WO2011097882A1 - 实现多天线设备空间射频性能测试的方法及系统 - Google Patents

实现多天线设备空间射频性能测试的方法及系统 Download PDF

Info

Publication number
WO2011097882A1
WO2011097882A1 PCT/CN2010/077109 CN2010077109W WO2011097882A1 WO 2011097882 A1 WO2011097882 A1 WO 2011097882A1 CN 2010077109 W CN2010077109 W CN 2010077109W WO 2011097882 A1 WO2011097882 A1 WO 2011097882A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
antenna
under test
device under
link
Prior art date
Application number
PCT/CN2010/077109
Other languages
English (en)
French (fr)
Inventor
郭阳
郑欣宇
禹忠
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2011097882A1 publication Critical patent/WO2011097882A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/0082Monitoring; Testing using service channels; using auxiliary channels
    • H04B17/0087Monitoring; Testing using service channels; using auxiliary channels using auxiliary channels or channel simulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters

Definitions

  • the present invention relates to radio frequency testing technology for wireless communication products, and more particularly to a method and system for realizing spatial RF performance testing of multi-antenna devices. Background technique
  • TRP Total Radiated Power
  • TRS Total Radiated Sensitivity
  • OTA Over The Air
  • CTIA Cellular Telecommunication Standardization Association
  • the test plan for mobile station OTA performance is established.
  • many operators require that the radio frequency performance of mobile terminal space entering their network be tested according to the requirements of the CTIA standard, that is, the TRP and TRS of the mobile terminal need to meet certain limit requirements.
  • the main object of the present invention is to provide a method and system for realizing spatial RF performance testing of a multi-antenna device to solve the problem that the spatial performance of a multi-antenna terminal or a multi-antenna system cannot be tested by using a conventional darkroom.
  • the present invention provides a method for implementing spatial RF performance OTA testing of a multi-antenna device, the method comprising: acquiring performance parameters of each antenna of the device under test, and resetting for simulating a spatial channel according to the measured performance parameters of each antenna.
  • the parameters of the channel simulator are completed; the link emulation or link test of the device under test is completed by the reset channel emulator, and the OTA test result of the device under test is obtained.
  • the measured performance parameters of each antenna include: radiation power of each antenna, antenna efficiency, and a correlation coefficient between any two antennas.
  • the process of resetting the channel simulator parameters is specifically: resetting the antenna power of the channel simulator according to the measured antenna power of each antenna and the correlation coefficient between any two antennas, And a matrix of correlation coefficients.
  • the method further includes: after the signal source device for transmitting the detection signal is reset, The channel simulator is connected to the device under test to establish a link.
  • the process of completing the link simulation or the link test of the device under test is specifically: the signal source device sends a detection signal; the channel simulator uses the signal source device The sent detection signal is transmitted to the device under test; the device under test receives the detection signal, and obtains its own OTA test result according to the detection signal.
  • the present invention also provides a system for implementing spatial RF performance testing of a multi-antenna device, the system comprising a parameter testing unit, a reset unit, and a link testing unit, wherein: a parameter testing unit, configured to acquire antennas of the device under test Performance parameter; a reset unit for testing according to the parameter a performance parameter of each antenna measured by the unit, resetting a parameter of a channel simulator for simulating a spatial channel; a link test unit, configured to complete a link simulation by using a channel simulator reset by the reset unit Link test, get the OTA test result of the device under test.
  • a parameter testing unit configured to acquire antennas of the device under test Performance parameter
  • a reset unit for testing according to the parameter a performance parameter of each antenna measured by the unit, resetting a parameter of a channel simulator for simulating a spatial channel
  • a link test unit configured to complete a link simulation by using a channel simulator reset by the reset unit Link test, get the OTA test result of the device under test.
  • the link test unit includes: a signal source device, a channel simulator, where: a signal source device, configured to send a detection signal; a channel simulator, configured to transmit a detection signal sent by the signal source device Giving the device under test to enable the device under test to receive the detection signal and obtain its own OTA test result; wherein the signal source device is connected to the device under test through the channel simulator.
  • the signal source device is a base station simulator, and the base station simulator is directly connected to the channel simulator and the device under test to achieve connection.
  • the parameter testing unit is specifically configured to measure the radiation power of each antenna of the device under test, the antenna efficiency, and the correlation coefficient between any two antennas by using a dark room.
  • the resetting unit is specifically configured to: reset antenna power of the channel simulator according to antenna power of each antenna obtained by the parameter testing unit and a correlation coefficient between any two antennas, And a matrix of correlation coefficients.
  • the present invention measures the performance parameters of each antenna of the device under test measured by the existing darkroom measurement method, resets the parameters of the channel simulator for simulating the spatial channel, and then completes the device under test by the reset channel simulator. Link simulation or link test, and finally get the OTA test result of the device under test.
  • the OTA test method of the present invention establishes a test environment based on a channel simulator and a full-wave absorption darkroom method, and specifies steps of the test scheme, and implements OTA test of the MIMO system or the MIMO terminal, and only needs to use the tradition. The test can be completed in the darkroom without the need to modify the darkroom, which is difficult to test and easy to implement.
  • FIG. 1 is a schematic flowchart of a method for implementing an OTA test of a multi-antenna device according to the present invention
  • FIG. 2 is a schematic diagram of an implementation process of an OTA test applied to a multi-antenna terminal according to the present invention
  • FIG. 3 is a schematic diagram of a system composition and structure of an OTA test for implementing a multi-antenna device according to the present invention.
  • the method for realizing the spatial RF performance test of the multi-antenna device can be applied to the OTA test of the multi-antenna device and the system.
  • the method mainly includes the following steps:
  • Step 101 Obtain performance parameters of each antenna of the device under test
  • the far field antenna radiation pattern can be measured using an existing darkroom to obtain the desired performance parameters for evaluating antenna performance.
  • the measured performance parameters of each antenna include parameters such as the radiated power of each antenna, the antenna efficiency, and the correlation coefficient between any two antennas.
  • Step 102 Reset parameters of a channel simulator for simulating a spatial channel according to the measured performance parameters of each antenna.
  • Step 103 Complete the link simulation or link test of the device under test by using the reset channel simulator, and obtain an OTA test result of the device under test.
  • the reset channel simulator can be used to simulate a spatial channel when the antenna system composed of each antenna of the device under test transmits a signal, and the channel simulator is used to form a test link of the device under test, and the measured link is completed.
  • the link simulation or link test of the device can obtain the OTA test result of the device under test with multiple antennas.
  • the obtained OTA test result of the device under test includes parameters such as the throughput of the device under test.
  • the process of measuring the performance parameters of each antenna of the device under test by using the existing dark room includes: determining a spherical space of the device to be measured that needs to be measured and selecting a test point; and testing the antennas of the device under test in the dark room Determine the performance parameters at each test point, and obtain the performance parameters of each antenna of the device under test according to the performance parameters of each test point.
  • the spherical space of the device under test is determined by the actual test needs, and the selected test point may be a point indicating a different direction in a spherical space in which the device under test is a sphere, or a specific spherical surface in the spherical space. Represents points in different directions. Specifically, firstly, according to the measurement needs, the spherical space direction of the device under test (DUT, Device Under Text) tested in the dark room is determined. When measuring, the point test can be performed on the spherical surface with the DUT as the center of the sphere.
  • DUT Device Under Text
  • test points on the spherical surface are selected. The test is performed at each of the selected test points, and the radiation power of the antenna of the DUT, the antenna efficiency, and the correlation coefficient between any two antennas on the DUT are obtained.
  • the present invention implements a method for testing the spatial RF performance of the multi-antenna device.
  • the specific process may include the following steps:
  • Step 201 In a conventional anechoic chamber, the antenna parameters of each antenna of the tested terminal are respectively measured at each test point of the determined test direction;
  • the far field antenna radiation pattern of the conventional anechoic chamber is used to measure the antenna parameters of each antenna of the tested terminal at each test point in the determined test direction.
  • Step 202 According to the measured performance parameters of each antenna at each test point, obtain performance parameters such as radiation power, antenna efficiency, and correlation coefficient between any two antennas of the measured terminal;
  • Step 203 Substituting the obtained performance parameters of each antenna into a channel simulator, and resetting parameters of the channel simulator, so that the channel simulator can simulate a spatial channel when a multi-antenna system composed of antennas of the device under test transmits signals.
  • the specific process of resetting the channel simulator parameters may be: resetting the antenna power of the channel simulator and the correlation coefficient matrix by the measured antenna power of each antenna and the correlation coefficient between any two antennas .
  • the parameter reset of the channel simulator can be realized by means of human-computer interaction.
  • Step 204 Reset the radiation power of each antenna in the tested terminal to the measured radiation power of each antenna;
  • Step 205 Connect the terminal under test to the source device for transmitting the detection signal by using the channel simulator to establish a link.
  • the signal source device may be specifically implemented by a base station simulator, and the base station simulator, the channel simulator, and the tested terminal may be directly connected through a cable to implement connection and complete link establishment;
  • Step 206 The signal source device sends a detection signal through the established link.
  • Step 207 The channel simulator simulates a spatial channel when a multi-antenna system composed of antennas of the tested terminal transmits a signal, and transmits a detection signal sent by the signal source device to the terminal under test;
  • the system for implementing the radio frequency performance test of the multi-antenna device space mainly includes: a parameter testing unit 31, a reset unit 32, and a link testing unit 33, wherein the parameter testing unit 31 is configured to Obtain performance parameters of each antenna of the device under test;
  • the resetting unit 32 is configured to reset parameters of the channel simulator for simulating the spatial channel according to the performance parameters of the antennas obtained by the parameter testing unit 31;
  • the channel simulator is specifically used to simulate the spatial channel of the transmitted signal; after resetting the signal simulator according to the performance parameters of the plurality of antennas, the channel simulator can simulate the transmission signal of the multi-antenna system composed of the plurality of antennas. Space channel at the time.
  • the link test unit 33 is configured to perform a link emulation or a link test by using the channel emulator that is reset by the reset unit 32 to obtain an OTA test result of the device under test.
  • the link test unit 33 includes: a signal source device 331 for transmitting a detection signal, and a channel simulator 332 , wherein the signal source device 331 is configured to send a detection signal; and a channel simulator 332 is configured to: The detection signal sent by the signal source device 331 is transmitted to the device under test, so that the device under test can receive the detection signal and obtain its own OTA test result.
  • the signal source device 331 passes the channel simulator 332 and is tested.
  • the device is connected and a test link has been established.
  • the link between the source device 331, the channel simulator 332, and the terminal under test may be a two-line link, and may also be a one-line link.
  • the base station simulator can be used to implement the signal source device; the measured terminal can also be replaced by a spectrum analyzer.
  • the base station simulator when used to implement the source device, the base station simulator, the channel simulator, and the device under test can be directly connected through the cable to implement the connection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明公开了一种实现多天线设备空间射频性能OTA测试的方法,通过现有的暗室测量方法测得的被测设备各天线的性能参数,重置用于模拟空间信道的信道模拟器的参数,再由重置后的信道模拟器,完成被测设备的链路仿真或链路测试,最终得到被测设备的OTA测试结果。本发明还公开了一种实现多天线设备空间射频性能测试的系统,本发明给出了一种新的思路,使用两阶段分步进行,实现了MIMO系统或MIMO终端的OTA测试,不需要对暗室进行改造即可完成测试,测试难度低,易于实现。

Description

实现多天线设备空间射频性能测试的方法及系统 技术领域
本发明涉及无线通信产品的射频测试技术, 尤其涉及一种实现多天线 设备空间射频性能测试的方法及系统。 背景技术
随着现代工业的发展, 各类无线通讯产品需要具备良好的发射和接收 性能, 即: 总辐射功率(TRP, Total Radiated Power )要高于一定值, 总辐 射灵敏度(TRS, Total Radiated Sensitivity )要低于一定值, 也就是说, 空 间射频性能(OTA, Over The Air )测试指标要良好, 才能保证通讯质量。
蜂窝通讯标准化协会 ( CTIA, Cellular Telecommunication and Internet
Association )为了保障移动终端设备在网络中正常使用, 制定了移动终端空 间射频性能的测试标准 ( The test plan for mobile station OTA performance )。 目前,很多运营商都要求进入其网络的移动终端空间射频性能按照 CTIA标 准的要求进行测试, 即: 移动终端的 TRP、 TRS需要满足一定的限值要求。
对于传统的单天线系统和终端来说, 一般釆用传统暗室来进行其 TRP、
TRS等指标的测试。 随着目前长期演进( LTE , Long Term Evolution )等系 统即将产业化, 传统单天线系统和设备将会逐渐过渡为带有多输入多输出 ( MIMO, Multiple-Input Multiple-Out-put )多天线技术的通信设备和通信终 端, 由于多天线终端或多天线系统的空间性能测试, 需要在多根天线同时 传输信号时进行, 因而釆用传统暗室无法直接对 MIMO系统或 MIMO终端 的天线的空间性能进行测试。 发明内容
有鉴于此, 本发明的主要目的在于提供一种实现多天线设备空间射频 性能测试的方法及系统, 以解决釆用传统暗室无法对多天线终端或多天线 系统的空间性能进行测试的问题。
为达到上述目的, 本发明的技术方案是这样实现的:
本发明提供了一种实现多天线设备空间射频性能 OTA测试的方法, 所 述方法包括: 获取被测设备各天线的性能参数, 并根据测得的各天线的性 能参数重置用于模拟空间信道的信道模拟器的参数; 通过重置后的信道模 拟器完成所述被测设备的链路仿真或链路测试, 得到被测设备的 OTA测试 结果。
在上述方案中, 所述测得的各天线的性能参数包括: 各天线的辐射功 率、 天线效率、 以及任意两根天线之间的相关性系数。
在上述方案中, 所述重置信道模拟器参数的过程, 具体为: 根据所测 得的各天线的天线功率以及任意两根天线之间的相关性系数, 重置信道模 拟器的天线功率、 以及相关性系数矩阵。
在上述方案中, 在通过重置后的信道模拟器完成所述被测设备的链路 仿真或链路测试之前, 所述方法还包括: 将用于发出检测信号的信号源设 备、 重置后的信道模拟器和所述的被测设备连接, 建立链路。
在上述方案中, 所述的完成所述被测设备的链路仿真或链路测试的过 程, 具体为: 所述的信号源设备发出检测信号; 所述的信道模拟器将所述 信号源设备发出的检测信号传送到所述的被测设备; 所述的被测设备接收 所述检测信号, 并根据该检测信号得到自身的 OTA测试结果。
本发明还提供了一种实现多天线设备空间射频性能测试的系统, 所述 系统包括参数测试单元、 重置单元和链路测试单元, 其中: 参数测试单元, 用于获取被测设备各天线的性能参数; 重置单元, 用于根据所述参数测试 单元测得的各天线的性能参数, 重置用于模拟空间信道的信道模拟器的参 数; 链路测试单元, 用于通过所述重置单元重置后的信道模拟器, 完成链 路仿真或链路测试, 得到被测设备的 OTA测试结果。
在上述方案中, 所述链路测试单元包括: 信号源设备、 信道模拟器, 其中: 信号源设备, 用于发出检测信号; 信道模拟器, 用于将所述信号源 设备发出的检测信号传送给所述的被测设备, 使得被测设备能够接收所述 检测信号并得到自身的 OTA测试结果; 其中, 信号源设备通过所述信道模 拟器与所述被测设备连接。
在上述方案中, 所述信号源设备为基站模拟器, 该基站模拟器与所述 的信道模拟器、 以及被测设备通过电缆直通, 实现连接。
在上述方案中, 所述参数测试单元, 具体用于利用暗室测得被测设备 各天线的辐射功率、 天线效率、 以及任意两根天线之间的相关性系数。
在上述方案中, 所述重置单元, 具体用于根据所述参数测试单元获得 的各天线的天线功率以及任意两根天线之间的相关性系数, 重置所述信道 模拟器的天线功率、 以及相关性系数矩阵。
本发明通过现有的暗室测量方法测得的被测设备各天线的性能参数, 重置用于模拟空间信道的信道模拟器的参数, 再由重置后的信道模拟器, 完成被测设备的链路仿真或链路测试,最终得到被测设备的 OTA测试结果。 本发明给出的 OTA测试方法, 基于信道模拟器与全电波吸收暗室方法来建 立测试环境, 并对测试方案的步骤进行了规定,实现了 MIMO系统或 MIMO 终端的 OTA测试, 并且只需要使用传统暗室即可完成测试, 不需要改造暗 室, 测试难度低, 易于实现。 附图说明
图 1为本发明实现多天线设备 OTA测试的方法流程示意图;
图 2为本发明应用于多天线终端的 OTA测试的实现流程示意图; 图 3为本发明实现多天线设备 OTA测试的系统组成及结构示意图。 具体实施方式
本发明的一种实现多天线设备空间射频性能测试的方法, 可以适用于 多天线设备及系统的 OTA测试, 参照图 1所示, 主要包括以下步骤:
步骤 101: 获取被测设备各天线的性能参数;
具体地, 可以利用现有暗室测量远场天线辐射模式, 得到所需要的评 估天线性能的性能参数。
这里, 测得的各天线的性能参数包括各天线的辐射功率、 天线效率以 及任意两根天线之间的相关性系数等参数。
步骤 102: 根据所测得的各天线的性能参数, 重置用于模拟空间信道的 信道模拟器的参数;
步骤 103:通过重置后的信道模拟器完成所述被测设备的链路仿真或链 路测试, 得到被测设备的 OTA测试结果。
具体地, 重置后的信道模拟器可以用来模拟由被测设备的各天线组成 的天线系统传输信号时的空间信道, 利用该信道模拟器组成被测设备的测 试链路, 并完成被测设备的链路仿真或链路测试, 便能够得到具有多根天 线的被测设备的 OTA测试结果。
这里,得到的被测设备的 OTA测试结果包括被测设备的吞吐量等参数。 其中, 利用现有暗室测得被测设备各天线的性能参数的过程, 具体包 括: 确定需要测量的被测设备的球面空间并选取测试点; 在暗室中, 测试 被测设备的各天线在所确定的各测试点上的性能参数, 并根据各测试点的 性能参数 , 得到被测设备各天线的性能参数。
这里, 被测设备的球面空间由实际测试的需要来确定, 所选取的测试 点可以是以被测设备为球心的球面空间内表示不同方向的点, 或者是该球 面空间内一个特定球面上的表示不同方向的点。 具体地,首先根据测量需要,确定在暗室中进行测试的被测设备(DUT, Device Under Text ) 的球面空间方向, 测量时, 可以在以 DUT为球心的球 面上进行取点测试。 一般为了准确评价被测设备的发射和接收性能, 需要 在所述的球面上选取足够多的测试点。 在所选取的每个测试点上都进行测 试, 并得到 DUT的天线的辐射功率、 天线效率、 以及 DUT上任意两根天 线之间的相关性系数。
实际应用中, 参照图 2所示, 以测试终端的 OTA为例, 本发明实现多 天线设备空间射频性能测试的方法, 具体流程可以包括以下步骤:
步骤 201 : 在传统的消声暗室中, 在所确定的测试方向各测试点上分别 测得被测终端各天线的天线参数;
具体地, 利用传统消声暗室的测量远场天线辐射模式, 分别测得被测 终端的每根天线在所确定测试方向上各测试点上的天线参数。
步骤 202: 根据所测得的各天线在各测试点上的性能参数, 分别得到被 测终端各天线的辐射功率、 天线效率以及任意两根天线之间的相关性系数 等性能参数;
步骤 203: 将所得到的各天线的性能参数代入信道模拟器, 重置信道模 拟器的参数, 使得该信道模拟器能够模拟被测设备各天线组成的多天线系 统传输信号时的空间信道。
这里, 重置信道模拟器参数的具体过程可以为: 由所测得的各天线的 天线功率以及任意两根天线之间的相关性系数, 重置信道模拟器的天线功 率、 以及相关性系数矩阵。
实际应用中, 可以通过人机交互的方式, 来实现信道模拟器的参数重 置。
步骤 204:将被测终端中各天线的辐射功率重置为所测得各天线的辐射 功率; 步骤 205:将被测终端通过所述的信道模拟器与用于发出检测信号的信 号源设备连接, 建立链路;
这里, 所述的信号源设备具体可以由基站模拟器来实现, 可以通过电 缆将基站模拟器、 信道模拟器和被测终端进行直通, 实现连接并完成链路 的建立;
步骤 206: 信号源设备通过所建立的链路, 发出检测信号;
步骤 207:所述的信道模拟器模拟被测终端各天线组成的多天线系统传 输信号时的空间信道, 将所述信号源设备发出的检测信号传送给被测终端; 步骤 208: 被测终端接收所述检测信号并解调,得到包含被测终端的吞 吐量等参数的 OTA测试结果。
本发明的一种实现多天线设备空间射频性能测试的系统, 参照图 3 所 示, 主要包括: 参数测试单元 31、 重置单元 32和链路测试单元 33 , 其中, 参数测试单元 31 , 用于获取被测设备各天线的性能参数;
重置单元 32,用于根据所述参数测试单元 31所得到的各天线的性能参 数, 重置用于模拟空间信道的信道模拟器的参数;
实际应用时, 信道模拟器具体用于模拟传输信号的空间信道; 在依据 多根天线的性能参数, 重置信号模拟器后, 信道模拟器便能够模拟该多根 天线组成的多天线系统传输信号时的空间信道。
链路测试单元 33 , 用于通过所述重置单元 32重置后的信道模拟器, 完 成链路仿真或链路测试, 得到被测设备的 OTA测试结果。
其中,所述链路测试单元 33包括:用于发出检测信号的信号源设备 331、 信道模拟器 332, 其中, 信号源设备 331 , 用于发出检测信号; 信道模拟器 332, 用于将所述信号源设备 331发出的检测信号传送给所述的被测设备, 使得被测设备能够接收所述检测信号并得到自身的 OTA测试结果。
其中, 如图 3所示, 信号源设备 331通过所述信道模拟器 332与被测 设备连接, 已建立测试链路。 这里, 信号源设备 331、 信道模拟器 332和被 测终端之间的链路可以为双行链路, 此外还可以是单行链路。
在实际应用中, 可以釆用基站模拟器来实现所述的信号源设备; 所述 的被测终端也可以通过频谱分析仪来代替。
其中, 釆用基站模拟器实现信号源设备时, 可以将基站模拟器、 信道 模拟器和被测设备通过电缆直通, 来实现连接。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围, 凡在本发明的精神和原则之内所作的任何修改、 等同替换和改进 等, 均应包含在本发明的保护范围之内。

Claims

权利要求书
1、 一种实现多天线设备空间射频性能 OTA测试的方法, 其特征在于, 所述方法包括:
获取被测设备各天线的性能参数, 并根据测得的各天线的性能参数重 置用于模拟空间信道的信道模拟器的参数;
通过重置后的信道模拟器完成所述被测设备的链路仿真或链路测试, 得到被测设备的 OTA测试结果。
2、 根据权利要求 1所述的实现多天线设备空间射频性能测试的方法, 其特征在于, 所述测得的各天线的性能参数包括: 各天线的辐射功率、 天 线效率、 以及任意两根天线之间的相关性系数。
3、 根据权利要求 2所述的实现多天线设备空间射频性能测试的方法, 其特征在于, 所述重置信道模拟器参数的过程, 为: 根据所测得的各天线 的天线功率以及任意两根天线之间的相关性系数, 重置信道模拟器的天线 功率、 以及相关性系数矩阵。
4、 根据权利要求 1所述的实现多天线设备空间射频性能测试的方法, 其特征在于, 在通过重置后的信道模拟器完成所述被测设备的链路仿真或 链路测试之前, 所述方法还包括:
将用于发出检测信号的信号源设备、 重置后的信道模拟器和所述的被 测设备连接, 建立链路。
5、 根据权利要求 1至 4任一项所述的实现多天线设备空间射频性能测 试的方法, 其特征在于, 所述的完成所述被测设备的链路仿真或链路测试 的过程, 为:
所述的信号源设备发出检测信号; 所述的信道模拟器将所述信号源设 备发出的检测信号传送到所述的被测设备; 所述的被测设备接收所述检测 信号, 并根据该检测信号得到自身的 OTA测试结果。
6、 一种实现多天线设备空间射频性能测试的系统, 其特征在于, 所述 系统包括参数测试单元、 重置单元和链路测试单元, 其中:
参数测试单元, 用于获取被测设备各天线的性能参数;
重置单元, 用于根据所述参数测试单元测得的各天线的性能参数, 重 置用于模拟空间信道的信道模拟器的参数;
链路测试单元, 用于通过所述重置单元重置后的信道模拟器, 完成链 路仿真或链路测试, 得到被测设备的 OTA测试结果。
7、 根据权利要求 6所述实现多天线设备空间射频性能测试的系统, 其 特征在于, 所述链路测试单元包括: 信号源设备、 信道模拟器, 其中: 信号源设备, 用于发出检测信号;
信道模拟器, 用于将所述信号源设备发出的检测信号传送给所述的被 测设备,使得被测设备能够接收所述检测信号并得到自身的 OTA测试结果; 其中, 信号源设备通过所述信道模拟器与所述被测设备连接。
8、 根据权利要求 7所述实现多天线设备空间射频性能测试的系统, 其 特征在于, 所述信号源设备为基站模拟器, 该基站模拟器与所述的信道模 拟器、 以及被测设备通过电缆直通, 实现连接。
9、 根据权利要求 6、 7或 8所述实现多天线设备空间射频性能测试的 系统, 其特征在于, 所述参数测试单元, 具体用于利用暗室测得被测设备 各天线的辐射功率、 天线效率、 以及任意两根天线之间的相关性系数。
10、 根据权利要求 9所述实现多天线设备空间射频性能测试的系统, 其特征在于, 所述重置单元, 具体用于根据所述参数测试单元获得的各天 线的天线功率以及任意两根天线之间的相关性系数, 重置所述信道模拟器 的天线功率、 以及相关性系数矩阵。
PCT/CN2010/077109 2010-02-10 2010-09-19 实现多天线设备空间射频性能测试的方法及系统 WO2011097882A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010116384.5 2010-02-10
CN201010116384.5A CN102148649B (zh) 2010-02-10 2010-02-10 实现多天线设备空间射频性能测试的方法及系统

Publications (1)

Publication Number Publication Date
WO2011097882A1 true WO2011097882A1 (zh) 2011-08-18

Family

ID=44367199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/077109 WO2011097882A1 (zh) 2010-02-10 2010-09-19 实现多天线设备空间射频性能测试的方法及系统

Country Status (2)

Country Link
CN (1) CN102148649B (zh)
WO (1) WO2011097882A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110708125A (zh) * 2019-10-29 2020-01-17 北京邮电大学 一种构建动态目标信道的方法及空口测试系统

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103138855B (zh) * 2011-11-29 2016-08-03 中兴通讯股份有限公司 一种基于外场实测数据的无线网络信道模拟装置与方法
CN103188022B (zh) * 2011-12-30 2016-05-25 中国移动通信集团公司 一种天线相关性的测试方法和系统
CN103856272B (zh) 2012-12-03 2017-09-05 深圳市通用测试系统有限公司 Mimo无线终端的无线性能测试方法
CN104022836A (zh) * 2014-05-21 2014-09-03 北京邮电大学 一种多制式移动终端的tis测试系统及方法
CN105116241B (zh) * 2015-07-16 2016-08-24 中国人民解放军国防科学技术大学 一种新型现场等效暗室测量方法
US11489598B2 (en) * 2016-04-26 2022-11-01 Rf Dsp Inc Over-the-air channel state information acquirement for a massive MIMO channel emulator with over-the-air connection
WO2018023928A1 (zh) * 2016-08-03 2018-02-08 深圳市新益技术有限公司 用于有源基站天线或基站系统ota性能的测试系统及方法
CN107819527B (zh) * 2016-09-12 2020-10-13 中国移动通信有限公司研究院 一种大规模天线基站设备的测试装置及测试方法
US9967041B1 (en) * 2016-10-16 2018-05-08 Ambit Microsystems (Shanghai) Ltd. Multi-antenna noise power measuring method and apparatus
US10505646B2 (en) * 2017-12-15 2019-12-10 Keysight Technologies, Inc. Systems and methods for testing a wireless device having a beamforming circuit
CN115290991B (zh) * 2022-10-09 2022-12-30 荣耀终端有限公司 天线测试方法、装置、系统、信道仿真仪及可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1905422A (zh) * 2006-08-07 2007-01-31 信息产业部通信计量中心 同时具备空中射频测试与电磁兼容性测试能力的全电波暗室
CN1949691A (zh) * 2006-09-28 2007-04-18 哈尔滨工业大学 一种mimo信道模拟器的控制方法及其实现装置
US20080056340A1 (en) * 2006-07-24 2008-03-06 Michael Foegelle Systems and methods for over the air performance testing of wireless devices with multiple antennas
CN101399621A (zh) * 2007-09-24 2009-04-01 中兴通讯股份有限公司 空间射频性能测试方法及系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101605350A (zh) * 2009-07-01 2009-12-16 工业和信息化部通信计量中心 基于多种无线接入技术空间性能测试系统及其测试方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080056340A1 (en) * 2006-07-24 2008-03-06 Michael Foegelle Systems and methods for over the air performance testing of wireless devices with multiple antennas
CN1905422A (zh) * 2006-08-07 2007-01-31 信息产业部通信计量中心 同时具备空中射频测试与电磁兼容性测试能力的全电波暗室
CN1949691A (zh) * 2006-09-28 2007-04-18 哈尔滨工业大学 一种mimo信道模拟器的控制方法及其实现装置
CN101399621A (zh) * 2007-09-24 2009-04-01 中兴通讯股份有限公司 空间射频性能测试方法及系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110708125A (zh) * 2019-10-29 2020-01-17 北京邮电大学 一种构建动态目标信道的方法及空口测试系统
CN110708125B (zh) * 2019-10-29 2020-09-01 北京邮电大学 一种构建动态目标信道的方法及空口测试系统

Also Published As

Publication number Publication date
CN102148649A (zh) 2011-08-10
CN102148649B (zh) 2014-12-10

Similar Documents

Publication Publication Date Title
WO2011097882A1 (zh) 实现多天线设备空间射频性能测试的方法及系统
EP2521282B1 (en) Method and system for spatial radio-frequency performance testing based on multiple-antenna system
CN102148648B (zh) 多天线系统中的空间射频性能测试方法及系统
CN102136873B (zh) 天线测试系统及天线测试方法
Yu et al. Radiated two-stage method for LTE MIMO user equipment performance evaluation
Remley et al. A significance test for reverberation-chamber measurement uncertainty in total radiated power of wireless devices
Kyösti et al. MIMO OTA test concept with experimental and simulated verification
CN109889239A (zh) 一种用于mimo ota测试的双暗室结构及测试方法
CN102130725A (zh) 一种多天线系统空间射频性能的测试方法及系统
WO2020108239A1 (zh) 无线终端的无线性能测试方法及系统
CN202856990U (zh) 无线局域网接入点性能测试系统
WO2017215020A1 (zh) 用于大规模mimo系统基站的测试方法及装置
Rumney et al. Recent advances in the radiated two-stage MIMO OTA test method and its value for antenna design optimization
WO2011097900A1 (zh) 基于多天线系统的空间射频性能测试方法及系统
CN103428746B (zh) 一种多天线设备空间性能验证方法及其系统
WO2011020268A1 (zh) 一种多天线系统空间射频性能的测试方法和测试系统
WO2011094988A1 (zh) 一种多天线终端的测试方法和系统
CN110830129A (zh) Rf电缆和电缆绑定路径损耗确定方法
Scannavini et al. OTA measurement of wireless devices with single and multiple antennas in anechoic chamber
Liu et al. Fast band-sweep total isotropic sensitivity measurement
Shen et al. The advantages of the RTS method in MIMO OTA measurements
Orlenius et al. Analysis of MIMO OTA measurements for LTE terminals performed in reverberation chamber
Rumney et al. Advances in antenna pattern-based MIMO OTA test methods
Chen et al. WLAN MIMO device performance evaluation using improved RTS measurement
CN216356748U (zh) 一种车载无线通信endc共存干扰测试系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10845552

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10845552

Country of ref document: EP

Kind code of ref document: A1