WO2011097755A1 - 基于svc的e-mbms流传输方法和设备 - Google Patents

基于svc的e-mbms流传输方法和设备 Download PDF

Info

Publication number
WO2011097755A1
WO2011097755A1 PCT/CN2010/000192 CN2010000192W WO2011097755A1 WO 2011097755 A1 WO2011097755 A1 WO 2011097755A1 CN 2010000192 W CN2010000192 W CN 2010000192W WO 2011097755 A1 WO2011097755 A1 WO 2011097755A1
Authority
WO
WIPO (PCT)
Prior art keywords
rate
user equipment
scalable
multicast group
stream
Prior art date
Application number
PCT/CN2010/000192
Other languages
English (en)
French (fr)
Inventor
杜鸿飞
Original Assignee
上海贝尔股份有限公司
阿尔卡特朗讯
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海贝尔股份有限公司, 阿尔卡特朗讯 filed Critical 上海贝尔股份有限公司
Priority to CN201080061245.5A priority Critical patent/CN102763408B/zh
Priority to PCT/CN2010/000192 priority patent/WO2011097755A1/zh
Publication of WO2011097755A1 publication Critical patent/WO2011097755A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/14Systems for two-way working
    • H04N7/15Conference systems

Definitions

  • the present invention relates to an evolved multimedia broadcast multicast service E-MBMS streaming method and apparatus, and more particularly to an E-MBMS streaming method and apparatus based on scalable video coding SVC. Background technique
  • the transmission rate of the E-MBMS stream can be determined based on the capacity of the wireless fading channel experienced by all group members.
  • Scalable video coding such as H.264 MPEG Advanced Video Coding (AVC)
  • AVC H.264 MPEG Advanced Video Coding
  • SVC-encoded streams video streams are divided into base layer (BL) and multiple enhancement layer (EL) streams with respect to time (frame rate), space (resolution), and quality (signal-to-noise ratio).
  • BL base layer
  • EL enhancement layer
  • the reception of the base layer guarantees the lowest reception limit of the user. On this basis, the quality of the reconstructed video can be gradually improved every time some enhancement layer information is received.
  • the content of the E-MBMS stream can be encoded into a plurality of streams, wherein one stream is an elementary stream including the basic content of the E-MBMS, and the other stream is an enhanced stream of enhancement of the base content.
  • the underlying stream provides the smallest codeable content that must be successfully received to produce the lowest quality of the original stream.
  • the enhanced stream further provides enhanced content based on the underlying stream.
  • BL base layer
  • EL enhancement layer
  • the object of the present invention is to provide a method for transmitting a scalable encoded stream, which can dynamically determine the rate of the base layer and the enhancement layer in the stream according to the end-to-end performance report and the channel state indicator of the user equipment, thereby adapting to the network and Dynamic change in the state of the channel.
  • a method for transmitting a scalable encoded stream comprising the steps of: receiving a channel state indicator from each user equipment in a multicast group; and setting a basis in the scalable coded stream based on the channel state indicator The rate of the layer and the rate of the enhancement layer; respectively encoding the base layer and the enhancement layer of the scalable coded stream at the determined rate; and transmitting the coded scalable coded stream to each user equipment in the multicast group.
  • the scalable encoded stream comprises a plurality of enhancement layers, the method further comprising the steps of: receiving an end-to-end performance report from each user equipment in the multicast group; based on the end-to-end performance report and channel status indicator The rate of the plurality of enhancement layers is determined.
  • the rate of the base layer is set to a minimum rate among the user equipment supportable rates calculated from the channel status indicator.
  • the rate of the base layer is set to an average rate at which the user equipment can support the rate calculated from the channel status indicator.
  • the rate of the enhancement layer is set to the maximum rate among the user equipment supportable rates calculated from the channel state indicator.
  • said end-to-end performance report identifies user equipment in said multicast group as a plurality of quality of service levels; and determining said plurality of enhancements based on said end-to-end performance report and channel status indicator
  • the step of the rate of the layer includes: setting the rate of each enhancement layer according to the plurality of quality of service levels.
  • the steps of receiving, setting, and encoding are repeated, and the re-encoded is transmitted to each user equipment in the multicast group.
  • a scalable encoded stream is transmitted to each user equipment in the multicast group.
  • the scalable encoded stream is an MBMS multicast stream
  • the multicast group is an MBMS multicast group.
  • the scalable encoded stream is a scalable encoded stream based on scalable video coding.
  • a base station including: a channel status receiving list a unit, configured to receive a channel status indicator from each user equipment in the multicast group, and a rate determining unit, configured to set a rate of the base layer and a rate of the enhancement layer in the scalable encoded stream based on the channel status indicator; And encoding, by the base layer and the enhancement layer, the scalable layered stream, and the stream transmission unit, configured to transmit the encoded scalable encoded stream to each user equipment in the multicast group.
  • the scalable encoded stream includes a plurality of enhancement layers
  • the base station further includes: an end-to-end performance receiving unit, configured to receive an end-to-end performance report from each user equipment in the multicast group;
  • the rate determining unit further determines a rate of the plurality of enhancement layers based on the end-to-end performance report and a channel status indicator.
  • the rate determining unit sets the rate of the base layer to a minimum rate among the user equipment supportable rates calculated according to the channel state indicator.
  • the rate determining unit sets the rate of the base layer to an average rate at which the user equipment can support the rate calculated according to the channel state indicator.
  • the rate determining unit sets the rate of the enhancement layer to a maximum rate among the user equipment supportable rates calculated according to the channel state indicator.
  • the end-to-end performance report identifies the user equipment in the multicast group as multiple quality of service levels; and the rate determining unit sets the rate of each enhancement layer according to the multiple quality of service levels. .
  • the streaming unit the encoded scalable encoded stream to each user equipment in the multicast group
  • the channel state receiving unit, the rate determining unit, and the encoding unit operate, and the stream
  • the transmission unit transmits the re-encoded scalable encoded stream to each user equipment in the multicast group.
  • the scalable encoded stream is an MBMS multicast stream
  • the multicast group is an MBMS multicast group.
  • the scalable encoded stream is a scalable encoded stream based on scalable video coding.
  • FIG. 1 shows a signaling flow diagram of a method of transmitting a scalable encoded stream according to an embodiment of the present invention
  • Figure 2 shows an example scenario of E-MBMS streaming
  • Fig. 3 shows a block diagram of a system for implementing a transmission method of a scalable encoded stream in accordance with an embodiment of the present invention. detailed description
  • the scalable coding method can maximize the quality of service through the nonlinear characteristics of the encoder and the enhancement layer, so that the data transmitted by the same source is collected by the diverse receiving end to the maximum extent.
  • This mechanism is especially suitable for broadcast multicast.
  • the scenario not only simplifies the complexity of the sender but also the diversity of the receiver, so that all users can receive the quality of service they deserve.
  • FIG. 1 shows a signaling flow diagram of a method of transmitting a scalable encoded stream in accordance with an embodiment of the present invention.
  • the base station transmits a session start message to the user equipment in the MBMS multicast group through the transmit antenna.
  • the user equipment receiving the session start message feeds back the channel status indicator CSI and the end-to-end (E2E) performance report to the base station.
  • Channel Status Indicator CSI indicates the condition of the channel.
  • the end-to-end performance report mainly includes parameters such as link delay, packet loss rate, and throughput or transmission capacity, and specifies the quality of service (QoS) level of the user equipment subscription.
  • QoS quality of service
  • the base station according to the feedback channel status indicator CSI of each user equipment in the MBMS multicast group And the end-to-end performance report message, determining the rate of the base layer and the enhancement layer, and encoding the MBMS stream according to the determined rate to generate a base layer and an enhancement layer having the determined rate.
  • the encoded MBMS stream is then sent to each user equipment in the MBMS multicast group.
  • each user equipment in the MBMS multicast group feeds back the updated feedback channel status indicator CSI and end-to-end to the base station when the channel status changes greatly or the end-to-end performance changes greatly. End performance report message.
  • the base station Upon receiving the updated channel state indicator CSI and the end-to-end performance report message from each user equipment in the MBMS multicast group, the base station re-determines the rate of the base layer and the enhancement layer, and encodes the MBMS stream according to the determined rate. A base layer and an enhancement layer with a re-determined rate are generated and sent to the user equipment.
  • the user equipment sends an MBMS Session End message to the base station to inform the base station that the MBMS session is over.
  • the end of the session can be initiated by the base station.
  • the base station sends a session end message to the user equipment informing the user that the device session will end.
  • a base station In a method of transmitting a scalable encoded stream according to an embodiment of the present invention, a base station
  • the channel status indicator CSI and end-to-end performance report messages of each user equipment in the MBMS multicast group dynamically encode the MBMS stream.
  • the MBMS stream is encoded as a base layer and an enhancement layer.
  • the MBMS multicast group includes J user devices.
  • i? (t) represents the instantaneous transmission rate that the jth user equipment can support, which essentially reflects its immediate reception condition.
  • i? S (t) and ? tt (0 denotes the rates of the base layer and the enhancement layer, respectively.
  • ? 0 can be calculated by the base station based on the channel state indicator fed back by the user equipment j.
  • Figure 2 shows an example scenario for E-MBMS streaming.
  • the user equipments 1 and 2 located near the base station have better channel state conditions, and can receive a higher rate stream, and the channel state conditions of the user equipments 3 and 4 located at the cell edge. Poor, the rate of streams that can be received is low. Oh, / ⁇ ) > /? 2 (/) > /? 3 (0 > ⁇ ).
  • the user equipments 1-4 can correctly receive the data of the base layer to meet the minimum reception quality.
  • the user equipment 1 with good channel state conditions, it can correctly receive the data of the enhancement layer and achieve excellent reception quality.
  • the user equipment 2-3 it can also receive the data of the enhancement layer to achieve better video quality than the user equipment 4, but they cannot receive the complete enhancement layer data, so the video quality is slightly lower than that of the user equipment 1. difference.
  • the data of the complete enhancement layer can be obtained, so that the video quality can be obtained.
  • the user equipment 3 can receive the data of the partial enhancement layer, and can realize the video quality which is slightly better than the user equipment 4 but slightly worse than the user equipment 1-2.
  • set the rate of the base layer to the average rate of user equipment in the MBMS multicast group to improve the minimum reception quality. This comes at the cost of reduced performance of the user equipment with the worst channel conditions.
  • the MBMS stream is encoded into one base layer and two enhancement layers. Also assume that the MBMS multicast group includes J user devices.
  • (t) represents the instantaneous transmission rate that the jth user equipment can support, which essentially reflects its immediate reception condition.
  • 0 and / ⁇ - 2 (t) represent the rates of the base layer and the second enhancement layer (EL-2), respectively.
  • the most appropriate rate of the first enhancement layer (ie, EL-1) at a specific time interval is further determined:
  • the layering ratio which can be dynamically adjusted for changes in resource flows.
  • the layering ratio based on immediate performance feedback:
  • P £ (0 and / i s / (0 represents the instantaneous end-to-end performance and channel state of the user equipment of the MBMS multicast group.
  • w ⁇ and w CT represent the weight of the end-to-end performance and channel state when considering the rate.
  • the above formula (1) is only one example of calculating the layering ratio.
  • the layering ratio can be set in other ways. Considering end-to-end performance and channel state when setting the layering ratio, the rate of the set enhancement layer can be met to meet the different quality of service requirements of the user equipment.
  • R BL (t) R, (t) ,
  • the user equipment 4 can correctly receive the data of the base layer to achieve the lowest reception quality.
  • User equipment 1 can receive data of all enhancement layers to achieve the best reception quality.
  • QoS Quality of Service
  • the quality of service level of the user equipment may be determined according to the end-to-end performance report and/or the channel status indicator of the user equipment, and correspondingly according to the service quality level.
  • FIG. 3 is a block diagram showing a system for implementing a transmission method of a scalable encoded stream according to an embodiment of the present invention.
  • the base station 10 includes a channel state receiving unit 101, a rate determining unit 103, an encoding unit 104, and a streaming unit 105.
  • the channel status receiving unit 101 receives a channel status indicator from the user equipment to indicate the current channel status of the user equipment.
  • the rate determining unit 103 determines the rate of the base layer and the enhancement layer based on the channel state, and the encoding unit 104 encodes the MBMS stream at the determined rate to generate a base layer and an enhancement layer having a determined rate.
  • the base station 10 further includes an end-to-end performance receiving unit 102, configured to receive an end-to-end performance report of the user equipment in the MBMS multicast group.
  • the rate determining unit 103 will also consider the end-to-end performance report when determining the rates of the base layer and the enhancement layer, respectively Set the rate of multiple enhancement layers to meet different quality of service levels for services subscribed to by different user devices.
  • the streaming unit 105 in the base station 10 transmits the encoded MBMS stream to each user equipment in the MBMS multicast group.
  • the base station implementing the transmission method of the scalable coded stream according to an embodiment of the present invention periodically adjusts the rates of the base layer and the enhancement layer in response to feedback from the user equipment, and can handle rapidly changing network and channel variations.
  • the above embodiment uses video as an illustrative application for presentation.
  • the invention is not limited to video, audio applications and other compatible applications are also suitable.
  • the above embodiment is described by taking one enhancement layer and two enhancement layers as an example.
  • the invention is not limited to this case.
  • the number of enhancement layers can be pre-configured at the base station.
  • the present invention can also be implemented by dividing one unit into a plurality of units or combining a plurality of units into one unit as long as it can still perform the corresponding functions.
  • some embodiments also include a machine readable or computer readable program storage device (eg, a digital data storage medium) and encoding machine executable or computer executable program instructions, wherein the instructions perform some of the above methods or All steps.
  • the program storage device can be a digital memory, a magnetic storage medium (such as a magnetic disk and magnetic tape), hardware, or an optically readable digital data storage medium.
  • Embodiments also include a programming computer that performs the steps of the above method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

基于 SVC的 E-MBMS流传输方法和设备 技术领域
本发明涉及演进多媒体广播组播业务 E-MBMS 流传输方法和设 备, 更具体地, 涉及基于可分级视频编码 SVC的 E-MBMS流传输方 法和设备。 背景技术
当前, 存在多种确定 E-MBMS组播(MC)组的传输速率的方法。 根据所有组成员所经历的无线衰落信道的容量, 可以确定 E-MBMS 流的传输速率。
诸如 H.264 MPEG高级视频编码(AVC) 的可分级视频编码 SVC 使得可以传输视频 /音频数据, 同时适应大范围的下层网络 /链路变化 以及接收机分集。 在 SVC编码的流中, 视频流关于时间 (帧速率)、 空间 (分辨率) 和质量 (信噪比), 被划分为基础层 (BL) 和多个增 强层 (EL) 流。 基础层的接收保证了用户最低的接收下限, 在此基础 上, 每接收到一些增强层信息都可以渐进地提高重构视频的质量。
利用 SVC技术, E-MBMS流的内容可以被编码为多个流, 其中, 一个流是包括 E-MBMS的基本内容的基础流,而其它流是对基本内容 的增强的增强流。 基础流提供了必须成功接收以产生原始流的最低质 量的最小可编码内容。 增强流基于基础流进一步提供增强的内容。
当前,广泛采用一种静态可分级视频编码方法。在源编码器一侧, 针对基础层 (BL) 和增强层 (EL), 设置固定的缺省速率, 而不考虑 用户设备的信道状态。 虽然固定设置对编码器的要求降低, 但是固定 设置的效率较低, 并且系统容量较小。
对于 E-MBMS组播场景,因为基站希望能够处理由多个用户设备 所引起的不同情况和动态场景, 这种静态可分级视频编码方法的缺陷 尤其明显。
因此,对于 E-MBMS组播,需要一种改进的可分级视频编码方法。 发明内容
本发明的目的在于提出了一种可分级编码流的传输方法, 可以根 据用户设备的端到端性能报告和信道状态指示符, 动态地确定流中基 础层和增强层的速率, 从而适应网络和信道的状态的动态变化。
根据本发明的第一方案, 提出一种可分级编码流的传输方法, 包 括步骤: 从组播组中的各用户设备接收信道状态指示符; 基于信道状 态指示符来设置可分级编码流中基础层的速率和增强层的速率; 以所 确定的速率分别对可分级编码流的基础层和增强层进行编码; 以及向 组播组中各用户设备传输编码后的可分级编码流。
优选地, 所述可分级编码流包括多个增强层, 所述方法还包括步 骤: 从组播组中各用户设备接收端到端性能报告; 基于所述端到端性 能报告和信道状态指示符来确定所述多个增强层的速率。
优选地, 将基础层的速率设置为根据信道状态指示符所计算的用 户设备可支持速率中的最小速率。
优选地, 将基础层的速率设置为根据信道状态指示符所计算的用 户设备可支持速率的平均速率。
优选地, 将增强层的速率设置为根据信道状态指示符所计算的用 户设备可支持速率中的最大速率。
优选地, 所述端到端性能报告将所述组播组中的用户设备识别为 多个服务质量等级; 并且, 基于所述端到端性能报告和信道状态指示 符来确定所述多个增强层的速率的步骤包括: 根据所述多个服务质量 等级来设置各个增强层的速率。
优选地, 在向组播组中各用户设备传输编码后的可分级编码流期 间, 重复进行所述接收、 设置速率、和编码的步骤, 并向组播组中各 用户设备传输重新编码后的可分级编码流。
优选地, 所述可分级编码流是 MBMS 组播流, 并且组播组是 MBMS组播组。
优选地, 所述可分级编码流是基于可分级视频编码的可分级编码 流。
根据本发明的第二方案, 提出一种基站, 包括: 信道状态接收单 元, 用于从组播组中的各用户设备接收信道状态指示符; 速率确定单 元, 用于基于信道状态指示符来设置可分级编码流中基础层的速率和 增强层的速率; 编码单元, 用于以所确定的速率分别对可分级编码流 的基础层和增强层进行编码; 以及流传输单元, 用于向组播组中各用 户设备传输编码后的可分级编码流。
优选地, 所述可分级编码流包括多个增强层, 并且, 所述基站还 包括: 端到端性能接收单元, 用于从组播组中各用户设备接收端到端 性能报告; 并且, 所述速率确定单元还基于所述端到端性能报告和信 道状态指示符来确定所述多个增强层的速率。
优选地, 所述速率确定单元将基础层的速率设置为根据信道状态 指示符所计算的用户设备可支持速率中的最小速率。
优选地, 所述速率确定单元将基础层的速率设置为根据信道状态 指示符所计算的用户设备可支持速率的平均速率。
优选地, 所述速率确定单元将增强层的速率设置为根据信道状态 指示符所计算的用户设备可支持速率中的最大速率。
优选地, 所述端到端性能报告将所述组播组中的用户设备识别为 多个服务质量等级; 并且, 所述速率确定单元根据所述多个服务质量 等级来设置各个增强层的速率。
优选地, 在所述流传输单元向组播组中各用户设备传输编码后的 可分级编码流期间, 所述信道状态接收单元、 所述速率确定单元和所 述编码单元操作, 并且所述流传输单元向组播组中各用户设备传输重 新编码后的可分级编码流。
优选地, 所述可分级编码流是 MBMS 组播流, 并且组播组是 MBMS组播组。
优选地, 所述可分级编码流是基于可分级视频编码的可分级编码 流。
利用根据本发明的可分级编码流的传输方法和基站, 可以实现以 下技术效果:
- 最大化的避免基站的基本层和增强层的无用传输;
- 实现用户设备的能力允许范围内的最高视频效果; 以及 - 节省带宽和功耗, 提高传输效率和用户设备的接收服务质 附图说明
结合附图, 根据下面对本发明的非限制性实施例的详细描述, 本 发明的上述及其它目的、 特征和优点将变得更加清楚, 附图中:
图 1示出了根据本发明实施例的可分级编码流的传输方法的信令 流图;
图 2示出了 E-MBMS流传输的一个示例场景; 以及
图 3示出了用于实现根据本发明实施例的可分级编码流的传输方 法的系统的框图。 具体实施方式
下面, 结合附图来详细描述本发明的实施例。 在以下描述中, 一 些具体实施例仅用于描述目的,而不应该理解为对本发明有任何限制, 而只是本发明的示例。 需要指出的是, 示意图仅示出了与现有系统的 区别, 而省略了常规结构或构造, 以免导致对本发明的理解不清楚。
可分级编码方法可以通过编码器的非线性特性和增强层渐进增强 服务质量的特性, 使得相同信源传送的数据被多样化的接收端最大限 度的采集到, 这种机制尤其适用于广播组播场景, 既简化了发送端的 复杂度又考虑到了接收端的多样性, 从而使所有用户都能够接收到应 有的服务质量。
图 1示出了根据本发明实施例的可分级编码流的传输方法的信令 流图。
如图 1所示,在 MBMS会话开始时,基站通过发射天线,向 MBMS 组播组中的用户设备发送会话开始消息。
接收到会话开始消息的用户设备向基站反馈信道状态指示符 CSI 和端到端 (E2E) 性能报告。 信道状态指示符 CSI指示信道的条件。 端到端性能报告主要包括链路的延迟、 丢包率和吞吐量或传输容量等 参数, 指定了用户设备订阅的服务质量 (QoS) 等级。
基站根据 MBMS组播组中各用户设备的反馈信道状态指示符 CSI 和端到端性能报告消息, 确定基础层和增强层的速率, 并按照所确定 速率对 MBMS流进行编码, 产生具有所确定速率的基础层和增强层。 然后, 向 MBMS组播组中各用户设备发送所编码的 MBMS流。
MBMS组播组中各用户设备在 MBMS会话进行过程中, 在信道 状态改变较大或端到端性能改变较大时, 或者周期性地, 向基站反馈 更新的反馈信道状态指示符 CSI和端到端性能报告消息。
基站在从 MBMS 组播组中各用户设备接收到更新的信道状态指 示符 CSI和端到端性能报告消息时,重新确定基础层和增强层的速率, 并按照所确定速率对 MBMS流进行编码,产生具有重新确定速率的基 础层和增强层, 并将其发送给用户设备。
在 MBMS会话结束时, 用户设备向基站发送 MBMS会话结束消 息, 以告知基站 MBMS会话结束。 当然, 可以由基站发起会话结束。 在这种情况下, 基站向用户设备发送会话结束消息, 通知用户设备会 话将结束。
在根据本发明实施例的可分级编码流的传输方法中, 基站将根据
MBMS组播组中各用户设备的信道状态指示符 CSI和端到端性能报告 消息, 动态地对 MBMS流进行编码。
第一示例: 一个基础层和一个增强层
在该示例中,将 MBMS流编码为一个基础层和一个增强层。假设 MBMS组播组中包括 J个用户设备。
如下设置基础层和增强层的速率:
RBL t) = mm Rj(t) , 其中 j=l, 2,… J
REL(t) = max Rj(t) , 其中 j=l, 2, ... J
其中, i? (t)表示第 j个用户设备可支持的即时传输速率, 这本质 上反映了其即时接收条件。 i?S (t)和 ?tt(0分别表示基础层和增强层的 速率。 ? 0可由基站根据用户设备 j反馈的信道状态指示符计算得到。
图 2示出了 E-MBMS流传输的一个示例场景。
以如图 2所示的场景为例, 假设位于基站附近的用户设备 1和 2 的信道状态条件较好, 可以接收速率较高的流, 而位于小区边缘的用 户设备 3 和 4 的信道状态条件较差, 可以接收的流的速率低。 艮卩, /^) > /?2(/) > /?3(0 > ^)。
因此, 按照上述设置方法, 可设置 ^(0 = ^(0且/^ (0 = w。 i?£ (0是发送端设置的增强层速率,也就是接收端可以接收到的最 大速率, 但是实际上接收端接收到不完整的增强层也是可以提高视频 质量的。
因此, 在这种设置下, 用户设备 1-4均可正确地接收到基础层的 数据, 以满足最低接收质量。 而对于信道状态条件好的用户设备 1, 其可正确地接收到增强层的数据, 实现极好的接收质量。 而对于用户 设备 2-3, 其也可接收到增强层的数据, 实现比用户设备 4更好的视 频质量, 但是它们无法接收到完整的增强层的数据, 因此其视频质量 比用户设备 1稍差。
设置基础层和增强层的速率的方法可以根据情况而不同。 例如在 图 2所示的场景下, 可以设置 (/) = /?4(0且 W = 这样, 用户 设备 1_4均可正确地接收到基础层的数据, 而且用户设备 1-2都可以 接收到完整的增强层的数据, 因而可以获得较好的视频质量。 用户设 备 3可接收到部分增强层的数据, 可以实现比用户设备 4稍好但是比 用户设备 1-2稍差的视频质量。
当然, 也可以设置
/? ) = ovgi? (t)且
i?£i(/) = max ? (t)。
艮卩, 将基础层的速率设置为 MBMS 组播组中用户设备的平均速 率, 以提高最低接收质量。 这是以信道条件最差的用户设备的性能降 低为代价的。
对于图 2 所示的场景, 假设 ?3(0 = ^g^(0, 并且设置 HBL(。 = avglt^) = R3 (t)且 REL(t) = Jt、(t)。这样, 用户设备 1-3可正确地接收 到基础层的数据, 用户设备 1甚至可以接收到增强层的数据。 此时, 用户设备 4无法正确地接收到基础层的数据, 因此用户设备 4所获得 的视频质量无法满足最低接收质量。 但是, 用户设备 2-3接收到设置 为平均速率的基础层, 其视频质量比设置为最低速率的基础层要好。 第二示例: 一个基础层和两个增强层
在该示例中,将 MBMS流编码为一个基础层和两个增强层。同样 假设 MBMS组播组中包括 J个用户设备。
如下设置基础层和增强层的速率:
RBL(t) = mm Rj(t) , 其中 j=l,2, ... J
REL-2(t) = max Rj(t) , 其中 j=l,2, ... J
其中, (t)表示第 j个用户设备可支持的即时传输速率, 这本质 上反映了其即时接收条件。 0和/^ -2(t)分别表示基础层和第二增强 层 (EL-2 ) 的速率。
随后, 根据整个组播组的用户设备的端到端 (E2E) 性能报告和 反馈的信道状态指示符 CSI, 进一步确定第一增强层 (即 EL-1 ) 在特 定时间间隔处最适当的速率:
REL-l (t) = REL-2(t) - (t)
其中, 是分层比, 其可针对资源流的改变而动态地调整。 对 于特定时间间隔, 根据即时性能反馈来定义分层比:
wE2E . (1 - p £(Q) + wcs' . (1 - p (t))
μ( )― wE2E + wCSI 1 )
P £(0和/ is/(0表示 MBMS组播组的用户设备的即时端到端性能 和信道状态。 w ^和 wCT表示在设置速率时考虑端到端性能和信道状态 的权重。 可以调整 E2E和 CSI的相对权重 (wf2£, wcs' , 以允许不同 性能度量的灵活且动态的改变。 例如, 可以设置^ s/=0, 从而使得第 一增强层的速率的设置主要是考虑到用户设备的端到端性能。
上述公式(1 )仅仅是计算分层比的一个示例。 当然, 可以根据其 它方式来设置分层比。 在设置分层比时考虑端到端性能和信道状态, 可以使得设置的增强层的速率满足用户设备的不同服务质量的需求。
同样, 以如图 2所示的场景为例进行说明, 其中根据信道状态计 算得到 R、(t) > R2(t) > R3(t) > R,(t)。
按照上述设置方法, 可设置
RBL(t) = R,(t) ,
ο 。 此时, 用户设备 4可正确地接收到基础层的数据, 达到最低接收 质量。用户设备 1可接收到所有增强层的数据, 实现最好的接收质量。
用户设备 2和 3订阅了满足一定 QoS (服务质量)的服务。但是, 由于 (t) > R2 (t) > R3(t),用户设备 2和 3无法接收到所有增强层的数据。 对此, 可以设置 ^—'W - ^-^t) -〃 (t) = 7?3(t) < /?2(t), 使得用户设备 2和 3 可以接收到第一增强层的数据, 以满足其订阅的服务质量。 这里, 用 户设备 2还可接收到部分第二增强层的数据, 实现比用户设备 3更好 的视频质量。
当然, 在预先配置了更多个增强层的情况下, 可根据用户设备的 端到端性能报告和 /或信道状态指示符, 确定用户设备的服务质量等 级,并相应地根据服务质量等级来分别设置各个增强层的速率。例如, 在存在三个增强层的情况下, 可设置 '(o = ^w, d ) ^2(o且
Figure imgf000010_0001
R, (t) , 使得用户设备 1-4可分别接收到基础层和增强层 1-3、 基础层和增强层 1_2、 基础层和增强层 1 以及仅有基础层, 实现分级 的服务质量等级。
利用根据本发明实施例的可分级编码流的传输方法, 实现了视频 质量和带宽 /功率效率之间的折衷。 图 3是示出了用于实现根据本发明实施例的可分级编码流的传输 方法的系统的框图。
如图 3所示, 基站 10包括信道状态接收单元 101、 速率确定单元 103、 编码单元 104以及流传输单元 105。
针对 MBMS组播组中的用户设备,信道状态接收单元 101从用户 设备接收信道状态指示符, 以指示用户设备当前的信道状态。
速率确定单元 103将根据信道状态, 来确定基础层和增强层的速 率, 并且编码单元 104按照所确定速率对 MBMS流进行编码,产生具 有所确定速率的基础层和增强层。
优选地,基站 10还包括端到端性能接收单元 102,用于接收 MBMS 组播组中用户设备的端到端性能报告。 在这种情况下, 速率确定单元 103 在确定基础层和增强层的速率时还将考虑端到端性能报告, 分别 设置多个增强层的速率, 以满足不同用户设备所订阅的服务的不同服 务质量等级。
最后, 基站 10中的流传输单元 105将所编码的 MBMS流传输给 MBMS组播组中的各用户设备。
实现根据本发明实施例的可分级编码流的传输方法的基站响应于 来自用户设备的反馈, 周期性地调整基础层和增强层的速率, 可以处 理快速变化的网络和信道变化。
需要注意的是, 上述实施例使用视频作为呈现的示意性应用。 当 然, 本发明并不局限于视频, 音频应用和其它兼容应用也是适用的。 而且, 上述实施例以一个增强层和两个增强层为例进行说明。 当然, 本发明并不局限于这种情况。 可以在基站处对增强层的数目进行预先 配置。
尽管以上描述涉及多个单元, 但是通过将一个单元划分为多个单 元或将多个单元组合为一个单元, 只要其仍能执行相应的功能, 也可 以实现本发明。
本领域技术人员应该很容易认识到, 可以通过编程计算机实现上 述方法的不同步骤。 在此, 一些实施方式同样包括机器可读或计算机 可读的程序存储设备 (如, 数字数据存储介质) 以及编码机器可执行 或计算机可执行的程序指令, 其中, 该指令执行上述方法的一些或全 部步骤。 例如, 程序存储设备可以是数字存储器、 磁存储介质 (如磁 盘和磁带)、硬件或光可读数字数据存储介质。实施方式同样包括执行 上述方法的所述步骤的编程计算机。
描述和附图仅示出本发明的原理。 因此应该意识到, 本领域技术 人员能够建议不同的结构, 虽然这些不同的结构未在此处明确描述或 示出, 但体现了本发明的原理并包括在其精神和范围之内。 此外, 所 有此处提到的示例明确地主要只用于教学目的以帮助读者理解本发明 的原理以及发明人所贡献的促进本领域的构思, 并应被解释为不是对 这些特定提到的示例和条件的限制。 此外, 此处所有提到本发明的原 贝 |J、 方面和实施方式的陈述及其特定的示例包含其等同物在内。
上面的描述仅用于实现本发明的实施方式, 本领域的技术人员应 该理解, 在不脱离本发明的范围的任何修改或局部替换, 均应该属于 本发明的权利要求来限定的范围, 因此, 本发明的保护范围应该以权 利要求书的保护范围为准。

Claims

权 利 要 求
1 . 一种可分级编码流的传输方法, 包括步骤- 从组播组中的各用户设备接收信道状态指示符;
基于信道状态指示符来设置可分级编码流中基础层的速率和增 强层的速率;
以所确定的速率分别对可分级编码流的基础层和增强层进行编 码; 以及
向组播组中各用户设备传输编码后的可分级编码流。
2. 根据权利要求 1 所述的可分级编码流的传输方法, 其中, 所 述可分级编码流包括多个增强层, 所述方法还包括步骤:
从组播组中各用户设备接收端到端性能报告;
基于所述端到端性能报告和信道状态指示符来确定所述多个增 强层的速率。
3. 根据权利要求 1或 2所述的可分级编码流的传输方法, 其中, 将基^层的速率设置为根据信道状态指示符所计算的用户设备可支持 速率中的最小速率。
4. 根据权利要求 1或 2所述的可分级编码流的传输方法, 其中, 将基础层的速率设置为根据信道状态指示符所计算的用户设备可支持 速率的平均速率。
5. 根据权利要求 1 所述的可分级编码流的传输方法, 其中, 将 增强层的速率设置为根据信道状态指示符所计算的用户设备可支持速 率中的最大速率。
6. 根据权利要求 2所述的可分级编码流的传输方法, 其中, 所 述端到端性能报告将所述组播组中的用户设备识别为多个服务质量等 级; 并且, 基于所述端到端性能报告和信道状态指示符来确定所述多 个增强层的速率的步骤包括: 根据所述多个服务质量等级来设置各个 增强层的速率。
7.根据权利要求 1-6之一所述的可分级编码流的传输方法,其中, 在向组播组中各用户设备传输编码后的可分级编码流期间, 重复进行 所述接收、 设置速率、 和编码的步骤, 并向组播组中各用户设备传输 重新编码后的可分级编码流。
8.根据权利要求 1-6之一所述的可分级编码流的传输方法,其中, 所述可分级编码流是多媒体广播组播业务 MBMS组播流,并且组播组 是 MBMS组播组。
9.根据权利要求 1-6之一所述的可分级编码流的传输方法,其中, 所述可分级编码流是基于可分级视频编码的可分级编码流。
10. —种基站, 包括:
信道状态接收单元, 用于从组播组中的各用户设备接收信道状态 指示符;
速率确定单元, 用于基于信道状态指示符来设置可分级编码流中 基础层的速率和增强层的速率;
编码单元, 用于以所确定的速率分别对可分级编码流的基础层和 增强层进行编码; 以及
流传输单元, 用于向组播组中各用户设备传输编码后的可分级编 码流。
11 . 根据权利要求 10 所述的基站, 其中, 所述可分级编码流包 括多个增强层,
所述基站还包括: 端到端性能接收单元, 用于从组播组中各用户 设备接收端到端性能报告;
并且, 所述速率确定单元还基于所述端到端性能报告和信道状态 指示符来确定所述多个增强层的速率。
12. 根据权利要求 10或 11所述的基站, 其中, 所述速率确定单 元将基础层的速率设置为根据信道状态指示符所计算的用户设备可支 持速率中的最小速率。
" 13. 根据权利要求 10或 11所述的基站, 其中, 所述速率确定单 元将基础层的速率设置为根据信道状态指示符所计算的用户设备可支 持速率的平均速率。
14. 根据权利要求 10所述的基站, 其中, 所述速率确定单元将 增强层的速率设置为根据信道状态指示符所计算的用户设备可支持速 率中的最大速率。
15. 根据权利要求 11 所述的基站, 其中, 所述端到端性能报告 将所述组播组中的用户设备识别为多个服务质量等级;
并且, 所述速率确定单元根据所述多个服务质量等级来设置各个 增强层的速率。
16. 根据权利要求 10-15之一所述的基站, 其中, 在所述流传输 单元向组播组中各用户设备传输编码后的可分级编码流期间, 所述信 道状态接收单元、 所述速率确定单元和所述编码单元操作, 并且所述 流传输单元向组播组中各用户设备传输重新编码后的可分级编码流。
17. 根据权利要求 10-15之一所述的基站, 其中, 所述可分级编 码流是多媒体广播组播业务 MBMS组播流, 并且组播组是 MBMS组 播组。
18. 根据权利要求 10-15之一所述的基站, 其中, 所述可分级编 码流是基于可分级视频编码的可分级编码流。
PCT/CN2010/000192 2010-02-11 2010-02-11 基于svc的e-mbms流传输方法和设备 WO2011097755A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080061245.5A CN102763408B (zh) 2010-02-11 2010-02-11 基于svc的e-mbms流传输方法和设备
PCT/CN2010/000192 WO2011097755A1 (zh) 2010-02-11 2010-02-11 基于svc的e-mbms流传输方法和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/000192 WO2011097755A1 (zh) 2010-02-11 2010-02-11 基于svc的e-mbms流传输方法和设备

Publications (1)

Publication Number Publication Date
WO2011097755A1 true WO2011097755A1 (zh) 2011-08-18

Family

ID=44367113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/000192 WO2011097755A1 (zh) 2010-02-11 2010-02-11 基于svc的e-mbms流传输方法和设备

Country Status (2)

Country Link
CN (1) CN102763408B (zh)
WO (1) WO2011097755A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2500245A (en) * 2012-03-15 2013-09-18 Toshiba Res Europ Ltd Rate Optimisation for Scalable Video Transmission
CN103533294A (zh) * 2012-07-03 2014-01-22 中国移动通信集团公司 视频数据流的发送方法、终端及系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114979086A (zh) * 2021-02-25 2022-08-30 华为云计算技术有限公司 流媒体传输方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030076858A1 (en) * 2001-10-19 2003-04-24 Sharp Laboratories Of America, Inc. Multi-layer data transmission system
CN101027911A (zh) * 2004-09-24 2007-08-29 松下电器产业株式会社 无线多媒体通信方法
CN101563929A (zh) * 2006-12-22 2009-10-21 高通股份有限公司 基础层与增强层之间的多媒体数据重组

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002025925A2 (en) * 2000-09-22 2002-03-28 Koninklijke Philips Electronics Nv Hybrid temporal-snr fine granular scalability video coding
US8189659B2 (en) * 2005-08-30 2012-05-29 Thomson Licensing Cross-layer optimization for scalable video multicast over IEEE 802.11 wireless local area networks
US9071414B2 (en) * 2007-03-23 2015-06-30 Qualcomm Incorporated Method and apparatus for distinguishing broadcast messages in wireless signals
CN101123606A (zh) * 2007-07-13 2008-02-13 上海广电(集团)有限公司中央研究院 基于实时传输协议或实时控制协议的avs传输控制方法
CN101415235B (zh) * 2007-10-16 2011-05-11 中兴通讯股份有限公司 增强广播组播业务服务质量的调度方法
US8369415B2 (en) * 2008-03-06 2013-02-05 General Instrument Corporation Method and apparatus for decoding an enhanced video stream
CN101562741B (zh) * 2009-05-11 2011-08-24 华为技术有限公司 多层编码的码率控制方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030076858A1 (en) * 2001-10-19 2003-04-24 Sharp Laboratories Of America, Inc. Multi-layer data transmission system
CN101027911A (zh) * 2004-09-24 2007-08-29 松下电器产业株式会社 无线多媒体通信方法
CN101563929A (zh) * 2006-12-22 2009-10-21 高通股份有限公司 基础层与增强层之间的多媒体数据重组

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2500245A (en) * 2012-03-15 2013-09-18 Toshiba Res Europ Ltd Rate Optimisation for Scalable Video Transmission
GB2500245B (en) * 2012-03-15 2014-05-14 Toshiba Res Europ Ltd Rate optimisation for scalable video transmission
US9258557B2 (en) 2012-03-15 2016-02-09 Kabushiki Kaisha Toshiba Rate optimization for scalable video transmission
CN103533294A (zh) * 2012-07-03 2014-01-22 中国移动通信集团公司 视频数据流的发送方法、终端及系统

Also Published As

Publication number Publication date
CN102763408A (zh) 2012-10-31
CN102763408B (zh) 2020-01-17

Similar Documents

Publication Publication Date Title
EP2656579B1 (en) Signaling techniques for a multimedia-aware radio and network adaptation
Tassi et al. Resource-allocation frameworks for network-coded layered multimedia multicast services
EP3092799A1 (en) System and method for video multicasting
WO2010130182A1 (zh) 多路视频通讯系统及处理方法
Radhakrishnan et al. Cross layer design for efficient video streaming over LTE using scalable video coding
CN104219539A (zh) 一种基于td-lte信道检测的视频编码与传输的方法
Liu et al. RMV: Real-time multi-view video streaming in highway vehicle ad-hoc networks (VANETs)
An et al. Resource allocation and layer selection for scalable video streaming over highway vehicular networks
Cao et al. Device cooperation-assisted scalable video multicast with heterogeneous QoE guarantees
WO2011097755A1 (zh) 基于svc的e-mbms流传输方法和设备
Xu et al. Resource allocation for scalable video streaming in highway VANET
US20120240167A1 (en) Method and apparatus for providing wireless service using scalable video coding
Radhakrishnan et al. An efficient video adaptation scheme for SVC transport over LTE networks
Lin et al. Efficient error-resilient multicasting for multi-view 3D videos in wireless network
Jin et al. Error-resilient video multicast with layered hybrid FEC/ARQ over broadband wireless networks
Easwarakumar et al. Performance evaluation of multicast video streaming over WiMAX
Luo et al. On using cooperative game theory to solve the wireless scalable video multicasting problem
WO2011097754A1 (zh) 中继网络中的可分级编码流的传输方法和设备
Shen et al. Layered video multicast with a P2P cooperation approach
Fracchia et al. System architecture for multimedia streaming optimisation
Park Multi‐Session Multicasting for 360‐Degree Video Multicast over OFDMA Systems
Hwang Wireless MediaNets: application-driven next-generation wireless IP networks
Du et al. Supporting Scalable Multimedia Streaming over Converged DVB-H and DTMB Networks
Zhang et al. Cross-Layer Optimization of Scalable Video Transmission for IoV in 6G
Fujihashi et al. Wi-Fi Offloading for Multi-Homed Hybrid Digital-Analog Video Streaming

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080061245.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10845429

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10845429

Country of ref document: EP

Kind code of ref document: A1