WO2011101566A1 - Installation d'usinage laser avec source de gaz commune pour l'oscillateur et la tête laser - Google Patents

Installation d'usinage laser avec source de gaz commune pour l'oscillateur et la tête laser Download PDF

Info

Publication number
WO2011101566A1
WO2011101566A1 PCT/FR2011/050113 FR2011050113W WO2011101566A1 WO 2011101566 A1 WO2011101566 A1 WO 2011101566A1 FR 2011050113 W FR2011050113 W FR 2011050113W WO 2011101566 A1 WO2011101566 A1 WO 2011101566A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
laser
oscillator
source
head
Prior art date
Application number
PCT/FR2011/050113
Other languages
English (en)
Inventor
Olivier Matile
Frédéric NEEB
Christophe Bertez
Original Assignee
L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation filed Critical L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation
Priority to EP11705643A priority Critical patent/EP2536529A1/fr
Priority to US13/579,322 priority patent/US20120312788A1/en
Priority to CA2785577A priority patent/CA2785577A1/fr
Priority to BR112012020554-4A priority patent/BR112012020554A2/pt
Priority to CN2011800097069A priority patent/CN102762334A/zh
Priority to JP2012553368A priority patent/JP2013520025A/ja
Priority to RU2012139629/02A priority patent/RU2012139629A/ru
Publication of WO2011101566A1 publication Critical patent/WO2011101566A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1462Nozzles; Features related to nozzles
    • B23K26/1464Supply to, or discharge from, nozzles of media, e.g. gas, powder, wire
    • B23K26/147Features outside the nozzle for feeding the fluid stream towards the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0071Beam steering, e.g. whereby a mirror outside the cavity is present to change the beam direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes

Definitions

  • the invention relates to the field of welding, cutting or the like by laser beam and more specifically, a laser machining facility with laser oscillator, optical path and laser head fed by the same and single source of gas, in particular nitrogen.
  • the gas supply is done in two ways, namely:
  • the so-called “process” gas or gases which are used in laser cutting, for example nitrogen, oxygen or their mixtures, or in laser welding, such as argon, helium, nitrogen or mixtures thereof, usually come from a source or supply of "bulk” type, that is to say from a storage tank 9 of large capacity, or of conditioned type, that is to say of limited capacity gas conditioning containers, typically gas cylinders.
  • These "process” gases primarily feed the focusing head but possibly also the optical path of the laser. It should be noted, however, that the optical path can also be fed with compressed air.
  • Document US-A-2006/088073 teaches a laser installation of this type.
  • lasing gases such as nitrogen, which feed the oscillator 1 of the laser device and which are therefore used to generate the laser beam, always come from a supply or source type conditioning , that is to say 1 1 bottles of gas because these lasing gases must have very high purities, ie generally at least 99.999% by volume.
  • US-A-6,215,808 teaches a laser facility of this type with several oscillators.
  • the invention relates to a laser machining installation comprising a laser oscillator for generating a laser beam, a laser head traversed by the laser beam, an optical path for conveying the laser beam between the laser oscillator and the laser head.
  • a source of gas fluidly connected to the laser head via a main gas pipeline, characterized in that it further comprises a secondary pipe fluidly connecting said gas source to the laser oscillator.
  • a source of common gas and large capacity such as a gas storage tank in gaseous or liquid form, feeds both the laser head used for machining and the laser oscillator used to generate the laser beam.
  • laser machining means welding, cutting, marking or any other work by laser beam.
  • the installation of the invention may include one or more of the following features:
  • the gas source is a storage tank having a capacity of at least 900 liters, preferably at least 3000 liters, preferably at least 7500 liters.
  • - It comprises a gas expansion device, arranged on the secondary pipe, to reduce the pressure of the gas from the gas source, prior to its introduction into the oscillator.
  • the gas source is a liquid nitrogen storage tank.
  • the gas source is fluidly connected to the laser head and to the optical path via the main pipe.
  • a gas vaporizer arranged between the gas source and the main pipe or the secondary pipe.
  • a heat exchanger also known as a vaporizer, is arranged at the outlet of the tank and makes it possible to vaporize the liquid nitrogen from the tank and thus obtain nitrogen gas which is then conveyed into the main pipes and secondary.
  • a gas purification device comprising a filter or an adsorbent adapted to and designed to remove at least one impurity chosen from water vapor, hydrocarbons and oxygen is arranged on the secondary pipe and / or on the main pipe; .
  • a filter or an adsorbent adapted to and designed to remove at least one impurity chosen from water vapor, hydrocarbons and oxygen is arranged on the secondary pipe and / or on the main pipe; .
  • Such a device can serve as a safety device to ensure that the purity of the gas is always respected.
  • the oscillator is also fed with at least C0 2 and helium or a CO 2 / He mixture from one or more gas cylinders.
  • the laser oscillator is of type C0 2 .
  • the laser oscillator, the optical path and the laser head are located in a building, and the gas source is located outside of said building.
  • the invention also relates to a method for powering a laser machining installation comprising a laser oscillator, a laser head, an optical path for conveying the laser beam between the laser oscillator and the laser head, with a gas coming from a source of gas, in which:
  • said laser head is fed with gas from said main pipe, characterized in that the oscillator is fed with gas from said secondary pipe.
  • the method of the invention may include one or more of the following features:
  • the gas is nitrogen, preferably stored in liquid form.
  • the pressure of the gas is adjusted before it is introduced into the optical path, in the oscillator and / or in the laser head, or even in the optical path.
  • the pressure of the gas is reduced before it is introduced into the oscillator or the optical path.
  • the gas source is a storage tank of at least 900 liters, preferably at least 3000 liters.
  • the oscillator is further supplied with helium and CO 2 or with a CO 2 / He mixture originating from one or more gas cylinders.
  • the nitrogen introduced into the oscillator has a purity of at least 99.999% by volume.
  • the nitrogen is withdrawn from the source of gas in liquid form and then vaporized.
  • FIGS. 1 and 2 schematize laser installations of type C0 2 according to the prior art
  • Figures 3 and 4 schematize laser installations according to the invention.
  • Figures 1 and 2 show the diagram of a C0 2 type laser beam work installation, for example cutting or laser welding, according to the prior art.
  • a generator or oscillator 1 of the type C0 2 makes it possible to generate a laser beam which is then conveyed by a path or optical cavity 2 to a laser head 3 where it is focused by a focusing lens 4 or a focusing mirror (in laser welding, a mirror has the role of directing and focusing the beam) or the like in the thickness or near the surface of one or more parts 6 to be machined.
  • the optical focusing device is a lens 4.
  • the lens 4 may be single-focal, that is to say, single-focal, or multifocal, for example bifocal, that is to say, focusing the beam into two distinct focusing points.
  • the lens 4 makes it possible to mechanically and fluidically isolate the optical path 2 of the laser head 3 because the pressures that prevail therein are generally not identical.
  • the laser oscillator 1 is powered by 3 1 liter bottles of laser gas, for example nitrogen referenced LASAL TM 1, carbon dioxide (C0 2 ) referenced LASAL TM 2 and helium LASAL TM 4 referenced; the gases referenced LASAL TM are marketed by the company L'Air Liquide.
  • the oscillator can also be fed with a gaseous premix containing nitrogen (N 2 ), helium and C0 2 , and even others
  • constituents such as CO.
  • a storage tank 9 of liquid nitrogen type "bulk” whose output is fluidly connected to a vaporizer or heat exchanger 10 can feed, via one or more gas lines 8 and dedicated inputs 13, 12, respectively, the laser head 3 and the optical path 2 with nitrogen gas.
  • the inputs 13, 12 are generally located at a gas supply cabinet 5, as illustrated in FIG. 2.
  • the laser head 3 is usually carried by a mobile beam 14 with respect to a machining table 7 on which the workpiece (s) is or are arranged, the assembly being arranged in an enclosure of protection 15.
  • FIGS. 1 and 2 it is proposed to simplify the architecture of the installation of FIGS. 1 and 2 in the manner illustrated in FIGS. 3 and 4. It should be specified that the parts of the installation that are not modified will not necessarily be detailed. hereinafter and for further details, reference is made to Figures 1 and 2 and the explanations given above.
  • the C0 2 type laser generator or oscillator 1 which is used to generate the laser beam by means of laser pressure gases, namely nitrogen, helium and C0 2 , is fed,
  • bottles 11 previously using bottles 11 containing each of these gases or bottles containing gaseous premixes, the composition of the final mixture being a function of the laser used.
  • the bottles 11 are furthermore equipped with flow and / or pressure regulating members, in particular valves with built-in expansion valves, and manometers, or even protective covers for protecting said regulating members.
  • the storage tank 9 of liquid nitrogen makes it possible not only to feed the laser head 3 but also the oscillator 1, and possibly the optical path 2 with nitrogen " bulk "from said storage tank 9 which is withdrawn in liquid form, vaporized in the vaporizer 10 to be conveyed, on the one hand, to the laser head 3 via the line 8 which branched and, on the other hand, towards the laser oscillator 1 via an additional line 18 which is connected to the line 8, that is to say a bypass of the line 8.
  • a portion of the nitrogen may also be sent to the optical path 2 which serves to recover the laser beam at the output of the laser generator 1, then to convey it to the laser head 3 comprising a laser nozzle and a laser device.
  • focusing 4 such as a lens or focusing mirror.
  • the laser beam then passes through the laser head 3 by being focused, before striking the part or parts 6 to be welded or cut for example, the head 3 being further supplied with nitrogen from the reservoir 9.
  • the optical path 2 is typically formed of a passage provided with optics, such as mirrors and / or lenses.
  • the source or gas reservoir 9 is preferably a storage tank of large capacity, that is to say having a capacity of at least 900 liters, preferably at least 3000 liters of nitrogen.
  • this tank 1 is located outside the building in which is installed the rest of the installation, namely mainly the laser generator 1, the optical path 2 and the laser head 3, and the support table 7 on which rest or the parts 6 to be machined and the protective enclosure 15.
  • the laser head 3 and the laser oscillator 1 are generally different, it is preferable to provide one or more gas expansion devices 20, such as gas expansion valves, on the main pipe 8 and / or on the secondary pipe 18.
  • gas expansion devices 20 such as gas expansion valves
  • An expansion device 20 must be designed for and capable of reducing the pressure of the gas flowing in the main pipe 8 or secondary 18, prior to its introduction into the optical path 2, the head 3 or the oscillator 1.
  • the gas conveyed by the main pipe 8 is at a pressure between 15 and 32 bar relative, for example of the order of 25 bar, while in the optical path, the gas is overpressurized to prevent particles in the air does not get inside.
  • the power supply of the laser oscillator has a relative pressure of between 1 and 15 bar.
  • FIG. 4 is similar to FIG. 3, except that the installation also comprises a purification device 21, such as a filter, arranged on the secondary line 18, preferably between the expander 20 and the the input of the oscillator 1, so as to ensure a given high purity of the lasing gas, namely nitrogen, introduced into the oscillator 1.
  • a purification device 21 such as a filter

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Lasers (AREA)

Abstract

L'invention porte sur une installation d'usinage laser comprenant un oscillateur (1) laser pour générer un faisceau laser, une tête laser (3) traversée par le faisceau laser, un chemin optique (2) pour convoyer le faisceau laser entre l'oscillateur (1) laser et la tête laser (3), et une source de gaz (9) reliée fluidiquement à la tête laser (3) par l'intermédiaire d'une canalisation principale (8) de gaz. Par ailleurs, une canalisation secondaire (18) relie fluidiquement ladite source de gaz (9) à l'oscillateur laser (1). L'installation comporte donc une source de gaz commune pour l'oscillateur (1) et la tête laser (3). De préférence, le gaz est de l'azote.

Description

Installation d'usinage laser avec source de gaz commune pour l'oscillateur et la tête laser
L'invention concerne le domaine du soudage, du coupage ou analogue par faisceau laser et plus précisément, une installation d'usinage au laser avec oscillateur laser, chemin optique et tête laser alimentés par une même et unique source de gaz, en particulier d'azote.
Comme illustré sur les Figures 1 et 2, pendant du fonctionnement d'une machine laser de type C02, c'est-à-dire avec oscillateur laser 1 générant le faisceau laser, chemin ou cavité optique 2 convoyant le faisceau et tête laser 3 focalisant le faisceau sur la ou les pièces, l'alimentation en gaz se fait de deux manières, à savoir :
- d'une part, le ou les gaz dits « de procédé » qui sont utilisés en coupage laser, par exemple l'azote , l'oxygène ou leurs mélanges, ou en soudage laser, tel l'argon, l'hélium, l'azote ou leurs mélanges, proviennent habituellement d'une source ou alimentation de type « vrac », c'est-à-dire d'un réservoir 9 de stockage de grande capacité, ou de type conditionné, c'est-à-dire de récipients de conditionnement de gaz de capacité limitée, typiquement les bouteilles de gaz. Ces gaz de « procédé » alimentent principalement la tête de focalisation mais éventuellement aussi le chemin optique du laser, Il est à noter toutefois que le chemin optique peut également être alimentée avec de l'air comprimé. Le document US-A-2006/088073 enseigne une installation laser de ce type.
- d'autre part, les gaz dits « lasant », tel l'azote, qui alimentent la l'oscillateur 1 du dispositif laser et qui sont donc utilisés pour générer le faisceau laser, proviennent toujours d'une alimentation ou source de type conditionné, c'est-à-dire de bouteilles 1 1 de gaz car ces gaz lasant doivent présenter des puretés très élevées, à savoir généralement d'au moins 99,999% en volume. Le document US-A-6,215,808 enseigne une installation laser de ce type à plusieurs oscillateurs.
Le problème qui se pose au plan industriel est qu'actuellement, lorsque le gaz utilisé en tant que gaz de procédé et gaz lasant est de même nature, par exemple de l'azote, deux alimentations distinctes du même gaz sont utilisées, comme schématisé sur les Figures 1 et 2, afin de prendre en compte certaines préconisations de pureté, à savoir une alimentation obligatoirement de type « conditionné » pour le gaz lasant et une autre alimentation de type « vrac » pour le gaz de procédé.
Or, cela se traduit par une complexifïcation de l'installation laser et donc pour l'utilisateur par un surcoût direct et une perte en temps de manipulation. Par ailleurs, cela oblige également à disposer de bouteilles de gaz dédiées qui sont immobilisées sur site et ne servent qu'à alimenter l'oscillateur laser 1. La présente invention entend proposer une solution à ce problème.
Plus précisément, l'invention porte sur une installation d'usinage laser comprenant un oscillateur laser pour générer un faisceau laser, une tête laser traversée par le faisceau laser, un chemin optique pour convoyer le faisceau laser entre l'oscillateur laser et la tête laser, une source de gaz reliée fluidiquement à la tête laser par l'intermédiaire d'une canalisation principale de gaz, caractérisée en ce qu'elle comporte en outre une canalisation secondaire reliant fluidiquement ladite source de gaz à l'oscillateur laser.
En d'autres termes, selon la présente invention une source de gaz commune et de grande capacité, tel un réservoir de stockage de gaz sous forme gazeuse ou liquide, alimente à la fois la tête laser servant à l'usinage et l'oscillateur laser servant à générer le faisceau laser.
Il est à souligner que par « usinage laser », on entend une opération de soudage, de coupage, de marquage ou de tout autre travail par faisceau laser.
Selon le cas, l'installation de l'invention peut comprendre l'une ou plusieurs des caractéristiques suivantes :
- la source de gaz est un réservoir de stockage ayant une capacité d'au moins 900 litres, avantageusement d'au moins 3000 litres, de préférence d'au moins 7500 litres.
- elle comporte un dispositif de détente de gaz, agencé sur la canalisation secondaire, permettant de réduire la pression du gaz provenant de la source de gaz, préalablement à son introduction dans l'oscillateur.
- la source de gaz est un réservoir de stockage d'azote liquide.
- la source de gaz est reliée fluidiquement à la tête laser et au chemin optique par l'intermédiaire de la canalisation principale.
- elle comporte un vaporiseur de gaz agencé entre la source de gaz et la canalisation principale ou la canalisation secondaire. En d'autres termes, un échangeur thermique, encore appelé vaporiseur, est agencé en sortie de réservoir et permet de vaporiser l'azote liquide provenant du réservoir et d'obtenir ainsi de l'azote gazeux qui est ensuite acheminé dans les canalisations principale et secondaire.
- un dispositif de purification de gaz comprenant un filtre ou un adsorbant apte à et conçu pour éliminer au moins une impureté choisie parmi la vapeur d'eau, les hydrocarbures et l'oxygène est agencé sur la canalisation secondaire et/ou sur la canalisation principale. Un tel dispositif peut faire office de dispositif de sécurité permettant de garantir que la pureté du gaz est toujours respectée.
- l'oscillateur est alimenté par ailleurs avec au moins du C02 et de l'hélium ou un mélange C02/He provenant d'une ou plusieurs bouteilles de gaz.
- l'oscillateur laser est de type C02. - l'oscillateur laser, le chemin optique et la tête laser sont situés dans un bâtiment, et la source de gaz est située à l'extérieur dudit bâtiment.
L'invention porte aussi sur un procédé pour alimenter une installation d'usinage laser comprenant un oscillateur laser, une tête laser, un chemin optique pour convoyer le faisceau laser entre l'oscillateur laser et la tête laser, avec un gaz provenant d'une source de gaz, dans lequel :
a) on véhicule une partie du gaz provenant de la source de gaz au sein d'une canalisation principale reliant ladite source de gaz à ladite tête laser et d'une canalisation secondaire reliant la source de gaz à l'oscillateur, et
b) on alimente ladite tête laser avec du gaz provenant de ladite canalisation principale, caractérisé en ce qu'on alimente l'oscillateur avec du gaz provenant de ladite canalisation secondaire.
Selon le cas, le procédé de l'invention peut comprendre l'une ou plusieurs des caractéristiques suivantes :
- on introduit dans le chemin optique du gaz issu de la canalisation principale.
- le gaz est de l'azote, préférentiellement stocké sous forme liquide.
- on ajuste la pression du gaz avant son introduction dans le chemin optique, dans l'oscillateur et/ou dans la tête laser, voire dans le chemin optique. En particulier, on réduit la pression du gaz préalablement à son introduction dans l'oscillateur ou le chemin optique.
- la source de gaz est un réservoir de stockage d'au moins 900 litres, de préférence d'au moins 3000 litres.
- l'oscillateur est alimenté en outre par de l'hélium et du C02 ou d'un mélange C02/He provenant d'une ou plusieurs bouteilles de gaz.
- on élimine éventuellement au moins une partie des impuretés de type oxygène, hydrocarbures et vapeur d'eau susceptibles d'être présentes dans le gaz de manière à garantir une pureté élevée du gaz introduit dans l'oscillateur notamment.
- l'azote introduit dans l'oscillateur a une pureté d'au moins 99,999% en volume.
- l'azote est soutiré de la source de gaz sous forme liquide, puis vaporisé.
L'invention va maintenant être mieux comprise grâce à la description suivante d'un mode de réalisation donné en références aux Figures annexées parmi lesquelles :
les Figures 1 et 2 schématisent des installations laser de type C02 selon l'art antérieur, et
les Figures 3 et 4 schématisent des installations laser selon l'invention. Les Figures 1 et 2 représentent le schéma d'une installation de travail par faisceau laser de type C02, par exemple de coupage ou de soudage par laser, selon l'art antérieur. Comme on le voit, un générateur ou oscillateur laser 1 de type C02 permet de générer un faisceau laser qui est ensuite véhiculé par un chemin ou cavité optique 2 jusqu'à une tête laser 3 où il est focalisé par une lentille de focalisation 4 ou un miroir de focalisation (en soudage laser, un miroir a comme rôle de diriger et focaliser le faisceau) ou similaire dans l'épaisseur ou à proximité de la surface d'une ou plusieurs pièces 6 à usiner. Dans un but de simplification, on considère ci-après que le dispositif optique de focalisation est une lentille 4.
La lentille 4 peut être à focale unique, c'est-à-dire mono focale, ou multifocale, par exemple à bifocale, c'est-à-dire focalisant le faisceau en deux points de focalisation distincts.
La lentille 4 permet d'isoler mécaniquement et fluidiquement le chemin optique 2 de la tête laser 3 car les pressions qui y régnent ne sont généralement pas identiques.
L'oscillateur laser 1 est alimenté par 3 bouteilles 1 1 de gaz lasant, par exemple de l'azote référencé LASAL™ 1 , du dioxyde de carbone (C02) référencé LASAL™ 2 et de l'hélium référencé LASAL™ 4 ; les gaz référencés LASAL™ sont commercialisés par la société L'Air Liquide. Dans certains cas, l'oscillateur peut aussi être alimenté avec un prémélange gazeux contenant de l'azote (N2), de l'hélium et du C02, voire d'autres
constituants, tel le CO.
Par ailleurs, un réservoir 9 de stockage d'azote liquide de type « vrac » dont la sortie est reliée fluidiquement à un vaporiseur ou échangeur de chaleur 10 permet d'alimenter, via une ou plusieurs canalisations de gaz 8 et des entrées dédiées 13, 12, respectivement, la tête laser 3 et le chemin optique 2 avec de l'azote gazeux. Les entrées 13, 12 sont généralement localisées au niveau d'une armoire d'alimentation 5 en gaz, comme illustré en Figure 2.
Comme visible sur la Figure 2, la tête laser 3 est habituellement portée par une poutre mobile 14 par rapport à une table d'usinage 7 sur laquelle est ou sont disposées la ou les pièces à usiner, l'ensemble étant agencé dans une enceinte de protection 15.
Ce type d'installation classique pose le problème de sa complexité au niveau des alimentations en gaz.
Selon l'invention, on propose de simplifier l'architecture de l'installation des Figures 1 et 2 de la manière illustrée sur les Figures 3 et 4. Il est à préciser que les parties de l'installation non modifiées ne seront pas nécessairement détaillées ci-après et pour toute précision à leur propos, on se reportera aux Figures 1 et 2 et aux explications données ci-avant.
Comme illustré en Figure 3, le générateur ou oscillateur laser 1 de type C02, couramment appelé source laser C02, qui est utilisé pour générer le faisceau laser grâce à des gaz lasants sous pression, à savoir de l'azote, de l'hélium et du C02 , est alimenté,
conformément à l'invention, avec de l'azote provenant non plus d'une bouteille 11 de gaz lasant, comme sur les Figures 1 et 2, mais directement du stockage 9 d'azote liquide. L'alimentation avec les autres gaz lasants, à savoir C02 et hélium, se fait comme
précédemment à l'aide des bouteilles 11 contenant chacun de ces gaz ou de bouteilles contenant des prémélanges gazeux, la composition du mélange final étant fonction du laser utilisé. Les bouteilles 11 sont par ailleurs équipées d'organes régulateurs de débit et/ou de pression, en particulier de robinets à détendeurs intégrés, et de manomètres, voire aussi de capotages de protection servant à protéger lesdits organes de régulation.
Il s'ensuit que, conformément à l'invention, le réservoir de stockage 9 d'azote liquide permet non seulement d'alimenter la tête laser 3 mais aussi l'oscillateur 1, et éventuellement le chemin optique 2 avec de l'azote « vrac » provenant dudit réservoir de stockage 9 qui en est soutiré sous forme liquide, vaporisé dans le vaporiseur 10 avec d'être convoyé, d'une part, vers la tête laser 3 par l'intermédiaire de la ligne 8 qui se ramifie et, d'autre part, vers l'oscillateur laser 1 via une ligne supplémentaire 18 qui vient se brancher sur la ligne 8, c'est-à-dire une dérivation de la ligne 8.
Eventuellement, une partie de l'azote peut également être envoyé dans le chemin optique 2 qui sert à récupérer le faisceau laser en sortie du générateur laser 1 , puis à le convoyer jusqu'à la tête laser 3 comprenant une buse laser et un dispositif de focalisation 4, tel qu'une lentille ou un miroir de focalisation. Le faisceau laser traverse donc la tête laser 3 en y étant focalisé, avant d'aller frapper la ou les pièces 6 à souder ou à couper par exemple, la tête 3 étant par ailleurs alimenté en azote provenant du réservoir 9.
Le chemin optique 2 est typiquement formé d'un passage muni d'optiques, tels des miroirs et/ou des lentilles.
La source ou réservoir de gaz 9 est préférentiellement un réservoir de stockage de grande capacité, c'est-à-dire ayant une capacité d'au moins 900 litres, de préférence d'au moins 3000 litres en azote.
Typiquement, ce réservoir 1 est situé à l'extérieur du bâtiment au sein duquel est installé le reste de l'installation, à savoir principalement le générateur 1 laser, le chemin optique 2 et la tête laser 3, ainsi que la table support 7 sur laquelle reposent la ou les pièces 6 à usiner et l'enceinte de protection 15.
En effet, il est ainsi plus facile de remplir le réservoir 9 de grande capacité lorsque celui-ci est vide ou presque, soit par remplissage du réservoir 9 avec de l'azote amené sur site par un camion citerne, soit par échange du réservoir 1 vide par un autre réservoir plein, en particulier si le réservoir est un réservoir mobile de type « ranger ».
Etant donné que les pressions d'utilisation du gaz au sein du chemin optique 2, de la tête laser 3 et de l'oscillateur laser 1 sont généralement différentes, il est préférentiel de prévoir un ou des dispositifs de détente de gaz 20, tel des détendeurs de gaz, sur la canalisation principale 8 et/ou sur la canalisation secondaire 18.
Un dispositif détendeur 20 doit être conçu pour et apte à réduire la pression du gaz circulant dans la canalisation principale 8 ou secondaire 18, préalablement à son introduction dans le chemin optique 2, la tête 3 ou l'oscillateur 1.
Typiquement, le gaz véhiculé par la canalisation principale 8 est à une pression comprise entre 15 et 32 bar relatif, par exemple de l'ordre de 25 bar, alors que dans le chemin optique, le gaz est en surpression pour éviter que les particules dans l'air ne pénètre à l'intérieur. L'alimentation de l'oscillateur laser a une pression relative comprise entre 1 et 15 bar.
Par ailleurs, la Figure 4 est similaire à la Figure 3, à l'exception du fait que l'installation comprend également un dispositif de purification 21 , tel un filtre, agencé sur la canalisation secondaire 18, de préférence entre le détendeur 20 et l'entrée de l'oscillateur 1, de manière à pouvoir garantir une pureté élevée donnée du gaz lasant, à savoir l'azote, introduit dans l'oscillateur 1.

Claims

Revendications
1. Installation d'usinage laser comprenant :
- un oscillateur (1) laser pour générer un faisceau laser,
- une tête laser (3) traversée par le faisceau laser,
- un chemin optique (2) pour convoyer le faisceau laser entre l'oscillateur (1) laser et la tête laser (3),
- une source de gaz (9) reliée fiuidiquement à la tête laser (3) par l'intermédiaire d'une canalisation principale (8) de gaz,
caractérisée en ce qu'elle comporte en outre une canalisation secondaire (18) reliant fiuidiquement ladite source de gaz (9) à l'oscillateur laser (1).
2. Installation selon la revendication précédente, caractérisée en ce que la source de gaz (9) est un réservoir de stockage ayant une capacité d'au moins 900 litres, de préférence d'au moins 3000 litres.
3. Installation selon l'une des revendications précédentes, caractérisée en ce qu'elle comporte un dispositif de détente de gaz (20), agencé sur la canalisation secondaire (18), permettant de réduire la pression du gaz provenant de la source de gaz (9), préalablement à son introduction dans l'oscillateur (1).
4. Installation selon l'une des revendications précédentes, caractérisée en ce que la source de gaz (9) est un réservoir de stockage d'azote liquide.
5. Installation selon l'une des revendications 3 ou 4, caractérisée en ce que la source de gaz (9) est reliée fiuidiquement à la tête laser (3) et au chemin optique (2) par l'intermédiaire de la canalisation principale (8).
6. Installation selon l'une des revendications 3 à 5, caractérisée en ce qu'elle comporte un vaporiseur (10) de gaz agencé entre la source de gaz (9) et la canalisation principale (8) ou la canalisation secondaire (18) et/ou un dispositif de purification de gaz (1 1) comprenant un filtre ou un adsorbant apte à et conçu pour éliminer au moins une impureté choisie parmi la vapeur d'eau, les hydrocarbures et l'oxygène.
7. Installation selon l'une des revendications précédentes, caractérisée en ce que l'oscillateur (1) est alimenté par ailleurs avec au moins de du C02 et de l'hélium ou un mélange C02/He provenant d'une ou plusieurs bouteilles (1 1) de gaz.
8. Installation selon l'une des revendications précédentes, caractérisée en ce que l'oscillateur laser (1) est de type C02.
9. Installation selon l'une des revendications précédentes, caractérisée en ce que l'oscillateur laser (1), le chemin optique (2) et la tête laser (3) sont situés dans un bâtiment, et la source de gaz (9) est située à l'extérieur dudit bâtiment, de préférence les bouteilles sont dans le bâtiment.
10. Procédé pour alimenter une installation d'usinage laser comprenant un oscillateur laser (1), une tête laser (3), un chemin optique (2) pour convoyer le faisceau laser entre l'oscillateur (1) laser et la tête laser (3), avec un gaz provenant d'une source (9) de gaz, dans lequel :
a) on véhicule une partie du gaz provenant de la source de gaz (9) au sein d'une canalisation principale (8) reliant ladite source (9) de gaz à ladite tête laser (3) et d'une canalisation secondaire (18) reliant la source (9) de gaz à l'oscillateur (1), et
b) on alimente ladite tête laser (3) avec du gaz provenant de ladite canalisation principale (8),
caractérisé en ce qu'on alimente l'oscillateur avec du gaz provenant de ladite canalisation secondaire (18).
1 1. Procédé selon la revendication 10, caractérisé en ce qu'on introduit dans le chemin optique (2) du gaz issu de la canalisation principale (8).
12. Procédé selon la revendication 11 , caractérisé en ce que le gaz est de l'azote.
13. Procédé selon l'une des revendications 11 ou 12, caractérisé en ce qu'on ajuste la pression du gaz avant son introduction dans le chemin optique (2), dans l'oscillateur (1) et/ou dans la tête laser (3).
14. Procédé selon l'une des revendications 11 à 13, caractérisé en ce que la source de gaz est un réservoir de stockage (9) d'au moins 900 litres, de préférence d'au moins 3000 litres.
15. Procédé selon l'une des revendications 11 à 14, caractérisé en ce que l'oscillateur (1) est alimenté en outre par de l'oxygène et du C02 ou d'un mélange C02/He provenant d'une ou plusieurs bouteilles (11) de gaz.
PCT/FR2011/050113 2010-02-16 2011-01-21 Installation d'usinage laser avec source de gaz commune pour l'oscillateur et la tête laser WO2011101566A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP11705643A EP2536529A1 (fr) 2010-02-16 2011-01-21 Installation d'usinage laser avec source de gaz commune pour l'oscillateur et la tête laser
US13/579,322 US20120312788A1 (en) 2010-02-16 2011-01-21 Laser machining equipment having a common gas source for the laser oscillator and head
CA2785577A CA2785577A1 (fr) 2010-02-16 2011-01-21 Installation d'usinage laser avec source de gaz commune pour l'oscillateur et la tete laser
BR112012020554-4A BR112012020554A2 (pt) 2010-02-16 2011-01-21 instalação de usinagem laser com fonte de gás comum para o oscilador e a cabeça lazer.
CN2011800097069A CN102762334A (zh) 2010-02-16 2011-01-21 具有用于激光振荡器和激光头的公共气体源的激光加工设备
JP2012553368A JP2013520025A (ja) 2010-02-16 2011-01-21 レーザー発振器およびヘッドのための共通のガス供給源を有するレーザー機械加工設備
RU2012139629/02A RU2012139629A (ru) 2010-02-16 2011-01-21 Установка для лазерной обработки с источником газа, общим для лазерного генератора и лазерной головки

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1051067A FR2956337B1 (fr) 2010-02-16 2010-02-16 Installation d'usinage laser avec source de gaz commune pour l'oscillateur et la tete laser
FR1051067 2010-02-16

Publications (1)

Publication Number Publication Date
WO2011101566A1 true WO2011101566A1 (fr) 2011-08-25

Family

ID=42829047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2011/050113 WO2011101566A1 (fr) 2010-02-16 2011-01-21 Installation d'usinage laser avec source de gaz commune pour l'oscillateur et la tête laser

Country Status (9)

Country Link
US (1) US20120312788A1 (fr)
EP (1) EP2536529A1 (fr)
JP (1) JP2013520025A (fr)
CN (1) CN102762334A (fr)
BR (1) BR112012020554A2 (fr)
CA (1) CA2785577A1 (fr)
FR (1) FR2956337B1 (fr)
RU (1) RU2012139629A (fr)
WO (1) WO2011101566A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101523673B1 (ko) * 2013-12-27 2015-05-28 에이피시스템 주식회사 레이저 조사 방법 및 레이저 조사 모듈
CN106077969A (zh) * 2016-06-30 2016-11-09 禹州市神运机械有限公司 一种二氧化碳激光切割设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6215808B1 (en) 1997-04-25 2001-04-10 Nikon Corporation Laser apparatus, exposure apparatus, lithography system, method for producing circuit elements, gas supply system and gas supply method
US20060088073A1 (en) 2004-10-25 2006-04-27 Maas Marinus F V Method and apparatus for carrying out a laser operation and use of a quick-change filter in such a laser operation

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3596202A (en) * 1969-03-28 1971-07-27 Bell Telephone Labor Inc Carbon dioxide laser operating upon a vibrational-rotational transition
US3641457A (en) * 1969-09-10 1972-02-08 United Aircraft Corp High-performance gas laser
JPH07108464B2 (ja) * 1991-10-28 1995-11-22 ジューキ株式会社 レーザー加工装置
CN1107570C (zh) * 1994-06-06 2003-05-07 阿曼德有限公司 向激光束机提供气态氮的方法和设备及一种激光束机
DE19842413C1 (de) * 1998-09-16 1999-10-28 Linde Ag Gasversorgung mit Gasen aus Gasbehältern
CN1328003C (zh) * 2003-05-20 2007-07-25 三菱电机株式会社 激光加工装置
EP2024132A1 (fr) * 2006-05-09 2009-02-18 Trumpf Laser- und Systemtechnik GmbH Machine d'usinage au laser avec un dispositif de ventilation du guidage du rayon laser et procede de ventilation du guidage du rayon laser d'une machine d'usinage au laser

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6215808B1 (en) 1997-04-25 2001-04-10 Nikon Corporation Laser apparatus, exposure apparatus, lithography system, method for producing circuit elements, gas supply system and gas supply method
US20060088073A1 (en) 2004-10-25 2006-04-27 Maas Marinus F V Method and apparatus for carrying out a laser operation and use of a quick-change filter in such a laser operation

Also Published As

Publication number Publication date
FR2956337A1 (fr) 2011-08-19
US20120312788A1 (en) 2012-12-13
FR2956337B1 (fr) 2012-03-02
RU2012139629A (ru) 2014-03-27
CA2785577A1 (fr) 2011-08-25
CN102762334A (zh) 2012-10-31
EP2536529A1 (fr) 2012-12-26
JP2013520025A (ja) 2013-05-30
BR112012020554A2 (pt) 2018-03-13

Similar Documents

Publication Publication Date Title
FR2809648A1 (fr) Procede et installation de soudage hybride par laser et arc electrique, notamment de pieces automobiles ou de tubes
US6891126B2 (en) High-speed laser cutting method with adapted gas
US20080116175A1 (en) Laser welding process with improved penetration
AU773653B2 (en) Method and apparatus for the laser cutting of stainless steel, coated steel, aluminum or aluminum alloys with bifocal optical component
FR2809645A1 (fr) Application d'un procede hybride laser-arc au soudage de tube
EP1215008A1 (fr) Procédé et installation de coupage laser avec tête de découpe à double flux et double foyer
EP2536529A1 (fr) Installation d'usinage laser avec source de gaz commune pour l'oscillateur et la tête laser
LU86802A1 (fr) Centrale de commande pour gaz sous pression
FR2975318A1 (fr) Buse laser a element mobile
CA2335922A1 (fr) Procede et installation de travail a l'arc plasma avec melange gazeux a base d'hydrogene, d'azote et/ou d'argon
EP0336807A1 (fr) Chalumeau à gaz équipé d'un dispositif d'observation visuelle
FR3074484A1 (fr) Container inertable de transport d'une poudre de fabrication additive
US20150174685A1 (en) Integrated Multi-Task Metal Working System
WO2003018246A1 (fr) Procede et installation de coupage par faisceau laser utilisant un objectif a multifocales et une tuyere convergeante/divergeante
US20020162604A1 (en) Laser cutting method and apparatus with a bifocal optical means and a hydrogen-based assist gas
CA2332383A1 (fr) Procede et installation de coupage laser d'acier inoxydable ou revetu, ou d'aluminium et alliages avec optique bifocale
CA2460091A1 (fr) Procede d'amorcage de l'arc electrique en soudage hybride laser-arc
CN105817744A (zh) 一种狭窄位置管道堵漏镜面焊接方法
WO2015059384A1 (fr) Buse laser a double flux gazeux
FR2829413A1 (fr) Torche et installation de soudage hybride laser-arc modulaires multi-procedes
EP2282866A2 (fr) Procede et installation d'oxycoupage d'une piece en acier avec augmentation de la pression et/ou du debit de l'oxygene gazeux apres amorcage du percage
EP0995532A1 (fr) Procédé et installation de soudage d'une structure creuse, tel un conteneur ou un tube, avec inertage de son volume interne
FR2923168A1 (fr) Tete de focalisation laser a chambre de compensation de pression
EP0952205A1 (fr) Mélange gazeux contenant de l'acétylène et de l'hydrogène et/ou du gaz naturel
FR2798085A1 (fr) Procede de coupage ou soudage laser ou plasma avec gaz genere par electrolyse

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180009706.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11705643

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011705643

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2785577

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 5825/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2012553368

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13579322

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012139629

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012020554

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012020554

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120816