WO2011098638A1 - Dispositivo transductor digital portátil, programable con alta discriminación en baja frecuencia y de baja intensidad - Google Patents

Dispositivo transductor digital portátil, programable con alta discriminación en baja frecuencia y de baja intensidad Download PDF

Info

Publication number
WO2011098638A1
WO2011098638A1 PCT/ES2011/000025 ES2011000025W WO2011098638A1 WO 2011098638 A1 WO2011098638 A1 WO 2011098638A1 ES 2011000025 W ES2011000025 W ES 2011000025W WO 2011098638 A1 WO2011098638 A1 WO 2011098638A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
programmable
type
low frequency
high discrimination
Prior art date
Application number
PCT/ES2011/000025
Other languages
English (en)
French (fr)
Inventor
Ceferino Maestu Unturbe
Frank Mikuski
Francisco Del Pozo Guerrero
Original Assignee
Pneuma Research, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pneuma Research, S.L. filed Critical Pneuma Research, S.L.
Priority to EP11741926.7A priority Critical patent/EP2535084A4/en
Priority to CA2789360A priority patent/CA2789360A1/en
Priority to US13/578,489 priority patent/US20130035538A1/en
Priority to MX2012009275A priority patent/MX2012009275A/es
Priority to BR112012020091A priority patent/BR112012020091A2/pt
Publication of WO2011098638A1 publication Critical patent/WO2011098638A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/004Magnetotherapy specially adapted for a specific therapy
    • A61N2/006Magnetotherapy specially adapted for a specific therapy for magnetic stimulation of nerve tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/02Magnetotherapy using magnetic fields produced by coils, including single turn loops or electromagnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • H02J7/0049Detection of fully charged condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/20The network being internal to a load
    • H02J2310/23The load being a medical device, a medical implant, or a life supporting device
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]

Definitions

  • the present invention concerns a digital, portable, modular electromagnetic field generating device that can be used for a large number of medical applications.
  • the advantage of this new design is the miniaturization of its circuits with respect to those already existing in the market, which also allows it to be programmable by software in terms of its main parameters (amplitude, waveform, frequency, sequence of pulses, positive-negative model ... etc.), and in addition to be completely portable of very low weight (less than lOOgr) and powered by rechargeable batteries.
  • Its high degree of modularity allows it to be flexible in future developments according to new parameters required. It also allows the synchronous construction of generator arrays for linear and sequential applications.
  • This invention described below consists of a programmable pulsating field generator system in different waveforms, with digital control. It has a high discrimination capacity in frequency less than one thousandth of Hz and intensity 0.001 ⁇ . It is therefore a device that, due to its range of application (within the ICNRIP, CENELEC regulations on exposure to magnetic fields), can be used as a therapeutic unit in different medical treatments. Consequently, the device is within the field of biomedical applications in the section of transcranial magnetic stimulation of low intensity and low frequency, within the framework of biomedical engineering.
  • Transcranial magnetic stimulation is a non-invasive method to stimulate brain activity, it was used for the first time in humans in the 80s, where rapid changes in external magnetic fields induce "Eddy" currents in the conductive tissue of the human brain , allowing non-invasive manipulation of neural activity at both microscale and macroscale levels.
  • This activity presents a potential capacity for therapeutic action for the treatment of disorders related to the so-called central pain caused by the alteration in frequency of coded neuronal networks.
  • TMS high intensity fields
  • Some investigations allow us to suppose that electromagnetic fields of low intensity and low frequency are capable of modifying brain functions and for this purpose some low intensity generators devices have been developed, fundamentally those developed by Jacobson enterprises INc, generators for the repair of bone fractures and muscular dysfunctions, based on field generators systems with external digital analog modulators and not integrated in a single chip.
  • Earthpulse TM systems are also known where their programmable systems do not achieve adequate frequency accuracy.
  • patent US005014699 the device described has a small generator that produces a 0-5 V signal by elementary impulses of 2-10 ms using sinusoidal and triangular symmetric waveforms with a pulse interval of 60-65 ms although using high intensities , so that the present development differs in intensity and precision, besides it is not a programmable device.
  • patents W094 / 13357 and WO0078267A2 a generator is described that produces high low modulated frequencies giving rise to a rotating magnetic field.
  • patent EP 0048451 Al describes a discharge circuit of a capacitor through a resistor, a system that regulates the current pulse and the space between pulses.
  • the device of the invention is embodied in portable electronic equipment of small size, operated by rechargeable or primary batteries, designed to generate electromagnetic signals of low intensity. These signals can be programmed in different ways, frequencies, magnitude and duration using an external programming system.
  • the device allows the application to an indeterminate number of actuators, since it behaves as a generator of current independent of the load that it has to support.
  • the design of the equipment allows great precision in the field of ELF frequency, with resolution of thousandths of Hz and very low intensities of 0 ImA but of high precision necessary for medical applications in the field of magnetic stimulation.
  • the device can be supplied with two types of batteries, one based on Li-ion Polymer batteries or similarly Li-ion batteries.
  • the other type of battery that can be used in this device is based on primary type batteries, consisting of two batteries of type Lithium 3 VDC voltage. The latter can be used in those occasions when the internal Lithium ion battery is discharged and you wish to use the equipment.
  • the intelligent charging circuit includes an intelligent electronics that monitors the initial charging voltage of the batteries and, according to this, establishes a charging program designed to charge the battery in the shortest possible time, infringing the least possible wear on the internal chemistry of the batteries under load.
  • This circuit includes a mini power type input connector jack widely used in cell phones designed to use a wall-type transformer charger from 5VDC to 800 milliamps. In the same way, the intelligent charging circuit can withstand voltages up to 12 volts of voltage and up to one ampere.
  • This circuit also includes a two-color LED by means of which you can know the status of the battery charge by indicating in red that the circuit is in the process of charging and with a green color when the charge is complete and the charger It can be disconnected from the equipment.
  • a circuit consisting of two sckotty rectifiers is included, which allows to protect the equipment from a polarity reversal in case the lithium batteries are installed in the wrong way. Both types of battery can be used without damaging the supply circuit.
  • the transducer system proposed by the invention modifies the power supply system using higher capacity batteries, such as Lithium Ion / Lithium Ion Polymer because the acid / lead batteries should not be used.
  • batteries such as Lithium Ion / Lithium Ion Polymer
  • the acid / lead batteries should not be used.
  • used in medical equipment and especially in equipment that must be handled close to patients or people since this type of battery usually in short conditions has a tendency to internally generate hydrogen gas, which can cause explosion, rupture of the box or activation of the valve. safety with the corresponding spillage of acid electrolyte. Therefore, this new type of feeding was incorporated due to its safety, weight and physical size characteristics.
  • the use of Lithium Ion / Lithium Ion Polymer batteries lies in the fact that the latter They have a much lower weight and cost both for the batteries themselves and for charging equipment.
  • a second differential feature is the Micro controller, in other models two micro controllers of low process capacity are used, one to manage the generation of electrical signals from the stimulator equipment and the other to manage the serial port. In the latter case they have had to add a serial to USB converter externally to the equipment in order to be able to program the equipment using an external computer.
  • this incorporates a single controller of high processing capacity with technology of type ARM, which includes a digital-to-analog converter (DAC) internally providing about 60 times more accurate in the generated analog signals, especially in those signals other than the square one.
  • DAC digital-to-analog converter
  • This microcontroller also includes the software and electronics management needed to generate a USB 2.0 type port eliminating the use of external serial to USB converters.
  • the new microcontroller in addition to managing the USB port and the generation of signals provides management of the rest of the equipment, such as the control of signaling, internal power supplies of +/- 5V, the buzzer also leaving free ports enough for the future incorporation of an LCD viewer or any other addition.
  • This new device also has an Internal DAC.
  • the placement of an external DAC implies in addition to higher costs the use of a parallel port necessary to operate this device.
  • the DAC is internally inside the silicon of the microcontroller and therefore does not occupy any port but the signal output, consumes less energy, thus achieving longer duration of the internal batteries of the equipment and makes it less vulnerable to external noises
  • the new device includes an electronic circuit for the processing of analog signals, the circuit uses a single integrated circuit (operational) instead of two (commonly used). This decreases energy consumption, giving greater autonomy of work in possible medical applications.
  • a 3.3 volt voltage input is used in the new equipment.
  • two DC / DC sources of less than 5V were designed with chips and related electronics of ultra low consumption.
  • Figure 1 shows a block diagram of the different essential elements that participate in a portable digital transducer device made in accordance with the object of the present invention.
  • Figure 2 shows a profile view of the box that houses the device of the previous figure.
  • Figure 3 shows a sectional view according to section line A-A of figure 2.
  • Figure 4 shows a detailed diagram of the digital circuit participating in the circuit of Figure 1.
  • Figure 5 shows a detailed diagram of the intelligent circuit for battery charging that participates in the circuit of Figure 1.
  • Figure 6 shows a diagram of the linear regulator circuit participating in the circuit of Figure 5.
  • Figure 7 shows a detailed diagram of the analog circuit or current stage participating in the circuit of Figure 1.
  • FIGS 8 and 9 show, finally, respective detailed diagrams of the circuits of power supply and protection that participate in the circuit of Figure 1.
  • the circuit of power supplies (2) it allows to generate the three working voltages necessary for the operation of the device.
  • the digital circuit (3) requires a working voltage of 3.3VDC and the analog circuit (4) necessary for the treatment of the signals produced by the equipment require two working voltages one of +5 VDC and the other of -5 VDC
  • the supply voltage of 3.3V is obtained using a
  • the two 5-volt power supplies include a circuit that allows them to be turned on or off using an I / O of the micro controller (7). This feature was designed to save power when the equipment is turned on.
  • this power supply circuit can operate using either the 3.7-4 VDC voltage from the internal rechargeable battery (8) or using the 6 volt voltage from the two lithium (9) 3-volt batteries each one that are arranged in series in the equipment box.
  • the digital circuit (3) shown in detail in Figure 4, is formed by a micro controller (7) of type ARM which has two oscillating circuits (10-10 ') one of them used for the normal operation of the equipment, which works with a crystal with a frequency of 8Mhz.
  • the other optional oscillator circuit is made up of a low frequency crystal of 32,768Khz that can be used in applications that require precise time control with deviations of less than a couple of seconds per year.
  • the oscillator circuit of the micro controller has an internal PLL circuit that allows to use the reference oscillator circuit of 8Mhz to multiply the frequency of operation of the processor at frequencies of more than 70Mhz, in this way allowing this microcontroller to generate large analog signals. precision in time.
  • the microcontroller includes internally a digital-to-analog converter circuit (11) that allows to generate wave signals of any type referenced to 0 volts.
  • the equipment includes an internal software that allows to generate several types of signals such as:
  • the digital-to-analog converter (11) can generate any type of complex signal as necessary to use according to the pathologies that need to be treated in the future.
  • the microcontroller (7) internally includes a pair of ports (18-19) and the firmware needed to implement a USB type (12) type 2.0 connection. This allows the equipment to include a USB connection to any type of external computer (13) necessary to be able to program the type of treatment necessary to address different types of pathology according to the needs of each patient. This circuit allows that it is not necessary to use USB to serial converters in order to be able to carry out the programming of the different types of treatments.
  • the analog to digital converter (11) is internally included in the microcontroller, this, together with the protection circuit (5) and a voltage divider (14), which are used in order to detect the voltage of work of the batteries, with the purpose of detecting the low battery states and in this way to be able to indicate to the user that the equipment is going to stop producing signals motivated by the effect of a low battery state.
  • the digital circuit includes control for the human machine interface conformed by the following devices:
  • the indicator LEDs (15) together with the tone generator or buzzer (16) allow the user to know the operating status of the device.
  • the digital circuit (3) includes a port that allows to connect to the microcontroller the liquid crystal type viewfinder (6) in case this type device is necessary.
  • This digital circuit (3) also includes a multifunction button by means of which the device can be turned off and on as well as activating and deactivating the treatment.
  • the analog circuit (4) has the function of transforming the received signals into a voltage of 0-3.3. volts in signals of +/- 5 volts of type NRO (Non Return to zero) converted into current signals with a capacity of a maximum of 1 milliampere.
  • the signals converted to current by this circuit can also be adjusted to a lower intensity by means of a software setting that decreases the amplitude of the different signals generated in digital to analog converter that can also change the frequency, and the duty cycle of the generated signals.
  • this circuit includes a continuity detector circuit (20) that keeps the micro controller (7) informed about whether the coils (21) are or are not connected to the equipment so as to be able or not to start the session of work.
  • the analog circuit (4) additionally includes an offset adjustment circuit (22) in order to adjust the current signals centered and with the correct duty cycle. This adjustment is made only once at the time of manufacturing each device and therefore is not available to the operator or the user of the equipment.
  • the protection circuit and USB connection (5) is responsible for protecting the microcontroller (7) from the static electricity that is generated in the environment and that usually damages the microcontrollers when this high voltage type leaks directly to the ports of the same.
  • This circuit includes an integrated static protector, a filter circuit for the typical differential connection of the USB ports and a connection detection circuit that allows the micro to know when a computer has been connected.
  • the liquid crystal viewfinder (6) it is an optional device that allows the doctor or staff operator of the device to know the type of programming and application time that is being used in each work section, this type of information is only presented while the equipment is connected to a USB type port, in order to confirm that the programming defined in the equipment is correct. This device can also be used to present the team users when the session is over.
  • the circuitry described will be housed in a box or casing (23) of non-ferromagnetic material, said circuitry integrating on a printed circuit board or PCB.
  • the equipment will be powered, as previously mentioned through a rechargeable lithium ion or ion battery.
  • Lithium Polymer with a harness for cables and battery contacts for the connection of the electronic board with the primary lithium batteries. The latter can be used to activate the equipment in those cases in which the internal battery is discharged.
  • the casing (23) will preferably be plastic, a special compartment (24) is included to receive a pair of primary batteries (9) of Lithium type of 3V each which are placed according to the printed indication in said box.
  • the equipment includes on its side a LED indicator Bicolor (25) that allows to know the state of charge of the internal rechargeable battery when it is in the process of charging.
  • the equipment includes a hole where the charger connector (26) is installed.
  • the connector is mini-type, 2 millimeters in diameter. The characteristics of the load power that is specified in the order of 800mA to 5VDC.
  • Mini USB type connector (12) At the other end or right side of the box is located the Mini USB type connector (12) by means of which the equipment is programmed.
  • the push button is located on the upper left side of the box
  • a female SMA type connector used to screw the male SMA connector used by the applicator is located on the upper right side of the box.
  • the four-layer PCB board designed with SMD-type electronic components and passive elements with predominant SMD 0603 technology.
  • Pin N ° 20 of the micro controller is a DAC type output or digital to analog signal conversion. It is at this point where the electrical signals initially defined as signals will be generated programmable that can be of four types square, triangular, sinusoidal or ramp. The generation of these signals is done by means of the low level software housed in the non-volatile memory of this microcontroller.
  • This same micro controls the power on and off of the power supplies, the detection of the existence of the connection with the stimulator helmet, detection of battery charge (8-9), automatic connection of the coils (21) of the stimulator helmet for the purposes of being able to program sessions lasting a certain time, the control of the LEDs (15) of green and red operation, the operation of the USB type port (12) for programming the type of treatment using an external computer (13) ), the switching on and off of the device among others.
  • Electrostatic protection for the USB port is included, an internal reset button (27) if necessary, a connector (28) with JTAG signals or programming port of the micro controller to generate low level software updates as well as , three other spike-type connectors are included by means of which other ports or outputs and inputs of the micro-controller used for the purpose of adding liquid crystal devices and manual control buttons can be programmed.
  • PCB of the device also includes an electronic circuit and USB type connector, with protection circuit (5) electrostatic and voltage detection of 5 volts typical of the USB connection, provided by any computer either portable or PC.
  • an intelligent battery charging system was designed that examines the external charging voltage, the internal tensions generated by the chemical agents and the charging way of each particular battery, this, in order to be able to perform an optimal loading schedule without damaging the internal chemistry of the same.
  • a charger As a loading element, it was designed for this device that a charger (26) can be used.
  • the charger must be used with a charging voltage between 5 and 12 volts and a maximum load capacity of 800 milliamps with DC type output.
  • the type of connector or plug of load type mini Jack of power with diameter of 2mm and with positive voltage in the center of said connector.
  • the intelligent charging circuit (1) shown in detail in figure 5 has been included in the PCB, which is based on a BQ24012 circuit or chip of Texas Instrument which is designed for that purpose, with a linear regulator low dropout (29), which is shown in detail in figure 6.
  • this is designed to treat the analog electrical signals, generated by the microcontroller to convert them into current signals that in the coils (21) of the applicator will be converted into magnetic waves of different form, frequency and magnitude.
  • This current stage is powered by a positive voltage and a negative voltage of 5 volts without reference to ground, including an output to the SMA female connector where the stimulator helmet is plugged in, the analog signal output from DAC of the micro controller in its pin n ° 20.
  • an output signal is implemented in this circuit towards the microcontroller that indicates that the stimulator helmet is connected and finally an output of the micro to activate the electrical circuit that generates the signals towards the stimulator helmet by means of a transistor of type Mosfet channel N.
  • a potentiometer (30) necessary to adjust the shutdown of the generated current signal since the adjustment of gain and current are set at the time of assembly of the PCB.
  • the equipment includes three power supplies and a protection circuit.
  • the main power supply has been designed to provide the voltage of 3.3 volts DC, with which the micro controller and the rest of the electronic components that make up the electronic system of the device are fed. This except for the circuit of the current stage that is supplied with +/- 5 volts.
  • the 3.3 volt source uses a Texas LDO type voltage regulator, model REGI 13-3.3 with a direct input from the lithium-ion or lithium-ion polymer battery whose working voltage ranges from 3.3V to 4 volts . This electronic circuit also supplies the 3.3 volt voltage with which it stabilizes.
  • the 3.3 volt source uses a voltage regulator of type
  • This electronic circuit also supplies the 3.3 volt voltage with which the two positive and negative 5 volt power supply circuits are fed.
  • the 3.3 volt supply circuit can also be powered by external batteries and therefore a protection circuit made up of schottky diode has been included to avoid the reverse of the voltage from the lithium-ion batteries / lithium-ion batteries .
  • two primary lithium type batteries are used, which generate a potential of 3V volts each. These two batteries are connected in series internally in the equipment box to generate a voltage of 6 volts with which the LDO voltage regulator described above is also fed.
  • the positive 5-volt power supply is designed with a DC / DC type integrated circuit model TPS 61220 whose schematic is presented in the previous table.
  • the 5 volt negative source included in the printed circuit of the stimulator is designed with an inverter type TPS63700 integrated circuit whose schematic is presented in the previous table.
  • Both sources of power of 5 volts are controlled by means of the micro controller (7) who through the pin 41 of the same can turn off and ignite the operation of the same.
  • the electronic circuit responsible for recharging the internal batteries is designed to intelligently charge both lithium-ion batteries and lithium-ion polymer type batteries. In the case of this equipment you can use any of these batteries whose physical dimensions allow their installation inside the plastic box. In the case of this equipment, batteries with a physical dimension of 40x60x6mm and a load capacity of more than 850 milliamperes have been used, thus allowing an autonomy of operation of the equipment exceeding 30 hours.
  • the other type of rechargeable battery that can be used in this equipment is a pyramidal type Lithium Ion usually used in cellular mobile telephony whose charging characteristics are similar to the aforementioned Lithium Ion Polymer.
  • the equipment can be powered with primary Lithium AA batteries.
  • the equipment can be used by means of two lithium-type primary batteries which have an energy storage of approximately 1.20 amps and a working voltage of 3 volts. If this type of power is used, two batteries connected internally in series are required, which allows the equipment to operate for 50 hours.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Power Engineering (AREA)
  • Neurology (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electrotherapy Devices (AREA)
  • Magnetic Treatment Devices (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

Dispositivo transductor digital portátil, programable con alta discriminación en baja frecuencia y de baja intensidad que consiste en un dispositivo generador de campos electromagnéticos digital, portátil, modular, que puede ser utilizado para un gran número de aplicaciones médicas. El dispositivo permite ser programado mediante software en lo que se refiere a sus principales parámetros (amplitud, forma de onda, frecuencia, secuencia de pulsos, modelo positivo-negativo...etc.), y además es completamente portátil con un reducido peso, alimentado por baterías recargables. Su alto grado de modularidad le permite ser flexible en futuros desarrollos según parámetros nuevos requeridos. Además permite la construcción sincrónica de arrays de generadores para aplicaciones lineales y secuenciales. El dispositivo posee una alta capacidad de discriminación en frecuencia inferior a una milésima de Hz e intensidad 0.001 μΑ.

Description

DISPOSITIVO TRANSDUCTOR DIGITAL PORTÁTIL, PROGRAMABLE CON ALTA DISCRIMINACIÓN EN BAJA FRECUENCIA Y DE BAJA INTENSIDAD
D E S C R I P C I Ó N OBJETO DE LA INVENCIÓN La presente invención se trata de un dispositivo generador de campos electromagnéticos digital, portátil, modular, que puede ser utilizado para un gran número de aplicaciones médicas. La ventaja de este nuevo diseño es la miniaturización de sus circuitos con respecto a los que ya existen en el mercado, que además le permite ser programable mediante software en lo que se refiere a sus principales parámetros (amplitud, forma de onda, frecuencia, secuencia de pulsos, modelo positivo-negativo... etc.), y además ser completamente portátil de muy bajo peso (menos de lOOgr) y alimentado por baterías recargables. Su alto grado de modularidad le permite ser flexible en futuros desarrollos según parámetros nuevos requeridos. Además permite la construcción sincrónica de arrays de generadores para aplicaciones lineales y secuenciales.
Esta invención descrita a continuación consiste en un sistema generador de campos pulsantes programable en diferentes formas de onda, con control digital. Posee una alta capacidad de discriminación en frecuencia inferior a una milésima de Hz e intensidad 0.001 μΑ. Se trata pues de un dispositivo que por su rango de aplicación (dentro de la normativa ICNRIP, CENELEC sobre exposición a campos magnéticos) permite ser utilizado como unidad terapéutica en diferentes tratamientos médicos. Consecuentemente, el dispositivo se encuentra dentro del campo de las aplicaciones biomédicas en el apartado de estimulación magnética transcraneal de baja intensidad y baja frecuencia, en el marco de la ingeniería biomédica.
ANTECEDENTES DE LA INVENCIÓN
La estimulación magnética transcraneal es un método no invasivo para estimular la actividad cerebral, fue usada por primera vez en humanos en la década de los 80, donde cambios rápidos en los campos magnéticos exteriores inducen corrientes de "Eddy" en el tejido conductor del cerebro humano, permitiendo la manipulación no invasiva de la actividad neural tanto a nivel de microescala como de macroescala. Esta actividad presenta una potencial capacidad de actuación terapéutica para el tratamiento de los trastornos relacionados con el llamado dolor central producto de la alteración en frecuencia de redes neuronales codificadas.
Durante mas de cien años ha sido reconocido que la electricidad y el magnetismo son unidades interdependientes, ligadas mediante las ecuaciones de Maxwell (Bohning 2000), una corriente que pasa a través de un conductor genera un campo magnético perpendicular a la dirección de la corriente. En los últimos años se ha producido un creciente número de informes que demuestran efectos significativos de los campos electromagnéticos de extremadamente baja frecuencia (ELF,EMF) sobre diferentes aspectos del comportamiento animal y humano. Además han demostrado que la exposición a campos ELF afecta a la actividad eléctrica cerebral. Este sistema es de carácter no invasivo ya que va a utilizar campos magnéticos pulsantes de baja intensidad (por debajo de la normativa CENELEC, y recomendaciones ICNRIP). Fueron usados por primera vez en humanos en la década de los 80, donde el campo magnético a pulsos controlados permitía inducir corrientes de Eddy en el interior del tejido nervioso, lo que permite la modificación de las propiedades eléctricas de los tejidos subyacentes, con un amplio potencial terapéutico.
Los sistemas desarrollados hasta ahora utilizan campos de alta intensidad, (TMS). Algunas investigaciones permiten suponer qué campos electromagnéticos de baja intensidad y baja frecuencia son capaces de modificar las funciones cerebrales y para ello se han desarrollado algunos dispositivos de generadores de baja intensidad, fundamentalmente los desarrollados por Jacobson enterprises INc, generadores para la reparación de fracturas óseas y disfunciones musculares, basados en sistemas de generadores de campo con moduladores analógico digitales externos y no integrados en un solo chip. También son conocidos los sistemas Earthpulse TM donde sus sistemas programables no consiguen una adecuada precisión en frecuencia.
En la patente US005014699 el dispositivo descrito presenta un pequeño generador que produce una señal de 0-5 V mediante impulsos elementales de 2-10 ms utilizando formas de onda simétricas sinusoidales y triangulares con un intervalo entre pulsos de 60-65 ms aunque utilizando altas intensidades, por lo que difiere el presente desarrollo en intensidad y precisión, además no es un dispositivo programable. En las patentes W094/ 13357 y WO0078267A2, se describe un generador que produce altas frecuencias moduladas en baja dando lugar a un campo magnético giratorio. El diseño y las aplicaciones difieren notablemente del presente desarrollo. Por su parte en la patente EP 0048451 Al se describe un circuito de descarga de un condensador a través de una resistencia, sistema que regula el pulso de corriente y el espacio entre pulsos. En este caso se trata de un dispositivo que ni es programable ni es portátil. Los desarrollos de Jacobson, utilizan al igual que en la presente invención campos magnéticos muy débiles del orden de 10"20 Gauss aplicados a través de una bobina de Hemholtz. Si bien se utiliza campos de rango similar al presente caso, tampoco se trata de un dispositivo programable, ni portátil. Otro dispositivo similar es el descrito en la Patente WO0078267A2, que presenta un sistema portátil para aplicar magnetoterapia como TENS, es decir, por inducción de campo eléctrico a partir de campo magnético. Para ello necesita alta energía, no siendo programable, siendo poco preciso en frecuencia. El solicitante desconoce la existencia de actuadores magnéticos digitales modulares, portátiles de alta precisión en frecuencia y amplitud aplicables a tratamientos médicos de alta eficacia y seguridad.
DESCRIPCIÓN DE LA INVENCIÓN
La portabilidad del sistema y la capacidad de alimentación en duración y desconexión a la red eléctrica permiten a este sistema modular tener una amplia capacidad de trabajo que lo diferencia de los sistemas que se encuentran en el mercado.
Para ello, y de forma más concreta, el dispositivo de la invención se materializa en un equipo electrónico portátil de pequeño tamaño, operado por baterías recargables o primarias, diseñado para generar señales electromagnéticas de baja intensidad. Estas señales pueden ser programadas de diferentes formas, frecuencias, magnitud y duración utilizando para ello un sistema exterior de programación. El dispositivo permite la aplicación a un número indeterminado de actuadores, ya que se comporta como un generador de corriente independiente de la carga que tenga que soportar. El diseño del equipo permite gran precisión en el ámbito de frecuencia ELF, con resolución de milésimas de Hz e intensidades muy bajas de 0 ImA pero de alta precisión necesarias para aplicaciones médicas del ámbito de la estimulación magnética.
De forma más concreta, en el dispositivo de la invención participan seis elementos fundamentales, que son los siguientes:
- Circuito de carga inteligente de batería.
- Circuito de fuentes de alimentación.
- Circuito digital.
- Circuito analógico.
- Circuito de protección y conexión USB.
- Visor de cristal líquido.
El dispositivo puede abastecerse de dos tipos de batería, una, basada en las baterías de lón de Litio Polímero o de igual manera baterías de tipo lón de Litio. El otro tipo de batería que puede ser utilizada en este dispositivo se basa en baterías de tipo primaria, conformadas por dos baterías de tipo Litio de 3 VDC de tensión. Estas últimas pueden ser utilizadas en aquellas ocasiones cuando se descargue la batería de lón de Litio interna y se desee utilizar el equipo.
El circuito de carga inteligente incluye una electrónica inteligente que supervisa la tensión inicial de carga de las baterías y según ésta, establece un programa de carga diseñado para cargar la batería en el menor tiempo posible infringiendo el menor desgaste posible a la química interna de las baterías sometidas a carga. Este circuito incluye un conector de entrada de tipo mini power jack utilizado ampliamente en los teléfonos celulares diseñado para utilizar un cargador de tipo transformador de pared de 5VDC a 800 miliamperios. De igual manera, el circuito de carga inteligente puede soportar tensiones de hasta 12 voltios de tensión y hasta un amperio.
Este circuito incluye de igual manera un LED bicolor por medio del cual se puede conocer el estado de la carga de la batería indicando en color rojo que el circuito se encuentra en proceso de carga y con un color verde cuando la carga está completa y el cargador puede ser desconectado del equipo.
Para poder utilizar los dos tipos de baterías, la interna y las de Litio se incluye un circuito conformado por dos rectificadores de tipo sckotty que permiten proteger el equipo de una reversión de polaridad en caso que las baterías de litio sean instaladas de forma equivocada y que puedan ser utilizadas ambos tipos de batería sin que se dañe el circuito de alimentación.
Así pues, y frente al estado de la técnica, el sistema transductor que la invención propone modifica el sistema de alimentación utilizando baterías de mayor capacidad, tipo Ión de Litio/Ión de Litio Polímero debido a que las baterías de ácido/plomo no deben ser utilizadas en equipos médicos y sobre todo en equipos que deben ser manipulados cerca de pacientes o personas ya que este tipo de batería usualmente en condiciones de corto tienen tendencia a generar internamente gas hidrógeno pudiendo ocasionar explosión, ruptura de la caja o activación de la válvula de seguridad con el correspondiente derramamiento de electrolito ácido. Por tanto se incorporó este nuevo tipo de alimentación debido a sus características de seguridad, peso y tamaño físico. La utilización de baterías de Ión de Litio/ Ión de Litio Polímero radica en que éstas últimas poseen un peso y costo muy inferior tanto de las baterías propiamente dichas como en equipo de carga.
Una segunda característica diferencial es el Micro controlador, en otros modelos se utilizan dos micro controladores de baja capacidad de proceso, uno, para gestionar la generación de señales eléctricas propias del equipo estimulador y el otro para gestionar el puerto serie. En este último caso han tenido que agregar un convertidor de serie a USB de forma externa al equipo de manera de poder realizar la programación de los equipos utilizando un ordenador externo.
En el caso del microcontrolador de la presente invención, éste incorpora un solo controlador de gran capacidad de proceso con tecnología de tipo ARM, que incluye un convertidor de digital a analógico (DAC) internamente proporcionando unas 60 veces más preciso en las señales analógicas generadas, sobre todo en aquellas señales diferentes a la cuadrada. El hecho de que el DAC se encuentre dentro del micro controlador elimina ruidos externos y mejora la calidad de las señales generadas con su correspondiente disminución en el costo del equipo. También este micro controlador incluye la gestión de software y la electrónica necesaria para generar un puerto de tipo USB 2.0 eliminando el uso de convertidores de serie a USB externos. El nuevo micro controlador además de gestionar el puerto USB y la generación de señales proporciona la gestión del manejo del resto del equipo tal como es el caso control de la señalización, fuentes de alimentación internas de +/-5V, el zumbador dejando también puertos libres suficientes para la incorporación a futuro de un visor de LCD o cualquier otro aditamento. Este nuevo dispositivo posee además un DAC Interno. La colocación de un DAC externo implica además de costos superiores la utilización de un puerto paralelo necesario para manejar este dispositivo. En el modelo propuesto, el DAC se encuentra internamente en el interior del silicio del micro controlador y por lo tanto no ocupa puerto alguno sino el de salida de señal, consume menor cantidad de energía, logrando por ende, mayor duración de las baterías internas del equipo y hace que éste tenga menos vulnerabilidad a los ruidos externos. El nuevo dispositivo incluye un circuito electrónico de tratamiento de las señales analógicas, el circuito utiliza un solo circuito integrado (operacional) en vez de dos (utilizados habitualmente). Esto, disminuye el consumo energético dando mayor autonomía de trabajo en las posibles aplicaciones médicas.
Asimismo, en el nuevo equipo se utiliza una entrada de tensión de 3.3 voltios. En este sentido hubo que incluir dos fuentes de alimentación necesarias para operar la parte del tratamiento analógico de las señales generadas por el DAC. De igual manera se diseñaron dos fuentes DC/DC de más menos 5V con chips y electrónica conexa de ultra bajo consumo. Como elemento adicional se incluyó en el nuevo equipo espacio físico para colocar dos baterías de litio de 3V c/u, con las cuales se puede alimentar el equipo por más de 40 horas en caso de no disponer energía de red para recargar las baterías internas. Esto permite realizar trabajos de campo o en aquellos lugares donde no exista red eléctrica.
DESCRIPCIÓN DE LOS DIBUJOS
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características del invento, de acuerdo con un ejemplo preferente de realización práctica del mismo, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente: La figura 1.- Muestra un diagrama de bloques de los diferentes elementos esenciales que participan en un dispositivo transductor digital portátil realizado de acuerdo con el objeto de la presente invención. La figura 2.- Muestra una vista de perfil de la caja que aloja al dispositivo de la figura anterior.
La figura 3.- Muestra una vista en sección según la línea de corte A- A de la figura 2.
La figura 4.- Muestra un diagrama detallado del circuito digital que participa en el circuito de la figura 1.
La figura 5.- Muestra un diagrama detallado del circuito inteligente para carga de baterías que participa en el circuito de la figura 1.
La figura 6.- Muestra un diagrama del circuito regulador lineal que participa en el circuito de la figura 5. La figura 7.- Muestra un diagrama detallado del circuito analógico o etapa de corriente que participa en el circuito de la figura 1.
Las figuras 8 y 9.- Muestran, finalmente, respectivos diagramas detallados de los circuitos de fuentes de alimentación y protección que participan en el circuito de la figura 1.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN
A la vista de las figuras reseñadas, y en especial de la figura 1 , puede observarse como en el dispositivo de la invención participan seis elementos fundamentales, interrelacionados entre sí, materializados en un circuito de carga inteligente de batería (1), un circuito de fuentes de alimentación (2), un circuito digital (3), un circuito analógico (4), un circuito de protección y conexión USB (5), y un visor de cristal líquido (6).
En cuanto al circuito de fuentes de alimentación (2), el mismo permite generar las tres tensiones de trabajo necesarias para el funcionamiento del dispositivo. El circuito digital (3) necesita de una tensión de trabajo de 3.3VDC y el circuito analógico (4) necesario para el tratamiento de las señales producidas por el equipo requieren de dos tensiones de trabajo una de +5 VDC y la otra de -5 VDC. La tensión de alimentación de 3.3V es obtenida utilizando un
LDO o regulador de tensión fijo de 3.3 voltios. Por otro lado, las tensiones de alimentación de +/- 5 voltios son generados internamente en el equipo utilizando dos fuentes de alimentación diferentes que incluye sendos circuitos integrados, los mostrados en detalle en las figuras 7 y 8.
Las dos fuentes de alimentación de 5 voltios incluyen un circuito que permite que las mismas puedan ser encendidas o apagadas utilizando un I/O del micro controlador (7). Esta característica fue diseñada para ahorrar energía cuando el equipo esté encendido.
En este sentido, este circuito de fuente de alimentación puede operar utilizando tanto la tensión de 3.7-4 VDC proveniente de la batería recargable interna (8) o utilizando la tensión de 6 voltios proveniente de las dos baterías de litio (9) de 3 voltios cada una que son dispuestas en serie en la caja del equipo. Por su parte, el circuito digital (3), el mostrado en detalle en la figura 4, está conformado por un micro controlador (7) de tipo ARM el cual posee dos circuitos osciladores (10-10') uno de ellos utilizado para la operación normal del equipo, el cual funciona con un cristal con una frecuencia de 8Mhz. El otro circuito oscilador opcional está conformado por un cristal de baja frecuencia de 32.768Khz que podrá ser utilizado en aplicaciones que requieran llevar un control de tiempo preciso del tiempo con desviaciones de menos de un par de segundos al año.
El circuito oscilador del micro controlador posee un circuito PLL interno que permite utilizar el circuito oscilador de referencia de 8Mhz para multiplicar la frecuencia de operación del procesador a frecuencias de más de 70Mhz, de esta manera permitiendo que este micro controlador pueda generar señales analógicas de gran precisión en el tiempo.
El micro controlador, incluye internamente un circuito convertidor de digital a analógico (11) que permite generar señales de onda de cualquier tipo referenciadas a 0 voltios. En este sentido el equipo incluye un software interno que permite generar varios tipos de señales tales como:
Señales cuadradas.
Señales sinusoidales.
Señales de tipo sierra.
Señales de tipo triangulares.
Incluyendo el software adecuado, el convertidor digital a analógico (11) puede generar cualquier tipo de señal compleja según sea necesario de utilizar de acuerdo a las patologías que a futuro sea necesario tratar. El micro controlador (7) incluye internamente un par de puertos (18-19) y el firmware necesario para implementar una conexión de tipo USB (12) de tipo 2.0. Esto, permite que en el equipo se incluya una conexión USB a cualquier tipo de ordenador (13) externo necesario para poder programar el tipo de tratamiento necesario para atender diferentes tipos de patología de acuerdo a las necesidades propias de cada paciente. Este circuito permite que no sea necesario utilizar convertidores de USB a serie con la finalidad de poder realizar la programación de los diferentes tipos tratamientos.
El convertidor de analógico a digital (11), está incluido internamente en el micro controlador, esto, conjuntamente con el circuito de protección (5) y un divisor de tensión (14), los cuales son utilizados con la finalidad de poder detectar el voltaje de trabajo de las baterías, con la finalidad de detectar los estados de baja batería y de esta forma poder indicar al usuario que el equipo va a parar de producir señales motivado por efecto de un estado de batería baja.
Adicionalmente, el circuito digital incluye control para la interface hombre máquina conformado por los siguientes dispositivos:
- LEDs indicadores (15).
- Buzzer o generador de ruido o tono (16).
- Visor de cristal líquido (6).
- Botón de encendido y apagado del equipo (17).
- Detección de conexión de ordenador externo al puerto USB (12).
- Activación y desconexión del circuito de generación de señales.
- Detección de apertura del circuito generador de señales magnéticas. Los LEDs indicadores (15) conjuntamente con el generador de tono o buzzer (16) permiten dar a conocer el estado de operación del dispositivo. También el circuito digital (3) incluye un puerto que permite conectar al micro controlador el visor de tipo cristal líquido (6) en caso de que este tipo dispositivo sea necesario.
Este circuito digital (3) también incluye un botón multifunción por medio del cual se puede apagar y prender el dispositivo como también activar y desactivar el tratamiento.
Así como el circuito digital incluye un convertido de digital a analógico (11) para generar las diferentes señales de onda programadas referenciadas a 0 voltios, el circuito analógico (4) tiene la función de transformar las señales recibidas en forma de tensión de 0-3.3 voltios en señales de +/-5 voltios de tipo NRO (Non Return to zero) convertidas en señales en corriente con una capacidad de un máximo de 1 miliamperio. Las señales convertidas a corriente por este circuito pueden también ser ajustadas a una menor intensidad por medio de un ajuste de software que disminuye la amplitud de las diferentes señales generadas en convertidor digital a analógico que también puede cambiar la frecuencia, y el ciclo de trabajo de las señales generadas. Adicionalmente a estas funcionalidades mencionadas anteriormente, este circuito incluye un circuito detector de continuidad (20) que mantiene al micro controlador (7) informado sobre si las bobinas (21) se encuentran o no conectadas al equipo de manera de poder o no comenzar la sesión de trabajo. El circuito analógico (4) incluye adicionalmente un circuito de ajuste de offset (22) de manera de ajustar las señales de corriente centradas y con el ciclo de trabajo correcto. Este ajuste es hecho sólo una vez al momento de fabricar cada dispositivo y por lo tanto no se encuentra disponible ni al operador ni al usuario del equipo.
Por su parte, el circuito de protección y conexión USB (5) está encargado de proteger el micro controlador (7) de la electricidad estática que se genera en el ambiente y que usualmente daña los microcontroladores cuando este tipo alta tensión se cuela directamente a los puertos de los mismos. Este circuito incluye un integrado protector de estática, un circuito filtro para la conexión diferencial típica de los puertos USB y un circuito de detección de conexionado que permite al micro conocer cuando un ordenador ha sido conectado.
En cuanto al visor de cristal líquido (6), es un dispositivo opcional que permite al médico o personal operador del dispositivo, conocer el tipo de programación y tiempo de aplicación que está siendo utilizado en cada sección de trabajo, este tipo de información sólo es presentada mientras el equipo esté conectado a un puerto de tipo USB, de forma de poder confirmar que la programación definida en el equipo sea la correcta. Este dispositivo también puede ser utilizado para presentar a los usuarios del equipo cuando ha terminado la sesión. La circuitería descrita se alojará en una caja o carcasa (23) de material no ferromagnético, integrándose dicha circuitería sobre una placa de circuitos impresos o PCB.
El equipo se alimentará, tal y como se ha comentado con anterioridad a través de una batería recargable de tipo Ión de Litio o Ión de Litio Polímero, contando con un arnés de cables y contactos de baterías para el conexionado de la placa electrónica con las baterías primarias de litio. Éstas últimas pueden ser utilizadas para activar el equipo en aquellos casos en que la batería interna se encuentre descargada.
Asimismo incluirá un software de bajo nivel que tiene la capacidad de programar el micro controlador (3) del equipo para que éste pueda operar con las funcionalidades con que el equipo fue diseñado generando señales eléctricas de diferentes características y llevando a cabo todo el control automático del sistema.
Adicionalmente se complementará con un software de alto nivel que se instala en cualquier ordenador de tipo portátil o PC para poder programar el tipo de aplicación indicada específico para cada patología utilizando para ello una conexión de tipo USB.
La carcasa (23) será preferentemente de plástico, se incluye un compartimiento especial (24) para alojar un par de baterías primarias (9) de tipo Litio de 3V cada una la cuales se colocan según indicación impresa en dicha caja.
Asimismo incluirá dos indicadores de tipo LED (15) en su parte frontal superior, uno de color rojo y otro de color verde por medio de los cuales se indica el tipo de programa y funcionamiento del dispositivo.
También incluye en su parte lateral un indicador de tipo LED Bicolor (25) que permite conocer el estado de carga de la batería interna recargable cuando la misma se encuentra en el proceso de carga. Junto al LED indicador de carga el equipo incluye un orificio en donde se instala el conector del cargador (26). El conector es de tipo mini de 2 milímetros de diámetro. Las características de la alimentación de carga que se especifica en el orden de los 800mA a 5VDC.
En el otro extremo o lateral derecho de la caja se localiza el conector de tipo Mini USB (12) por medio del cual se realiza la programación del equipo. En la cara superior izquierda de la caja se localiza el pulsador
(17) que permite encender y apagar el equipo cuando se va a realizar el tratamiento. Utilizando este mismo botón con un tipo de secuencia determinada se puede comenzar o finalizar el tratamiento programado. En la cara superior derecha de la caja se localiza un conector de tipo SMA hembra utilizado para enroscar el conector SMA macho que utiliza el aplicador.
La placa PCB de cuatro capas, diseñado con componentes electrónicos de tipo SMD y elementos pasivos con tecnología predominante SMD 0603.
Volviendo nuevamente al circuito digital (3), éste está conformado por un micro controlador (7) de tipo Cortex, modelo SMT32F103 que incluye un cristal de referencia de 8 MHz y otro de 32.768KHz de uso opcional.
La patilla N°20 del micro controlador es una salida de tipo DAC o conversión de señales digitales a analógicas. Es en este punto donde se generará las señales eléctricas definidas inicialmente como señales programables que pueden ser de cuatro tipos cuadrada, triangular, sinusoidal o rampa. La generación de estas señales es hecha por medio del software de bajo nivel alojado en la memoria no volátil de este micro controlador.
Este mismo micro, controla el encendido y apagado de las fuentes de alimentación, la detección de la existencia de la conexión con el casco estimulador, detección de carga de baterías (8-9), conexión automática de las bobinas (21) del casco estimulador para los efectos de poder programar sesiones que duren un tiempo determinado, el control de los LEDs (15) de funcionamiento verde y rojo, el manejo del puerto de tipo USB (12) para la programación del tipo de tratamiento utilizando un ordenador externo (13), el encendido y apagado del dispositivo entre otros. Se incluye protección electrostática para el puerto USB, un botón de reset (27) interno en caso que sea necesario, un conector (28) con las señales del JTAG o puerto de programación del micro controlador para generar actualizaciones del software de bajo nivel como también, se incluyen otros tres conectores de tipo pincho por medio de los cuales se pueden programar otros puertos o salidas y entradas del micro controlador utilizadas con la finalidad de agregar dispositivos de cristal líquido y pulsadores manuales de control.
En la PCB del dispositivo también se incluye un circuito electrónico y conector de tipo USB, con circuito de protección (5) electrostático y detección de la tensión de 5 voltios típico del conexionado USB, provisto por cualquier ordenador ya sea portátil o PC.
Pasando ahora a analizar el circuito inteligente para carga de baterías (1), y a fin de extender la vida útil de las baterías y poder recargar su contenido energético en el menor tiempo posible, se diseñó un sistema de carga de batería inteligente que examina la tensión de carga externa, las tensiones internas generadas por los agentes químicos y forma de carga de cada batería en particular, esto, de manera de poder realizar una programación de carga óptima sin deteriorar la química interna de las mismas.
Como elemento de carga, se diseñó para este dispositivo que pueda ser utilizado un cargador (26). El cargador deberá ser utilizado con una tensión de carga entre 5 y 12 voltios y capacidad de carga de un máximo de 800 miliamperios con salida de tipo DC. Por otro lado el tipo de conector o enchufe de carga de tipo mini Jack de potencia con diámetro de 2mm y con tensión positiva en el centro de dicho conector.
Para ello se ha incluido en la PCB el circuito de carga inteligente (1) mostrado en detalle en la figura 5, el cual está basado en un circuito o chip BQ24012 de Texas Instrument el cual está diseñado con esa finalidad, contando con un regulador lineal de bajo dropout (29), el cual se muestra en detalle en la figura 6. Volviendo de nuevo al circuito analógico (4), éste está diseñado para tratar las señales eléctricas analógicas, generadas por el micro controlador para convertirlas en señales de corriente que en las bobinas (21) del aplicador se convertirán en ondas magnéticas de diferente forma, frecuencia y magnitud.
Esta etapa de corriente, se alimenta de una tensión positiva y otra negativa de 5 voltios sin referencia a tierra, incluyendo una salida hacia el conector hembra SMA donde se enchufa el casco estimulador, la salida de señal analógica proveniente de DAC del micro controlador en su patilla n° 20. Por otro lado se implementa en este circuito una señal de salida hacia el micro controlador que indica que el casco estimulador se encuentra conectado y por último una salida del micro para activar el circuito eléctrico que genera las señales hacia el casco estimulador por medio de un transistor de tipo Mosfet canal N.
Se incluye en este circuito electrónico un potenciómetro (30) necesario para ajustar el apagado de la señal de corriente generada ya que el ajuste de ganancia y de corriente son fijados al momento del ensamblaje de la PCB.
Tal y como se ha comentado con anterioridad, el equipo incluye tres fuentes de alimentación y un circuito de protección. La fuente de alimentación principal se ha diseñado para proveer de la tensión de 3.3 voltios DC, con la cual se alimenta el micro controlador y el resto de los componentes electrónicos que conforman el sistema electrónico del dispositivo. Esto a excepción del circuito de la etapa de corriente que se alimenta de +/- 5 voltios.
La fuente de 3.3 voltios utiliza un regulador de voltaje de tipo LDO de Texas, modelo REGI 13-3.3 con una entrada directa de la batería de Ión de litio o Ión de litio polímero cuya tensión de trabajo oscila entre los 3.3V y los 4 voltios. Este circuito electrónico también suministra la tensión de 3.3 voltios con la cual se estabiliza. La fuente de 3.3 voltios utiliza un regulador de voltaje de tipo
LDO de Texas, modelo REGI 13-3.3 con una entrada directa de la batería de Ión de litio o Ión de litio polímero cuya tensión de trabajo oscila entre los 3.3V y los 4 voltios. Este circuito electrónico también suministra la tensión de 3.3 voltios con la cual se alimentan los dos circuitos de fuente alimentación de 5 voltios positivo y negativo. El circuito de alimentación de 3.3 voltios también puede alimentarse de baterías externas y por tanto se ha incluido un circuito de protección conformado por diodo de tipo schottky para evitar el reverso de la tensión desde las baterías de Ión de Ión de litio/Ión de litio polímero. En este suministro de baterías externas se utilizan dos baterías de tipo primaria de litio, las cuales generan un potencial de 3V voltios cada una. Estas dos baterías se conectan en serie internamente en la caja del equipo para generar una tensión de 6 voltios con la cual se alimenta también el regulador de tensión LDO descrito anteriormente.
Para alimentar la etapa de corriente del estimulador se incluyen en el circuito impreso dos fuentes de alimentación de 5 voltios, una de esta de voltaje positivo y el otro negativo. La fuente de alimentación de 5 voltios positivo está diseñada con un circuito integrado de tipo DC/DC modelo TPS 61220 cuya esquemática se presenta en el cuadro anterior.
La fuente de 5 voltios negativa que se incluye en el circuito impreso del estimulador, está diseñada con un circuito integrado de tipo Inversor modelo TPS63700 cuya esquemática se presenta en el cuadro anterior.
Ambas fuentes de alimentación de 5 voltios están controladas por medio del micro controlador (7) quien a través del pin 41 del mismo puede apagar y encender el funcionamiento de las mismas.
El circuito electrónico encargado de recargar las baterías internas está diseñado para cargar inteligentemente tanto a baterías de tipo Ión de litio como baterías de tipo Ión de litio polímero. En el caso de este equipo se puede utilizar cualquiera de estas baterías cuyas dimensiones físicas permitan su instalación dentro de la caja plástica. En el caso de este equipo se han utilizado baterías con dimensión física de 40x60x6mm y con una capacidad de carga superior a los 850 miliamperios permitiendo de esta forma una autonomía de funcionamiento del equipo superior a las 30 horas.
El otro tipo de batería recargable que puede ser utilizada en este equipo es de tipo Ión de Litio de tipo piramidal usualmente utilizada en la telefonía móvil celular cuyas características de carga son similares a las anteriormente comentadas de Ión de Litio Polímero.
Por último, el equipo puede ser alimentado con baterías primarias de tipo Litio AA.
En caso de no disponer de cargador de batería el equipo puede ser utilizado por medio de dos baterías primarias de tipo litio las cuales poseen un almacenaje energético de aproximadamente 1.20 amperios y una tensión de trabajo de 3 voltios. Si este tipo de alimentación es utilizado se requieren de dos baterías conectadas internamente en serie lo cual permite que el equipo opere unas 50 horas.

Claims

R E I V I N D I C A C I O N E S
I a.- Dispositivo transductor digital portátil, programable con alta discriminación en baja frecuencia y de baja intensidad, caracterizado porque está constituido a partir de un equipo electrónico portátil de pequeño tamaño, operado por baterías recargables o primarias (8-9), en el que se establecen un circuito de carga inteligente de batería (1), un circuito de fuentes de alimentación (2), un circuito digital (3), un circuito analógico (4), un circuito de protección y conexión USB (5), y opcionalmente un visor de cristal líquido (6), habiéndose previsto que el circuito de fuentes de alimentación incorpore medios de generación de tres tensiones de trabajo, una para el circuito digital (3), y dos para el circuito analógico (4), mientras que el circuito digital (3) está conformado por un micro controlador (7) de tipo ARM el cual posee al menos un circuito oscilador (10-10'), preferentemente dos, incluyendo internamente un circuito convertidor de digital a analógico (11) que permite generar señales de onda de cualquier tipo referenciadas a 0 voltios a través del complementario software de programación. 2a.- Dispositivo transductor digital portátil, programable con alta discriminación en baja frecuencia y de baja intensidad, según reivindicación I a, caracterizado porque la tensión de alimentación del circuito digital (3) es obtenida utilizando un LDO o regulador de tensión fijo, mientras que las tensiones de alimentación del circuito analógico son generadas internamente en el equipo utilizando dos fuentes de alimentación diferentes que incluyen sendos circuitos integrados.
3a.- Dispositivo transductor digital portátil, programable con alta discriminación en baja frecuencia y de baja intensidad, según reivindicación Ia, caracterizado porque las dos fuentes de alimentación del circuito analógico incluyen un circuito que permite que las mismas puedan ser encendidas o apagadas utilizando un I/O del micro controlador (7).
4a.- Dispositivo transductor digital portátil, programable con alta discriminación en baja frecuencia y de baja intensidad, según reivindicación I a, caracterizado porque el micro controlador (7) incluye internamente un par de puertos (18-19) y el firmware necesario para implementar una conexión de tipo USB (12) de tipo 2.0. 5a.- Dispositivo transductor digital portátil, programable con alta discriminación en baja frecuencia y de baja intensidad, según reivindicación I a, caracterizado porque el convertidor de analógico a digital (11), está incluido internamente en el micro controlador, conjuntamente con el circuito de protección y conexión USB (5) y un divisor de tensión (14).
6a.- Dispositivo transductor digital portátil, programable con alta discriminación en baja frecuencia y de baja intensidad, según reivindicación I a, caracterizado porque el circuito digital incluye control para la interface hombre máquina conformado por los siguientes dispositivos:
- LEDs indicadores (15).
- Buzzer o generador de ruido o tono (16).
- Visor de cristal líquido (6).
- Botón de encendido y apagado del equipo (17).
- Detección de conexión de ordenador externo al puerto USB (12).
- Activación y desconexión del circuito de generación de señales.
- Detección de apertura del circuito generador de señales magnéticas.
7a.- Dispositivo transductor digital portátil, programable con alta discriminación en baja frecuencia y de baja intensidad, según reivindicación I a, caracterizado porque el circuito digital (3) incluye un puerto que permite conectar al micro controlador el visor de tipo cristal líquido (6) en caso de que este tipo dispositivo sea necesario.
8a .- Dispositivo transductor digital portátil, programable con alta discriminación en baja frecuencia y de baja intensidad, según reivindicación I a, caracterizado porque el circuito digital (3) incluye un botón multifunción por medio del cual se puede apagar y encender el dispositivo, así como también activar y desactivar el tratamiento.
9a .- Dispositivo transductor digital portátil, programable con alta discriminación en baja frecuencia y de baja intensidad, según reivindicación I a, caracterizado porque el circuito analógico (4) incorpora medios para transformar las señales recibidas en forma de tensión en señales de tipo NR0 (Non Return to zero) convertidas en señales en corriente con una capacidad de un máximo de 1 miliamperio, pudiendo adicionalmente ser ajustadas a una menor intensidad por medio de un ajuste de software que disminuye la amplitud de las diferentes señales generadas en convertidor digital a analógico que también puede cambiar la frecuencia, y el ciclo de trabajo de las señales generadas.
10a.- Dispositivo transductor digital portátil, programable con alta discriminación en baja frecuencia y de baja intensidad, según reivindicación 1 a , caracterizado porque el circuito analógicb (4) incluye un circuito detector de continuidad (20) que mantiene al micro controlador (7) informado sobre si las bobinas (21) se encuentran o no conectadas al equipo de manera de poder o no comenzar la sesión de trabajo. 11a .- Dispositivo transductor digital portátil, programable con alta discriminación en baja frecuencia y de baja intensidad, según reivindicación I a, caracterizado porque el circuito analógico (4) incluye un circuito de ajuste de offset (22). 12a .- Dispositivo transductor digital portátil, programable con alta discriminación en baja frecuencia y de baja intensidad, según reivindicación 1 a , caracterizado porque el circuito de protección y conexión USB (5) incluye un integrado protector de estática, un circuito filtro para la conexión diferencial típica de los puertos USB y un circuito de detección de conexionado que permite al micro conocer cuando un ordenador ha sido conectado.
13a.- Dispositivo transductor digital portátil, programable con alta discriminación en baja frecuencia y de baja intensidad, según reivindicación I a, caracterizado porque comprende una caja o carcasa (23) de material no ferromagnético, en el que se integra la circuitería sobre una placa de circuitos impresos o PCB, habiéndose previsto que incluya un compartimiento especial (24) para alojar un par de baterías primarias (9) de tipo Litio de 3V cada una, dos indicadores de tipo LED (15) en su parte frontal superior, uno de color rojo y otro de color verde por medio de los cuales se indica el tipo de programa y funcionamiento del dispositivo, así como un indicador de tipo LED Bicolor (25) que permite conocer el estado de carga de la batería interna recargable cuando la misma se encuentra en el proceso de carga.
14a.- Dispositivo transductor digital portátil, programable con alta discriminación en baja frecuencia y de baja intensidad, según reivindicación 13 a, caracterizado porque junto al LED indicador de carga el equipo incluye un orificio en donde se instala el conector del cargador (26), en el otro extremo o lateral derecho de la caja se localiza el conector de tipo Mini USB (12) por medio del cual se realiza la programación del equipo, mientras que en la cara superior izquierda de la caja se localiza el pulsador (17) que permite encender y apagar el equipo así como comenzar o finalizar el tratamiento programado.
15a.- Dispositivo transductor digital portátil, programable con alta discriminación en baja frecuencia y de baja intensidad, según reivindicación 13 a, caracterizado porque en la cara superior derecha de la caja se localiza un conector de tipo SMA hembra utilizado para enroscar el conector SMA macho que utiliza el aplicador.
16a.- Dispositivo transductor digital portátil, programable con alta discriminación en baja frecuencia y de baja intensidad, según reivindicación I a, caracterizado porque incluye protección electrostática para el puerto USB, un botón de reset (27) interno, un conector (28) con las señales del JTAG o puerto de programación del micro controlador para generar actualizaciones del software de bajo nivel, tres conectores de tipo pincho por medio de los cuales se pueden programar otros puertos o salidas y entradas del micro controlador utilizadas con la finalidad de agregar dispositivos de cristal líquido y pulsadores manuales de control.
PCT/ES2011/000025 2010-02-10 2011-02-09 Dispositivo transductor digital portátil, programable con alta discriminación en baja frecuencia y de baja intensidad WO2011098638A1 (es)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11741926.7A EP2535084A4 (en) 2010-02-10 2011-02-09 HIGH-FREQUENCY, LOW-INTENSITY, HIGH-DISCRIMINATION, PORTABLE DIGITAL TRANSDUCER DEVICE
CA2789360A CA2789360A1 (en) 2010-02-10 2011-02-09 Portable digital transducer device that is programmable, has high discrimination at low frequency and low intensity
US13/578,489 US20130035538A1 (en) 2010-02-10 2011-02-09 Portable digital transducer device that is programmable, has high discrimination at low frequency and low intensity
MX2012009275A MX2012009275A (es) 2010-02-10 2011-02-09 Dispositivo transductor digital portatil programable con alta discriminacion en baja frecuencia y de baja intensidad.
BR112012020091A BR112012020091A2 (pt) 2010-02-10 2011-02-09 dispositivo transdutor digital portátil programável com discriminação elevada em baixa frequência e de baixa intensidade

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201030183A ES2371820B1 (es) 2010-02-10 2010-02-10 Dispositivo transductor digital portátil programable con alta discriminación en baja frecuencia y de baja intensidad.
ESP201030183 2010-02-10

Publications (1)

Publication Number Publication Date
WO2011098638A1 true WO2011098638A1 (es) 2011-08-18

Family

ID=44367311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/000025 WO2011098638A1 (es) 2010-02-10 2011-02-09 Dispositivo transductor digital portátil, programable con alta discriminación en baja frecuencia y de baja intensidad

Country Status (9)

Country Link
US (1) US20130035538A1 (es)
EP (1) EP2535084A4 (es)
BR (1) BR112012020091A2 (es)
CA (1) CA2789360A1 (es)
CL (1) CL2012002108A1 (es)
CO (1) CO6571894A2 (es)
ES (1) ES2371820B1 (es)
MX (1) MX2012009275A (es)
WO (1) WO2011098638A1 (es)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013211859B4 (de) * 2013-06-21 2015-07-16 Technische Universität München Magnetstimulator zur Stimulation eines Gewebes durch ein Magnetfeld
PL228476B1 (pl) * 2013-11-13 2018-04-30 Univ Medyczny Im Piastow Slaskich We Wroclawiu Urządzenie do transdermalnej terapeutycznej elektrostymulacji
AT515328A2 (de) * 2014-02-04 2015-08-15 Bernecker & Rainer Ind Elektronik Gmbh Verfahren zur Ermittlung von Größen einer Betriebs- oder Maschinendatenerfassung
KR20160112143A (ko) 2015-03-18 2016-09-28 삼성전자주식회사 전자 장치 및 전자 장치에서의 디스플레이 패널의 화면 업데이트 방법
AU2020267399A1 (en) 2019-05-06 2021-12-02 Kamran Ansari Therapeutic arrays of planar coils configured to generate pulsed electromagnetic fields and integrated into clothing
US11020603B2 (en) 2019-05-06 2021-06-01 Kamran Ansari Systems and methods of modulating electrical impulses in an animal brain using arrays of planar coils configured to generate pulsed electromagnetic fields and integrated into clothing

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0048451A1 (en) 1980-09-24 1982-03-31 121873 Canada Inc. Electro-magnetic therapeutic system and method
US4994016A (en) * 1989-04-14 1991-02-19 John Atwood Electronic stimulating device
US5014699A (en) 1986-05-23 1991-05-14 Trustees Of The University Of Pennsylvania Electromagnetic method and apparatus for healing living tissue
WO1994013357A1 (en) 1992-12-11 1994-06-23 Electromagnetic Bracing Systems, Inc. Magnetotherapy apparatus
ES2065272A1 (es) * 1993-05-20 1995-02-01 Remacha Alberto Palacios Sistema generador de campos magneticos variables secuenciales de muy baja frecuencia y muy corta duracion.
WO2000007664A1 (en) * 1998-08-04 2000-02-17 Getullio Talpo Therapy device using variable magnetic fields
WO2000078267A2 (en) 1999-06-08 2000-12-28 Medical Bracing Systems Ltd. Pemf biophysical stimulation field generator and method
US20030028072A1 (en) * 2000-08-31 2003-02-06 Neuropace, Inc. Low frequency magnetic neurostimulator for the treatment of neurological disorders
CN2538370Y (zh) * 2002-04-10 2003-03-05 中国人民解放军第四军医大学 低强度脉冲磁场治疗仪
RU2003136665A (ru) * 2003-12-17 2005-05-20 ОАО "Уральский приборостроительный завод" (RU) Аппарат для низкочастотной магнитотерапии
US20050182287A1 (en) * 2002-10-21 2005-08-18 Becker Paul F. Method and apparatus for the treatment of physical and mental disorders with low frequency, low flux density magnetic fields
CN101491715A (zh) * 2009-02-19 2009-07-29 梅州康立高科技有限公司 一种超低频磁刺激装置及其工作方法
CN101543661A (zh) * 2008-03-28 2009-09-30 谢锡华 低频磁疗仪及其使用方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050187591A1 (en) * 2000-01-07 2005-08-25 Biowave Corporation Electro therapy method and apparatus
WO2003026503A1 (en) * 2001-09-25 2003-04-03 Vital Medical Ltd. Multiparametric apparatus for monitoring multiple tissue vitality parameters
US20070067004A1 (en) * 2002-05-09 2007-03-22 Boveja Birinder R Methods and systems for modulating the vagus nerve (10th cranial nerve) to provide therapy for neurological, and neuropsychiatric disorders
US7551957B2 (en) * 2003-03-06 2009-06-23 Bioelectronics Corp. Electromagnetic therapy device and methods
JP2009504258A (ja) * 2005-08-08 2009-02-05 ケイティムズ、ジェファーソン、ジェイ. 治療及び診断刺激を発生するための方法及び装置
ES2349480T3 (es) * 2005-12-07 2011-01-04 Boston Scientific Neuromodulation Corporation Protección de pilas y baterías y sistema de reactivación de pilas y baterías con tensión nula para dispositivo médico implantable.
JP4111995B1 (ja) * 2006-11-08 2008-07-02 株式会社メディカル・アプライアンス 神経栄養因子産生促進装置
WO2008092133A2 (en) * 2007-01-25 2008-07-31 Neurovista Corporation Methods and systems for measuring a subject's susceptibility to a seizure

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0048451A1 (en) 1980-09-24 1982-03-31 121873 Canada Inc. Electro-magnetic therapeutic system and method
US5014699A (en) 1986-05-23 1991-05-14 Trustees Of The University Of Pennsylvania Electromagnetic method and apparatus for healing living tissue
US4994016A (en) * 1989-04-14 1991-02-19 John Atwood Electronic stimulating device
WO1994013357A1 (en) 1992-12-11 1994-06-23 Electromagnetic Bracing Systems, Inc. Magnetotherapy apparatus
ES2065272A1 (es) * 1993-05-20 1995-02-01 Remacha Alberto Palacios Sistema generador de campos magneticos variables secuenciales de muy baja frecuencia y muy corta duracion.
WO2000007664A1 (en) * 1998-08-04 2000-02-17 Getullio Talpo Therapy device using variable magnetic fields
WO2000078267A2 (en) 1999-06-08 2000-12-28 Medical Bracing Systems Ltd. Pemf biophysical stimulation field generator and method
US20030028072A1 (en) * 2000-08-31 2003-02-06 Neuropace, Inc. Low frequency magnetic neurostimulator for the treatment of neurological disorders
CN2538370Y (zh) * 2002-04-10 2003-03-05 中国人民解放军第四军医大学 低强度脉冲磁场治疗仪
US20050182287A1 (en) * 2002-10-21 2005-08-18 Becker Paul F. Method and apparatus for the treatment of physical and mental disorders with low frequency, low flux density magnetic fields
RU2003136665A (ru) * 2003-12-17 2005-05-20 ОАО "Уральский приборостроительный завод" (RU) Аппарат для низкочастотной магнитотерапии
CN101543661A (zh) * 2008-03-28 2009-09-30 谢锡华 低频磁疗仪及其使用方法
CN101491715A (zh) * 2009-02-19 2009-07-29 梅州康立高科技有限公司 一种超低频磁刺激装置及其工作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2535084A4

Also Published As

Publication number Publication date
ES2371820A1 (es) 2012-01-10
US20130035538A1 (en) 2013-02-07
EP2535084A1 (en) 2012-12-19
CO6571894A2 (es) 2012-11-30
MX2012009275A (es) 2012-11-12
EP2535084A4 (en) 2013-11-20
ES2371820B1 (es) 2013-01-30
CA2789360A1 (en) 2011-08-18
BR112012020091A2 (pt) 2016-05-17
CL2012002108A1 (es) 2012-11-16

Similar Documents

Publication Publication Date Title
WO2011098638A1 (es) Dispositivo transductor digital portátil, programable con alta discriminación en baja frecuencia y de baja intensidad
CA2429677C (en) Electro-acupuncture device with stimulation electrode assembly
US9259574B2 (en) External trial stimulator useable in an implantable neurostimulator system
CN108853724B (zh) 神经电刺激装置
AU2002216687A1 (en) Electro-acupuncture device with stimulation electrode assembly
AU2010326076A1 (en) System for transmitting electrical current to a bodily tissue
JP2019146976A (ja) 埋め込み型電気鍼デバイスのための電極構成
MX2010007503A (es) Sistemas y metodos para estimulacion electrica terapeutica.
EP2841156A1 (en) Trial stimulation systems
EP2841151A1 (en) Trial stimulation systems
US20170214269A1 (en) Physically-Configurable External Charger for an Implantable Medical Device with Receptacle in Coil Housing for Electronics Module
CN105999545A (zh) 一种脑卒中康复装置
TWI731833B (zh) 遠距醫療攜帶箱
EP2957318A1 (en) Battery-embedded portable high-frequency therapeutic apparatus
CN207218321U (zh) 一种便携式电池装置
CN204745380U (zh) 光疗装置
CN210992604U (zh) 一种头部按摩仪
Hackworth Design, optimization, and implementation of a volume conduction energy transfer platform for implantable devices
CN212012204U (zh) 一种组合充电艾灸仪
KR200453125Y1 (ko) 휴대용 전위 발생기
CN206225438U (zh) 一种微型不间断电源壳体及微型不间断电源
KR102581590B1 (ko) 피부 염증 치료 장치
CN219700828U (zh) 一种经皮电、近红外线软组织损伤理疗电极及理疗装置
CN203458701U (zh) 一种石英表式激光治疗仪
CN218652728U (zh) 一种便携式按摩器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11741926

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12126586

Country of ref document: CO

WWE Wipo information: entry into national phase

Ref document number: 2012002108

Country of ref document: CL

ENP Entry into the national phase

Ref document number: 2789360

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2011741926

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/009275

Country of ref document: MX

Ref document number: MX/A/2012/009300

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 13578489

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012020091

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012020091

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120810