 1488 mAhg ⁇ 1 . For this reason, it is expected that a high-capacity battery can be constructed by using water as the positive electrode active material.
  • an object of the present invention is to provide a battery that uses a water reduction reaction, that is, uses water as a positive electrode active material.
  • the present inventors use a polyvalent carboxylate as an electrolyte contained in an electrolytic solution and manganese dioxide as a positive electrode-containing catalyst, the overvoltage of the water reduction reaction can be suppressed, and water is used as a positive electrode active material. As a result, the present invention has been completed. Specifically, the present invention provides the following.
  • a battery in which the positive electrode active material is water using an aqueous solution of a polyvalent carboxylate as an electrolyte and manganese dioxide as a positive electrode-containing catalyst.
  • a polyvalent carboxylate is used as the electrolyte contained in the electrolytic solution, and manganese dioxide is used as the positive electrode-containing catalyst. Since these electrolytes and the positive electrode-containing catalyst catalyze a positive electrode reaction (2H 2 O + 2e ⁇ ⁇ 2OH ⁇ + H 2 ) using water as a positive electrode active material and suppress overvoltage, a battery using water as a positive electrode active material Can be provided (see FIGS. 1 and 2).
  • the invention described in (2) defines the crystal structure of the positive electrode-containing catalyst used in the invention described in (1).
  • tetragonal manganese dioxide is used as the positive electrode-containing catalyst, the capacity of the battery can be increased as compared with the case where manganese dioxide such as electrolytic manganese dioxide is used (see FIGS. 1 and 3).
  • the invention described in (3) defines the pH of the electrolytic solution in the invention described in (1) and (2).
  • the cause of termination of the electrochemical reaction in the positive electrode of the battery of the present invention includes inhibition of the electrochemical reaction due to the formation of a film on the positive electrode surface.
  • the electrolyte contained in the battery is strongly alkaline (around pH 14), a passive film composed of magnesium citrate or magnesium oxide is formed on the surface of the positive electrode, and the electrochemical reaction at the positive electrode is inhibited.
  • the initial electrolyte has a low pH within a range in which self-discharge at the negative electrode can be suppressed.
  • the invention described in (4) defines the polyvalent carboxylate used in the invention described in (1) to (3).
  • Citrate and succinate ions have a relatively low molecular weight and high solubility in water among the polyvalent carboxylate ions chelating to metal ions, so even when chelated to polyvalent metal ions, they dissolve in water. Sex can be kept high. For this reason, film formation on the positive electrode surface can be suppressed.
  • the invention described in (5) defines the concentration of the polyvalent carboxylate in the electrolytic solution of the invention described in (1) to (4).
  • concentration of the polyvalent carboxylate is less than 0.2 mol / L, the catalytic effect on the reduction reaction of water decreases, the resistance of the electrolytic solution decreases due to the decrease in ionic strength, and the effect of suppressing the formation of the coating film decreases. For this reason, the capacity
  • the polyvalent carboxylate concentration exceeds 0.9 mol / L, film formation occurs on the positive electrode surface even at a lower pH, and the capacity of the battery decreases (see FIG. 4).
  • the invention described in (6) defines the negative electrode material in the invention described in (1) to (5).
  • magnesium has an oxidation potential (-2.37 V vs. SHE) lower than the reduction potential of water, and has a large theoretical capacity (2290 mAhg ⁇ 1 ).
  • the solubility of magnesium hydroxide in water is low, there is a problem that a film is formed on the negative electrode surface and the electrochemical reaction is inhibited.
  • the polyvalent carboxylate ion that catalyzes the reduction reaction of water can chelate magnesium hydroxide having a low solubility to improve the solubility. For this reason, it can suppress that the negative electrode surface is coat
  • a liquid retaining part that can hold water disposed between the positive electrode and the negative electrode, and a hole that can introduce water into the liquid retaining part from the outside, and the liquid retaining part is a polyvalent carboxylic acid in a dry state The battery according to any one of (1) to (6), which contains a salt.
  • the invention described in (7) is a person who specified a specific embodiment of the invention described in (1). If water that is a positive electrode active material is not included in the inside of the battery until just before use but is supplied from the outside just before use, the weight of the battery can be reduced. Further, since the electrolytic solution is also an aqueous solution, an electrochemical reaction does not occur if stored in a dry state, and the battery can be stored for a long period of time.
  • the battery of the present invention uses a polyvalent carboxylate as the electrolyte contained in the electrolytic solution and manganese dioxide as the positive electrode-containing catalyst. Since these electrolytes and the positive electrode-containing catalyst catalyze a positive electrode reaction (2H 2 O + 2e ⁇ ⁇ 2OH ⁇ + H 2 ) using water as a positive electrode active material and suppress overvoltage, a battery using water as a positive electrode active material Can be provided.
  • the polyvalent carboxylate ions have low solubility. To improve the solubility of magnesium hydroxide. For this reason, magnesium oxide does not coat the surface of the negative electrode, and the battery can maintain the electromotive force for a long time.
  • FIG. 1 is a diagram illustrating a relationship between a polyvalent carboxylic acid concentration and a capacity obtained by an example of the present invention. 1 is an X-ray diffraction pattern of tetragonal manganese dioxide.
  • the battery of the present invention includes a positive electrode, a negative electrode, and a liquid retaining part held between the positive electrode and the negative electrode.
  • the positive electrode is composed of manganese dioxide, which is a positive electrode-containing catalyst, a conductive agent, and a binder.
  • each material is mixed at a predetermined ratio (for example, 7 parts by mass of manganese dioxide, 2 parts by mass of a conductive agent, and 1 part by mass of a binder), applied to a current collector, and bonded. What is necessary is just to dry at the temperature which the solvent of an adhesive evaporates.
  • Manganese dioxide acts as a positive electrode-containing catalyst, but the amount of reaction field correlates with the amount of manganese dioxide, so it is preferable that the content of manganese dioxide is large.
  • the crystal structure of manganese dioxide is preferably a tetragonal type (see FIG. 5).
  • the conductive agent Since the conductive agent does not participate in the electrochemical reaction, it is preferable that the content is as small as possible as long as the content is sufficient to perform the function.
  • the conductive agent include carbon black such as ketjen black, acetylene black, channel black, furnace black, lamp black, and thermal black, scaly graphite, and graphite.
  • the binder Since the binder does not participate in the electrochemical reaction, the smaller the content, the better, as long as the content is sufficient to perform the function.
  • the binder is not particularly limited, and examples thereof include a thermoplastic resin and a thermosetting resin. Specifically, polyethylene, polypropylene, polyvinyl alcohol, polytetrafluoroethylene, polyvinylidene fluoride, styrene butadiene rubber, tetrafluoroethylene-hexafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene -Perfluoroalkyl vinyl ether copolymer, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer, polychlorotrifluoroethylene, vinylidene fluoride
  • the positive electrode current collector for example, one made of a material such as graphite, copper, nickel, aluminum, iron, and titanium is suitable, but it is not limited to these as long as it is a conductor.
  • the negative electrode is not particularly limited as long as it does not cause a rapid chemical reaction with water and is made of a material whose oxidation potential is lower than the reduction potential of water ( ⁇ 0.83 V vs. SHE).
  • examples of such materials include magnesium, thorium, beryllium, aluminum, titanium, zirconium, manganese, and alloys thereof.
  • magnesium or a magnesium alloy is preferable from the viewpoints of battery voltage and capacity exhibiting favorable numerical values and availability as a resource.
  • the liquid holding part has hydrophilicity, has a liquid holding function for holding the electrolytic solution, and functions as a separator for preventing a short circuit between the electrodes.
  • a material constituting the liquid retaining portion a polypropylene nonwoven fabric, a polyphenylene sulfide nonwoven fabric, glass fiber, filter paper, a porous film of an olefin resin, etc. can be used, but it has insulating properties and a fluid retaining function. As long as it is not limited to these.
  • the battery of the present invention may be stored in a state where the liquid retaining part is dried, and the liquid retaining part may be water-containing during use. In that case, an aqueous solution of polyvalent carboxylate is held in the liquid retaining part by containing the polyvalent carboxylate in the liquid retaining part and supplying water.
  • the electrolytic solution held in the liquid holding part is an aqueous solution of polyvalent carboxylate. Since polyvalent carboxylate ions contained in the electrolyte catalyze the reduction reaction of water together with manganese dioxide, a battery using water as a positive electrode active material can be provided. Furthermore, even when magnesium or a magnesium alloy is used as the negative electrode active material, polyvalent carboxylic acid ions are chelated to the eluted magnesium ions, so that the solubility of the magnesium salt is improved, and the film formation on the positive electrode and negative electrode surfaces is suppressed. be able to. Moreover, it can prevent that electrolyte solution changes easily to alkaline by the buffer effect
  • the pH of the electrolytic solution is preferably 7 or more and 14 or less.
  • Factors for terminating the electrochemical reaction at the positive electrode of the battery include inhibition of the electrochemical reaction due to the formation of a film on the surface of the positive electrode, in addition to the disappearance of water as the positive electrode active material.
  • the electrolyte contained in the battery is strongly alkaline (around pH 14)
  • a passive film composed of magnesium citrate or magnesium oxide is formed on the surface of the positive electrode, and the electrochemical reaction at the positive electrode is inhibited.
  • the initial electrolyte has a low pH within a range in which self-discharge at the negative electrode can be suppressed.
  • polyvalent carboxylate for example, citrate or succinate can be used.
  • citrate or succinate can be used.
  • the concentration of the polyvalent carboxylate contained in the electrolytic solution is preferably 0.2 mol / L or more and 0.9 mol / L or less.
  • concentration of the polyvalent carboxylate is less than 0.2 mol / L, the catalytic effect on the reduction reaction of water decreases, the resistance of the electrolytic solution decreases due to the decrease in ionic strength, and the effect of suppressing the formation of the coating film decreases. For this reason, the capacity
  • Example 1 [Production of positive electrode] 2 parts by mass of acetylene black and 1 part by mass of polyvinylidene fluoride were mixed with 7 parts by mass of manganese dioxide powder having a tetragonal crystal structure. This mixture was applied to carbon paper and fired at 110 ° C. for 1 hour to obtain a positive electrode.
  • the measurement cell was produced from the produced positive electrode and the electrolytic solution, and the negative electrode and the reference electrode.
  • a magnesium alloy (AZ31) was used for the negative electrode and a magnesium alloy was used for the reference electrode, and the voltage and capacity of the positive electrode were measured.
  • Example 1, 2, and 3 are drawings showing discharge polarities in Example 1, Comparative Example 2, and Comparative Example 3, respectively.
  • FIG. 1 and FIG. 2 it can be seen that when the electrolytic solution containing trisodium citrate is used, the capacity is remarkably larger than when the electrolytic solution containing sodium chloride is used. . It can also be seen that when tetragonal manganese dioxide is used for the positive electrode, the capacity is significantly greater than when electrolytic manganese dioxide is used. As described above, according to the present invention, a battery having sufficient performance can be provided even when water is used as the positive electrode active material.

Abstract

Disclosed is a battery which utilizes a reduction reaction of water, namely a battery which uses water as a positive electrode active material. Specifically disclosed is a battery wherein an aqueous solution of a polyvalent carboxylic acid salt is used as an electrolyte solution, manganese dioxide is used as a catalyst contained in the positive electrode, and water is used as a positive electrode active material. Since it is considered that the electrolyte and the catalyst contained in the positive electrode catalyze a positive electrode reaction using water as the positive electrode active material (2H2O + 2e- → 2OH- + H2) and suppress overvoltage, there can be provided a battery which uses water as a positive electrode active material.

Description

電池battery
 本発明は、水を正極活物質として利用した電池に関する。 The present invention relates to a battery using water as a positive electrode active material.
 従来、乾燥状態で流通し、水を注入することにより発電する電池が知られている。例えば、特許文献1には、金属製の負極外筒体と、当該負極外筒体に充填された酸化物質からなる粉末充填材と、当該粉末充填材中に差し込まれた炭素からなる棒状の正極集電体と、上記負極外筒体の内部に注入された、水を吸収し上記粉末充填剤に供給するための吸水部材とを含む電池が開示されている。 Conventionally, batteries that are distributed in a dry state and generate electricity by injecting water are known. For example, Patent Document 1 discloses a metal negative electrode outer cylinder, a powder filler made of an oxidant filled in the negative electrode outer cylinder, and a rod-like positive electrode made of carbon inserted into the powder filler. A battery including a current collector and a water absorbing member injected into the negative electrode outer cylinder for absorbing water and supplying it to the powder filler is disclosed.
実用新案登録第3148205号公報Utility Model Registration No. 3148205
 特許文献1に記載の電池は、二酸化マンガン等の酸化力の強い酸化物質を正極活物質として用いており、水は電解液の溶媒として用いられているに過ぎず、水を直接、正極活物質として用いているわけではない。ここで水は、自然界に広く存在し、容易に入手することが可能であり、還元電位-0.83V vs. SHE、理論容量1488mAhg-1という、高い還元電位と大きな理論容量を有する。このため、水を正極活物質として用いることにより高容量の電池を構成することができると期待される。 The battery described in Patent Document 1 uses an oxidizing substance having a strong oxidizing power such as manganese dioxide as a positive electrode active material, and water is merely used as a solvent for an electrolytic solution, and water is directly used as a positive electrode active material. It is not used as. Here, water is widely present in nature and can be easily obtained, and the reduction potential is −0.83 V vs. SHE has a high reduction potential and a large theoretical capacity of 1488 mAhg −1 . For this reason, it is expected that a high-capacity battery can be constructed by using water as the positive electrode active material.
 しかしながら、通常、水の還元反応を電池反応に利用するには、水の高い還元電位に加えて、相当の過電圧がかかるので、これら還元電位と過電圧との総和を超える、卑な酸化電位を有する負極が必要になる。しかも、このような卑な電位を有する金属のうち、リチウム、ナトリウム、カルシウムといった金属は水と激しく反応するため、水を正極活物質として使用した電池の負極としては使用できない。このため、水を正極活物質として用いた電池はこれまで実現されていなかった。水を正極活物質として用いた電池を実現できれば、環境への悪影響を与えない、低コストで製造可能な電池を製造できることが期待されていた。 However, in order to use the reduction reaction of water for the battery reaction, in general, a considerable overvoltage is applied in addition to the high reduction potential of water. A negative electrode is required. Moreover, among metals having such a low potential, metals such as lithium, sodium, and calcium react violently with water, and thus cannot be used as a negative electrode for a battery using water as a positive electrode active material. For this reason, a battery using water as a positive electrode active material has not been realized so far. If a battery using water as a positive electrode active material could be realized, it was expected that a battery that could be manufactured at low cost without adversely affecting the environment could be manufactured.
 従って、本発明は、水の還元反応を利用する、即ち、水を正極活物質として使用した電池を提供することを目的とする。 Therefore, an object of the present invention is to provide a battery that uses a water reduction reaction, that is, uses water as a positive electrode active material.
 本発明者らは、電解液に含有される電解質として多価カルボン酸塩を、正極含有触媒として二酸化マンガンを用いたとき、水の還元反応の過電圧を抑制でき、水を正極活物質として用いることができることを見出し、本発明を完成するに至った。具体的には、本発明は以下のものを提供する。 When the present inventors use a polyvalent carboxylate as an electrolyte contained in an electrolytic solution and manganese dioxide as a positive electrode-containing catalyst, the overvoltage of the water reduction reaction can be suppressed, and water is used as a positive electrode active material. As a result, the present invention has been completed. Specifically, the present invention provides the following.
 (1) 電解液に多価カルボン酸塩の水溶液を、正極含有触媒として二酸化マンガンを使用した正極活物質が水である電池。 (1) A battery in which the positive electrode active material is water using an aqueous solution of a polyvalent carboxylate as an electrolyte and manganese dioxide as a positive electrode-containing catalyst.
 (1)に記載の発明は、電解液に含有される電解質として多価カルボン酸塩を、正極含有触媒として二酸化マンガンを用いている。これらの電解質及び正極含有触媒は、水を正極活物質とする正極反応(2HO+2e→2OH+H)を触媒し、過電圧を抑制すると考えられるため、水を正極活物質として利用した電池を提供することができる(図1及び図2参照)。 In the invention described in (1), a polyvalent carboxylate is used as the electrolyte contained in the electrolytic solution, and manganese dioxide is used as the positive electrode-containing catalyst. Since these electrolytes and the positive electrode-containing catalyst catalyze a positive electrode reaction (2H 2 O + 2e → 2OH + H 2 ) using water as a positive electrode active material and suppress overvoltage, a battery using water as a positive electrode active material Can be provided (see FIGS. 1 and 2).
 (2) 前記二酸化マンガンの結晶構造が、正方晶型である(1)に記載の電池。 (2) The battery according to (1), wherein the manganese dioxide has a tetragonal crystal structure.
 (2)に記載の発明は、(1)に記載の発明において用いられる正極含有触媒の結晶構造を規定したものである。正極含有触媒として正方晶型二酸化マンガンを用いた場合、例えば電解二酸化マンガン等の二酸化マンガンを用いた場合よりも、電池の容量を増大させることができる(図1及び図3参照)。 The invention described in (2) defines the crystal structure of the positive electrode-containing catalyst used in the invention described in (1). When tetragonal manganese dioxide is used as the positive electrode-containing catalyst, the capacity of the battery can be increased as compared with the case where manganese dioxide such as electrolytic manganese dioxide is used (see FIGS. 1 and 3).
 (3) 前記電解液のpHが、7以上14未満である(1)又は(2)に記載の電池。 (3) The battery according to (1) or (2), wherein the pH of the electrolytic solution is 7 or more and less than 14.
 (3)に記載の発明は、(1)及び(2)に記載の発明における電解液のpHを規定したものである。本発明の電池の正極における電気化学反応が終了する要因には、正極活物質である水の消失以外にも、正極表面に被膜が形成されることによる電気化学反応の阻害が挙げられる。電池に含有される電解液が強アルカリ性(pH14付近)である場合、正極表面にクエン酸マグネシウム又は酸化マグネシウム等からなる不動態被膜が形成され、正極での電気化学反応が阻害される。 The invention described in (3) defines the pH of the electrolytic solution in the invention described in (1) and (2). In addition to the disappearance of water, which is the positive electrode active material, the cause of termination of the electrochemical reaction in the positive electrode of the battery of the present invention includes inhibition of the electrochemical reaction due to the formation of a film on the positive electrode surface. When the electrolyte contained in the battery is strongly alkaline (around pH 14), a passive film composed of magnesium citrate or magnesium oxide is formed on the surface of the positive electrode, and the electrochemical reaction at the positive electrode is inhibited.
 また、電解液のpHが7以下未満である場合には、負極が自己放電を起こし、自己放電による負極容量の損失が発生する。また、電池反応の進行につれて、水酸化物イオンが生成し、電解液がアルカリ性になるため、初期の電解液のpHは負極での自己放電を抑制できる範囲内において低いpHであることが容量増大の観点から好ましい。 In addition, when the pH of the electrolytic solution is less than 7 or less, the negative electrode undergoes self-discharge, and loss of the negative electrode capacity due to self-discharge occurs. In addition, as the battery reaction proceeds, hydroxide ions are generated and the electrolyte becomes alkaline. Therefore, the initial electrolyte has a low pH within a range in which self-discharge at the negative electrode can be suppressed. From the viewpoint of
 (4) 前記多価カルボン酸塩が、クエン酸塩及び/又はコハク酸塩である(1)から(3)のいずれかに記載の電池。 (4) The battery according to any one of (1) to (3), wherein the polyvalent carboxylate is citrate and / or succinate.
 (4)に記載の発明は、(1)から(3)に記載の発明において用いられる多価カルボン酸塩について規定したものである。クエン酸イオン及びコハク酸イオンは、金属イオンにキレートする多価カルボン酸イオンの中では、比較的低分子量で水への溶解度が高いため、多価金属イオンにキレートした場合においても水への溶解性を高く維持することができる。このため、正極表面における被膜形成を抑制することができる。 The invention described in (4) defines the polyvalent carboxylate used in the invention described in (1) to (3). Citrate and succinate ions have a relatively low molecular weight and high solubility in water among the polyvalent carboxylate ions chelating to metal ions, so even when chelated to polyvalent metal ions, they dissolve in water. Sex can be kept high. For this reason, film formation on the positive electrode surface can be suppressed.
 (5) 前記電解液が、前記多価カルボン酸塩を0.2mol/L以上0.9mol/L以下含有する(1)から(4)のいずれかに記載の電池。 (5) The battery according to any one of (1) to (4), wherein the electrolytic solution contains the polyvalent carboxylate in an amount of 0.2 mol / L to 0.9 mol / L.
 (5)に記載の発明は、(1)から(4)に記載の発明の電解液中の多価カルボン酸塩の濃度を規定したものである。多価カルボン酸塩の濃度が0.2mol/L未満では、水の還元反応に対する触媒効果が低下や、イオン強度の低下による電解液の抵抗の低下、被膜形成の抑制効果の低下につながる。このため、電池の容量が低下する(図4参照)。多価カルボン酸塩濃度が0.9mol/Lを超える場合は、正極表面で、より低いpHでも被膜の形成が生じることとなり、電池の容量が低下する(図4参照)。 The invention described in (5) defines the concentration of the polyvalent carboxylate in the electrolytic solution of the invention described in (1) to (4). When the concentration of the polyvalent carboxylate is less than 0.2 mol / L, the catalytic effect on the reduction reaction of water decreases, the resistance of the electrolytic solution decreases due to the decrease in ionic strength, and the effect of suppressing the formation of the coating film decreases. For this reason, the capacity | capacitance of a battery falls (refer FIG. 4). When the polyvalent carboxylate concentration exceeds 0.9 mol / L, film formation occurs on the positive electrode surface even at a lower pH, and the capacity of the battery decreases (see FIG. 4).
 (6) 負極が、マグネシウム又はマグネシウム合金からなる(1)から(5)のいずれかに記載の電池。 (6) The battery according to any one of (1) to (5), wherein the negative electrode is made of magnesium or a magnesium alloy.
 (6)に記載の発明は、(1)から(5)に記載の発明における負極の材料を規定したものである。ここで、マグネシウムは、水の還元電位よりも卑な酸化電位(-2.37V vs. SHE)を有し、大きな理論容量(2290mAhg-1)を有する。しかしながら、水酸化マグネシウムの水への溶解度は低いので、負極表面に被膜が生成し、電気化学反応が阻害されるという問題がある。ここで、水の還元反応を触媒する多価カルボン酸イオンは溶解度が低い水酸化マグネシウムをキレート化して溶解度を向上させることができる。このため、負極表面が被覆されることが抑制され、マグネシウム本来の容量を発揮することができる。 The invention described in (6) defines the negative electrode material in the invention described in (1) to (5). Here, magnesium has an oxidation potential (-2.37 V vs. SHE) lower than the reduction potential of water, and has a large theoretical capacity (2290 mAhg −1 ). However, since the solubility of magnesium hydroxide in water is low, there is a problem that a film is formed on the negative electrode surface and the electrochemical reaction is inhibited. Here, the polyvalent carboxylate ion that catalyzes the reduction reaction of water can chelate magnesium hydroxide having a low solubility to improve the solubility. For this reason, it can suppress that the negative electrode surface is coat | covered, and can demonstrate an original capacity | capacitance of magnesium.
 (7) 正極及び負極の間に配置される水を保持可能な保液部と、外部から前記保液部に水を導入可能な孔を備え、前記保液部が乾燥状態において多価カルボン酸塩を含有する(1)から(6)のいずれかに記載の電池。 (7) A liquid retaining part that can hold water disposed between the positive electrode and the negative electrode, and a hole that can introduce water into the liquid retaining part from the outside, and the liquid retaining part is a polyvalent carboxylic acid in a dry state The battery according to any one of (1) to (6), which contains a salt.
 (7)に記載の発明は、(1)に記載の発明の具体的態様を規定した者である。正極活物質である水を、使用直前まで電池内部に包含させず、使用直前に外部から供給する形とすれば、電池の軽量化を図ることができる。また、電解液も水溶液であるため、乾燥状態で保存すれば電気化学反応は生じず、電池を長期間保存することが可能となる。 The invention described in (7) is a person who specified a specific embodiment of the invention described in (1). If water that is a positive electrode active material is not included in the inside of the battery until just before use but is supplied from the outside just before use, the weight of the battery can be reduced. Further, since the electrolytic solution is also an aqueous solution, an electrochemical reaction does not occur if stored in a dry state, and the battery can be stored for a long period of time.
 本発明の電池は、電解液に含有される電解質として多価カルボン酸塩を、正極含有触媒として二酸化マンガンを用いている。これらの電解質及び正極含有触媒は、水を正極活物質とする正極反応(2HO+2e→2OH+H)を触媒し、過電圧を抑制すると考えられるため、水を正極活物質として利用した電池を提供することができる。 The battery of the present invention uses a polyvalent carboxylate as the electrolyte contained in the electrolytic solution and manganese dioxide as the positive electrode-containing catalyst. Since these electrolytes and the positive electrode-containing catalyst catalyze a positive electrode reaction (2H 2 O + 2e → 2OH + H 2 ) using water as a positive electrode active material and suppress overvoltage, a battery using water as a positive electrode active material Can be provided.
 更に、本発明においては、電解質として多価カルボン酸塩を用いているため、マグネシウム又はマグネシウム合金を負極活物質に用いた場合であっても、多価カルボン酸イオンが、溶解度の低い水酸化マグネシウムをキレートして水酸化マグネシウムの溶解度を向上させる。このため、酸化マグネシウムが負極の表面を被覆することがなく、電池が長時間に亘り起電力を維持することができる。 Furthermore, in the present invention, since a polyvalent carboxylate is used as the electrolyte, even when magnesium or a magnesium alloy is used as the negative electrode active material, the polyvalent carboxylate ions have low solubility. To improve the solubility of magnesium hydroxide. For this reason, magnesium oxide does not coat the surface of the negative electrode, and the battery can maintain the electromotive force for a long time.
本発明の実施例により求められる放電曲線を示す図面である。It is drawing which shows the discharge curve calculated | required by the Example of this invention. 本発明の比較例により求められる放電曲線を示す図面である。It is drawing which shows the discharge curve calculated | required by the comparative example of this invention. 本発明の比較例により求められる放電曲線を示す図面である。It is drawing which shows the discharge curve calculated | required by the comparative example of this invention. 本発明の実施例により求められる多価カルボン酸濃度と容量との関係を示す図面である。1 is a diagram illustrating a relationship between a polyvalent carboxylic acid concentration and a capacity obtained by an example of the present invention. 正方晶型二酸化マンガンのX線回折パターンを示す図面である。1 is an X-ray diffraction pattern of tetragonal manganese dioxide.
 以下、本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 <電池>
 [電池の構成]
 本発明の電池は、正極、負極、及び正極と負極との間に保持された保液部からなる。
<Battery>
[Battery configuration]
The battery of the present invention includes a positive electrode, a negative electrode, and a liquid retaining part held between the positive electrode and the negative electrode.
 (正極)
 正極は、正極含有触媒である二酸化マンガンと、導電剤と、結着剤とからなる。正極を作製するには、各材料を所定の割合(例えば、二酸化マンガンを7質量部、導電剤を2質量部、結着剤を1質量部)で混合し、集電体に塗布し、結着剤の溶剤が蒸発する温度で乾燥させればよい。
(Positive electrode)
The positive electrode is composed of manganese dioxide, which is a positive electrode-containing catalyst, a conductive agent, and a binder. In order to produce the positive electrode, each material is mixed at a predetermined ratio (for example, 7 parts by mass of manganese dioxide, 2 parts by mass of a conductive agent, and 1 part by mass of a binder), applied to a current collector, and bonded. What is necessary is just to dry at the temperature which the solvent of an adhesive evaporates.
 (二酸化マンガン)
 二酸化マンガンは正極含有触媒として作用するが、反応場の量は、二酸化マンガンの量に相関するので、二酸化マンガンの含有量が多いほうが好ましい。なお、二酸化マンガンの結晶構造は正方晶型が好ましい(図5参照)。
(Manganese dioxide)
Manganese dioxide acts as a positive electrode-containing catalyst, but the amount of reaction field correlates with the amount of manganese dioxide, so it is preferable that the content of manganese dioxide is large. The crystal structure of manganese dioxide is preferably a tetragonal type (see FIG. 5).
 (導電剤)
 導電剤は、電気化学反応には関与しないので、機能を果たすに十分な含有量のみ含有されさえすれば、含有量は少なければ少ないほど好ましい。導電剤としては、ケチェンブラック、アセチレンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック、鱗片状黒鉛、グラファイト等を挙げることができる。
(Conductive agent)
Since the conductive agent does not participate in the electrochemical reaction, it is preferable that the content is as small as possible as long as the content is sufficient to perform the function. Examples of the conductive agent include carbon black such as ketjen black, acetylene black, channel black, furnace black, lamp black, and thermal black, scaly graphite, and graphite.
 (結着剤)
 結着剤は、電気化学反応には関与しないので、機能を果たすに十分な含有量のみ含有さえすれば、含有量が少なければ少ないほど好ましい。結着剤としては、特に限定されるものではなく、熱可塑性樹脂や熱硬化性樹脂を挙げることができる。具体的には、ポリエチレン、ポリプロピレン、ポリビニルアルコール、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、スチレンブタジエンゴム、テトラフルオロエチレン-ヘキサフルオロエチレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-クロロトリフルオロエチレン共重合体、エチレン-テトラフルオロエチレン共重合体、ポリクロロトリフルオロエチレン、フッ化ビニリデン-ペンタフルオロプロピレン共重合体、プロピレン-テトラフルオロエチレン共重合体、エチレン-クロロトリフルオロエチレン共重合体、フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン共重合体、フッ化ビニリデン-パーフルオロメチルビニルエーテル-テトラフルオロエチレン共重合体、エチレン-アクリル酸共重合体等を挙げることができる。これらの材料は単独で用いてもよく、二種以上を混合して用いてもよい。
(Binder)
Since the binder does not participate in the electrochemical reaction, the smaller the content, the better, as long as the content is sufficient to perform the function. The binder is not particularly limited, and examples thereof include a thermoplastic resin and a thermosetting resin. Specifically, polyethylene, polypropylene, polyvinyl alcohol, polytetrafluoroethylene, polyvinylidene fluoride, styrene butadiene rubber, tetrafluoroethylene-hexafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene -Perfluoroalkyl vinyl ether copolymer, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer, polychlorotrifluoroethylene, vinylidene fluoride -Pentafluoropropylene copolymer, propylene-tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer, vinylidene fluoride-hexa Le Oro propylene - tetrafluoroethylene copolymer, vinylidene fluoride - perfluoromethyl vinyl ether - tetrafluoroethylene copolymer, ethylene - and acrylic acid copolymers. These materials may be used alone or in combination of two or more.
 (正極集電体)
 正極集電体としては、例えば、グラファイト、銅、ニッケル、アルミニウム、鉄、チタン等の材料からなるものが好適であるが、導電体である限りにおいてこれらに限定されるものではない。
(Positive electrode current collector)
As the positive electrode current collector, for example, one made of a material such as graphite, copper, nickel, aluminum, iron, and titanium is suitable, but it is not limited to these as long as it is a conductor.
 (負極)
 負極は、水との急激な化学反応を生起せず、酸化電位が水の還元電位(-0.83V vs. SHE)よりも低い材料からなるものであれば、特に限定されない。このような材料としては、マグネシウム、トリウム、ベリリウム、アルミニウム、チタン、ジルコニウム、マンガン、又はこれらの合金等を挙げることができる。これらの材料の中でも、電池電圧、容量が良好な数値を示すこと、及び資源としての入手容易性の観点からマグネシウム又はマグネシウム合金が好ましい。
(Negative electrode)
The negative electrode is not particularly limited as long as it does not cause a rapid chemical reaction with water and is made of a material whose oxidation potential is lower than the reduction potential of water (−0.83 V vs. SHE). Examples of such materials include magnesium, thorium, beryllium, aluminum, titanium, zirconium, manganese, and alloys thereof. Among these materials, magnesium or a magnesium alloy is preferable from the viewpoints of battery voltage and capacity exhibiting favorable numerical values and availability as a resource.
 (保液部)
 保液部は、親水性を有し、電解液を保持する保液機能を有すると共に、電極間の短絡を防止するセパレータとしての機能を有する。保液部を構成する材料としては、ポリプロピレン製不織布、ポリフェニレンスルフィド製不織布、ガラス繊維、ろ紙、オレフィン系樹脂の多孔質フィルム等を用いることができるが、絶縁性及び保液機能を有している限りにおいて特にこれらに限定されるものではない。
(Liquid retention part)
The liquid holding part has hydrophilicity, has a liquid holding function for holding the electrolytic solution, and functions as a separator for preventing a short circuit between the electrodes. As a material constituting the liquid retaining portion, a polypropylene nonwoven fabric, a polyphenylene sulfide nonwoven fabric, glass fiber, filter paper, a porous film of an olefin resin, etc. can be used, but it has insulating properties and a fluid retaining function. As long as it is not limited to these.
 また、本発明の電池は、保液部を乾燥させた状態で保管して、使用時に保液部を含水させて用いてもよい。その場合、保液部には多価カルボン酸塩を含有させ、水が供給されることにより、保液部に多価カルボン酸塩の水溶液が保持されることとなる。 In addition, the battery of the present invention may be stored in a state where the liquid retaining part is dried, and the liquid retaining part may be water-containing during use. In that case, an aqueous solution of polyvalent carboxylate is held in the liquid retaining part by containing the polyvalent carboxylate in the liquid retaining part and supplying water.
 (電解液)
 ここで、保液部に保持される電解液は多価カルボン酸塩の水溶液である。電解液に含まれる多価カルボン酸イオンは、二酸化マンガンと共に水の還元反応を触媒するため、水を正極活物質として用いた電池を提供することができる。更に、負極活物質としてマグネシウム又はマグネシウム合金を用いた場合においても、溶出するマグネシウムイオンに、多価カルボン酸イオンがキレートし、マグネシウム塩の溶解度を向上させ、正極及び負極表面の被膜生成を抑制することができる。また、多価カルボン酸イオンの緩衝作用により、電解液が容易にアルカリ性へと変化することを防止できる。この結果、負極活物質としてマグネシウム又はマグネシウム合金を用いた場合においても、正極及び負極表面での被膜の形成を防止し、電池の容量の増大が可能となる。
(Electrolyte)
Here, the electrolytic solution held in the liquid holding part is an aqueous solution of polyvalent carboxylate. Since polyvalent carboxylate ions contained in the electrolyte catalyze the reduction reaction of water together with manganese dioxide, a battery using water as a positive electrode active material can be provided. Furthermore, even when magnesium or a magnesium alloy is used as the negative electrode active material, polyvalent carboxylic acid ions are chelated to the eluted magnesium ions, so that the solubility of the magnesium salt is improved, and the film formation on the positive electrode and negative electrode surfaces is suppressed. be able to. Moreover, it can prevent that electrolyte solution changes easily to alkaline by the buffer effect | action of a polyvalent carboxylate ion. As a result, even when magnesium or a magnesium alloy is used as the negative electrode active material, the formation of a coating on the positive electrode and negative electrode surfaces can be prevented, and the capacity of the battery can be increased.
 電解液のpHは7以上14以下であることが好ましい。電池の正極における電気化学反応が終了する要因には、正極活物質である水の消失以外にも、正極表面に被膜が形成されることによる電気化学反応の阻害が挙げられる。電池に含有される電解液が強アルカリ性(pH14付近)である場合、正極表面にクエン酸マグネシウム又は酸化マグネシウム等からなる不動態被膜が形成され、正極での電気化学反応が阻害される。 The pH of the electrolytic solution is preferably 7 or more and 14 or less. Factors for terminating the electrochemical reaction at the positive electrode of the battery include inhibition of the electrochemical reaction due to the formation of a film on the surface of the positive electrode, in addition to the disappearance of water as the positive electrode active material. When the electrolyte contained in the battery is strongly alkaline (around pH 14), a passive film composed of magnesium citrate or magnesium oxide is formed on the surface of the positive electrode, and the electrochemical reaction at the positive electrode is inhibited.
 また、電解液のpHが7未満である場合には、負極が自己放電を起こし、自己放電による負極容量の損失が発生する。また、電池反応の進行につれて、水酸化物イオンが生成し、電解液がアルカリ性になるため、初期の電解液のpHは負極での自己放電を抑制できる範囲内において低いpHであることが容量増大の観点から好ましい。 Further, when the pH of the electrolytic solution is less than 7, the negative electrode undergoes self-discharge, and the negative electrode capacity is lost due to self-discharge. In addition, as the battery reaction proceeds, hydroxide ions are generated and the electrolyte becomes alkaline. Therefore, the initial electrolyte has a low pH within a range in which self-discharge at the negative electrode can be suppressed. From the viewpoint of
 多価カルボン酸塩としては、例えばクエン酸塩やコハク酸塩を用いることができる。これら、溶解度の高い多価カルボン酸塩を用いることにより、多価金属イオンをキレートした場合においても、水への溶解度を向上させることができ、正極及び負極表面における被膜形成を抑制することができる。 As the polyvalent carboxylate, for example, citrate or succinate can be used. By using these highly soluble polyvalent carboxylates, even when polyvalent metal ions are chelated, solubility in water can be improved, and film formation on the positive and negative electrode surfaces can be suppressed. .
 電解液に含まれる多価カルボン酸塩の濃度は、0.2mol/L以上0.9mol/L以下であることが好ましい。多価カルボン酸塩の濃度が0.2mol/L未満では、水の還元反応に対する触媒効果が低下や、イオン強度の低下による電解液の抵抗の低下、被膜形成の抑制効果の低下につながる。このため、電池の容量が低下する(図4参照)。多価カルボン酸塩濃度が0.9mol/Lを超える場合は、正極表面で、より低いpHでも被膜の形成が生じることとなり、電池の容量が低下する(図4参照)。 The concentration of the polyvalent carboxylate contained in the electrolytic solution is preferably 0.2 mol / L or more and 0.9 mol / L or less. When the concentration of the polyvalent carboxylate is less than 0.2 mol / L, the catalytic effect on the reduction reaction of water decreases, the resistance of the electrolytic solution decreases due to the decrease in ionic strength, and the effect of suppressing the formation of the coating film decreases. For this reason, the capacity | capacitance of a battery falls (refer FIG. 4). When the polyvalent carboxylate concentration exceeds 0.9 mol / L, film formation occurs on the positive electrode surface even at a lower pH, and the capacity of the battery decreases (see FIG. 4).
 以下、本発明について、実施例を挙げて詳細に説明する。なお、本発明は、以下に示す実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples. In addition, this invention is not limited to the Example shown below at all.
 <実施例1>
 [正極の作製]
 正方晶型の結晶構造を有する二酸化マンガン粉末7質量部に、アセチレンブラック2質量部、ポリビニルフッ化ビニリデン1質量部を混合した。この混合物をカーボンペーパーに塗布し、110℃で1時間焼成して正極とした。
<Example 1>
[Production of positive electrode]
2 parts by mass of acetylene black and 1 part by mass of polyvinylidene fluoride were mixed with 7 parts by mass of manganese dioxide powder having a tetragonal crystal structure. This mixture was applied to carbon paper and fired at 110 ° C. for 1 hour to obtain a positive electrode.
 [電解液の作製]
 クエン酸ナトリウムを純水に溶解し、0.7mol/Lに調整した。
[Preparation of electrolyte]
Sodium citrate was dissolved in pure water and adjusted to 0.7 mol / L.
 [測定セル]
 測定セルは、作製した上記正極及び上記電解液、並びに負極及び参照電極から作製した。負極にはマグネシウム合金(AZ31)を、参照電極にはマグネシウム合金を用い、正極の電圧及び容量を測定した。
[Measurement cell]
The measurement cell was produced from the produced positive electrode and the electrolytic solution, and the negative electrode and the reference electrode. A magnesium alloy (AZ31) was used for the negative electrode and a magnesium alloy was used for the reference electrode, and the voltage and capacity of the positive electrode were measured.
 <比較例1>
 電解液の作製に、クエン酸三ナトリウムを使用せず、塩化ナトリウムを使用し、電解液中の塩化ナトリウムの濃度を0.7mol/Lとした点以外は、実施例1と同様の方法により、正極の電圧及び容量を測定した。
<Comparative Example 1>
For the preparation of the electrolytic solution, without using trisodium citrate, using sodium chloride, except that the concentration of sodium chloride in the electrolytic solution was 0.7 mol / L, the same method as in Example 1, The voltage and capacity of the positive electrode were measured.
 <比較例2>
 正方晶型の二酸化マンガンを用いず、電解二酸化マンガンを用いた点以外は、実施例1と同様の方法により、正極の電圧及び容量を測定した。
<Comparative Example 2>
The voltage and capacity of the positive electrode were measured in the same manner as in Example 1 except that electrolytic manganese dioxide was used without using tetragonal manganese dioxide.
 図1、図2、及び図3は、それぞれ実施例1、比較例2、及び比較例3における放電極性を示す図面である。図1及び図2から明らかなように、クエン酸三ナトリウムを含有する電解液を用いた場合、塩化ナトリウムを含有する電解液を用いた場合と比べて容量が顕著に大きくなっていることが分かる。また、正極に正方晶型の二酸化マンガンを用いた場合、電解二酸化マンガンを用いた場合に比べて、容量が顕著に大きくなっていることが分かる。以上より、本発明によれば、水を正極活物質として用いても、十分な性能を有する電池を提供することができる。 1, 2, and 3 are drawings showing discharge polarities in Example 1, Comparative Example 2, and Comparative Example 3, respectively. As is clear from FIG. 1 and FIG. 2, it can be seen that when the electrolytic solution containing trisodium citrate is used, the capacity is remarkably larger than when the electrolytic solution containing sodium chloride is used. . It can also be seen that when tetragonal manganese dioxide is used for the positive electrode, the capacity is significantly greater than when electrolytic manganese dioxide is used. As described above, according to the present invention, a battery having sufficient performance can be provided even when water is used as the positive electrode active material.

Claims (7)

  1.  電解液に多価カルボン酸塩の水溶液を、正極含有触媒として二酸化マンガンを使用した正極活物質が水である電池。 A battery in which the positive electrode active material is water using an aqueous solution of a polyvalent carboxylate as an electrolyte and manganese dioxide as a positive electrode-containing catalyst.
  2.  前記二酸化マンガンの結晶構造が、正方晶型である請求項1に記載の電池。 The battery according to claim 1, wherein the crystal structure of the manganese dioxide is a tetragonal type.
  3.  前記電解液のpHが、7以上14未満である請求項1又は2に記載の電池。 The battery according to claim 1 or 2, wherein the electrolyte has a pH of 7 or more and less than 14.
  4.  前記多価カルボン酸塩が、クエン酸塩及び/又はコハク酸塩である請求項1から3のいずれかに記載の電池。 The battery according to any one of claims 1 to 3, wherein the polyvalent carboxylate is citrate and / or succinate.
  5.  前記電解液が、前記多価カルボン酸塩を0.2mol/L以上0.9mol/L以下含有する請求項1から4のいずれかに記載の電池。 The battery according to any one of claims 1 to 4, wherein the electrolytic solution contains the polyvalent carboxylate in an amount of 0.2 mol / L to 0.9 mol / L.
  6.  負極が、マグネシウム又はマグネシウム合金からなる請求項1から5のいずれかに記載の電池。 The battery according to claim 1, wherein the negative electrode is made of magnesium or a magnesium alloy.
  7.  正極及び負極の間に配置される水を保持可能な保液部と、外部から前記保液部に水を導入可能な孔を備え、前記保液部が乾燥状態において多価カルボン酸塩を含有する請求項1から6のいずれかに記載の電池。 Provided with a liquid retaining part that can hold water disposed between the positive electrode and the negative electrode and a hole that can introduce water into the liquid retaining part from the outside, and the liquid retaining part contains a polyvalent carboxylate in a dry state The battery according to any one of claims 1 to 6.
PCT/JP2011/053353 2010-02-19 2011-02-17 Battery WO2011102409A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010034336A JP2011171132A (en) 2010-02-19 2010-02-19 Battery
JP2010-034336 2010-02-19

Publications (1)

Publication Number Publication Date
WO2011102409A1 true WO2011102409A1 (en) 2011-08-25

Family

ID=44482995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053353 WO2011102409A1 (en) 2010-02-19 2011-02-17 Battery

Country Status (2)

Country Link
JP (1) JP2011171132A (en)
WO (1) WO2011102409A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5451923B1 (en) * 2013-04-10 2014-03-26 三嶋電子株式会社 Water battery
JP5681307B1 (en) * 2014-02-26 2015-03-04 博幸 塩谷 Magnesium battery and power generator including the same
WO2019044042A1 (en) * 2017-08-28 2019-03-07 杉山 修 Battery having electrolytic solution containing alkaline mineral ionized water, electrolyte active material, and method for producing battery electrolytic solution

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56159058A (en) * 1980-05-08 1981-12-08 Matsushita Electric Ind Co Ltd Alkali manganese battery and its manufacture
JPS57189459A (en) * 1981-05-16 1982-11-20 Sumakichi Shiratori Charging dry cell
JPH02226657A (en) * 1989-02-27 1990-09-10 Ryuichi Yamamoto Manganese dry battery
JPH071566U (en) * 1992-05-11 1995-01-10 久也 広瀬 Manganese primary dry cell filled with citric acid electrolyte
JP2002110223A (en) * 2000-09-28 2002-04-12 Sanyo Electric Co Ltd Alkaline storage battery
WO2007116872A1 (en) * 2006-04-03 2007-10-18 Tsc Co., Ltd. Alloy for water electric power generation, water electric power generator using the alloy, and water electric power generation method
JP3154488U (en) * 2009-07-08 2009-10-22 日本協能電子株式会社 Water battery
JP2010182435A (en) * 2009-02-03 2010-08-19 Suzuki Senkei Magnesium cell

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56159058A (en) * 1980-05-08 1981-12-08 Matsushita Electric Ind Co Ltd Alkali manganese battery and its manufacture
JPS57189459A (en) * 1981-05-16 1982-11-20 Sumakichi Shiratori Charging dry cell
JPH02226657A (en) * 1989-02-27 1990-09-10 Ryuichi Yamamoto Manganese dry battery
JPH071566U (en) * 1992-05-11 1995-01-10 久也 広瀬 Manganese primary dry cell filled with citric acid electrolyte
JP2002110223A (en) * 2000-09-28 2002-04-12 Sanyo Electric Co Ltd Alkaline storage battery
WO2007116872A1 (en) * 2006-04-03 2007-10-18 Tsc Co., Ltd. Alloy for water electric power generation, water electric power generator using the alloy, and water electric power generation method
JP2010182435A (en) * 2009-02-03 2010-08-19 Suzuki Senkei Magnesium cell
JP3154488U (en) * 2009-07-08 2009-10-22 日本協能電子株式会社 Water battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5451923B1 (en) * 2013-04-10 2014-03-26 三嶋電子株式会社 Water battery
WO2014168155A1 (en) * 2013-04-10 2014-10-16 三嶋電子株式会社 Water battery
JP5681307B1 (en) * 2014-02-26 2015-03-04 博幸 塩谷 Magnesium battery and power generator including the same
WO2019044042A1 (en) * 2017-08-28 2019-03-07 杉山 修 Battery having electrolytic solution containing alkaline mineral ionized water, electrolyte active material, and method for producing battery electrolytic solution

Also Published As

Publication number Publication date
JP2011171132A (en) 2011-09-01

Similar Documents

Publication Publication Date Title
JP5218406B2 (en) Water-based lithium secondary battery
JP5192613B2 (en) Magnesium metal air battery
CN102637894B (en) Secondary battery with non-aqueous electrolyte
WO2013163695A1 (en) Battery electrode materials
JP5358533B2 (en) Magnesium battery
JP2008226605A (en) Nonaqueous electrolyte secondary battery
JP4788560B2 (en) Power storage device
JP2008153097A (en) Alkaline storage battery
JP2010182435A (en) Magnesium cell
JP2012049060A (en) Cathode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP2002110221A (en) Lithium ion battery
JP2017124951A (en) Water barrier sodium ion conductive film and sodium battery
JP4600136B2 (en) Aqueous electrolyte lithium secondary battery
CN106207261A (en) Electrolyte and battery
WO2011102409A1 (en) Battery
JP6695287B2 (en) Aqueous sodium ion secondary battery
JP5256649B2 (en) Water-based lithium secondary battery
JP2008288091A (en) Lithium secondary battery
JP2006040748A (en) Electrochemical device
JP2010146908A (en) Alkali metal sulfur secondary battery
JP2008269824A (en) Electrochemical cell
JP2010113963A (en) Aqueous lithium ion secondary battery
JP4862356B2 (en) Negative electrode active material and aqueous lithium secondary battery
JP5557385B2 (en) Energy storage device with proton as insertion species
CN103931049B (en) aqueous electrolyte for lithium-air battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11744695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11744695

Country of ref document: EP

Kind code of ref document: A1