WO2011100883A1 - 高电压端头 - Google Patents

高电压端头 Download PDF

Info

Publication number
WO2011100883A1
WO2011100883A1 PCT/CN2010/079148 CN2010079148W WO2011100883A1 WO 2011100883 A1 WO2011100883 A1 WO 2011100883A1 CN 2010079148 W CN2010079148 W CN 2010079148W WO 2011100883 A1 WO2011100883 A1 WO 2011100883A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
stress
high voltage
conductor
voltage
Prior art date
Application number
PCT/CN2010/079148
Other languages
English (en)
French (fr)
Inventor
罗志昭
Original Assignee
Luo Zhizhao
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Luo Zhizhao filed Critical Luo Zhizhao
Publication of WO2011100883A1 publication Critical patent/WO2011100883A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G15/00Cable fittings
    • H02G15/02Cable terminations
    • H02G15/06Cable terminating boxes, frames or other structures
    • H02G15/064Cable terminating boxes, frames or other structures with devices for relieving electrical stress
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G15/00Cable fittings
    • H02G15/08Cable junctions
    • H02G15/10Cable junctions protected by boxes, e.g. by distribution, connection or junction boxes
    • H02G15/103Cable junctions protected by boxes, e.g. by distribution, connection or junction boxes with devices for relieving electrical stress
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G15/00Cable fittings
    • H02G15/08Cable junctions
    • H02G15/18Cable junctions protected by sleeves, e.g. for communication cable
    • H02G15/184Cable junctions protected by sleeves, e.g. for communication cable with devices for relieving electrical stress

Definitions

  • the high voltage terminal of the invention is suitable for use in high voltage cables of power systems, bushings of high voltage electrical equipment, wall bushings, current transformers, and greatly improves the safety factor.
  • the existing bushing manufacturing technology adopts a capacitor core structure, and its defects: According to the rated voltage, n capacitive screens and n insulating layers (each insulating layer are thin) are superposed to form an insulator, each layer is insulated. Very thin. The insulation between the conductor and the first capacitive screen does not meet the rated operating voltage. The conductor to the first capacitive screen is very thin, the distance from the conductor to the first capacitive screen is small, and each capacitive screen has a long end to The ends are connected together, the capacitance of the induced capacitors is very large, the voltage is very high, and the voltage of the ground layer in the last layer is also very high.
  • the insulating layer between the first metal screen and the second metal capacitor screen is thin, and the distance between the first metal capacitor screen and the second metal capacitor screen is small, between the first metal capacitor screen and the second metal capacitor screen.
  • the insulation can not meet the rated operating voltage.
  • the insulation layer between the n-layer capacitive screens is very thin.
  • the induced capacitance is very large.
  • the voltage is very high.
  • the voltage of the ground layer is also high, and the battery is charged and discharged for a long time. As long as one of the layers of the damaged main insulation is immediately broken down, the damage rate is quite high, and the surface potential of the end is high, which is likely to cause discharge to the ground, and there is a flashover, which is prone to accidents.
  • Patent No. 98218242. 2 A new type of high-voltage cable terminal, patent number 99248192. 9 - short dry cable terminal, patent number 00264710. 9 dry cable terminal. Summary of the invention
  • the object of the present invention is to overcome the shortcomings of the prior art, and to provide a simple structure, which can effectively solve the uniform electric field distribution at the end of the high-voltage insulated conductor, reduce the end potential, and have good surface insulation and no flashover.
  • the technical solution for achieving the object of the present invention is that the high voltage terminal of the present invention is made of a voltage grade outside the circular conductor (tubular, rod-shaped, stranded), and the steps are as follows. 1.
  • Conductor shielding layer (according to the conductor Whether the structure, the flatness of the conductor surface, the actual use requirements, whether the conductor shield layer needs to be made, the material is made of plastic or rubber semi-conductive material); 2.
  • the thick insulation layer (using plastics, rubber) can meet the rated Operating voltage; 3, grounding shield (semiconducting layer, grounding metal layer); 4, insulating sheath.
  • the insulating sheath and the grounding shield layer are removed according to the voltage level, and the insulating layer is left.
  • the stress layer is sequentially formed on the remaining insulating layer in a stepwise manner (plastic or rubber semiconductive material or non-conductive material) Magnetic metal film), each stress layer has an independent insulation layer, and the last stress layer is connected with the grounding shielding layer.
  • the stress cone, the stress component, the stress layer, the dielectric layer and the conductor of the existing high-voltage cable head are integral with the conductor, and the voltage of the conductor is consistent, and the uneven distribution of the field strength causes the cable end.
  • the insulation layer is prematurely aged, and the surface potential of the end is high, which is likely to cause discharge to the ground.
  • the difference of the present invention is very thick and has a large distance from the conductor (1) and can withstand the rated operating voltage.
  • the first stress layer (4) is made outside the insulating layer (2) and is independent of the conductor (1).
  • the pressure is much lower than the conductor, which is equivalent to the good isolation between the first stress layer (4) and the conductor (1).
  • the voltage of the stress layer (6) is lower than the voltage of the first stress layer (4). This type of push.
  • the insulating layer (2) is thicker and has a larger conductor distance, the insulation effect is better, the voltage of the conductor induced voltage to the first stress layer (4) is relatively small, and the induced voltage of each stress layer is small and is in the insulating layer.
  • the layer is inductively absorbed and transferred to the grounding shield to directly reduce the surface potential of the end.
  • Each stress layer has a separate insulating layer.
  • the n stress layers have n insulating layers, and each end of the stress layer is added. As the insulation increases, the surface potential of the end is very low and it will never discharge to the ground.
  • the existing casing manufacturing technology uses capacitor core structure, its defects: according to the rated voltage n capacitive screen (each capacitive screen is very long) and n insulation layers (each insulation layer They are all thin) stacked together to form an insulator.
  • the distance from the conductor to the first capacitive screen is small and the insulation is very thin (cannot withstand the rated operating voltage).
  • the distance between each capacitive screen is very small.
  • Each capacitive screen has a long end to an end.
  • the capacitance of the induced capacitor is very large, the voltage is very high, and the surface voltage of the ground layer is high. Long-term charge and discharge, as long as one of the insulation is damaged, the main insulation is immediately broken down. Moreover, the surface potential of the end is high, which is liable to cause discharge to the ground.
  • the difference of the present invention The insulating layer (2) between the grounding shield (3) and the conductor (1) is thick enough to withstand the rated operating voltage, and the distance between the grounding shield (3) and the conductor (1) is large.
  • the induced capacitance is small and the voltage is very low, which is equivalent to the good isolation between the grounding shield (3) and the conductor (1).
  • the first stress layer (4) is made outside the insulating layer (2), so it can withstand the rated operating voltage, the distance between the first stress layer (4) and the conductor (1) is large, and the induced capacitance capacity Very small, the voltage is very low, the stress layer voltage is much lower than the conductor, which is equivalent to the good isolation between the first stress layer (4) and the conductor (1).
  • the stress layer is short (end-to-end stress layers are broken and independent), and the induced capacitance is small and the voltage is low.
  • the insulating layer (2) is thicker and has a larger conductor distance, the insulation effect is better, the voltage of the conductor induced voltage to the first stress layer (4) is relatively small, and the induced voltage of each stress layer is small and is in the insulating layer.
  • the layer is inductively absorbed and transferred to the grounding shield to directly reduce the surface potential of the end.
  • Each stress layer has a separate insulating layer.
  • the n stress layers have n insulating layers, and each end of the stress layer is added. As the insulation increases, the surface potential of the end is very low and it will never discharge to the ground.
  • the conductor end and the equipotential and the equipotential line are in communication with the first metal capacitive screen, and the conductor and the first metal capacitive screen are equal.
  • the voltage is very high, the insulation between the first metal screen and the second metal capacitor screen is very thin (can not withstand the rated operating voltage), the insulation layer between the back n-layer capacitive screens is very thin, and the capacitance of the induced capacitance is Very large, high voltage, the voltage of the grounding layer to the last layer is also very high, long-term charge and discharge, as long as one of the insulation damages the main insulation immediately to breakdown.
  • the surface potential of the end is high, which is likely to cause discharge to the ground.
  • the insulating layer (2) can withstand the rated operating voltage
  • the first stress layer (4) is made outside the insulating layer (2), is independent of the conductor (1), and the voltage is much lower than the conductor, equivalent
  • the voltage of the stress layer (6) is lower than the voltage of the first stressor layer (4), and so on.
  • the insulating layer (2) is thicker and has a larger conductor distance, the insulation effect is better, the voltage of the conductor induced voltage to the first stress layer (4) is relatively small, and the induced voltage of each stress layer is small and is in the insulating layer.
  • the layer is inductively absorbed and transferred to the grounding shield to directly reduce the surface potential of the end.
  • Each stress layer has a separate insulating layer.
  • the n stress layers have n insulating layers, and each end of the stress layer is added. As the insulation increases, the surface potential of the end is very low and it will never discharge to the ground.
  • FIG. 2 1. The inner circle of the high voltage terminal, 2. The insulating layer on the conductor, 4. The stress layer, 5. The insulating layer, 6. The stress layer, 7. The insulating layer, 8. The stress layer, 9 Insulation protection Casing. 10. Umbrella skirt, 11. Ground shield connection.
  • the manufacturing method is as follows: the end terminal of the 6kV high voltage cable is treated by the method of the invention, and the cable end is first unplugged from the end (9) 500mm, remove the grounding shield (3) 400mm from the end, and remove the insulating layer 100mm from the end (for Cable terminal connection), starting from the end of 150mm, the first stress layer (4) is made outside the insulating layer (2), the stress layer width is 50 ⁇ 100mm, and the insulating layer (5) is treated on the stress layer (4) ( Insulation level: power frequency withstand voltage > 2kV / lmin), three stress layers are combined in a stepped manner, three insulation layers, the third stress layer (8) is connected with the ground shielding layer (3), and the insulation layer is further insulated.
  • the sheath (9) and the shed (10), the insulation level of the cable termination head made by this method is 50% higher than the method of the above technical background (power frequency withstand voltage > 50kV / lmin), and maintenance-free operation can be achieved.
  • the insulation treatment of the above process may be a heat shrinkable material or a cold shrinkable material or a castable material, and the stress layer may be a heat shrinkable material or a shrinkable material or a cast material or a nonmagnetic metal film.
  • the pre-cooling and high voltage end can be made.
  • Manufacturing method According to the rated operating voltage requirements, make a detachable piece with an umbrella skirt, and pre-bury the n stress layers according to the above structure, as shown in Figure 2 and Figure 3.
  • Figure 2 is for a circular conductor with no insulating layer at the end
  • Figure 3 is for a circular conductor with an insulating layer at the end.
  • Cable end heads, wall bushings, transformer bushings, switch bushings, electrical bushings, and capacitor bushings can be made in the production process as described above.

Description

说明书
高电压端头
技术领域
本发明高电压端头适合在电力系统高压电缆、 高压电器设备的套管、 穿 墙套管、 电流互感器中使用, 大幅提高安全系数。
1、现有高压电缆头的应力锥、 应力件、 应力层、 介电层跟导体属一个整 体, 跟导体的电压是一致的, 沿面场强分布不均造成电缆端部绝缘层过早老 化, 经常有高压电缆头爆炸, 另外端部表面电位很高, 容易造成对地放电, 时有污闪。 类似如下: 专利号 02289499. 3—种干柔性电缆终端头, 专利号 99225039. 0热缩型电缆终端头, 专利号 00255452. 6双层应力分散交联电 缆终端头, 专利号 01256795 . 7 常温收缩型电力电缆终端头, 专利号 200610124043. 6 一种硬性干式高压电缆终端头, 专利号 200910162807. 4 一种干式电缆终端头, 专利号 03271395. 9—种硬性干式高压电缆终端头, 专利号 200820070487. 0—种电缆端头, 专利号 200820189411 . x—种瓷套 型干式中压电缆终端头, 专利号 200820121622. x—种电缆终端头。
2、 现有套管制造技术都是采用电容芯子结构, 其缺陷: 根据额定电压 n 个电容屏与 n个绝缘层 (每个绝缘层都很薄) 叠加在一起形成一个绝缘体, 每层绝缘都很薄。 导体与第一个电容屏之间的绝缘不能满足额定运行电压, 导体至第一个电容屏绝缘很薄, 导体至第一个电容屏的距离很小, 每个电容 屏都很长端部至端部连成一体, 感应出来的电容容量都很大, 电压很高, 到 最后一层接地层电压也很高, 只要其中一层绝缘受损主绝缘马上给击穿, 此 结构跟电力电容相当, 长期在充放电, 损坏率相当高, 而且端部表面电位很 高, 容易造成对地放电, 时有污闪, 类似如下: 专利号 93240259. 3新型穿 墙套管, 申请号 03100143 . 2 干式高压电容芯子及其制造方法, 申请号 200510035075. 4新型绝缘铜管母线。 3、现有另一种电缆头的制造方法,导体端部与等位体与等位线与第一金 属电容屏是相连通的, 导体与第一金属电容屏是等电位, 电压很高, 第一金 属屏与第二金属电容屏之间的绝缘层很薄, 第一金属电容屏与第二金属电容 屏之间的距离很小, 第一金属电容屏与第二金属电容屏之间的绝缘不能满足 额定运行电压, 后面 n层的电容屏之间的绝缘层都很薄, 感应出来的电容电 量都很大, 电压很高, 到最后一层接地层电压也很高, 长期充放电, 只要其 中一层绝绷受损主绝缘马上给击穿,损坏率相当高,而且端部表面电位很高, 容易造成对地放电, 时有污闪, 很容易出现事故。 类似如下: 专利号 98218242. 2—种新型高压电缆终端头, 专利号 99248192. 9—种短型干式 电缆终端头, 专利号 00264710. 9干式电缆终端头。 发明内容
本发明的目的是克服现有技术的缺点, 提供一种结构简单、 能有效解决 高压绝缘导体端部电场分布均匀, 降低端部电位, 表面绝缘性好, 没污闪。
实现本发明目的的技术方案是:本发明的高电压端头,是在圆形导体(管 形、 棒形、 绞线形)外按电压等级制作绝缘, 步骤如下. 1、 导体屏蔽层 (根 据导体结构、 导体表面的平整度、 实际使用的要求而定是否需要制作导体屏 蔽层, 材料采用塑料类、 橡胶类半导电材料); 2、 厚的绝缘层(采用塑料类、 橡胶类)能满足额定运行电压; 3、接地屏蔽层(半导电层, 接地金属层); 4、 绝缘护套。 在已有主绝缘导体端部按电压等级拔掉部分绝缘护套和接地屏蔽 层, 保留绝缘层, 在保留绝缘层上按阶梯方式依次做应力层 (塑料类、 橡胶 类的半导电材料或非磁性金属薄膜),每一个应力层都有独立绝缘层,最后一 个应力层跟接地屏蔽层连接, 以上完成后再做外绝缘护套, 再加伞裙。
本发明的有益效果是:
1、跟上述技术背景 1对比,现有高压电缆头的应力锥、应力件、应力层、 介电层跟导体属一个整体, 跟导体的电压是一致的, 沿面场强分布不均造成 电缆端部绝缘层过早老化, 另外端部表面电位很高, 容易造成对地放电。
本发明的区别: 绝缘层 (2 ) 很厚与导体 (1 ) 距离很大, 能承受额定运 行电压。 第一应力层 (4) 是在绝缘层 (2 )外做, 与导体(1 ) 是独立的, 电 压比导体要低很多, 等同第一应力层 (4) 与导体 (1 ) 之间有很好效果的隔 离, 应力层 (6 ) 的电压比第一应力层 (4) 的电压要低, 以此类推。
由于绝缘层(2 )较厚与导体距离较大, 绝缘效果较好, 导体感应电压至 第一应力层(4) 电压比较小, 以后每层应力层的感应电压都很小, 并在绝缘 层里面分层感应吸收并转移到接地屏蔽层上, 直接降低端部表面电位, 每个 应力层都有一个独立的绝缘层, n个应力层就有 n个绝缘层, 每增加一个应 力层端部的绝缘随着加大, 结果端部表面电位很低, 绝对不会对地放电。
2、跟上述背景 2对比, 现有套管制造技术都是采用电容芯子结构, 其缺 陷: 根据额定电压 n个电容屏 (每个电容屏很长) 与 n个绝缘层 (每个绝缘 层都很薄) 叠加在一起形成一个绝缘体。 导体至第一个电容屏的距离很小, 绝缘都很薄(不能承受额定运行电压)。每层电容屏之间距离很小, 每个电容 屏很长端部至端部连成一体, 感应出来的电容容量都很大, 电压很高, 到最 后一层接地层表面电压也很高, 长期充放电, 只要其中一层绝缘受损主绝缘 马上给击穿。 而且端部表面电位很高, 容易造成对地放电。
本发明的区别: 接地屏蔽层 (3 ) 与导体 (1 ) 之间的绝缘层 (2 ) 很厚, 能承受额定运行电压, 接地屏蔽层 (3 ) 与导体 (1 ) 之间的距离很大, 感应 出来的电容容量很小, 电压很低, 等同接地屏蔽层 (3 ) 与导体 (1 ) 之间有 很好效果的隔离。 并且第一应力层 (4) 是在绝缘层 (2 ) 外做的, 故能承受 额定运行电压, 第一应力层 (4) 与导体 (1 ) 之间的距离很大, 感应出来的 电容容量很小, 电压很低, 应力层电压比导体低很多, 等同第一应力层 (4) 与导体(1 )之间有很好效果的隔离。应力层很短(端部至端部的应力层是断 开并且独立), 所感应出来的电容容量很小, 电压很低。
由于绝缘层(2 )较厚与导体距离较大, 绝缘效果较好, 导体感应电压至 第一应力层(4) 电压比较小, 以后每层应力层的感应电压都很小, 并在绝缘 层里面分层感应吸收并转移到接地屏蔽层上, 直接降低端部表面电位, 每个 应力层都有一个独立的绝缘层, n个应力层就有 n个绝缘层, 每增加一个应 力层端部的绝缘随着加大, 结果端部表面电位很低, 绝对不会对地放电。
3、跟上述背景 3对比, 现有另一种电缆头的制造方法, 导体端部与等位 体与等位线与第一金属电容屏是相连通的,导体与第一金属电容屏是等电位, 电压很高, 第一金属屏与第二金属电容屏之间的绝缘层很薄 (不能承受额定 运行电压),后面 n层的电容屏之间的绝缘层都很薄,感应出来的电容电量都 很大, 电压很高, 到最后一层接地层电压也很高, 长期充放电, 只要其中一 层绝缘受损主绝缘马上给击穿。而且端部表面电位很高,容易造成对地放电。
本发明的区别: 绝缘层 (2 ) 能承受额定运行电压, 第一应力层 (4) 是 在绝缘层 (2 ) 外做, 与导体 (1 ) 是独立的, 电压比导体要低很多, 等同第 一应力层 (4)与导体(1 )之间有很好效果的隔离, 应力层 (6 ) 的电压比第 一应力层 (4) 的电压要低, 以此类推。
由于绝缘层(2 )较厚与导体距离较大, 绝缘效果较好, 导体感应电压至 第一应力层(4) 电压比较小, 以后每层应力层的感应电压都很小, 并在绝缘 层里面分层感应吸收并转移到接地屏蔽层上, 直接降低端部表面电位, 每个 应力层都有一个独立的绝缘层, n个应力层就有 n个绝缘层, 每增加一个应 力层端部的绝缘随着加大, 结果端部表面电位很低, 绝对不会对地放电。 附图说明
附图 1、 2、 3为本发明的结构示意图。
附图 1中: 1. 导体, 2. 绝缘层, 3接地屏蔽层, 4. 应力层, 5. 绝缘 层, 6. 应力层, 7. 绝缘层, 8. 应力层, 9. 绝缘护套层, 10. 伞裙。
附图 2中: 1. 高电压端头的内圆, 2. 导体上绝缘层, 4. 应力层, 5. 绝 缘层, 6. 应力层, 7. 绝缘层, 8. 应力层, 9绝缘护套层. 10. 伞裙, 11. 接 地屏蔽层连接处。
附图 3中: 1. 高电压端头的内圆, 4. 应力层, 5. 绝缘层, 6. 应力层, 7. 绝缘层, 8. 应力层, 9绝缘护套层. 10. 伞裙, 11. 接地屏蔽层连接处。 具体实施方式
下面结合附图对本发明的具体实施方式作进一步说明。
如图 1所示, 本发明的高电压端头, 制作方法例: 6kV高压电缆的端部 终端头的处理,采用本发明的方法先将电缆端部从端部起拔掉护套 (9 )500mm, 从端部起再拔掉接地屏蔽层 (3 ) 400mm, 从端部起拔掉绝缘层 100mm (用于 电缆端子连接), 从端部起 150mm开始在绝缘层(2 )外做第一个应力层(4), 应力层宽度 50〜100mm, 在应力层 (4) 上做绝缘层 (5 ) 处理 (绝缘水平: 工频耐压〉 2kV / lmin ), 按阶梯状合计做三个应力层, 三个绝缘层, 第三应力 层 (8 ) 与接地屏蔽层 (3 ) 连接, 此上再做绝缘外护套 (9 ) 和伞裙 (10), 用此方法做的电缆终端头绝缘水平比上述技术背景的方法高出 50 % (工频耐 压〉 50kV / lmin) , 可做到免维护运行二十年不对地放电、 无污闪。 上述过程 的绝缘处理可采用热缩材料或冷缩材料或浇注材料, 应力层可采用热缩材料 或冷缩材料或浇注材料或非磁性金属薄膜。
另外按上述过程可做成预制冷缩高电压端头。 制造方法例: 根据额定运 行电压的要求, 做带伞裙的绝绝件, 在里面按上述结构预埋 n个应力层, 如 图 2、 图 3所示。 图 2是用于端部没有绝缘层的圆形导体上, 图 3是用于端 部有绝缘层的圆形导体上。
按上述方法的生产过程可制作电缆终端头、 穿墙套管、 变压器套管、 开 关套管、 电器套管、 电容器套管。

Claims

权利要求书
1. 高电压端头, 其特征: 在圆形导体端部绝缘层(2)外的第一个应力层(4) 与导体(1 )之间绝缘层 (2) 的绝缘水平能满足额定运行电压要求, 根据 额定运行电压要求在第一个应力层 (4) 外面做 n个应力层, 应力层之间 有绝缘层, 最外层的应力层与接地屏蔽层 (3 ) 连接, 高电压端头外表有 绝缘护套 (9)。
2.根据权利要求 1所述的高电压端头,其特征是:高电压端头外面有伞裙(10)。
3. 根据权利要求 1所述的高电压端头, 其特征是: 绝缘材料采用塑料类、 橡 胶类。
4. 根据权利要求 1所述的高电压端头, 其特征是: 应力层材料采用塑料类、 橡胶类的半导电材料或非磁性金属薄膜。
5. 根据权利要求 1所述的高电压端头, 其特征是: 可用于电缆终端头、 穿墙 套管、 变压器套管、 开关套管、 电器套管、 电容器套管。
PCT/CN2010/079148 2010-02-20 2010-11-25 高电压端头 WO2011100883A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 201010116122 CN101763923B (zh) 2010-02-20 2010-02-20 高电压端头
CN201010116122.9 2010-02-20

Publications (1)

Publication Number Publication Date
WO2011100883A1 true WO2011100883A1 (zh) 2011-08-25

Family

ID=42495026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/079148 WO2011100883A1 (zh) 2010-02-20 2010-11-25 高电压端头

Country Status (2)

Country Link
CN (1) CN101763923B (zh)
WO (1) WO2011100883A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101763923B (zh) * 2010-02-20 2013-01-02 罗志昭 高电压端头
CN102013644A (zh) * 2010-11-15 2011-04-13 国网电力科学研究院武汉南瑞有限责任公司 内电场调控空气绝缘开关设备
CN102347598A (zh) * 2011-08-23 2012-02-08 上海永锦电气集团有限公司 带应力管的电缆终端
US9870847B2 (en) 2012-12-13 2018-01-16 Abb Schweiz Ag High voltage device and a method of manufacturing a high voltage device
CN104240811B (zh) * 2014-09-02 2016-08-24 山东中泰阳光电气科技有限公司 管型母线及其专用加工装置和加工方法
CN110459362A (zh) * 2019-08-23 2019-11-15 深圳市沃尔电力技术有限公司 同轴电缆及采用同轴电缆的电缆卷盘集电箱

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2590232Y (zh) * 2002-12-06 2003-12-03 王学东 一种干式柔性电缆终端头
CN101763923A (zh) * 2010-02-20 2010-06-30 罗志昭 高电压端头

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2483871Y (zh) * 2001-05-10 2002-03-27 上海通用电气广电有限公司 一种新型隔离触头盒
CN1186783C (zh) * 2003-01-07 2005-01-26 孙闻峰 干式高压电容芯子及其制造方法
CN100508319C (zh) * 2006-04-05 2009-07-01 罗东豪 一种护套管及其制造方法
CN201041931Y (zh) * 2006-04-06 2008-03-26 罗东豪 一种护套管
CN101339824B (zh) * 2008-08-14 2010-11-03 上海西邦电气有限公司 复合绝缘管型母线及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2590232Y (zh) * 2002-12-06 2003-12-03 王学东 一种干式柔性电缆终端头
CN101763923A (zh) * 2010-02-20 2010-06-30 罗志昭 高电压端头

Also Published As

Publication number Publication date
CN101763923A (zh) 2010-06-30
CN101763923B (zh) 2013-01-02

Similar Documents

Publication Publication Date Title
WO2011100883A1 (zh) 高电压端头
CN105023644A (zh) 一种新型管型母线系统
CA3015415C (en) Large-capacitance insulating core, high-voltage electrical appliance and multi-functional high-voltage bushing
CN105743053B (zh) 一种不填充绝缘介质的电容型电缆终端
CN204167019U (zh) 一种复合高压套管
CN201146328Y (zh) 新型绝缘母线连接管
CN100449653C (zh) 带衬层的高压绝缘芯体
CN102436877A (zh) 高压直流交联聚乙烯电缆预制型终端
CN204167022U (zh) 一种高压穿墙套管
CN104332258B (zh) 改进的高压穿墙套管
CN103794276A (zh) 一种柔性高压直流交联聚乙烯绝缘电力电缆
CN210120027U (zh) 一种直流隔离变压器的绝缘套管
TWI593205B (zh) High-voltage device end processing method and high-voltage device manufacturing method
CN104931865B (zh) 一种高压电缆线路耐压试验用绝缘罩及试验方法
WO2020224446A1 (zh) 用于气绝缘脉冲功率源的固态柔性电阻
CN201946942U (zh) 高电压端头
CN204167834U (zh) 一种高压穿墙套管的户外部分
CN103022928A (zh) 一种触头双屏蔽结构
CN201904170U (zh) 高压直流交联聚乙烯电缆预制型终端
CN2430802Y (zh) 干式高压套管
CN205230929U (zh) 带真空灭弧室的多功能电容型套管
CN2497415Y (zh) 干式高压电流互感器
CN106128659B (zh) 一种特高压电瓷外绝缘出线套管
CN104319034A (zh) 简单的复合高压套管
CN205230644U (zh) 铁路专用绝缘管母线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10846005

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10846005

Country of ref document: EP

Kind code of ref document: A1