WO2011101621A9 - Heat transfer compositions - Google Patents
Heat transfer compositions Download PDFInfo
- Publication number
- WO2011101621A9 WO2011101621A9 PCT/GB2011/000201 GB2011000201W WO2011101621A9 WO 2011101621 A9 WO2011101621 A9 WO 2011101621A9 GB 2011000201 W GB2011000201 W GB 2011000201W WO 2011101621 A9 WO2011101621 A9 WO 2011101621A9
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- composition
- heat transfer
- transfer device
- composition according
- existing
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 209
- 238000012546 transfer Methods 0.000 title claims abstract description 55
- LVGUZGTVOIAKKC-UHFFFAOYSA-N 1,1,1,2-tetrafluoroethane Chemical compound FCC(F)(F)F LVGUZGTVOIAKKC-UHFFFAOYSA-N 0.000 claims abstract description 65
- RWRIWBAIICGTTQ-UHFFFAOYSA-N difluoromethane Chemical compound FCF RWRIWBAIICGTTQ-UHFFFAOYSA-N 0.000 claims abstract description 40
- CDOOAUSHHFGWSA-OWOJBTEDSA-N (e)-1,3,3,3-tetrafluoroprop-1-ene Chemical compound F\C=C\C(F)(F)F CDOOAUSHHFGWSA-OWOJBTEDSA-N 0.000 claims abstract description 34
- 238000000034 method Methods 0.000 claims description 44
- 239000003507 refrigerant Substances 0.000 claims description 35
- FXRLMCRCYDHQFW-UHFFFAOYSA-N 2,3,3,3-tetrafluoropropene Chemical compound FC(=C)C(F)(F)F FXRLMCRCYDHQFW-UHFFFAOYSA-N 0.000 claims description 27
- 238000005057 refrigeration Methods 0.000 claims description 27
- 150000001875 compounds Chemical class 0.000 claims description 24
- 238000004378 air conditioning Methods 0.000 claims description 23
- 239000002904 solvent Substances 0.000 claims description 18
- NPNPZTNLOVBDOC-UHFFFAOYSA-N 1,1-difluoroethane Chemical compound CC(F)F NPNPZTNLOVBDOC-UHFFFAOYSA-N 0.000 claims description 15
- 230000007613 environmental effect Effects 0.000 claims description 14
- 239000000314 lubricant Substances 0.000 claims description 14
- -1 polyol esters Chemical class 0.000 claims description 13
- 238000010792 warming Methods 0.000 claims description 12
- 238000001704 evaporation Methods 0.000 claims description 11
- 239000005431 greenhouse gas Substances 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 10
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 claims description 9
- 239000003063 flame retardant Substances 0.000 claims description 9
- 239000013529 heat transfer fluid Substances 0.000 claims description 9
- 229920001515 polyalkylene glycol Polymers 0.000 claims description 9
- 239000003381 stabilizer Substances 0.000 claims description 9
- 239000006260 foam Substances 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 238000001816 cooling Methods 0.000 claims description 7
- 239000004604 Blowing Agent Substances 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 6
- 238000010248 power generation Methods 0.000 claims description 5
- 239000002028 Biomass Substances 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 4
- 239000007864 aqueous solution Substances 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 239000011159 matrix material Substances 0.000 claims description 4
- 229920001289 polyvinyl ether Polymers 0.000 claims description 4
- 239000003380 propellant Substances 0.000 claims description 4
- 239000007787 solid Substances 0.000 claims description 4
- 239000002480 mineral oil Substances 0.000 claims description 3
- 238000012986 modification Methods 0.000 claims description 3
- 230000004048 modification Effects 0.000 claims description 3
- 238000009420 retrofitting Methods 0.000 claims description 3
- QTHRIIFWIHUMFH-UHFFFAOYSA-N 3-chloropropyl dihydrogen phosphate Chemical compound OP(O)(=O)OCCCCl QTHRIIFWIHUMFH-UHFFFAOYSA-N 0.000 claims description 2
- 239000005696 Diammonium phosphate Substances 0.000 claims description 2
- MXRIRQGCELJRSN-UHFFFAOYSA-N O.O.O.[Al] Chemical class O.O.O.[Al] MXRIRQGCELJRSN-UHFFFAOYSA-N 0.000 claims description 2
- 229910019142 PO4 Inorganic materials 0.000 claims description 2
- 239000004793 Polystyrene Substances 0.000 claims description 2
- PQYJRMFWJJONBO-UHFFFAOYSA-N Tris(2,3-dibromopropyl) phosphate Chemical compound BrCC(Br)COP(=O)(OCC(Br)CBr)OCC(Br)CBr PQYJRMFWJJONBO-UHFFFAOYSA-N 0.000 claims description 2
- 239000000443 aerosol Substances 0.000 claims description 2
- 229910000410 antimony oxide Inorganic materials 0.000 claims description 2
- 150000001491 aromatic compounds Chemical class 0.000 claims description 2
- 150000001555 benzenes Chemical class 0.000 claims description 2
- GZUXJHMPEANEGY-UHFFFAOYSA-N bromomethane Chemical class BrC GZUXJHMPEANEGY-UHFFFAOYSA-N 0.000 claims description 2
- 238000004140 cleaning Methods 0.000 claims description 2
- 238000002681 cryosurgery Methods 0.000 claims description 2
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 claims description 2
- 229910000388 diammonium phosphate Inorganic materials 0.000 claims description 2
- 235000019838 diammonium phosphate Nutrition 0.000 claims description 2
- 239000003989 dielectric material Substances 0.000 claims description 2
- 150000001993 dienes Chemical group 0.000 claims description 2
- 150000002118 epoxides Chemical class 0.000 claims description 2
- 239000003822 epoxy resin Substances 0.000 claims description 2
- 150000002334 glycols Chemical class 0.000 claims description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims description 2
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical class IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 claims description 2
- 239000003589 local anesthetic agent Substances 0.000 claims description 2
- 235000010446 mineral oil Nutrition 0.000 claims description 2
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical class [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 claims description 2
- 239000008188 pellet Substances 0.000 claims description 2
- 150000002989 phenols Chemical class 0.000 claims description 2
- 235000021317 phosphate Nutrition 0.000 claims description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 claims description 2
- 229920013639 polyalphaolefin Polymers 0.000 claims description 2
- 229920000647 polyepoxide Polymers 0.000 claims description 2
- 229920005862 polyol Polymers 0.000 claims description 2
- 229920005990 polystyrene resin Polymers 0.000 claims description 2
- 229920002635 polyurethane Polymers 0.000 claims description 2
- 239000004814 polyurethane Substances 0.000 claims description 2
- 239000004800 polyvinyl chloride Chemical class 0.000 claims description 2
- 229920000915 polyvinyl chloride Chemical class 0.000 claims description 2
- 239000011347 resin Substances 0.000 claims description 2
- 229920002545 silicone oil Polymers 0.000 claims description 2
- 230000001629 suppression Effects 0.000 claims description 2
- 229920001169 thermoplastic Polymers 0.000 claims description 2
- 229920005992 thermoplastic resin Polymers 0.000 claims description 2
- VPAYJEUHKVESSD-UHFFFAOYSA-N trifluoroiodomethane Chemical compound FC(F)(F)I VPAYJEUHKVESSD-UHFFFAOYSA-N 0.000 claims description 2
- DHNUXDYAOVSGII-UHFFFAOYSA-N tris(1,3-dichloropropyl) phosphate Chemical compound ClCCC(Cl)OP(=O)(OC(Cl)CCCl)OC(Cl)CCCl DHNUXDYAOVSGII-UHFFFAOYSA-N 0.000 claims description 2
- HQUQLFOMPYWACS-UHFFFAOYSA-N tris(2-chloroethyl) phosphate Chemical compound ClCCOP(=O)(OCCCl)OCCCl HQUQLFOMPYWACS-UHFFFAOYSA-N 0.000 claims description 2
- FKCNNGCHQHSYCE-UHFFFAOYSA-N difluoromethane;1,1,1,2,2-pentafluoroethane;1,1,1,2-tetrafluoroethane Chemical compound FCF.FCC(F)(F)F.FC(F)C(F)(F)F FKCNNGCHQHSYCE-UHFFFAOYSA-N 0.000 description 11
- 239000012530 fluid Substances 0.000 description 11
- 239000007788 liquid Substances 0.000 description 9
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 8
- VOPWNXZWBYDODV-UHFFFAOYSA-N Chlorodifluoromethane Chemical compound FC(F)Cl VOPWNXZWBYDODV-UHFFFAOYSA-N 0.000 description 8
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 229910002092 carbon dioxide Inorganic materials 0.000 description 5
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 5
- 239000001569 carbon dioxide Substances 0.000 description 4
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000005086 pumping Methods 0.000 description 3
- 239000004338 Dichlorodifluoromethane Substances 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- DMUPYMORYHFFCT-UPHRSURJSA-N (z)-1,2,3,3,3-pentafluoroprop-1-ene Chemical compound F\C=C(/F)C(F)(F)F DMUPYMORYHFFCT-UPHRSURJSA-N 0.000 description 1
- CDOOAUSHHFGWSA-UPHRSURJSA-N (z)-1,3,3,3-tetrafluoroprop-1-ene Chemical compound F\C=C/C(F)(F)F CDOOAUSHHFGWSA-UPHRSURJSA-N 0.000 description 1
- NDMMKOCNFSTXRU-UHFFFAOYSA-N 1,1,2,3,3-pentafluoroprop-1-ene Chemical compound FC(F)C(F)=C(F)F NDMMKOCNFSTXRU-UHFFFAOYSA-N 0.000 description 1
- QAERDLQYXMEHEB-UHFFFAOYSA-N 1,1,3,3,3-pentafluoroprop-1-ene Chemical compound FC(F)=CC(F)(F)F QAERDLQYXMEHEB-UHFFFAOYSA-N 0.000 description 1
- OHMHBGPWCHTMQE-UHFFFAOYSA-N 2,2-dichloro-1,1,1-trifluoroethane Chemical compound FC(F)(F)C(Cl)Cl OHMHBGPWCHTMQE-UHFFFAOYSA-N 0.000 description 1
- 101150067361 Aars1 gene Proteins 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- KYKAJFCTULSVSH-UHFFFAOYSA-N chloro(fluoro)methane Chemical class F[C]Cl KYKAJFCTULSVSH-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000003134 recirculating effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/30—Materials not provided for elsewhere for aerosols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/12—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
- C08J9/14—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
- C08J9/143—Halogen containing compounds
- C08J9/144—Halogen containing compounds containing carbon, halogen and hydrogen only
- C08J9/146—Halogen containing compounds containing carbon, halogen and hydrogen only only fluorine as halogen atoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/02—Materials undergoing a change of physical state when used
- C09K5/04—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
- C09K5/041—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
- C09K5/044—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
- C09K5/045—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D7/00—Compositions of detergents based essentially on non-surface-active compounds
- C11D7/50—Solvents
- C11D7/5004—Organic solvents
- C11D7/5018—Halogenated solvents
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D7/00—Compositions of detergents based essentially on non-surface-active compounds
- C11D7/50—Solvents
- C11D7/5036—Azeotropic mixtures containing halogenated solvents
- C11D7/504—Azeotropic mixtures containing halogenated solvents all solvents being halogenated hydrocarbons
- C11D7/505—Mixtures of (hydro)fluorocarbons
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2207/00—Foams characterised by their intended use
- C08J2207/04—Aerosol, e.g. polyurethane foam spray
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D7/00—Compositions of detergents based essentially on non-surface-active compounds
- C11D7/22—Organic compounds
- C11D7/28—Organic compounds containing halogen
- C11D7/30—Halogenated hydrocarbons
Definitions
- the invention relates to heat transfer compositions, and in particular to heat transfer compositions which may be suitable as replacements for existing refrigerants such as R- 134a, R-152a, R-1234yf, R-22, R-410A, R-407A, R-407B, R-407C, R507 and R-404a.
- a refrigerant liquid evaporates at low pressure taking heat from the surrounding zone.
- the resulting vapour is then compressed and passed to a condenser where it condenses and gives off heat to a second zone, the condensate being returned through an expansion valve to the evaporator, so completing the cycle.
- Mechanical energy required for compressing the vapour and pumping the liquid is provided by, for example, an electric motor or an internal combustion engine.
- the properties preferred in a refrigerant include low toxicity, non-flammability, non-corrosivity, high stability and freedom from objectionable odour.
- Other desirable properties are ready compressibility at pressures below 25 bars, low discharge temperature on compression, high refrigeration capacity, high efficiency (high coefficient of performance) and an evaporator pressure in excess of 1 bar at the desired evaporation temperature.
- Dichlorodifluoromethane (refrigerant R-12) possesses a suitable combination of properties and was for many years the most widely used refrigerant. Due to international concern that fully and partially halogenated chlorofluorocarbons were damaging the earth's protective ozone layer, there was general agreement that their manufacture and use should be severely restricted and eventually phased out completely. The use of dichlorodifluoromethane was phased out in the 1990's.
- Chlorodifluoromethane (R-22) was introduced as a replacement for R-12 because of its lower ozone depletion potential. Following concerns that R-22 is a potent greenhouse gas, its use is also being phased out. Whilst heat transfer devices of the type to which the present invention relates are essentially closed systems, loss of refrigerant to the atmosphere can occur due to leakage during operation of the equipment or during maintenance procedures. It is important, therefore, to replace fully and partially halogenated chlorofluorocarbon refrigerants by materials having zero ozone depletion potentials.
- R-410A and R- 07 have been introduced as a replacement refrigerant for R-22.
- R-22, R-410A and R-407 all have a high global warming potential (GWP, also known as greenhouse warming potential).
- R-134a 1,1 ,1,2-tetrafluoroethane
- R-12 1,1 ,1,2-tetrafluoroethane
- R-134a has a GWP of 1300. It would be desirable to find replacements for R-134a that have a lower GWP.
- R-152a (1,1-difluoroethane) has been identified as an alternative to R-134a. It is somewhat more efficient than R-134a and has a greenhouse warming potential of 120. However the flammability of R-152a is judged too high, for example to permit its safe use in mobile air conditioning systems. In particular it is believed that its lower flammable limit in air is too low, its flame speeds are too high, and its ignition energy is too low. Thus there is a need to provide alternative refrigerants having improved properties such as low flammability. Fluorocarbon combustion chemistry is complex and unpredictable. It is not always the case that mixing a non flammable fluorocarbon with a flammable fluorocarbon reduces the flammability of the fluid.
- the inventors have found that if non flammable R-134a is mixed with flammable R-152a, the lower flammable limit of the mixture can be reduced relative to that of pure R-152a (i.e. the mixture can be more flammable than pure R-152a). The situation is rendered even more complex and less predictable if ternary compositions are considered.
- R-1234yf (2,3,3,3-tetrafluoropropene) has been identified as a candidate alternative refrigerant to replace R-134a in certain applications, notably the mobile air conditioning or heat pumping applications. Its GWP is about 4. R-1234yf is flammable but its flammability characteristics are generally regarded as acceptable for some applications including mobile air conditioning or heat pumping. In particular its lower flammable limit, ignition energy and flame speed are all significantly lower than that of R-152a.
- R-1234yf The energy efficiency and refrigeration capacity of R-1234yf have been found to be significantly lower than those of R-134a and in addition the fluid has been found to exhibit increased pressure drop in system pipework and heat exchangers. A consequence of this is that to use R-1234yf and achieve energy efficiency and cooling performance equivalent to R-134a, increased complexity of equipment and increased size of pipework is required, leading to an increase in indirect emissions associated with equipment. Furthermore, the production of R-1234yf is thought to be more complex and less efficient in its use of raw materials (fluorinated and chlorinated) than R-134a. So the adoption of R-1234yf to replace R-134a will consume more raw materials and result in more indirect emissions of greenhouse gases than does R-134a.
- a principal object of the present invention is therefore to provide a heat transfer composition which is usable in its own right or suitable as a replacement for existing refrigeration usages which should have a reduced GWP, yet have a capacity and energy efficiency (which may be conveniently expressed as the "Coefficient of Performance") ideally within 20% of the values, for example of those attained using existing refrigerants (e.g.
- the subject invention addresses the above deficiencies by the provision of a heat transfer composition
- a heat transfer composition comprising difluoromethane (R-32), 1 ,1 ,1 ,2-tetrafluoroethane (R- 134a) and frans-1 ,3,3,3-tetrafluoropropene (R-1234ze(E)).
- R-32 difluoromethane
- R- 134a 1 ,1 ,1 ,2-tetrafluoroethane
- frans-1 ,3,3,3-tetrafluoropropene R-1234ze(E)
- R-32 typically is present in the compositions of the invention in up to about 20 % by weight, for example from about 4 to about 8 % by weight.
- R-134a suitably is present in the compositions of the invention in up to about 50 % by weight, for example from about 10 to about 50 % by weight.
- R-1234ze(E) typically is present in the compositions of the invention in amounts from about 30 to about 90 % by weight.
- the compositions of the invention may contain from about 3 to about 16 % by weight R-32, from about 10 to about 50 % by weight R-134a, and from about 35 to about 90 % R-1234ze(E).
- compositions of the invention contain from about 4 to about 14 % by weight R-32, from about 10 to about 50 % by weight R-134a, and from about 35 to about 85 % R-1234ze(E).
- compositions of the invention contain from about 4 to about 9 % by weight R-32, from about 10 to about 50 % by weight R-134a, and from about 45 to about 85 % R-1234ze(E).
- compositions of the invention contain from about 9 to 14 % by weight R-32, from about 10 to about 40 % by weight R-134a, and from about 50 to about 80 % R-1234ze(E).
- compositions of the invention consist essentially of R-32, R-134a and R-1234ze(E).
- compositions contain substantially no other components, particularly no further compounds known to be used in heat transfer compositions.
- Consisting of within the meaning of "consisting essentially of.
- any of the compositions of the invention described herein with specifically defined amounts of R-32, R-134a and R-1234ze(E) may consist essentially of (or consist of) those amounts of R-32, R-134a and R-1234ze(E) in the compositions.
- compositions herein are by weight based on the total weight of the compositions, unless otherwise stated.
- compositions according to the invention conveniently comprise substantially no R-1225 (pentafluoropropene), conveniently substantially no R-1225ye (1 ,2,3,3,3- pentafluoropropene) or R-1225zc (1 ,1 ,3,3,3-pentafluoropropene), which compounds may have associated toxicity issues.
- compositions of the invention contain 0.5% by weight or less of the stated component, preferably 0.1% or less, based on the total weight of the composition.
- the compositions of the invention may contain substantially no:
- compositions of the invention consist essentially of (or consist of) R-1234ze(E), R-152a, and R-134a in the amounts specified above. In other words, these are ternary compositions.
- compositions of the invention have zero ozone depletion potential.
- compositions of the invention e.g. those that are suitable refrigerant replacements for R-134a, R-1234yf or R-152a
- a GWP that is less than 1300, preferably less than 1000, more preferably less than 500, 400, 300 or 200.
- IPCC Intergovernmental Panel on climate Change
- TAR hird Assessment Report
- the compositions are of reduced flammability hazard when compared to the individual flammable components of the compositions, e.g. R-32.
- the compositions are of reduced flammability hazard when compared to R-1234yf.
- the compositions have one or more of (a) a higher lower flammable limit; (b) a higher ignition energy; or (c) a lower flame velocity compared to R-32 or R-1234yf.
- the compositions of the invention are non-flammable.
- the mixtures of vapour that exist in equilibrium with the compositions of the invention at any temperature between about -20°C and 60°C are also nonflammable. Flammability may be determined in accordance with ASHRAE Standard 34 incorporating the AST Standard E-681 with test methodology as per Addendum 34p dated 2004, the entire content of which is incorporated herein by reference.
- Temperature glide which can be thought of as the difference between bubble point and dew point temperatures of a zeotropic (non-azeotropic) mixture at constant pressure, is a characteristic of a refrigerant; if it is desired to replace a fluid with a mixture then it is often preferable to have similar or reduced glide in the alternative fluid.
- the compositions of the invention are zeotropic.
- the temperature glide (in the evaporator) of the compositions of the invention is less than about 10K, for example less than about 5K or 3K.
- the volumetric refrigeration capacity of the compositions of the invention is at least 85% of the existing refrigerant fluid it is replacing, preferably at least 90% or even at least 95%.
- compositions of the invention typically have a volumetric refrigeration capacity that is at least 90% of that of R-1234yf.
- the compositions of the invention have a volumetric refrigeration capacity that is at least 95% of that of R-1234yf, for example from about 95% to about 120% of that of R-1234yf.
- the cycle efficiency (Coefficient of Performance, COP) of the compositions of the invention is within about 5% or even better than the existing refrigerant fluid it is replacing
- the compressor discharge temperature of the compositions of the invention is within about 15K of the existing refrigerant fluid it is replacing, preferably about 10K or even about 5K.
- compositions of the invention preferably have energy efficiency at least 95% (preferably at least 98%) of R-134a under equivalent conditions, while having reduced or equivalent pressure drop characteristic and cooling capacity at 95% or higher of R-134a values.
- the compositions have higher energy efficiency and lower pressure drop characteristics than R-134a under equivalent conditions.
- the compositions also advantageously have better energy efficiency and pressure drop characteristics than R-1234yf alone.
- the heat transfer compositions of the invention are suitable for use in existing designs of equipment, and are compatible with all classes of lubricant currently used with established HFC refrigerants. They may be optionally stabilized or compatibilized with mineral oils by the use of appropriate additives.
- the composition of the invention when used in heat transfer equipment, is combined with a lubricant.
- the lubricant is selected from the group consisting of mineral oil, silicone oil, polyalkyl benzenes (PABs), polyol esters (POEs), polyalkylene glycols (PAGs), polyalkylene glycol esters (PAG esters), polyvinyl ethers (PVEs), poly (alpha-olefins) and combinations thereof.
- PABs polyalkyl benzenes
- POEs polyol esters
- PAGs polyalkylene glycols
- PAG esters polyalkylene glycol esters
- PVEs polyvinyl ethers
- poly (alpha-olefins) poly (alpha-olefins) and combinations thereof.
- the lubricant further comprises a stabiliser.
- the stabiliser is selected from the group consisting of diene-based compounds, phosphates, phenol compounds and epoxides, and mixtures thereof.
- composition of the invention may be combined with a flame retardant.
- the flame retardant is selected from the group consisting of tri-(2- chloroethyl)-phosphate, (chloropropyl) phosphate, tri-(2,3-dibromopropyl)-phosphate, tri- (1 ,3-dichloropropyl)-phosphate, diammonium phosphate, various halogenated aromatic compounds, antimony oxide, aluminium trihydrate, polyvinyl chloride, a fluorinated iodocarbon, a fluorinated bromocarbon, trifluoro iodomethane, perfluoroalkyl amines, bromo-fluoroalkyl amines and mixtures thereof.
- the heat transfer composition is a refrigerant composition.
- the invention provides a heat transfer device comprising a composition of the invention.
- the heat transfer device is a refrigeration device.
- the heat transfer device is selected from group consisting of automotive air conditioning systems, residential air conditioning systems, commercial air conditioning systems, residential refrigerator systems, residential freezer systems, commercial refrigerator systems, commercial freezer systems, chiller air conditioning systems, chiller refrigeration systems, and commercial or residential heat pump systems.
- the heat transfer device is a refrigeration device or an air-conditioning system.
- the heat transfer device contains a centrifugal-type compressor.
- the invention also provides the use of a composition of the invention in a heat transfer device as herein described.
- a blowing agent comprising a composition of the invention.
- a foamable composition comprising one or more components capable of forming foam and a composition of the invention.
- the one or more components capable of forming foam are selected from polyurethanes, thermoplastic polymers and resins, such as polystyrene, and epoxy resins.
- the foamable composition of the invention there is provided.
- the foam comprises a composition of the invention.
- a sprayable composition comprising a material to be sprayed and a propellant comprising a composition of the invention.
- a method for cooling an article which comprises condensing a composition of the invention and thereafter evaporating said composition in the vicinity of the article to be cooled.
- a method for heating an article which comprises condensing a composition of the invention in the vicinity of the article to be heated and thereafter evaporating said composition.
- a method for extracting a substance from biomass comprising contacting the biomass with a solvent comprising a composition of the invention, and separating the substance from the solvent.
- a method of cleaning an article comprising contacting the article with a solvent comprising a composition of the invention.
- a method for extracting a material from an aqueous solution comprising contacting the aqueous solution with a solvent comprising a composition of the invention, and separating the material from the solvent.
- a method for extracting a material from a particulate solid matrix comprising contacting the particulate solid matrix with a solvent comprising a composition of the invention, and separating the material from the solvent.
- a mechanical power generation device containing a composition of the invention.
- the mechanical power generation device is adapted to use a Rankine Cycle or modification thereof to generate work from heat.
- a method of retrofitting a heat transfer device comprising the step of removing an existing heat transfer fluid, and introducing a composition of the invention.
- the heat transfer device is a refrigeration device or (a static) air conditioning system.
- the method further comprises the step of obtaining an allocation of greenhouse gas (e.g. carbon dioxide) emission credit.
- greenhouse gas e.g. carbon dioxide
- an existing heat transfer fluid can be fully removed from the heat transfer device before introducing a composition of the invention.
- An existing heat transfer fluid can also be partially removed from a heat transfer device, followed by introducing a composition of the invention.
- R-1234ze(E) and R-32 can be added to the R-134a in the heat transfer device, thereby forming the compositions of the invention, and the heat transfer device of the invention, in situ.
- Some of the existing R-134a may be removed from the heat transfer device prior to adding the R-1234ze(E), R-32, etc to facilitate providing the components of the compositions of the invention in the desired proportions.
- the invention provides a method for preparing a composition and/or heat transfer device of the invention comprising introducing R-1234ze(E) and R-32, and optional components such as a lubricant, a stabiliser or a flame retardant, into a heat transfer device containing an existing heat transfer fluid which is R-134a.
- R-134a an existing heat transfer fluid which is R-134a.
- some of the R-134a is removed from the heat transfer device before introducing the R-1234ze(E), R- 32, etc.
- compositions of the invention may also be prepared simply by mixing the R-1234ze(E), R-32 and R-134a (and optional components such as a lubricant, a stabiliser or an additional flame retardant) in the desired proportions.
- the compositions can then be added to a heat transfer device (or used in any other way as defined herein) that does not contain R-134a or any other existing heat transfer fluid, such as a device from which R-134a or any other existing heat transfer fluid have been removed.
- a method for reducing the environmental impact arising from operation of a product comprising an existing compound or composition comprising replacing at least partially the existing compound or composition with a composition of the invention.
- this method comprises the step of obtaining an allocation of greenhouse gas emission credit.
- TEWI Total Equivalent Warming Impact
- the environmental impact may further be considered as including the emissions of greenhouse gases arising from the synthesis and manufacture of the compounds or compositions.
- the manufacturing emissions are added to the energy consumption and direct loss effects to yield the measure known as Life-Cycle Carbon Production (LCCP, see for example http://www.sae.org/events/aars/presentations/2007papasawa.pdf).
- LCCP Life-Cycle Carbon Production
- the use of LCCP is common in assessing environmental impact of automotive air conditioning systems.
- a method for generating greenhouse gas emission credit(s) comprising (i) replacing an existing compound or composition with a composition of the invention, wherein the composition of the invention has a lower GWP than the existing compound or composition; and (ii) obtaining greenhouse gas emission credit for said replacing step.
- the use of the composition of the invention results in the equipment having a lower Total Equivalent Warming Impact, and/or a lower Life-Cycle Carbon Production than that which would be attained by use of the existing compound or composition.
- These methods may be carried out on any suitable product, for example in the fields of air-conditioning, refrigeration (e.g. low and medium temperature refrigeration), heat transfer, blowing agents, aerosols or sprayable propellants, gaseous dielectrics, cryosurgery, veterinary procedures, dental procedures, fire extinguishing, flame suppression, solvents (e.g. carriers for flavorings and fragrances), cleaners, air horns, pellet guns, topical anesthetics, and expansion applications.
- the field is air- conditioning or refrigeration.
- suitable products include a heat transfer devices, blowing agents, foamable compositions, sprayable compositions, solvents and mechanical power generation devices.
- the product is a heat transfer device, such as a refrigeration device or an air-conditioning unit.
- the existing compound or composition has an environmental impact as measured by GWP and/or TEWI and/or LCCP that is higher than the composition of the invention which replaces it.
- the existing compound or composition may comprise a fluorocarbon compound, such as a perfluoro-, hydrofluoro- chlorofluoro- or hydrochlorofluoro-carbon compound or it may comprise a fluorinated olefin
- the existing compound or composition is a heat transfer compound or composition such as a refrigerant. Examples of refrigerants that may be replaced include R-134a, R-152a, R-1234yf, R-410A, R-407A, R-407B, R-407C, R507, R-22 and R-404A.
- the compositions of the invention are particularly suited as replacements for R- 134a, R-152a or R-1234yf.
- any amount of the existing compound or composition may be replaced so as to reduce the environmental impact. This may depend on the environmental impact of the existing compound or composition being replaced and the environmental impact of the replacement composition of the invention. Preferably, the existing compound or composition in the product is fully replaced by the composition of the invention.
- Performance of a R-32/R-134a/R-1234ze Blend An instrumented laboratory chiller was used to evaluate the performance of a ternary blend of R-32/R-134a/R-1234ze(E) (7%/46%/47% weight basis) over a range of evaporating and condensing temperatures.
- the chiller used a fixed displacement reciprocating compressor with polyolester (POE) lubricant and cooled glycol in a counter- current flow heat exchanger against evaporating refrigerant.
- the refrigerant was condensed in a counter-current flow heat exchanger using cooling water.
- the comparative tests were run at fixed compressor displacement and the flowrates of heat transfer fluids were controlled to maintain a constant and equal bubblepoint of refrigerant in the condenser, and a constant evaporator inlet temperature of refrigerant.
- the performance was evaluated at condenser bubblepoint temperatures of 30°C and 40°C and over a range of evaporator inlet temperatures from -35°C to +5°C.
- thermodynamic model used the Peng Robinson equation of state to represent vapour phase properties and vapour-liquid equilibrium of the mixtures, together with a polynomial correlation of the variation of ideal gas enthalpy of each component of the mixtures with temperature.
- the principles behind use of this equation of state to model thermodynamic properties and vapour liquid equilibrium are explained more fully in The Properties of Gases and Liquids (5 th edition) by BE Poling, JM Prausnitz and JM O'Connell pub. McGraw Hill 2000, in particular Chapters 4 and 8 (which is incorporated herein by reference).
- the basic property data required to use this model were: critical temperature and critical pressure; vapour pressure and the related property of Pitzer acentric factor; ideal gas enthalpy, and measured vapour liquid equilibrium data for the binary pairs between the components of the mixture.
- the basic property data (critical properties, acentric factor, vapour pressure and ideal gas enthalpy) for R-32 and R-134a were taken from the NIST REFPROP Version 8.0 software, which is incorporated herein by reference.
- the critical point and vapour pressure for R-1234ze(E) were measured experimentally.
- the ideal gas enthalpy for R- 1234ze(E) over a range of temperatures was estimated using the molecular modelling software Hyperchem 7.5, which is incorporated herein by reference.
- Vapour liquid equilibrium data for the binary mixture of R-32 and R-134a was available from Nagel & Bier, Int J Refrig 1995 (18) 534-543 and was regressed to the Peng Robinson equation using a binary interaction constant incorporated into van der Waal's mixing rules. No vapour liquid equilibrium data were available for R-32 with R-1234ze(E) so the interaction constant for this pair was set to zero. Although Minor et al in WO2006/094303 indicated the presence of an azeotrope between R-134a and R- 1234ze(E), experimentation showed no such azeotrope to exist. The interaction constant for this pair was regressed to experimentally determined data on pressure and composition of liquid and vapour phases measured using an isothermal recirculating still apparatus. The refrigeration performance of selected ternary compositions of the invention was modelled using the following cycle conditions.
- compositions of the invention show improved system performance relative to 1234yf: cooling capacity is close to or exceeds that of 1234yf while the theoretical energy efficiency of the compositions also exceeds that of 1234yf. In some cases cooling capacities higher than 134a can also be achieved.
- the compositions of the invention also offer reduced pressure drop losses as compared to 1234yf. The pressure drop in the suction line is of particular relevance for automotive air conditioning systems and it is desirable to reduce this pressure loss as much as possible.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Combustion & Propulsion (AREA)
- Thermal Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Dispersion Chemistry (AREA)
- Lubricants (AREA)
- Detergent Compositions (AREA)
- Fireproofing Substances (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Extraction Or Liquid Replacement (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- General Preparation And Processing Of Foods (AREA)
- Processing Of Solid Wastes (AREA)
- Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
- Ink Jet (AREA)
Abstract
Description
Claims
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2012139638/05A RU2012139638A (en) | 2010-02-16 | 2011-02-15 | COMPOSITIONS OF HEAT CARRIERS |
AU2011217063A AU2011217063B2 (en) | 2010-02-16 | 2011-02-15 | Heat transfer compositions |
CA2788486A CA2788486A1 (en) | 2010-02-16 | 2011-02-15 | Heat transfer compositions |
KR1020127021170A KR20120127448A (en) | 2010-02-16 | 2011-02-15 | Heat transfer compositions |
MX2012009051A MX340860B (en) | 2010-02-16 | 2011-02-15 | Heat transfer compositions. |
CN2011800096121A CN102918132A (en) | 2010-02-16 | 2011-02-15 | Heat transfer compositions |
BR112012020515A BR112012020515A2 (en) | 2010-02-16 | 2011-02-15 | composition, use of a composition, blowing agent, foam, methods for cooling, heating and cleaning an article, for extracting a substance from biomass, a material from an aqueous solution and a particulate solid matrix material, for readjusting a device for heat transfer, to reduce environmental impact, to prepare a heat transfer composition and / or device, and to generate greenhouse gas emission credit, and mechanical energy generation device. |
ES11709756.8T ES2601853T3 (en) | 2010-02-16 | 2011-02-15 | Heat transfer compositions |
EP11709756.8A EP2536804B1 (en) | 2010-02-16 | 2011-02-15 | Heat transfer compositions |
ZA2012/05519A ZA201205519B (en) | 2010-02-16 | 2012-07-19 | Heat transfer compositions |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB1002619.3A GB201002619D0 (en) | 2010-02-16 | 2010-02-16 | Heat transfer compositions |
GB1002619.3 | 2010-02-16 |
Publications (3)
Publication Number | Publication Date |
---|---|
WO2011101621A2 WO2011101621A2 (en) | 2011-08-25 |
WO2011101621A3 WO2011101621A3 (en) | 2011-10-20 |
WO2011101621A9 true WO2011101621A9 (en) | 2012-09-27 |
Family
ID=42110799
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB2011/000201 WO2011101621A2 (en) | 2010-02-16 | 2011-02-15 | Heat transfer compositions |
Country Status (13)
Country | Link |
---|---|
EP (1) | EP2536804B1 (en) |
JP (2) | JP5085748B2 (en) |
KR (1) | KR20120127448A (en) |
CN (1) | CN102918132A (en) |
AU (1) | AU2011217063B2 (en) |
BR (1) | BR112012020515A2 (en) |
CA (1) | CA2788486A1 (en) |
ES (1) | ES2601853T3 (en) |
GB (2) | GB201002619D0 (en) |
MX (1) | MX340860B (en) |
RU (1) | RU2012139638A (en) |
WO (1) | WO2011101621A2 (en) |
ZA (1) | ZA201205519B (en) |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB201002619D0 (en) * | 2010-02-16 | 2010-03-31 | Ineos Fluor Holdings Ltd | Heat transfer compositions |
FR2957083B1 (en) | 2010-03-02 | 2015-12-11 | Arkema France | HEAT TRANSFER FLUID FOR CENTRIFUGAL COMPRESSOR |
FR2959999B1 (en) * | 2010-05-11 | 2012-07-20 | Arkema France | HEAT TRANSFER FLUIDS AND THEIR USE IN COUNTER-CURRENT HEAT EXCHANGERS |
FR2959997B1 (en) | 2010-05-11 | 2012-06-08 | Arkema France | HEAT TRANSFER FLUIDS AND THEIR USE IN COUNTER-CURRENT HEAT EXCHANGERS |
FR2964977B1 (en) | 2010-09-20 | 2013-11-01 | Arkema France | COMPOSITION BASED ON 3,3,3-TETRAFLUOROPROPENE |
US9783720B2 (en) | 2010-12-14 | 2017-10-10 | The Chemours Company Fc, Llc | Use of refrigerants comprising E-1,3,3,3-tetrafluoropropene and at least one tetrafluoroethane for cooling |
MY161767A (en) | 2010-12-14 | 2017-05-15 | Du Pont | Combinations of e-1,3,3,3-tetrafluoropropene and at least one tetrafluoroethane and their use for heating |
US9169427B2 (en) * | 2011-07-13 | 2015-10-27 | Honeywell International Inc. | Low GWP heat transfer compositions containing difluoromethane, a fluorinated ethane and 1,3,3,3-tetrafluoropropene |
EP2832833B9 (en) | 2012-03-29 | 2019-07-10 | JX Nippon Oil & Energy Corporation | Working fluid composition for refrigerator |
RU2015108379A (en) * | 2012-08-20 | 2016-10-10 | Ханивелл Интернешнл Инк. | LOW GWP HEAT CARRIER COMPOSITIONS |
US9783721B2 (en) | 2012-08-20 | 2017-10-10 | Honeywell International Inc. | Low GWP heat transfer compositions |
EP2895142B1 (en) | 2012-09-14 | 2017-04-19 | The Procter & Gamble Company | Aerosol antiperspirant compositions, products and methods |
GB2510801A (en) * | 2012-11-06 | 2014-08-20 | Mexichem Amanco Holding Sa | Compositions |
GB201219973D0 (en) * | 2012-11-06 | 2012-12-19 | Mexichem Amanco Holding Sa | Compositions |
GB201220068D0 (en) * | 2012-11-06 | 2012-12-19 | Mexichem Amanco Holding Sa | Compositions |
GB201219962D0 (en) * | 2012-11-06 | 2012-12-19 | Mexichem Amanco Holding Sa | Compositions |
US8940180B2 (en) | 2012-11-21 | 2015-01-27 | Honeywell International Inc. | Low GWP heat transfer compositions |
US9982180B2 (en) | 2013-02-13 | 2018-05-29 | Honeywell International Inc. | Heat transfer compositions and methods |
US11186424B2 (en) | 2013-07-16 | 2021-11-30 | The Procter & Gamble Company | Antiperspirant spray devices and compositions |
US20150023886A1 (en) | 2013-07-16 | 2015-01-22 | The Procter & Gamble Company | Antiperspirant Spray Devices and Compositions |
JPWO2015022958A1 (en) * | 2013-08-14 | 2017-03-02 | セントラル硝子株式会社 | Heat transfer method and high temperature heat pump device |
US10132200B2 (en) | 2013-11-22 | 2018-11-20 | The Chemours Company Fc, Llc | Compositions comprising tetrafluoropropene and tetrafluoroethane; their use in power cycles; and power cycle apparatus |
JP2015140994A (en) * | 2014-01-30 | 2015-08-03 | 日立アプライアンス株式会社 | Air conditioner, and refrigerator oil |
US9662285B2 (en) | 2014-03-13 | 2017-05-30 | The Procter & Gamble Company | Aerosol antiperspirant compositions, products and methods |
US9579265B2 (en) | 2014-03-13 | 2017-02-28 | The Procter & Gamble Company | Aerosol antiperspirant compositions, products and methods |
JP6593684B2 (en) * | 2015-06-22 | 2019-10-23 | 国立大学法人 奈良先端科学技術大学院大学 | How to make tetraploid poplar |
WO2019082998A1 (en) * | 2017-10-25 | 2019-05-02 | 神戸合成株式会社 | Detergent composition and aerosol composition thereof |
CN110343509B (en) * | 2018-04-02 | 2021-09-14 | 江西天宇化工有限公司 | Non-combustible mixed refrigerant capable of reducing greenhouse effect and application thereof |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090253820A1 (en) * | 2006-03-21 | 2009-10-08 | Honeywell International Inc. | Foaming agents and compositions containing fluorine sustituted olefins and methods of foaming |
US7524805B2 (en) * | 2004-04-29 | 2009-04-28 | Honeywell International Inc. | Azeotrope-like compositions of tetrafluoropropene and hydrofluorocarbons |
US20090120691A1 (en) * | 2004-11-30 | 2009-05-14 | General Electric Company | Systems and methods for guiding the drilling of a horizontal well |
US20060243944A1 (en) | 2005-03-04 | 2006-11-02 | Minor Barbara H | Compositions comprising a fluoroolefin |
US20060243945A1 (en) * | 2005-03-04 | 2006-11-02 | Minor Barbara H | Compositions comprising a fluoroolefin |
GB0614080D0 (en) * | 2006-07-17 | 2006-08-23 | Ineos Fluor Holdings Ltd | Heat transfer compositions |
CA2682312C (en) * | 2007-05-11 | 2016-11-22 | E. I. Du Pont De Nemours And Company | Method for exchanging heat in a vapor compression heat transfer system and a vapor compression heat transfer system comprising an intermediate heat exchanger with a dual-row evaporator or condenser |
AR067115A1 (en) * | 2007-06-21 | 2009-09-30 | Du Pont | METHOD FOR DETECTING LEAKS IN A HEAT TRANSFER SYSTEM |
DE202009019200U1 (en) * | 2008-11-19 | 2018-10-15 | The Chemours Company Fc, Llc | Tetrafluoropropene compositions and their uses |
GB0906547D0 (en) * | 2009-04-16 | 2009-05-20 | Ineos Fluor Holdings Ltd | Heat transfer compositions |
CN102439108A (en) * | 2009-05-08 | 2012-05-02 | 霍尼韦尔国际公司 | Hydrofluorocarbon refrigerant compositions for heat pump water heaters |
PL2427527T3 (en) * | 2009-05-08 | 2016-03-31 | Honeywell Int Inc | Heat transfer compositions and methods |
GB201002619D0 (en) * | 2010-02-16 | 2010-03-31 | Ineos Fluor Holdings Ltd | Heat transfer compositions |
-
2010
- 2010-02-16 GB GBGB1002619.3A patent/GB201002619D0/en not_active Ceased
-
2011
- 2011-02-14 GB GB1102559.0A patent/GB2477865B/en active Active
- 2011-02-15 AU AU2011217063A patent/AU2011217063B2/en not_active Ceased
- 2011-02-15 BR BR112012020515A patent/BR112012020515A2/en not_active IP Right Cessation
- 2011-02-15 JP JP2011029940A patent/JP5085748B2/en active Active
- 2011-02-15 MX MX2012009051A patent/MX340860B/en active IP Right Grant
- 2011-02-15 EP EP11709756.8A patent/EP2536804B1/en active Active
- 2011-02-15 KR KR1020127021170A patent/KR20120127448A/en not_active Application Discontinuation
- 2011-02-15 CN CN2011800096121A patent/CN102918132A/en active Pending
- 2011-02-15 WO PCT/GB2011/000201 patent/WO2011101621A2/en active Application Filing
- 2011-02-15 CA CA2788486A patent/CA2788486A1/en not_active Abandoned
- 2011-02-15 RU RU2012139638/05A patent/RU2012139638A/en not_active Application Discontinuation
- 2011-02-15 ES ES11709756.8T patent/ES2601853T3/en active Active
-
2012
- 2012-07-19 ZA ZA2012/05519A patent/ZA201205519B/en unknown
- 2012-08-28 JP JP2012187766A patent/JP5544403B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
GB2477865B (en) | 2012-05-16 |
WO2011101621A3 (en) | 2011-10-20 |
MX340860B (en) | 2016-07-28 |
GB2477865A (en) | 2011-08-17 |
JP5085748B2 (en) | 2012-11-28 |
ES2601853T3 (en) | 2017-02-16 |
JP2013032527A (en) | 2013-02-14 |
CN102918132A (en) | 2013-02-06 |
AU2011217063A1 (en) | 2012-08-23 |
KR20120127448A (en) | 2012-11-21 |
RU2012139638A (en) | 2014-03-27 |
ZA201205519B (en) | 2013-04-24 |
CA2788486A1 (en) | 2011-08-25 |
WO2011101621A2 (en) | 2011-08-25 |
JP5544403B2 (en) | 2014-07-09 |
GB201002619D0 (en) | 2010-03-31 |
MX2012009051A (en) | 2012-09-07 |
EP2536804A2 (en) | 2012-12-26 |
AU2011217063B2 (en) | 2014-12-04 |
EP2536804B1 (en) | 2016-10-05 |
JP2011168781A (en) | 2011-09-01 |
BR112012020515A2 (en) | 2018-03-13 |
GB201102559D0 (en) | 2011-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2536804B1 (en) | Heat transfer compositions | |
US8999190B2 (en) | Heat transfer compositions | |
US9175202B2 (en) | Heat transfer compositions | |
US8926856B2 (en) | Heat transfer compositions | |
US9187683B2 (en) | Heat transfer compositions | |
US20150202581A1 (en) | Heat transfer compositions | |
US20150315447A1 (en) | Heat Transfer Compositions | |
US8512591B2 (en) | Heat transfer compositions | |
US20110258146A1 (en) | Heat Transfer Compositions | |
US20120305830A1 (en) | Heat transfer compositions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180009612.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11709756 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 6543/DELNP/2012 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 2788486 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011217063 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2012/009051 Country of ref document: MX |
|
ENP | Entry into the national phase |
Ref document number: 20127021170 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2011709756 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011709756 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2011217063 Country of ref document: AU Date of ref document: 20110215 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012139638 Country of ref document: RU |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112012020515 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112012020515 Country of ref document: BR Kind code of ref document: A2 Effective date: 20120815 |