WO2011099414A1 - Fluorine-containing copolymer - Google Patents

Fluorine-containing copolymer Download PDF

Info

Publication number
WO2011099414A1
WO2011099414A1 PCT/JP2011/052254 JP2011052254W WO2011099414A1 WO 2011099414 A1 WO2011099414 A1 WO 2011099414A1 JP 2011052254 W JP2011052254 W JP 2011052254W WO 2011099414 A1 WO2011099414 A1 WO 2011099414A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
fluorine
monomer
mol
group
Prior art date
Application number
PCT/JP2011/052254
Other languages
French (fr)
Japanese (ja)
Inventor
進吾 榊原
深川 亮一
岳史 関口
剛志 稲葉
隆行 平尾
武司 下野
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2011099414A1 publication Critical patent/WO2011099414A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/262Tetrafluoroethene with fluorinated vinyl ethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B25/08Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/285Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/286Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysulphones; polysulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/325Layered products comprising a layer of synthetic resin comprising polyolefins comprising polycycloolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/21Anti-static
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/308Heat stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/536Hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/554Wear resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/712Weather resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/12Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • C08F216/14Monomers containing only one unsaturated aliphatic radical
    • C08F216/1408Monomers containing halogen

Definitions

  • the present invention relates to a fluorine-containing copolymer.
  • Fluororesin is used for fuel transfer piping materials such as gasoline from the viewpoints of processability, rust prevention, weight reduction, economy, etc., and this fluororesin requires fuel crack resistance and fuel permeation resistance. It is done.
  • Patent Document 1 discloses a chlorotrifluoroethylene copolymer obtained by copolymerizing chlorotrifluoroethylene and tetrafluoroethylene with perfluoro (propyl vinyl ether) or the like. Polymers have been proposed.
  • An object of the present invention is to provide a fluorine-containing copolymer having fuel crack resistance and fuel permeation resistance in view of the above situation.
  • the present invention includes a polymerized unit based on chlorotrifluoroethylene, a polymerized unit based on tetrafluoroethylene, a polymerized unit based on monomer (A), and a polymerized unit based on monomer (B).
  • the total of the polymer units based on ethylene and the polymer units based on tetrafluoroethylene is 80.0 to 99.8 mol%, and the polymer units based on the monomer (A) is 19.0 to 0.1 mol%.
  • CF 2 CF-ORf 1 (ii) (Wherein Rf 1 represents a perfluoroalkyl group having 1 or 2 carbon atoms), and is at least one monomer selected from the group consisting of perfluoro (alkyl vinyl ethers).
  • the fluorine-containing copolymer of the present invention has the above-described configuration, it has excellent fuel crack resistance and fuel permeation resistance. Moreover, when using for a laminated body, high adhesiveness with another material is shown.
  • the fluorine-containing copolymer of the present invention comprises polymerized units based on chlorotrifluoroethylene [CTFE units], polymerized units based on tetrafluoroethylene [TFE units], polymerized units based on monomer (A) [monomer ( A) units] and polymerized units [monomer (B) units] based on the monomer (B).
  • the fluorine-containing copolymer of the present invention contains specific monomer (A) units and monomer (B) units in specific amounts in addition to CTFE units and TFE units, and therefore has extremely high fuel crack resistance. . Moreover, since it contains a monomer (B) unit, the melting point can be lowered and the moldability is excellent.
  • the monomer (A) has an important carbon number, and if n in the formula (i) exceeds 2, sufficient fuel crack resistance cannot be obtained. Similarly, if the carbon number of Rf 1 in formula (ii) exceeds 2, sufficient fuel crack resistance cannot be obtained.
  • fluoroolefin represented by the general formula (i) examples include 2,3,3,3-tetrafluoropropene [CH 2 ⁇ CFCF 3 ], hexafluoropropylene and the like.
  • Examples of the perfluoro (alkyl vinyl ether) represented by the general formula (ii) include perfluoro (methyl vinyl ether) and perfluoro (ethyl vinyl ether).
  • the monomer (A) is particularly preferably hexafluoropropylene.
  • X 2 in formula (iii) is preferably a hydrogen atom or a fluorine atom.
  • the monomer (B) has an important carbon number, and if m in the formula (iii) is less than 3, sufficient mechanical strength cannot be obtained. Similarly, sufficient mechanical strength cannot be obtained when the number of carbon atoms in Rf 2 in formula (iv) is less than 3.
  • perfluoro (alkyl vinyl ether) represented by the general formula (iv) include perfluoro (propyl vinyl ether) and perfluoro (butyl vinyl ether).
  • the monomer (B) is particularly preferably perfluoro (propyl vinyl ether).
  • the fluorine-containing copolymer of the present invention has a total of 80.0 to 99.8 mol% of polymerized units based on chlorotrifluoroethylene and polymerized units based on tetrafluoroethylene, and is polymerized based on the monomer (A).
  • the unit is 19.0 to 0.1 mol%
  • the polymerized unit based on the monomer (B) is 10.0 to 0.1 mol% (100 mol% in total).
  • the preferred lower limit of the total amount of polymer units based on chlorotrifluoroethylene and polymer units based on tetrafluoroethylene is 90.0 mol%, more preferably 92.5 mol%, and the preferred upper limit is It is 99.0 mol%, and it is more preferable that it is 98.0 mol%.
  • the preferable lower limit of the polymerized units based on the monomer (A) is 0.5 mol%, more preferably 1.0 mol%, and the preferable upper limit is 9.5 mol%, and 4.0. More preferably, it is mol%.
  • the preferable lower limit of the polymerized units based on the monomer (B) is 0.5 mol%, more preferably 1.0 mol%, and the preferable upper limit is 5 mol%, 3.5 mol%. It is more preferable that When there are too many monomer (A) units, it tends to be inferior in fuel permeation resistance, interlayer adhesion with other materials in a laminated tube, heat resistance, mechanical strength, productivity, etc., monomer (A) When the unit is too small, sufficient fuel crack resistance cannot be obtained. If the monomer (B) unit is too much, the fuel permeation resistance, interlayer adhesion with other materials in the laminated tube, heat resistance, mechanical strength, productivity, etc. tend to be inferior, and the monomer (B) When the unit is too small, sufficient fuel crack resistance cannot be obtained.
  • each polymerized unit is a polymerized unit based on chlorotrifluoroethylene, a polymerized unit based on tetrafluoroethylene, a polymerized unit based on monomer (A), and a monomer. It is content with respect to the sum total of the polymerization unit based on (B).
  • the ratio of each polymer unit in the copolymer is a value obtained by analysis such as 19 F-NMR. More specifically, it is a value obtained by appropriately combining NMR analysis, infrared spectrophotometer [IR], elemental analysis, and fluorescent X-ray analysis depending on the type of monomer.
  • the fluorine-containing copolymer of the present invention has 1.0 to 50.0 mol% of polymerized units based on chlorotrifluoroethylene and 30.0 to 98.8 mol% of polymerized units based on tetrafluoroethylene. More preferably, the polymerized units based on chlorotrifluoroethylene are 5.0 to 25.0 mol%, and the polymerized units based on tetrafluoroethylene are more preferably 55.0 to 94.8 mol%.
  • the fluorine-containing copolymer of the present invention has a melt flow rate at 297 ° C. of preferably 1 to 70 g / 10 min, and more preferably 1 to 50 g / 10 min. If the melt flow rate is too large, the mechanical strength may be inferior and sufficient fuel crack resistance may not be obtained. If the melt flow rate is too small, molding may be difficult.
  • the melt flow rate is a value obtained by measuring the mass of the fluorine-containing copolymer flowing out per 10 minutes from a nozzle having an inner diameter of 2 mm and a length of 8 mm under a load of 297 ° C. and 5 kg using a melt indexer.
  • the fluorine-containing copolymer of the present invention preferably has a melting point [Tm] of 150 to 280 ° C.
  • Tm melting point
  • a more preferred lower limit is 160 ° C
  • a still more preferred lower limit is 170 ° C
  • a particularly preferred lower limit is 190 ° C
  • a more preferred upper limit is 260 ° C.
  • the Tm is a temperature corresponding to a melting peak when the temperature is raised at a rate of 10 ° C./min using a differential scanning calorimeter [DSC].
  • the temperature [Tx] at which 1% by mass of the fluorinated copolymer of the present invention subjected to the heating test decomposes is preferably 370 ° C. or higher.
  • a more preferred lower limit is 380 ° C., and a more preferred lower limit is 390 ° C. If the said thermal decomposition temperature [Tx] is in the said range, an upper limit can be made into 450 degreeC, for example.
  • the thermal decomposition temperature [Tx] is a temperature at which the mass of the fluorine-containing copolymer of the present invention subjected to the heating test is reduced by 1% by mass using a differential heat / thermogravimetry apparatus [TG-DTA]. It is a value obtained by doing.
  • the difference [Tx ⁇ Tm] between the melting point [Tm] and the temperature [Tx] at which 1% by mass is decomposed is preferably 130 ° C. or more. If it is less than 130 ° C., the range in which molding is possible is too narrow, and the range of selection of molding conditions becomes small. Since the temperature range in which the fluorine-containing copolymer of the present invention can be molded is wide as described above, a high melting point polymer can be used as a counterpart material when coextrusion molding is performed.
  • the fluorine-containing copolymer can be obtained by a conventionally known polymerization method such as solution polymerization, emulsion polymerization, suspension polymerization or the like, but industrially, it is preferably obtained by suspension polymerization.
  • the fluorine-containing copolymer of the present invention preferably has an adhesive functional group.
  • adhesive functional group is a part of the molecular structure of a polymer contained in the fluorine-containing copolymer of the present invention and can be involved in adhesion to other materials. means.
  • the adhesive functional group include a carbonyl group, a hydroxyl group, and an amino group.
  • the “carbonyl group” is a functional group having a carbon divalent group [—C ( ⁇ O) —] composed of a carbon-oxygen double bond.
  • the carbonyl group is not particularly limited, and examples thereof include a carbonate group, a halogenoformyl group, a formyl group, a carboxyl group, an ester bond [—C ( ⁇ O) O—], and an acid anhydride bond [—C ( ⁇ O) O.
  • the amide group has the following general formula
  • R 2 represents a hydrogen atom or an organic group
  • R 3 represents an organic group
  • a hydrogen atom bonded to a nitrogen atom such as the amide group, imide group, urethane bond, carbamoyl group, carbamoyloxy group, ureido group, or oxamoyl group may be substituted with a hydrocarbon group such as an alkyl group.
  • the above-mentioned adhesive functional group is easy to introduce, and the coating film to be obtained has moderate heat resistance and good adhesion at a relatively low temperature, so that it has an amide group, a carbamoyl group, a hydroxyl group.
  • a carboxyl group and a carbonate group are preferable, and a carbonate group is more preferable.
  • the carbonate group is a group having a bond generally represented by [—OC ( ⁇ O) O—], and a —OC ( ⁇ O) O—R group (wherein R represents an organic group). It is represented by Examples of the organic group represented by R in the above formula include an alkyl group having 1 to 20 carbon atoms, an alkyl group having 2 to 20 carbon atoms having an ether bond, and preferably an alkyl group having 1 to 8 carbon atoms. And an alkyl group having 2 to 4 carbon atoms having an ether bond.
  • Examples of the carbonate group include —OC ( ⁇ O) O—CH 3 , —OC ( ⁇ O) O—C 3 H 7 , —OC ( ⁇ O) O—C 8 H 17 , —OC ( ⁇ O ) O—CH 2 CH 2 CH 2 OCH 2 CH 3 and the like.
  • the fluorine-containing copolymer of the present invention may consist of a polymer having an adhesive functional functional group at either the main chain end or the side chain. Or a polymer having both at the main chain terminal and at the side chain. In the case of having an adhesive functional group at the end of the main chain, it may be present at both ends of the main chain or only at one of the ends.
  • the fluorine-containing copolymer of the present invention has an adhesive functional group at the end of the main chain because it does not significantly reduce mechanical properties and chemical resistance, or because it is advantageous in terms of productivity and cost. preferable.
  • Examples of the adhesive functional group at the end of the main chain include a carbonate group, —COF, —COOH, —COOCH 3 , —CONH 2 , or —CH 2 OH.
  • the adhesive functional group at the end of the main chain is usually formed at the end of the main chain by addition of a chain transfer agent or a polymerization initiator used during polymerization, and the structure of the chain transfer agent or polymerization initiator It is derived from.
  • the fluorine-containing copolymer of the present invention is a polymer having an adhesive functional group at the end of the main chain and the adhesive functional functional group is a carbonate group, polymerization of peroxycarbonate is started. It can obtain by the method of superposing
  • R 4 and R 5 are the same or different and each represents a linear or branched monovalent saturated hydrocarbon group having 1 to 15 carbon atoms, or a C 1 to 15 carbon atoms having an alkoxyl group at the terminal.
  • R 6 represents a linear or branched divalent saturated hydrocarbon group having 1 to 15 carbon atoms, or a carbon number having an alkoxyl group at the terminal. 1 to 15 linear or branched divalent saturated hydrocarbon groups) are preferred.
  • diisopropyl peroxycarbonate di-n-propyl peroxydicarbonate, t-butyl peroxyisopropyl carbonate, bis (4-t-butylcyclohexyl) peroxydicarbonate, di- 2-ethylhexyl peroxydicarbonate and the like are preferable.
  • the fluorine-containing copolymer of the present invention is a polymer having an adhesive functional group at the end of the main chain, and the adhesive functional functional group is a polymer other than a carbonate group
  • a peroxide such as peroxycarbonate, peroxydicarbonate, peroxyester, and peroxyalcohol
  • an adhesive functional group derived from the peroxide is obtained.
  • “derived from peroxide” is directly introduced from the functional group contained in the peroxide or indirectly by converting the functional group introduced directly from the functional group contained in the peroxide. It means being introduced.
  • the amount of the above polymerization initiator such as peroxycarbonate and peroxyester varies depending on the type and composition of the target fluorine-containing copolymer, the molecular weight, the polymerization conditions, the type of initiator used, etc.
  • the amount is preferably 0.05 to 5 parts by mass with respect to 100 parts by mass of the coalescence, and the particularly preferable lower limit is 0.1 part by mass, and the particularly preferable upper limit is 1 part by mass.
  • the number of the adhesive functional functional groups may be appropriately selected depending on differences in the type, shape, purpose of use, application, required adhesive force, adhesion method, and the like of the counterpart material to be laminated.
  • the number of functional functional groups for adhesion is preferably 3 to 800 per 1 ⁇ 10 6 main chain carbon atoms. Adhesiveness may fall that it is less than 3 per 1 ⁇ 10 6 main chain carbon atoms.
  • a more preferred lower limit is 50, a still more preferred lower limit is 80, and a particularly preferred lower limit is 120.
  • the upper limit of the number of functional adhesive functional groups can be set to, for example, 500 from the viewpoint of productivity, provided that the number is within the above range.
  • the number of functional functional groups for adhesion is a thickness of 0.25 to 0.30 mm obtained by compression molding the powder of the fluorine-containing copolymer of the present invention at a molding temperature 50 ° C. higher than the melting point at a molding pressure of 5 MPa.
  • the film sheet is analyzed by infrared absorption spectrum using an infrared spectrophotometer [IR], the type is determined by comparison with the infrared absorption spectrum of a known film, and the number calculated from the difference spectrum by the following formula is used. is there.
  • Number of terminal groups (per 1 ⁇ 10 6 carbon atoms) (l ⁇ K) / t l: Absorbance K: Correction coefficient t: Film thickness (mm) Table 1 shows the correction coefficients of the target end groups.
  • the correction coefficient in Table 1 is a value determined from the infrared absorption spectrum of the model compound in order to calculate the terminal group per 1 ⁇ 10 6 main chain carbon atoms.
  • the fluorine-containing copolymer of the present invention is a fluororesin and not an elastomer.
  • the fluorine-containing copolymer of the present invention is a polymer unit based on chlorotrifluoroethylene, a polymer unit based on tetrafluoroethylene, a polymer unit based on the monomer (A) and a single amount within a range not to impair the purpose of the present invention.
  • the polymer unit may have a polymer unit other than the polymer unit based on the body (B), and the content of the polymer unit is preferably 0.1 to 1.0 mol% of the total polymer units.
  • the polymerized units include polymerized units based on unsaturated aliphatic polycarboxylic acids.
  • the unsaturated aliphatic polycarboxylic acids are not particularly limited, and examples thereof include maleic acid, fumaric acid, itaconic acid, citraconic acid, mesaconic acid, aconitic acid and the like, and acids such as maleic acid, itaconic acid, citraconic acid and the like.
  • an anhydride may be an acid anhydride.
  • the fluorine-containing copolymer of the present invention is based on a polymer unit based on chlorotrifluoroethylene, a polymer unit based on tetrafluoroethylene, a polymer unit based on monomer (A), and a monomer (B). It is also one of the preferable embodiments that it consists of only polymerized units.
  • this invention relates to the laminated body which has the layer (C) which consists of a fluorine-containing copolymer of this invention, and the layer (K) which consists of a fluorine-free organic material.
  • the fluorine-containing copolymer of the present invention constituting the layer (C) improves interlayer adhesion, fuel permeability resistance, and fuel crack resistance.
  • the laminate of the present invention may further have a layer (J) made of a fluorine-containing ethylenic polymer (excluding the fluorine-containing copolymer of the present invention).
  • the layer (J) made of the fluorine-containing ethylenic polymer includes a layer (P) made of a perhalo fluorine-containing ethylenic polymer other than the fluorine-containing copolymer of the present invention, and the fluorine-containing copolymer of the present invention.
  • Examples include a layer (F) made of a non-perhalogenated fluorine-containing ethylenic polymer other than the coalescence.
  • the laminate of the present invention has a layer (P) made of a perhalogenated fluorine-containing ethylenic polymer other than the fluorine-containing copolymer of the present invention, it is excellent in chemical resistance and heat resistance.
  • the perfluoromonomer unit may be one type or two or more types.
  • perhalogenated fluorine-containing ethylenic polymer examples include PCTFE.
  • the PAVE unit may be one type or two or more types. It does not specifically limit as said copolymer (III), For example, it can use 1 type or in combination of 2 or more types.
  • the laminate of the present invention has a layer (F) made of a non-perhalogenated fluorine-containing ethylenic polymer other than the fluorine-containing copolymer of the present invention, the laminate and the melt processability are excellent.
  • non-perhalogenated fluorine-containing ethylenic polymer examples include (IV) a copolymer comprising at least a TFE unit and an Et unit.
  • non-perhalogenated fluorine-containing ethylenic polymer examples include (V) a copolymer composed of at least a VdF unit.
  • Examples of the copolymer (IV) include a polymer comprising 20 mol% or more of TFE units. Examples of such a copolymer include 20 to 80 mol% of TFE units and 20 to 80 mol% of Et units. And a copolymer composed of 0 to 60 mol% of a unit derived from a monomer copolymerizable therewith.
  • a fluoroolefin represented by the following general formula (ix) CF 2 CF-ORf 8 (ix) (Wherein Rf 8 represents a perfluoroalkyl group having 1 to 5 carbon atoms), and one or more of these may be used.
  • copolymer (IV) among them, a fluoroolefin unit derived from the fluoroolefin represented by the general formula (viii) and / or a PAVE unit derived from PAVE represented by the general formula (ix)
  • a copolymer comprising a total of 0 to 60 mol%, TFE units 20 to 80 mol%, and Et units 20 to 80 mol% is preferred.
  • Examples of such a copolymer include (IV-I) 30 to 70 mol% of TFE units, 20 to 55 mol% of Et units, and fluoroolefin units derived from the fluoroolefin represented by the above general formula (viii).
  • Polymer, (IV-III) a copolymer comprising 30 to 70 mol% of TFE units, 20 to 55 mol% of Et units, and 0 to 10 mol% of PAVE units derived from PAVE represented by the general formula (ix), Etc.
  • the unit derived from the copolymerizable monomer constituting the copolymer (IV) is a fluoroolefin unit derived from the fluoroolefin represented by the general formula (viii) and / or the general formula (ix).
  • the copolymer (IV) may or may not be contained, including the case where it is a PAVE unit derived from PAVE represented by:
  • Examples of the copolymer (V) include polymers composed of 10 mol% or more of VdF units. Examples of such copolymers include 15 to 100 mol% of VdF units and 0 to 85 mol% of TFE units. In addition, a copolymer comprising a total of 0 to 30 mol% of HFP units and / or trichlorofluoroethylene units is preferred.
  • Examples of the copolymer (V) include (VI) vinylidene fluoride homopolymer (sometimes referred to as polyvinylidene fluoride [PVdF] in this specification), (V-II) a copolymer comprising 30 to 99 mol% of VdF units and 1 to 70 mol% of TFE units, (V-III) a copolymer comprising 10 to 90 mol% of VdF units, 0 to 90 mol% of TFE units, and 0 to 30 mol% of trichlorofluoroethylene units, (V-IV) a copolymer comprising 10 to 90 mol% of VdF units, 0 to 90 mol% of TFE units, and 0 to 30 mol% of HFP units, Etc.
  • V-III a copolymer comprising 10 to 90 mol% of VdF units, 0 to 90 mol% of TFE units, and 0 to 30 mol% of HFP units
  • the copolymer (V-IV) is preferably a copolymer comprising 15 to 84 mol% of VdF units, 15 to 84 mol% of TFE units, and 0 to 30 mol% of HFP units.
  • any of the copolymer units that may be 0 mol% in various copolymers may be contained in the copolymer. It does not have to be included.
  • the fluorine-containing ethylenic polymer constituting the layer (J) preferably has an MFR of 0.1 to 70 (g / 10 minutes).
  • MFR 0.1 to 70
  • the more preferable lower limit of the MFR is 1 (g / 10 minutes), and the more preferable upper limit is 50 (g / 10 minutes).
  • fluorine-containing ethylenic polymer it can use in combination of 2 or more type.
  • two or more types are used in combination, by selecting and combining fluorine-containing ethylenic polymers having good compatibility with each other, mixing by melting can form a layer without a clear boundary, and delamination does not occur ,preferable.
  • the mixing ratio or the layer thickness ratio can be adjusted so that the layer as a whole has a preferable fuel permeability coefficient and a preferable melting point.
  • the layer (J) composed of the above-mentioned fluorine-containing ethylenic polymer is formed when two or more of the above-mentioned fluorine-containing ethylenic polymers are used, or after the polymer alloy is adjusted by mixing each type of polymer used in advance. It may be what you did.
  • the fluorine-containing ethylenic polymer may have the above-described adhesive functional group at the main chain terminal or may be present at the side chain.
  • the ratio of the polymerized units in the fluorine-containing ethylenic polymer is a value obtained by appropriately combining 19 F-NMR analysis, infrared spectrophotometer [IR], elemental analysis, and fluorescent X-ray analysis depending on the type of monomer. .
  • the melting point of the fluorine-containing ethylenic polymer is preferably 130 to 280 ° C., and more preferably 150 to 280 ° C. from the viewpoint of facilitating coextrusion molding.
  • the fluorine-containing ethylenic polymer constituting the layer other than the layer having a wetted surface may be a polymer constituting either a resin or an elastomer, but preferably constitutes a resin.
  • the fluorine-containing ethylenic polymer can be obtained by a conventionally known polymerization method such as solution polymerization, emulsion polymerization, suspension polymerization or the like, but industrially, it is preferably obtained by suspension polymerization.
  • the fluorine-containing copolymer and the fluorine-containing ethylenic polymer of the present invention constituting each layer may be a mixture of a conductive filler.
  • a conductive filler By adding a conductive filler, accumulation of static electricity caused by friction between the fuel and the laminate of the present invention is prevented, and a fire or explosion that may occur due to electrostatic discharge, or a crack in the laminate of the present invention. It is possible to prevent perforation and fuel leakage caused thereby.
  • the conductive filler is not particularly limited, and examples thereof include conductive simple powders or conductive single fibers such as metals and carbons; powders of conductive compounds such as zinc oxide; surface conductive powders.
  • the conductive simple powder or conductive simple fiber is not particularly limited, and examples thereof include metal powder such as copper and nickel; metal fiber such as iron and stainless steel; carbon black, carbon fiber, and Japanese Patent Laid-Open No. 3-174018. Examples thereof include carbon fibrils, carbon nanotubes, and carbon nanohorns.
  • the surface conductive treatment powder is a powder obtained by conducting a conductive treatment on the surface of a nonconductive powder such as glass beads or titanium oxide.
  • the method for conducting the conductive treatment is not particularly limited, and examples thereof include metal sputtering and electroless plating.
  • carbon black is preferably used because it is advantageous from the viewpoint of economy.
  • the conductive filler When the conductive filler is blended with the polymer constituting each of the layers, it is preferable to prepare pellets in advance by melt-kneading.
  • the pellet heating conditions after melt-kneading at the time of pellet preparation are generally performed at a temperature not lower than the glass transition point of the polymer constituting each layer and lower than the melting point of the polymer constituting each layer. It is preferably performed at 200 ° C. for 1 to 48 hours.
  • the blending amount of the conductive filler is appropriately determined based on the kind of polymer, the conductive performance required for the laminate, the molding conditions, and the like, but it is 1 to 30 parts by mass with respect to 100 parts by mass of the polymer. Is preferred. A more preferred lower limit is 5 parts by mass, and a more preferred upper limit is 20 parts by mass.
  • the surface resistance value of the polymer blended with the conductive filler is preferably 1 ⁇ 10 0 to 1 ⁇ 10 9 ⁇ ⁇ cm.
  • a more preferred lower limit is 1 ⁇ 10 2 ⁇ ⁇ cm, and a more preferred upper limit is 1 ⁇ 10 8 ⁇ ⁇ cm.
  • the above-mentioned “surface resistance value of a polymer containing a conductive filler” refers to a pellet obtained by melting and kneading the conductive filler and polymer into a melt indexer, This is a value obtained by measuring the surface resistance value of an extruded strand obtained by heating at 200 to 400 ° C. in a kusa and extruding it using a battery-type insulation resistance meter.
  • the fluorine-containing copolymer and fluorine-containing ethylenic polymer of the present invention constituting each layer are, for example, a stabilizer such as a heat stabilizer and a reinforcing agent, in addition to the above conductive filler, within a range that does not impair the object of the present invention.
  • various additives such as a filler, an ultraviolet absorber, and a pigment may be added.
  • the polymer layer can be improved in properties such as thermal stability, surface hardness, abrasion resistance, chargeability, and weather resistance by such an additive.
  • the laminate of the present invention has a layer (K) made of a fluorine-free organic material.
  • the fluorine-free organic material is an organic material that does not contain a fluorine atom.
  • the fluorine-free organic material is preferably a resin that can be coextruded with a layer made of a fluorine-containing ethylenic polymer.
  • the fluorine-free organic material is preferably a resin made of a polymer having a high degree of crystallinity, and is a resin made of a polymer having a high degree of crystallinity and having a polar functional group and a large intermolecular force. Is more preferable.
  • the polar functional group is a functional group having polarity and capable of participating in adhesion between a layer made of a fluorine-free organic material and an adjacent layer.
  • the polar functional group may be the same functional group as the adhesive functional functional group described above as the fluorine-containing copolymer of the present invention, but may be a different functional group.
  • the polar functional group is not particularly limited and includes, for example, those described above as the adhesive functional group, cyano group, sulfide group, and the like. Among them, carbonyloxy group, cyano group, sulfide group, hydroxyl group are included. Preferably, a hydroxyl group is more preferable.
  • fluorine-free organic materials examples include polyamide resins, polyolefin resins, vinyl chloride resins, polyurethane resins, polyester resins, polyaramid resins, polyimide resins, polyamideimide resins, polyphenylene oxide resins, polyacetal resins, polycarbonate resins, acrylic resins.
  • structural member resin an ethylene / vinyl alcohol copolymer resin, polyphenylene sulfide resin, Butylene naphthalate resins, polybutylene terephthalate resins, polyphthalamide [PPA] high penetration resistance over performance for fuel or gas such as a resin (hereinafter. To permeation resistance resin) and the like.
  • the fluorine-free organic material is preferably at least one selected from the group consisting of polyamide resins and polyolefin resins.
  • the layered product of the present invention has excellent mechanical strength when it has the layer (A) made of the structural member resin, and it has resistance to permeation to the fuel when it has the layer (E) made of the permeation-resistant resin. It will be excellent.
  • the polyamide-based resin is composed of a polymer having an amide bond [—NH—C ( ⁇ O) —] as a repeating unit in the molecule.
  • polyamide resin a so-called nylon resin composed of a polymer in which an amide bond in a molecule is bonded to an aliphatic structure or an alicyclic structure, or a polymer in which an amide bond in a molecule is bonded to an aromatic structure Any of so-called aramid resins may be used.
  • the nylon resin is not particularly limited.
  • nylon 6 nylon 6/66
  • nylon 66/12 nylon 46, metaxylylenediamine / adipic acid
  • the aramid resin is not particularly limited, and examples thereof include polyparaphenylene terephthalamide and polymetaphenylene isophthalamide.
  • the polyamide-based resin may be composed of a polymer in which a structure having no amide bond as a repeating unit is block-copolymerized or graft-copolymerized in a part of the molecule.
  • polyamide resins include nylon elastomers such as nylon 6 / polyester copolymers, nylon 6 / polyether copolymers, nylon 12 / polyester copolymers, and nylon 12 / polyether copolymers. And the like.
  • These polyamide-based elastomers are obtained by block copolymerization of nylon oligomers and polyester oligomers via ester bonds, or by block copolymerization of nylon oligomers and polyether oligomers via ether bonds. It is obtained.
  • polyester oligomer examples include polycaprolactone and polyethylene adipate
  • polyether oligomer examples include polyethylene glycol, polypropylene glycol, and polytetramethylene glycol.
  • polyamide elastomer nylon 6 / polytetramethylene glycol copolymer and nylon 12 / polytetramethylene glycol copolymer are preferable.
  • nylon 6 nylon 66, nylon 11, nylon 12, nylon 610, nylon 612, nylon 6/66, nylon 66/12, nylon 6 / polyester copolymer, nylon 6 / polyether copolymer, nylon 12 / polyester copolymer, nylon 12 / polyether copolymer, and the like are preferable. Two or more kinds may be used in combination.
  • the polyolefin resin is a resin having a polymer unit derived from a vinyl group-containing monomer having no fluorine atom. Although it does not specifically limit as said vinyl-group containing monomer which does not have a fluorine atom, What has the polar functional group mentioned above is preferable in the use for which interlayer adhesiveness is calculated
  • the polyolefin-based resin is not particularly limited, and examples thereof include polyolefins such as polyethylene, polypropylene, and high-density polyolefin, modified polyolefins obtained by modifying the polyolefin with maleic anhydride, epoxy-modified polyolefins, amine-modified polyolefins, and the like. .
  • the fluorine-free organic material is formed by adding various additives such as a stabilizer such as a heat stabilizer, a reinforcing agent, a filler, an ultraviolet absorber, and a pigment, as long as the object of the present invention is not impaired. It may be.
  • the fluorine-free organic material can be improved in properties such as thermal stability, surface hardness, abrasion resistance, charging property, weather resistance and the like by such additives.
  • the amine value of the polyamide resin is preferably 10 to 80 (equivalent / 10 6 g).
  • the interlayer adhesion can be excellent even when co-extrusion is performed at a relatively low temperature. If the amine value is less than 10 (equivalent / 10 6 g), the interlayer adhesion may be insufficient. If it exceeds 80 (equivalent / 10 6 g), the resulting laminate is insufficient in mechanical strength, tends to be colored during storage, and has poor handling properties.
  • a preferred lower limit is 15 (equivalent / 10 6 g), a preferred upper limit is 60 (equivalent / 10 6 g), and a more preferred upper limit is 50 (equivalent / 10 6 g).
  • the amine value is a value obtained by dissolving 1 g of a polyamide-based resin in 50 ml of m-cresol and titrating with 1/10 N p-toluenesulfonic acid aqueous solution and using thymol blue as an indicator. Unless otherwise specified, it means the amine value of the polyamide-based resin before lamination. Of the number of amino groups in the polyamide-based resin before lamination, a part is considered to be consumed for adhesion to the adjacent layer, but the number is very small with respect to the entire layer.
  • the amine value of the polyamide-based resin before the process and the amine value of the laminate of the present invention are substantially the same.
  • the laminate of the present invention may have an adhesive layer (S), and when having an adhesive layer (S), the adhesion between the layers is improved.
  • Examples of the adhesive layer (S) include adhesive functional group-containing TFE / Et / HFP copolymer, functional group-modified polyethylene, and high amine value nylon, but depending on the physical properties of the two layers to be bonded. You can choose as appropriate.
  • At least one layer preferably has a fuel permeability coefficient of 0.5 g ⁇ mm / m 2 / day or less.
  • At least one of the layer (C) made of the fluorine-containing copolymer of the present invention and the layer (J) made of the fluorine-containing ethylenic polymer has a fuel permeability coefficient of 0.4 g ⁇ mm / m 2 / day or less. Those are preferred.
  • the fuel permeability coefficient is obtained from a resin to be measured in a fuel permeability coefficient measuring cup charged with an isooctane / toluene / ethanol mixed solvent in which isooctane, toluene and ethanol are mixed at a volume ratio of 45:45:10. It is a value calculated from the change in mass measured at 60 ° C.
  • the laminate of the present invention preferably has a fuel permeation rate of 2.5 g / m 2 / day or less.
  • the laminated body of the present invention has a high fuel permeation resistance because the fuel permeation rate is within the above-mentioned range. If the fuel permeation rate is within the above range, the lower limit can be set to 0.1 g / m 2 / day, for example. A more preferable upper limit of the fuel permeation rate is 2.0 g / m 2 / day, and a further preferable upper limit is 1.0 g / m 2 / day.
  • the fuel permeation rate is a fuel permeation mass per unit area per day, and an isooctane / toluene / ethanol mixed solvent [CE10] obtained by mixing isooctane, toluene and ethanol in a volume ratio of 45:45:10. Is a value obtained by measuring the permeation amount at 60 ° C. according to SAE J 1737.
  • the layer (J) made of the fluorine-containing ethylenic polymer constituting the laminate of the present invention may be a single layer made of one type of fluorine-containing ethylenic polymer, or one or two or more types of containing layers. It may have a multilayer structure of two or more layers made of a fluoroethylenic polymer. For example, two layers of a layer (P) and a layer (F) may be used. Examples of the laminate of the present invention include a laminate of 2 to 5 layers.
  • layer (C) / layer (P), layer (P) / layer (C), layer (C) / layer (A), etc. in order from the liquid contact side. Is mentioned.
  • the layered structure of layer (C) / layer (P) and layer (P) / layer (C) is suitable as a chemical solution tube used in the semiconductor manufacturing field, and layer (C) / layer (A)
  • This laminated structure is suitable as a fuel tube, and can also be used as a brake hose by attaching a metal blade.
  • the layered structure of layer (P) / layer (C) / layer (A) and layer (C) / layer (E) / layer (A) is suitable as a fuel tube or a chemical tube that requires chemical resistance. It is.
  • the layer (P) / layer (C) / layer (P) layered structure is excellent in solvent resistance and is suitable as an inner tube of an in-tank tube or underground tube.
  • the laminated structure (C) is suitable as a fuel tube or a chemical solution tube because it can prevent water absorption of the non-fluororesin and improve the environmental resistance.
  • These laminates having a four-layer structure are suitable as a fuel tube or a chemical solution tube.
  • the laminated structure of layer (C) / layer (S) / layer (E) / layer (S) / layer (A) is suitable as a fuel tube or a chemical liquid tube
  • layer (P) / layer (C ) / Layer (A) / layer (C) / layer (P) is suitable as an inner tube of an underground tube
  • the layered structure of / layer (C) is suitable as a chemical solution tube and a fuel tube because it has high chemical resistance and high permeation resistance.
  • the layer (P), the layer (C), the layer (A), the layer (E) and the layer (S) may each be a single layer or have a multilayer structure of two or more layers. Also good.
  • the layer (P) has a multilayer structure of two or more layers, a layer comprising a fluorine-containing ethylenic polymer blended with the above-mentioned conductive filler, and a fluorine-containing ethylenic polymer composition not containing the conductive filler
  • the other layers other than the said layer (P), layer (C), layer (A), layer (E), and layer (S) may also be included.
  • the other layer is not particularly limited, and examples thereof include a protective layer, a colored layer, a marking layer, a dielectric layer for preventing static electricity, and the like in the laminate, and the protective layer, the dielectric layer, etc. In view of the function, the outermost layer in the laminate is preferable.
  • the laminate of the present invention is a laminate having a layer (C) made of the fluorine-containing copolymer of the present invention and a layer (K) made of a fluorine-free organic material.
  • each of the layer (C) and the layer (K) may be a single layer or may have a multilayer structure of two or more layers.
  • the layer (K) has a multilayer structure, for example, the layer (A) and the layer (E) may be stacked.
  • the laminated body of this invention has a layer (C) and a layer (K), and also may have another layer.
  • the other layer include a layer made of an elastomer and the like, which protects the laminated body from vibrations and impacts and imparts flexibility.
  • the elastomer include thermoplastic elastomers. For example, at least one selected from the group consisting of polyamide elastomers, polyurethane elastomers, polyester elastomers, polyolefin elastomers, styrene / butadiene elastomers, and vinyl chloride elastomers is selected. Can do.
  • the laminate of the present invention also comprises a layer (C) comprising the fluorine-containing copolymer of the present invention, a layer (K) comprising a fluorine-free organic material, and a layer (J) further comprising a fluorine-containing ethylenic polymer. It is preferable that the laminate has
  • the laminate of the present invention may have a layer (D) made of a fluorine-free organic material (Q) between the layer (C) and the layer (J).
  • the fluorine-free organic material (Q) in the layer (D) may be the same type as or different from the fluorine-free organic material in the layer (K), but the same type. Is preferable, and a polyamide-based resin is more preferable.
  • multilayer coextrusion molding can be easily applied, the line speed can be increased, and the moldability can be improved. Even when the layer (J) is a non-perfluoro fluororesin such as the above-mentioned copolymer (IV), multilayer coextrusion molding is easy and the line speed can be increased.
  • Examples of the laminate of the present invention include a laminate in which a layer (J), a layer (C), and a layer (K) are laminated in this order, a layer (J), a layer (C), a layer (K), and a layer.
  • (J) Laminate in which layers are laminated in this order Layer (J), Layer (D), Layer (C) and Laminate in which layers (K) are laminated in this order, (J), Layer (C) , Layer (K), layer (C) and layer (J) are laminated in this order, layer (J), layer (D), layer (C), layer (K) and layer (J).
  • Examples include a laminated body laminated in this order.
  • the layer (J), the layer (C), the layer (K), and the layer (D) may each be a single layer or may have a multilayer structure of two or more layers.
  • the layer (J) When the layer (J) has a multilayer structure of two or more layers, the layer (J) includes, for example, a layer made of a fluorine-containing ethylenic polymer blended with the above-described conductive filler, and a fluorine-containing layer that does not contain a conductive filler. And a layer made of an ethylenic polymer.
  • the layer (D) C) and the layer (J) are preferably in contact with each other, and the layer (C) is preferably in contact with the layer (K).
  • the boundary between the layers in contact with each other is not necessarily clear, and the layer structure has a concentration gradient that penetrates from the surface where the molecular chains of the polymers constituting each layer are in contact with each other. May be.
  • the layer (C) is preferably in contact with the layer (J) and the layer (K).
  • the fluorine-containing copolymer of the present invention in the layer (C) has the above-mentioned adhesive functional group
  • the adhesion with the layer (J) and the layer (K) can be made excellent.
  • the compatibility between the fluorine-containing copolymer of the present invention and the fluorine-containing ethylenic polymer can be obtained without introducing the adhesive functional group.
  • the fluorine-containing copolymer of the present invention in the layer (C) has an adhesive functional functional group in terms of improving the adhesiveness.
  • the fluorine-containing copolymer of the present invention having a functional group is used, the fluorine-containing ethylenic polymer in the layer (J) exhibits sufficient interlayer adhesion even if it does not contain an adhesive functional functional group. be able to.
  • the layers constituting the laminate are co-extruded in a molten state so that the layers are thermally fused (melt-bonded) to form a multilayer structure in one step.
  • the method (coextrusion molding) which forms is mentioned.
  • a method of laminating each layer separately produced by an extruder and laminating the layers by heat fusion (3) producing in advance A method of forming a laminate by extruding a molten resin on the surface of the layer by means of an extruder, and (4) a polymer constituting the layer adjacent to the layer is statically formed on the surface of the layer prepared in advance.
  • the method include forming a layer by heating and melting the polymer used for coating by heating the obtained coated product as a whole or from the coated side after electrocoating.
  • each cylindrical layer is separately formed by an extruder, and the inner layer is formed on the layer.
  • a method of coating the contacting layer with a heat shrinkable tube a method corresponding to the above (3)
  • (4a) a polymer constituting the inner layer is electrostatically coated on the inner side of the layer in contact with the layer, and then the resulting coated product is heated.
  • a method of heating and melting the polymer constituting the inner layer by inserting a rod-shaped heating device inside the cylindrical coated article and heating from the inside by putting it in an oven and heating it as a whole , Etc.
  • each layer constituting the laminate of the present invention is generally formed by coextrusion molding (1).
  • coextrusion molding include conventionally known multilayer co-extrusion manufacturing methods such as a multi-manifold method and a feed block method.
  • the contact surface of each layer with another layer may be surface-treated for the purpose of improving interlayer adhesion.
  • surface treatment include etching treatment such as sodium etching treatment; corona treatment; plasma treatment such as low temperature plasma treatment.
  • the molding method a method of performing surface treatment in the above methods (1) and (2) and (3) is preferable, and the method (1) is most preferable.
  • the melting point of the outer layer material does not necessarily need to be higher than the melting point of the inner layer material, and the melting point of the inner layer material may be higher by 100 ° C. or more than the melting point of the outer layer material. In that case, it is preferable to have a heating part inside.
  • the laminate of the present invention can have various shapes such as a film shape, a sheet shape, a tube shape, a hose shape, a bottle shape, and a tank shape.
  • the film shape, sheet shape, tube shape, and hose shape may be a corrugated shape, a corrugated shape, a convoluted shape, or the like.
  • the laminate of the present invention is a tube or a hose, by having a region where a plurality of such folds are arranged in an annular shape, one side of the annular shape is compressed in that region, and the other side is outward Since it can stretch, it can be easily bent at any angle without stress fatigue or delamination.
  • the method for forming the corrugated region is not limited, but it can be easily formed by first forming a straight tube and then performing molding or the like to obtain a predetermined corrugated shape.
  • the laminated body of this invention can be used for the following uses.
  • fuel tubes such as automotive fuel tubes or automotive fuel hoses, or fuel Hose, solvent tube or solvent hose, paint tube or paint hose (including printer use
  • the laminate of the present invention can be suitably used for applications that come into contact with flammable liquids such as tubes, hoses, tanks, etc., and in this case, it is preferable that the portion in contact with the liquid is the layer (C), When a layer (J) exists, it is preferable that it is a layer (J). Since the portion in contact with the liquid is usually an inner layer, when the layer (J) is an inner layer, the layer (C) is an intermediate layer and the layer (K) is an outer layer.
  • the “inner layer”, “intermediate layer”, and “outer layer” are any of the layer (J) and the layer (K) in the shape with the concept of the inside / outside of tubes, hoses, tanks, etc.
  • the “intermediate layer” is a concept indicating a layer between the inner layer and the outer layer.
  • the laminate of the present invention When the laminate of the present invention is in contact with a flammable liquid such as gasoline, the flammable liquid is liable to accumulate and static charges are likely to accumulate. However, in order to avoid igniting by this static charge, the layer in contact with the liquid is electrically conductive. It is preferable to contain a functional filler.
  • the layer (J) may be a layer made of a fluorine-containing ethylenic polymer in which the innermost layer is blended with a conductive filler,
  • a multilayer structure having the innermost layer and a layer made of a fluorine-containing ethylenic polymer not containing a conductive filler outside the innermost layer may be used.
  • the latter innermost layer may be in contact with the layer made of the fluorine-containing ethylenic polymer composition not containing the conductive filler.
  • the laminated body of this invention can improve chemical-solution resistance further by making an innermost layer and an outermost layer into a layer (J).
  • the above laminate as a fuel tube is also one aspect of the present invention.
  • the laminate of the present invention since the laminate of the present invention has excellent fuel permeation resistance and fuel crack resistance, it can be suitably used as a laminate for a fuel tube used for a fuel tube.
  • the preferred layer structure of the laminate of the present invention is not particularly limited, but is particularly suitable as a fuel tube, for example, Layer 1: Layer made of the fluorine-containing copolymer of the present invention having an adhesive functional functional group
  • Layer 2 Laminated body made of a layer made of polyamide resin
  • Layer 1 Layer made of the fluorine-containing copolymer of the present invention having an adhesive functional functional group
  • Layer 2 Layer made of the fluorine-containing copolymer of the present invention having an adhesive functional functional group
  • Layer 3 Made of a polyamide-based resin A laminate comprising layers
  • Layer 2 Resin layer made of ethylene / vinyl alcohol copolymer
  • Layer 3 Layer layer made of modified polyolefin resin 4: High-density polyolefin A laminate comprising a resin layer; Etc.
  • Layer 1 Layer made of fluorine-containing ethylenic polymer (may be blended with conductive filler)
  • Layer 2 Layer made of fluorine-containing copolymer of the present invention
  • Layer 3 Layer made of polyamide resin And the laminated body
  • Layer 1 Layer made of copolymer (III) (may be blended with conductive filler)
  • Layer 2 Layer made of fluorine-containing copolymer of the present invention having an adhesive functional group 3: The laminated body which consists of a layer which consists of polyamide-type resin is mentioned.
  • Layer 1 Layer made of fluorine-containing ethylenic polymer (may be blended with conductive filler)
  • Layer 2 Layer made of polyamide resin
  • Layer 3 Layer layer made of the fluorine-containing copolymer of the present invention 4: A laminate composed of a layer made of polyamide-based resin can be mentioned, among others, Layer 1: Layer made of copolymer (IV) (may be blended with conductive filler)
  • Layer 2 Layer made of polyamide-based resin
  • Layer 3 Fluorine-containing fluorine-containing material having an adhesive functional group
  • Layer layer 4 made of copolymer A laminate made of a layer made of polyamide resin is preferred, Layer 1: Layer made of copolymer (IV-II) (may be blended with conductive filler)
  • Layer 2 Layer made of polyamide resin
  • Layer 3 Adhesive functional functional group
  • Layer layer 4 made of fluorine-containing copolymer A laminate made of a layer made of polyamide-based resin may be mentioned.
  • each layer of the tube for fuel tubes mentioned above is laminated
  • Example 1 51.5 kg of demineralized pure water was placed in a jacketed stirring polymerization tank capable of containing 174 kg of water, the interior space was sufficiently replaced with pure nitrogen gas, and then the nitrogen gas was removed in vacuum. Next, 30.5 kg of octafluorocyclobutane, 10.2 kg of hexafluoropropylene [HFP], 0.9 kg of chlorotrifluoroethylene [CTFE], 4.5 kg of tetrafluoroethylene [TFE], perfluoro (propyl vinyl ether) [PPVE] 2. 8 kg was injected. The temperature was adjusted to 35 ° C. and stirring was started.
  • Polymerization was initiated by adding 0.37 kg of a 50 mass% methanol solution of di-n-propyl peroxydicarbonate [NPP] and 0.30 kg of methanol [MeOH] as polymerization initiators.
  • NPP di-n-propyl peroxydicarbonate
  • MeOH methanol
  • a mixed monomer prepared in the same composition as the desired copolymer composition is polymerized while being additionally charged so that the pressure in the tank is maintained at 0.78 MPa, and then the residual gas in the tank is exhausted.
  • the produced polymer was taken out, washed with demineralized pure water, and dried to obtain 18.3 kg of a fluorine-containing copolymer of granular powder.
  • melt kneading was performed at a cylinder temperature of 290 ° C. using a ⁇ 50 mm single screw extruder to obtain pellets.
  • the obtained pellet-like fluorine-containing copolymer was heated at 205 ° C. for 8 hours.
  • Example 2 Initial monomer and initiator charge amounts were 10.2 kg of hexafluoropropylene [HFP], 0.9 kg of chlorotrifluoroethylene [CTFE], 4.5 kg of tetrafluoroethylene [TFE], perfluoro (propyl vinyl ether) [PPVE] 2 Polymerization was carried out in the same manner as in Example 1 except that 0.26 kg of a 50 mass% methanol solution of NPP was changed to 0.28 kg to obtain 18.3 kg of a fluorine-containing copolymer in the form of granular powder. Moreover, the same melt kneading and heating as in Example 1 were performed to obtain pellets.
  • HFP hexafluoropropylene
  • CTFE chlorotrifluoroethylene
  • TFE tetrafluoroethylene
  • PPVE perfluoro (propyl vinyl ether)
  • Example 3 Initial monomer and initiator charge amounts were 10.2 kg of hexafluoropropylene [HFP], 0.6 kg of chlorotrifluoroethylene [CTFE], 4.5 kg of tetrafluoroethylene [TFE], perfluoro (propyl vinyl ether) [PPVE] 2 Polymerization was carried out in the same manner as in Example 1 except that 0.48 kg of a 50 mass% methanol solution of NPP was changed to 0.48 kg to obtain 18.3 kg of a fluorine-containing copolymer in the form of granular powder. Moreover, the same melt kneading and heating as in Example 1 were performed to obtain pellets.
  • HFP hexafluoropropylene
  • CTFE chlorotrifluoroethylene
  • TFE tetrafluoroethylene
  • PPVE perfluoro (propyl vinyl ether)
  • Example 4 Initial monomer and initiator charge amounts were 10.2 kg of hexafluoropropylene [HFP], 0.6 kg of chlorotrifluoroethylene [CTFE], 4.5 kg of tetrafluoroethylene [TFE], perfluoro (propyl vinyl ether) [PPVE] 2 Polymerization was carried out in the same manner as in Example 1 except that 0.87 kg of a 50 wt% methanol solution of NPP was changed to 0.37 kg to obtain 18.3 kg of a fluorine-containing copolymer in the form of granular powder. Moreover, the same melt kneading and heating as in Example 1 were performed to obtain pellets.
  • HFP hexafluoropropylene
  • CTFE chlorotrifluoroethylene
  • TFE tetrafluoroethylene
  • PPVE perfluoro (propyl vinyl ether)
  • Example 5 Initial monomer and initiator charge amounts were 10.2 kg of hexafluoropropylene [HFP], 0.9 kg of chlorotrifluoroethylene [CTFE], 4.5 kg of tetrafluoroethylene [TFE], perfluoro (propyl vinyl ether) [PPVE] 2 Polymerization was carried out in the same manner as in Example 1 except that 0.47 kg of a 50 mass% methanol solution of NPP was changed to 0.47 kg to obtain 18.3 kg of a fluorine-containing copolymer as granular powder. Moreover, the same melt kneading and heating as in Example 1 were performed to obtain pellets.
  • HFP hexafluoropropylene
  • CTFE chlorotrifluoroethylene
  • TFE tetrafluoroethylene
  • PPVE perfluoro (propyl vinyl ether)
  • Example 6 Initial monomer and initiator charge amounts were 10.2 kg of hexafluoropropylene [HFP], 3.5 kg of chlorotrifluoroethylene [CTFE], 4.5 kg of tetrafluoroethylene [TFE], perfluoro (propyl vinyl ether) [PPVE] 2 Polymerization was carried out in the same manner as in Example 1 except that 8.7 kg, 0.25 kg of a 50 mass% methanol solution of NPP, and the pressure in the tank was 0.88 MPa, to obtain 18.3 kg of a fluorine-containing copolymer of granular powder. It was. Next, melt kneading was performed at a cylinder temperature of 250 ° C. using a ⁇ 50 mm single screw extruder to obtain pellets. Subsequently, the obtained pellet-like fluorine-containing copolymer was heated at 170 ° C. for 8 hours.
  • HFP hexafluoropropylene
  • CTFE chlorotrifluoroethylene
  • Comparative Example 1 51.5 kg of demineralized pure water was placed in a jacketed stirring polymerization tank capable of containing 174 kg of water, the interior space was sufficiently replaced with pure nitrogen gas, and then the nitrogen gas was removed in vacuum. Next, 40.6 kg of octafluorocyclobutane, 1.3 kg of chlorotrifluoroethylene [CTFE], 4.5 kg of tetrafluoroethylene [TFE], and 2.8 kg of perfluoro (propyl vinyl ether) [PPVE] were injected. 0.084 kg of n-propyl alcohol [PrOH] was added as a chain transfer agent, the temperature was adjusted to 35 ° C., and stirring was started.
  • CTFE chlorotrifluoroethylene
  • TFE tetrafluoroethylene
  • PPVE perfluoro (propyl vinyl ether)
  • Comparative Example 2 Initial monomer and chain transfer agent amount: chlorotrifluoroethylene [CTFE] 1.3 kg, tetrafluoroethylene [TFE] 4.5 kg, perfluoro (propyl vinyl ether) [PPVE] 2.8 kg, [PrOH Polymerization was carried out in the same manner as in Comparative Example 1 except that 0 kg and a 50 wt% methanol solution of NPP was changed to 0.33 kg to obtain 18.3 kg of a fluorine-containing copolymer in the form of granular powder. Moreover, the same melt kneading and heating as in Comparative Example 1 were performed to obtain pellets.
  • CTFE chlorotrifluoroethylene
  • TFE tetrafluoroethylene
  • PPVE perfluoro (propyl vinyl ether)
  • PPVE perfluoro (propyl vinyl ether)
  • [PrOH Polymerization was carried out in the same manner as in Comparative Example 1 except that 0 kg and a 50 w
  • Comparative Example 3 51.5 kg of demineralized pure water was placed in a jacketed stirring polymerization tank capable of containing 174 kg of water, the interior space was sufficiently replaced with pure nitrogen gas, and then the nitrogen gas was removed in vacuum. Next, 40.6 kg of octafluorocyclobutane, 2.0 kg of chlorotrifluoroethylene [CTFE], 6.6 kg of tetrafluoroethylene [TFE], and 0.06 kg of (perfluorohexyl) ethylene [PFHE] were injected. The temperature was adjusted to 35 ° C. and stirring was started.
  • Comparative Example 4 Without using octafluorocyclobutane and perfluoro (propyl vinyl ether) [PPVE], chlorotrifluoroethylene [CTFE] 1.7 kg, tetrafluoroethylene [TFE] 8.9 kg, hexafluoropropylene [HFP] 88.0 kg Otherwise, polymerization was carried out in the same manner as in Comparative Example 1 to obtain 11.2 kg of a granular powdery fluorinated copolymer. Next, melt kneading was performed at a cylinder temperature of 270 ° C. using a ⁇ 50 mm single screw extruder to obtain pellets. Subsequently, the obtained pellet-like fluorine-containing copolymer was heated at 185 ° C. for 8 hours.
  • CTFE chlorotrifluoroethylene
  • TFE tetrafluoroethylene
  • HFP hexafluoropropylene
  • the infrared absorption spectrum analysis was scanned 40 times using a Perkin-Elmer FT-IR spectrometer 1760X (manufactured by Perkin Elmer). The obtained IR spectrum was analyzed using Perkin-Elmer Spectrum for windows Ver. The baseline was automatically determined using 1.4C, and the absorbance of the peak at 1817 cm ⁇ 1 was measured. The film thickness was measured using a micrometer.
  • melt flow rate (MFR) of fluororesin Using a melt indexer (manufactured by Toyo Seiki Seisakusho Co., Ltd.) at a measurement temperature of 297 ° C., a unit time from a nozzle having an inner diameter of 2 mm and a length of 8 mm under a load of 5 kg. The mass (g) of the polymer flowing out per 10 minutes was measured.
  • the outer layer is polyamide 12 (trade name: Vestamid X7297, manufactured by Degussa Huls AG), and the inner layer is an example and Two types of two-layered tubes having an outer diameter of 8 mm and an inner diameter of 6 mm were formed by supplying them to two extruders so as to be the respective fluorinated copolymers of Comparative Examples.
  • the moldability and interlayer adhesive strength were measured with the following method. The evaluation results are shown in Table 3.
  • the fluorine-containing copolymer of the present invention can be suitably used for, for example, an automobile fuel tube that requires high fuel permeation resistance and fuel crack resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Laminated Bodies (AREA)

Abstract

Disclosed is a fluorine-containing copolymer having fuel crack resistance and fuel permeation resistance. In particular, the copolymer contains polymerization units derived from chlorotrifluoroethylene, polymerization units derived from tetrafluoroethylene, polymerization units derived from a monomer (A), and polymerization units derived from a monomer (B), wherein the total amount of the polymerization units derived from chlorotrifluoroethylene and the polymerization units derived from tetrafluoroethylene makes up 80.0-99.8 mol%, the polymerization units derived from the monomer (A) make up 19.0-0.1 mol%, and polymerization units derived from the monomer (B) make up 10.0-0.1 mol%. The monomers (A) are monomers of at least one kind selected from a group comprising fluoroolefins represented by formula (i) CX3X4 = CX1(CF2)nX2 (i) and perfluoro (alkyl vinyl ethers) represented by formula (ii) CF2 = CF-ORf1 (ii), and the monomers (B) are monomers of at least one kind selected from a group comprising fluoroolefins represented by formula (iii) CX3X4 = CX1(CF2)mX2 (iii) and perfluoro (alkyl vinyl ethers) represented by formula (iv) CF2 = CF-ORf2 (iv).

Description

含フッ素共重合体Fluorine-containing copolymer
本発明は、含フッ素共重合体に関する。 The present invention relates to a fluorine-containing copolymer.
ガソリン等の燃料移送配管材には、加工性、防錆性、軽量化、経済性等の点からフッ素樹脂が用いられており、このフッ素樹脂には耐燃料クラック性及び耐燃料透過性が求められる。 Fluororesin is used for fuel transfer piping materials such as gasoline from the viewpoints of processability, rust prevention, weight reduction, economy, etc., and this fluororesin requires fuel crack resistance and fuel permeation resistance. It is done.
耐ストレスクラック性と耐薬品性と耐熱性とを具備した材料として、特許文献1では、クロロトリフルオロエチレン及びテトラフルオロエチレンと、パーフルオロ(プロピルビニルエーテル)等とを共重合したクロロトリフルオロエチレン共重合体が提案されている。 As a material having stress crack resistance, chemical resistance, and heat resistance, Patent Document 1 discloses a chlorotrifluoroethylene copolymer obtained by copolymerizing chlorotrifluoroethylene and tetrafluoroethylene with perfluoro (propyl vinyl ether) or the like. Polymers have been proposed.
国際公開第2005/100420号パンフレットInternational Publication No. 2005/100420 Pamphlet
しかしながら、従来のフッ素樹脂では、燃料が接触した状態で応力が加わると、クラックが生じやすく、クラックを通って燃料が滲み出すという問題があった。 However, in the conventional fluororesin, when stress is applied in a state where the fuel is in contact, there is a problem that cracks are easily generated and the fuel oozes through the cracks.
本発明の目的は、上記現状に鑑み、耐燃料クラック性及び耐燃料透過性を有する含フッ素共重合体を提供することにある。 An object of the present invention is to provide a fluorine-containing copolymer having fuel crack resistance and fuel permeation resistance in view of the above situation.
本発明は、クロロトリフルオロエチレンに基づく重合単位、テトラフルオロエチレンに基づく重合単位、単量体(A)に基づく重合単位、及び、単量体(B)に基づく重合単位を含み、クロロトリフルオロエチレンに基づく重合単位及びテトラフルオロエチレンに基づく重合単位が合計で80.0~99.8モル%であり、単量体(A)に基づく重合単位が19.0~0.1モル%であり、単量体(B)に基づく重合単位が10.0~0.1モル%であり、単量体(A)は、一般式(i)
CX=CX(CF   (i)
(式中、X、X及びXは、同一若しくは異なって、水素原子又はフッ素原子を表し、Xは水素原子、フッ素原子又は塩素原子を表し、nは1又は2を表す。)で表されるフルオロオレフィン、及び、一般式(ii)
CF=CF-ORf   (ii)
(式中、Rfは炭素数が1又は2のパーフルオロアルキル基を表す。)で表されるパーフルオロ(アルキルビニルエーテル)からなる群より選択される少なくとも1種の単量体であり、単量体(B)は、一般式(iii)
CX=CX(CF   (iii)
(式中、X、X及びXは、同一若しくは異なって、水素原子又はフッ素原子を表し、Xは水素原子、フッ素原子又は塩素原子を表し、mは3~10の整数を表す。)で表されるフルオロオレフィン、及び、一般式(iv)
CF=CF-ORf   (iv)
(式中、Rfは炭素数が3~8のパーフルオロアルキル基を表す。)で表されるパーフルオロ(アルキルビニルエーテル)からなる群より選択される少なくとも1種の単量体であることを特徴とする含フッ素共重合体である。
The present invention includes a polymerized unit based on chlorotrifluoroethylene, a polymerized unit based on tetrafluoroethylene, a polymerized unit based on monomer (A), and a polymerized unit based on monomer (B). The total of the polymer units based on ethylene and the polymer units based on tetrafluoroethylene is 80.0 to 99.8 mol%, and the polymer units based on the monomer (A) is 19.0 to 0.1 mol%. The polymer unit based on the monomer (B) is 10.0 to 0.1 mol%, and the monomer (A) is represented by the general formula (i)
CX 3 X 4 = CX 1 (CF 2 ) n X 2 (i)
(Wherein X 1 , X 3 and X 4 are the same or different and each represents a hydrogen atom or a fluorine atom, X 2 represents a hydrogen atom, a fluorine atom or a chlorine atom, and n represents 1 or 2). And a general formula (ii)
CF 2 = CF-ORf 1 (ii)
(Wherein Rf 1 represents a perfluoroalkyl group having 1 or 2 carbon atoms), and is at least one monomer selected from the group consisting of perfluoro (alkyl vinyl ethers). The monomer (B) has the general formula (iii)
CX 3 X 4 = CX 1 (CF 2 ) m X 2 (iii)
(Wherein X 1 , X 3 and X 4 are the same or different and represent a hydrogen atom or a fluorine atom, X 2 represents a hydrogen atom, a fluorine atom or a chlorine atom, and m represents an integer of 3 to 10) .) And a general formula (iv)
CF 2 = CF-ORf 2 (iv)
(Wherein Rf 2 represents a perfluoroalkyl group having 3 to 8 carbon atoms) and is at least one monomer selected from the group consisting of perfluoro (alkyl vinyl ethers). It is a characteristic fluorine-containing copolymer.
本発明の含フッ素共重合体は、上記の構成を有するので、優れた耐燃料クラック性及び耐燃料透過性を有する。また、積層体に使用する場合には、他の材料との高い接着性を示す。 Since the fluorine-containing copolymer of the present invention has the above-described configuration, it has excellent fuel crack resistance and fuel permeation resistance. Moreover, when using for a laminated body, high adhesiveness with another material is shown.
以下に本発明を詳細に説明する。 The present invention is described in detail below.
本発明の含フッ素共重合体は、クロロトリフルオロエチレンに基づく重合単位〔CTFE単位〕、テトラフルオロエチレンに基づく重合単位〔TFE単位〕、単量体(A)に基づく重合単位〔単量体(A)単位〕、及び、単量体(B)に基づく重合単位〔単量体(B)単位〕を含む。 The fluorine-containing copolymer of the present invention comprises polymerized units based on chlorotrifluoroethylene [CTFE units], polymerized units based on tetrafluoroethylene [TFE units], polymerized units based on monomer (A) [monomer ( A) units] and polymerized units [monomer (B) units] based on the monomer (B).
本発明の含フッ素共重合体は、CTFE単位及びTFE単位に加え、特定の単量体(A)単位及び単量体(B)単位を特定量で含むものであるので、耐燃料クラック性が極めて高い。また、単量体(B)単位を含むことから、低融点化が可能で成形性に優れる。 The fluorine-containing copolymer of the present invention contains specific monomer (A) units and monomer (B) units in specific amounts in addition to CTFE units and TFE units, and therefore has extremely high fuel crack resistance. . Moreover, since it contains a monomer (B) unit, the melting point can be lowered and the moldability is excellent.
単量体(A)は、一般式(i)
CX=CX(CF   (i)
(式中、X、X及びXは、同一若しくは異なって、水素原子又はフッ素原子を表し、Xは水素原子、フッ素原子又は塩素原子を表し、nは1又は2である。)で表されるフルオロオレフィン、及び、一般式(ii)
CF=CF-ORf   (ii)
(式中、Rfは炭素数が1又は2のパーフルオロアルキル基を表す。)で表されるパーフルオロ(アルキルビニルエーテル)からなる群より選択される少なくとも1種の単量体である。
The monomer (A) has the general formula (i)
CX 3 X 4 = CX 1 (CF 2 ) n X 2 (i)
(Wherein X 1 , X 3 and X 4 are the same or different and represent a hydrogen atom or a fluorine atom, X 2 represents a hydrogen atom, a fluorine atom or a chlorine atom, and n is 1 or 2). And a general formula (ii)
CF 2 = CF-ORf 1 (ii)
(Wherein Rf 1 represents a perfluoroalkyl group having 1 or 2 carbon atoms) is at least one monomer selected from the group consisting of perfluoro (alkyl vinyl ethers).
単量体(A)は、炭素数が重要であり、式(i)におけるnが2を超えると充分な耐燃料クラック性が得られない。同様に、式(ii)におけるRfの炭素数が2を超えると充分な耐燃料クラック性が得られない。 The monomer (A) has an important carbon number, and if n in the formula (i) exceeds 2, sufficient fuel crack resistance cannot be obtained. Similarly, if the carbon number of Rf 1 in formula (ii) exceeds 2, sufficient fuel crack resistance cannot be obtained.
一般式(i)で表されるフルオロオレフィンとしては、2、3、3、3-テトラフルオロプロペン〔CH=CFCF〕、ヘキサフルオロプロピレン等が挙げられる。 Examples of the fluoroolefin represented by the general formula (i) include 2,3,3,3-tetrafluoropropene [CH 2 ═CFCF 3 ], hexafluoropropylene and the like.
一般式(ii)で表されるパーフルオロ(アルキルビニルエーテル)としては、パーフルオロ(メチルビニルエーテル)、パーフルオロ(エチルビニルエーテル)等が挙げられる。 Examples of the perfluoro (alkyl vinyl ether) represented by the general formula (ii) include perfluoro (methyl vinyl ether) and perfluoro (ethyl vinyl ether).
単量体(A)としては、ヘキサフルオロプロピレンであることが特に好ましい。 The monomer (A) is particularly preferably hexafluoropropylene.
単量体(B)は、一般式(iii)
CX=CX(CF   (iii)
(式中、X、X及びXは、同一若しくは異なって、水素原子又はフッ素原子を表し、Xは水素原子、フッ素原子又は塩素原子を表し、mは3~10の整数を表す。)で表されるフルオロオレフィン、及び、一般式(iv)
CF=CF-ORf   (iv)
(式中、Rfは炭素数が3~8のパーフルオロアルキル基を表す。)で表されるパーフルオロ(アルキルビニルエーテル)からなる群より選択される少なくとも1種の単量体である。
The monomer (B) has the general formula (iii)
CX 3 X 4 = CX 1 (CF 2 ) m X 2 (iii)
(Wherein X 1 , X 3 and X 4 are the same or different and represent a hydrogen atom or a fluorine atom, X 2 represents a hydrogen atom, a fluorine atom or a chlorine atom, and m represents an integer of 3 to 10) .) And a general formula (iv)
CF 2 = CF-ORf 2 (iv)
(Wherein Rf 2 represents a perfluoroalkyl group having 3 to 8 carbon atoms), and is at least one monomer selected from the group consisting of perfluoro (alkyl vinyl ethers).
式(iii)のXは、水素原子又はフッ素原子であることが好ましい。 X 2 in formula (iii) is preferably a hydrogen atom or a fluorine atom.
単量体(B)は、炭素数が重要であり、式(iii)におけるmが3未満であると充分な機械強度が得られない。同様に、式(iv)におけるRfの炭素数が3未満であると充分な機械強度が得られない。 The monomer (B) has an important carbon number, and if m in the formula (iii) is less than 3, sufficient mechanical strength cannot be obtained. Similarly, sufficient mechanical strength cannot be obtained when the number of carbon atoms in Rf 2 in formula (iv) is less than 3.
一般式(iii)で表されるフルオロオレフィンとしては、パーフルオロ(1,1,5-トリハイドロ-1-ペンテン)〔CH=CF(CFCFH〕、パーフルオロブチルエチレン〔CH=CH(CFCF〕、パーフルオロヘキシルエチレン〔CH=CH(CFCF〕、パーフルオロペンチルエチレン〔CH=CH(CFCF〕等が挙げられる。 Examples of the fluoroolefin represented by the general formula (iii) include perfluoro (1,1,5-trihydro-1-pentene) [CH 2 ═CF (CF 2 ) 2 CF 2 H], perfluorobutylethylene [ CH 2 = CH (CF 2) 3 CF 3 ], perfluorohexylethylene [CH 2 = CH (CF 2) 5 CF 3 ], perfluoro pentyl ethylene [CH 2 = CH (CF 2) 4 CF 3 ] and the like is Can be mentioned.
一般式(iv)で表されるパーフルオロ(アルキルビニルエーテル)としては、パーフルオロ(プロピルビニルエーテル)、パーフルオロ(ブチルビニルエーテル)等が挙げられる。 Examples of the perfluoro (alkyl vinyl ether) represented by the general formula (iv) include perfluoro (propyl vinyl ether) and perfluoro (butyl vinyl ether).
単量体(B)としては、パーフルオロ(プロピルビニルエーテル)であることが特に好ましい。 The monomer (B) is particularly preferably perfluoro (propyl vinyl ether).
本発明の含フッ素共重合体は、クロロトリフルオロエチレンに基づく重合単位及びテトラフルオロエチレンに基づく重合単位が合計で80.0~99.8モル%であり、単量体(A)に基づく重合単位が19.0~0.1モル%であり、単量体(B)に基づく重合単位が10.0~0.1モル%である(合計で100モル%)。また、クロロトリフルオロエチレンに基づく重合単位及びテトラフルオロエチレンに基づく重合単位が合計量の好ましい下限値は90.0モル%であり、92.5モル%であることがより好ましく、好ましい上限値は99.0モル%であり、98.0モル%であることがより好ましい。単量体(A)に基づく重合単位の好ましい下限値は0.5モル%であり、1.0モル%であることがより好ましく、好ましい上限値は9.5モル%であり、4.0モル%であることがより好ましい。単量体(B)に基づく重合単位の好ましい下限値は0.5モル%であり、1.0モル%であることがより好ましく、好ましい上限値は5モル%であり、3.5モル%であることがより好ましい。単量体(A)単位が多すぎると、耐燃料透過性、積層チューブでの他材との層間接着性、耐熱性、機械強度、生産性等に劣る傾向であり、単量体(A)単位が少なすぎると、充分な耐燃料クラック性が得られない。単量体(B)単位が多すぎると、耐燃料透過性、積層チューブでの他材との層間接着性、耐熱性、機械強度、生産性等に劣る傾向であり、単量体(B)単位が少なすぎると、充分な耐燃料クラック性が得られない。 The fluorine-containing copolymer of the present invention has a total of 80.0 to 99.8 mol% of polymerized units based on chlorotrifluoroethylene and polymerized units based on tetrafluoroethylene, and is polymerized based on the monomer (A). The unit is 19.0 to 0.1 mol%, and the polymerized unit based on the monomer (B) is 10.0 to 0.1 mol% (100 mol% in total). The preferred lower limit of the total amount of polymer units based on chlorotrifluoroethylene and polymer units based on tetrafluoroethylene is 90.0 mol%, more preferably 92.5 mol%, and the preferred upper limit is It is 99.0 mol%, and it is more preferable that it is 98.0 mol%. The preferable lower limit of the polymerized units based on the monomer (A) is 0.5 mol%, more preferably 1.0 mol%, and the preferable upper limit is 9.5 mol%, and 4.0. More preferably, it is mol%. The preferable lower limit of the polymerized units based on the monomer (B) is 0.5 mol%, more preferably 1.0 mol%, and the preferable upper limit is 5 mol%, 3.5 mol%. It is more preferable that When there are too many monomer (A) units, it tends to be inferior in fuel permeation resistance, interlayer adhesion with other materials in a laminated tube, heat resistance, mechanical strength, productivity, etc., monomer (A) When the unit is too small, sufficient fuel crack resistance cannot be obtained. If the monomer (B) unit is too much, the fuel permeation resistance, interlayer adhesion with other materials in the laminated tube, heat resistance, mechanical strength, productivity, etc. tend to be inferior, and the monomer (B) When the unit is too small, sufficient fuel crack resistance cannot be obtained.
本明細書において、各重合単位の含有量(モル%)は、クロロトリフルオロエチレンに基づく重合単位、テトラフルオロエチレンに基づく重合単位、単量体(A)に基づく重合単位、及び、単量体(B)に基づく重合単位の合計に対する含有量である。 In the present specification, the content (mol%) of each polymerized unit is a polymerized unit based on chlorotrifluoroethylene, a polymerized unit based on tetrafluoroethylene, a polymerized unit based on monomer (A), and a monomer. It is content with respect to the sum total of the polymerization unit based on (B).
本発明において、共重合体における各重合単位の割合は、19F-NMR等の分析により得られる値である。より具体的には、NMR分析、赤外分光光度計[IR]、元素分析、蛍光X線分析をモノマーの種類により適宜組み合わせて得られる値である。 In the present invention, the ratio of each polymer unit in the copolymer is a value obtained by analysis such as 19 F-NMR. More specifically, it is a value obtained by appropriately combining NMR analysis, infrared spectrophotometer [IR], elemental analysis, and fluorescent X-ray analysis depending on the type of monomer.
本発明の含フッ素共重合体は、クロロトリフルオロエチレンに基づく重合単位が1.0~50.0モル%であり、テトラフルオロエチレンに基づく重合単位が30.0~98.8モル%であることが好ましく、クロロトリフルオロエチレンに基づく重合単位が5.0~25.0モル%であり、テトラフルオロエチレンに基づく重合単位が55.0~94.8モル%であることがより好ましい。 The fluorine-containing copolymer of the present invention has 1.0 to 50.0 mol% of polymerized units based on chlorotrifluoroethylene and 30.0 to 98.8 mol% of polymerized units based on tetrafluoroethylene. More preferably, the polymerized units based on chlorotrifluoroethylene are 5.0 to 25.0 mol%, and the polymerized units based on tetrafluoroethylene are more preferably 55.0 to 94.8 mol%.
本発明の含フッ素共重合体は、297℃におけるメルトフローレートが1~70g/10minであることが好ましく、1~50g/10minであることがより好ましい。メルトフローレートが大きすぎると、機械的強度に劣り、充分な耐燃料クラック性が得られないおそれがあり、メルトフローレートが小さすぎると、成形が困難になるおそれがある。 The fluorine-containing copolymer of the present invention has a melt flow rate at 297 ° C. of preferably 1 to 70 g / 10 min, and more preferably 1 to 50 g / 10 min. If the melt flow rate is too large, the mechanical strength may be inferior and sufficient fuel crack resistance may not be obtained. If the melt flow rate is too small, molding may be difficult.
上記メルトフローレートは、メルトインデクサーを用い、297℃、5kg荷重下で内径2mm、長さ8mmのノズルから10分間あたりに流出する含フッ素共重合体の質量を測定し得られる値である。 The melt flow rate is a value obtained by measuring the mass of the fluorine-containing copolymer flowing out per 10 minutes from a nozzle having an inner diameter of 2 mm and a length of 8 mm under a load of 297 ° C. and 5 kg using a melt indexer.
本発明の含フッ素共重合体は、融点〔Tm〕が150~280℃であることが好ましい。より好ましい下限は160℃、更に好ましい下限は170℃、特に好ましい下限は190℃、より好ましい上限は260℃である。 The fluorine-containing copolymer of the present invention preferably has a melting point [Tm] of 150 to 280 ° C. A more preferred lower limit is 160 ° C, a still more preferred lower limit is 170 ° C, a particularly preferred lower limit is 190 ° C, and a more preferred upper limit is 260 ° C.
上記Tmは、示差走査熱量計〔DSC〕を用いて10℃/分の速度で昇温したときの融解ピークに対応する温度である。 The Tm is a temperature corresponding to a melting peak when the temperature is raised at a rate of 10 ° C./min using a differential scanning calorimeter [DSC].
本発明の含フッ素共重合体は、加熱試験に供した本発明の含フッ素共重合体の1質量%が分解する温度〔Tx〕が370℃以上であることが好ましい。より好ましい下限は380℃、更に好ましい下限は、390℃である。上記熱分解温度〔Tx〕は、上記範囲内であれば、上限を例えば450℃とすることができる。 In the fluorinated copolymer of the present invention, the temperature [Tx] at which 1% by mass of the fluorinated copolymer of the present invention subjected to the heating test decomposes is preferably 370 ° C. or higher. A more preferred lower limit is 380 ° C., and a more preferred lower limit is 390 ° C. If the said thermal decomposition temperature [Tx] is in the said range, an upper limit can be made into 450 degreeC, for example.
上記熱分解温度〔Tx〕は、示差熱・熱重量測定装置〔TG-DTA〕を用いて加熱試験に供した本発明の含フッ素共重合体の質量が1質量%減少する時の温度を測定することにより得られる値である。 The thermal decomposition temperature [Tx] is a temperature at which the mass of the fluorine-containing copolymer of the present invention subjected to the heating test is reduced by 1% by mass using a differential heat / thermogravimetry apparatus [TG-DTA]. It is a value obtained by doing.
本発明の含フッ素共重合体は、融点〔Tm〕と、1質量%が分解する温度〔Tx〕との差〔Tx-Tm〕が130℃以上であることが好ましい。130℃未満であると、成形可能な範囲が狭すぎて成形条件の選択の幅が小さくなる。本発明の含フッ素共重合体は、成形可能な温度範囲が上述のように広いので、共押出成形を行う場合、相手材として高融点ポリマーを用いることができる。 In the fluorinated copolymer of the present invention, the difference [Tx−Tm] between the melting point [Tm] and the temperature [Tx] at which 1% by mass is decomposed is preferably 130 ° C. or more. If it is less than 130 ° C., the range in which molding is possible is too narrow, and the range of selection of molding conditions becomes small. Since the temperature range in which the fluorine-containing copolymer of the present invention can be molded is wide as described above, a high melting point polymer can be used as a counterpart material when coextrusion molding is performed.
上記含フッ素共重合体は、溶液重合、乳化重合、懸濁重合等の従来公知の重合方法により得ることができるが、工業的には、懸濁重合により得たものであることが好ましい。 The fluorine-containing copolymer can be obtained by a conventionally known polymerization method such as solution polymerization, emulsion polymerization, suspension polymerization or the like, but industrially, it is preferably obtained by suspension polymerization.
本発明の含フッ素共重合体は、接着機能性官能基を有するものが好ましい。本明細書において、上記「接着機能性官能基」とは、本発明の含フッ素共重合体に含まれる重合体の分子構造の一部分であって、他の材料との接着に関与し得るものを意味する。上記接着機能性官能基としては、カルボニル基、ヒドロキシル基、アミノ基等が挙げられる。 The fluorine-containing copolymer of the present invention preferably has an adhesive functional group. In the present specification, the above-mentioned “adhesive functional group” is a part of the molecular structure of a polymer contained in the fluorine-containing copolymer of the present invention and can be involved in adhesion to other materials. means. Examples of the adhesive functional group include a carbonyl group, a hydroxyl group, and an amino group.
本明細書において、上記「カルボニル基」は、炭素-酸素二重結合から構成される炭素2価の基〔-C(=O)-〕を有する官能基である。上記カルボニル基としては特に限定されず、例えば、カーボネート基、ハロゲノホルミル基、ホルミル基、カルボキシル基、エステル結合[-C(=O)O-]、酸無水物結合[-C(=O)O-C(=O)-]、イソシアネート基、アミド基、イミド基[-C(=O)-NH-C(=O)-]、ウレタン結合[-NH-C(=O)O-]、カルバモイル基[NH-C(=O)-]、カルバモイルオキシ基[NH-C(=O)O-]、ウレイド基[NH-C(=O)-NH-]、オキサモイル基[NH-C(=O)-C(=O)-]等の化学構造上の一部分が-C(=O)-であるもの等が挙げられる。 In the present specification, the “carbonyl group” is a functional group having a carbon divalent group [—C (═O) —] composed of a carbon-oxygen double bond. The carbonyl group is not particularly limited, and examples thereof include a carbonate group, a halogenoformyl group, a formyl group, a carboxyl group, an ester bond [—C (═O) O—], and an acid anhydride bond [—C (═O) O. —C (═O) —], isocyanate group, amide group, imide group [—C (═O) —NH—C (═O) —], urethane bond [—NH—C (═O) O—], Carbamoyl group [NH 2 —C (═O) —], carbamoyloxy group [NH 2 —C (═O) O—], ureido group [NH 2 —C (═O) —NH—], oxamoyl group [NH 2 -C (= O) -C (= O)-] and the like in which a part of the chemical structure is -C (= O)-.
上記アミド基は、下記一般式 The amide group has the following general formula
(式中、Rは、水素原子又は有機基を表し、Rは、有機基を表す。)で表される基である。 (Wherein R 2 represents a hydrogen atom or an organic group, and R 3 represents an organic group).
上記アミド基、イミド基、ウレタン結合、カルバモイル基、カルバモイルオキシ基、ウレイド基、オキサモイル基等の窒素原子に結合する水素原子は、例えばアルキル基等の炭化水素基により置換されていてもよい。 A hydrogen atom bonded to a nitrogen atom such as the amide group, imide group, urethane bond, carbamoyl group, carbamoyloxy group, ureido group, or oxamoyl group may be substituted with a hydrocarbon group such as an alkyl group.
上記接着機能性官能基は、導入が容易である点、及び、得られる塗膜が適度な耐熱性と比較的低温での良好な接着性とを有する点で、アミド基、カルバモイル基、ヒドロキシル基、カルボキシル基、カーボネート基が好ましく、なかでも、カーボネート基がより好ましい。 The above-mentioned adhesive functional group is easy to introduce, and the coating film to be obtained has moderate heat resistance and good adhesion at a relatively low temperature, so that it has an amide group, a carbamoyl group, a hydroxyl group. A carboxyl group and a carbonate group are preferable, and a carbonate group is more preferable.
上記カーボネート基は、一般に[-OC(=O)O-]で表される結合を有する基であり、-OC(=O)O-R基(式中、Rは、有機基を表す。)で表されるものである。上記式中のRである有機基としては、例えば、炭素数1~20のアルキル基、エーテル結合を有する炭素数2~20のアルキル基等が挙げられ、好ましくは炭素数1~8のアルキル基、エーテル結合を有する炭素数2~4のアルキル基等である。上記カーボネート基としては、例えば、-OC(=O)O-CH、-OC(=O)O-C、-OC(=O)O-C17、-OC(=O)O-CHCHCHOCHCH等が挙げられる。 The carbonate group is a group having a bond generally represented by [—OC (═O) O—], and a —OC (═O) O—R group (wherein R represents an organic group). It is represented by Examples of the organic group represented by R in the above formula include an alkyl group having 1 to 20 carbon atoms, an alkyl group having 2 to 20 carbon atoms having an ether bond, and preferably an alkyl group having 1 to 8 carbon atoms. And an alkyl group having 2 to 4 carbon atoms having an ether bond. Examples of the carbonate group include —OC (═O) O—CH 3 , —OC (═O) O—C 3 H 7 , —OC (═O) O—C 8 H 17 , —OC (═O ) O—CH 2 CH 2 CH 2 OCH 2 CH 3 and the like.
本発明の含フッ素共重合体が、接着機能性官能基を有するものである場合、接着機能性官能基を主鎖末端又は側鎖の何れかに有する重合体からなるものであってもよいし、主鎖末端及び側鎖の両方に有する重合体からなるものであってもよい。主鎖末端に接着機能性官能基を有する場合は、主鎖の両方の末端に有していてもよいし、いずれか一方の末端にのみ有していてもよい。本発明の含フッ素共重合体は、主鎖末端に接着機能性官能基を有することが、機械特性、耐薬品性を著しく低下させない理由で、又は、生産性、コスト面で有利である理由で好ましい。 When the fluorine-containing copolymer of the present invention has an adhesive functional group, it may consist of a polymer having an adhesive functional functional group at either the main chain end or the side chain. Or a polymer having both at the main chain terminal and at the side chain. In the case of having an adhesive functional group at the end of the main chain, it may be present at both ends of the main chain or only at one of the ends. The fluorine-containing copolymer of the present invention has an adhesive functional group at the end of the main chain because it does not significantly reduce mechanical properties and chemical resistance, or because it is advantageous in terms of productivity and cost. preferable.
接着機能性官能基のうち主鎖末端にあるものとしては、カーボネート基、-COF、-COOH、-COOCH、-CONH、又は、-CHOH等が挙げられる。主鎖末端にある接着機能性官能基は、通常、連鎖移動剤又は重合時に用いた重合開始剤が付加したことにより主鎖末端に形成されるものであり、連鎖移動剤又は重合開始剤の構造に由来するものである。 Examples of the adhesive functional group at the end of the main chain include a carbonate group, —COF, —COOH, —COOCH 3 , —CONH 2 , or —CH 2 OH. The adhesive functional group at the end of the main chain is usually formed at the end of the main chain by addition of a chain transfer agent or a polymerization initiator used during polymerization, and the structure of the chain transfer agent or polymerization initiator It is derived from.
本発明の含フッ素共重合体が、主鎖末端に接着機能性官能基を有する重合体であって、上記接着機能性官能基がカーボネート基である重合体である場合、パーオキシカーボネートを重合開始剤として用いて重合する方法により得ることができる。上記方法を用いると、カーボネート基の導入及び導入の制御が非常に容易であることや、経済性の面、耐熱性、耐薬品性等の品質面等から好ましい。 When the fluorine-containing copolymer of the present invention is a polymer having an adhesive functional group at the end of the main chain and the adhesive functional functional group is a carbonate group, polymerization of peroxycarbonate is started. It can obtain by the method of superposing | polymerizing using as an agent. Use of the above method is preferable from the viewpoints of very easy introduction and control of introduction of carbonate groups, quality, such as economical efficiency, heat resistance, and chemical resistance.
上記パーオキシカーボネートとしては、下記式 As the peroxycarbonate, the following formula
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式中、R及びRは、同一又は異なって、炭素数1~15の直鎖状若しくは分岐状の一価飽和炭化水素基、又は、末端にアルコキシル基を有する炭素数1~15の直鎖状若しくは分岐状の一価飽和炭化水素基を表し、Rは、炭素数1~15の直鎖状若しくは分岐状の二価飽和炭化水素基、又は、末端にアルコキシル基を有する炭素数1~15の直鎖状若しくは分岐状の二価飽和炭化水素基を表す。)で表される化合物が好ましい。 (In the formula, R 4 and R 5 are the same or different and each represents a linear or branched monovalent saturated hydrocarbon group having 1 to 15 carbon atoms, or a C 1 to 15 carbon atoms having an alkoxyl group at the terminal. Represents a linear or branched monovalent saturated hydrocarbon group, and R 6 represents a linear or branched divalent saturated hydrocarbon group having 1 to 15 carbon atoms, or a carbon number having an alkoxyl group at the terminal. 1 to 15 linear or branched divalent saturated hydrocarbon groups) are preferred.
なかでも、上記パーオキシカーボネートとしては、ジイソプロピルパーオキシカーボネート、ジ-n-プロピルパーオキシジカーボネート、t-ブチルパーオキシイソプロピルカーボネート、ビス(4-t-ブチルシクロへキシル)パーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート等が好ましい。 Among these peroxycarbonates, diisopropyl peroxycarbonate, di-n-propyl peroxydicarbonate, t-butyl peroxyisopropyl carbonate, bis (4-t-butylcyclohexyl) peroxydicarbonate, di- 2-ethylhexyl peroxydicarbonate and the like are preferable.
本発明の含フッ素共重合体が、主鎖末端に接着機能性官能基を有する重合体であって、上記接着機能性官能基がカーボネート基以外である重合体である場合、上述のカーボネート基を導入する場合と同様に、パーオキシカーボネート、パーオキシジカーボネート、パーオキシエステル、パーオキシアルコール等のパーオキサイドを重合開始剤として用いて重合することにより、パーオキサイドに由来する接着機能性官能基を導入することができる。なお、「パーオキサイドに由来する」とは、パーオキサイドに含まれる官能基から直接導入されるか、又は、パーオキサイドに含まれる官能基から直接導入された官能基を変換することにより間接的に導入されることを意味する。 When the fluorine-containing copolymer of the present invention is a polymer having an adhesive functional group at the end of the main chain, and the adhesive functional functional group is a polymer other than a carbonate group, As in the case of introduction, by using a peroxide such as peroxycarbonate, peroxydicarbonate, peroxyester, and peroxyalcohol as a polymerization initiator, an adhesive functional group derived from the peroxide is obtained. Can be introduced. In addition, “derived from peroxide” is directly introduced from the functional group contained in the peroxide or indirectly by converting the functional group introduced directly from the functional group contained in the peroxide. It means being introduced.
パーオキシカーボネート、パーオキシエステル等の上記重合開始剤の使用量は、目的とする含フッ素共重合体の種類や組成、分子量、重合条件、使用する開始剤の種類等によって異なるが、得られる重合体100質量部に対して0.05~5質量部であることが好ましく、特に好ましい下限は0.1質量部であり、特に好ましい上限は1質量部である。 The amount of the above polymerization initiator such as peroxycarbonate and peroxyester varies depending on the type and composition of the target fluorine-containing copolymer, the molecular weight, the polymerization conditions, the type of initiator used, etc. The amount is preferably 0.05 to 5 parts by mass with respect to 100 parts by mass of the coalescence, and the particularly preferable lower limit is 0.1 part by mass, and the particularly preferable upper limit is 1 part by mass.
上記接着機能性官能基の数は、積層する相手材の種類、形状、接着の目的、用途、必要とされる接着力、接着方法等の違いにより適宜選択されうる。 The number of the adhesive functional functional groups may be appropriately selected depending on differences in the type, shape, purpose of use, application, required adhesive force, adhesion method, and the like of the counterpart material to be laminated.
接着機能性官能基の数は、320℃未満の成形温度にて溶融成形する場合、主鎖炭素数1×10個あたり3~800個であることが好ましい。主鎖炭素数1×10個あたり3個未満であると、接着性が低下することがある。より好ましい下限は50個、更に好ましい下限は80個、特に好ましい下限は120個である。320℃未満の成形温度にて溶融成形する場合、接着機能性官能基数は、上記範囲内であれば、生産性の観点で、上限を、例えば、500個とすることができる。 In the case of melt molding at a molding temperature of less than 320 ° C., the number of functional functional groups for adhesion is preferably 3 to 800 per 1 × 10 6 main chain carbon atoms. Adhesiveness may fall that it is less than 3 per 1 × 10 6 main chain carbon atoms. A more preferred lower limit is 50, a still more preferred lower limit is 80, and a particularly preferred lower limit is 120. In the case of melt molding at a molding temperature of less than 320 ° C., the upper limit of the number of functional adhesive functional groups can be set to, for example, 500 from the viewpoint of productivity, provided that the number is within the above range.
接着機能性官能基の数は、本発明の含フッ素共重合体の粉末を融点より50℃高い成形温度、5MPaの成形圧力にて圧縮成形することにより得られる厚み0.25~0.30mmのフィルムシートを、赤外分光光度計[IR]を用いて赤外吸収スペクトル分析し、既知のフィルムの赤外吸収スペクトルと比較して種類を決定し、その差スペクトルから次式により算出する個数である。
 末端基の個数(上記炭素数1×10個あたり)=(l×K)/t
  l:吸光度
  K:補正係数
  t:フィルム厚(mm)
対象となる末端基の補正係数を表1に示す。
The number of functional functional groups for adhesion is a thickness of 0.25 to 0.30 mm obtained by compression molding the powder of the fluorine-containing copolymer of the present invention at a molding temperature 50 ° C. higher than the melting point at a molding pressure of 5 MPa. The film sheet is analyzed by infrared absorption spectrum using an infrared spectrophotometer [IR], the type is determined by comparison with the infrared absorption spectrum of a known film, and the number calculated from the difference spectrum by the following formula is used. is there.
Number of terminal groups (per 1 × 10 6 carbon atoms) = (l × K) / t
l: Absorbance K: Correction coefficient t: Film thickness (mm)
Table 1 shows the correction coefficients of the target end groups.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
表1の補正係数は主鎖炭素数1×10個あたりの末端基を計算するためにモデル化合物の赤外吸収スペクトルから決定する値である。 The correction coefficient in Table 1 is a value determined from the infrared absorption spectrum of the model compound in order to calculate the terminal group per 1 × 10 6 main chain carbon atoms.
本発明の含フッ素共重合体は、フッ素樹脂であり、エラストマーではない。 The fluorine-containing copolymer of the present invention is a fluororesin and not an elastomer.
本発明の含フッ素共重合体は、本発明の目的を損なわない範囲で、クロロトリフルオロエチレンに基づく重合単位、テトラフルオロエチレンに基づく重合単位、単量体(A)に基づく重合単位及び単量体(B)に基づく重合単位以外の重合単位を有するものであってもよく、当該重合単位の含有量は全重合単位の0.1~1.0モル%であることが好ましい。当該重合単位としては、不飽和脂肪族ポリカルボン酸類に基づく重合単位が挙げられる。上記不飽和脂肪族ポリカルボン酸類としては特に限定されず、例えば、マレイン酸、フマル酸、イタコン酸、シトラコン酸、メサコン酸、アコニット酸等が挙げられ、マレイン酸、イタコン酸、シトラコン酸等の酸無水物が可能であるものは酸無水物であってもよい。 The fluorine-containing copolymer of the present invention is a polymer unit based on chlorotrifluoroethylene, a polymer unit based on tetrafluoroethylene, a polymer unit based on the monomer (A) and a single amount within a range not to impair the purpose of the present invention. The polymer unit may have a polymer unit other than the polymer unit based on the body (B), and the content of the polymer unit is preferably 0.1 to 1.0 mol% of the total polymer units. Examples of the polymerized units include polymerized units based on unsaturated aliphatic polycarboxylic acids. The unsaturated aliphatic polycarboxylic acids are not particularly limited, and examples thereof include maleic acid, fumaric acid, itaconic acid, citraconic acid, mesaconic acid, aconitic acid and the like, and acids such as maleic acid, itaconic acid, citraconic acid and the like. What can be an anhydride may be an acid anhydride.
しかし、本発明の含フッ素共重合体は、クロロトリフルオロエチレンに基づく重合単位、テトラフルオロエチレンに基づく重合単位、単量体(A)に基づく重合単位、及び、単量体(B)に基づく重合単位のみからなることも好ましい態様の一つである。 However, the fluorine-containing copolymer of the present invention is based on a polymer unit based on chlorotrifluoroethylene, a polymer unit based on tetrafluoroethylene, a polymer unit based on monomer (A), and a monomer (B). It is also one of the preferable embodiments that it consists of only polymerized units.
また、本発明は、本発明の含フッ素共重合体からなる層(C)と、フッ素非含有有機材料からなる層(K)とを有する積層体に関する。本発明の積層体は、層(C)を構成する本発明の含フッ素共重合体が、層間の接着性や耐燃料透過性、耐燃料クラック性を向上させる。 Moreover, this invention relates to the laminated body which has the layer (C) which consists of a fluorine-containing copolymer of this invention, and the layer (K) which consists of a fluorine-free organic material. In the laminate of the present invention, the fluorine-containing copolymer of the present invention constituting the layer (C) improves interlayer adhesion, fuel permeability resistance, and fuel crack resistance.
本発明の積層体は、更に、含フッ素エチレン性重合体(但し、本発明の含フッ素共重合体を除く)からなる層(J)を有してもよい。上記含フッ素エチレン性重合体からなる層(J)としては、本発明の含フッ素共重合体以外のパーハロ系含フッ素エチレン性重合体からなる層(P)、及び、本発明の含フッ素共重合体以外の非パーハロ系含フッ素エチレン性重合体からなる層(F)が挙げられる。 The laminate of the present invention may further have a layer (J) made of a fluorine-containing ethylenic polymer (excluding the fluorine-containing copolymer of the present invention). The layer (J) made of the fluorine-containing ethylenic polymer includes a layer (P) made of a perhalo fluorine-containing ethylenic polymer other than the fluorine-containing copolymer of the present invention, and the fluorine-containing copolymer of the present invention. Examples include a layer (F) made of a non-perhalogenated fluorine-containing ethylenic polymer other than the coalescence.
本発明の積層体は、本発明の含フッ素共重合体以外のパーハロ系含フッ素エチレン性重合体からなる層(P)を有すると、耐薬品性及び耐熱性に優れる。 When the laminate of the present invention has a layer (P) made of a perhalogenated fluorine-containing ethylenic polymer other than the fluorine-containing copolymer of the present invention, it is excellent in chemical resistance and heat resistance.
上記パーハロ系含フッ素エチレン性重合体としては、(III)少なくとも、TFE単位、及び、下記一般式(vi)
CF=CF-Rf               (vi)
(式中、Rfは、CF又はORfを表し、Rfは、炭素数1~5のパーフルオロアルキル基を表す。)で表されるパーフルオロ単量体に由来するパーフルオロ単量体単位からなる共重合体が挙げられる。上記パーフルオロ単量体単位は、1種であってもよいし、2種以上であってもよい。
As the perhalogenated fluorine-containing ethylenic polymer, (III) at least a TFE unit and the following general formula (vi)
CF 2 = CF-Rf 5 (vi)
(Wherein Rf 5 represents CF 3 or ORf 6 , and Rf 6 represents a perfluoroalkyl group having 1 to 5 carbon atoms.) Examples thereof include copolymers comprising body units. The perfluoromonomer unit may be one type or two or more types.
上記パーハロ系含フッ素エチレン性重合体としては、また、PCTFEも挙げられる。 Examples of the perhalogenated fluorine-containing ethylenic polymer also include PCTFE.
上記共重合体(III)としては、例えば、
(III-I)TFE単位70~95モル%、好ましくは85~93モル%、HFP単位5~30モル%、好ましくは7~15モル%の共重合体、
(III-II)TFE単位70~95モル%、下記一般式(vii)
CF=CF-ORf             (vii)
(式中、Rfは、炭素数1~5のパーフルオロアルキル基を表す。)で表されるPAVEに由来するPAVE単位の1種又は2種以上との合計5~30モル%からなる共重合体、
(III-III)TFE単位70~95モル%、HFP単位と上記一般式(vii)で表されるPAVEに由来するPAVE単位の1種又は2種以上との合計が5~30モル%の共重合体、
等が挙げられる。
Examples of the copolymer (III) include:
(III-I) a copolymer of 70 to 95 mol%, preferably 85 to 93 mol% of TFE units, 5 to 30 mol%, preferably 7 to 15 mol% of HFP units,
(III-II) TFE units 70 to 95 mol%, the following general formula (vii)
CF 2 = CF-ORf 7 (vii)
(Wherein Rf 7 represents a perfluoroalkyl group having 1 to 5 carbon atoms), a total of 5 to 30 mol% of one or more PAVE units derived from PAVE represented by Polymer,
(III-III) 70 to 95 mol% of TFE units, 5 to 30 mol% of the total of HFP units and one or more PAVE units derived from PAVE represented by the above general formula (vii) Polymer,
Etc.
上記PAVE単位は、1種であってよいし、2種以上であってもよい。上記共重合体(III)としては特に限定されず、例えば、1種又は2種以上組み合わせて用いることができる。 The PAVE unit may be one type or two or more types. It does not specifically limit as said copolymer (III), For example, it can use 1 type or in combination of 2 or more types.
本発明の積層体は、本発明の含フッ素共重合体以外の非パーハロ系含フッ素エチレン性重合体からなる層(F)を有すると、接着性及び溶融加工性に優れる。 When the laminate of the present invention has a layer (F) made of a non-perhalogenated fluorine-containing ethylenic polymer other than the fluorine-containing copolymer of the present invention, the laminate and the melt processability are excellent.
上記非パーハロ系含フッ素エチレン性重合体としては、(IV)少なくとも、TFE単位及びEt単位からなる共重合体が挙げられる。 Examples of the non-perhalogenated fluorine-containing ethylenic polymer include (IV) a copolymer comprising at least a TFE unit and an Et unit.
上記非パーハロ系含フッ素エチレン性重合体としては、また、(V)少なくとも、VdF単位からなる共重合体が挙げられる。 Examples of the non-perhalogenated fluorine-containing ethylenic polymer include (V) a copolymer composed of at least a VdF unit.
上記共重合体(IV)としては、例えば、TFE単位20モル%以上からなる重合体が挙げられ、このようなものとしては、例えば、TFE単位20~80モル%、Et単位20~80モル%及びこれらと共重合可能な単量体に由来する単位0~60モル%からなる共重合体等が挙げられる。 Examples of the copolymer (IV) include a polymer comprising 20 mol% or more of TFE units. Examples of such a copolymer include 20 to 80 mol% of TFE units and 20 to 80 mol% of Et units. And a copolymer composed of 0 to 60 mol% of a unit derived from a monomer copolymerizable therewith.
上記共重合可能な単量体としては、例えば、下記一般式(viii)
CX10=CX(CF     (viii)
(式中、X、X及びX10は、同一若しくは異なって、水素原子又はフッ素原子を表し、Xは、水素原子、フッ素原子又は塩素原子を表し、nは、1~10の整数を表す。)で表されるフルオロオレフィン、下記一般式(ix)
CF=CF-ORf              (ix)
(式中、Rfは、炭素数1~5のパーフルオロアルキル基を表す。)で表されるPAVE等が挙げられ、これらの1種又は2種以上を用いてもよい。
Examples of the copolymerizable monomer include the following general formula (viii):
CX 9 X 10 = CX 7 (CF 2 ) n X 8 (viii)
(Wherein X 7 , X 9 and X 10 are the same or different and each represents a hydrogen atom or a fluorine atom, X 8 represents a hydrogen atom, a fluorine atom or a chlorine atom, and n is an integer of 1 to 10) A fluoroolefin represented by the following general formula (ix)
CF 2 = CF-ORf 8 (ix)
(Wherein Rf 8 represents a perfluoroalkyl group having 1 to 5 carbon atoms), and one or more of these may be used.
上記共重合体(IV)としては、なかでも、上記一般式(viii)で表されるフルオロオレフィンに由来するフルオロオレフィン単位及び/又は上記一般式(ix)で表されるPAVEに由来するPAVE単位の合計0~60モル%、TFE単位20~80モル%、並びに、Et単位20~80モル%からなる共重合体が好ましい。 As the copolymer (IV), among them, a fluoroolefin unit derived from the fluoroolefin represented by the general formula (viii) and / or a PAVE unit derived from PAVE represented by the general formula (ix) A copolymer comprising a total of 0 to 60 mol%, TFE units 20 to 80 mol%, and Et units 20 to 80 mol% is preferred.
このような共重合体としては、例えば
(IV-I)TFE単位30~70モル%、Et単位20~55モル%及び上記一般式(viii)で表されるフルオロオレフィンに由来するフルオロオレフィン単位0~10モル%からなる共重合体、
(IV-II)TFE単位30~70モル%、Et単位20~55モル%、HFP単位1~30モル%及びこれらと共重合可能な単量体に由来する単位0~10モル%からなる共重合体、
(IV-III)TFE単位30~70モル%、Et単位20~55モル%及び上記一般式(ix)で表されるPAVEに由来するPAVE単位0~10モル%からなる共重合体、
等が挙げられる。
Examples of such a copolymer include (IV-I) 30 to 70 mol% of TFE units, 20 to 55 mol% of Et units, and fluoroolefin units derived from the fluoroolefin represented by the above general formula (viii). A copolymer comprising ˜10 mol%,
(IV-II) A copolymer comprising 30 to 70 mol% of TFE units, 20 to 55 mol% of Et units, 1 to 30 mol% of HFP units, and 0 to 10 mol% of units derived from monomers copolymerizable therewith. Polymer,
(IV-III) a copolymer comprising 30 to 70 mol% of TFE units, 20 to 55 mol% of Et units, and 0 to 10 mol% of PAVE units derived from PAVE represented by the general formula (ix),
Etc.
上記共重合体(IV)を構成する上記共重合可能な単量体に由来する単位は、上記一般式(viii)で表されるフルオロオレフィンに由来するフルオロオレフィン単位及び/又は上記一般式(ix)で表されるPAVEに由来するPAVE単位である場合を含め、上記共重合体(IV)に含まれていてもよいし、含まれていなくてもよい。 The unit derived from the copolymerizable monomer constituting the copolymer (IV) is a fluoroolefin unit derived from the fluoroolefin represented by the general formula (viii) and / or the general formula (ix). The copolymer (IV) may or may not be contained, including the case where it is a PAVE unit derived from PAVE represented by:
上記共重合体(V)としては、例えば、VdF単位10モル%以上からなる重合体が挙げられ、そのようなものとしては、例えば、VdF単位15~100モル%、TFE単位0~85モル%、並びに、HFP単位及び/又はトリクロロフルオロエチレン単位の合計0~30モル%からなる共重合体等が好ましい。 Examples of the copolymer (V) include polymers composed of 10 mol% or more of VdF units. Examples of such copolymers include 15 to 100 mol% of VdF units and 0 to 85 mol% of TFE units. In addition, a copolymer comprising a total of 0 to 30 mol% of HFP units and / or trichlorofluoroethylene units is preferred.
上記共重合体(V)としては、例えば
(V-I)フッ化ビニリデン単独重合体(本明細書においてポリフッ化ビニリデン〔PVdF〕ということがある。)、
(V-II)VdF単位30~99モル%、及び、TFE単位1~70モル%からなる共重合体、
(V-III)VdF単位10~90モル%、TFE単位0~90モル%、及び、トリクロロフルオロエチレン単位0~30モル%からなる共重合体、
(V-IV)VdF単位10~90モル%、TFE単位0~90モル%、及び、HFP単位0~30モル%からなる共重合体、
等が挙げられる。
Examples of the copolymer (V) include (VI) vinylidene fluoride homopolymer (sometimes referred to as polyvinylidene fluoride [PVdF] in this specification),
(V-II) a copolymer comprising 30 to 99 mol% of VdF units and 1 to 70 mol% of TFE units,
(V-III) a copolymer comprising 10 to 90 mol% of VdF units, 0 to 90 mol% of TFE units, and 0 to 30 mol% of trichlorofluoroethylene units,
(V-IV) a copolymer comprising 10 to 90 mol% of VdF units, 0 to 90 mol% of TFE units, and 0 to 30 mol% of HFP units,
Etc.
上記(V-IV)の共重合体としては、VdF単位15~84モル%、TFE単位15~84モル%、及び、HFP単位0~30モル%からなる共重合体が好ましい。 The copolymer (V-IV) is preferably a copolymer comprising 15 to 84 mol% of VdF units, 15 to 84 mol% of TFE units, and 0 to 30 mol% of HFP units.
なお、上記共重合体(III)~(V)を構成する重合単位のうち、各種共重合体において0モル%であり得るものは、いずれも上記共重合体に含まれていてもよいし、含まれていなくてもよい。 Of the polymer units constituting the copolymers (III) to (V), any of the copolymer units that may be 0 mol% in various copolymers may be contained in the copolymer. It does not have to be included.
層(J)を構成する含フッ素エチレン性重合体は、MFRが0.1~70(g/10分)であるものが好ましい。MFRが上記範囲内であると耐燃料透過性、耐燃料クラック性に優れたものとなる。上記MFRのより好ましい下限は、1(g/10分)、より好ましい上限は、50(g/10分)である。 The fluorine-containing ethylenic polymer constituting the layer (J) preferably has an MFR of 0.1 to 70 (g / 10 minutes). When the MFR is within the above range, the fuel permeation resistance and the fuel crack resistance are excellent. The more preferable lower limit of the MFR is 1 (g / 10 minutes), and the more preferable upper limit is 50 (g / 10 minutes).
上記含フッ素エチレン性重合体としては、2種以上を組み合わせて用いることができる。2種以上を組み合わせて用いる場合、相互に相溶性の良い含フッ素エチレン性重合体を選んで組み合わせることにより、溶融により混合して明確な境界がない層を形成することができ層間剥離が生じず、好ましい。混合量比、あるいは、層厚みの比率は、この層全体として好ましい燃料透過係数と好ましい融点とを有するように調整することができる。 As said fluorine-containing ethylenic polymer, it can use in combination of 2 or more type. When two or more types are used in combination, by selecting and combining fluorine-containing ethylenic polymers having good compatibility with each other, mixing by melting can form a layer without a clear boundary, and delamination does not occur ,preferable. The mixing ratio or the layer thickness ratio can be adjusted so that the layer as a whole has a preferable fuel permeability coefficient and a preferable melting point.
上記含フッ素エチレン性重合体からなる層(J)は、上記含フッ素エチレン性重合体を2種以上用いる場合、用いる重合体の各種類を予め混合することなく、共押出機に投入して積層体を作製したり、別々に作製した層を積み重ねて熱溶融したりすることにより、上述の接着機能性官能基を導入しなくても、相溶性によって各層間接着性に優れたものとすることができる。 The layer (J) made of the above-mentioned fluorine-containing ethylenic polymer, when two or more of the above-mentioned fluorine-containing ethylenic polymers are used, is laminated by feeding them into a co-extruder without previously mixing each type of polymer to be used. Even if it does not introduce the above-mentioned adhesion functional functional group by making the body or stacking the layers prepared separately and heat melting, it shall be excellent in each interlayer adhesion by compatibility Can do.
上記含フッ素エチレン性重合体からなる層(J)は、上記含フッ素エチレン性重合体を2種以上用いる場合、また、用いる重合体の各種類を予め混合してポリマーアロイを調整したのち、形成したものであってもよい。 The layer (J) composed of the above-mentioned fluorine-containing ethylenic polymer is formed when two or more of the above-mentioned fluorine-containing ethylenic polymers are used, or after the polymer alloy is adjusted by mixing each type of polymer used in advance. It may be what you did.
上記含フッ素エチレン性重合体は、上述した接着機能性官能基を主鎖末端に有していてもよいし、側鎖に有していてもよい。 The fluorine-containing ethylenic polymer may have the above-described adhesive functional group at the main chain terminal or may be present at the side chain.
上記含フッ素エチレン性重合体における上記重合単位の割合は、19F-NMR分析、赤外分光光度計[IR]、元素分析、蛍光X線分析をモノマーの種類により適宜組み合わせて得られる値である。 The ratio of the polymerized units in the fluorine-containing ethylenic polymer is a value obtained by appropriately combining 19 F-NMR analysis, infrared spectrophotometer [IR], elemental analysis, and fluorescent X-ray analysis depending on the type of monomer. .
上記含フッ素エチレン性重合体の融点としては、130~280℃が好ましく、共押出成形を容易にする観点で、150~280℃であることがより好ましい。 The melting point of the fluorine-containing ethylenic polymer is preferably 130 to 280 ° C., and more preferably 150 to 280 ° C. from the viewpoint of facilitating coextrusion molding.
接液面を有する層以外の層を構成する含フッ素エチレン性重合体は、樹脂、エラストマーの何れを構成するポリマーであってもよいが、好ましくは、樹脂を構成するものである。 The fluorine-containing ethylenic polymer constituting the layer other than the layer having a wetted surface may be a polymer constituting either a resin or an elastomer, but preferably constitutes a resin.
上記含フッ素エチレン性重合体は、溶液重合、乳化重合、懸濁重合等の従来公知の重合方法により得ることができるが、工業的には、懸濁重合により得たものであることが好ましい。 The fluorine-containing ethylenic polymer can be obtained by a conventionally known polymerization method such as solution polymerization, emulsion polymerization, suspension polymerization or the like, but industrially, it is preferably obtained by suspension polymerization.
本発明の積層体において、各層を構成する本発明の含フッ素共重合体及び含フッ素エチレン性重合体は、導電性フィラーを配合したものであってもよい。導電性フィラーを配合することにより、燃料と本発明の積層体との摩擦などによって生じる静電気の蓄積を防ぎ、静電気の放電によって生じる可能性のある火災や爆発、あるいは、本発明の積層体のクラックや穴あきとそれによって生じる燃料漏れを防止することができる。 In the laminate of the present invention, the fluorine-containing copolymer and the fluorine-containing ethylenic polymer of the present invention constituting each layer may be a mixture of a conductive filler. By adding a conductive filler, accumulation of static electricity caused by friction between the fuel and the laminate of the present invention is prevented, and a fire or explosion that may occur due to electrostatic discharge, or a crack in the laminate of the present invention. It is possible to prevent perforation and fuel leakage caused thereby.
上記導電性フィラーとしては特に限定されず、例えば、金属、炭素等の導電性単体粉末又は導電性単体繊維;酸化亜鉛等の導電性化合物の粉末;表面導電化処理粉末等が挙げられる。 The conductive filler is not particularly limited, and examples thereof include conductive simple powders or conductive single fibers such as metals and carbons; powders of conductive compounds such as zinc oxide; surface conductive powders.
上記導電性単体粉末又は導電性単体繊維としては特に限定されず、例えば、銅、ニッケル等の金属粉末;鉄、ステンレス等の金属繊維;カーボンブラック、炭素繊維、特開平3-174018号公報等に記載の炭素フィブリル、カーボン・ナノチューブ、カーボン・ナノホーン等が挙げられる。 The conductive simple powder or conductive simple fiber is not particularly limited, and examples thereof include metal powder such as copper and nickel; metal fiber such as iron and stainless steel; carbon black, carbon fiber, and Japanese Patent Laid-Open No. 3-174018. Examples thereof include carbon fibrils, carbon nanotubes, and carbon nanohorns.
上記表面導電化処理粉末は、ガラスビーズ、酸化チタン等の非導電性粉末の表面に導電化処理を施して得られる粉末である。上記導電化処理の方法としては特に限定されず、例えば、金属スパッタリング、無電解メッキ等が挙げられる。上述した導電性フィラーのなかでもカーボンブラックは、経済性の観点で有利であるので好適に用いられる。 The surface conductive treatment powder is a powder obtained by conducting a conductive treatment on the surface of a nonconductive powder such as glass beads or titanium oxide. The method for conducting the conductive treatment is not particularly limited, and examples thereof include metal sputtering and electroless plating. Among the conductive fillers described above, carbon black is preferably used because it is advantageous from the viewpoint of economy.
上記各層を構成する重合体に上記導電性フィラーを配合する場合、溶融混練して予めペレットを作製することが好ましい。 When the conductive filler is blended with the polymer constituting each of the layers, it is preferable to prepare pellets in advance by melt-kneading.
ペレット作製時における溶融混練後のペレット加熱条件としては、各層を構成する重合体のガラス転移点以上、各層を構成する重合体の融点未満の温度で行うことが一般的であり、通常、130~200℃において、1~48時間行うことが好ましい。予めペレットを作製することにより、得られる層における重合体に導電性フィラーを均一に分散させ、導電性を均質に付与することができる。 The pellet heating conditions after melt-kneading at the time of pellet preparation are generally performed at a temperature not lower than the glass transition point of the polymer constituting each layer and lower than the melting point of the polymer constituting each layer. It is preferably performed at 200 ° C. for 1 to 48 hours. By preparing pellets in advance, it is possible to uniformly disperse the conductive filler in the polymer in the resulting layer, and to impart conductivity uniformly.
上記導電性フィラーの配合量としては、重合体の種類、積層体に要求される導電性能、成形条件等に基づいて適宜決められるが重合体100質量部に対して1~30質量部であることが好ましい。より好ましい下限は5質量部、より好ましい上限は、20質量部である。 The blending amount of the conductive filler is appropriately determined based on the kind of polymer, the conductive performance required for the laminate, the molding conditions, and the like, but it is 1 to 30 parts by mass with respect to 100 parts by mass of the polymer. Is preferred. A more preferred lower limit is 5 parts by mass, and a more preferred upper limit is 20 parts by mass.
上記導電性フィラーを配合した重合体の表面抵抗値は、1×10~1×10Ω・cmであることが好ましい。より好ましい下限は、1×10Ω・cmであり、より好ましい上限は、1×10Ω・cmである。 The surface resistance value of the polymer blended with the conductive filler is preferably 1 × 10 0 to 1 × 10 9 Ω · cm. A more preferred lower limit is 1 × 10 2 Ω · cm, and a more preferred upper limit is 1 × 10 8 Ω · cm.
本明細書において、上記「導電性フィラーを配合した重合体の表面抵抗値」は、上記導電性フィラーと重合体とを溶融混練して得られたペレットをメルトインデクサーに投入し、上記メルトインデクサー中で200~400℃の任意の温度で加熱して、押出して得られた押出しストランドの表面抵抗値を、電池式絶縁抵抗計を用いて測定して得られる値である。 In the present specification, the above-mentioned “surface resistance value of a polymer containing a conductive filler” refers to a pellet obtained by melting and kneading the conductive filler and polymer into a melt indexer, This is a value obtained by measuring the surface resistance value of an extruded strand obtained by heating at 200 to 400 ° C. in a kusa and extruding it using a battery-type insulation resistance meter.
各層を構成する本発明の含フッ素共重合体及び含フッ素エチレン性重合体は、上記導電性フィラーのほか、本発明の目的を損なわない範囲で、例えば、熱安定剤等の安定剤、補強剤、充填剤、紫外線吸収剤、顔料等の各種添加剤を添加してなるものであってもよい。重合体からなる層は、このような添加剤により、熱安定性、表面硬度、耐摩耗性、帯電性、耐候性等の特性が向上したものとすることができる。 The fluorine-containing copolymer and fluorine-containing ethylenic polymer of the present invention constituting each layer are, for example, a stabilizer such as a heat stabilizer and a reinforcing agent, in addition to the above conductive filler, within a range that does not impair the object of the present invention. In addition, various additives such as a filler, an ultraviolet absorber, and a pigment may be added. The polymer layer can be improved in properties such as thermal stability, surface hardness, abrasion resistance, chargeability, and weather resistance by such an additive.
本発明の積層体は、フッ素非含有有機材料からなる層(K)を有する。 The laminate of the present invention has a layer (K) made of a fluorine-free organic material.
上記フッ素非含有有機材料とは、フッ素原子を含まない有機材料である。上記フッ素非含有有機材料は、含フッ素エチレン性重合体からなる層と共押出可能な樹脂であることが好ましい。 The fluorine-free organic material is an organic material that does not contain a fluorine atom. The fluorine-free organic material is preferably a resin that can be coextruded with a layer made of a fluorine-containing ethylenic polymer.
上記フッ素非含有有機材料としては、結晶化度が高いポリマーからなる樹脂であることが好ましく、結晶化度が高く、かつ、極性官能基を有し分子間力が大きいポリマーからなる樹脂であることがより好ましい。 The fluorine-free organic material is preferably a resin made of a polymer having a high degree of crystallinity, and is a resin made of a polymer having a high degree of crystallinity and having a polar functional group and a large intermolecular force. Is more preferable.
上記極性官能基は、極性を有し、フッ素非含有有機材料からなる層と隣接する層との接着に関与し得る官能基である。上記極性官能基は、本発明の含フッ素共重合体が有するものとして上述した接着機能性官能基と同じ官能基であってもよいが、異なる官能基であってもよい。 The polar functional group is a functional group having polarity and capable of participating in adhesion between a layer made of a fluorine-free organic material and an adjacent layer. The polar functional group may be the same functional group as the adhesive functional functional group described above as the fluorine-containing copolymer of the present invention, but may be a different functional group.
上記極性官能基としては特に限定されず、例えば、接着機能性官能基として上述したもののほか、シアノ基、スルフィド基等が挙げられ、なかでも、カルボニルオキシ基、シアノ基、スルフィド基、ヒドロキシル基が好ましく、ヒドロキシル基がより好ましい。 The polar functional group is not particularly limited and includes, for example, those described above as the adhesive functional group, cyano group, sulfide group, and the like. Among them, carbonyloxy group, cyano group, sulfide group, hydroxyl group are included. Preferably, a hydroxyl group is more preferable.
上記フッ素非含有有機材料としては、ポリアミド系樹脂、ポリオレフィン系樹脂、塩化ビニル系樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリアラミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリフェニレンオキサイド樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、アクリル系樹脂、スチレン系樹脂、アクリロニトリル/ブタジエン/スチレン樹脂〔ABS〕、セルロース系樹脂、ポリエーテルエーテルケトン樹脂〔PEEK〕、ポリスルホン樹脂、ポリエーテルスルホン樹脂〔PES〕、ポリエーテルイミド樹脂等の機械的強度に優れ、耐圧性や成形体の形状の維持を主たる役割とできる樹脂(以下、構造部材系樹脂とする。)、エチレン/ビニルアルコール共重合体からなる樹脂、ポリフェニレンスルフィド樹脂、ポリブチレンナフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリフタルアミド〔PPA〕等の燃料や気体に対する耐透過性能の高い樹脂(以下、耐透過性樹脂とする。)が挙げられる。 Examples of the fluorine-free organic materials include polyamide resins, polyolefin resins, vinyl chloride resins, polyurethane resins, polyester resins, polyaramid resins, polyimide resins, polyamideimide resins, polyphenylene oxide resins, polyacetal resins, polycarbonate resins, acrylic resins. Resin, styrene resin, acrylonitrile / butadiene / styrene resin [ABS], cellulose resin, polyetheretherketone resin [PEEK], polysulfone resin, polyethersulfone resin [PES], polyetherimide resin, etc. Resin (hereinafter referred to as “structural member resin”), an ethylene / vinyl alcohol copolymer resin, polyphenylene sulfide resin, Butylene naphthalate resins, polybutylene terephthalate resins, polyphthalamide [PPA] high penetration resistance over performance for fuel or gas such as a resin (hereinafter. To permeation resistance resin) and the like.
上記フッ素非含有有機材料としては、なかでも、ポリアミド系樹脂及びポリオレフィン系樹脂からなる群より選択される少なくとも1種であることが好ましい。 The fluorine-free organic material is preferably at least one selected from the group consisting of polyamide resins and polyolefin resins.
本発明の積層体は、上記構造部材系樹脂からなる層(A)を有すると、機械的強度に優れるものとなり、上記耐透過性樹脂からなる層(E)を有すると、燃料に対する耐透過性に優れるものとなる。 The layered product of the present invention has excellent mechanical strength when it has the layer (A) made of the structural member resin, and it has resistance to permeation to the fuel when it has the layer (E) made of the permeation-resistant resin. It will be excellent.
上記ポリアミド系樹脂は、分子内に繰り返し単位としてアミド結合〔-NH-C(=O)-〕を有するポリマーからなるものである。 The polyamide-based resin is composed of a polymer having an amide bond [—NH—C (═O) —] as a repeating unit in the molecule.
上記ポリアミド系樹脂としては、分子内のアミド結合が脂肪族構造又は脂環族構造と結合しているポリマーからなるいわゆるナイロン樹脂、又は、分子内のアミド結合が芳香族構造と結合しているポリマーからなるいわゆるアラミド樹脂のいずれであってもよい。 As the polyamide resin, a so-called nylon resin composed of a polymer in which an amide bond in a molecule is bonded to an aliphatic structure or an alicyclic structure, or a polymer in which an amide bond in a molecule is bonded to an aromatic structure Any of so-called aramid resins may be used.
上記ナイロン樹脂としては特に限定されず、例えば、ナイロン6、ナイロン66、ナイロン11、ナイロン12、ナイロン610、ナイロン612、ナイロン6/66、ナイロン66/12、ナイロン46、メタキシリレンジアミン/アジピン酸共重合体等のポリマーからなるものが挙げられ、これらのなかから2種以上を組み合わせて用いてもよい。 The nylon resin is not particularly limited. For example, nylon 6, nylon 66, nylon 11, nylon 12, nylon 610, nylon 612, nylon 6/66, nylon 66/12, nylon 46, metaxylylenediamine / adipic acid What consists of polymers, such as a copolymer, is mentioned, You may use combining 2 or more types from these.
上記アラミド樹脂としては特に限定されず、例えば、ポリパラフェニレンテレフタラミド、ポリメタフェニレンイソフタラミド等が挙げられる。 The aramid resin is not particularly limited, and examples thereof include polyparaphenylene terephthalamide and polymetaphenylene isophthalamide.
上記ポリアミド系樹脂は、また、繰り返し単位としてアミド結合を有しない構造が分子の一部にブロック共重合又はグラフト共重合されている高分子からなるものであってもよい。このようなポリアミド系樹脂としては、例えば、ナイロン6/ポリエステル共重合体、ナイロン6/ポリエーテル共重合体、ナイロン12/ポリエステル共重合体、ナイロン12/ポリエーテル共重合体等のポリアミド系エラストマーからなるもの等が挙げられる。これらのポリアミド系エラストマーは、ナイロンオリゴマーとポリエステルオリゴマーがエステル結合を介してブロック共重合することにより得られたもの、又は、ナイロンオリゴマーとポリエーテルオリゴマーとがエーテル結合を介してブロック共重合することにより得られたものである。上記ポリエステルオリゴマーとしては、例えば、ポリカプロラクトン、ポリエチレンアジペート等が挙げられ、上記ポリエーテルオリゴマーとしては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等が挙げられる。上記ポリアミド系エラストマーとしては、ナイロン6/ポリテトラメチレングリコール共重合体、ナイロン12/ポリテトラメチレングリコール共重合体が好ましい。 The polyamide-based resin may be composed of a polymer in which a structure having no amide bond as a repeating unit is block-copolymerized or graft-copolymerized in a part of the molecule. Examples of such polyamide resins include nylon elastomers such as nylon 6 / polyester copolymers, nylon 6 / polyether copolymers, nylon 12 / polyester copolymers, and nylon 12 / polyether copolymers. And the like. These polyamide-based elastomers are obtained by block copolymerization of nylon oligomers and polyester oligomers via ester bonds, or by block copolymerization of nylon oligomers and polyether oligomers via ether bonds. It is obtained. Examples of the polyester oligomer include polycaprolactone and polyethylene adipate, and examples of the polyether oligomer include polyethylene glycol, polypropylene glycol, and polytetramethylene glycol. As the polyamide elastomer, nylon 6 / polytetramethylene glycol copolymer and nylon 12 / polytetramethylene glycol copolymer are preferable.
上記ポリアミド系樹脂としては、ポリアミド系樹脂からなる層が薄層でも充分な機械的強度が得られることから、なかでも、ナイロン6、ナイロン66、ナイロン11、ナイロン12、ナイロン610、ナイロン612、ナイロン6/66、ナイロン66/12、ナイロン6/ポリエステル共重合体、ナイロン6/ポリエーテル共重合体、ナイロン12/ポリエステル共重合体、ナイロン12/ポリエーテル共重合体等が好ましく、これらのなかから2種以上を組み合わせて用いてもよい。 As the polyamide-based resin, sufficient mechanical strength can be obtained even if the layer made of the polyamide-based resin is thin. Among them, nylon 6, nylon 66, nylon 11, nylon 12, nylon 610, nylon 612, nylon 6/66, nylon 66/12, nylon 6 / polyester copolymer, nylon 6 / polyether copolymer, nylon 12 / polyester copolymer, nylon 12 / polyether copolymer, and the like are preferable. Two or more kinds may be used in combination.
上記ポリオレフィン系樹脂は、フッ素原子を有しないビニル基含有単量体に由来する重合単位を有する樹脂である。上記フッ素原子を有しないビニル基含有単量体としては特に限定されないが、層間接着性が求められる用途では上述した極性官能基を有するものが好ましい。 The polyolefin resin is a resin having a polymer unit derived from a vinyl group-containing monomer having no fluorine atom. Although it does not specifically limit as said vinyl-group containing monomer which does not have a fluorine atom, What has the polar functional group mentioned above is preferable in the use for which interlayer adhesiveness is calculated | required.
上記ポリオレフィン系樹脂としては特に限定されず、例えば、ポリエチレン、ポリプロピレン、高密度ポリオレフィン等のポリオレフィンのほか、上記ポリオレフィンを無水マレイン酸等で変性した変性ポリオレフィン、エポキシ変性ポリオレフィン、アミン変性ポリオレフィン等が挙げられる。 The polyolefin-based resin is not particularly limited, and examples thereof include polyolefins such as polyethylene, polypropylene, and high-density polyolefin, modified polyolefins obtained by modifying the polyolefin with maleic anhydride, epoxy-modified polyolefins, amine-modified polyolefins, and the like. .
上記フッ素非含有有機材料は、本発明の目的を損なわない範囲で、例えば、熱安定剤等の安定剤、補強剤、充填剤、紫外線吸収剤、顔料等の各種添加剤を添加してなるものであってもよい。上記フッ素非含有有機材料は、このような添加剤により、熱安定性、表面硬度、耐摩耗性、帯電性、耐候性等の特性が向上したものとすることができる。 The fluorine-free organic material is formed by adding various additives such as a stabilizer such as a heat stabilizer, a reinforcing agent, a filler, an ultraviolet absorber, and a pigment, as long as the object of the present invention is not impaired. It may be. The fluorine-free organic material can be improved in properties such as thermal stability, surface hardness, abrasion resistance, charging property, weather resistance and the like by such additives.
上記ポリアミド系樹脂のアミン価は10~80(当量/10g)が好ましい。アミン価が上記範囲内にあると、比較的低い温度で共押出する場合においても、層間接着力を優れたものとすることができる。上記アミン価が10(当量/10g)未満であると、層間接着力が不充分になるおそれがある。80(当量/10g)を超えると、得られる積層体の機械的強度が不充分であり、また、貯蔵中に着色しやすくなりハンドリング性に劣る。好ましい下限は15(当量/10g)であり、好ましい上限は60(当量/10g)、より好ましい上限は50(当量/10g)である。 The amine value of the polyamide resin is preferably 10 to 80 (equivalent / 10 6 g). When the amine value is within the above range, the interlayer adhesion can be excellent even when co-extrusion is performed at a relatively low temperature. If the amine value is less than 10 (equivalent / 10 6 g), the interlayer adhesion may be insufficient. If it exceeds 80 (equivalent / 10 6 g), the resulting laminate is insufficient in mechanical strength, tends to be colored during storage, and has poor handling properties. A preferred lower limit is 15 (equivalent / 10 6 g), a preferred upper limit is 60 (equivalent / 10 6 g), and a more preferred upper limit is 50 (equivalent / 10 6 g).
本明細書において、上記アミン価はポリアミド系樹脂1gをm-クレゾール50mlに加熱溶解し、これを1/10規定p-トルエンスルホン酸水溶液を用いて、チモールブルーを指示薬として滴定して求められる値であり、特に別の記載をしない限り、積層する前のポリアミド系樹脂のアミン価を意味する。積層する前のポリアミド系樹脂が有するアミノ基の数のうち、一部分は隣接する層との接着に消費されると考えられるが、その数は層全体に対してごく微量であるので、上述した積層する前のポリアミド系樹脂のアミン価と本発明の積層体におけるアミン価は、実質的に同程度となる。 In the present specification, the amine value is a value obtained by dissolving 1 g of a polyamide-based resin in 50 ml of m-cresol and titrating with 1/10 N p-toluenesulfonic acid aqueous solution and using thymol blue as an indicator. Unless otherwise specified, it means the amine value of the polyamide-based resin before lamination. Of the number of amino groups in the polyamide-based resin before lamination, a part is considered to be consumed for adhesion to the adjacent layer, but the number is very small with respect to the entire layer. The amine value of the polyamide-based resin before the process and the amine value of the laminate of the present invention are substantially the same.
本発明の積層体は、接着層(S)を有してもよく、接着層(S)を有すると、層間の接着性が向上する。 The laminate of the present invention may have an adhesive layer (S), and when having an adhesive layer (S), the adhesion between the layers is improved.
上記接着層(S)としては、接着性官能基含有TFE/Et/HFP共重合体、官能基変性ポリエチレン、高アミン価ナイロン等が代表例として挙げられるが、接着させる2層の物性に応じて適宜選ぶことができる。 Examples of the adhesive layer (S) include adhesive functional group-containing TFE / Et / HFP copolymer, functional group-modified polyethylene, and high amine value nylon, but depending on the physical properties of the two layers to be bonded. You can choose as appropriate.
本発明の積層体における各層のうち、少なくとも1層は、燃料透過係数が0.5g・mm/m/day以下であることが好ましい。本発明の含フッ素共重合体からなる層(C)又は含フッ素エチレン性重合体からなる層(J)のうち少なくとも一方は、燃料透過係数が0.4g・mm/m/day以下であるものが好ましい。 Of the layers in the laminate of the present invention, at least one layer preferably has a fuel permeability coefficient of 0.5 g · mm / m 2 / day or less. At least one of the layer (C) made of the fluorine-containing copolymer of the present invention and the layer (J) made of the fluorine-containing ethylenic polymer has a fuel permeability coefficient of 0.4 g · mm / m 2 / day or less. Those are preferred.
本明細書において、上記燃料透過係数は、イソオクタン、トルエン及びエタノールを45:45:10の容積比で混合したイソオクタン/トルエン/エタノール混合溶媒を投入した燃料透過係数測定用カップに測定対象樹脂から得たシートを入れ、60℃において測定した質量変化から算出される値である。 In this specification, the fuel permeability coefficient is obtained from a resin to be measured in a fuel permeability coefficient measuring cup charged with an isooctane / toluene / ethanol mixed solvent in which isooctane, toluene and ethanol are mixed at a volume ratio of 45:45:10. It is a value calculated from the change in mass measured at 60 ° C.
本発明の積層体は、燃料透過速度が2.5g/m/day以下であるものが好ましい。 The laminate of the present invention preferably has a fuel permeation rate of 2.5 g / m 2 / day or less.
本発明の積層体は、上記燃料透過速度が上述の範囲内であることから、高度の耐燃料透過性を有するものとすることができる。燃料透過速度は上述の範囲内であれば下限を例えば、0.1g/m/dayとすることができる。燃料透過速度のより好ましい上限は2.0g/m/dayであり、更に好ましい上限は1.0g/m/dayである。 The laminated body of the present invention has a high fuel permeation resistance because the fuel permeation rate is within the above-mentioned range. If the fuel permeation rate is within the above range, the lower limit can be set to 0.1 g / m 2 / day, for example. A more preferable upper limit of the fuel permeation rate is 2.0 g / m 2 / day, and a further preferable upper limit is 1.0 g / m 2 / day.
本明細書において、上記燃料透過速度は、単位日数単位面積当たりの燃料透過質量であり、イソオクタン、トルエン及びエタノールを45:45:10の容積比で混合したイソオクタン/トルエン/エタノール混合溶媒〔CE10〕を用いて、SAE J 1737に準じて60℃での透過量を測定し得られる値である。 In the present specification, the fuel permeation rate is a fuel permeation mass per unit area per day, and an isooctane / toluene / ethanol mixed solvent [CE10] obtained by mixing isooctane, toluene and ethanol in a volume ratio of 45:45:10. Is a value obtained by measuring the permeation amount at 60 ° C. according to SAE J 1737.
本発明の積層体を構成する含フッ素エチレン性重合体からなる層(J)は、1種の含フッ素エチレン性重合体からなる単層であってもよいし、1種又は2種以上の含フッ素エチレン性重合体からなる2層以上の多層構造を有するものであってもよい。例えば、層(P)と層(F)との2層であってもよい。本発明の積層体としては、例えば、2~5層の積層体が挙げられる。 The layer (J) made of the fluorine-containing ethylenic polymer constituting the laminate of the present invention may be a single layer made of one type of fluorine-containing ethylenic polymer, or one or two or more types of containing layers. It may have a multilayer structure of two or more layers made of a fluoroethylenic polymer. For example, two layers of a layer (P) and a layer (F) may be used. Examples of the laminate of the present invention include a laminate of 2 to 5 layers.
2層構造を有する積層体の好ましい積層構成としては、接液側から順に、層(C)/層(P)、層(P)/層(C)、層(C)/層(A)等が挙げられる。 As a preferable laminated structure of the laminated body having a two-layer structure, layer (C) / layer (P), layer (P) / layer (C), layer (C) / layer (A), etc. in order from the liquid contact side. Is mentioned.
これらのうち、層(C)/層(P)及び層(P)/層(C)の積層構成は半導体製造分野で使用される薬液チューブとして好適であり、層(C)/層(A)の積層構成は燃料チューブとして好適であり、更に金属ブレードをつけることによりブレーキホースとしても使用できる。 Among these, the layered structure of layer (C) / layer (P) and layer (P) / layer (C) is suitable as a chemical solution tube used in the semiconductor manufacturing field, and layer (C) / layer (A) This laminated structure is suitable as a fuel tube, and can also be used as a brake hose by attaching a metal blade.
3層構造を有する積層体の好ましい積層構成としては、層(P)/層(C)/層(A)、層(C)/層(E)/層(A)、層(P)/層(C)/層(P)、層(C)/層(A)/層(C)等が挙げられる。 As a preferable laminated structure of the laminate having a three-layer structure, layer (P) / layer (C) / layer (A), layer (C) / layer (E) / layer (A), layer (P) / layer (C) / layer (P), layer (C) / layer (A) / layer (C) and the like.
これらのうち、層(P)/層(C)/層(A)及び層(C)/層(E)/層(A)の積層構成は燃料チューブや耐薬品性が求められる薬液チューブとして好適である。層(P)/層(C)/層(P)の積層構成は耐ソルベント性に優れるのでインタンクチューブや地下埋設チューブの内管として好適であり、層(C)/層(A)/層(C)の積層構成は非フッ素樹脂の吸水を防止でき耐環境性も向上できるので燃料チューブや薬液チューブとして好適である。 Of these, the layered structure of layer (P) / layer (C) / layer (A) and layer (C) / layer (E) / layer (A) is suitable as a fuel tube or a chemical tube that requires chemical resistance. It is. The layer (P) / layer (C) / layer (P) layered structure is excellent in solvent resistance and is suitable as an inner tube of an in-tank tube or underground tube. Layer (C) / layer (A) / layer The laminated structure (C) is suitable as a fuel tube or a chemical solution tube because it can prevent water absorption of the non-fluororesin and improve the environmental resistance.
4層構造を有する積層体の好ましい積層構成としては、層(P)/層(E)/層(C)/層(A)、層(P)/層(S)/層(C)/層(A)、層(P)/層(C)/層(S)/層(A)、層(P)/層(C)/層(E)/層(A)、層(P)/層(C)/層(A)/層(C)、層(C)/層(E)/層(S)/層(A)、層(C)/層(S)/層(E)/層(A)、層(C)/層(E)/層(C)/層(A)、層(C)/層(E)/層(A)/層(C)等が挙げられる。 As a preferable laminated structure of the laminate having a four-layer structure, layer (P) / layer (E) / layer (C) / layer (A), layer (P) / layer (S) / layer (C) / layer (A), layer (P) / layer (C) / layer (S) / layer (A), layer (P) / layer (C) / layer (E) / layer (A), layer (P) / layer (C) / layer (A) / layer (C), layer (C) / layer (E) / layer (S) / layer (A), layer (C) / layer (S) / layer (E) / layer (A), layer (C) / layer (E) / layer (C) / layer (A), layer (C) / layer (E) / layer (A) / layer (C) and the like.
これら4層構造を有する積層体は、燃料チューブや薬液チューブとして好適である。 These laminates having a four-layer structure are suitable as a fuel tube or a chemical solution tube.
5層構造を有する積層体の好ましい積層構成としては、層(C)/層(S)/層(E)/層(S)/層(A)、層(P)/層(C)/層(A)/層(C)/層(P)、層(P)/層(C)/層(E)/層(S)/層(A)、層(P)/層(C)/層(E)/層(C)/層(A)、層(P)/層(C)/層(E)/層(A)/層(C)等が挙げられる。 As a preferable laminated structure of the laminate having a five-layer structure, layer (C) / layer (S) / layer (E) / layer (S) / layer (A), layer (P) / layer (C) / layer (A) / layer (C) / layer (P), layer (P) / layer (C) / layer (E) / layer (S) / layer (A), layer (P) / layer (C) / layer (E) / layer (C) / layer (A), layer (P) / layer (C) / layer (E) / layer (A) / layer (C) and the like.
これらのうち、層(C)/層(S)/層(E)/層(S)/層(A)の積層構成は燃料チューブや薬液チューブとして好適であり、層(P)/層(C)/層(A)/層(C)/層(P)の積層構成は地下埋設チューブの内管として好適であり、層(P)/層(C)/層(E)/層(S)/層(A)、層(P)/層(C)/層(E)/層(C)/層(A)及び層(P)/層(C)/層(E)/層(A)/層(C)の積層構成は高耐薬液性及び高耐透過燃料性を有することから薬液チューブや燃料チューブとして好適である。 Among these, the laminated structure of layer (C) / layer (S) / layer (E) / layer (S) / layer (A) is suitable as a fuel tube or a chemical liquid tube, and layer (P) / layer (C ) / Layer (A) / layer (C) / layer (P) is suitable as an inner tube of an underground tube, layer (P) / layer (C) / layer (E) / layer (S) / Layer (A), Layer (P) / Layer (C) / Layer (E) / Layer (C) / Layer (A) and Layer (P) / Layer (C) / Layer (E) / Layer (A) The layered structure of / layer (C) is suitable as a chemical solution tube and a fuel tube because it has high chemical resistance and high permeation resistance.
上記層(P)、層(C)、層(A)、層(E)及び層(S)は、それぞれ、単層であってもよいし、2層以上の多層構造を有するものであってもよい。例えば、層(P)が2層以上の多層構造を有する場合、上述の導電性フィラーを配合した含フッ素エチレン性重合体からなる層と、導電性フィラーを含まない含フッ素エチレン性重合体組成物とからなる層とを含むものであってもよい。 The layer (P), the layer (C), the layer (A), the layer (E) and the layer (S) may each be a single layer or have a multilayer structure of two or more layers. Also good. For example, when the layer (P) has a multilayer structure of two or more layers, a layer comprising a fluorine-containing ethylenic polymer blended with the above-mentioned conductive filler, and a fluorine-containing ethylenic polymer composition not containing the conductive filler And a layer composed of:
本発明の積層体としては、上記層(P)、層(C)、層(A)、層(E)及び層(S)以外のその他の層をも含むものであってもよい。上記その他の層としては特に限定されず、例えば、上記積層体における保護層、着色層、マーキング層、静電防止のための誘電体層等が挙げられ、保護層、誘電体層等は、その機能から、上記積層体における最外層であることが好ましい。 As a laminated body of this invention, other layers other than the said layer (P), layer (C), layer (A), layer (E), and layer (S) may also be included. The other layer is not particularly limited, and examples thereof include a protective layer, a colored layer, a marking layer, a dielectric layer for preventing static electricity, and the like in the laminate, and the protective layer, the dielectric layer, etc. In view of the function, the outermost layer in the laminate is preferable.
本発明の積層体は、本発明の含フッ素共重合体からなる層(C)及びフッ素非含有有機材料からなる層(K)を有する積層体である。 The laminate of the present invention is a laminate having a layer (C) made of the fluorine-containing copolymer of the present invention and a layer (K) made of a fluorine-free organic material.
上記積層体において、層(C)及び層(K)はそれぞれ単層であってもよいし、2層以上の多層構造を有するものであってもよい。層(K)が多層構造を有する場合、例えば、層(A)と層(E)とが積層された構造であってもよい。 In the above laminated body, each of the layer (C) and the layer (K) may be a single layer or may have a multilayer structure of two or more layers. When the layer (K) has a multilayer structure, for example, the layer (A) and the layer (E) may be stacked.
本発明の積層体は、層(C)及び層(K)を有し、更に、その他の層を有するものであってもよい。上記その他の層としては、例えば、エラストマー等からなり上記積層体を振動や衝撃等から保護し、可とう性を付与する層等が挙げられる。上記エラストマーとしては熱可塑性エラストマーが挙げられ、例えば、ポリアミド系エラストマー、ポリウレタン系エラストマー、ポリエステル系エラストマー、ポリオレフィン系エラストマー、スチレン/ブタジエン系エラストマー、塩化ビニル系エラストマーからなる群から少なくとも1種を選択することができる。 The laminated body of this invention has a layer (C) and a layer (K), and also may have another layer. Examples of the other layer include a layer made of an elastomer and the like, which protects the laminated body from vibrations and impacts and imparts flexibility. Examples of the elastomer include thermoplastic elastomers. For example, at least one selected from the group consisting of polyamide elastomers, polyurethane elastomers, polyester elastomers, polyolefin elastomers, styrene / butadiene elastomers, and vinyl chloride elastomers is selected. Can do.
本発明の積層体は、また、本発明の含フッ素共重合体からなる層(C)及びフッ素非含有有機材料からなる層(K)と、更に含フッ素エチレン性重合体からなる層(J)とを有する積層体であることが好ましい。 The laminate of the present invention also comprises a layer (C) comprising the fluorine-containing copolymer of the present invention, a layer (K) comprising a fluorine-free organic material, and a layer (J) further comprising a fluorine-containing ethylenic polymer. It is preferable that the laminate has
本発明の積層体は、また、上記層(C)と層(J)との間にフッ素非含有有機材料(Q)からなる層(D)を有するものであってもよい。 The laminate of the present invention may have a layer (D) made of a fluorine-free organic material (Q) between the layer (C) and the layer (J).
上記層(D)におけるフッ素非含有有機材料(Q)は、層(K)におけるフッ素非含有有機材料と同じ種類であってもよいし、異なる種類であってもよいが、同じ種類であることが好ましく、ポリアミド系樹脂であることがより好ましい。層(D)を設けることにより、多層共押出成形を容易に適用することができ、しかも、ライン速度を速くすることができ、成形性を向上することができる。層(J)を上述の共重合体(IV)等の非パーフルオロ系フッ素樹脂とした場合でも、多層共押出成形が容易であり、ライン速度を速くすることができる。 The fluorine-free organic material (Q) in the layer (D) may be the same type as or different from the fluorine-free organic material in the layer (K), but the same type. Is preferable, and a polyamide-based resin is more preferable. By providing the layer (D), multilayer coextrusion molding can be easily applied, the line speed can be increased, and the moldability can be improved. Even when the layer (J) is a non-perfluoro fluororesin such as the above-mentioned copolymer (IV), multilayer coextrusion molding is easy and the line speed can be increased.
本発明の積層体としては、例えば、層(J)、層(C)及び層(K)がこの順に積層している積層体、層(J)、層(C)、層(K)及び層(J)がこの順に積層している積層体、層(J)、層(D)、層(C)及び層(K)がこの順に積層している積層体、(J)、層(C)、層(K)、層(C)及び層(J)がこの順に積層している積層体、層(J)、層(D)、層(C)、層(K)及び層(J)がこの順に積層している積層体等が挙げられる。 Examples of the laminate of the present invention include a laminate in which a layer (J), a layer (C), and a layer (K) are laminated in this order, a layer (J), a layer (C), a layer (K), and a layer. (J) Laminate in which layers are laminated in this order, Layer (J), Layer (D), Layer (C) and Laminate in which layers (K) are laminated in this order, (J), Layer (C) , Layer (K), layer (C) and layer (J) are laminated in this order, layer (J), layer (D), layer (C), layer (K) and layer (J). Examples include a laminated body laminated in this order.
上記層(J)、層(C)、層(K)及び層(D)は、それぞれ、単層であってもよいし、2層以上の多層構造を有するものであってもよい。 The layer (J), the layer (C), the layer (K), and the layer (D) may each be a single layer or may have a multilayer structure of two or more layers.
層(J)が2層以上の多層構造を有する場合、層(J)は、例えば、上述の導電性フィラーを配合した含フッ素エチレン性重合体からなる層と、導電性フィラーを含まない含フッ素エチレン性重合体からなる層とを含むものであってもよい。 When the layer (J) has a multilayer structure of two or more layers, the layer (J) includes, for example, a layer made of a fluorine-containing ethylenic polymer blended with the above-described conductive filler, and a fluorine-containing layer that does not contain a conductive filler. And a layer made of an ethylenic polymer.
本発明の積層体が、層(C)と層(J)との間に、フッ素非含有有機材料(Q)からなる層(D)を有するものである場合、層(D)は、層(C)及び層(J)に接しており、層(C)は、層(K)に接していることが好ましい。 When the laminate of the present invention has a layer (D) made of a fluorine-free organic material (Q) between the layer (C) and the layer (J), the layer (D) C) and the layer (J) are preferably in contact with each other, and the layer (C) is preferably in contact with the layer (K).
本発明の積層体において、接している各層の境界は必ずしも明確である必要はなく、各層を構成するポリマーの分子鎖同士が接している面から相互に侵入し、濃度勾配がある層構造であってもよい。 In the laminate of the present invention, the boundary between the layers in contact with each other is not necessarily clear, and the layer structure has a concentration gradient that penetrates from the surface where the molecular chains of the polymers constituting each layer are in contact with each other. May be.
本発明の積層体において、層(C)は、層(J)及び層(K)に接していることが好ましい。層(C)における本発明の含フッ素共重合体が上述の接着機能性官能基を有する場合、層(J)及び層(K)との接着性を優れたものとすることができる。また、層(J)と層(C)とが接する場合、上記接着機能性官能基を導入しなくても、本発明の含フッ素共重合体と含フッ素エチレン性重合体との相溶性により、充分な接着性を有することができるが、該接着性向上の点で、層(C)における本発明の含フッ素共重合体は、接着機能性官能基を有するものであることが好ましく、接着機能性官能基を有する本発明の含フッ素共重合体を用いる場合、層(J)における含フッ素エチレン性重合体は接着機能性官能基を導入したものでなくても充分な層間接着性を発揮することができる。 In the laminate of the present invention, the layer (C) is preferably in contact with the layer (J) and the layer (K). When the fluorine-containing copolymer of the present invention in the layer (C) has the above-mentioned adhesive functional group, the adhesion with the layer (J) and the layer (K) can be made excellent. Further, when the layer (J) and the layer (C) are in contact with each other, the compatibility between the fluorine-containing copolymer of the present invention and the fluorine-containing ethylenic polymer can be obtained without introducing the adhesive functional group. Although it can have sufficient adhesiveness, it is preferable that the fluorine-containing copolymer of the present invention in the layer (C) has an adhesive functional functional group in terms of improving the adhesiveness. When the fluorine-containing copolymer of the present invention having a functional group is used, the fluorine-containing ethylenic polymer in the layer (J) exhibits sufficient interlayer adhesion even if it does not contain an adhesive functional functional group. be able to.
本発明の積層体の成形方法としては、例えば、(1)積層体を構成する各層を溶融状態で共押出成形することにより層間を熱溶融着(溶融接着)させ1段で多層構造の積層体を形成する方法(共押出成形)が挙げられる。 As a method for forming a laminate of the present invention, for example, (1) the layers constituting the laminate are co-extruded in a molten state so that the layers are thermally fused (melt-bonded) to form a multilayer structure in one step. The method (coextrusion molding) which forms is mentioned.
本発明の積層体の成形方法としては、また上記(1)の他に、(2)押出機によりそれぞれ別個に作製した各層を重ね合せ熱融着により層間を接着させる方法、(3)予め作製した層の表面上に押出機により溶融樹脂を押し出すことにより積層体を形成する方法、(4)予め作製した層の表面上に、該層に隣接することとなる層を構成する重合体を静電塗装したのち、得られる塗装物を全体的に又は塗装した側から加熱することにより、塗装に供した重合体を加熱溶融して層を成形する方法等が挙げられる。 In addition to the above (1), (2) a method of laminating each layer separately produced by an extruder and laminating the layers by heat fusion, (3) producing in advance A method of forming a laminate by extruding a molten resin on the surface of the layer by means of an extruder, and (4) a polymer constituting the layer adjacent to the layer is statically formed on the surface of the layer prepared in advance. Examples of the method include forming a layer by heating and melting the polymer used for coating by heating the obtained coated product as a whole or from the coated side after electrocoating.
本発明の積層体がチューブ又はホースである場合、例えば、上記(2)に相当する方法として、(2a)押出機により円筒状の各層をそれぞれ別個に形成し、内層となる層に該層に接触する層を熱収縮チューブにて被膜する方法、上記(3)に相当する方法として、(3a)先ず内層となる層を内層押出機で形成し、この外周面に、外層押出機で該層に接触する層を形成する方法、上記(4)に相当する方法として、(4a)内層を構成する重合体を該層に接触する層の内側に静電塗装したのち、得られる塗装物を加熱オーブンに入れて全体的に加熱するか、又は、円筒状の塗装物品の内側に棒状の加熱装置を挿入して内側から加熱することにより、内層を構成する重合体を加熱溶融して成形する方法、等が挙げられる。 When the laminate of the present invention is a tube or a hose, for example, as a method corresponding to the above (2), (2a) each cylindrical layer is separately formed by an extruder, and the inner layer is formed on the layer. As a method of coating the contacting layer with a heat shrinkable tube, a method corresponding to the above (3), (3a) First, an inner layer is formed by an inner layer extruder, and this layer is formed on the outer peripheral surface by an outer layer extruder. As a method corresponding to (4) above, (4a) a polymer constituting the inner layer is electrostatically coated on the inner side of the layer in contact with the layer, and then the resulting coated product is heated. A method of heating and melting the polymer constituting the inner layer by inserting a rod-shaped heating device inside the cylindrical coated article and heating from the inside by putting it in an oven and heating it as a whole , Etc.
本発明の積層体を構成する各層が共押出可能なものであれば、上記(1)の共押出成形によって形成することが一般的である。上記共押出成形としては、マルチマニホールド法、フィードブロック法等の従来公知の多層共押製造法が挙げられる。 As long as each layer constituting the laminate of the present invention can be coextruded, it is generally formed by coextrusion molding (1). Examples of the coextrusion molding include conventionally known multilayer co-extrusion manufacturing methods such as a multi-manifold method and a feed block method.
上記(2)及び(3)の成形方法においては、各層を形成したのち、層間接着性を高めることを目的として、各層における他の層との接触面を表面処理してもよい。そのような表面処理としては、ナトリウムエッチング処理等のエッチング処理;コロナ処理;低温プラズマ処理等のプラズマ処理が挙げられる。 In the molding methods (2) and (3), after forming each layer, the contact surface of each layer with another layer may be surface-treated for the purpose of improving interlayer adhesion. Examples of such surface treatment include etching treatment such as sodium etching treatment; corona treatment; plasma treatment such as low temperature plasma treatment.
上記成形方法としては、上記(1)、及び、上記(2)と(3)の各方法において表面処理を施して積層させる方法が好ましく、(1)の方法が最も好ましい。 As the molding method, a method of performing surface treatment in the above methods (1) and (2) and (3) is preferable, and the method (1) is most preferable.
本発明の積層体の成形方法としては、また、複数の材料を多段階に分けて回転成形によって積層する成形方法も可能である。その場合、必ずしも外層材料の融点は内層材料の融点より高くする必要はなく、内層材料の融点は外層材料の融点より100℃以上高くてもよい。その場合は内部にも加熱部があった方が好ましい。 As a method for forming a laminate of the present invention, a forming method in which a plurality of materials are divided into multiple stages and laminated by rotational molding is also possible. In that case, the melting point of the outer layer material does not necessarily need to be higher than the melting point of the inner layer material, and the melting point of the inner layer material may be higher by 100 ° C. or more than the melting point of the outer layer material. In that case, it is preferable to have a heating part inside.
本発明の積層体は、フィルム形状、シート形状、チューブ形状、ホース形状、ボトル形状、タンク形状等の各種形状とすることができる。フィルム形状、シート形状、チューブ形状、ホース形状は、波形形状、蛇腹(corrugated)形状、渦巻き(convoluted)形状等であってもよい。 The laminate of the present invention can have various shapes such as a film shape, a sheet shape, a tube shape, a hose shape, a bottle shape, and a tank shape. The film shape, sheet shape, tube shape, and hose shape may be a corrugated shape, a corrugated shape, a convoluted shape, or the like.
本発明の積層体がチューブ又はホースである場合、かかる波形の折り目が複数個環状に配設されている領域を有することにより、その領域において環状の一側を圧縮し、他側を外方に伸張することができるので、応力疲労や層間の剥離を伴うことなく容易に任意の角度で曲げることが可能となる。 When the laminate of the present invention is a tube or a hose, by having a region where a plurality of such folds are arranged in an annular shape, one side of the annular shape is compressed in that region, and the other side is outward Since it can stretch, it can be easily bent at any angle without stress fatigue or delamination.
波形領域の形成方法は限定されないが、まず直管状のチューブを成形した後に、引き続いてモールド成形等し、所定の波形形状等とすることにより容易に形成することができる。 The method for forming the corrugated region is not limited, but it can be easily formed by first forming a straight tube and then performing molding or the like to obtain a predetermined corrugated shape.
本発明の積層体は、以下の用途に用いることができる。 The laminated body of this invention can be used for the following uses.
フィルム、シート類;食品用フィルム、食品用シート、薬品用フィルム、薬品用シート、ダイヤフラムポンプのダイヤフラムや各種パッキン等
チューブ、ホース類;自動車燃料用チューブ若しくは自動車燃料用ホース等の燃料用チューブ又は燃料用ホース、溶剤用チューブ又は溶剤用ホース、塗料用チューブ又は塗料用ホース(プリンタ用途含む)、自動車のラジエーターホース、エアコンホース、ブレーキホース、電線被覆材、飲食物用チューブ又は飲食物用ホース、ガソリンスタンド用地下埋設チューブ若しくはホース、海底油田用チューブ若しくはホース(インジェクションチューブ、原油移送チューブ含む)等
ボトル、容器、タンク類;自動車のラジエータータンク、ガソリンタンク等の燃料用タンク、溶剤用タンク、塗料用タンク、半導体用薬液容器等の薬液容器、飲食物用タンク等
その他;キャブレターのフランジガスケット、燃料ポンプのOリング等の各種自動車用シール、油圧機器のシール等の各種機械関係シール、ギア、医療用チューブ(カテーテル含む)、索道管等
Films, sheets; food films, food sheets, chemical films, chemical sheets, diaphragm pump diaphragms and various packing tubes, hoses; fuel tubes such as automotive fuel tubes or automotive fuel hoses, or fuel Hose, solvent tube or solvent hose, paint tube or paint hose (including printer use), automotive radiator hose, air conditioner hose, brake hose, wire covering material, food and beverage tube or food and beverage hose, gasoline Underground buried tubes or hoses for stands, submarine oil field tubes or hoses (including injection tubes and crude oil transfer tubes), bottles, containers, tanks; fuel tanks such as automobile radiator tanks, gasoline tanks, solvent tanks, paints tank Chemical containers such as semiconductor chemical containers, food and beverage tanks, etc .; various automotive seals such as carburetor flange gaskets, fuel pump O-rings, hydraulic equipment seals, gears, medical tubes ( Including catheter), cable duct, etc.
本発明の積層体は、チューブ、ホース、タンク等、燃料等の引火性の液体に接する用途に好適に用いることができ、この場合、液体と接する箇所は層(C)であることが好ましく、層(J)が存在する場合は層(J)であることが好ましい。上記液体と接する箇所は、通常、内層であるので、層(J)を内層とする場合、層(C)は中間層、層(K)は外層となる。本明細書において、上記「内層」「中間層」「外層」は、チューブ、ホース、タンク等の内側・外側の概念を伴う形状において、上記層(J)及び上記層(K)のうちどの層が内側か外側か又はこの二者の間に位置するかを表すにすぎず、上記積層体は、上記層(C)の表面のうち上記層(J)との接面とは反対側の表面上、及び/又は、上記層(J)と上記層(C)及び/又は上記層(C)と上記層(K)との間、及び/又は、上記層(K)の表面のうち上記層(C)との接面とは反対側の表面上にそれぞれその他の層を有するものであってもよい。 The laminate of the present invention can be suitably used for applications that come into contact with flammable liquids such as tubes, hoses, tanks, etc., and in this case, it is preferable that the portion in contact with the liquid is the layer (C), When a layer (J) exists, it is preferable that it is a layer (J). Since the portion in contact with the liquid is usually an inner layer, when the layer (J) is an inner layer, the layer (C) is an intermediate layer and the layer (K) is an outer layer. In the present specification, the “inner layer”, “intermediate layer”, and “outer layer” are any of the layer (J) and the layer (K) in the shape with the concept of the inside / outside of tubes, hoses, tanks, etc. Represents only the inner side, the outer side, or between the two, and the laminate is a surface of the surface of the layer (C) opposite to the contact surface with the layer (J). Above and / or between the layer (J) and the layer (C) and / or between the layer (C) and the layer (K) and / or among the surfaces of the layer (K) It may have another layer on the surface opposite to the contact surface with (C).
本明細書において、「中間層」という場合、上記内層と上記外層との間にある層を指す概念である。 In this specification, the “intermediate layer” is a concept indicating a layer between the inner layer and the outer layer.
本発明の積層体がガソリン等の引火性の液体に接する場合、引火性の液体が接して静電荷が蓄積しやすいが、この静電荷によって引火することを避けるため、液体と接触する層は導電性フィラーを含有することが好ましい。 When the laminate of the present invention is in contact with a flammable liquid such as gasoline, the flammable liquid is liable to accumulate and static charges are likely to accumulate. However, in order to avoid igniting by this static charge, the layer in contact with the liquid is electrically conductive. It is preferable to contain a functional filler.
本発明の積層体において液体と接する箇所を層(J)とする場合、層(J)は、最内層が導電性フィラーを配合した含フッ素エチレン性重合体からなる層であってもよいし、該最内層と、該最内層よりも外側に、導電性フィラーを含まない含フッ素エチレン性重合体からなる層とを有する多層構造であってもよい。後者の最内層と導電性フィラーを含まない含フッ素エチレン性重合体組成物からなる層とは接していてもよい。また、本発明の積層体は、最内層及び最外層を層(J)とすることによって、更に耐薬液性を向上させることが可能である。 When the portion in contact with the liquid in the laminate of the present invention is a layer (J), the layer (J) may be a layer made of a fluorine-containing ethylenic polymer in which the innermost layer is blended with a conductive filler, A multilayer structure having the innermost layer and a layer made of a fluorine-containing ethylenic polymer not containing a conductive filler outside the innermost layer may be used. The latter innermost layer may be in contact with the layer made of the fluorine-containing ethylenic polymer composition not containing the conductive filler. Moreover, the laminated body of this invention can improve chemical-solution resistance further by making an innermost layer and an outermost layer into a layer (J).
燃料用チューブである上記積層体も本発明の1つである。 The above laminate as a fuel tube is also one aspect of the present invention.
本発明の積層体は、上述したように、優れた耐燃料透過性と耐燃料クラック性を有するので、燃料用チューブに用いる燃料チューブ用積層体として好適に用いることができる。 As described above, since the laminate of the present invention has excellent fuel permeation resistance and fuel crack resistance, it can be suitably used as a laminate for a fuel tube used for a fuel tube.
本発明の積層体の好ましい層構成としては特に限定されないが、燃料用チューブとして特に好適である点で、例えば、
層1:接着機能性官能基を有する本発明の含フッ素共重合体からなる層
層2:ポリアミド系樹脂からなる層
からなる積層体;
層1:接着機能性官能基を有する本発明の含フッ素共重合体からなる層
層2:接着機能性官能基を有する本発明の含フッ素共重合体からなる層
層3:ポリアミド系樹脂からなる層
からなる積層体;
層1:接着機能性官能基を有する本発明の含フッ素共重合体からなる層
層2:エチレン/ビニルアルコール共重合体からなる樹脂層
層3:変性ポリオレフィン樹脂からなる層
層4:高密度ポリオレフィン樹脂からなる層
からなる積層体;
等が挙げられる。
The preferred layer structure of the laminate of the present invention is not particularly limited, but is particularly suitable as a fuel tube, for example,
Layer 1: Layer made of the fluorine-containing copolymer of the present invention having an adhesive functional functional group Layer 2: Laminated body made of a layer made of polyamide resin;
Layer 1: Layer made of the fluorine-containing copolymer of the present invention having an adhesive functional functional group Layer 2: Layer made of the fluorine-containing copolymer of the present invention having an adhesive functional functional group Layer 3: Made of a polyamide-based resin A laminate comprising layers;
Layer 1: Layer made of fluorine-containing copolymer of the present invention having an adhesive functional group Layer 2: Resin layer made of ethylene / vinyl alcohol copolymer Layer 3: Layer layer made of modified polyolefin resin 4: High-density polyolefin A laminate comprising a resin layer;
Etc.
本発明の積層体と好ましい層構成としては、また、
層1:含フッ素エチレン性重合体(導電性フィラーを配合したものであってもよい)からなる層
層2:本発明の含フッ素共重合体からなる層
層3:ポリアミド系樹脂からなる層
からなる積層体が挙げられ、なかでも、
層1:共重合体(III)(導電性フィラーを配合したものであってもよい)からなる層
層2:接着機能性官能基を有する本発明の含フッ素共重合体からなる層
層3:ポリアミド系樹脂からなる層
からなる積層体が挙げられる。
As a laminate and a preferred layer structure of the present invention,
Layer 1: Layer made of fluorine-containing ethylenic polymer (may be blended with conductive filler) Layer 2: Layer made of fluorine-containing copolymer of the present invention Layer 3: Layer made of polyamide resin And the laminated body
Layer 1: Layer made of copolymer (III) (may be blended with conductive filler) Layer 2: Layer made of fluorine-containing copolymer of the present invention having an adhesive functional group 3: The laminated body which consists of a layer which consists of polyamide-type resin is mentioned.
本発明の積層体の好ましい層構成としては、更に、
層1:含フッ素エチレン性重合体(導電性フィラーを配合したものであってもよい)からなる層
層2:ポリアミド系樹脂からなる層
層3:本発明の含フッ素共重合体からなる層
層4:ポリアミド系樹脂からなる層
からなる積層体が挙げられ、なかでも、
層1:共重合体(IV)(導電性フィラーを配合したものであってもよい)からなる層
層2:ポリアミド系樹脂からなる層
層3:接着機能性官能基を有する本発明の含フッ素共重合体からなる層
層4:ポリアミド系樹脂からなる層
からなる積層体が好ましく、とりわけ、
層1:共重合体(IV-II)(導電性フィラーを配合したものであってもよい)からなる層
層2:ポリアミド系樹脂からなる層
層3:接着機能性官能基を有する本発明の含フッ素共重合体からなる層
層4:ポリアミド系樹脂からなる層
からなる積層体が挙げられる。
As a preferred layer structure of the laminate of the present invention,
Layer 1: Layer made of fluorine-containing ethylenic polymer (may be blended with conductive filler) Layer 2: Layer made of polyamide resin Layer 3: Layer layer made of the fluorine-containing copolymer of the present invention 4: A laminate composed of a layer made of polyamide-based resin can be mentioned, among others,
Layer 1: Layer made of copolymer (IV) (may be blended with conductive filler) Layer 2: Layer made of polyamide-based resin Layer 3: Fluorine-containing fluorine-containing material having an adhesive functional group Layer layer 4 made of copolymer: A laminate made of a layer made of polyamide resin is preferred,
Layer 1: Layer made of copolymer (IV-II) (may be blended with conductive filler) Layer 2: Layer made of polyamide resin Layer 3: Adhesive functional functional group Layer layer 4 made of fluorine-containing copolymer: A laminate made of a layer made of polyamide-based resin may be mentioned.
上述した燃料チューブ用チューブの各層は、層の番号順に積層してなるものであり、好ましくは層1が最内層である。 Each layer of the tube for fuel tubes mentioned above is laminated | stacked in order of the number of layers, Preferably the layer 1 is an innermost layer.
以下に実施例を挙げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。 EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited only to these examples.
実施例1
水174kgを収容できるジャケット付攪拌式重合槽に、脱ミネラルした純水 51.5kgを仕込み、内部空間を純窒素ガスで充分置換した後、窒素ガスを真空で排除した。次いでオクタフルオロシクロブタン30.5kg、ヘキサフルオロプロピレン〔HFP〕10.2kg、クロロトリフルオロエチレン〔CTFE〕0.9kg、テトラフルオロエチレン〔TFE〕4.5kg、パーフルオロ(プロピルビニルエーテル)〔PPVE〕2.8kgを圧入した。温度を35℃に調節し、攪拌を開始した。ここへ重合開始剤としてジ-n-プロピルパーオキシジカーボネート〔NPP〕の50質量%メタノール溶液を0.37kgおよびメタノール〔MeOH〕0.30kgを添加して重合を開始した。重合中には、所望の共重合体組成と同組成に調製した混合モノマーを、槽内圧力が0.78MPaを維持するように追加仕込みしながら重合した後、槽内の残存ガスを排気して生成したポリマーを取り出し、脱ミネラルした純水で洗浄し、乾燥させて18.3kgの粒状粉末の含フッ素共重合体を得た。次いでφ50mm単軸押出し機を用いてシリンダー温度290℃で溶融混練を行い、ペレットを得た。次いで得られたペレット状の含フッ素共重合体を205℃で8時間加熱した。
Example 1
51.5 kg of demineralized pure water was placed in a jacketed stirring polymerization tank capable of containing 174 kg of water, the interior space was sufficiently replaced with pure nitrogen gas, and then the nitrogen gas was removed in vacuum. Next, 30.5 kg of octafluorocyclobutane, 10.2 kg of hexafluoropropylene [HFP], 0.9 kg of chlorotrifluoroethylene [CTFE], 4.5 kg of tetrafluoroethylene [TFE], perfluoro (propyl vinyl ether) [PPVE] 2. 8 kg was injected. The temperature was adjusted to 35 ° C. and stirring was started. Polymerization was initiated by adding 0.37 kg of a 50 mass% methanol solution of di-n-propyl peroxydicarbonate [NPP] and 0.30 kg of methanol [MeOH] as polymerization initiators. During the polymerization, a mixed monomer prepared in the same composition as the desired copolymer composition is polymerized while being additionally charged so that the pressure in the tank is maintained at 0.78 MPa, and then the residual gas in the tank is exhausted. The produced polymer was taken out, washed with demineralized pure water, and dried to obtain 18.3 kg of a fluorine-containing copolymer of granular powder. Next, melt kneading was performed at a cylinder temperature of 290 ° C. using a φ50 mm single screw extruder to obtain pellets. Subsequently, the obtained pellet-like fluorine-containing copolymer was heated at 205 ° C. for 8 hours.
実施例2
初期のモノマーおよび開始剤仕込み量をヘキサフルオロプロピレン〔HFP〕10.2kg、クロロトリフルオロエチレン〔CTFE〕0.9kg、テトラフルオロエチレン〔TFE〕4.5kg、パーフルオロ(プロピルビニルエーテル)〔PPVE〕2.8kg、NPPの50質量%メタノール溶液を0.26kgとした以外は実施例1と同様にして重合を行い18.3kgの粒状粉末の含フッ素共重合体を得た。また実施例1と同様の溶融混練および加熱を行い、ペレットを得た。
Example 2
Initial monomer and initiator charge amounts were 10.2 kg of hexafluoropropylene [HFP], 0.9 kg of chlorotrifluoroethylene [CTFE], 4.5 kg of tetrafluoroethylene [TFE], perfluoro (propyl vinyl ether) [PPVE] 2 Polymerization was carried out in the same manner as in Example 1 except that 0.26 kg of a 50 mass% methanol solution of NPP was changed to 0.28 kg to obtain 18.3 kg of a fluorine-containing copolymer in the form of granular powder. Moreover, the same melt kneading and heating as in Example 1 were performed to obtain pellets.
実施例3
初期のモノマーおよび開始剤仕込み量をヘキサフルオロプロピレン〔HFP〕10.2kg、クロロトリフルオロエチレン〔CTFE〕0.6kg、テトラフルオロエチレン〔TFE〕4.5kg、パーフルオロ(プロピルビニルエーテル)〔PPVE〕2.8kg、NPPの50質量%メタノール溶液を0.48kgとした以外は実施例1と同様にして重合を行い18.3kgの粒状粉末の含フッ素共重合体を得た。また実施例1と同様の溶融混練および加熱を行い、ペレットを得た。
Example 3
Initial monomer and initiator charge amounts were 10.2 kg of hexafluoropropylene [HFP], 0.6 kg of chlorotrifluoroethylene [CTFE], 4.5 kg of tetrafluoroethylene [TFE], perfluoro (propyl vinyl ether) [PPVE] 2 Polymerization was carried out in the same manner as in Example 1 except that 0.48 kg of a 50 mass% methanol solution of NPP was changed to 0.48 kg to obtain 18.3 kg of a fluorine-containing copolymer in the form of granular powder. Moreover, the same melt kneading and heating as in Example 1 were performed to obtain pellets.
実施例4
初期のモノマーおよび開始剤仕込み量をヘキサフルオロプロピレン〔HFP〕10.2kg、クロロトリフルオロエチレン〔CTFE〕0.6kg、テトラフルオロエチレン〔TFE〕4.5kg、パーフルオロ(プロピルビニルエーテル)〔PPVE〕2.8kg、NPPの50質量%メタノール溶液を0.37kgとした以外は実施例1と同様にして重合を行い18.3kgの粒状粉末の含フッ素共重合体を得た。また実施例1と同様の溶融混練および加熱を行い、ペレットを得た。
Example 4
Initial monomer and initiator charge amounts were 10.2 kg of hexafluoropropylene [HFP], 0.6 kg of chlorotrifluoroethylene [CTFE], 4.5 kg of tetrafluoroethylene [TFE], perfluoro (propyl vinyl ether) [PPVE] 2 Polymerization was carried out in the same manner as in Example 1 except that 0.87 kg of a 50 wt% methanol solution of NPP was changed to 0.37 kg to obtain 18.3 kg of a fluorine-containing copolymer in the form of granular powder. Moreover, the same melt kneading and heating as in Example 1 were performed to obtain pellets.
実施例5
初期のモノマーおよび開始剤仕込み量をヘキサフルオロプロピレン〔HFP〕10.2kg、クロロトリフルオロエチレン〔CTFE〕0.9kg、テトラフルオロエチレン〔TFE〕4.5kg、パーフルオロ(プロピルビニルエーテル)〔PPVE〕2.8kg、NPPの50質量%メタノール溶液を0.47kgとした以外は実施例1と同様にして重合を行い18.3kgの粒状粉末の含フッ素共重合体を得た。また実施例1と同様の溶融混練および加熱を行い、ペレットを得た。
Example 5
Initial monomer and initiator charge amounts were 10.2 kg of hexafluoropropylene [HFP], 0.9 kg of chlorotrifluoroethylene [CTFE], 4.5 kg of tetrafluoroethylene [TFE], perfluoro (propyl vinyl ether) [PPVE] 2 Polymerization was carried out in the same manner as in Example 1 except that 0.47 kg of a 50 mass% methanol solution of NPP was changed to 0.47 kg to obtain 18.3 kg of a fluorine-containing copolymer as granular powder. Moreover, the same melt kneading and heating as in Example 1 were performed to obtain pellets.
実施例6
初期のモノマーおよび開始剤仕込み量をヘキサフルオロプロピレン〔HFP〕10.2kg、クロロトリフルオロエチレン〔CTFE〕3.5kg、テトラフルオロエチレン〔TFE〕4.5kg、パーフルオロ(プロピルビニルエーテル)〔PPVE〕2.8kg、NPPの50質量%メタノール溶液を0.25kg、槽内圧力を0.88MPaとした以外は実施例1と同様にして重合を行い18.3kgの粒状粉末の含フッ素共重合体を得た。次いでφ50mm単軸押出し機を用いてシリンダー温度250℃で溶融混練を行い、ペレットを得た。次いで得られたペレット状の含フッ素共重合体を170℃で8時間加熱した。
Example 6
Initial monomer and initiator charge amounts were 10.2 kg of hexafluoropropylene [HFP], 3.5 kg of chlorotrifluoroethylene [CTFE], 4.5 kg of tetrafluoroethylene [TFE], perfluoro (propyl vinyl ether) [PPVE] 2 Polymerization was carried out in the same manner as in Example 1 except that 8.7 kg, 0.25 kg of a 50 mass% methanol solution of NPP, and the pressure in the tank was 0.88 MPa, to obtain 18.3 kg of a fluorine-containing copolymer of granular powder. It was. Next, melt kneading was performed at a cylinder temperature of 250 ° C. using a φ50 mm single screw extruder to obtain pellets. Subsequently, the obtained pellet-like fluorine-containing copolymer was heated at 170 ° C. for 8 hours.
比較例1
水174kgを収容できるジャケット付攪拌式重合槽に、脱ミネラルした純水 51.5kgを仕込み、内部空間を純窒素ガスで充分置換した後、窒素ガスを真空で排除した。次いでオクタフルオロシクロブタン40.6kg、クロロトリフルオロエチレン〔CTFE〕1.3kg、テトラフルオロエチレン〔TFE〕4.5kg、パーフルオロ(プロピルビニルエーテル)〔PPVE〕2.8kgを圧入した。連鎖移動剤としてn-プロピルアルコール〔PrOH〕0.084kgを添加して、温度を35℃に調節し、攪拌を開始した。ここへ重合開始剤としてジ-n-プロピルパーオキシジカーボネート〔NPP〕の50質量%メタノール溶液を0.44kgおよびメタノール〔MeOH〕0.30kgを添加して重合を開始した。重合中には、所望の共重合体組成と同組成に調製した混合モノマーを、槽内圧力が0.66MPaを維持するように追加仕込みしながら重合した後、槽内の残存ガスを排気して生成したポリマーを取り出し、脱ミネラルした純水で洗浄し、乾燥させて18.3kgの粒状粉末の含フッ素共重合体を得た。次いでφ50mm単軸押出し機を用いてシリンダー温度290℃で溶融混練を行い、ペレットを得た。次いで得られたペレット状の含フッ素共重合体を205℃で8時間加熱した。
Comparative Example 1
51.5 kg of demineralized pure water was placed in a jacketed stirring polymerization tank capable of containing 174 kg of water, the interior space was sufficiently replaced with pure nitrogen gas, and then the nitrogen gas was removed in vacuum. Next, 40.6 kg of octafluorocyclobutane, 1.3 kg of chlorotrifluoroethylene [CTFE], 4.5 kg of tetrafluoroethylene [TFE], and 2.8 kg of perfluoro (propyl vinyl ether) [PPVE] were injected. 0.084 kg of n-propyl alcohol [PrOH] was added as a chain transfer agent, the temperature was adjusted to 35 ° C., and stirring was started. To this, 0.44 kg of a 50 mass% methanol solution of di-n-propyl peroxydicarbonate [NPP] and 0.30 kg of methanol [MeOH] were added as a polymerization initiator to initiate polymerization. During the polymerization, a mixed monomer prepared to have the same composition as the desired copolymer composition is polymerized while being additionally charged so that the pressure in the tank is maintained at 0.66 MPa, and then the residual gas in the tank is exhausted. The produced polymer was taken out, washed with demineralized pure water, and dried to obtain 18.3 kg of a fluorine-containing copolymer of granular powder. Next, melt kneading was performed at a cylinder temperature of 290 ° C. using a φ50 mm single screw extruder to obtain pellets. Subsequently, the obtained pellet-like fluorine-containing copolymer was heated at 205 ° C. for 8 hours.
比較例2
初期のモノマーおよび連鎖移動剤量、開始剤仕込み量をクロロトリフルオロエチレン〔CTFE〕1.3kg、テトラフルオロエチレン〔TFE〕4.5kg、パーフルオロ(プロピルビニルエーテル)〔PPVE〕2.8kg、〔PrOH〕0kg、NPPの50質量%メタノール溶液を0.33kgとした以外は比較例1と同様にして重合を行い18.3kgの粒状粉末の含フッ素共重合体を得た。また比較例1と同様の溶融混練および加熱を行い、ペレットを得た。
Comparative Example 2
Initial monomer and chain transfer agent amount, initiator charge amount: chlorotrifluoroethylene [CTFE] 1.3 kg, tetrafluoroethylene [TFE] 4.5 kg, perfluoro (propyl vinyl ether) [PPVE] 2.8 kg, [PrOH Polymerization was carried out in the same manner as in Comparative Example 1 except that 0 kg and a 50 wt% methanol solution of NPP was changed to 0.33 kg to obtain 18.3 kg of a fluorine-containing copolymer in the form of granular powder. Moreover, the same melt kneading and heating as in Comparative Example 1 were performed to obtain pellets.
比較例3
水174kgを収容できるジャケット付攪拌式重合槽に、脱ミネラルした純水 51.5kgを仕込み、内部空間を純窒素ガスで充分置換した後、窒素ガスを真空で排除した。次いでオクタフルオロシクロブタン40.6kg、クロロトリフルオロエチレン〔CTFE〕2.0kg、テトラフルオロエチレン〔TFE〕6.6kg、(パーフルオロヘキシル)エチレン〔PFHE〕0.06kgを圧入した。温度を35℃に調節し、攪拌を開始した。ここへ重合開始剤としてジ-n-プロピルパーオキシジカーボネート〔NPP〕の50質量%メタノール溶液を0.72kgおよびメタノール〔MeOH〕0.30kgを添加して重合を開始した。重合中には、所望の共重合体組成と同組成に調製した混合モノマーを、槽内圧力が0.84MPaを維持するように追加仕込みしながら重合した後、槽内の残存ガスを排気して生成したポリマーを取り出し、脱ミネラルした純水で洗浄し、乾燥させて18.3kgの粒状粉末の含フッ素共重合体を得た。次いでφ50mm単軸押出し機を用いてシリンダー温度290℃で溶融混練を行い、ペレットを得た。次いで得られたペレット状の含フッ素共重合体を205℃で8時間加熱した。
Comparative Example 3
51.5 kg of demineralized pure water was placed in a jacketed stirring polymerization tank capable of containing 174 kg of water, the interior space was sufficiently replaced with pure nitrogen gas, and then the nitrogen gas was removed in vacuum. Next, 40.6 kg of octafluorocyclobutane, 2.0 kg of chlorotrifluoroethylene [CTFE], 6.6 kg of tetrafluoroethylene [TFE], and 0.06 kg of (perfluorohexyl) ethylene [PFHE] were injected. The temperature was adjusted to 35 ° C. and stirring was started. To this, 0.72 kg of a 50 mass% methanol solution of di-n-propyl peroxydicarbonate [NPP] and 0.30 kg of methanol [MeOH] were added as a polymerization initiator to initiate polymerization. During the polymerization, a mixed monomer prepared to have the same composition as the desired copolymer composition is polymerized while additionally charging so that the pressure in the tank is maintained at 0.84 MPa, and then the residual gas in the tank is exhausted. The produced polymer was taken out, washed with demineralized pure water, and dried to obtain 18.3 kg of a fluorine-containing copolymer of granular powder. Next, melt kneading was performed at a cylinder temperature of 290 ° C. using a φ50 mm single screw extruder to obtain pellets. Subsequently, the obtained pellet-like fluorine-containing copolymer was heated at 205 ° C. for 8 hours.
比較例4
オクタフロオロシクロブタンおよびパーフルオロ(プロピルビニルエーテル)〔PPVE〕を使用せず、クロロトリフルオロエチレン〔CTFE〕1.7kg、テトラフルオロエチレン〔TFE〕8.9kg、ヘキサフルオロプロピレン〔HFP〕88.0kgとした他は比較例1と同様にして重合を行い、11.2kgの粒状粉末の含フッ素共重合体を得た。次いでφ50mm単軸押出し機を用いてシリンダー温度270℃で溶融混練を行い、ペレットを得た。次いで得られたペレット状の含フッ素共重合体を185℃で8時間加熱した。
Comparative Example 4
Without using octafluorocyclobutane and perfluoro (propyl vinyl ether) [PPVE], chlorotrifluoroethylene [CTFE] 1.7 kg, tetrafluoroethylene [TFE] 8.9 kg, hexafluoropropylene [HFP] 88.0 kg Otherwise, polymerization was carried out in the same manner as in Comparative Example 1 to obtain 11.2 kg of a granular powdery fluorinated copolymer. Next, melt kneading was performed at a cylinder temperature of 270 ° C. using a φ50 mm single screw extruder to obtain pellets. Subsequently, the obtained pellet-like fluorine-containing copolymer was heated at 185 ° C. for 8 hours.
実施例および比較例で得られた共重合体について、以下の方法により物性評価を行った。結果を表2に示す。 About the copolymer obtained by the Example and the comparative example, physical property evaluation was performed with the following method. The results are shown in Table 2.
(1)カーボネート基の個数の測定
共重合体の白色粉末又は溶融押出ペレットの切断片を室温で圧縮成形し、厚さ50~200μmのフィルムを作成した。このフィルムの赤外吸収スペクトル分析によってカーボネート基〔-OC(=O)O-〕のカルボニル基由来のピークが1817cm-1〔ν(C=O)〕の吸収波長に現れるので、そのν(C=O)ピークの吸光度を測定し、下記式により共重合体の主鎖炭素数10個あたりの個数を算出した。
末端基の個数(炭素数1×10個あたり)=(l×K)/t
l:吸光度
K:補正係数 (-OC(=O)O-R:1426)
t:フィルム厚(mm)
(1) Measurement of the number of carbonate groups A white powder of a copolymer or a cut piece of a melt-extruded pellet was compression molded at room temperature to prepare a film having a thickness of 50 to 200 μm. According to infrared absorption spectrum analysis of this film, a peak derived from a carbonyl group of a carbonate group [—OC (═O) O—] appears at an absorption wavelength of 1817 cm −1 [ν (C═O)]. = O) and the absorbance peak was measured to calculate the main chain number of tens per 6 carbon atoms, the copolymer according to the following formula.
Number of end groups (per 1 × 10 6 carbon atoms) = (l × K) / t
l: Absorbance K: Correction coefficient (-OC (= O) OR: 1426)
t: Film thickness (mm)
なお、赤外吸収スペクトル分析は、Perkin-Elmer FT-IRスペクトロメーター1760X(パーキンエルマー社製)を用いて40回スキャンした。得られたIRスペクトルをPerkin-Elmer Spectrum for windows Ver.1.4Cを用いて自動でベースラインを判定させ、1817cm-1のピークの吸光度を測定した。なお、フィルムの厚さはマイクロメーターを用いて測定した。 The infrared absorption spectrum analysis was scanned 40 times using a Perkin-Elmer FT-IR spectrometer 1760X (manufactured by Perkin Elmer). The obtained IR spectrum was analyzed using Perkin-Elmer Spectrum for windows Ver. The baseline was automatically determined using 1.4C, and the absorbance of the peak at 1817 cm −1 was measured. The film thickness was measured using a micrometer.
(2)共重合体の組成の測定
共重合体組成は19F-NMRおよび塩素の元素分析測定より求めた。
(2) Measurement of copolymer composition The copolymer composition was determined by 19 F-NMR and elemental analysis of chlorine.
(3)融点(Tm)の測定
セイコー型示差走査熱量計〔DSC〕を用い、10℃/分の速度で昇温したときの融解ピークを記録し、極大値に対応する温度を融点(Tm)とした。
(3) Measurement of melting point (Tm) Using a Seiko differential scanning calorimeter [DSC], record the melting peak when the temperature was raised at a rate of 10 ° C / min, and set the temperature corresponding to the maximum value to the melting point (Tm). It was.
(4)フッ素樹脂のメルトフローレート(MFR)の測定
メルトインデクサー((株)東洋精機製作所製)を用い、測定温度297℃において、5kg荷重下で内径2mm、長さ8mmのノズルから単位時間(10分間)あたりに流出するポリマーの質量(g)を測定した。
(4) Measurement of melt flow rate (MFR) of fluororesin Using a melt indexer (manufactured by Toyo Seiki Seisakusho Co., Ltd.) at a measurement temperature of 297 ° C., a unit time from a nozzle having an inner diameter of 2 mm and a length of 8 mm under a load of 5 kg. The mass (g) of the polymer flowing out per 10 minutes was measured.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
次に実施例および比較例で得られた含フッ素共重合体の評価試験を行った。
(A)単層の燃料透過係数の測定
チューブ状の積層体の各層に用いる共重合体のペレットを、それぞれ、直径120mmの金型に入れ、300℃に加熱したプレス機にセットし、約2.9MPaの圧力で溶融プレスして、厚さ0.15mmのシートを得た。CE10(イソオクタンとトルエンとの容量比50:50の混合物にエタノール10容量%を混合した燃料)を18ml投入した内径40mmφ、高さ20mmのSUS316製の透過係数測定用カップに得られたシートを入れ、60℃における質量変化を1000時間まで測定した。時間あたりの質量変化、接液部のシートの表面積及びシートの厚さから燃料透過係数(g・mm/m/day)を算出した結果を表3に示す。
Next, the evaluation test of the fluorine-containing copolymer obtained in the Example and the comparative example was done.
(A) Measurement of single-layer fuel permeability coefficient The pellets of the copolymer used for each layer of the tube-shaped laminate were placed in a 120 mm diameter mold and set in a press machine heated to 300 ° C., about 2 It was melt-pressed at a pressure of .9 MPa to obtain a sheet having a thickness of 0.15 mm. Put the obtained sheet into a SUS316 transmission coefficient measuring cup made of SUS316 with an inner diameter of 40 mmφ and a height of 20 mm with 18 ml of CE10 (fuel obtained by mixing 10% by volume of ethanol in a 50:50 volume ratio of isooctane and toluene) The mass change at 60 ° C. was measured up to 1000 hours. Table 3 shows the results of calculating the fuel permeability coefficient (g · mm / m 2 / day) from the change in mass per hour, the surface area of the sheet in the wetted part, and the thickness of the sheet.
(B)燃料浸漬後の単層のクラック発生試験
チューブ状の積層体の各層に用いる共重合体のペレットを、それぞれ、直径120mmの金型に入れ、300℃に加熱したプレス機にセットし、約2.9MPaの圧力で溶融プレスして、厚さ0.12mmのシートを得た。JISK6301の1号ダンベルにて試験片を打ち抜き、CE10に1週間浸漬した直後に20mm/minにて延伸しシート表面のクラック発生を観た。クラックの入らない最大の伸度の結果を表3に示す。
(B) Single-layer crack generation test after immersion in fuel The pellets of the copolymer used for each layer of the tube-shaped laminate are placed in a 120 mm diameter mold and set in a press machine heated to 300 ° C., The sheet was melt-pressed at a pressure of about 2.9 MPa to obtain a sheet having a thickness of 0.12 mm. A test piece was punched with a JISK6301 No. 1 dumbbell, and immediately after being immersed in CE10 for 1 week, it was stretched at 20 mm / min to observe the occurrence of cracks on the sheet surface. Table 3 shows the results of the maximum elongation without cracks.
マルチマニホールドを装着した2種2層フィルムの押出し装置((株)プラスチック工学研究所製)を用いて、外層がポリアミド12(商品名:Vestamid X7297、Degussa Huls AG社製)、内層が実施例および比較例の各含フッ素共重合体となるように2台の押出し機にそれぞれ供給して、外径8mm、内径6mmの2種2層の多層チューブを成形した。得られた多層チューブについて、以下の方法により成形性および層間接着強度を測定した。評価結果を表3に示す。 Using an extruding device (manufactured by Plastic Engineering Laboratory Co., Ltd.) of two types and two layers equipped with a multi-manifold, the outer layer is polyamide 12 (trade name: Vestamid X7297, manufactured by Degussa Huls AG), and the inner layer is an example and Two types of two-layered tubes having an outer diameter of 8 mm and an inner diameter of 6 mm were formed by supplying them to two extruders so as to be the respective fluorinated copolymers of Comparative Examples. About the obtained multilayer tube, the moldability and interlayer adhesive strength were measured with the following method. The evaluation results are shown in Table 3.
(C)成形性の確認
ライン速度を8m/minにて多層チューブ成形を行った。得られたチューブについて、内面および外面のメルトフラクチャーの発生状態を確認し、非常に発生した場合は×を、わずかに発生した場合を△、発生しなかった場合は○をそれぞれ表3に示す。
(C) Confirmation of formability Multi-layer tube forming was performed at a line speed of 8 m / min. Table 3 shows the state of occurrence of melt fracture on the inner surface and outer surface of the obtained tube. Table 3 shows x if it occurred very much, Δ if it occurred slightly, and ○ if it did not.
(D)接着強度の測定
チューブ状の積層体から1cm幅のテストピースを切り取り、テンシロン万能試験機を用いて、25mm/分の速度で180°剥離試験を行い、伸び量-引張強度グラフにおける極大5点平均を初期接着強度(N/cm)として求めた。層間接着力を表3に示す。比較例4の含フッ素共重合体では充分な接着強度は得られないことがわかった。
(D) Measurement of adhesive strength A test piece with a width of 1 cm was cut from a tube-shaped laminate, and a 180 ° peel test was performed at a speed of 25 mm / min using a Tensilon universal testing machine, and the maximum in the elongation-tensile strength graph. The 5-point average was determined as the initial adhesive strength (N / cm). Table 3 shows the interlayer adhesion. It was found that the fluorine-containing copolymer of Comparative Example 4 could not provide sufficient adhesive strength.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
本発明の含フッ素共重合体は、例えば、高い耐燃料透過性及び耐燃料クラック性が求められる自動車燃料チューブに好適に用いることができる。 The fluorine-containing copolymer of the present invention can be suitably used for, for example, an automobile fuel tube that requires high fuel permeation resistance and fuel crack resistance.

Claims (10)

  1. クロロトリフルオロエチレンに基づく重合単位、テトラフルオロエチレンに基づく重合単位、単量体(A)に基づく重合単位、及び、単量体(B)に基づく重合単位を含み、
    クロロトリフルオロエチレンに基づく重合単位及びテトラフルオロエチレンに基づく重合単位が合計で80.0~99.8モル%であり、
    単量体(A)に基づく重合単位が19.0~0.1モル%であり、
    単量体(B)に基づく重合単位が10.0~0.1モル%であり、
    単量体(A)は、一般式(i)
    CX=CX(CF    (i)
    (式中、X、X及びXは、同一若しくは異なって、水素原子又はフッ素原子を表し、Xは水素原子、フッ素原子又は塩素原子を表し、nは1又は2を表す。)で表されるフルオロオレフィン、及び、一般式(ii)
    CF=CF-ORf        (ii)
    (式中、Rfは炭素数が1又は2のパーフルオロアルキル基を表す。)で表されるパーフルオロ(アルキルビニルエーテル)からなる群より選択される少なくとも1種の単量体であり、
    単量体(B)は、一般式(iii)
    CX=CX(CF   (iii)
    (式中、X、X及びXは、同一若しくは異なって、水素原子又はフッ素原子を表し、Xは水素原子、フッ素原子又は塩素原子を表し、mは3~10の整数を表す。)で表されるフルオロオレフィン、及び、一般式(iv)
    CF=CF-ORf        (iv)
    (式中、Rfは炭素数が3~8のパーフルオロアルキル基を表す。)で表されるパーフルオロ(アルキルビニルエーテル)からなる群より選択される少なくとも1種の単量体である
    ことを特徴とする含フッ素共重合体。
    Polymerized units based on chlorotrifluoroethylene, polymerized units based on tetrafluoroethylene, polymerized units based on monomer (A), and polymerized units based on monomer (B),
    The total number of polymerized units based on chlorotrifluoroethylene and polymerized units based on tetrafluoroethylene is 80.0 to 99.8 mol%,
    The polymerized units based on the monomer (A) are 19.0 to 0.1 mol%,
    The polymerized units based on the monomer (B) are 10.0 to 0.1 mol%,
    The monomer (A) has the general formula (i)
    CX 3 X 4 = CX 1 (CF 2 ) n X 2 (i)
    (Wherein X 1 , X 3 and X 4 are the same or different and each represents a hydrogen atom or a fluorine atom, X 2 represents a hydrogen atom, a fluorine atom or a chlorine atom, and n represents 1 or 2). And a general formula (ii)
    CF 2 = CF-ORf 1 (ii)
    (Wherein Rf 1 represents a perfluoroalkyl group having 1 or 2 carbon atoms) is at least one monomer selected from the group consisting of perfluoro (alkyl vinyl ethers) represented by:
    The monomer (B) has the general formula (iii)
    CX 3 X 4 = CX 1 (CF 2 ) m X 2 (iii)
    (Wherein X 1 , X 3 and X 4 are the same or different and each represents a hydrogen atom or a fluorine atom, X 2 represents a hydrogen atom, a fluorine atom or a chlorine atom, and m represents an integer of 3 to 10) .) And a general formula (iv)
    CF 2 = CF-ORf 2 (iv)
    (Wherein Rf 2 represents a perfluoroalkyl group having 3 to 8 carbon atoms) and is at least one monomer selected from the group consisting of perfluoro (alkyl vinyl ethers). A characteristic fluorine-containing copolymer.
  2. クロロトリフルオロエチレンに基づく重合単位が1.0~50.0モル%であり、
    テトラフルオロエチレンに基づく重合単位が30.0~98.8モル%である請求項1記載の含フッ素共重合体。
    1.0 to 50.0 mol% of polymerized units based on chlorotrifluoroethylene,
    The fluorine-containing copolymer according to claim 1, wherein the polymerized units based on tetrafluoroethylene are 30.0 to 98.8 mol%.
  3. 単量体(A)は、ヘキサフルオロプロピレンである請求項1又は2記載の含フッ素共重合体。 The fluorine-containing copolymer according to claim 1 or 2, wherein the monomer (A) is hexafluoropropylene.
  4. 単量体(B)は、パーフルオロ(プロピルビニルエーテル)である請求項1、2又は3記載の含フッ素共重合体。 The fluorine-containing copolymer according to claim 1, 2 or 3, wherein the monomer (B) is perfluoro (propyl vinyl ether).
  5. 297℃におけるメルトフローレートが1~70g/10minである請求項1、2、3又は4記載の含フッ素共重合体。 The fluorine-containing copolymer according to claim 1, wherein the melt flow rate at 297 ° C is 1 to 70 g / 10 min.
  6. 297℃におけるメルトフローレートが1~50g/10minである請求項1、2、3、4又は5記載の含フッ素共重合体。 6. The fluorine-containing copolymer according to claim 1, wherein the melt flow rate at 297 ° C. is 1 to 50 g / 10 min.
  7. 請求項1、2、3、4、5又は6記載の含フッ素共重合体からなる層(C)及びフッ素非含有有機材料からなる層(K)を有することを特徴とする積層体。 A laminate comprising the layer (C) made of the fluorine-containing copolymer according to claim 1, and the layer (K) made of a fluorine-free organic material.
  8. 請求項1、2、3、4、5又は6記載の含フッ素共重合体からなる層(C)及びフッ素非含有有機材料からなる層(K)と、更に含フッ素エチレン性重合体(但し、前記含フッ素共重合体は除く)からなる層(J)とを有する積層体であって、前記層(J)、前記層(C)及び前記層(K)はこの順に積層していることを特徴とする積層体。 A layer (C) comprising the fluorine-containing copolymer according to claim 1, 2, 3, 4, 5 or 6, a layer (K) comprising a fluorine-free organic material, and a fluorine-containing ethylenic polymer (provided that And a layer (J) composed of a layer (J) excluding the fluorine-containing copolymer, wherein the layer (J), the layer (C) and the layer (K) are laminated in this order. A featured laminate.
  9. フッ素非含有有機材料は、ポリアミド系樹脂及びポリオレフィン系樹脂からなる群より選択される少なくとも1種である請求項7又は8記載の積層体。 The laminate according to claim 7 or 8, wherein the fluorine-free organic material is at least one selected from the group consisting of polyamide resins and polyolefin resins.
  10. 燃料用チューブである請求項7、8又は9記載の積層体。 The laminate according to claim 7, 8 or 9, which is a fuel tube.
PCT/JP2011/052254 2010-02-09 2011-02-03 Fluorine-containing copolymer WO2011099414A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010026778 2010-02-09
JP2010-026778 2010-02-09

Publications (1)

Publication Number Publication Date
WO2011099414A1 true WO2011099414A1 (en) 2011-08-18

Family

ID=44367689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052254 WO2011099414A1 (en) 2010-02-09 2011-02-03 Fluorine-containing copolymer

Country Status (1)

Country Link
WO (1) WO2011099414A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047477A1 (en) * 2016-09-06 2018-03-15 ダイキン工業株式会社 Laminate and copolymer
US20220363886A1 (en) * 2019-06-27 2022-11-17 Arkema France Combination of a thermoplastic elastomer and a fluoropolymer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005100420A1 (en) * 2004-04-13 2005-10-27 Daikin Industries, Ltd. Chlorotrifluoroethylene copolymer
JP2007015364A (en) * 2005-06-17 2007-01-25 Daikin Ind Ltd Laminate
JP2010030276A (en) * 2008-03-27 2010-02-12 Daikin Ind Ltd Laminate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005100420A1 (en) * 2004-04-13 2005-10-27 Daikin Industries, Ltd. Chlorotrifluoroethylene copolymer
JP2007015364A (en) * 2005-06-17 2007-01-25 Daikin Ind Ltd Laminate
JP2010030276A (en) * 2008-03-27 2010-02-12 Daikin Ind Ltd Laminate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047477A1 (en) * 2016-09-06 2018-03-15 ダイキン工業株式会社 Laminate and copolymer
JPWO2018047477A1 (en) * 2016-09-06 2019-03-07 ダイキン工業株式会社 Laminates and copolymers
KR20190042724A (en) 2016-09-06 2019-04-24 다이킨 고교 가부시키가이샤 The laminate and the copolymer
US11110693B2 (en) 2016-09-06 2021-09-07 Daikin Industries, Ltd. Laminate and copolymer
US20220363886A1 (en) * 2019-06-27 2022-11-17 Arkema France Combination of a thermoplastic elastomer and a fluoropolymer

Similar Documents

Publication Publication Date Title
JP5169942B2 (en) Laminated body
JP2007015364A (en) Laminate
JP2010095575A (en) Partial crystalline fluororesin and layered product
WO2001060606A1 (en) Layered resin molding and multilayered molded article
KR100790239B1 (en) Laminate
WO2009119747A1 (en) Molded body for biodiesel fuel
JP5018782B2 (en) Fuel tank
JP3972917B2 (en) Laminated body
WO2011099414A1 (en) Fluorine-containing copolymer
JP7112010B2 (en) Fluoropolymers, laminates and tubes
JP2010095576A (en) Partial crystalline fluororesin and layered product
JP7041384B1 (en) Fluororesin materials, laminates, tubes and methods for manufacturing tubes
JP7041385B1 (en) Manufacturing method of partially fluorinated resin, laminate, tube and tube
JP7041386B1 (en) Fluororesin, laminate, tube and method of manufacturing tube
CN111655485A (en) Laminate body
JPWO2004069534A1 (en) LAMINATED RESIN MOLDED BODY AND METHOD FOR PRODUCING THE SAME
CN101171128A (en) Multilayer body
CN116728931A (en) Laminate, piping, and hose

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11742158

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11742158

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP