WO2011098016A1 - 一种中继系统的随机接入方法和设备 - Google Patents

一种中继系统的随机接入方法和设备 Download PDF

Info

Publication number
WO2011098016A1
WO2011098016A1 PCT/CN2011/070825 CN2011070825W WO2011098016A1 WO 2011098016 A1 WO2011098016 A1 WO 2011098016A1 CN 2011070825 W CN2011070825 W CN 2011070825W WO 2011098016 A1 WO2011098016 A1 WO 2011098016A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
subframe
network side
preamble
pdcch
Prior art date
Application number
PCT/CN2011/070825
Other languages
English (en)
French (fr)
Inventor
赵亚利
谌丽
鲍炜
刘佳敏
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Priority to EP11741887.1A priority Critical patent/EP2560452B1/en
Priority to US13/578,278 priority patent/US10257864B2/en
Publication of WO2011098016A1 publication Critical patent/WO2011098016A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a random access method and device for a relay system. Background technique
  • Random access of the LTE (Long Term Evolution) system The reasons for the possible triggering of random access in the LTE system include: initial access; RRC (Radio Resource Control) connection reestablishment, mobility-induced handover; RRC connection status with downlink data arrival but uplink out-of-synchronization; RRC The connection status has uplink data arrival but uplink out-of-synchronization or no D-SR (dedicated scheduling request) resources or D-SR transmission reaches the maximum number of times; intra-cell handover due to security reasons; positioning, and the like.
  • RRC Radio Resource Control
  • non-contention random access For intra-cell handover caused by downlink data arrival, mobility handover, security reasons, etc., if there is a dedicated preamble (random access preamble), non-contention random access can be used, as shown in Figure 1.
  • a schematic diagram showing non-contention random access including:
  • the base station allocates a dedicated ra-Preamblelndex for non-contention random access to the UE (User Equipment) and a PRACH (Packet Random Access Channel) resource used by the random access ra-PRACH- Masklndex (PRACH Mask Index, PRACH Mask number).
  • a dedicated ra-Preamblelndex for non-contention random access to the UE (User Equipment)
  • PRACH Packet Random Access Channel
  • PRACH Mask Index PRACH Mask Index, PRACH Mask number
  • the PDCCH Physical Downlink Control Channel
  • the handover command will be passed. (Switch command) carries this information.
  • the UE sends the specified dedicated preamble to the base station on the designated PRACH resource according to the ra-Preamblelndex and the ra-PRACH-Masklndex indicated by the MsgO.
  • the base station receives the Msgl, it calculates the uplink timing advance TA (Tiing Alignment) according to Msgl.
  • the base station sends a random access response to the UE, and the random access response includes timing advance information, and notifies the UE of the timing advance of the subsequent uplink transmission.
  • the terminal randomly selects a preamble and transmits the RACH (Random Access Channel).
  • RACH Random Access Channel
  • the deviation between the actual arrival time of the preamble signal and the expected arrival time is calculated, and then the deviation is taken as TA, and is sent to the terminal in a random access response (Random Access Response).
  • the terminal can adjust the uplink time of the uplink message by using the TA to establish uplink synchronization with the network.
  • the terminal also needs to send its own unique ID to the network to eliminate the collision.
  • the terminal randomly selects a Preamble among all available Preambles and sends it on RACH.
  • the base station detects the RACH channel, and if the Preamble is detected, calculates the TA corresponding to the Preamble.
  • the base station sends a random access response to the detected Preamble.
  • the random access response includes the following information: (1) the received identification information of the Preamble, such as the number, the sending time, etc.; (2) the TA corresponding to the received Preamble; (3) the subsequent uplink data transmission Information about the allocated channel resources, including resource time-frequency locations,
  • MCS modulation and coding style
  • Temporary ID for example, C-RNTI
  • the terminal determines, by using the identifier information of the Preamble in the random access response, whether the target terminal of the random access response information is If it is, the TA timing information in the random access response is used to adjust the transmission timing advance of the uplink signal.
  • the terminal sends uplink data.
  • the uplink resource used by the uplink data is a resource allocated by the base station to the terminal in the Msg2, and the uplink data sent by the terminal includes at least: identifier information of the terminal, such as an IMSI (International Mobile Subscriber Identity). TMSI (Temporary Mobile Subscriber Identity) or C-RNTI (Cell Radio Network Temporary Identity).
  • IMSI International Mobile Subscriber Identity
  • TMSI Temporary Mobile Subscriber Identity
  • C-RNTI Cell Radio Network Temporary Identity
  • the base station detects whether the identity information of the terminal sent by the terminal in Msg3 is legal, and notifies the terminal of the detection result by the contention resolution message.
  • the terminal and the base station can perform uplink data transmission.
  • LTE-A LTE-Advanced, LTE Evolution
  • Figure 3 it is a schematic diagram of the network structure of the LTE-A system.
  • the eNB (Evolved Node B, evolved base station node) is connected to the core network (CN) through a wired interface.
  • CN core network
  • the RN (Relay Node) is connected to the eNB through a radio interface.
  • the interface is called the Un interface.
  • the corresponding radio link is called the backhaul link (the following is called BH link) and is connected to the RN.
  • the eNB is referred to as the home eNB of the RN (Donor eNB, hereinafter referred to as DeNB).
  • the UE is connected to the RN or the eNB through a radio interface, and the interface is called a Uu port, and the corresponding radio link is called an access link (hereinafter referred to as an AC link), and the UE directly connected to the eNB is called The Marco UE, the UE directly connected to the RN is called an R-UE.
  • RN-based mobile communication system makes there are three radio links in the RN-based mobile communication system: respectively, the access link between the DeNB and the Marco UE (called the Marco UE AC link); the backhaul link between the DeNB and the RN It is called BH link); the access link between the RN and the R-UE (the cylinder is called R-UE AC link).
  • the RN is an inband RN, that is, when the RN receives/transmits the DeNB signal. If the data is sent/received to the R-UE, self-interference will occur. To avoid self-interference, the BH link and the R-UE AC link cannot coexist at the same time. However, the Marco UE AC link and the BH link can coexist, as long as the time-frequency resources are positive. You can pay.
  • one implementation manner is: Construct 'gaps' in the downlink access transmission time of the Uu port R-UE.
  • the gaps can be used for the DL BH link (that is, the downlink BH subframe;), and the configuration of the gaps can be implemented by using the MBSFN (Multicast Broadcast Single Frequency Network) subframe, as shown in FIG.
  • MBSFN Multicast Broadcast Single Frequency Network
  • the uplink BH subframe corresponds to the downlink BH subframe, and the UL BH subframe can be indicated in an explicit or implicit manner.
  • the uplink BH subframe on the BH link can be used. Performing uplink transmission between the RN and the DeNB will restrict the R-UE from performing uplink transmission between the Uu interface and the RN.
  • the state of the LTE-A system RN includes the following steps: 1) the RN starts to establish synchronization with the DeNB and the RRC connection through the random access procedure; 2) the RN attaches to the network through the attach procedure; 3) the RN downloads the configuration from the Q&M system Information; 4) RN establishes S 1 and X2 interfaces;
  • the RN will operate according to the UE mode, and after the step 4) is completed, the RN will operate as a base station.
  • the RN works in the UE mode, the RN can use all the resources of the system, and is not restricted by the BH subframe.
  • the RN works in the base station mode, the RN can only use the UL/DL BH subframe for the data transmission of the Un port.
  • Random access by the RN In the LTE-A system, the random access procedure is inevitable regardless of whether the RN operates as a UE mode or as a base station mode.
  • the reasons for triggering the random access include: initial access; when the RN works in the base station mode, the reasons for triggering the random access include: RRC connection reestablishment of the RN, for example, Un The radio link fails in the port; the RN is in the RRC connection state, the downlink data arrives, but the uplink is out of synchronization; the RN is in the RRC connection state, the uplink data arrives, but the uplink is out of synchronization or there is no D-SR resource or D-SR transmission reaches the maximum number of times; intra-cell handover due to security reasons.
  • the inventor has found that at least the following problems exist in the prior art:
  • the RN When the RN is powered on, if the RN works in the UE mode, since the BH subframe is not configured at this time, the RN can use all the subframes.
  • the random access procedure initiated by the RN is the same as the random access procedure of the ordinary UE.
  • the RN when the RN works in the base station mode, if the random access is triggered, the RN acting as the base station can only use the resources on the BH link of the Un interface. Since the BH subframe is limited, the random access will be caused. The delay increases and affects the user risk of the R-UE. Summary of the invention
  • the present invention provides a random access method and device for a relay system, so as to reduce the delay of random access by the RN working as a base station, and improve the user experience.
  • the present invention provides a random access method for a relay system, including:
  • the relay node RN determines whether random access is triggered
  • the RN uses a non-backhaul link subframe for random access.
  • the present invention provides a random access device of a relay system, including:
  • a determining module configured to determine whether random access is triggered
  • the processing module is configured to perform random access by using a non-backhaul link subframe when the judgment result of the determining module is that the random access is triggered.
  • the present invention has at least the following advantages:
  • the RN may partially borrow or fully borrow the subframe resources of the non-backhaul link for random access, that is, the RN may borrow the subframe of the Uu interface for random access. Therefore, the delay of random access performed by the RN working as a base station can be reduced, and the user experience is improved.
  • FIG. 2 is a schematic diagram of a basic flow of a random access scheme for a random access LTE system in the prior art
  • FIG. 3 is a schematic structural diagram of a network of an LTE-A system in the prior art
  • FIG. 5 is a schematic flowchart of a random access method of a relay system according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic flowchart of a random access method of a relay system according to Embodiment 2 of the present invention.
  • FIG. 7 is a schematic flowchart of a random access method of a relay system according to Embodiment 3 of the present invention.
  • FIG. 8 is a schematic flowchart of a random access method of a relay system according to Embodiment 4 of the present invention.
  • FIG. 9 is a schematic flowchart of a random access method of a relay system according to Embodiment 5 of the present invention.
  • FIG. 10 is a schematic flowchart of a random access method of a relay system according to Embodiment 6 of the present invention.
  • FIG. 11 is a schematic diagram of a corresponding RRC connection release procedure in the sixth embodiment of the present invention
  • FIG. 12 is a schematic diagram showing a timing relationship of respective messages in a corresponding random access procedure according to Embodiment 6 of the present invention
  • FIG. 13 is a schematic flowchart of a random access method of a relay system according to Embodiment 7 of the present invention.
  • FIG. 14 is a schematic flowchart of a random access method of a relay system according to Embodiment 8 of the present invention.
  • FIG. 15 is a schematic diagram showing a timing relationship of respective messages of a corresponding random access procedure in Embodiment 8 of the present invention.
  • 16 is a schematic flowchart of a random access method of a relay system according to Embodiment 9 of the present invention
  • 17 is a schematic diagram showing a timing relationship of respective messages of a corresponding random access procedure in Embodiment 9 of the present invention
  • FIG. 18 is a schematic structural diagram of a random access device of a relay system according to an embodiment of the present invention. detailed description
  • a relay node RN In the LTE-A system, in order to improve system throughput and increase network coverage, a relay node RN is introduced.
  • a random access method and device for a relay system are proposed.
  • the RN in the base station state may borrow a non-backhaul subframe to perform randomization.
  • Embodiment 1 of the present invention provides a random access method for a relay system, as shown in FIG. 5, including the following steps:
  • Step 501 The relay node RN determines whether the random access is triggered. If random access is triggered, go to step 502.
  • Step 502 The RN performs random access by using a non-backhaul link subframe.
  • the RN may partially use non-backhaul link subframes for random access or all non-backlink link subframes for random access.
  • the RN When the subframe used by the RN is not restricted, the RN performs random access by using the non-backhaul link subframe, including: the RN selects a random access preamble sequence preamble and an uplink subframe, and uses the random access channel of the uplink subframe.
  • the RACH resource sends a Preamble to the network side. After the network side detects the Preamble, it sends a random access response to the RN.
  • the RN listens to all PDCCH-bearing downlink subframes in the RAR window to receive the random access response and utilizes random access.
  • the RN When the Msgl is restricted to use the uplink UL BH subframe, the RN performs random access by using the non-backhaul link subframe, including: the RN selects one preamble and one UL BH subframe, and sends the RACH resource of the UL BH subframe to the network side. Preamble; After the network side detects the Preamble, it sends a random access response to the RN, and the RN listens to all the PDCCH-backed downlink subframes in the RAR window to receive the random access response, and uses the random access response to allocate the uplink resource direction. The network side sends the uplink data. When the network side sends the contention resolution message by using the uplink data, the RN receives the contention resolution message in all the downlink subframes with the PDCCH in the mac-ContentionResolution timer.
  • the RN When the Msg4 is used to limit the use of the BH subframe, the RN performs the random access by using the non-backhaul link subframe, and the RN selects a preamble and an uplink subframe, and uses the RACH resource of the uplink subframe to send the Preamble to the network side; After detecting the Preamble, the RN sends a random access response to the RN, and the RN listens to all the PDCCH-received downlink subframes in the RAR window to receive the random access response, and sends the uplink data to the network side by using the uplink resource allocated by the random access response. When the network side transmits the contention resolution message by using the uplink data, the RN receives the contention resolution message in all the DL BH subframes of the R-PDCCH in the mac-ContentionResolution timer.
  • the RN When the BH subframe is restricted by the Msgl and the Msg4, the RN performs the random access by using the non-backhaul link subframe, and the RN selects a preamble and a UL BH subframe, and uses the RACH resource of the UL BH subframe to the network side.
  • Sending a Preamble after detecting the Preamble on the network side, sending a random access response to the RN, the RN listening to all PDCCH-bearing downlink subframes in the RAR window to receive the random access response, and using the random access response to allocate the uplink resource
  • the uplink data is sent to the network side.
  • the network side sends the contention resolution message by using the uplink data
  • the RN receives the contention resolution message in all the DL BH subframes with the R-PDCCH in the mac-ContentionResolution timer.
  • the RN When the Msgl and the Msg2 are restricted to use only the BH subframes, the RN performs the random access by using the non-backhaul link subframes, including: the network side sends the dedicated preamble designated by the RN and the PRACH information to the RN through the DL BH subframe; RN based on dedicated preamble And the PRACH information sends a dedicated preamble to the network side through the UL BH subframe; the network side sends a random access response to the RN according to the dedicated preamble on the DL BH subframe configured for the RN; all R-PDCCHs of the RN in the RAR window The R-PDCCH is monitored in the downlink subframe to receive a random access response.
  • the RN When Msgl is restricted to use only BH subframes, and non-BH subframes are not allowed to be borrowed, the RN performs random access by using non-backhaul link subframes, including: the network side will specify the dedicated preamble for the RN and the PRACH information through the DL BH sub-frame.
  • the frame is sent to the RN; the RN sends a dedicated preamble to the network side through the UL BH subframe according to the dedicated preamble and the PRACH information; the network side sends a random access response to the RN according to the dedicated preamble; wherein, the sending subframe of the random access response is not received DL BH restriction;
  • the RN monitors the PDCCH in all downlink subframes with PDCCH within the RAR window to receive a random access response.
  • the RN uses non-backhaul link subframes for random access, including:
  • the network side will specify the RN.
  • the dedicated preamble and the PRACH information are sent to the RN through the DL BH subframe.
  • the RN transmits the dedicated preamble to the network side by using the UL BH subframe or the UL non-BH subframe according to the dedicated preamble and the PRACH information.
  • the network side is configured on the DLBH subframe according to the dedicated preamble.
  • the RN sends a random access response; the RN listens to the R-PDCCH in all downlink subframes with R-PDCCH in the RAR window to receive the random access response.
  • whether the RN allows the borrowing of the non-BH subframes includes: the system pre-specifies, or is notified by the network side through an explicit manner, or is notified by the network side through an implicit manner; wherein, the network side passes the display
  • the mode notification is specifically notified by broadcast or RRC signaling.
  • the RN performs the random access by using the non-backhaul link subframe, and the RN further includes: the RN sends a radio resource control RRC connection release message to all the R-UEs of the service, and releases the RRC connection of all the R-UEs, and stops sending the broadcast.
  • the RN utilizes the non-backhaul link subframe for random access, and then includes: the RN continues to transmit the broadcast message and the paging message, and re-accepts the R-UE within the coverage of the RN.
  • the RN uses the non-backhaul link subframe for random access, and previously includes: Sending a broadcast message and a paging message, and stopping data transmission and reception to the Uu port; the RN performs random access by using a non-backhaul link subframe, and then includes: the RN continues to send the broadcast message and the paging message, and continues to be R - UE provides normal service.
  • the RN uses the non-backhaul link subframe for random access, and the foregoing includes: the RN terminates the UL and DL scheduling for the Uu interface; in the process of the RN using the non-backhaul link subframe for random access, if the RN is in a certain sub
  • the PDCCH does not need to listen to the PDCCH sent by the network side and the uplink and downlink transmission and reception, and the subframe can be used to send a broadcast message or a paging message, and the RN uses the subframe to send a broadcast message or a paging message to the R-UE.
  • the RN uses the subframe to send a broadcast message to the R-UE. Or paging the message, and perform UL and DL scheduling on the Uu port.
  • the RN may partially borrow or borrow the non-backhaul link subframe for random access, that is, the RN may borrow Uu.
  • the subframe is randomly accessed, so that the delay of random access by the RN working as the base station can be reduced.
  • the RN acts as a base station for the contention of the random access, and each message (that is, the Msgl shown in FIG. 2) , Msg2, Msg3, and Msg4) are handled in the following ways:
  • the transmission mode of the Msgl includes but is not limited to: only in the UL BH subframe, or may be transmitted in the UL non-BH subframe. It should be noted that when Msgl is selected to be transmitted in a UL (uplink) non-BH subframe, the method is suitable for a scenario in which the UL BH subframe has no PRACH resource configuration or requires a high random access delay.
  • the RN has all PDCCHs (Physical Downlink Control Channels) in the RAR (random access response) window.
  • the downlink control channel is monitored on the subframe to listen for the random access response, so that the monitoring of the Msg2 is not restricted by the DL (downlink) BH subframe.
  • the PDCCH is monitored instead of the R-PDCCH (Relay Physical Downlink Control Channel), and the R-PDCCH is the PDCCH transmitted by the base station to the relay.
  • the RN performs uplink transmission of Msg3 by using the scheduling information included in the RAR received from Msg2.
  • the RN may use a PUSCH (Physical Uplink Shared Channel) resource when transmitting the Msg3.
  • PUSCH Physical Uplink Shared Channel
  • the base station After receiving the Msg3 sent by the RN, the base station (ie, the DeNB) can use the identifier information of the RN included in the Msg3 to determine that the random access is the RN.
  • the receiving manner of the Msg4 includes but is not limited to:
  • the RN In the first time, the RN only listens to the Msg4 in the DL BH subframe to receive the contention resolution message in the time that the mac-ContentionResolutionTimer does not time out, and the R-PDCCH is used for scheduling, and The downlink transmission is performed using the R-PDSCH format.
  • the RN can listen to the Msg4 in all DL subframes to receive the contention resolution message in the time that the mac-ContentionResolutionTimer has not timed out.
  • the PDCCH is scheduled by using the normal PDCCH, and the PDSCH format is used for downlink transmission.
  • the processing manner of each message in the process of the RN as the base station performing non-contention random access includes:
  • the base station transmits MsgO on the DL BH subframe, and the RN monitors the R-PDCCH to receive the dedicated preamble designated by the base station and the PRACH resource indication used by the random access.
  • the PRACH resource indication information may include carrier information and a PRACH resource indication on a certain carrier. When the base station specifies the PRACH resource, it is not restricted by the BH subframe, and all subframe resources can be used.
  • the sending of Msgl The RN sends the dedicated preamble to the base station according to the preamble and PRACH resources indicated in the MsgO.
  • the resources used by the Msgl are not limited by the BH subframe, and are only transmitted according to the resources indicated by the base station.
  • the manner of receiving the Msg2 includes but is not limited to: a, and all the DL BH subframes having the R-PDCCH in the RAR window are monitored, and the method is applicable to the random access procedure only.
  • a all PDCCH subframes with PDCCH in the RAR window are monitored, and the method is applicable to the case where the random access procedure supports subframe borrowing.
  • whether to allow non-BH subframes to be borrowed may be pre-defined by the system, or notified by the base station through explicit or implicit manner.
  • Explicit mode that is, RRC signaling or broadcast
  • the Msgl specified by the base station can determine whether to allow borrowing of non-BH subframes.
  • contention random access it can be sent according to Msgl.
  • the subframe determines whether borrowing of non-BH subframes is allowed.
  • the second embodiment of the present invention provides a random access method for a relay system.
  • the processing procedure for the contention random access is not restricted, and the non-BH may be borrowed.
  • Subframe As shown in Figure 6, the method includes the following steps:
  • Step 601 The RN randomly selects a preamble and selects an uplink subframe among all available Preambles, and sends the selected preamble on the RACH resource of the uplink subframe. While the RN sends the Preamble, the base station detects the RACH channel, and if the Preamble is detected, calculates the TA corresponding to the Preamble.
  • Step 602 The base station sends a random access response to the detected Preamble.
  • the random access response includes the following information: (1) the received identification information of the Preamble, such as the number, the sending time, etc.; (2) the TA corresponding to the received Preamble; (3) the subsequent uplink data transmission The information of the allocated channel resources, including resource time-frequency location, MCS, etc.; (4) Temporary ID (for example, C-RNTI) allocated by the base station to the user.
  • the received identification information of the Preamble such as the number, the sending time, etc.
  • the TA corresponding to the received Preamble (3) the subsequent uplink data transmission
  • the information of the allocated channel resources including resource time-frequency location, MCS, etc.
  • Temporary ID for example, C-RNTI
  • the RN receives the random access response, and after listening to the random access response, the RN determines, according to the identifier information of the Preamble in the random access response, whether the target end of the random access response information is itself, and if so, Then, according to the TA information in the random access response, the transmission timing advance amount of the uplink signal is adjusted.
  • Step 603 The RN performs uplink data transmission on the PUSCH resource according to the UL resource allocated in the random access response message and the HARQ (Hybrid Auto Repeat Request) timing relationship.
  • the RN includes at least: identifier information of the terminal, such as IMSI, TMSI or C-RNTI, in the uplink data to be sent.
  • Step 604 After receiving the uplink data, the base station detects whether the identifier information of the RN sent by the RN in the uplink data is legal. If it is legal, the base station sends a contention resolution message to the RN, and notifies the RN of the detection result.
  • the RN monitors the PDCCH in all PDCCH subframes with PDCCH to receive the contention resolution message within a time period when the mac-ContentionResolutionTimer has not timed out.
  • the third embodiment of the present invention provides a random access method for a relay system.
  • the processing procedure for the contention of the random access is restricted.
  • the Msgl is restricted to use the UL BH subframe, and the non-BH subframe is not allowed to be borrowed.
  • Other messages are not restricted, and Uu sub-frames can be borrowed.
  • the method includes the following steps:
  • Step 701 The RN randomly selects a preamble among all available Preambles, selects a UL BH subframe, and sends the selected preamble on the RACH resource on the UL BH subframe. While the RN sends the Preamble, the base station detects the RACH channel, and if the Preamble is detected, calculates the TA corresponding to the Preamble.
  • Step 702 The base station sends a random access response to the detected Preamble. Further, the RN listens to the received random access response in all downlink subframes with PDCCH in the RAR window. After listening to the random access response, the RN determines, according to the identification information of the Preamble in the random access response. Whether the target end of the random access response information is itself, and if so, adjusting the transmission timing advance amount of the uplink signal according to the TA information in the random access response.
  • Step 703 The RN performs uplink data transmission on the PUSCH resource according to the allocated UL resource and the HARQ timing relationship in the random access response message.
  • Step 704 After receiving the uplink data, the base station detects whether the identifier information of the RN sent by the RN in the uplink data is legal. If it is legal, the base station sends a contention resolution message to the RN, and notifies the RN of the detection result.
  • the RN monitors the PDCCH in all PDCCH subframes with PDCCH to receive the contention resolution message within a time period when the mac-ContentionResolutionTimer has not timed out.
  • the fourth embodiment of the present invention provides a random access method for a relay system.
  • the processing procedure for the contention of the random access is restricted.
  • the Msg4 can only use the BH subframe, and the non-BH subframe is not allowed to be borrowed. No restrictions are imposed on other messages, and Uu sub-frames can be borrowed.
  • the method includes the following steps:
  • Step 801 The RN randomly selects a preamble among all available Preambles, selects a UL subframe, and sends the selected preamble on the RACH resource on the UL subframe subframe. While the RN sends the Preamble, the base station detects the RACH channel, and if the Preamble is detected, calculates the TA corresponding to the Preamble.
  • Step 802 The base station sends a random access response to the detected Preamble. Further, the RN listens to the received random access response in all downlink subframes with PDCCH in the RAR window. After listening to the random access response, the RN determines, according to the identification information of the Preamble in the random access response. Whether the target end of the random access response information is itself, and if so, adjusting the transmission timing advance amount of the uplink signal according to the TA information in the random access response.
  • Step 803 The RN performs uplink data transmission on the PUSCH resource according to the UL resource and the HARQ timing relationship allocated in the random access response message.
  • Step 804 After receiving the uplink data, the base station detects whether the identifier information of the RN sent by the RN in the uplink data is legal. If it is legal, the RN determines the accessed RN according to the identifier information of the RN, and sends the content only in the DL BH subframe. Resolve the message.
  • the RN listens to the R-PDCCH in all DL BH subframes with R-PDCCH to receive the contention resolution message in the time that the mac-ContentionResolutionTimer has not timed out.
  • the Msg4 downlink transmission uses the R-PDSCH. .
  • the fifth embodiment of the present invention provides a random access method for a relay system.
  • the processing procedure for the contention random access is restricted, and at the same time, limiting Msgl and Msg4 can only make With BH subframes, non-BH subframes are not allowed to be borrowed, and other messages are not restricted. Uu port subframes can be borrowed.
  • the method includes the following steps:
  • Step 901 The RN randomly selects a preamble among all available Preambles, selects a UL BH subframe, and sends the selected preamble on the RACH resource on the UL BH subframe. While the RN sends the Preamble, the base station detects the RACH channel, and if the Preamble is detected, calculates the TA corresponding to the Preamble.
  • Step 902 The base station sends a random access response to the detected Preamble. Further, the RN listens to the received random access response in all downlink subframes with PDCCH in the RAR window. After listening to the random access response, the RN determines, according to the identification information of the Preamble in the random access response. Whether the target end of the random access response information is itself, and if so, adjusting the transmission timing advance amount of the uplink signal according to the TA information in the random access response.
  • Step 903 The RN performs uplink data transmission on the PUSCH resource according to the UL resource and the HARQ timing relationship allocated in the random access response message.
  • Step 904 After receiving the uplink data, the base station detects whether the identifier information of the RN sent by the RN in the uplink data is legal. If it is legal, the RN determines the accessed RN according to the identifier information of the RN, and sends the content only in the DL BH subframe. Resolve the message.
  • the RN listens to the R-PDCCH in all DL BH subframes with R-PDCCH to receive the contention resolution message in the time that the mac-ContentionResolutionTimer has not timed out.
  • the Msg4 downlink transmission uses the R-PDSCH. .
  • Embodiment 2 to Embodiment 5 is directed to the processing process of the contention random access, and the processing manner of the non-contention random access process may be classified into the following three cases. Detailed description:
  • Restrictions Msgl and Msg2 can only use BH subframes, and non-BH subframes are not allowed.
  • the base station specifies a dedicated preamble and a UL CC that transmits the dedicated preamble and a PRACH resource on the UL CC according to a preset principle (eg, a random access load, etc.). It should be noted that the PRACH resource should be selected on the UL BH subframe. The selected preamble and PRACH information are then indicated to the RN by MsgO.
  • a preset principle eg, a random access load, etc.
  • the RN After receiving the indication information, the RN sends the dedicated preamble according to the indication of the base station.
  • the base station detects the Preamble and sends a random access response according to the preamble.
  • the random access response can only be sent on the DL BH subframe configured for the random access RN.
  • the random access response includes at least the following information: Need to include TA information and initial UL resource allocation; TA information should be included for DL data arrival; RA-preamble identification information; information of channel resources allocated for subsequent uplink data transmission, including resource time-frequency location, MCS, etc.; The temporary ID assigned to the user.
  • the RN listens to the R-PDCCH in all downlink subframes with R-PDCCH in the RAR window to receive the random access response, and adjusts the transmission timing advance of the uplink signal according to the TA information.
  • the second case only Msgl can only use BH subframes, and it is not allowed to borrow non-BH subframes.
  • the base station assigns a dedicated preamble to the RN according to a preset principle (e.g., random access load, etc.) and a UL CC that transmits the dedicated preamble and a PRACH resource on the UL CC.
  • a preset principle e.g., random access load, etc.
  • the PRACH resource should be selected on the UL BH subframe, and then the selected preamble and PRACH information is indicated to the RN through MsgO.
  • the RN After receiving the indication information, the RN sends the dedicated preamble according to the indication of the base station.
  • the base station detects the Preamble and sends a random access response according to the preamble.
  • the sending subframe of the random access response is not restricted by the DL BH.
  • the RN monitors the PDCCH in all downlink subframes with PDCCH in the RAR window to receive the random access response, and adjusts the transmission timing advance amount of the uplink signal according to the TA information therein.
  • the third case only Msg2 can be used only for BH subframes, and non-BH subframes are not allowed to be borrowed.
  • the base station assigns a dedicated preamble to the RN according to a preset principle (e.g., random access load, etc.) and a UL CC that transmits the dedicated preamble and a PRACH resource on the UL CC.
  • a preset principle e.g., random access load, etc.
  • the PRACH resource should be selected on the UL BH subframe, and then the selected preamble and PRACH information is indicated to the RN through MsgO.
  • the RN After receiving the indication information, the RN sends the dedicated preamble according to the indication of the base station.
  • the base station detects the Preamble and sends a random access response according to the preamble.
  • the sending subframe of the random access response is in a DLBH subframe.
  • the RN listens to the R-PDCCH in all downlink subframes with R-PDCCH in the RAR window to receive the random access response, and adjusts the transmission timing advance of the uplink signal according to the TA information therein.
  • the processing of each message is performed by using the foregoing processing manner, in the embodiment of the present invention, the processing of the R-UE and the Uu in the random access process of the RN
  • the processing of the port system message and the paging includes but is not limited to: (1) the RN forcibly releases the RRC connection of the R-UE, and stops the transmission of the system message and the paging; (2) the RN stops the scheduling and transmission of the R-UE.
  • the sixth embodiment of the present invention provides a random access method for a relay system, which is a process for processing an R-UE in a random access procedure of an RN.
  • the RN is forced to release R- The RRC connection of the UE, and stopping the sending of system messages and paging, as shown in FIG. 10, the method includes the following steps:
  • Step 1001 The RN determines whether the random access is triggered. If triggered, the RN The RRC connection release message is sent to all R-UEs that it serves, the RRC connection of all R-UEs is released, the information in the buffer is cleared, and the broadcast, paging, and the like messages are stopped. As shown in FIG. 11, it is a schematic diagram of an RRC connection release procedure, that is, the RN sends an RRCConnectionRelease to the R-UE.
  • Step 1002 The RN completes a random access procedure with the base station.
  • the RN may perform the random access procedure by using any one of the foregoing random access procedures, that is, the RN performs one of the foregoing Embodiment 2 to Embodiment 5 to complete the random access procedure.
  • FDD Frequency Division Duplex
  • Step 1003 The RN successfully accesses the random access, continues to send broadcast, paging, and the like, re-accepts the R-UE in the range covered by the RN, and serves the corresponding R-UE.
  • the seventh embodiment of the present invention provides a random access method for a relay system.
  • the method is directed to the process of processing the R-UE in the RN random access process.
  • the RN does not release the R-UE, but the RN performs In the random access process, the communication with the R-UE is terminated.
  • the method includes the following steps:
  • Step 1301 The RN determines whether the random access is triggered. If triggered, stops sending messages such as broadcast and paging, and stops data transmission and reception and feedback to the Uu interface.
  • Step 1302 The RN completes a random access procedure with the base station.
  • the RN may perform the random access procedure by using any one of the foregoing random access procedures, that is, the RN performs one of the foregoing Embodiment 2 to Embodiment 5 to complete the random access procedure.
  • the RN performs one of the foregoing Embodiment 2 to Embodiment 5 to complete the random access procedure.
  • FDD FDD as an example, a schematic diagram of the timing relationship of each message in the random access procedure is shown in FIG.
  • Step 1303 The RN successfully accesses the random access, continues to send broadcast, paging, and the like, and continues to provide normal services for the R-UE.
  • the eighth embodiment of the present invention provides a random access method for a relay system, which is a process for processing an R-UE in a random access procedure of an RN.
  • the RN does not release the R-UE, but The scheduling and transmission of the R-UE are stopped, and the system message and the paging are sent as usual in the access link system message and the paging subframe position that are not occupied by the random access procedure.
  • the method includes the following steps. :
  • Step 1401 the RN determines whether the random access is triggered, and if triggered, the RN Terminate the UL/DL scheduling of the Uu port.
  • Step 1402 The RN completes a random access procedure with the base station.
  • the RN may perform the random access procedure by using any one of the foregoing random access procedures, that is, the RN performs one of the foregoing Embodiment 2 to Embodiment 5 to complete the random access procedure.
  • the RN in the process of performing random access by the RN and the base station, if the RN does not need to perform PDCCH monitoring and uplink and downlink transmission and reception of the Un interface in a certain subframe, and if the subframe can be used for broadcasting or paging, the RN These subframes can be used to send messages such as broadcasts or pages to the R-UE.
  • FIG. 15 it is a schematic diagram of the timing relationship of each message of the random access procedure, and in FIG. 15, a subframe that may be used for transmitting a broadcast, paging, etc. message on the Uu port is indicated by a left oblique line.
  • Step 1403 After the random access of the RN is successful, the RN starts to work according to the working mode of the base station that works normally.
  • the ninth embodiment of the present invention provides a random access method for a relay system, which is a process for processing an R-UE in a random access procedure of an RN.
  • the RN does not release the R-UE.
  • the RN in the access link subframe occupied by the random access procedure may perform data scheduling and transmission, and send system messages and paging as usual in the access link system message and the paging subframe position that are not occupied by the random access procedure.
  • the method includes the following steps:
  • Step 1601 The RN determines whether the random access is triggered. If triggered, step 1602 is performed.
  • Step 1602 The RN completes a random access procedure with the base station.
  • the RN may perform the random access procedure by using any one of the foregoing random access procedures, that is, the RN performs one of the foregoing Embodiment 2 to Embodiment 5 to complete the random access procedure.
  • the RN may use the subframe to send a broadcast or paging and to the Uu.
  • the port performs UL and DL scheduling.
  • FIG. 17 it is a schematic diagram of the timing relationship of each message of the random access procedure, and in FIG. 17, the subframe that may be used for the Uu interface to transmit broadcast, paging, and UL/DL scheduling is indicated by a left oblique line. .
  • Step 1603 the RN successfully accesses the random access, and restores the RN as a normal operation of the base station.
  • the steps in the various embodiments of the present invention may be adjusted according to actual needs.
  • the RN may partially borrow or completely borrow the non-backhaul link subframe for random access, that is, The RN can use the Uu subframe to perform random access, thereby reducing the delay of random access by the RN working as a base station, and improving the user experience.
  • the embodiment of the present invention further provides a random access device of the relay system, as shown in FIG. 18, including:
  • the determining module 10 is configured to determine whether the random access is triggered
  • the processing module 20 is configured to perform random access by using a non-backhaul link subframe when the judgment result of the determining module is that the random access is triggered.
  • the processing module 20 when the random access is performed, when the subframe used by the RN is not restricted, the processing module 20 is specifically configured to: select a random access preamble sequence preamble and an uplink subframe, and use the The RACH resource of the uplink subframe transmits the Preamble to the network side; when the network side detects the Preamble, and sends a random access response to the RN, it listens to all PDCCHs in the RAR window. Receiving, by the downlink subframe, the random access response, and transmitting the contention resolution message by using the random data, the downlink subframe receiving of the physical downlink control channel PDCCH in the mac-ContentionResolution timer The competition resolves the message.
  • the processing module 20 is specifically configured to: select one preamble and one UL BH subframe, and send the Preamble to the network side by using the RACH resource of the UL BH subframe; After detecting the Preamble, the network side, when sending a random access response to the RN, listens to all downlink subframes with PDCCH in the RAR window to receive the random access response, and uses the random access
  • the uplink resource allocated to the response sends uplink data to the network side;
  • the network side sends the contention resolution message according to the uplink data, all the downlink subframes with the PDCCH in the mac-ContentionResolution timer are connected to the contention resolution message.
  • the processing module 20 is specifically configured to: select a preamble and an uplink subframe, and send the Preamble to the network side by using the RACH resource of the uplink subframe; After the random access response is sent to the RN, the downlink subframe corresponding to the PDCCH in the RAR window is monitored to receive the random access response, and the uplink allocated by using the random access response is used.
  • the resource sends uplink data to the network side; when the network side sends a contention resolution message according to the uplink data, the DL BH subframe of all R-PDCCHs in the mac-ContentionResolution timer receives the contention resolution message. .
  • the processing module 20 is specifically configured to: select a preamble and a UL BH subframe, and send the Preamble to the network side by using the RACH resource of the UL BH subframe; After detecting the Preamble, the network side sends a random access response to the RN, and listens to all downlink subframes with PDCCH in the RAR window to receive the random access response, and uses the random The uplink resource allocated by the access response sends uplink data to the network side; when the network side sends the contention resolution message according to the uplink data, all R-PDCCH DL BH subframes in the mac-ContentionResolution timer Receiving the competition resolution message.
  • the processing module 20 is specifically configured to: receive, by the network side, the RN BH subframe, Dedicated preamble and PRACH information; and transmitting the dedicated preamble to the network side through the UL BH subframe according to the dedicated preamble and the PRACH information; receiving the DL configured by the network side according to the dedicated preamble for the RN Sending a random access response to the RN on the BH subframe; and listening to the R-PDCCH in all downlink subframes with R-PDCCH in the RAR window to receive the random access response.
  • the processing module 20 is specifically configured to: receive the dedicated preamble and the PRACH information specified by the network side by using the DL BH subframe for the RN; and use the dedicated preamble and the PRACH information to pass the UL BH subframe to the The network side sends the dedicated preamble; the receiving network side sends a random access response to the RN according to the dedicated preamble; wherein, the sending subframe of the random access response is not restricted by the DL BH to receive random access response.
  • the processing module 20 is specifically configured to receive the dedicated preamble specified by the network side through the DL BH subframe and specified by the RN.
  • PRACH information and transmitting the dedicated preamble to the network side by using the UL BH or the UL non-BH subframe according to the dedicated preamble and the PRACH information; and receiving, by the network side, the foregoing on the DLBH subframe according to the dedicated preamble
  • the RN sends a random access response; and listens to the R-PDCCH in all downlink subframes with R-PDCCH in the RAR window to receive the random access response.
  • Whether the RN is allowed to borrow the non-BH subframes includes: the system pre-specifies, or is notified by the network side in an explicit manner, or is notified by the network side in an implicit manner; wherein, the network The notification by the explicit mode is specifically notified by broadcast or RRC signaling.
  • the processing module 20 is further configured to: before the RN performs random access by using a non-backhaul link subframe, send a radio resource control RRC connection release message to all R-UEs that serve, and release all R- The RRC connection of the UE stops transmitting the broadcast message and the paging message; and after the RN performs random access by using the non-backhaul link subframe, continues to send the broadcast message and the paging message, and re-admits the coverage of the RN R-UE.
  • the processing module 20 is further configured to stop sending the broadcast message and the paging message, and stop data transmission and reception and feedback to the Uu port, before the RN performs random access by using the non-backhaul link subframe; After the RN performs random access using the non-backhaul link subframe, it continues to send broadcast messages and paging messages, and continues to provide normal services for the R-UE.
  • the processing module 20 is further configured to: terminate the UL/DL scheduling on the Uu interface before the RN performs random access by using the non-backhaul link subframe; and perform random connection on the RN by using the non-backhaul link subframe.
  • the RN In the process of the RN, if the RN does not need to listen to the PDCCH sent by the network side and the uplink and downlink transmission and reception in a certain subframe, and the subframe can be used to send a broadcast message or a paging message, the subframe is used to R- The UE sends a broadcast message or a paging message.
  • the processing module 20 is further configured to: when the RN performs random access by using a non-backhaul link subframe, if the RN does not need to listen to the PDCCH sent by the network side and the uplink and downlink transmission and reception in a certain subframe, Then, the subframe is used to send a broadcast message or a paging message to the R-UE, and the Uu interface is UL and DL scheduled.
  • modules of the device of the present invention may be integrated or integrated.
  • the above modules can be combined into one module, or can be further split into multiple sub-modules.
  • modules in the apparatus in the embodiments may be distributed in the apparatus of the embodiment according to the description of the embodiments, or may be correspondingly changed in one or more apparatuses different from the embodiment.
  • the modules of the above embodiments may be combined into one module, or may be further split into a plurality of sub-modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种中继系统的随机接入方法和设备
本申请要求于 2010年 02 月 11 日提交中国专利局, 申请号为 2010101117813 , 发明名称为 "一种中继系统的随机接入方法和设备" 的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及通信技术领域,尤其涉及一种中继系统的随机接入方 法和设备。 背景技术
首先介绍和本发明相关的背景知识。
( 1 ) LTE ( Long Term Evolution, 长期演进 ) 系统的随机接入。 其中, LTE 系统中可能触发随机接入的原因包括: 初始接入; RRC ( Radio Resource Control, 无线资源控制)连接重建、 移动性导致的 切换; RRC连接状态有下行数据到达但上行失步; RRC连接状态有 上行数据到达但上行失步或没有 D-SR ( dedicated scheduling request, 专用调度请求)资源或 D-SR传输达到最大次数; 由于安全原因引起 的小区内切换; 定位等。
对于由下行数据到达、移动性切换以及安全原因等引起的小区内 切换, 如果有专用的 preamble ( Random Access Preamble, 随机接入 前导序列), 则可使用非竟争随机接入, 如图 1所示非竟争随机接入 的示意图, 包括:
MsgO, 基站向 UE ( User Equipment, 用户设备)分配用于非竟 争随机接入的专用 ra-Preamblelndex 以及随机接入使用的 PRACH ( Packet Random Access Channel , 分组随机接入信道) 资源 ra-PRACH-Masklndex ( PRACH Mask Index, PRACH Mask编号)。
对于下行数据到达引起的非竟争随机接入, 将使用 PDCCH ( Physical Downlink Control Channel , 物理下行控制信道)携带这些 信息, 对于切换引起的非竟争随机接入, 将通过 handover command (切换命令)携带这些信息。
Msgl , UE 根据 MsgO 指 示 的 ra-Preamblelndex 和 ra-PRACH-Masklndex,在指定的 PRACH资源上向基站发送指定的专 用 preamble。 当基站接收到 Msgl后, 根据 Msgl计算上行定时提前 量 TA ( Timing Alignment, 定时调整量)。
Msg2,基站向 UE发送随机接入响应, 随机接入响应中包含定时 提前量信息, 通知 UE后续上行传输的定时提前量。
对于其它随机接入原因引起的随机接入均可使用竟争随机接入, 竟争随机接入的过程如图 2所示。 在 LTE系统中, 采用的竟争随机 接入的基本机制是: 在多个可供选择的 Preamble 中, 终端随机选择 一个 preamble,并在 RACH ( Random Access Channel,随机接入信道 ) 上进行发送, 当网络接收到该 Preamble后, 计算出该前导信号的实 际到达时间与预期到达时间的偏差, 然后将该偏差作为 TA, 并放在 随机接入响应 ( Random Access Response ) 中发送给终端。 当终端接 收到 TA后, 利用 TA所调整上行消息的发送时间, 可以建立与网络 的上行同步。 在完成 TA的调整后, 终端还需要发送自身的唯一 ID 给网络, 以消除碰撞。
如图 2所示, 为 LTE系统竟争随机接入方案的流程示意图:
Msgl , 终端在所有可用的 Preamble中随机选择一个 Preamble, 并在 RACH上发送。 在终端发送 Preamble时, 基站还会对 RACH信 道进行检测,如果监测到 Preamble,则计算该 Preamble所对应的 TA。
Msg2, 基站发送对所检测到的 Preamble的随机接入响应。 该随 机接入响应中包含以下信息: ( 1 )所接收到的 Preamble的标识信息, 如编号, 发送时间等; (2 )所接收到的 Preamble对应的 TA; ( 3 ) 为 后继的上行数据传输所分配的信道资源的信息, 包括资源时-频位置,
MCS ( modulation and coding style, 调制编码方式)等; (4 )基站为 用户分配的临时 ID (例如 C-RNTI )。
进一步的, 终端在接收到随机接入响应后, 利用随机接入响应中 的 Preamble的标识信息, 确定随机接入响应信息的目标终端是否为 自身, 如果是, 则利用随机接入响应中的 TA信息, 调整上行信号的 发送定时提前量。
Msg3 , 终端发送上行数据。 该上行数据所使用的上行资源为基 站在 Msg2中为该终端分配的资源, 该终端发送的上行数据中至少包 括:终端的标识信息,如 IMSI( International Mobile Subscriber Identity , 国际移动用户识别码), TMSI ( Temporary Mobile Subscriber Identity, 临时移动用户识别码) 或 C-RNTI ( Cell Radio Network Temporary Identity, 小区无线网络临时标识)。
Msg4, 基站检测终端在 Msg3 中发送的终端的标识信息是否合 法, 并通过竟争解决消息将检测结果通知终端。
在完成上述随机接入过程的过程之后,终端和基站可以进行上行 数据传输。
( 2 ) LTE-A ( LTE- Advanced, LTE演进) 系统的网络结构。 如 图 3所示, 为 LTE-A系统的网络结构示意图。
a, eNB ( Evolved Node B , 演进的基站节点)通过有线接口连到 核心网 (CN )。
b, RN ( Relay Node, 中继节点)通过无线接口连到 eNB, 该接 口称为 Un接口, 对应的无线链路称为回程链路 ( backhaul link, 以下 筒称为 BH link ),与 RN连接的 eNB称为 RN的归属 eNB( Donor eNB , 以下筒称为 DeNB )。
c , UE通过无线接口连到 RN或 eNB , 该接口称为 Uu口, 对应 的无线链路称为接入链路(access link, 以下筒称 AC link ), 直接与 eNB相连接的 UE称为 Marco UE,直接与 RN连接的 UE称为 R-UE。
( 3 ) BH link的设计
RN的引入使得基于 RN的移动通信系统无线链路有三条: 分别 为 DeNB和 Marco UE之间的接入链路(筒称为 Marco UE AC link ); DeNB和 RN之间的回程链路 (筒称为 BH link ); RN和 R-UE之间的 接入链路 (筒称为 R-UE AC link )。
具体的, 由于 RN为带内 RN, 即 RN在收 /发 DeNB信号时, 如 果向 R-UE发 /收数据则会产生自干扰, 为了避免自干扰, BH link和 R-UE AC link不能同时共存, 但是, Marco UE AC link和 BH link可 以共存, 只要其时频资源正交即可。
为了使 BH link和 R-UE AC link能够协调工作,一种实现方式为: 在 Uu 口 R-UE的下行 access传输时间内构造 'gaps'。 其中, gaps 可用于 DL BH link(即下行 BH子帧;), gaps的配置可通过使用 MBSFN ( Multicast Broadcast Single Frequency Network, 多播 /广播单频网络 ) 子帧实现, 如图 4所示, 为利用 MBSFN子帧进行中继链路下行传输 的示意图。 在这些 gaps 内, DeNB将和 RN之间进行下行传输, 而 RN与 R-UE之间不进行下行传输。
另外, 上行 BH子帧与下行 BH子帧相对应, UL BH子帧可采用 显式或隐式方式进行指示, 同样的, 为了避免 RN的自干扰, BH link 上的上行 BH子帧内只能进行 RN和 DeNB之间的上行传输, 将限制 R-UE在 Uu口上和 RN之间进行上行传输。
( 4 ) LTE-A系统 RN的状态。 在 LTE-A系统中 RN的开机流程 包括以下步骤: 1 ) RN开机通过随机接入过程建立和 DeNB 的同步 以及 RRC连接; 2 ) RN通过 attach过程附着到网络; 3 ) RN从 Q&M 系统下载配置信息; 4 ) RN建立 S 1和 X2接口;
对于上述的步骤 1 )、 2 ), RN将按照 UE模式进行工作, 在步骤 4 ) 完成之后, RN将作为基站进行工作。 当 RN工作在 UE模式时, RN可使用系统的所有资源, 不受 BH子帧的限制; 当 RN工作在基 站模式时, RN只能使用 UL/DL BH子帧进行 Un口的数据传输。
( 5 ) RN的随机接入。 在 LTE-A系统中, 无论 RN作为 UE模式 工作还是作为基站模式工作, 随机接入过程都是不可避免的。
具体的, 当 RN工作在 UE模式时, 可能触发随机接入的原因包 括: 初始接入; 当 RN工作在基站模式时, 可能触发随机接入的原因 包括: RN的 RRC连接重建, 例如, Un 口发生无线链路失败; RN 处于 RRC连接状态有下行数据到达, 但是上行失步; RN处于 RRC 连接状态有上行数据到达, 但是上行失步或者没有 D-SR 资源或者 D-SR传输达到最大次数; 由于安全原因引起的小区内切换。
在实现本发明的过程中,发明人发现现有技术中至少存在以下问 题: 当 RN开机时,如果 RN工作在 UE模式, 由于此时并未配置 BH 子帧, 因此 RN可使用所有的子帧资源, RN开机的随机接入过程与 普通 UE的随机接入过程一致。 但是, 当 RN工作于基站模式时, 如 果有随机接入被触发, 则作为基站的 RN只能使用 Un口的 BH link 上的资源, 由于 BH子帧受限, 将会导致随机接入的时延增加, 并影 响 R-UE的用户体险。 发明内容
本发明提供一种中继系统的随机接入方法和设备,以降低作为基 站工作的 RN进行随机接入的时延, 提升用户体验。
为了达到上述目的, 本发明提供一种中继系统的随机接入方法, 包括:
中继节点 RN判断随机接入是否被触发;
如果随机接入被触发, 所述 RN利用非回程链路子帧进行随机接 入。
本发明提供一种中继系统的随机接入设备, 包括:
判断模块, 用于判断随机接入是否被触发;
处理模块, 用于当判断模块的判断结果为随机接入被触发时, 利 用非回程链路子帧进行随机接入。
与现有技术相比, 本发明至少具有以下优点:
如果工作在基站状态的 RN的随机接入被触发, 则该 RN可部分 借用或全部借用非回程链路的子帧资源进行随机接入, 即 RN可借用 Uu接口的子帧进行随机接入, 从而可以降低作为基站工作的 RN进 行随机接入的时延, 改善用户体验。 附图说明
图 1是现有技术中非竟争随机接入 LTE系统随机接入方案的基 本流程示意图;
图 2是现有技术中竟争随机接入 LTE系统随机接入方案的基本 流程示意图;
图 3是现有技术中 LTE-A系统的网络结构示意图; 意图;
图 5 是本发明实施例一提供的一种中继系统的随机接入方法流 程示意图;
图 6是本发明实施例二提供的一种中继系统的随机接入方法流 程示意图;
图 7 是本发明实施例三提供的一种中继系统的随机接入方法流 程示意图;
图 8 是本发明实施例四提供的一种中继系统的随机接入方法流 程示意图;
图 9是本发明实施例五提供的一种中继系统的随机接入方法流 程示意图;
图 10是本发明实施例六提供的一种中继系统的随机接入方法流 程示意图;
图 11是本发明实施例六中对应的 RRC连接释放过程的示意图; 图 12是本发明实施例六中对应的随机接入过程的各个消息的时 序关系示意图;
图 13是本发明实施例七提供的一种中继系统的随机接入方法流 程示意图;
图 14是本发明实施例八提供的一种中继系统的随机接入方法流 程示意图;
图 15是本发明实施例八中对应的随机接入过程的各个消息的时 序关系示意图;
图 16是本发明实施例九提供的一种中继系统的随机接入方法流 程示意图; 图 17是本发明实施例九中对应的随机接入过程的各个消息的时 序关系示意图;
图 18是本发明实施例提供的一种中继系统的随机接入设备结构 示意图。 具体实施方式
在 LTE-A 系统, 为了提高系统吞吐量, 并增加网络覆盖, 引入 了中继节点 RN。 本发明实施例中, 提出了一种中继系统的随机接入 方法和设备, 对于工作在基站状态的 RN, 如果随机接入被触发, 可 在基站状态的 RN可以借用非 backhaul子帧进行随机接入,通过使用 本发明所提供的方法, 可以降低作为基站工作的 RN进行随机接入的 时延, 提升用户体验。
本发明实施例一提供了一种中继系统的随机接入方法,如图 5所 示, 包括以下步骤:
步骤 501 , 中继节点 RN判断随机接入是否被触发。 如果随机接 入被触发, 转到步骤 502。
步骤 502, 所述 RN利用非回程链路子帧进行随机接入。 其中, 该 RN可以部分利用非回程链路子帧进行随机接入或者全部利用非回 程链路子帧进行随机接入。
第一种情况, 在竟争随机接入时,
当不对 RN使用的子帧进行限制时, RN利用非回程链路子帧进 行随机接入, 包括: RN选择一个随机接入前导序列 preamble和上行 子帧, 并使用上行子帧的随机接入信道 RACH 资源向网络侧发送 Preamble; 当网络侧检测到 Preamble后, 向 RN发送随机接入响应, RN监听 RAR window内的所有有 PDCCH的下行子帧, 以接收随机 接入响应,并利用随机接入响应分配的上行资源向网络侧发送上行数 据; 当网络侧根据上行数据发送竟争解决消息时, RN 在 mac-ContentionResolution timer 内的所有有物理下行控制信道 PDCCH的下行子帧接收竟争解决消息。
当限制 Msgl使用上行 UL BH子帧时, RN利用非回程链路子帧 进行随机接入, 包括: RN选择一个 preamble和一个 UL BH子帧, 并使用 UL BH子帧的 RACH资源向网络侧发送 Preamble; 当网络侧 检测到 Preamble后,向 RN发送随机接入响应, RN监听 RAR window 内的所有有 PDCCH的下行子帧, 以接收随机接入响应, 并利用随机 接入响应分配的上行资源向网络侧发送上行数据; 当网络侧利用上行 数据发送竟争解决消息时, RN在 mac-ContentionResolution timer内 的所有有 PDCCH的下行子帧接收竟争解决消息。
当限制 Msg4使用 BH子帧时, RN利用非回程链路子帧进行随 机接入, 包括: RN选择一个 preamble和上行子帧, 并使用上行子帧 的 RACH资源向网络侧发送 Preamble;当网络侧检测到 Preamble后, 向 RN发送随机接入响应, RN监听 RAR window内的所有有 PDCCH 的下行子帧, 以接收随机接入响应, 并利用随机接入响应分配的上行 资源向网络侧发送上行数据; 当网络侧利用上行数据发送竟争解决消 息时, RN在 mac-ContentionResolution timer内的所有 R-PDCCH的 DL BH子帧接收竟争解决消息。
当同时限制 Msgl和 Msg4使用 BH子帧时, RN利用非回程链路 子帧进行随机接入, 包括: RN选择一个 preamble和一个 UL BH子 帧, 并使用 UL BH子帧的 RACH资源向网络侧发送 Preamble; 当网 络侧检测到 Preamble后, 向 RN发送随机接入响应, RN监听 RAR window内的所有有 PDCCH的下行子帧, 以接收随机接入响应, 并 利用随机接入响应分配的上行资源向网络侧发送上行数据; 当网络侧 利用上行数据发送竟争解决消息时, RN在 mac-ContentionResolution timer内的所有有 R-PDCCH的 DL BH子帧接收竟争解决消息。
第二种情况: 在非竟争随机接入时,
当同时限制 Msgl和 Msg2只能使用 BH子帧时, RN利用非回程 链路子帧进行随机接入, 包括: 网络侧将为 RN指定的专用 preamble 以及 PRACH信息通过 DL BH子帧发送给 RN; RN根据专用 preamble 以及 PRACH信息通过 UL BH子帧向网络侧发送专用 preamble; 网 络侧根据专用 preamble在为 RN配置的 DL BH子帧上向 RN发送随 机接入响应; RN在 RAR window内的所有有 R-PDCCH的下行子帧 内监听 R-PDCCH以接收到随机接入响应。
当限制 Msgl只能使用 BH子帧, 不允许借用非 BH子帧时, RN 利用非回程链路子帧进行随机接入, 包括: 网络侧将为 RN指定的专 用 preamble以及 PRACH信息通过 DL BH子帧发送给 RN; RN根据 专用 preamble以及 PRACH信息通过 UL BH子帧向网络侧发送专用 preamble; 网络侧根据专用 preamble向 RN发送随机接入响应;其中, 该随机接入响应的发送子帧不受 DL BH限制; RN在 RAR window内 的所有有 PDCCH的下行子帧内监听 PDCCH以接收到随机接入响应。
在非竟争随机接入时, 当限制 Msg2只能使用 BH子帧, 不允许 借用非 BH子帧时, RN利用非回程链路子帧进行随机接入, 包括: 网络侧将为 RN指定的专用 preamble以及 PRACH信息通过 DL BH 子帧发送给 RN; RN根据专用 preamble以及 PRACH信息利用 UL BH 子帧或者 UL非 BH子帧向网络侧发送专用 preamble; 网络侧根据专 用 preamble在 DLBH子帧上向 RN发送随机接入响应; RN在 RAR window内的所有有 R-PDCCH的下行子帧内监听 R-PDCCH以接收到 随机接入响应。
需要说明的是, RN是否允许借用非 BH子帧的获取方式包括: 系统预先规定, 或者, 由网络侧通过显式方式通知, 或者, 由网络侧 通过隐式方式通知; 其中, 网络侧通过显式方式通知具体为通过广播 方式或者 RRC信令方式通知。
进一步的, RN利用非回程链路子帧进行随机接入,之前还包括: RN向服务的所有 R-UE发送无线资源控制 RRC连接释放消息,并释 放所有 R-UE的 RRC连接, 停止发送广播消息和寻呼消息; RN利用 非回程链路子帧进行随机接入, 之后还包括: RN继续发送广播消息 和寻呼消息, 并重新接纳 RN覆盖范围内的 R-UE。
RN利用非回程链路子帧进行随机接入, 之前还包括: RN停止 发送广播消息和寻呼消息, 并停止对 Uu 口的数据收发和反馈; RN 利用非回程链路子帧进行随机接入, 之后还包括: RN继续发送广播 消息和寻呼消息, 并继续为 R-UE提供正常的服务。
RN利用非回程链路子帧进行随机接入, 之前还包括: RN终止 对 Uu口的 UL、 DL调度; 在 RN利用非回程链路子帧进行随机接入 的过程中, 如果 RN在某个子帧内不需要监听网络侧发送的 PDCCH 以及上下行收发, 且该子帧能够用于发送广播消息或者寻呼消息, 则 RN利用该子帧向 R-UE发送广播消息或者寻呼消息。
在 RN利用非回程链路子帧进行随机接入的过程中, 如果 RN在 某个子帧内不需要监听网络侧发送的 PDCCH 以及上下行收发, 则 RN利用该子帧向 R-UE发送广播消息或者寻呼消息, 并对 Uu口进 行 UL、 DL调度。
可见, 通过使用本发明提供的方法, 如果工作在基站状态的 RN 随机接入被触发, 则该 RN可以部分借用或者全部借用非回程链路子 帧进行随机接入的方法, 即 RN可以借用 Uu的子帧进行随机接入, 从而可以降低作为基站工作的 RN进行随机接入的时延。
本发明实施例中, 对于工作在基站状态的 RN, 如果随机接入被 该子帧借用的方法, RN作为基站进行竟争随机接入的过程中, 各条 消息 (即图 2所示的 Msgl、 Msg2、 Msg3和 Msg4 )的处理方式包括:
( 1 ) Msgl的发送。
工作于基站模式的 RN如果随机接入被触发, 则 Msgl的发送方 式包括但不限于: 只在 UL BH子帧发送, 或者, 可以在 UL非 BH子 帧发送。 需要注意的是, 当选择在 UL (上行)非 BH子帧发送 Msgl 时, 该方式适合于 UL BH子帧没有 PRACH资源配置或对随机接入 时延要求很高的场景。
( 2 ) Msg2的监听。
RN在 RAR ( random access response、 随机接入响应) window (窗口)内的所有有 PDCCH ( Physical Downlink Control Channel, 物 理下行控制信道)子帧上监听随机接入响应, 使得 Msg2的监听不受 DL (下行) BH子帧的限制。需要注意的是,此时监听的是 PDCCH, 而不是 R-PDCCH ( Relay Physical Downlink Control Channel , 中继物 理下行控制信道), 该 R-PDCCH为基站向中继发送的 PDCCH。
( 3 ) Msg3的发送。
RN利用从 Msg2接收到的 RAR中所包含的调度信息,进行 Msg3 的上行传输。 其中, RN在发送 Msg3时, 可以使用 PUSCH ( Physical Uplink Shared Channel, 物理上行共享信道) 资源。 需要注意的是, 当 RN后续使用时有新的 PUSCH格式引入时, 则此时可以使用新引 入的 PUSCH格式来发送 Msg3。
( 4 ) Msg4的接收。
基站(即 DeNB )接收到来自 RN发送的 Msg3后, 可以利用该 Msg3中包含的 RN的标识信息确定进行随机接入的是 RN, 对应的, Msg4的接收方式包括但不限于:
方式一、 RN在 mac-ContentionResolutionTimer ( mac竟争解决定 时器)未超时的时间内, 只在 DL BH子帧内监听 Msg4, 以接收竟争 解决消息, 此时需要采用 R-PDCCH进行调度, 并使用 R-PDSCH格 式进行下行传输。
方式二、 RN在 mac-ContentionResolutionTimer未超时的时间内, 可以在所有 DL子帧内监听 Msg4, 以接收竟争解决消息, 此时需要 采用常规的 PDCCH进行调度, 并使用 PDSCH格式进行下行传输。
基于该子帧借用方法, RN作为基站进行非竟争随机接入的过程 中各条消息的处理方式包括:
( 1 ) MsgO的发送。
基站在 DL BH子帧上发送 MsgO, RN监听 R-PDCCH接收基站 指定的专用 preamble和随机接入使用的 PRACH资源指示。 PRACH 资源指示信息可能包含载波信息和某个载波上的 PRACH资源指示。 基站指定 PRACH资源时不受 BH子帧的限制,可使用所有子帧资源。
( 2 ) Msgl的发送。 RN根据 MsgO中指示的 preamble和 PRACH资源向基站发送该 专用 preamble。 Msgl使用的资源不受 BH子帧的限制, 只按照基站 指示的资源发送即可。
( 3 ) Msg2的接收。
由于 Msg2的接收不受 BH资源限制, 则 Msg2的接收方式包括 但不限于: a, 在 RAR window内的所有有 R-PDCCH的 DL BH子帧 进行监听, 该方式适用于随机接入过程只使用 BH子帧的情况; b, 在 RAR window内的所有有 PDCCH的 DL子帧进行监听, 该方式适 用于随机接入过程支持子帧借用的情况。
需要说明的是, 对于上述竟争 /非竟争随机接入方式, 是否允许 借用非 BH子帧可以为系统预先规定, 或者由基站通过显式或隐式方 式通知。 显式方式即 RRC信令或广播, 隐式方式有多种, 如对于非 竟争随机接入可通过基站指定的 Msgl判断是否允许借用非 BH子帧, 对于竟争随机接入可以根据 Msgl 发送的子帧判断是否允许借用非 BH子帧。
基于上述情况,本发明实施例二提供了一种中继系统的随机接入 方法, 本实施例中是针对竟争随机接入的处理过程, 不对 RN使用的 子帧进行限制, 可以借用非 BH子帧。 如图 6所示, 该方法包括以下 步骤:
步骤 601 , RN在所有可用的 Preamble中随机选择一个 preamble 和选择一个上行子帧, 并在该上行子帧的 RACH资源上发送所选择 的 preamble。 在 RN发送 Preamble的同时, 基站会对 RACH信道进 行检测, 如果监测到 Preamble, 则计算该 Preamble对应的 TA。
步骤 602,基站发送对所检测到的 Preamble的随机接入响应。 该 随机接入响应中包含以下信息: (1 )所接收到的 Preamble的标识信 息, 如编号, 发送时间等; (2 )所接收到的 Preamble对应的 TA; ( 3 ) 为后继的上行数据传输所分配的信道资源的信息, 包括资源时 -频位 置, MCS等; (4 )基站为用户分配的临时 ID (例如, C-RNTI )。
进一步的, RN在 RAR window内的所有有 PDCCH的下行子帧 内监听接收到的随机接入响应, 当监听到随机接入响应后, RN根据 该随机接入响应中的 Preamble的标识信息, 确定该随机接入响应信 息的目标端是否为自身, 如果是, 则根据该随机接入响应中的 TA信 息, 调整上行信号的发送定时提前量。
步骤 603, RN根据随机接入响应消息中所分配的 UL资源以及 HARQ ( Hybrid Auto Repeat Request, 混合自动重传请求)定时关系, 在 PUSCH资源上进行上行数据发送。 其中, RN在发送的上行数据 中至少包括: 终端的标识信息, 例如, IMSI, TMSI或 C-RNTI等。
步骤 604, 基站接收到上行数据后, 检测 RN在上行数据中发送 的 RN的标识信息是否合法,如果合法,则向 RN发送竟争解决消息, 并将检测结果通知 RN。
RN在 mac-ContentionResolutionTimer未超时的时间内, 在所有 有 PDCCH的 DL子帧内监听 PDCCH以接收竟争解决消息。
本发明实施例三提供了一种中继系统的随机接入方法,本实施例 中是针对竟争随机接入的处理过程, 限制 Msgl使用 UL BH子帧, 不允许借用非 BH子帧,对其它消息不做限制,可以借用 Uu口子帧。 如图 7所示, 该方法包括以下步骤:
步骤 701 , RN在所有可用的 Preamble中随机选择一个 preamble, 选择一个 UL BH子帧,并在该 UL BH子帧上的 RACH资源上发送所 选择的 preamble。 在 RN发送 Preamble的同时, 基站会对 RACH信 道进行检测, 如果监测到 Preamble, 则计算该 Preamble对应的 TA。
步骤 702, 基站发送对所检测到的 Preamble的随机接入响应。 进一步的, RN在 RAR window内的所有有 PDCCH的下行子帧 内监听接收到的随机接入响应, 当监听到随机接入响应后, RN根据 该随机接入响应中的 Preamble的标识信息, 确定该随机接入响应信 息的目标端是否为自身, 如果是, 则根据该随机接入响应中的 TA信 息, 调整上行信号的发送定时提前量。
步骤 703, RN根据随机接入响应消息中所分配的 UL资源以及 HARQ定时关系, 在 PUSCH资源上进行上行数据发送。 步骤 704, 基站接收到上行数据后, 检测 RN在上行数据中发送 的 RN的标识信息是否合法,如果合法,则向 RN发送竟争解决消息, 并将检测结果通知 RN。
RN在 mac-ContentionResolutionTimer未超时的时间内, 在所有 有 PDCCH的 DL子帧内监听 PDCCH以接收竟争解决消息。
本发明实施例四提供了一种中继系统的随机接入方法,本实施例 中是针对竟争随机接入的处理过程, 限制 Msg4只能使用 BH子帧, 不允许借用非 BH子帧,对其它消息不做限制,可以借用 Uu口子帧。 如图 8所示, 该方法包括以下步骤:
步骤 801 , RN在所有可用的 Preamble中随机选择一个 preamble, 选择一个 UL子帧,并在该 UL子帧子帧上的 RACH资源上发送所选 择的 preamble。 在 RN发送 Preamble的同时, 基站会对 RACH信道 进行检测, 如果监测到 Preamble, 则计算该 Preamble对应的 TA。
步骤 802, 基站发送对所检测到的 Preamble的随机接入响应。 进一步的, RN在 RAR window内的所有有 PDCCH的下行子帧 内监听接收到的随机接入响应, 当监听到随机接入响应后, RN根据 该随机接入响应中的 Preamble的标识信息, 确定该随机接入响应信 息的目标端是否为自身, 如果是, 则根据该随机接入响应中的 TA信 息, 调整上行信号的发送定时提前量。
步骤 803, RN根据随机接入响应消息中所分配的 UL资源以及 HARQ定时关系, 在 PUSCH资源上进行上行数据发送。
步骤 804, 基站接收到上行数据后, 检测 RN在上行数据中发送 的 RN的标识信息是否合法, 如果合法, 则根据 RN的标识信息确定 接入的 RN, 并只在 DL BH子帧发送竟争解决消息。
进一步的, RN在 mac-ContentionResolutionTimer未超时的时间 内,在所有有 R-PDCCH的 DL BH子帧内监听 R-PDCCH以接收竟争 解决消息, 此时, Msg4下行传输所使用的是 R-PDSCH。
本发明实施例五提供了一种中继系统的随机接入方法,本实施例 中是针对竟争随机接入的处理过程, 同时限制 Msgl和 Msg4只能使 用 BH子帧, 不允许借用非 BH子帧, 对其它消息不做限制, 可以借 用 Uu口子帧。 如图 9所示, 该方法包括以下步骤:
步骤 901 , RN在所有可用的 Preamble中随机选择一个 preamble, 选择一个 UL BH子帧,并在该 UL BH子帧上的 RACH资源上发送所 选择的 preamble。 在 RN发送 Preamble的同时, 基站会对 RACH信 道进行检测, 如果监测到 Preamble, 则计算该 Preamble对应的 TA。
步骤 902, 基站发送对所检测到的 Preamble的随机接入响应。 进一步的, RN在 RAR window内的所有有 PDCCH的下行子帧 内监听接收到的随机接入响应, 当监听到随机接入响应后, RN根据 该随机接入响应中的 Preamble的标识信息, 确定该随机接入响应信 息的目标端是否为自身, 如果是, 则根据该随机接入响应中的 TA信 息, 调整上行信号的发送定时提前量。
步骤 903, RN根据随机接入响应消息中所分配的 UL资源以及 HARQ定时关系, 在 PUSCH资源上进行上行数据发送。
步骤 904, 基站接收到上行数据后, 检测 RN在上行数据中发送 的 RN的标识信息是否合法, 如果合法, 则根据 RN的标识信息确定 接入的 RN, 并只在 DL BH子帧发送竟争解决消息。
进一步的, RN在 mac-ContentionResolutionTimer未超时的时间 内,在所有有 R-PDCCH的 DL BH子帧内监听 R-PDCCH以接收竟争 解决消息, 此时, Msg4下行传输所使用的是 R-PDSCH。
需要注意的是,上述实施例二至实施例五中的处理过程是针对竟 争随机接入的处理过程, 而对于非竟争随机接入过程的处理方式, 可 以至少分为以下三种情况进行详细说明:
第一种情况: 限制 Msgl和 Msg2只能使用 BH子帧, 不允许借 用非 BH子帧。
( 1 )对 MsgO的处理。
基站根据预设原则 (例如, 随机接入负荷等) 为 RN指定专用 preamble以及发送该专用 preamble的 UL CC以及该 UL CC上的 PRACH资源。需要注意是, PRACH资源应该选择在 UL BH子帧上, 然后通过 MsgO将所选 preamble以及 PRACH信息指示给 RN。
( 2 )对 Msgl的处理。
当 RN 接收到该指示信息后, 按照基站的指示发送该专用 preamble
( 3 )对 Msg2的处理。
基站检测到 Preamble, 根据 preamble发送随机接入响应, 该随 机接入响应只能在为随机接入的 RN配置的 DL BH子帧上发送, 该 随机接入响应中至少包含以下信息: 对于切换, 需要包含 TA信息和 初始 UL资源分配;对于 DL数据到达应该包含 TA信息; RA-preamble 标识信息; 为后继的上行数据传输所分配的信道资源的信息, 包括资 源时-频位置, MCS等; 基站为用户分配的临时 ID。
进一步的, RN在 RAR window内的所有有 R-PDCCH的下行子 帧内监听 R-PDCCH以接收到随机接入响应, 根据其中的 TA信息, 调整上行信号的发送定时提前量。
第二种情况:只限制 Msgl只能使用 BH子帧,不允许借用非 BH 子帧。
( 1 )对 MsgO的处理。
基站根据预设原则 (例如, 随机接入负荷等) 为 RN指定专用 preamble以及发送该专用 preamble的 UL CC以及该 UL CC上的 PRACH资源。需要注意是, PRACH资源应该选择在 UL BH子帧上, 然后通过 MsgO将所选 preamble以及 PRACH信息指示给 RN。
( 2 )对 Msgl的处理。
当 RN 接收到该指示信息后, 按照基站的指示发送该专用 preamble
( 3 )对 Msg2的处理。
基站检测到 Preamble, 根据 preamble发送随机接入响应。 其中, 该随机接入响应的发送子帧不受 DL BH限制。进一步的, RN在 RAR window内的所有有 PDCCH的下行子帧内监听 PDCCH以接收到随机 接入响应, 根据其中的 TA信息, 调整上行信号的发送定时提前量。 第三种情况:只限制 Msg2只能使用 BH子帧,不允许借用非 BH 子帧。
( 1 )对 MsgO的处理。
基站根据预设原则 (例如, 随机接入负荷等) 为 RN指定专用 preamble以及发送该专用 preamble的 UL CC以及该 UL CC上的 PRACH资源。需要注意是, PRACH资源应该选择在 UL BH子帧上, 然后通过 MsgO将所选 preamble以及 PRACH信息指示给 RN。
( 2 )对 Msgl的处理。
当 RN 接收到该指示信息后, 按照基站的指示发送该专用 preamble
( 3 )对 Msg2的处理。
基站检测到 Preamble, 根据 preamble发送随机接入响应。 其中, 该随机接入响应的发送子帧在 DLBH子帧。 RN在 RAR window内的 所有有 R-PDCCH的下行子帧内监听 R-PDCCH以接收到随机接入响 应, 根据其中的 TA信息, 调整上行信号的发送定时提前量。
在上述竟争或者非竟争随机接入过程,采用上述处理方式对各条 消息进行处理的前提下, 本发明实施例中, RN在进行随机接入过程 中对 R-UE的处理和对 Uu口系统消息及寻呼的处理方式包括但不限 于: (1 ) RN强制释放 R-UE的 RRC连接, 并停止系统消息和寻呼的 发送; (2 ) RN停止对 R-UE的调度和传输, 并在未被随机接入过程 占用的接入链路系统消息和寻呼子帧位置发送系统消息和寻呼; ( 3 ) RN 在未被随机接入过程占用的接入链路子帧内进行数据调度和传 输,并在未被随机接入过程占用的接入链路系统消息和寻呼子帧位置 发送系统消息和寻呼。
基于上述情况,本发明实施例六提供了一种中继系统的随机接入 方法, 该方法是针对 RN随机接入过程中对 R-UE的处理过程, 本实 施例中, RN强制释放 R-UE的 RRC连接, 并停止系统消息和寻呼的 发送, 如图 10所示, 该方法包括以下步骤:
步骤 1001 , RN判断随机接入是否被触发, 如果被触发, 则 RN 向其服务的所有 R-UE发送 RRC连接释放消息, 释放所有 R-UE的 RRC连接, 并清空 buffer中的信息, 停止发送广播、 寻呼等消息。 如 图 11所示, 为 RRC连接释放过程的示意图, 即 RN向 R-UE发送 RRCConnectionRelease。
步骤 1002, RN与基站完成随机接入过程。 该 RN可以采用上述 随机接入流程中的任何一种完成随机接入过程, 即 RN执行上述实施 例二至实施例五中的一种完成随机接入过程。 以 FDD ( Frequency Division Duplex, 频分双工) 为例, 则随机接入过程的各个消息的时 序关系示意图如图 12所示。
步骤 1003, RN随机接入成功, 继续发送广播、 寻呼等消息, 重 新接纳该 RN所覆盖范围内的 R-UE并为对应的 R-UE服务。
本发明实施例七提供了一种中继系统的随机接入方法,该方法针 对 RN随机接入过程中对 R-UE的处理过程, 本实施例中, RN不释 放 R-UE, 但是 RN进行随机接入过程中终止和 R-UE的通信, 如图 13所示, 该方法包括以下步骤:
步骤 1301 , RN判断随机接入是否被触发, 如果被触发, 则停止 发送广播、 寻呼等消息, 并停止对 Uu口的数据收发和反馈。
步骤 1302, RN与基站完成随机接入过程。 其中, 该 RN可以采 用上述随机接入流程中的任何一种完成随机接入过程, 即 RN执行上 述实施例二至实施例五中的一种完成随机接入过程。 以 FDD为例, 则随机接入过程的各个消息的时序关系示意图如图 12所示。
步骤 1303, RN随机接入成功, 继续发送广播、 寻呼等消息, 并 继续为 R-UE提供正常的服务。
本发明实施例八提供了一种中继系统的随机接入方法,该方法是 针对 RN随机接入过程中对 R-UE的处理过程, 本实施例中, RN不 释放 R-UE, 但是会停止对 R-UE的调度和传输, 在未被随机接入过 程占用的接入链路系统消息和寻呼子帧位置照常发送系统消息和寻 呼, 如图 14所示, 该方法包括以下步骤:
步骤 1401 , RN判断随机接入是否被触发, 如果被触发, 则 RN 终止 Uu口的 UL/DL调度。
步骤 1402, RN与基站完成随机接入过程。 其中, 该 RN可以采 用上述随机接入流程中的任何一种完成随机接入过程, 即 RN执行上 述实施例二至实施例五中的一种完成随机接入过程。
具体的, 在 RN与基站完成随机接入过程中, 如果 RN在某个子 帧内不需要进行 Un口的 PDCCH监听以及上下行收发, 且该子帧如 果可以用于发广播或者寻呼, 则 RN可以利用这些子帧向 R-UE发送 广播或者寻呼等消息。 如图 15所示, 为随机接入过程的各个消息的 时序关系示意图, 而在图 15 中, 有可能被用于 Uu口发送广播、 寻 呼等消息的子帧用左斜线表示。
步骤 1403, RN随机接入成功后开始按照正常工作的基站工作模 式进行工作。
本发明实施例九提供了一种中继系统的随机接入方法,该方法是 针对 RN随机接入过程中对 R-UE的处理过程, 本实施例中, RN不 释放 R-UE, 在未被随机接入过程占用的接入链路子帧内 RN可以进 行数据调度和传输,在未被随机接入过程占用的接入链路系统消息和 寻呼子帧位置照常发送系统消息和寻呼, 如图 16所示, 该方法包括 以下步骤:
步骤 1601 , RN判断随机接入是否被触发, 如果被触发, 则执行 步骤 1602。
步骤 1602, RN与基站完成随机接入过程。 该 RN可以采用上述 随机接入流程中的任何一种完成随机接入过程, 即 RN执行上述实施 例二至实施例五中的一种完成随机接入过程。
具体的, 在 RN与基站完成随机接入过程中, 如果 RN在某个子 帧内不需要进行 Un口的 PDCCH监听以及上下行数据收发, 则 RN 可以使用该子帧发送广播或者寻呼以及对 Uu口进行 UL、 DL调度。 如图 17所示, 为随机接入过程的各个消息的时序关系示意图, 而在 图 17中, 有可能被用于 Uu口发送广播、 寻呼以及 UL/DL调度的子 帧用左斜线表示。 步骤 1603, RN随机接入成功, 恢复 RN作为基站的正常工作。 其中,本发明的各个实施例中的各个步骤可以根据实际的需要进 行调整。
可见, 通过使用本发明各个实施例所提供的方法, 如果工作在基 站状态的 RN随机接入被触发, 则该 RN可以部分借用或者全部借用 非回程链路子帧进行随机接入的方法, 即 RN可以借用 Uu的子帧进 行随机接入,从而可以降低作为基站工作的 RN进行随机接入的时延, 改善用户体验。
基于上述方法同样的发明构思,本发明实施例中还提供了一种中 继系统的随机接入设备, 如图 18所示, 包括:
判断模块 10, 用于判断随机接入是否被触发;
处理模块 20, 用于当判断模块的判断结果为随机接入被触发时, 利用非回程链路子帧进行随机接入。
具体的, 在竟争随机接入时, 当不对所述 RN使用的子帧进行限 制时, 所述处理模块 20 具体用于, 选择一个随机接入前导序列 preamble和上行子帧, 并使用所述上行子帧的随机接入信道 RACH 资源向网络侧发送所述 Preamble;当所述网络侧检测到所述 Preamble 后, 向所述 RN发送随机接入响应时, 监听 RAR window内的所有有 PDCCH的下行子帧, 以接收所述随机接入响应, 并利用所述随机接 据所述上行数据发送竟争解决消息时, 在 mac-ContentionResolution timer 内的所有有物理下行控制信道 PDCCH的下行子帧接收所述竟 争解决消息。
当限制 Msgl使用上行 UL BH子帧时, 所述处理模块 20具体用 于,选择一个 preamble和一个 UL BH子帧, 并使用所述 UL BH子帧 的 RACH资源向网络侧发送所述 Preamble; 当所述网络侧检测到所 述 Preamble后, 向所述 RN发送随机接入响应时, 监听 RAR window 内的所有有 PDCCH的下行子帧, 以接收所述随机接入响应, 并利用 所述随机接入响应分配的上行资源向所述网络侧发送上行数据; 当所 述网络侧根据所述上行数据发送竟争解决消息时, 在 mac-ContentionResolution timer内的所有有 PDCCH的下行子帧接 所述竟争解决消息。
当限制 Msg4使用 BH子帧时,所述处理模块 20具体用于,选择 一个 preamble和上行子帧, 并使用所述上行子帧的 RACH资源向网 络侧发送所述 Preamble; 当所述网络侧检测到所述 Preamble后, 向 所述 RN发送随机接入响应时,监听 RAR window内的所有有 PDCCH 的下行子帧, 以接收所述随机接入响应, 并利用所述随机接入响应分 配的上行资源向所述网络侧发送上行数据; 当所述网络侧根据所述上 行数据发送竟争解决消息时, 在 mac-ContentionResolution timer内的 所有 R-PDCCH的 DL BH子帧接收所述竟争解决消息。
当同时限制 Msgl和 Msg4使用 BH子帧时,所述处理模块 20具 体用于, 选择一个 preamble和一个 UL BH子帧, 并使用所述 UL BH 子帧的 RACH资源向网络侧发送所述 Preamble; 当所述网络侧检测 到所述 Preamble后, 向所述 RN发送随机接入响应时, 监听 RAR window内的所有有 PDCCH的下行子帧, 以接收所述随机接入响应, 并利用所述随机接入响应分配的上行资源向所述网络侧发送上行数 据; 当所述网络侧根据所述上行数据发送竟争解决消息时, 在 mac-ContentionResolution timer内的所有有 R-PDCCH的 DL BH子帧 接收所述竟争解决消息。
在非竟争随机接入时, 当同时限制 Msgl和 Msg2只能使用 BH 子帧时, 所述处理模块 20具体用于, 接收所述网络侧通过 DL BH子 帧所发送的为所述 RN指定的专用 preamble以及 PRACH信息; 并根 据所述专用 preamble以及 PRACH信息通过 UL BH子帧向所述网络 侧发送所述专用 preamble; 接收所述网络侧根据所述专用 preamble 在为所述 RN配置的 DL BH子帧上向所述 RN发送随机接入响应; 并在 RAR window 内的所有有 R-PDCCH 的下行子帧内监听 R-PDCCH以接收到随机接入响应。
当限制 Msgl只能使用 BH子帧, 不允许借用非 BH子帧时, 所 述处理模块 20具体用于,接收所述网络侧通过 DL BH子帧所发送的 为所述 RN指定的专用 preamble以及 PRACH信息;并根据所述专用 preamble以及 PRACH信息通过 UL BH子帧向所述网络侧发送所述 专用 preamble;接收所述网络侧根据所述专用 preamble向所述 RN发 送随机接入响应; 其中, 该随机接入响应的发送子帧不受 DL BH限 以接收到随机接入响应。
当限制 Msg2只能使用 BH子帧, 不允许借用非 BH子帧时, 所 述处理模块 20具体用于,接收所述网络侧通过 DL BH子帧所发送的 为所述 RN指定的专用 preamble以及 PRACH信息;并根据所述专用 preamble以及 PRACH信息利用 UL BH或者 UL非 BH子帧向所述网 络侧发送所述专用 preamble;接收所述网络侧根据所述专用 preamble 在 DLBH子帧上向所述 RN发送随机接入响应;并在 RAR window内 的所有有 R-PDCCH的下行子帧内监听 R-PDCCH以接收到随机接入 响应。
所述 RN是否允许借用非 BH子帧的获取方式包括: 系统预先规 定, 或者, 由所述网络侧通过显式方式通知, 或者, 由所述网络侧通 过隐式方式通知; 其中, 所述网络侧通过显式方式通知具体为通过广 播方式或者 RRC信令方式通知。
进一步的, 所述处理模块 20还用于, 在所述 RN利用非回程链 路子帧进行随机接入之前, 向服务的所有 R-UE发送无线资源控制 RRC连接释放消息, 并释放所有 R-UE的 RRC连接, 停止发送广播 消息和寻呼消息; 并在所述 RN利用非回程链路子帧进行随机接入 之后, 继续发送广播消息和寻呼消息, 并重新接纳所述 RN覆盖范围 内的 R-UE。
所述处理模块 20还用于, 在所述 RN利用非回程链路子帧进行 随机接入之前, 停止发送广播消息和寻呼消息, 并停止对 Uu口的数 据收发和反馈;并在所述 RN利用非回程链路子帧进行随机接入之后, 继续发送广播消息和寻呼消息, 并继续为 R-UE提供正常的服务。 所述处理模块 20还用于, 在所述 RN利用非回程链路子帧进行 随机接入之前, 终止对 Uu口的 UL/DL调度; 在所述 RN利用非回程 链路子帧进行随机接入的过程中,如果所述 RN在某个子帧内不需要 监听网络侧发送的 PDCCH以及上下行收发, 且该子帧能够用于发送 广播消息或者寻呼消息, 则利用该子帧向 R-UE发送广播消息或者寻 呼消息。
所述处理模块 20还用于, 在所述 RN利用非回程链路子帧进行 随机接入的过程中,如果所述 RN在某个子帧内不需要监听网络侧发 送的 PDCCH以及上下行收发, 则利用该子帧向 R-UE发送广播消息 或者寻呼消息, 并对 Uu口进行 UL、 DL调度。
其中,本发明装置的各个模块可以集成于一体,也可以分离部署。 上述模块可以合并为一个模块, 也可以进一步拆分成多个子模块。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解 到本发明可借助软件加必需的通用硬件平台的方式来实现, 当然也可 以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解, 软件产品的形式体现出来, 该计算机软件产品存储在一个存储介质 中, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服 务器, 或者网络设备等)执行本发明各个实施例所述的方法。
本领域技术人员可以理解附图只是一个优选实施例的示意图,附 图中的模块或流程并不一定是实施本发明所必须的。
本领域技术人员可以理解实施例中的装置中的模块可以按照实 施例描述进行分布于实施例的装置中,也可以进行相应变化位于不同 于本实施例的一个或多个装置中。上述实施例的模块可以合并为一个 模块, 也可以进一步拆分成多个子模块。
上述本发明实施例序号仅仅为了描述, 不代表实施例的优劣。 以上公开的仅为本发明的几个具体实施例, 但是, 本发明并非局 限于此,任何本领域的技术人员能思之的变化都应落入本发明的保护 范围。

Claims

权利要求
1、 一种中继系统的随机接入方法, 其特征在于, 包括: 中继节点 RN判断随机接入是否被触发;
如果随机接入被触发,所述 RN利用非回程链路子帧进行随机接 入。
2、 如权利要求 1所述的方法, 其特征在于, 在竟争随机接入时, 当不对所述 RN使用的子帧进行限制时, 所述 RN利用非回程链路子 帧进行随机接入, 包括:
所述 RN选择一个随机接入前导序列 preamble和上行子帧,并使 用所述上行子帧的随机接入信道 RACH 资源向网络侧发送所述 Preamble;
当所述网络侧检测到所述 Preamble后,向所述 RN发送随机接入 响应,所述 RN监听随机接入响应窗口 RAR window内的所有有物理 下行控制信道 PDCCH的下行子帧, 以接收所述随机接入响应, 并利 当所述网络侧根据所述上行数据发送竟争解决消息时, 所述 RN 在 mac竟争解决定时器 mac-ContentionResolution timer 内的所有有 PDCCH的下行子帧接收所述竟争解决消息。
3、 如权利要求 1所述的方法, 其特征在于, 在竟争随机接入时, 当限制 Msgl使用上行 UL回程 BH子帧时, 所述 RN利用非回程链 路子帧进行随机接入, 包括:
所述 RN选择一个 preamble和一个 UL BH子帧,并使用所述 UL BH子帧的 RACH资源向网络侧发送所述 Preamble;
当所述网络侧检测到所述 Preamble后,向所述 RN发送随机接入 响应, 所述 RN监听 RAR window内的所有有 PDCCH的下行子帧, 以接收所述随机接入响应,并利用所述随机接入响应分配的上行资源 向所述网络侧发送上行数据;
当所述网络侧根据所述上行数据发送竟争解决消息时, 所述 RN 在 mac-ContentionResolution timer内的所有有 PDCCH的下行子帧接 收所述竟争解决消息。
4、 如权利要求 1所述的方法, 其特征在于, 在竟争随机接入时, 当限制 Msg4使用 BH子帧时, 所述 RN利用非回程链路子帧进行随 机接入, 包括:
所述 RN选择一个 preamble和上行子帧,并使用所述上行子帧的 RACH资源向网络侧发送所述 Preamble;
当所述网络侧检测到所述 Preamble后,向所述 RN发送随机接入 响应, 所述 RN监听 RAR window内的所有有 PDCCH的下行子帧, 以接收所述随机接入响应,并利用所述随机接入响应分配的上行资源 向所述网络侧发送上行数据;
当所述网络侧根据所述上行数据发送竟争解决消息时, 所述 RN 在 mac-ContentionResolution timer 内的所有中继物理下行控制信道 R-PDCCH的下行 DL BH子帧接收所述竟争解决消息。
5、 如权利要求 1所述的方法, 其特征在于, 在竟争随机接入时, 当同时限制 Msgl和 Msg4使用 BH子帧时, 所述 RN利用非回程链 路子帧进行随机接入, 包括:
所述 RN选择一个 preamble和一个 UL BH子帧,并使用所述 UL BH子帧的 RACH资源向网络侧发送所述 Preamble;
当所述网络侧检测到所述 Preamble后,向所述 RN发送随机接入 响应, 所述 RN监听 RAR window内的所有有 PDCCH的下行子帧, 以接收所述随机接入响应,并利用所述随机接入响应分配的上行资源 向所述网络侧发送上行数据;
当所述网络侧根据所述上行数据发送竟争解决消息时, 所述 RN 在 mac-ContentionResolution timer内的所有有 R-PDCCH的 DL BH子 帧接收所述竟争解决消息。
6、 如权利要求 1所述的方法, 其特征在于, 在非竟争随机接入 时, 当同时限制 Msgl和 Msg2只能使用 BH子帧时, 所述 RN利用 非回程链路子帧进行随机接入, 包括: 所述网络侧将为所述 RN指定的专用 preamble以及 PRACH信息 通过 DL BH子帧发送给所述 RN;
所述 RN根据所述专用 preamble以及分组随机接入信道 PRACH 信息通过 UL BH子帧向所述网絡侧发送所述专用 preamble;
所述网络侧 居所述专用 preamble在为所述 RN配置的 DL BH 子帧上向所述 RN发送随机接入响应;
所述 RN在 RAR window内的所有有 R-PDCCH的下行子帧内监 听 R-PDCCH以接收到随机接入响应。
7、 如权利要求 1所述的方法, 其特征在于, 在非竟争随机接入 时, 当限制 Msgl只能使用 BH子帧, 不允许借用非 BH子帧时, 所 述 RN利用非回程链路子帧进行随机接入, 包括:
所述网络侧将为所述 RN指定的专用 preamble以及 PRACH信息 通过 DL BH子帧发送给所述 RN;
所述 RN根据所述专用 preamble以及 PRACH信息通过 UL BH 子帧向所述网络侧发送所述专用 preamble;
所述网络侧根据所述专用 preamble向所述 RN发送随机接入响 应; 其中, 该随机接入响应的发送子帧不受 DL BH限制;
所述 RN在 RAR window内的所有有 PDCCH的下行子帧内监听 PDCCH以接收到随机接入响应。
8、 如权利要求 1所述的方法, 其特征在于, 在非竟争随机接入 时, 当限制 Msg2只能使用 BH子帧, 不允许借用非 BH子帧时, 所 述 RN利用非回程链路子帧进行随机接入, 包括:
所述网络侧将为所述 RN指定的专用 preamble以及 PRACH信息 通过 DL BH子帧发送给所述 RN;
所述 RN根据所述专用 preamble以及 PRACH信息利用 UL BH 子帧或者 UL非 BH子帧向所述网络侧发送所述专用 preamble;
所述网络侧根据所述专用 preamble在 DL BH子帧上向所述 RN 发送随机接入响应;
所述 RN在 RAR window内的所有有 R-PDCCH的下行子帧内监 听 R-PDCCH以接收到随机接入响应。
9、 如权利要求 2-8任一项所述的方法, 其特征在于, 所述 RN 是否允许借用非 BH子帧的获取方式包括: 系统预先规定, 或者, 由 所述网络侧通过显式方式通知, 或者, 由所述网络侧通过隐式方式通 知; 其中, 所述网络侧通过显式通知具体为通过广播方式或者无线资 源控制 RRC信令方式通知。
10、 如权利要求 1-8任一项所述的方法, 其特征在于, 所述 RN 利用非回程链路子帧进行随机接入, 之前还包括:
所述 RN向服务的所有 R-UE发送无线资源控制 RRC连接释放 消息, 并释放所有 R-UE的 RRC连接, 停止发送广播消息和寻呼消 所述 RN利用非回程链路子帧进行随机接入, 之后还包括: 所述 RN继续发送广播消息和寻呼消息, 并重新接纳所述 RN覆 盖范围内的 R-UE。
11、 如权利要求 1-8任一项所述的方法, 其特征在于, 所述 RN 利用非回程链路子帧进行随机接入, 之前还包括:
所述 RN停止发送广播消息和寻呼消息, 并停止对 Uu口的数据 收发和反馈;
所述 RN利用非回程链路子帧进行随机接入, 之后还包括: 所述 RN继续发送广播消息和寻呼消息, 并继续为 R-UE提供正 常的服务。
12、 如权利要求 1-8任一项所述的方法, 其特征在于, 所述 RN 利用非回程链路子帧进行随机接入, 之前还包括:
所述 RN终止对 Uu口的 UL/DL调度;
在所述 RN利用非回程链路子帧进行随机接入的过程中,如果所 述 RN在某个子帧内不需要监听网络侧发送的 PDCCH以及上下行收 发, 且该子帧能够用于发送广播消息或者寻呼消息, 则所述 RN利用 该子帧向 R-UE发送广播消息或者寻呼消息。
13、 如权利要求 1-8任一项所述的方法, 其特征在于, 所述方法 还包括:
在所述 RN利用非回程链路子帧进行随机接入的过程中,如果所 述 RN在某个子帧内不需要监听网络侧发送的 PDCCH以及上下行收 发, 则所述 RN利用该子帧向 R-UE发送广播消息或者寻呼消息, 并 对 Uu口进行 UL、 DL调度。
14、 一种中继系统的随机接入设备, 其特征在于, 包括: 判断模块, 用于判断随机接入是否被触发;
处理模块, 用于当判断模块的判断结果为随机接入被触发时, 利 用非回程链路子帧进行随机接入。
15、 如权利要求 14所述的设备, 其特征在于, 在竟争随机接入 时, 当不对所述 RN使用的子帧进行限制时,
所述处理模块具体用于, 选择一个随机接入前导序列 preamble 和上行子帧, 并使用所述上行子帧的随机接入信道 RACH 资源向网 络侧发送所述 Preamble;
当所述网络侧检测到所述 Preamble后,向所述 RN发送随机接入 响应时, 监听 RAR window内的所有有 PDCCH的下行子帧, 以接收 所述随机接入响应,并利用所述随机接入响应分配的上行资源向所述 网络侧发送上行数据;
当所述网络侧根据所述上行数据发送竟争解决消息时, 在 mac-ContentionResolution timer 内的所有有物理下行控制信道 PDCCH的下行子帧接收所述竟争解决消息。
16、 如权利要求 14所述的设备, 其特征在于, 在竟争随机接入 时, 当限制 Msg 1使用上行 UL BH子帧时,
所述处理模块具体用于,选择一个 preamble和一个 UL BH子帧, 并使用所述 UL BH子帧的 RACH资源向网络侧发送所述 Preamble; 当所述网络侧检测到所述 Preamble后,向所述 RN发送随机接入 响应时, 监听 RAR window内的所有有 PDCCH的下行子帧, 以接收 所述随机接入响应,并利用所述随机接入响应分配的上行资源向所述 网络侧发送上行数据;
当所述网络侧根据所述上行数据发送竟争解决消息时, 在 mac-ContentionResolution timer内的所有有 PDCCH的下行子帧接 所述竟争解决消息。
17、 如权利要求 14所述的设备, 其特征在于, 在竟争随机接入 时, 当限制 Msg4使用 BH子帧时,
所述处理模块具体用于, 选择一个 preamble和上行子帧, 并使 用所述上行子帧的 RACH资源向网络侧发送所述 Preamble;
当所述网络侧检测到所述 Preamble后,向所述 RN发送随机接入 响应时, 监听 RAR window内的所有有 PDCCH的下行子帧, 以接收 所述随机接入响应,并利用所述随机接入响应分配的上行资源向所述 网络侧发送上行数据;
当所述网络侧根据所述上行数据发送竟争解决消息时, 在 mac-ContentionResolution timer内的所有 R-PDCCH的 DL BH子帧接 收所述竟争解决消息。
18、 如权利要求 14所述的设备, 其特征在于, 在竟争随机接入 时, 当同时限制 Msgl和 Msg4使用 BH子帧时,
所述处理模块具体用于,选择一个 preamble和一个 UL BH子帧, 并使用所述 UL BH子帧的 RACH资源向网络侧发送所述 Preamble; 当所述网络侧检测到所述 Preamble后,向所述 RN发送随机接入 响应时, 监听 RAR window内的所有有 PDCCH的下行子帧, 以接收 所述随机接入响应,并利用所述随机接入响应分配的上行资源向所述 网络侧发送上行数据;
当所述网络侧根据所述上行数据发送竟争解决消息时, 在 mac-ContentionResolution timer内的所有有 R-PDCCH的 DL BH子帧 接收所述竟争解决消息。
19、 如权利要求 14所述的设备, 其特征在于, 在非竟争随机接 入时, 当同时限制 Msgl和 Msg2只能使用 BH子帧时,
所述处理模块具体用于, 接收所述网络侧通过 DL BH子帧所发 送的为所述 RN指定的专用 preamble以及 PRACH信息; 并根据所述 专用 preamble以及 PRACH信息通过 UL BH子帧向所述网络侧发送 所述专用 preamble;
接收所述网络侧根据所述专用 preamble在为所述 RN配置的 DL BH子帧上向所述 RN发送随机接入响应; 并在 RAR window内的所 有有 R-PDCCH的下行子帧内监听 R-PDCCH以接收到随机接入响应。
20、 如权利要求 14所述的设备, 其特征在于, 在非竟争随机接 入时, 当限制 Msgl只能使用 BH子帧, 不允许借用非 BH子帧时, 所述处理模块具体用于, 接收所述网络侧通过 DL BH子帧所发 送的为所述 RN指定的专用 preamble以及 PRACH信息; 并根据所述 专用 preamble以及 PRACH信息通过 UL BH子帧向所述网络侧发送 所述专用 preamble;
接收所述网络侧根据所述专用 preamble向所述 RN发送随机接入 响应;其中,该随机接入响应的发送子帧不受 DL BH限制;并在 RAR window内的所有有 PDCCH的下行子帧内监听 PDCCH以接收到随机 接入响应。
21、 如权利要求 14所述的设备, 其特征在于, 在非竟争随机接 入时, 当限制 Msg2只能使用 BH子帧, 不允许借用非 BH子帧时, 所述处理模块具体用于, 接收所述网络侧通过 DL BH子帧所发 送的为所述 RN指定的专用 preamble以及 PRACH信息; 并根据所述 专用 preamble以及 PRACH信息利用 UL BH或者 UL非 BH子帧向 所述网络侧发送所述专用 preamble;
接收所述网络侧根据所述专用 preamble在 DL BH子帧上向所述 RN发送随机接入响应; 并在 RAR window内的所有有 R-PDCCH的 下行子帧内监听 R-PDCCH以接收到随机接入响应。
22、 如权利要求 15-21 任一项所述的设备, 其特征在于, 所述 RN是否允许借用非 BH子帧的获取方式包括: 系统预先规定, 或者, 由所述网络侧通过显式通知,或者,由所述网络侧通过隐式方式通知; 其中, 所述网络侧通过显式通知具体为通过广播方式或者 RRC信令 方式通知。
23、 如权利要求 14-21任一项所述的设备, 其特征在于, 所述处理模块还用于,在所述 RN利用非回程链路子帧进行随机 接入之前, 向 RN服务的所有 R-UE发送无线资源控制 RRC连接释 放消息, 并释放所有 R-UE的 RRC连接, 停止发送广播消息和寻呼 消息;
并在所述 RN利用非回程链路子帧进行随机接入之后, 继续发 送广播消息和寻呼消息, 并重新接纳所述 RN覆盖范围内的 R-UE。
24、 如权利要求 14-21任一项所述的设备, 其特征在于, 所述处理模块还用于,在所述 RN利用非回程链路子帧进行随机 接入之前, 停止发送广播消息和寻呼消息, 并停止对 Uu口的数据收 发和反馈;
并在所述 RN利用非回程链路子帧进行随机接入之后,继续发送 广播消息和寻呼消息, 并继续为 R-UE提供正常的服务。
25、 如权利要求 14-21任一项所述的设备, 其特征在于, 所述处理模块还用于,在所述 RN利用非回程链路子帧进行随机 接入之前, 终止对 Uu口的 UL/DL调度;
在所述 RN利用非回程链路子帧进行随机接入的过程中,如果所 述 RN在某个子帧内不需要监听网络侧发送的的 PDCCH以及上下行 收发, 且该子帧能够用于发送广播消息或者寻呼消息, 则利用该子帧 向 R-UE发送广播消息或者寻呼消息。
26、 如权利要求 14-21任一项所述的设备, 其特征在于, 所述处理模块还用于,在所述 RN利用非回程链路子帧进行随机 接入的过程中,如果所述 RN在某个子帧内不需要监听网络侧发送的 PDCCH以及上下行收发, 则利用该子帧向 R-UE发送广播消息或者 寻呼消息, 并对 Uu口进行 UL、 DL调度。
PCT/CN2011/070825 2010-02-11 2011-01-30 一种中继系统的随机接入方法和设备 WO2011098016A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11741887.1A EP2560452B1 (en) 2010-02-11 2011-01-30 Method and apparatus for random access in relay system
US13/578,278 US10257864B2 (en) 2010-02-11 2011-01-30 Method and apparatus for random access relay system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010111781.3A CN102083228B (zh) 2010-02-11 2010-02-11 一种中继系统的随机接入方法和设备
CN201010111781.3 2010-02-11

Publications (1)

Publication Number Publication Date
WO2011098016A1 true WO2011098016A1 (zh) 2011-08-18

Family

ID=44088924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/070825 WO2011098016A1 (zh) 2010-02-11 2011-01-30 一种中继系统的随机接入方法和设备

Country Status (4)

Country Link
US (1) US10257864B2 (zh)
EP (1) EP2560452B1 (zh)
CN (1) CN102083228B (zh)
WO (1) WO2011098016A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101769379B1 (ko) * 2011-04-21 2017-08-30 엘지전자 주식회사 무선 통신 시스템에서 랜덤 액세스 응답 신호 송신 방법 및 이를 위한 장치
CN104871592A (zh) 2013-01-15 2015-08-26 富士通株式会社 基站间功能的协商方法、装置和系统
CN117335845A (zh) 2013-01-25 2024-01-02 交互数字专利控股公司 用于确定资源的方法和无线发射/接收单元
CN104581924A (zh) * 2013-10-28 2015-04-29 普天信息技术研究院有限公司 一种转换非竞争用户状态的方法
US10555348B2 (en) * 2015-03-11 2020-02-04 Lg Electronics Inc. Method for operating a fast random access procedure in a wireless communication system and a device therefor
CN106211331A (zh) * 2015-05-05 2016-12-07 中兴通讯股份有限公司 资源配置的方法和装置
US10548167B2 (en) * 2015-05-13 2020-01-28 Lg Electronics Inc. Method and device for performing random access process in unlicensed band
MY202268A (en) * 2017-01-05 2024-04-22 Guangdong Oppo Mobile Telecommunications Corp Ltd Method and device for random access
KR102600808B1 (ko) * 2017-07-27 2023-11-10 삼성전자 주식회사 랜덤 액세스 절차를 수행하는 방법 및 장치
EP3665792A1 (en) 2017-08-09 2020-06-17 IDAC Holdings, Inc. Methods and systems for beam recovery and management
CN109392061B (zh) * 2017-08-11 2022-08-09 中兴通讯股份有限公司 一种数据传输方法及装置、计算机可读存储介质
CN110351810B (zh) * 2018-04-04 2022-01-14 大唐移动通信设备有限公司 一种接入方法和设备
CN110536474A (zh) * 2019-09-30 2019-12-03 中兴通讯股份有限公司 随机接入方法、装置、第一通信节点和第二通信节点

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101448325A (zh) * 2007-11-27 2009-06-03 大唐移动通信设备有限公司 一种随机接入过程中的处理方法和基站
CN101472344A (zh) * 2007-12-29 2009-07-01 华为技术有限公司 资源释放方法、终端、网络侧设备及网络系统
CN101478792A (zh) * 2008-01-03 2009-07-08 大唐移动通信设备有限公司 一种专用随机接入资源预留方法和基站
CN101529754A (zh) * 2006-10-25 2009-09-09 三星电子株式会社 移动通信系统中使用随机接入过程分配无线资源的方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9294219B2 (en) * 2008-09-30 2016-03-22 Qualcomm Incorporated Techniques for supporting relay operation in wireless communication systems
KR101592924B1 (ko) * 2009-02-03 2016-02-11 삼성전자주식회사 다중의 릴레이 노드들을 이용하는 무선통신 시스템에서 랜덤 액세스를 위한 물리채널 송수신 방법 및 장치
KR101622406B1 (ko) * 2009-04-24 2016-05-19 엘지전자 주식회사 무선 통신 시스템에서 네트워크 접속 방법 및 장치
EP2441310B1 (en) * 2009-06-12 2019-11-13 Nokia Technologies Oy Method and apparatus for facilitating relay node communications
EP2362708B1 (en) * 2010-02-15 2012-09-19 Alcatel Lucent Method for performing a random access procedure by a relay node in a wireless or radio communication network, corresponding relay node

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101529754A (zh) * 2006-10-25 2009-09-09 三星电子株式会社 移动通信系统中使用随机接入过程分配无线资源的方法和装置
CN101448325A (zh) * 2007-11-27 2009-06-03 大唐移动通信设备有限公司 一种随机接入过程中的处理方法和基站
CN101472344A (zh) * 2007-12-29 2009-07-01 华为技术有限公司 资源释放方法、终端、网络侧设备及网络系统
CN101478792A (zh) * 2008-01-03 2009-07-08 大唐移动通信设备有限公司 一种专用随机接入资源预留方法和基站

Also Published As

Publication number Publication date
US20120307716A1 (en) 2012-12-06
CN102083228A (zh) 2011-06-01
EP2560452A1 (en) 2013-02-20
CN102083228B (zh) 2015-05-20
EP2560452A4 (en) 2016-11-30
EP2560452B1 (en) 2017-12-06
US10257864B2 (en) 2019-04-09

Similar Documents

Publication Publication Date Title
US11706814B2 (en) Communications device, infrastructure equipment and methods
WO2011098016A1 (zh) 一种中继系统的随机接入方法和设备
CN111511036B (zh) 针对系统信息请求的随机接入程序的方法和设备
US11452139B2 (en) Random access procedure for latency reduction
TWI811410B (zh) 終端裝置、基地台裝置、無線通訊方法及電腦程式
KR101742994B1 (ko) 이동통신시스템에서 랜덤접속을 수행하는 방법 및 이를 위한 장치
CN108462998B (zh) 用于随机接入的基站、用户设备和方法
KR20170123236A (ko) 데이터 볼륨 정보를 전송하는 방법 및 사용자기기
JP2018019403A (ja) 無線通信システムにおけるランダムアクセス手順のmsg3送信を改善するための方法及び装置
US9049713B2 (en) Radio communication apparatus, radio communication system and radio communication method
US20180139668A1 (en) Terminal device, base station apparatus, integrated circuit, and wireless communication method
US20220007426A1 (en) Random access method and device
KR20100019383A (ko) 업링크 허락을 관리하기 위한 방법 및 장치
KR20200139624A (ko) 무선 통신 시스템에서 모바일-종료 조기 데이터 전송(mt-edt) 및 사전 구성된 업링크 리소스(pur)를 위한 방법 및 장치
WO2016133185A1 (ja) ユーザ端末、無線基地局及び無線通信方法
EP2912915B1 (en) Method, user equipment and base stations for performing random access procedures
WO2015098745A1 (ja) 基地局及び方法
WO2014008845A1 (zh) 一种小区接入的方法、系统和设备
WO2011098002A1 (zh) 一种上行数据传输方法、装置和系统
KR20200040253A (ko) 상향링크 신호를 전송하는 방법 및 사용자기기
WO2014048398A1 (zh) 基于载波聚合的信息传输方法及装置
JP7218434B2 (ja) 通信制御方法及びユーザ装置
WO2013016985A1 (zh) 辅服务小区接入的方法及系统、网络侧网元、用户设备
WO2012152154A1 (zh) 随机接入方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11741887

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13578278

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011741887

Country of ref document: EP