WO2011096501A1 - Photosensitizing fluorescent protein - Google Patents

Photosensitizing fluorescent protein Download PDF

Info

Publication number
WO2011096501A1
WO2011096501A1 PCT/JP2011/052300 JP2011052300W WO2011096501A1 WO 2011096501 A1 WO2011096501 A1 WO 2011096501A1 JP 2011052300 W JP2011052300 W JP 2011052300W WO 2011096501 A1 WO2011096501 A1 WO 2011096501A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorescent protein
protein
photosensitized
seq
amino acid
Prior art date
Application number
PCT/JP2011/052300
Other languages
French (fr)
Japanese (ja)
Inventor
健治 永井
知己 松田
里佳 高橋
研 竹本
Original Assignee
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北海道大学 filed Critical 国立大学法人北海道大学
Publication of WO2011096501A1 publication Critical patent/WO2011096501A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43595Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from coelenteratae, e.g. medusae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P3/00Preparation of elements or inorganic compounds except carbon dioxide
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/536Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase
    • G01N33/542Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase with steric inhibition or signal modification, e.g. fluorescent quenching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label

Definitions

  • the present invention relates to a photosensitized fluorescent protein.
  • the target protein can be efficiently destroyed in the chromophore-assisted photoinactivation method.
  • a so-called gene knockout method that destroys a gene encoding a target protein
  • an RNA interference method that binds to and degrades mRNA encoding the target protein
  • an antibody against the target protein A method of inactivating the function by acting is known. All of these methods are characterized in that they affect the target protein in all regions in the cell where the target protein is expressed. Therefore, it was impossible in principle to selectively inactivate only the target protein present at an arbitrary position in the cell.
  • chromophore-assisted photoinactivation is a method for functionally inactivating a functional site of a target protein by spatiotemporal inactivation by oxidation with active oxygen produced dependent on light irradiation.
  • assisted light inactivation hereinafter sometimes referred to as CALI
  • the chromophore-assisted photoinactivation method uses malachite green, rhodamine derivatives, or fluorescein derivatives as photosensitizers and binds to target molecules (for example, target proteins) to suppress the function of target molecules. This is a method for analyzing the function of the target molecule.
  • the chromophore-assisted photoinactivation method usually requires introduction of an antibody against a fluorescein-labeled target molecule or a fluorescein-labeled target molecule (for example, a target protein) into a cell by microinjection or the like, which is complicated. There was a problem.
  • KillerRed is a protein, it is possible to express a photosensitized fluorescent protein (CALI dye) in a cell by a method such as transformation or transfection by using a plasmid containing DNA encoding KillerRed. became.
  • KillerRed forms a dimer in the cell, many proteins can be fused with KillerRed, resulting in functional inactivation due to steric hindrance, etc., and light irradiation-dependent target protein functional failure. There was a problem that activation could not be performed. In addition, KillerRed has a problem that the amount of active oxygen produced is less than that of fluorescein because of its low photosensitizing activity. Furthermore, for example, when two or more target proteins in a biological sample are individually inactivated by light irradiation, photosensitized fluorescent proteins having different light absorption characteristics are necessary.
  • an object of the present invention is to provide a monomeric photosensitized fluorescent protein. Another object of the present invention is to provide a photosensitizing fluorescent protein having high photosensitizing activity. Furthermore, another object of the present invention is to provide a photosensitized fluorescent protein having an excitation wavelength and a fluorescence wavelength different from KillerRed.
  • the present inventor has developed a photosensitizing fluorescent protein having high photosensitizing activity capable of efficiently producing active oxygen by photostimulation in an individual organism, tissue, cell, intracellular organelle, or aqueous solution.
  • the fifth glycine (G) was changed to valine (V), the 147th asparagine (N) to serine (S), and the 162nd leucine.
  • (L) is threonine (T)
  • 164th phenylalanine (F) is threonine (T)
  • 174th leucine (L) is lysine (K)
  • M methionine
  • Supernova-Red which is a mutant substituted in (1)
  • Supernova-Orange which is a mutant in which the 68th tyrosine (Y) of Supernova-Red is replaced with tryptophan (W)
  • W tryptophan
  • V valine
  • A alanine
  • the present invention provides an amino acid sequence represented by SEQ ID NO: 2, an amino acid sequence represented by SEQ ID NO: 4, an amino acid sequence represented by SEQ ID NO: 6, an amino acid sequence represented by SEQ ID NO: 9, and
  • the present invention relates to a photosensitized fluorescent protein comprising at least one amino acid sequence selected from the group consisting of the amino acid sequence represented by SEQ ID NO: 10, or a functional equivalent variant thereof.
  • the photosensitized fluorescent protein or functional equivalent variant thereof of the present invention constitutes a fusion protein bound to another protein.
  • the present invention also relates to DNA encoding the photosensitized fluorescent protein or a functionally equivalent variant thereof.
  • the base sequence represented by SEQ ID NO: 1 in the sequence listing, the base sequence represented by SEQ ID NO: 3, the base sequence represented by SEQ ID NO: 5, represented by SEQ ID NO: 19 A DNA comprising at least one base sequence selected from the group consisting of a base sequence and the base sequence represented by SEQ ID NO: 20.
  • the present invention relates to a plasmid containing the DNA.
  • the present invention provides a photosensitized active oxygen production method using the photosensitized fluorescent protein or a functional equivalent variant thereof, wherein the photosensitized fluorescent protein or a functional equivalent variant thereof is used. The method is characterized by irradiating excitation light.
  • the photosensitizing fluorescent protein comprising the amino acid sequence represented by SEQ ID NO: 2 or a functional equivalent variant thereof has a range of 490 to 620 nm.
  • the excitation light wavelength in the range of 400 to 550 nm is used.
  • the excitation light wavelength in the range of 390 to 440 nm is used, and the photosensitized fluorescent protein comprising the amino acid sequence represented by SEQ ID NO: 9 or its In the functional equivalent variant, an excitation light wavelength in the range of 462 to 562 nm is used, and the amino acid sequence represented by SEQ ID NO: 10 is used.
  • an excitation light wavelength in the range of 459 ⁇ 559 nm is used, and the amino acid sequence represented by SEQ ID NO: 10 is used.
  • the present invention is a method for analyzing the function of a target molecule using a photosensitized fluorescent protein or a functional equivalent variant thereof, wherein excitation light is applied to the photosensitized fluorescent protein or a functional equivalent variant thereof. Irradiation relates to said method.
  • excitation light in the range of 490 to 620 nm.
  • the excitation light wavelength in the range of 400 to 550 nm is used, and the amino acid represented by SEQ ID NO: 6
  • an excitation light wavelength in the range of 390 to 440 nm is used, and the photosensitized fluorescent protein containing the amino acid sequence represented by SEQ ID NO: 9 or a functional thereof
  • the equivalent variant uses an excitation light wavelength in the range of 462 to 562 nm and includes the amino acid sequence represented by SEQ ID NO: 10
  • sensitizing fluorescent protein or a functional equivalent variant thereof using an excitation wavelength in the range of 459 ⁇ 559 nm.
  • the photosensitized fluorescent protein of the present invention can be present as a monomer in a cell and used as a photosensitized fluorescent protein in CALI for many proteins. It is possible.
  • the photosensitized fluorescent protein of the present invention and functionally equivalent variants thereof particularly Supernova-Orange, by replacing the 68th tyrosine of Supernova-Red with tryptophan (Y68W), the excitation maximum / fluorescence maximum is obtained. It shifts to 493 nm / 552 nm (visually orange), and the production of singlet oxygen is increased compared to KillerRed.
  • the photosensitized fluorescent protein of the present invention and functionally equivalent variants thereof, particularly Supernova-Green, by substituting valine No. 46 of Supernova-Orange with alanine, the excitation maximum / fluorescence maximum is 439 nm / 496 nm. It shifts to (green by visual observation), and the production amount of singlet oxygen is increased compared with KillerRed.
  • Non-Patent Document 2 Non-Patent Document 2 in which KillerRed's X-ray crystal structure analysis was performed, substitution of KillerRed's 46th valine with alanine (V46A) occurred due to the photosensitizing action of the chromophore. It describes the possibility of releasing active oxygen efficiently outside the KillerRed protein. However, as shown in Examples described later, when the V46A mutation was introduced into Supernova-Red, the amount of released active oxygen decreased.
  • FIG. 5 is a photomicrograph of localization of a fusion protein of Supernova-Red and tubulin, keratin, or connexin 43 (hereinafter sometimes referred to as Cx43) in HeLa cells.
  • a KillerRed fusion protein is shown as a control.
  • the respective photomicrographs are Supernova-Red-tubulin (a), Keratin-Supernova-Red (b), Cx43-Supernova-Red (c), KillerRed-tubulin (d), Keratin-KillerRed (e), (F). It is the microscope picture which showed cell degeneration by CALI with respect to actinin.
  • CALI was performed by irradiating a 561.5 nm laser beam into the blue circle of the protruding portion of HeLa cells expressing ⁇ -actinin-SNR.
  • Fluorescence image before irradiation (a), Fluorescence image immediately after irradiation (b), Differential interference image (c) before irradiation, Differential interference image (d) immediately after irradiation, Differential interference image (e) 3 minutes after irradiation, A differential interference image (f) 6 minutes after irradiation is shown.
  • the photosensitized fluorescent protein of the present invention comprises an amino acid sequence represented by SEQ ID NO: 2, an amino acid sequence represented by SEQ ID NO: 4, an amino acid sequence represented by SEQ ID NO: 6, an amino acid sequence represented by SEQ ID NO: 9, And a protein comprising at least one amino acid sequence selected from the group consisting of the amino acid sequences represented by SEQ ID NO: 10.
  • the functional equivalent variant of the present invention is a functional equivalent variant of the photosensitized fluorescent protein.
  • “functionally equivalent variant” means that the amino acid sequence has one or more (particularly one or several) amino acids deleted, substituted, or added in the amino acid sequence of the original protein. It means a protein having an amino acid sequence and showing substantially the same activity as the original protein.
  • the number of amino acid deletions, substitutions or additions is, for example, 10, preferably 1 to 10, more preferably 1 to 5, and still more preferably 1 to 2.
  • the first embodiment of the photosensitized fluorescent protein of the present invention is a protein comprising the amino acid sequence represented by SEQ ID NO: 2 (hereinafter referred to as the first photosensitized fluorescent protein) or a functional equivalent variant thereof (hereinafter referred to as the first photosensitized fluorescent protein).
  • the first photosensitized fluorescent protein and the first functional equivalent modified protein may be collectively referred to as a first photosensitized fluorescent protein, etc.
  • a protein consisting of the amino acid sequence represented by No. 2 or a functionally equivalent variant thereof is preferred.
  • the fifth glycine (G) is replaced with valine (V) in the amino acid sequence of the photosensitizing fluorescent protein consisting of the amino acid sequence represented by SEQ ID NO: 8 (ie, KillerRed)
  • SEQ ID NO: 8 ie, KillerRed
  • N147S serine
  • L 162nd leucine
  • T threonine
  • the 164th phenylalanine (F) may be replaced with threonine (T) (hereinafter may be referred to as F164T), and the 174th leucine (L) may be replaced with lysine (K).
  • L174K threonine
  • M206T threonine
  • a representative first photosensitized fluorescent protein is Supernova-Red, which is a protein consisting of the amino acid sequence represented by SEQ ID NO: 2.
  • KillerRed is known to form a dimer, whereas Supernova-Red is in a sample (eg, in an individual organism, in a tissue, in a cell, in an intracellular organelle, or in an aqueous solution). ) In the monomer. Further, the excitation maximum wavelength and the fluorescence maximum wavelength of Supernova-Red are 579 nm and 610 nm, respectively.
  • the substitution of L162T and F164T (hereinafter, the KillerRed mutant having the substitution of L162T and F164T is referred to as KillerRed-L162T / F164T) as a dimer.
  • the existing KillerRed becomes a monomer. Therefore, when the KillerRed-L162T / F164T is expressed as a fusion protein with the target protein, it does not inhibit the function of the target protein.
  • substitution of L162T and F164T caused KillerRed-L162T / F164T to have reduced absorbance at 585 nm and fluorescence at 610 nm compared to KillerRed.
  • Supernova-Red having the same fluorescence intensity as KillerRed could be obtained by introducing further substitution of G5V, N147S, L174K, and M206T into the KillerRed-L162T / F164T.
  • the first functional equivalent variant of the present invention has substantially the same activity as Supernova-Red.
  • “Same activity as Supernova-Red” means that active oxygen is generated by light irradiation, fluorescence is generated by light irradiation, exists in a monomer in the sample, and the excitation maximum wavelength and fluorescence maximum wavelength are Meaning about 579 nm and 610 nm, respectively.
  • the excitation maximum wavelength and the fluorescence maximum wavelength are about 579 nm and 610 nm, respectively, preferably 569 to 589 nm and 600 to 620 nm, and more preferably 574 to 584 nm and 605 to 615 nm.
  • the first functional equivalent variant can use about 579 nm and 610 nm as the excitation wavelength and the fluorescence wavelength, respectively, which means that it has substantially the same function as Supernova-Red.
  • Examples of the first functional equivalent variant include a protein lacking the second glycine and the third serine in the amino acid sequence represented by SEQ ID NO: 2.
  • a second embodiment of the photosensitized fluorescent protein of the present invention is a protein comprising the amino acid sequence represented by SEQ ID NO: 4 (hereinafter referred to as the second photosensitized fluorescent protein) or a functional equivalent variant thereof (hereinafter referred to as the second photosensitized fluorescent protein).
  • the second photosensitized fluorescent protein and the second functional equivalent modified protein may be collectively referred to as a second photosensitized fluorescent protein, etc.
  • It is preferably a protein consisting of the amino acid sequence represented by No. 4 or a functionally equivalent variant thereof.
  • the second photosensitizing fluorescent protein is a photosensitizing fluorescent protein comprising an amino acid sequence in which the 68th tyrosine (Y) is substituted with tryptophan (W) (hereinafter referred to as Y68W) in the Supernova-Red amino acid sequence. is there.
  • a representative second photosensitized fluorescent protein is Supernova-Orange, which is a protein consisting of the amino acid sequence represented by SEQ ID NO: 4.
  • the excitation maximum wavelength and the fluorescence maximum wavelength of Supernova-Orange are 493 nm and 552 m, respectively, and the production amount of singlet oxygen is increased as compared with KillerRed.
  • KillerRed which was a dimer, becomes a monomer by the substitution of L162T and F164T, and the excitation maximum wavelength and the fluorescence maximum wavelength are obtained by substitution of Y68W, respectively. These are approximately 493 nm and 552 nm.
  • the second functional equivalent variant of the present invention has substantially the same activity as Supernova-Orange. “The same activity as Supernova-Orange” means that active oxygen is generated by light irradiation, fluorescence is generated by light irradiation, exists in a monomer in the sample, and the excitation maximum wavelength and fluorescence maximum wavelength are Meaning about 493 nm and 552 nm, respectively.
  • the excitation maximum wavelength and the fluorescence maximum wavelength are about 493 nm and 552 nm, respectively, preferably 483 to 503 nm and 542 to 562 nm, and more preferably 488 to 498 nm and 547 to 557 nm. That is, the second functional equivalent variant can use about 493 nm and 552 nm as the excitation wavelength and the fluorescence wavelength, respectively, which means that it has substantially the same function as Supernova-Orange.
  • the second functional equivalent variant include a protein in which substitution of L162T, F164T, and Y68W is introduced in the amino acid sequence represented by SEQ ID NO: 8, and the second glycine and the second protein in the protein. Examples include a protein lacking the third serine and a protein lacking the second glycine and the third serine in the amino acid sequence represented by SEQ ID NO: 4.
  • a third embodiment of the photosensitized fluorescent protein of the present invention is a protein comprising the amino acid sequence represented by SEQ ID NO: 6 (hereinafter referred to as the third photosensitized fluorescent protein) or a functional equivalent variant thereof (hereinafter referred to as the third photosensitized fluorescent protein).
  • the third photosensitized fluorescent protein and the third functional equivalent modified protein may be collectively referred to as a third photosensitized fluorescent protein, etc.
  • a protein consisting of the amino acid sequence represented by No. 6 or a functionally equivalent variant thereof is preferable.
  • the third photosensitized fluorescent protein is a photosensitized fluorescent protein comprising an amino acid sequence in which the 46th valine (V) is replaced with alanine (A) (hereinafter referred to as V46A) in the Supernova-Orange amino acid sequence. is there.
  • a representative third photosensitizing fluorescent protein is Supernova-Green, which is a protein consisting of the amino acid sequence represented by SEQ ID NO: 6.
  • the excitation maximum wavelength and the fluorescence maximum wavelength of Supernova-Green are 439 nm and 496 nm, respectively, and the production amount of singlet oxygen is increased as compared with KillerRed.
  • KillerRed which was a dimer by substitution of L162T and F164T, becomes a monomer, and by exchanging Y68W and V46A, the excitation maximum wavelength and the fluorescence maximum wavelength are respectively 439 nm and 496 nm.
  • the third functional equivalent variant of the present invention has substantially the same activity as Supernova-Green. “Same activity as Supernova-Green” means that active oxygen is generated by light irradiation, fluorescence is generated by light irradiation, exists in a monomer in the sample, and the excitation maximum wavelength and fluorescence maximum wavelength are Meaning about 439 nm and 496 nm, respectively.
  • the excitation maximum wavelength and the fluorescence maximum wavelength are about 439 nm and 496 nm, respectively, preferably 429 to 449 nm and 486 to 506 nm, and more preferably 434 to 444 nm and 591 to 501 nm. That is, the third functional equivalent variant can use about 439 nm and 496 nm as the excitation wavelength and the fluorescence wavelength, respectively, which means that it has substantially the same function as Supernova-Green.
  • Examples of the third functional equivalent variant include, for example, a protein in which substitution of L162T, F164T, Y68W and V46A is introduced in the amino acid sequence represented by SEQ ID NO: 8, and the second glycine and Examples thereof include a protein lacking the third serine and a protein lacking the second glycine and the third serine in the amino acid sequence represented by SEQ ID NO: 6.
  • the fourth embodiment of the photosensitized fluorescent protein of the present invention is a protein comprising the amino acid sequence represented by SEQ ID NO: 9 (hereinafter referred to as the fourth photosensitized fluorescent protein) or a functional equivalent variant thereof (hereinafter referred to as the fourth photosensitized fluorescent protein).
  • the fourth photosensitized fluorescent protein and the fourth functional equivalent modified protein may be collectively referred to as a fourth photosensitized fluorescent protein, etc.
  • It is preferably a protein consisting of the amino acid sequence represented by No. 9 or a functionally equivalent variant thereof.
  • the fourth photosensitized fluorescent protein is a light containing an amino acid sequence having substitutions of L162T, F164T, and N147S in the amino acid sequence of the photosensitized fluorescent protein (that is, KillerRed) consisting of the amino acid sequence represented by SEQ ID NO: 8. It is a sensitizing fluorescent protein.
  • a representative fourth photosensitizing fluorescent protein is KillerRed_L162T_F164T_N147S, which is a protein consisting of the amino acid sequence represented by SEQ ID NO: 9.
  • the excitation maximum wavelength of KillerRed_L162T_F164T_N147S is 512 nm, and the fluorescence shows yellowish green (visually).
  • KillerRed which was a dimer by substitution of L162T and F164T, becomes a monomer, and by substitution of N147S, the excitation maximum wavelength is 512 nm and the fluorescence is yellow-green. Become.
  • the fourth functional equivalent variant of the present invention has substantially the same activity as KillerRed_L162T_F164T_N147S.
  • “The same activity as KillerRed_L162T_F164T_N147S” means that active oxygen is produced by light irradiation, fluorescence is generated by light irradiation, exists as a monomer in the sample, and the excitation maximum wavelength is about 512 nm and the fluorescence is yellow. Means green.
  • the excitation maximum wavelength of about 512 nm preferably means 502 to 522 nm, and more preferably 507 to 517 nm.
  • the fourth functional equivalent variant can use about 512 nm as the excitation wavelength, which means that it has substantially the same function as KillerRed_L162T_F164T_N147S.
  • Examples of the fourth functional equivalent variant include a protein lacking the second glycine and the third serine in the amino acid sequence represented by SEQ ID NO: 9.
  • the fifth embodiment of the photosensitized fluorescent protein of the present invention is a protein comprising the amino acid sequence represented by SEQ ID NO: 10 (hereinafter referred to as the fifth photosensitized fluorescent protein) or a functional equivalent variant thereof (hereinafter referred to as the fifth photosensitized fluorescent protein).
  • the fifth photosensitized fluorescent protein and the fifth functional equivalent modified protein may be collectively referred to as a fifth photosensitized fluorescent protein).
  • a protein consisting of the amino acid sequence represented by No. 10 or a functionally equivalent variant thereof is preferred.
  • the fifth photosensitizing fluorescent protein has a substitution of L162TF164T, G5V, N147S, L174K, M206T, and V46A in the amino acid sequence of the photosensitizing fluorescent protein consisting of the amino acid sequence represented by SEQ ID NO: 8 (ie, KillerRed). It is a photosensitized fluorescent protein containing an amino acid sequence.
  • a representative fifth photosensitized fluorescent protein is Supernova-Red_V46A, which is a protein consisting of the amino acid sequence represented by SEQ ID NO: 10.
  • the excitation maximum wavelength and the fluorescence maximum wavelength of Supernova-Red_V46A are 509 nm and 594 nm, respectively.
  • KillerRed that was a dimer becomes a monomer by the substitution of L162T and F164T, and the excitation maximum wavelength is obtained by substitution of G5V, N147S, L174K, M206T, and V46A And the fluorescence maximum wavelength are 509 nm and 594 nm, respectively.
  • the fifth functional equivalent variant of the present invention has substantially the same activity as Supernova-Red_V46A.
  • “Same activity as Supernova-Red_V46A” means that active oxygen is generated by light irradiation, fluorescence is generated by light irradiation, exists in a monomer in the sample, and excitation maximum wavelength and fluorescence maximum wavelength are Meaning about 509 nm and 594 nm, respectively.
  • the excitation maximum wavelength and the fluorescence maximum wavelength are about 509 nm and 594 nm, respectively, preferably 499 to 519 nm and 584 to 604 nm, and more preferably 504 to 514 nm and 589 to 599 nm.
  • the fifth functional equivalent variant can use about 509 nm and 594 nm as the excitation wavelength and the fluorescence wavelength, respectively, which means that it has substantially the same function as Supernova-Red_V46A.
  • Examples of the fifth functional equivalent variant include a protein lacking the second glycine and the third serine in the amino acid sequence represented by SEQ ID NO: 10.
  • the photosensitized fluorescent protein and functionally equivalent variant of the present invention are activated oxygen (for example, singlet oxygen) upon irradiation with light. Can be produced. Therefore, by introducing the protein of the present invention into a cell and irradiating it with light having an appropriate excitation wavelength, singlet oxygen can be generated, the cell can be damaged, and the cell can be killed.
  • the protein of the present invention can also be used in a chromophore-assisted photoinactivation method.
  • the photosensitizing fluorescent protein of the present invention is bound to a target protein and active oxygen (for example, singlet oxygen) is produced by light irradiation, thereby suppressing the function of the target protein or the target By destroying the protein, the function of the target protein can be analyzed.
  • active oxygen for example, singlet oxygen
  • the photosensitized fluorescent protein and the functional equivalent variant according to the present invention can be obtained by various known methods.
  • the photosensitized fluorescent protein can be obtained by using a plasmid vector containing DNA encoding the photosensitized fluorescent protein KillerRed. It can be prepared by genetic engineering techniques. More specifically, it can be prepared by site-directed mutagenesis.
  • host cells such as E. coli can be transformed to obtain a transformant.
  • the obtained transformant (that is, a transformant having a plasmid containing DNA encoding the photosensitizing fluorescent protein or functionally equivalent variant according to the present invention) can be expressed as the photosensitizing fluorescent protein or the like.
  • It can be prepared by culturing under conditions and separating and purifying photosensitized fluorescent protein and the like from the culture by a method generally used for protein separation and purification.
  • the separation and purification method include a method of producing a photosensitized fluorescent protein with a His tag and using a nickel NTA column, ammonium sulfate salting out, ion exchange column chromatography using ion exchange cellulose, and molecular sieve column using molecular sieve gel. Examples thereof include chromatography, affinity column chromatography using protein A-linked polysaccharide, dialysis, and lyophilization.
  • the photosensitized fluorescent protein or the like of the present invention can be a fusion protein bound to another protein.
  • Other proteins to be fused are not particularly limited as long as the activity of the photosensitized fluorescent protein or the like is not completely inhibited. For example, it binds to the target protein or target molecule in the chromophore-assisted photoinactivation method.
  • the binding protein to be made can be mentioned.
  • the target protein is a protein whose function is analyzed in the chromophore-assisted light inactivation method.
  • the target protein is a fusion protein with the photosensitized fluorescent protein or the like of the present invention
  • the active oxygen produced from the photosensitized fluorescent protein or the like by light irradiation can easily inactivate the target protein. This is because the target molecule present in a radius of about 10 to 50 cm is specifically inactivated by the produced active oxygen. Since the photosensitized fluorescent protein of the present invention is a monomer, it hardly interferes with the original localization or activity of the target protein in the cell.
  • the target protein and the photosensitized fluorescent protein of the present invention may be bound by a linker peptide.
  • a linker peptide By using a linker peptide, the function of the target protein may be prevented from being impaired, and inactivation of the target protein by active oxygen may be facilitated.
  • the amino acid sequence of the linker peptide is not particularly limited, and those commonly used can be used. For example, “G”, “GG”, “GGGS”, “GGS”, “GGGGS”, “ GGSGG "or” GGSGGGSGGS "can be mentioned.
  • the binding protein is a protein that binds the photosensitized fluorescent protein to the target molecule in the chromophore-assisted photoinactivation method.
  • the binding protein is not particularly limited as long as it is a protein that can bind to a target molecule.
  • an antibody and an antigen-binding fragment thereof eg, scFv, Fab, or gene product of the entire antibody variable region
  • Receptors eg.g, scFv, Fab, or gene product of the entire antibody variable region
  • the fusion protein can be prepared by a known genetic recombination technique. Specifically, DNA encoding a photosensitized fluorescent protein or the like and DNA encoding another protein are introduced into an expression plasmid according to a conventional method. The resulting plasmid can be expressed by introducing the resulting plasmid into a host cell by transformation or the like.
  • the DNA according to the present invention is not particularly limited as long as it encodes the photosensitizing fluorescent protein or the like of the present invention.
  • the base represented by SEQ ID NO: 1, 3, 5, 19, or 20 in the sequence listing A DNA comprising a sequence can be mentioned.
  • the DNA consisting of the base sequence represented by SEQ ID NO: 1 in the sequence listing encodes Supernova-Red consisting of the amino acid sequence represented by SEQ ID NO: 2 in the sequence listing.
  • the DNA consisting of the base sequence represented by SEQ ID NO: 3 in the sequence listing encodes Supernova-Orange consisting of the amino acid sequence represented by SEQ ID NO: 4 in the sequence listing.
  • the DNA consisting of the base sequence represented by SEQ ID NO: 5 in the sequence listing encodes Supernova-Green consisting of the amino acid sequence represented by SEQ ID NO: 6 in the sequence listing.
  • the DNA comprising the base sequence represented by SEQ ID NO: 19 in the sequence listing encodes KillerRed_L162T_F164T_N147S comprising the amino acid sequence represented by SEQ ID NO: 9 in the sequence listing.
  • the DNA composed of the base sequence represented by SEQ ID NO: 20 in the sequence listing encodes Supernova-Red_V46A composed of the amino acid sequence represented by SEQ ID NO: 10 in the sequence listing.
  • a Kozak sequence (Kozak sequence) may be added before the start codon.
  • caccatgg can be used as the Kozak array. This is because the expression of eukaryotic proteins may be improved by adding a Kozak sequence.
  • the plasmid according to the present invention is not particularly limited as long as it contains the DNA according to the present invention.
  • the plasmid according to the present invention is not particularly limited as long as it contains the DNA according to the present invention.
  • a transformant can be obtained by transforming the obtained plasmid into a desired host cell.
  • the transformant is not particularly limited as long as it contains the plasmid according to the present invention.
  • Examples of the host cell include commonly used known microorganisms such as Escherichia coli or yeast (Saccharomyces cerevisiae), or known cultured cells such as animal cells (eg, CHO cells, HEK-293 cells, or COS). Cell) or insect cells (eg BmN4 cells).
  • Escherichia coli or yeast Sacharomyces cerevisiae
  • known cultured cells such as animal cells (eg, CHO cells, HEK-293 cells, or COS). Cell) or insect cells (eg BmN4 cells).
  • Examples of the known expression vector include pUC, pTV, pGEX, pKK, or pTrcHis for E. coli; pEMBLY or pYES2 for yeast; pcDNA3 or pMAMneo for CHO cells.
  • PcDNA3 for HEK-293 cells; pcDNA3 for COS cells; for BmN4 cells, vector with silkworm nuclear polyhedrosis virus (BmNPV) polyhedrin promoter (eg, pBK283) Can be mentioned.
  • the photosensitized fluorescent protein of the present invention is used.
  • active oxygen is produced from the photosensitized fluorescent protein or the like.
  • the photosensitizing active oxygen production method of the present invention for example, by introducing the photosensitizing fluorescent protein or the like into a cell and irradiating with excitation light, active oxygen is produced from the photosensitizing fluorescent protein or the like. And can kill the cells.
  • the wavelength of the excitation light is a wavelength capable of producing active oxygen from the photosensitized fluorescent protein of the present invention.
  • the excitation wavelength is preferably in the range of 490 to 620 nm, more preferably 490 to 600 nm, more preferably 490 to 580 nm, and still more preferably 540 to 580 nm. A range of 560 to 580 nm is most preferred.
  • the excitation wavelength is preferably in the range of 400 to 550 m, more preferably in the range of 420 to 550 nm, more preferably in the range of 440 to 540 nm, still more preferably 470 to 520 nm, A range of 485 to 505 nm is most preferred.
  • the excitation wavelength is preferably in the range of 390 to 480 nm, more preferably in the range of 390 to 460 nm, and most preferably in the range of 430 to 450 nm. Note that 390 to 440 nm can also be used.
  • the excitation wavelength is preferably in the range of 462 to 562 nm, more preferably in the range of 482 to 542 nm, and most preferably in the range of 502 to 522 nm.
  • the excitation wavelength is preferably in the range of 459 to 559 nm, more preferably in the range of 479 to 539 nm, and most preferably in the range of 499 to 519 nm.
  • the excitation wavelength to be used all wavelengths in the above range may be used, or a single wavelength in the above range may be used.
  • a 561.5 nm laser can be used as SuperNova-Red excitation light.
  • the excitation light may be light having a wavelength that is approximately an integral multiple of the excitation wavelength based on a multiphoton excitation phenomenon.
  • the photosensitizing active oxygen production method of the present invention it is possible to induce cell apoptosis.
  • the photosensitizing active oxygen production method of the present invention can be used for photodynamic therapy (PDT).
  • Photodynamic therapy is a method of treating a tumor in which a photosensitizing substance is taken into tumor cells and irradiated with light to kill the cells. More specifically, the photosensitizing fluorescent protein of the present invention is introduced into tumor cells or endothelial cells of new blood vessels in the tumor tissue, and active oxygen is generated by irradiating with appropriate light. This active oxygen damages tumor cells or tumor tissue, and the tumor disappears.
  • the function analysis method of the target molecule of the present invention uses the photosensitized fluorescent protein of the present invention.
  • active oxygen is produced from the photosensitized fluorescent protein or the like.
  • the produced active oxygen destroys the target molecule in the vicinity and can analyze the function of the target molecule destroyed thereby.
  • the wavelength of the excitation light is a wavelength capable of producing active oxygen from the photosensitized fluorescent protein of the present invention.
  • the excitation wavelength is preferably in the range of 490 to 620 nm, more preferably in the range of 490 to 600 nm, still more preferably in the range of 540 to 580 nm, and in the range of 560 to 580 nm. Most preferred.
  • the excitation wavelength is preferably in the range of 400 to 550 m, more preferably in the range of 420 to 550 nm, more preferably in the range of 440 to 540 nm, still more preferably 470 to 520 nm, A range of 485 to 505 nm is most preferred.
  • the excitation wavelength is preferably in the range of 390 to 480 nm, more preferably in the range of 390 to 460 nm, and most preferably in the range of 430 to 450 nm. Note that 390 to 440 nm can also be used.
  • the excitation wavelength is preferably in the range of 462 to 562 nm, more preferably in the range of 482 to 542 nm, and most preferably in the range of 502 to 522 nm.
  • the excitation wavelength is preferably in the range of 459 to 559 nm, more preferably in the range of 479 to 539 nm, and most preferably in the range of 499 to 519 nm.
  • the excitation wavelength to be used all wavelengths in the above range may be used, or a single wavelength in the above range may be used.
  • a 561.5 nm laser can be used as SuperNova-Red excitation light.
  • the excitation light may be light having a wavelength that is approximately an integral multiple of the excitation wavelength based on a multiphoton excitation phenomenon.
  • the target molecule functional analysis method of the present invention can be used as a chromophore-assisted photoinactivation method. That is, by introducing a fusion protein of the target protein and the photosensitized fluorescent protein of the present invention into the cell, the fusion protein moves to a position in the cell where the target protein is originally expressed. Then, singlet oxygen (active oxygen) is generated from the photosensitized fluorescent protein by irradiating the cells with light that excites the photosensitized fluorescent protein, and the function of the target protein is destroyed. When the function of the target protein is destroyed, a change appears in the cell, and the function of the target protein can be analyzed.
  • active oxygen active oxygen
  • the target molecule refers to a biomolecule that is a target for elucidating its physiological function, and is not particularly limited to, for example, protein, peptide, carbohydrate, lipid, DNA, RNA, sugar, signal Examples include transmitter substances.
  • a preferred target molecule in the method of the present invention is a protein, and examples thereof include an enzyme, a receptor protein, a ligand protein, a signal transduction protein, a transcription control protein, a skeletal protein, a cell adhesion protein, and a scaffold protein.
  • the active oxygen produced by the photosensitized fluorescent protein or the like is singlet oxygen.
  • the singlet oxygen is obtained by transferring energy to the ground state triplet oxygen existing in the vicinity of the chromophore by the transition of the photosensitized fluorescent protein chromophore in the excited state to the excited triplet state by intersystem crossing. appear.
  • the generated singlet oxygen can selectively inactivate a target molecule (for example, target protein) or a functional site thereof bound to a photosensitized fluorescent protein or the like with a radius of about 10 to 50 mm. In this way, the physiological function of the target substance can be analyzed by inactivating the target molecule itself or a specific site of the target molecule.
  • the function analysis method of the target molecule of the present invention can be used for in vitro and in vivo assays, and for target molecules inside and outside the cell.
  • a method for binding a photosensitized fluorescent protein or the like to a target molecule is not particularly limited, For example, a chemical bond is preferable.
  • a photosensitized fluorescent protein or the like can be covalently bound to a target molecule.
  • an antibody against a target molecule can be covalently bound to a photosensitized fluorescent protein or the like, and the photosensitized fluorescent protein or the like can be bound to the target molecule by the antibody.
  • a photosensitized fluorescent protein or the like and an antibody against the target molecule can be expressed as a fusion protein, and the photosensitized fluorescent protein or the like can be bound to the target molecule by the antibody.
  • the target molecule is a protein
  • a photosensitized fluorescent protein or the like and the target protein can be expressed as a fusion protein.
  • Example 1 an attempt was made to produce a photosensitized fluorescent protein that can exist as a monomer by introducing a mutation into the amino acid sequence of KillerRed.
  • the 5th glycine (G), the 147th asparagine (N), the 162nd leucine (L), the 164th phenylalanine (F), the 174th leucine (L) In order to mutate the 206th methionine (M) to valine (V), serine (S), threonine (T), threonine (T), lysine (K), threonine (T), respectively, the method of Sawano et al. According to (Sawano A and Miyawaki A. Nucleic Acid Research 28, E78, 2000), mutations were sequentially introduced by site-directed mutagenesis.
  • KillerRed / pRSETB obtained by cutting out with BamHI and EcoRI and inserting it into the plastic plasmid pRSET B (Inviologen) was used.
  • the mutant strand was synthesized as follows. 40 ⁇ L of a reaction solution having the following composition was prepared and synthesized in vitro by the PCR method. KillerRed / pRSET B 50 ng, Primer-L162T 10 pmol, dNTP 3.75 nmol, Pfu DNA polymerase 1.25U, Pfu DNA ligase 20U Pfu DNA polymerase is manufactured by STRATAGENE and dissolved in 10 ⁇ Pfu polymerase buffer. PfuDNA ligase is manufactured by STRATAGENE and dissolved in 10 ⁇ PfuDNA ligase buffer.
  • the thermal cycler was programmed as follows. That is, first, pre-incubation at 65 ° C.
  • the obtained PCR product was cleaved with DpnI according to the following reaction conditions, and a methylated or hemimethylated template plasmid DNA into which no mutation was introduced was selectively digested. Specifically, 1 ⁇ L (20 U) of DpnI (manufactured by New England BioLab) was added to 40 ⁇ L of the reaction solution after PCR and incubated at 37 ° C. for 2 hours. DpnI is an endonuclease that recognizes [5′-G m6 ATC-3 ′] and cleaves double-stranded DNA. Further, 20.4 ⁇ L of the reaction solution treated with DpnI was subjected to phenol chloroform extraction to purify the sample, and the supernatant was ethanol precipitated and dried.
  • E. coli competent cells JM109 (DE3) were transformed by the heat shock method using the single-stranded mutagenized circular DNA strand. Then, the transformed E. coli cells were cultured at 37 ° C. in an LB solid medium containing 100 ⁇ g / mL ampicillin, and the grown single colony was picked up and transferred to 2 mL of an LB culture solution containing 100 ⁇ g / mL ampicillin. The cells were grown overnight at 37 ° C and grown.
  • KillerRed_L162T_F164T / pRSET B protein was expressed using the T7 expression system (pRSET B / JM109 (DE3)). That is, E. coli competent cells (JM109 (DE3)) were transformed with KillerRed_L162T_F164T / pRSET B and cultured at 37 ° C. in an LB solid medium containing 100 ⁇ g / mL ampicillin. Thereafter, the grown single colony was picked up, inoculated into 300 mL of LB culture solution containing 100 ⁇ g / mL ampicillin, and cultured at 23 ° C. for 4 days.
  • JM109 E. coli competent cells
  • the obtained cells were disrupted with a French press, and the polyhistidine-labeled protein was purified from the resulting supernatant using a nickel chelate column (QIAGEN). Further, this eluate (100 mM imidazole, 50 mM Tris-Cl, pH 7.4, 300 mM NaCl) is used in a PD10 desalting / buffer exchange column (manufactured by GE healthcare Bio-Sciences) using 1 ⁇ PBS (pH 7.4). The protein KillerRed_L162T_F164T was obtained.
  • KillerRed_L162T_F164T Color development and confirmation of monomerization of KillerRed_L162T_F164T
  • the obtained KillerRed_L162T_F164T was analyzed by pseudo native PAGE.
  • the KillerRed_L162T_F164T band shifted to a lower molecular weight compared to the dimeric KillerRed band and was present as a monomer.
  • KillerRed_L162T_F164T attenuated fluorescence at 610 nm compared to KillerRed. The results are shown in Table 1.
  • Primer-G5V 5′-GGTTCAGAGGTCGGCCCCGCC-3 ′ (SEQ ID NO: 13)
  • Primer-N147S 5′-CAGACCGCCACCATCGGCTTC-3 ′
  • Primer-L174K 5′-GACGGCGGCAAGATGATGGGC-3 ′
  • Primer-M206T 5′-ACCAAGCAGACGAGGGACACT-3 ′ (SEQ ID NO: 16)
  • the fifth glycine (G) is replaced with valine (V) by the same procedure as in (1) except that KillerRed_L162T_F164T / pRSET B is used as a template plasmid DNA and Primer-G5V is used as a primer.
  • the plasmid KillerRed_L162T_F164T_G5V / pRSET B containing DNA encoding the protein substituted with the valine (V) of the fifth glycine (G) was obtained.
  • Comparative Examples 1 to 21 An attempt was made to introduce a mutation to make the dimer KillerRed a monomer. Specifically, in each comparative example, the following amino acid substitution was performed. Comparative Example 1: The 126th asparagine was replaced with arginine (N126R). Comparative Example 2: The 128th aspartic acid was replaced with threonine (D128T). Comparative Example 3: The 126th asparagine was substituted with arginine (N126R), and the 128th aspartic acid was substituted with threonine (N126R / D128T). Comparative Example 4 The 154th histidine was replaced with glutamic acid (H154E).
  • Comparative Example 5 The 165th isoleucine was replaced with arginine (I165R). Comparative Example 6: The 163rd alanine was replaced with lysine (A163K / I165R), and the 165th isoleucine was replaced with arginine (N126R / D128T). Comparative Example 7 The 176th methionine was replaced with aspartic acid (M176D). Comparative Example 8: The 196th proline was substituted with alanine (P196A). Comparative Example 9: The 198th phenylalanine was replaced with lysine (F198K). Comparative Example 10: The 140th glutamine was substituted with alanine (Q140A).
  • Comparative Example 11 The 26th lysine was replaced with glutamic acid (K26E).
  • Comparative Example 12 The 174th leucine was replaced with histidine (L174H).
  • Comparative Example 13 The 174th leucine was replaced with arginine (L174R).
  • Comparative Example 14 The 227th valine was replaced with lysine (V227K).
  • Comparative Example 15 The 230th isoleucine was replaced with lysine (I230K).
  • Comparative Example 16 The 234th isoleucine was replaced with lysine (I234K).
  • Comparative Example 17 The 152 th phenylalanine was replaced with threonine (F152T).
  • Comparative Example 18 The 162nd leucine was replaced with lysine (L162K). Comparative Example 19 The 164th phenylalanine was replaced with lysine (F164K). Comparative Example 20: The 167th phenylalanine was replaced with lysine (F167K). Comparative Example 21 The 167th phenylalanine was replaced with threonine (F167T).
  • primers corresponding to the respective substitutions were synthesized, and the respective mutations were obtained by repeating the operation of step (1) of Example 1 except that the respective primers were used. A plasmid containing the DNA encoding the protein was obtained.
  • Example 2 In this example, the 68th tyrosine (Y) of the protein Supernova-Red was substituted with tryptophan (W).
  • the following primers for mutagenesis were synthesized.
  • Primer-Y68W 5′-GCCACCTGATCCAGTGGGGCGAGCCC-3 ′ (SEQ ID NO: 17)
  • the procedure of Example 1 step 1) was repeated, and the plasmid Supernova-Orange / pRSET B was used.
  • the operation of the step (3) in Example 1 was repeated to obtain a protein Supernova-Orange (SEQ ID NO: 4).
  • Example 3 In this example, the 46th valine (V) of the protein Supernova-Orange was substituted with alanine (A).
  • the following primers for mutagenesis were synthesized.
  • Primer-V46A 5'-GGCGACTTCAACGCCCACGCCGTG-3 '(SEQ ID NO: 18) Except for using Supernova-Orange / pRSET B as the template plasmid DNA and using Primer-V46A as the primer, the procedure of Step (1) of Example 1 was repeated, and the plasmid Supernova-Green / pRSET B Got. Further, except that the plasmid Supernova-Green / pRSET B was used, the operation of the step (3) of Example 1 was repeated to obtain a protein Supernova-Green (SEQ ID NO: 6).
  • Example 4 substitution of N147S was further introduced into the protein KillerRed_L162T_F164T, and an attempt was made to produce KillerRed_L162T_F164T_N147S. Except for using KillerRed_L162T_F164T / pRSET B as a template plasmid DNA and using Primer-V46A as a primer, the procedure of Step (1) of Example 1 was repeated to obtain a plasmid KillerRed_L162T_F164T_V46A / pRSET B.
  • Example 5 In this example, the 46th valine (V) of the protein Supernova-Red was substituted with alanine (A). Except for using Supernova-Red / pRSET B as the template plasmid DNA and using Primer-V46A as the primer, the procedure of Step (1) of Example 1 was repeated, and the plasmid Supernova-Red_V46A / pRSET B Got. Further, except that the plasmid Supernova-Red_V46A / pRSET B was used, the operation of the step (3) of Example 1 was repeated to obtain a protein Supernova-Red_V46A (SEQ ID NO: 10).
  • Comparative Examples 22 to 27 An attempt was made to introduce a mutation for changing the color development of the Supernova-Red chromophore. Specifically, in each comparative example, the following amino acids were further substituted for L162T / F164T. Comparative Example 22: The 150th histidine was replaced with threonine (H150T). Comparative Example 23: The 148th glutamic acid was replaced with threonine (E148T). Comparative Example 24: The 148th glutamic acid was replaced with lysine (E148K). Comparative Example 25: The 148th glutamic acid was replaced with valine (E148V).
  • Comparative Example 26 The 226th serine was replaced with isoleucine (S226I).
  • Comparative Example 27 The 148th glutamic acid was replaced with valine (E148V), and the 226th serine was replaced with isoleucine (S226I).
  • a primer corresponding to each substitution was synthesized, and each of the mutations was obtained by repeating the operation of step (5) of Example 1 except that each primer was used.
  • a plasmid containing the DNA encoding the protein was obtained. Except for using the obtained plasmid, coloration and monomerization of each protein were confirmed by repeating the operations of steps (3) and (4) of the above-mentioned Examples.
  • the proteins obtained in Comparative Examples 22 to 27 showed no shift in color development from red, and no enhancement of color development. The results are summarized in Table 2.
  • Example 6 It was confirmed by measuring the excitation wavelength and fluorescence wavelength of the protein and comparing it with the excitation wavelength and fluorescence wavelength of an existing protein (KillerRed etc.) that the obtained protein was introduced with the desired mutation. .
  • the excitation wavelength of the obtained protein was measured and normalized, and the curve is shown in FIG.
  • the fluorescence wavelength of the obtained protein was measured and normalized, and the curve in FIG. FIGS. 1A and 1B show the excitation wavelength and fluorescence wavelength for KillerRed and Supernova-Red for comparison. As shown in FIGS.
  • the protein Supernova-Orange that has been mutated by the method described above has an excitation wavelength peak of 493 nm and a fluorescence wavelength peak of 552 nm, and Supernova-Green represents the excitation wavelength. It can be seen that the peak is 439 nm and the fluorescence wavelength peak is 469 nm. In contrast, the peak of the excitation wavelength of KillerRed is 585 nm, the peak of the fluorescence wavelength is 610 nm, the peak of the excitation wavelength of Supernova-Red is 579 nm, and the peak of the fluorescence wavelength is 610 nm.
  • ⁇ abs represents the peak of the absorbance spectrum in nanometer units. ( ⁇ ) is the molar extinction coefficient in units of 10 3 M ⁇ 1 cm ⁇ 1 .
  • ⁇ em represents the peak of the fluorescence spectrum in nanometer units.
  • KillerRed_L162T_F164T_N147S obtained in Example 4
  • Supernova-Red_V46A obtained in Example 5.
  • KillerRed_L162T_F164T_N147S had an excitation wavelength peak of 512 nm and fluorescence of yellow-green
  • Supernova-Red_V46A had an excitation wavelength peak of 509 nm and a fluorescence wavelength peak of 594 nm.
  • Example 7 the amount of active oxygen was measured for KillerRed, Supernova-Red, Supernova-Orange, and Supernova-Green.
  • 100 ⁇ L each of 50 ⁇ Supernova-Red, Supernova-Red, Supernova-Orange, and Supernova-Green protein solutions each containing 10 ⁇ M anthracene-9,10-dipropionic acid (hereinafter referred to as ADPA) was prepared.
  • ADPA is a singlet oxygen detection reagent having an excitation maximum of 380 nm and a fluorescence maximum of 430 nm.
  • Singlet oxygen is a kind of active oxygen and has a very strong oxidizing ability.
  • ADPA When ADPA reacts with singlet oxygen, ADPA changes to peroxide and the fluorescence peak at 430 nm is lost. .
  • the obtained sample solution was subjected to active oxygen measurement according to the following measurement conditions. That is, 15 ⁇ L is added to the Terrasaki dish, and the third harmonic (355 nm) of the YAG laser (LOTIS, LS-2137U-YAG, frequency 10 Hz, pulse width 15 ns) is optical parametric oscillator (LOTIS, LT-2214-OPO).
  • FIG. 2 shows a comparison of the amount of active oxygen of four fluorescent proteins including the fluorescent protein into which the mutation described above is introduced.
  • FIG. 2 shows the ADPA fading rate, that is, the amount of active oxygen released by KR various photosensitizing fluorescent proteins.
  • FITC fluorescein isothiocyanate
  • Example 8 In this example, Supernova-Red obtained in Example 1 was expressed as a fusion protein with tubulin, keratin, or Cx43. DNA encoding tubulin, keratin, or Cx43 obtained by PCR was inserted into the Supernova-Red / pRSET B. The resulting plasmids are referred to as tublin-Supernova-Red / pRSET B , keratin-Supernova-Red / pRSET B , and Cx43-Supernova-Red / pRSET B , respectively.
  • tublin-Supernova-Red / pRSET B keratin-Supernova-Red / pRSET B
  • Cx43-Supernova-Red / pRSET B were transfected into HeLa cells, and the intracellular localization was examined with a fluorescence microscope.
  • Tubulin, keratin, or Cx43 is localized in the microtubules, intermediate filaments, and gap junctions of cells, and is expressed at the position where each protein is present. There was no effect.
  • Example 9 apoptosis was induced by ligating the mitochondrial matrix translocation signal to Supernova-Red to introduce it into intracellular mitochondria and inactivating mitochondrial function by light irradiation.
  • 1 ⁇ g of plasmid_Supernova-Red / pcDNA3 was introduced into Hela cells cultured on 35 mm glass bottom dishes using transfection reagent (Superfect QIAGEN). After culturing for 2 days, light at 580 nm was irradiated at a power density of 8 W / cm 2 for 90 seconds, and then cells at 0, 3 and 6 hours were observed using a differential interference microscope. Cells in which Supernova-Red was expressed in mitochondria regressed and died after 6 hours.
  • Example 10 Supernova-Red was expressed as a fusion protein with tubulin, keratin, or connexin 43 using a linker peptide, and cell localization of each fusion protein was examined.
  • a vector for expression of a fusion protein with tubulin was prepared as follows. The EGFP gene between the NheI and XhoI sites of the vector pEGFP-tub (Clontech) for expressing a protein in which cytoskeletal protein ⁇ -tubulin is fused to the C-terminal side of EGFP in mammalian cells is transferred to SuperNova-Red.
  • Preparation of a vector for expression of a fusion protein with keratin was performed as follows. EcoRI of the vector pmTFP1-Keratin (Ai HW et al., Biochem J. 400, 531-540, 2006) for expressing a protein in which cytoskeletal protein keratin is fused to the N-terminal side of the fluorescent protein mTFP1 in mammalian cells.
  • the mTFP1 gene between NotI sites was replaced with the SuperNova-Red gene to prepare an expression vector for a keratin and SuperNova-Red fusion protein (keratin-SuperNova-Red).
  • a kozak sequence (ccaccatgg) was added before the start codon of the gene sequence of SuperNova-Red.
  • a fusion protein expression vector with connexin 43 was performed as follows.
  • Vector pmRFP1-Cx43 Campbell RE et al., Proc. Natl. Acad. Sci. USA 99, 7877-7882, for expressing a protein in which the gap junction protein connexin 43 is fused to the N-terminal side of the fluorescent protein mRFP1 in mammalian cells.
  • the mRFP1 gene between the AgeI and NotI sites was replaced with the SuperNova-Red gene to prepare a vector for expressing the connexin 43 and SuperNova-Red fusion protein (Cx43-SuperNova-Red).
  • a kozak sequence (ccaccatgg) was added before the start codon of the gene sequence of SuperNova-Red.
  • Each of the prepared expression vectors was transduced into HeLa cells cultured on a 35 mm glass bottom dish using Superfect (QIAGEN) and observed 24 to 48 hours later. Imaging was performed with a confocal inverted microscope A1 (Nikon) equipped with a PlanApo60x (NA1.4) oil objective lens, a multi-argon laser light source for observation, and a semiconductor laser for light stimulation. A 561.5 nm laser was used as excitation light. Cells expressing the SuperNova-Red fusion protein were observed under a microscope.
  • SuperNova-Red-tubulin is expressed in microtubules of cells, keratin-SuperNova-Red is expressed in intermediate filaments, and Cx43-SuperNova-Red is expressed in gap junctions. Existed. (FIGS. 4a, 4b, and 4c).
  • Example 28 The procedure of Example 10 was repeated except that a gene encoding KillerRed was used in place of the gene encoding SuperNova-Red, and a KillerRed-tubulin fusion protein (KillerRed-tubulin), keratin And KillerRed fusion proteins (keratin-KillerRed) and connexin43 and KillerRed fusion proteins (Cx43-KillerRed) were obtained, and the localization of each fusion protein in the cells was confirmed. As shown in FIGS. 4d, 4e, and 4f, KillerRed-tubulin, keratin-KillerRed, and Cx43-KillerRed did not express tubulin, keratin, and connexin 43 at their original locations.
  • KillerRed-tubulin, keratin-KillerRed, and Cx43-KillerRed did not express tubulin, keratin, and connexin 43 at their original locations.
  • Example 11 CALI for actinin was performed on intracellular adhesion plaques to confirm degeneration of the cytoskeleton.
  • Vector ⁇ -actinin-EGFP / pcDNA3 for expressing a protein in which myofibrillar protein ⁇ -actinin is fused to the N-terminal side of EGFP in mammalian cells (Rajfur Z et al., Nat Cell Biol. 4, 286-293, 2002)
  • the EGFP gene was replaced with the SuperNova-Red gene, and a SuperNova-Red and ⁇ -actinin fusion protein ( ⁇ -actinin-SuperNova-Red) expression vector was prepared.
  • the produced expression vector was transduced into HeLa cells cultured on a 35 mm glass bottom dish using Superfect (QIAGEN) and observed 24 to 48 hours later. Imaging was performed with a confocal inverted microscope A1 (Nikon) equipped with a PlanApo 60x (NA1.4) oil objective lens, a multi-argon laser light source for observation, and a semiconductor laser for light stimulation. A 561.5 nm laser (power 6.0%) was used as excitation light for SuperNova-Red fluorescence observation, and a 561.5 nm laser (power 100%) was used for CALI. Differential interference images were used for observation of cell morphology.
  • the projection region of cells expressing ⁇ -actinin-SuperNova-Red was irradiated with a 561.5 nm laser beam for 10 seconds to destroy ⁇ -actinin localized in the region.
  • the SuperNova-Red fluorescence in the region disappeared, and after 3 minutes of irradiation, cell degeneration accompanied by the collapse of the actinin bridge was observed (FIG. 5).
  • the photosensitized fluorescent protein of the present invention or a functional equivalent variant thereof can be used for the chromophore-assisted photoinactivation method and can be used for functional analysis of the target molecule.
  • this invention was demonstrated along the specific aspect, the deformation

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Zoology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Toxicology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Peptides Or Proteins (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Disclosed are a monomeric photosensitizing fluorescent protein; a photosensitizing fluorescent protein having high photosensitizing activity; and a photosensitizing fluorescent protein which is different from Killer Red and has an excitation wavelength and a fluorescence wavelength. Specifically disclosed is a photosensitizing fluorescent protein which contains at least one amino acid sequence selected from the group consisting of the amino acid sequence represented by SEQ ID NO: 2, the amino acid sequence represented by SEQ ID NO: 4, the amino acid sequence represented by SEQ ID NO: 6, the amino acid sequence represented by SEQ ID NO: 9, and the amino acid sequence represented by SEQ ID NO: 10, each shown in the Sequence Listing, or a functionally equivalent modification of the photosensitizing fluorescent protein. The photosensitizing fluorescent protein can be used for chromophore-assisted light inactivation.

Description

光増感性蛍光タンパク質Photosensitized fluorescent protein
 本発明は、光増感性蛍光タンパク質に関する。本発明によれば、発色団補助光不活性化法において、標的タンパク質を効率よく破壊することができる。 The present invention relates to a photosensitized fluorescent protein. According to the present invention, the target protein can be efficiently destroyed in the chromophore-assisted photoinactivation method.
 生体試料内の任意のタンパク質の機能を調べる方法として、標的タンパク質をコードする遺伝子を破壊する、いわゆる遺伝子ノックアウト法、標的タンパク質をコードするmRNAに結合して分解するRNA干渉法、又は標的タンパク質に対する抗体を作用させることで機能不活性化を行う方法などが知られている。これらの方法はいずれも標的タンパク質が発現している細胞内の全ての領域の標的タンパク質に効果が及ぶことを特徴とする。従って、細胞内の任意の位置に存在する標的タンパク質だけを選択的に不活性化する事は、原理上不可能であった。 As a method for examining the function of an arbitrary protein in a biological sample, a so-called gene knockout method that destroys a gene encoding a target protein, an RNA interference method that binds to and degrades mRNA encoding the target protein, or an antibody against the target protein A method of inactivating the function by acting is known. All of these methods are characterized in that they affect the target protein in all regions in the cell where the target protein is expressed. Therefore, it was impossible in principle to selectively inactivate only the target protein present at an arbitrary position in the cell.
 一方、標的タンパク質の機能部位を光照射依存的に産生された活性酸素による酸化によって時空間的に不活性化し、そのタンパク質の機能解析を行う方法として、発色団補助光不活性化法(chromophore-assisted light inactivation;以下、CALIと称することがある)が知られている。具体的には、発色団補助光不活性化法はマラカイトグリーン、ローダミン誘導体、又はフルオレセイン誘導体などを光増感剤として用い、標的分子(例えば、標的タンパク質)に結合させ、標的分子の機能を抑制することによって、標的分子の機能を解析する方法である。例えば、フルオレセイン誘導体を用いた場合、フルオレセイン誘導体から、発生する一重項酸素(活性酸素)が標的タンパク質の機能を破壊することが知られている。
 しかしながら、発色団補助光不活性化法は、通常フルオレセイン標識した標的分子に対する抗体又はフルオレセイン標識した標的分子(例えば、標的タンパク質)をマイクロインジェクション等で細胞に導入する必要があり、操作が煩雑であるという問題点があった。
On the other hand, chromophore-assisted photoinactivation (chromophore-inactivation) is a method for functionally inactivating a functional site of a target protein by spatiotemporal inactivation by oxidation with active oxygen produced dependent on light irradiation. assisted light inactivation (hereinafter sometimes referred to as CALI) is known. Specifically, the chromophore-assisted photoinactivation method uses malachite green, rhodamine derivatives, or fluorescein derivatives as photosensitizers and binds to target molecules (for example, target proteins) to suppress the function of target molecules. This is a method for analyzing the function of the target molecule. For example, when a fluorescein derivative is used, it is known that singlet oxygen (active oxygen) generated from the fluorescein derivative destroys the function of the target protein.
However, the chromophore-assisted photoinactivation method usually requires introduction of an antibody against a fluorescein-labeled target molecule or a fluorescein-labeled target molecule (for example, a target protein) into a cell by microinjection or the like, which is complicated. There was a problem.
 最近、Lukyanovらは、発色団補助光不活性化法に用いることのできる光増感性蛍光タンパク質(CALI色素)である、「KillerRed」を報告した(特許文献1及び非特許文献1)。KillerRedはタンパク質であるため、KillerRedをコードするDNAを含むプラスミドなどを用いることによって、形質転換又はトランスフェクションなどの手法により、光増感性蛍光タンパク質(CALI色素)を細胞内において発現させることが可能になった。 Recently, Lukyanov et al. Reported “KillerRed”, which is a photosensitizing fluorescent protein (CALI dye) that can be used in the chromophore-assisted photoinactivation method (Patent Document 1 and Non-Patent Document 1). Since KillerRed is a protein, it is possible to express a photosensitized fluorescent protein (CALI dye) in a cell by a method such as transformation or transfection by using a plasmid containing DNA encoding KillerRed. became.
国際公開第2006/117694号公報International Publication No. 2006/117694
 しかしながら、前記KillerRedは、細胞内において二量体を形成するため、多くのタンパク質はKillerRedと融合しただけで、立体障害などによる機能の不活性化が起こり、光照射依存的な標的タンパク質の機能不活性化を行うことができないという問題を有していた。
 また、KillerRedは、光増感活性が低いため、活性酸素の産生量がフルオレセインよりも少ないという問題を有していた。
 更に、例えば、生体試料内の2つ以上の標的タンパク質を、個別に光照射によって不活性化する場合には、吸光特性の異なる光増感性蛍光タンパク質が必要である。しかしながら、KillerRed以外の吸光スペクトルを有する光増感性蛍光タンパク質は報告されておらず、別の励起波長及び蛍光波長を有する光増感性蛍光タンパク質の開発が望まれていた。
 従って、本発明の目的は、単量体型の光増感性蛍光タンパク質を提供することである。また、本発明の別の目的は、光増感活性が高い光増感性蛍光タンパク質を提供することである。更に、本発明の別の目的は、KillerRedとは異なる、励起波長及び蛍光波長を有する光増感性蛍光タンパク質を提供することである。
However, because KillerRed forms a dimer in the cell, many proteins can be fused with KillerRed, resulting in functional inactivation due to steric hindrance, etc., and light irradiation-dependent target protein functional failure. There was a problem that activation could not be performed.
In addition, KillerRed has a problem that the amount of active oxygen produced is less than that of fluorescein because of its low photosensitizing activity.
Furthermore, for example, when two or more target proteins in a biological sample are individually inactivated by light irradiation, photosensitized fluorescent proteins having different light absorption characteristics are necessary. However, no photosensitized fluorescent protein having an absorption spectrum other than KillerRed has been reported, and development of a photosensitized fluorescent protein having different excitation wavelength and fluorescence wavelength has been desired.
Accordingly, an object of the present invention is to provide a monomeric photosensitized fluorescent protein. Another object of the present invention is to provide a photosensitizing fluorescent protein having high photosensitizing activity. Furthermore, another object of the present invention is to provide a photosensitized fluorescent protein having an excitation wavelength and a fluorescence wavelength different from KillerRed.
 本発明者は、生物個体内、組織内、細胞内、細胞内小器官内、又は水溶液中において、光刺激により活性酸素を効率良く産生することのできる光増感活性の高い光増感性蛍光タンパク質について、鋭意研究した結果、驚くべきことに、KillerRedのアミノ酸配列において、5番目のグリシン(G)をバリン(V)に、147番目のアスパラギン(N)をセリン(S)に、162番目のロイシン(L)をトレオニン(T)に、164番目のフェニルアラニン(F)をトレオニン(T)に、174番目のロイシン(L)をリシン(K)に、そして206番目のメチオニン(M)をトレオニン(T)に置換した変異体であるSupernova-Redは、単量体として細胞内などに存在するようになることを見出した。更に、前記Supernova-Redの68番目のチロシン(Y)をトリプトファン(W)に置換した変異体であるSupernova-Orangeは、一重項酸素の産生量が増加し、励起極大波長及び蛍光極大波長が、それぞれ493nm及び552nmにシフトすることを見出した。
 更に、Supernova-Orangeの46番のバリン(V)をアラニン(A)に置換した変異体であるSupernova-Greenは、一重項酸素の産生量がKillerRedと比較して増加し、励起極大波長及び蛍光極大波長が、それぞれ439nm及び496nmにシフトすることを見出した。
 本発明は、こうした知見に基づくものである。
The present inventor has developed a photosensitizing fluorescent protein having high photosensitizing activity capable of efficiently producing active oxygen by photostimulation in an individual organism, tissue, cell, intracellular organelle, or aqueous solution. Surprisingly, as a result of intensive research on the amino acid sequence of killer red, the fifth glycine (G) was changed to valine (V), the 147th asparagine (N) to serine (S), and the 162nd leucine. (L) is threonine (T), 164th phenylalanine (F) is threonine (T), 174th leucine (L) is lysine (K), and 206th methionine (M) is threonine (T). It was found that Supernova-Red, which is a mutant substituted in (1), is present in the cells as a monomer. Furthermore, Supernova-Orange, which is a mutant in which the 68th tyrosine (Y) of Supernova-Red is replaced with tryptophan (W), increases the production amount of singlet oxygen, and has an excitation maximum wavelength and a fluorescence maximum wavelength. It was found to shift to 493 nm and 552 nm, respectively.
Furthermore, Supernova-Green, which is a mutant in which valine (V) of Supernova-Orange No. 46 is substituted with alanine (A), has an increased singlet oxygen production compared to KillerRed, and has an excitation maximum wavelength and fluorescence. It has been found that the maximum wavelength shifts to 439 nm and 496 nm, respectively.
The present invention is based on these findings.
 従って、本発明は、配列表の配列番号2で表されるアミノ酸配列、配列番号4で表されるアミノ酸配列、配列番号6で表されるアミノ酸配列、配列番号9で表されるアミノ酸配列、及び配列番号10で表されるアミノ酸配列、からなる群から選択される少なくとも1つのアミノ酸配列を含む光増感性蛍光タンパク質又はその機能的等価改変体に関する。
 本発明の光増感性蛍光タンパク質又はその機能的等価改変体の好ましい態様においては、前記光増感性蛍光タンパク質又はその機能的等価改変体が、他のタンパク質と結合した融合タンパク質を構成する。
 また、本発明は、前記光増感性蛍光タンパク質又はその機能的等価改変体をコードするDNAに関する。
 本発明のDNAの好ましい態様においては、配列表の配列番号1で表される塩基配列、配列番号3で表される塩基配列、配列番号5で表される塩基配列、配列番号19で表される塩基配列、及び配列番号20で表される塩基配列からなる群から選択される少なくとも1つの塩基配列からなるDNAである。
 更に、本発明は、前記DNAを含むプラスミドに関する。
 更に、本発明は、前記光増感性蛍光タンパク質又はその機能的等価改変体を用いた、光増感性の活性酸素産生方法であって、前記光増感性蛍光タンパク質又はその機能的等価改変体に、励起光を照射することを特徴とする、前記方法に関する。
 本発明の光増感性の活性酸素産生方法の好ましい態様においては、前記配列番号2で表されるアミノ酸配列を含む光増感性蛍光タンパク質又はその機能的等価改変体においては、490~620nmの範囲の励起光波長を用い、配列番号4で表されるアミノ酸配列を含む光増感性蛍光タンパク質又はその機能的等価改変体においては、400~550nmの範囲の励起光波長を用い、配列番号6で表されるアミノ酸配列を含む光増感性蛍光タンパク質又はその機能的等価改変体においては、390~440nmの範囲の励起光波長を用い、配列番号9で表されるアミノ酸配列を含む光増感性蛍光タンパク質又はその機能的等価改変体においては、462~562nmの範囲の励起光波長を用い、そして配列番号10で表されるアミノ酸配列を含む光増感性蛍光タンパク質又はその機能的等価改変体においては、459~559nmの範囲の励起光波長を用いる。
 更に、本発明は、光増感性蛍光タンパク質又はその機能的等価改変体を用いた、標的分子の機能解析方法であって、前記光増感性蛍光タンパク質又はその機能的等価改変体に、励起光を照射することを特徴とする、前記方法に関する。
 本発明の標的分子の機能解析方法の好ましい態様においては、前記配列番号2で表されるアミノ酸配列を含む光増感性蛍光タンパク質又はその機能的等価改変体においては、490~620nmの範囲の励起光波長を用い、配列番号4で表されるアミノ酸配列を含む光増感性蛍光タンパク質又はその機能的等価改変体においては、400~550nmの範囲の励起光波長を用い、配列番号6で表されるアミノ酸配列を含む光増感性蛍光タンパク質又はその機能的等価改変体においては、390~440nmの範囲の励起光波長を用い、配列番号9で表されるアミノ酸配列を含む光増感性蛍光タンパク質又はその機能的等価改変体においては、462~562nmの範囲の励起光波長を用い、そして配列番号10で表されるアミノ酸配列を含む光増感性蛍光タンパク質又はその機能的等価改変体においては、459~559nmの範囲の励起光波長を用いる。
Accordingly, the present invention provides an amino acid sequence represented by SEQ ID NO: 2, an amino acid sequence represented by SEQ ID NO: 4, an amino acid sequence represented by SEQ ID NO: 6, an amino acid sequence represented by SEQ ID NO: 9, and The present invention relates to a photosensitized fluorescent protein comprising at least one amino acid sequence selected from the group consisting of the amino acid sequence represented by SEQ ID NO: 10, or a functional equivalent variant thereof.
In a preferred embodiment of the photosensitized fluorescent protein or functional equivalent variant thereof of the present invention, the photosensitized fluorescent protein or functional equivalent variant thereof constitutes a fusion protein bound to another protein.
The present invention also relates to DNA encoding the photosensitized fluorescent protein or a functionally equivalent variant thereof.
In a preferred embodiment of the DNA of the present invention, the base sequence represented by SEQ ID NO: 1 in the sequence listing, the base sequence represented by SEQ ID NO: 3, the base sequence represented by SEQ ID NO: 5, represented by SEQ ID NO: 19 A DNA comprising at least one base sequence selected from the group consisting of a base sequence and the base sequence represented by SEQ ID NO: 20.
Furthermore, the present invention relates to a plasmid containing the DNA.
Furthermore, the present invention provides a photosensitized active oxygen production method using the photosensitized fluorescent protein or a functional equivalent variant thereof, wherein the photosensitized fluorescent protein or a functional equivalent variant thereof is used. The method is characterized by irradiating excitation light.
In a preferred embodiment of the photosensitizing active oxygen production method of the present invention, the photosensitizing fluorescent protein comprising the amino acid sequence represented by SEQ ID NO: 2 or a functional equivalent variant thereof has a range of 490 to 620 nm. In the photosensitized fluorescent protein containing the amino acid sequence represented by SEQ ID NO: 4 or the functional equivalent variant thereof using the excitation light wavelength, the excitation light wavelength in the range of 400 to 550 nm is used. In the photosensitized fluorescent protein comprising the amino acid sequence or a functionally equivalent variant thereof, the excitation light wavelength in the range of 390 to 440 nm is used, and the photosensitized fluorescent protein comprising the amino acid sequence represented by SEQ ID NO: 9 or its In the functional equivalent variant, an excitation light wavelength in the range of 462 to 562 nm is used, and the amino acid sequence represented by SEQ ID NO: 10 is used. In Muhikarizo sensitive fluorescent protein or a functional equivalent variant thereof, using an excitation wavelength in the range of 459 ~ 559 nm.
Furthermore, the present invention is a method for analyzing the function of a target molecule using a photosensitized fluorescent protein or a functional equivalent variant thereof, wherein excitation light is applied to the photosensitized fluorescent protein or a functional equivalent variant thereof. Irradiation relates to said method.
In a preferred embodiment of the target molecule functional analysis method of the present invention, in the photosensitized fluorescent protein containing the amino acid sequence represented by SEQ ID NO: 2 or a functional equivalent variant thereof, excitation light in the range of 490 to 620 nm. In the photosensitized fluorescent protein comprising the amino acid sequence represented by SEQ ID NO: 4 or a functional equivalent variant thereof using the wavelength, the excitation light wavelength in the range of 400 to 550 nm is used, and the amino acid represented by SEQ ID NO: 6 In a photosensitized fluorescent protein containing a sequence or a functional equivalent variant thereof, an excitation light wavelength in the range of 390 to 440 nm is used, and the photosensitized fluorescent protein containing the amino acid sequence represented by SEQ ID NO: 9 or a functional thereof The equivalent variant uses an excitation light wavelength in the range of 462 to 562 nm and includes the amino acid sequence represented by SEQ ID NO: 10 In sensitizing fluorescent protein or a functional equivalent variant thereof, using an excitation wavelength in the range of 459 ~ 559 nm.
 本発明の光増感性蛍光タンパク質又はその機能的等価改変体によれば、単量体として細胞内などに存在することが可能であり、多くのタンパク質に対してCALIにおける光増感性蛍光タンパク質として用いることが可能である。
 本発明の光増感性蛍光タンパク質及びその機能的等価改変体、特にはSupernova-Orangeによれば、Supernova-Redの68番目のチロシンをトリプトファンに置換(Y68W)することで、励起極大/蛍光極大を493nm/552nm(目視ではオレンジ色)にシフトし、更に、一重項酸素の産生量がKillerRedと比較して増加する。従って、CALIにおいて、増強型光増感性蛍光タンパク質として用いることが可能であり、更にKillerRed、Supernova-Red及びSupernova-Greenなどと同時に用いることにより、2種以上の標的タンパク質の機能相関などを解析することが可能である。
 本発明の光増感性蛍光タンパク質及びその機能的等価改変体、特にはSupernova-Greenによれば、Supernova-Orangeの46番のバリンをアラニンに置換することで、励起極大/蛍光極大を439nm/496nm(目視では緑色)にシフトし、一重項酸素の産生量がKillerRedと比較して増加する。従って、CALIにおいて、増強型光増感性蛍光タンパク質として用いることが可能であり、更にKillerRed、Supernova-Red、及びSupernova-Orangeなどと同時に用いることにより、2種以上の標的タンパク質の機能相関などを解析することが可能である。
 なお、KillerRedのX線結晶構造解析を行った論文(非特許文献2)によれば、KillerRedの46番のバリンをアラニンに置換(V46A)することは、発色団の光増感作用により発生した活性酸素をKillerRedタンパク質の外部に効率良く放出するようになる可能性が記載されている。
 しかしながら、後述の実施例に示すように、Supernova-RedにV46A変異を導入すると、活性酸素の放出量は減少した。一方、Y68W変異が導入されているSupernova-OrangeにV46A変異を導入したSupernova-Greenでは、活性酸素の放出量が2倍以上に増大し、更に蛍光波長がグリーンに変化した。従って、光増感性蛍光タンパク質において、変異の導入により、活性酸素の放出量が増加したり、又は減少したりすることを予想すること、また蛍光波長が変化することは当業者であっても決して容易ではなく、試行錯誤を要するものである。
According to the photosensitized fluorescent protein of the present invention or a functionally equivalent variant thereof, it can be present as a monomer in a cell and used as a photosensitized fluorescent protein in CALI for many proteins. It is possible.
According to the photosensitized fluorescent protein of the present invention and functionally equivalent variants thereof, particularly Supernova-Orange, by replacing the 68th tyrosine of Supernova-Red with tryptophan (Y68W), the excitation maximum / fluorescence maximum is obtained. It shifts to 493 nm / 552 nm (visually orange), and the production of singlet oxygen is increased compared to KillerRed. Therefore, it can be used as an enhanced photosensitized fluorescent protein in CALI, and by using it simultaneously with KillerRed, Supernova-Red, Supernova-Green, etc., the functional correlation of two or more target proteins is analyzed. It is possible.
According to the photosensitized fluorescent protein of the present invention and functionally equivalent variants thereof, particularly Supernova-Green, by substituting valine No. 46 of Supernova-Orange with alanine, the excitation maximum / fluorescence maximum is 439 nm / 496 nm. It shifts to (green by visual observation), and the production amount of singlet oxygen is increased compared with KillerRed. Therefore, it can be used as an enhanced photosensitized fluorescent protein in CALI, and by using it together with KillerRed, Supernova-Red, and Supernova-Orange, etc., the functional correlation of two or more target proteins can be analyzed. Is possible.
According to a paper (Non-Patent Document 2) in which KillerRed's X-ray crystal structure analysis was performed, substitution of KillerRed's 46th valine with alanine (V46A) occurred due to the photosensitizing action of the chromophore. It describes the possibility of releasing active oxygen efficiently outside the KillerRed protein.
However, as shown in Examples described later, when the V46A mutation was introduced into Supernova-Red, the amount of released active oxygen decreased. On the other hand, in Supernova-Green in which the V46A mutation was introduced into Supernova-Orange into which the Y68W mutation was introduced, the amount of active oxygen released increased more than twice, and the fluorescence wavelength changed to green. Therefore, even in the case of those skilled in the art, it is anticipated that the release of active oxygen will increase or decrease due to the introduction of mutations in the photosensitized fluorescent protein, and that the fluorescence wavelength will change. It is not easy and requires trial and error.
KillerRed、Supernova-Red、Supernova-Orange、及びSupernova-Greenの励起スペクトル(A)及び蛍光スペクトル(B)を示したグラフである。It is the graph which showed the excitation spectrum (A) and fluorescence spectrum (B) of KillerRed, Supernova-Red, Supernova-Orange, and Supernova-Green. KillerRed、Supernova-Red、Supernova-Orange、Supernova-Green、及びSupernova-Red-V46Aの活性酸素の産生量を示したグラフである。FITC(フルオレセインイソチアシアネート)は陽性コントロールを示し、Buffer(1xPBS)は陰性コントロールを示している。It is the graph which showed the production amount of active oxygen of KillerRed, Supernova-Red, Supernova-Orange, Supernova-Green, and Supernova-Red-V46A. FITC (fluorescein isothiocyanate) represents a positive control and Buffer (1 × PBS) represents a negative control. Supernova-RedをHela細胞に導入し、光照射を行い、0時間、3時間、及び6時間後の細胞の微分干渉画像を示した写真である。Supernova-Redがミトコンドリアに発現している細胞は、6時間後にアポトーシスにより、死滅している。It is the photograph which showed the differential interference image of the cell after introduce | transducing Supernova-Red into a Hela cell, performing light irradiation, and after 0 hour, 3 hours, and 6 hours. Cells in which Supernova-Red is expressed in mitochondria have died due to apoptosis after 6 hours. Supernova-Redと、チューブリン、ケラチン、又はコネキシン43(以下、Cx43と称することがある)との融合タンパク質のHeLa細胞での局在を調べた顕微鏡写真である。コントロールとしてKillerRedの融合タンパク質を示す。それぞれの顕微鏡写真は、Supernova-Red-tubulin(a)、keratin-Supernova-Red(b)、Cx43-Supernova-Red(c)、KillerRed-tubulin(d)、keratin-KillerRed(e)、Cx43-KillerRed(f)である。FIG. 5 is a photomicrograph of localization of a fusion protein of Supernova-Red and tubulin, keratin, or connexin 43 (hereinafter sometimes referred to as Cx43) in HeLa cells. A KillerRed fusion protein is shown as a control. The respective photomicrographs are Supernova-Red-tubulin (a), Keratin-Supernova-Red (b), Cx43-Supernova-Red (c), KillerRed-tubulin (d), Keratin-KillerRed (e), (F). アクチニンに対するCALIによる細胞の縮退を示した顕微鏡写真である。561.5nmレーザー光をα-actinin-SNRを発現するHeLa細胞の突起状の部分の青色円内に照射し、CALIを行った。照射前の蛍光像(a)、照射直後の蛍光像(b)、照射前の微分干渉画像(c)、照射直後の微分干渉画像(d)、照射後3分の微分干渉画像(e)、照射後6分の微分干渉画像(f)を示す。It is the microscope picture which showed cell degeneration by CALI with respect to actinin. CALI was performed by irradiating a 561.5 nm laser beam into the blue circle of the protruding portion of HeLa cells expressing α-actinin-SNR. Fluorescence image before irradiation (a), Fluorescence image immediately after irradiation (b), Differential interference image (c) before irradiation, Differential interference image (d) immediately after irradiation, Differential interference image (e) 3 minutes after irradiation, A differential interference image (f) 6 minutes after irradiation is shown.
 本発明の光増感性蛍光タンパク質は、配列番号2で表されるアミノ酸配列、配列番号4で表されるアミノ酸配列、配列番号6で表されるアミノ酸配列、配列番号9で表されるアミノ酸配列、及び配列番号10で表されるアミノ酸配列からなる群から選択される少なくとも1つのアミノ酸配列を含むタンパク質である。 The photosensitized fluorescent protein of the present invention comprises an amino acid sequence represented by SEQ ID NO: 2, an amino acid sequence represented by SEQ ID NO: 4, an amino acid sequence represented by SEQ ID NO: 6, an amino acid sequence represented by SEQ ID NO: 9, And a protein comprising at least one amino acid sequence selected from the group consisting of the amino acid sequences represented by SEQ ID NO: 10.
 本発明の機能的等価改変体は、前記光増感性蛍光タンパク質の機能的等価改変体である。本明細書において、「機能的等価改変体」とは、そのアミノ酸配列が、元となるタンパク質のアミノ酸配列において1以上(特には1又は数個)のアミノ酸が欠失、置換、又は付加されたアミノ酸配列であって、しかも、元となるタンパク質と実質的に同じ活性を示すタンパク質を意味する。前記アミノ酸の欠失、置換、又は付加は、例えば10個であり、好ましくは1~10個、より好ましくは1~5個、更に好ましくは1~2個である。 The functional equivalent variant of the present invention is a functional equivalent variant of the photosensitized fluorescent protein. In the present specification, “functionally equivalent variant” means that the amino acid sequence has one or more (particularly one or several) amino acids deleted, substituted, or added in the amino acid sequence of the original protein. It means a protein having an amino acid sequence and showing substantially the same activity as the original protein. The number of amino acid deletions, substitutions or additions is, for example, 10, preferably 1 to 10, more preferably 1 to 5, and still more preferably 1 to 2.
 本発明の光増感性蛍光タンパク質の第1の実施態様は、配列番号2で表されるアミノ酸配列を含むタンパク質(以下、第1光増感性蛍光タンパク質と称する)又はその機能的等価改変体(以下、第1機能的等価改変体と称する;以下、第1光増感性蛍光タンパク質及び第1機能的等価改変体を、まとめて第1光増感性蛍光タンパク質等と称することがある)であり、配列番号2で表されるアミノ酸配列からなるタンパク質又はその機能的等価改変体であることが好ましい。
 第1光増感性蛍光タンパク質は、配列番号8で表されるアミノ酸配列からなる光増感性蛍光タンパク質(すなわち、KillerRed)のアミノ酸配列において、5番目のグリシン(G)をバリン(V)に置換(以下、G5Vと称することがある)、147番目のアスパラギン(N)をセリン(S)に置換(以下、N147Sと称することがある)、162番目のロイシン(L)をトレオニン(T)に置換(以下、L162Tと称することがある)、164番目のフェニルアラニン(F)をトレオニン(T)に置換(以下、F164Tと称することがある)、174番目のロイシン(L)をリシン(K)に置換(以下、L174Kと称することがある)、そして206番目のメチオニン(M)をトレオニン(T)に置換(以下、M206Tと称することがある)したアミノ酸配列を含む光増感性蛍光タンパク質である。代表的な第1光増感性蛍光タンパク質は、配列番号2で表されるアミノ酸配列からなるタンパク質であるSupernova-Redである。
 KillerRedは、二量体を形成することが知られているが、これに対してSupernova-Redは、試料中(例えば、生物個体内、組織内、細胞内、細胞内小器官内、又は水溶液中)において、単量体で存在する。また、Supernova-Redの励起極大波長及び蛍光極大波長は、それぞれ579nm及び610nmである。
The first embodiment of the photosensitized fluorescent protein of the present invention is a protein comprising the amino acid sequence represented by SEQ ID NO: 2 (hereinafter referred to as the first photosensitized fluorescent protein) or a functional equivalent variant thereof (hereinafter referred to as the first photosensitized fluorescent protein). Hereinafter, the first photosensitized fluorescent protein and the first functional equivalent modified protein may be collectively referred to as a first photosensitized fluorescent protein, etc.) A protein consisting of the amino acid sequence represented by No. 2 or a functionally equivalent variant thereof is preferred.
In the first photosensitizing fluorescent protein, the fifth glycine (G) is replaced with valine (V) in the amino acid sequence of the photosensitizing fluorescent protein consisting of the amino acid sequence represented by SEQ ID NO: 8 (ie, KillerRed) ( The 147th asparagine (N) is replaced with serine (S) (hereinafter sometimes referred to as N147S), and the 162nd leucine (L) is replaced with threonine (T) (hereinafter sometimes referred to as G5V). Hereinafter, the 164th phenylalanine (F) may be replaced with threonine (T) (hereinafter may be referred to as F164T), and the 174th leucine (L) may be replaced with lysine (K). Hereinafter, it may be referred to as L174K), and the 206th methionine (M) is replaced with threonine (T) (hereinafter referred to as M206T). It is photosensitizing fluorescent protein comprising lies) amino acid sequence referred to. A representative first photosensitized fluorescent protein is Supernova-Red, which is a protein consisting of the amino acid sequence represented by SEQ ID NO: 2.
KillerRed is known to form a dimer, whereas Supernova-Red is in a sample (eg, in an individual organism, in a tissue, in a cell, in an intracellular organelle, or in an aqueous solution). ) In the monomer. Further, the excitation maximum wavelength and the fluorescence maximum wavelength of Supernova-Red are 579 nm and 610 nm, respectively.
 本発明の第1光増感性蛍光タンパク質等において、前記L162T及びF164Tの置換(以下、L162T、及びF164Tの置換を有するKillerRedの変異体を、KillerRed-L162T/F164Tと称する)により、二量体であったKillerRedが、単量体となる。従って、前記KillerRed-L162T/F164Tは、標的タンパク質との融合タンパク質として発現しても、標的タンパク質の機能を阻害しない。一方、L162T及びF164Tの置換により、KillerRed-L162T/F164Tは、KillerRedと比較して585nmにおける吸光及び610nmにおける蛍光が減少した。
 しかしながら、前記KillerRed-L162T/F164Tに、更にG5V、N147S、L174K、及びM206Tの置換を導入することにより、KillerRedと同等の蛍光強度を有するSupernova-Redを得ることができた。
In the first photosensitized fluorescent protein of the present invention, the substitution of L162T and F164T (hereinafter, the KillerRed mutant having the substitution of L162T and F164T is referred to as KillerRed-L162T / F164T) as a dimer. The existing KillerRed becomes a monomer. Therefore, when the KillerRed-L162T / F164T is expressed as a fusion protein with the target protein, it does not inhibit the function of the target protein. On the other hand, substitution of L162T and F164T caused KillerRed-L162T / F164T to have reduced absorbance at 585 nm and fluorescence at 610 nm compared to KillerRed.
However, Supernova-Red having the same fluorescence intensity as KillerRed could be obtained by introducing further substitution of G5V, N147S, L174K, and M206T into the KillerRed-L162T / F164T.
 本発明の第1機能的等価改変体は、実質的にSupernova-Redと同じ活性を有するものである。「Supernova-Redと同じ活性」とは、光照射により活性酸素を産生すること、光照射により蛍光を発生すること、試料中において単量体で存在すること、そして励起極大波長及び蛍光極大波長がそれぞれ約579nm及び610nmであることを意味する。なお、励起極大波長及び蛍光極大波長がそれぞれ約579nm及び610nmであるとは、好ましくは569~589nm及び600~620nmであり、より好ましくは574~584nm及び605~615nmであることを意味する。すなわち、第1機能的等価改変体は、励起波長及び蛍光波長として、それぞれ約579nm及び610nmを用いることが可能であり、実質的にSupernova-Redと同じ機能を有することを意味する。第1機能的等価改変体としては、例えば、前記配列番号2で表されるアミノ酸配列において、第2番目のグリシン及び第3番目のセリンを欠如したタンパク質を挙げることができる。 The first functional equivalent variant of the present invention has substantially the same activity as Supernova-Red. “Same activity as Supernova-Red” means that active oxygen is generated by light irradiation, fluorescence is generated by light irradiation, exists in a monomer in the sample, and the excitation maximum wavelength and fluorescence maximum wavelength are Meaning about 579 nm and 610 nm, respectively. The excitation maximum wavelength and the fluorescence maximum wavelength are about 579 nm and 610 nm, respectively, preferably 569 to 589 nm and 600 to 620 nm, and more preferably 574 to 584 nm and 605 to 615 nm. That is, the first functional equivalent variant can use about 579 nm and 610 nm as the excitation wavelength and the fluorescence wavelength, respectively, which means that it has substantially the same function as Supernova-Red. Examples of the first functional equivalent variant include a protein lacking the second glycine and the third serine in the amino acid sequence represented by SEQ ID NO: 2.
 本発明の光増感性蛍光タンパク質の第2の実施態様は、配列番号4で表されるアミノ酸配列を含むタンパク質(以下、第2光増感性蛍光タンパク質と称する)又はその機能的等価改変体(以下、第2機能的等価改変体と称する;以下、第2光増感性蛍光タンパク質及び第2機能的等価改変体を、まとめて第2光増感性蛍光タンパク質等と称することがある)であり、配列番号4で表されるアミノ酸配列からなるタンパク質又はその機能的等価改変体であることが好ましい。第2光増感性蛍光タンパク質は、前記Supernova-Redのアミノ酸配列において、68番目のチロシン(Y)をトリプトファン(W)に置換(以下、Y68Wと称する)したアミノ酸配列を含む光増感性蛍光タンパク質である。代表的な第2光増感性蛍光タンパク質は、配列番号4で表されるアミノ酸配列からなるタンパク質であるSupernova-Orangeである。
 Supernova-Orangeの励起極大波長及び蛍光極大波長は、それぞれ493nm及び552mであり、KillerRedと比較して、一重項酸素の産生量が増加している。
A second embodiment of the photosensitized fluorescent protein of the present invention is a protein comprising the amino acid sequence represented by SEQ ID NO: 4 (hereinafter referred to as the second photosensitized fluorescent protein) or a functional equivalent variant thereof (hereinafter referred to as the second photosensitized fluorescent protein). Hereinafter, the second photosensitized fluorescent protein and the second functional equivalent modified protein may be collectively referred to as a second photosensitized fluorescent protein, etc.) It is preferably a protein consisting of the amino acid sequence represented by No. 4 or a functionally equivalent variant thereof. The second photosensitizing fluorescent protein is a photosensitizing fluorescent protein comprising an amino acid sequence in which the 68th tyrosine (Y) is substituted with tryptophan (W) (hereinafter referred to as Y68W) in the Supernova-Red amino acid sequence. is there. A representative second photosensitized fluorescent protein is Supernova-Orange, which is a protein consisting of the amino acid sequence represented by SEQ ID NO: 4.
The excitation maximum wavelength and the fluorescence maximum wavelength of Supernova-Orange are 493 nm and 552 m, respectively, and the production amount of singlet oxygen is increased as compared with KillerRed.
 本発明の第2光増感性蛍光タンパク質等において、前記L162T及びF164Tの置換により、二量体であったKillerRedが、単量体となり、Y68Wの置換により、励起極大波長及び蛍光極大波長が、それぞれおよそ493nm及び552nmとなる。
 本発明の第2機能的等価改変体は、実質的にSupernova-Orangeと同じ活性を有するものである。「Supernova-Orangeと同じ活性」とは、光照射により活性酸素を産生すること、光照射により蛍光を発生すること、試料中において単量体で存在すること、そして励起極大波長及び蛍光極大波長がそれぞれ約493nm及び552nmであることを意味する。なお、励起極大波長及び蛍光極大波長がそれぞれ約493nm及び552nmであるとは、好ましくは483~503nm及び542~562nmであり、より好ましくは488~498nm及び547~557nmであることを意味する。すなわち、第2機能的等価改変体は、励起波長及び蛍光波長として、それぞれ約493nm及び552nmを用いることが可能であり、実質的にSupernova-Orangeと同じ機能を有することを意味する。第2機能的等価改変体としては、例えば、前記配列番号8で表されるアミノ酸配列において、L162T、F164T、及びY68Wの置換が導入されたタンパク質、及び前記タンパク質において、第2番目のグリシン及び第3番目のセリンを欠如したタンパク質、並びに前記配列番号4で表されるアミノ酸配列において、第2番目のグリシン及び第3番目のセリンを欠如したタンパク質を挙げることができる。
In the second photosensitized fluorescent protein or the like of the present invention, KillerRed, which was a dimer, becomes a monomer by the substitution of L162T and F164T, and the excitation maximum wavelength and the fluorescence maximum wavelength are obtained by substitution of Y68W, respectively. These are approximately 493 nm and 552 nm.
The second functional equivalent variant of the present invention has substantially the same activity as Supernova-Orange. “The same activity as Supernova-Orange” means that active oxygen is generated by light irradiation, fluorescence is generated by light irradiation, exists in a monomer in the sample, and the excitation maximum wavelength and fluorescence maximum wavelength are Meaning about 493 nm and 552 nm, respectively. The excitation maximum wavelength and the fluorescence maximum wavelength are about 493 nm and 552 nm, respectively, preferably 483 to 503 nm and 542 to 562 nm, and more preferably 488 to 498 nm and 547 to 557 nm. That is, the second functional equivalent variant can use about 493 nm and 552 nm as the excitation wavelength and the fluorescence wavelength, respectively, which means that it has substantially the same function as Supernova-Orange. Examples of the second functional equivalent variant include a protein in which substitution of L162T, F164T, and Y68W is introduced in the amino acid sequence represented by SEQ ID NO: 8, and the second glycine and the second protein in the protein. Examples include a protein lacking the third serine and a protein lacking the second glycine and the third serine in the amino acid sequence represented by SEQ ID NO: 4.
 本発明の光増感性蛍光タンパク質の第3の実施態様は、配列番号6で表されるアミノ酸配列を含むタンパク質(以下、第3光増感性蛍光タンパク質と称する)又はその機能的等価改変体(以下、第3機能的等価改変体と称する;以下、第3光増感性蛍光タンパク質及び第3機能的等価改変体を、まとめて第3光増感性蛍光タンパク質等と称することがある)であり、配列番号6で表されるアミノ酸配列からなるタンパク質又はその機能的等価改変体であることが好ましい。第3光増感性蛍光タンパク質は、前記Supernova-Orangeのアミノ酸配列において、46番のバリン(V)をアラニン(A)に置換(以下、V46Aと称する)したアミノ酸配列を含む光増感性蛍光タンパク質である。代表的な第3光増感性蛍光タンパク質は、配列番号6で表されるアミノ酸配列からなるタンパク質である、Supernova-Greenである。
 Supernova-Greenの励起極大波長及び蛍光極大波長は、それぞれ439nm及び496nmであり、KillerRedと比較して、一重項酸素の産生量が増加している。
A third embodiment of the photosensitized fluorescent protein of the present invention is a protein comprising the amino acid sequence represented by SEQ ID NO: 6 (hereinafter referred to as the third photosensitized fluorescent protein) or a functional equivalent variant thereof (hereinafter referred to as the third photosensitized fluorescent protein). Hereinafter, the third photosensitized fluorescent protein and the third functional equivalent modified protein may be collectively referred to as a third photosensitized fluorescent protein, etc.) A protein consisting of the amino acid sequence represented by No. 6 or a functionally equivalent variant thereof is preferable. The third photosensitized fluorescent protein is a photosensitized fluorescent protein comprising an amino acid sequence in which the 46th valine (V) is replaced with alanine (A) (hereinafter referred to as V46A) in the Supernova-Orange amino acid sequence. is there. A representative third photosensitizing fluorescent protein is Supernova-Green, which is a protein consisting of the amino acid sequence represented by SEQ ID NO: 6.
The excitation maximum wavelength and the fluorescence maximum wavelength of Supernova-Green are 439 nm and 496 nm, respectively, and the production amount of singlet oxygen is increased as compared with KillerRed.
 本発明の第3光増感性蛍光タンパク質等において、前記L162T及びF164Tの置換により二量体であったKillerRedが単量体となり、Y68W及びV46Aの置換により、励起極大波長及び蛍光極大波長が、それぞれ439nm及び496nmとなる。
 本発明の第3機能的等価改変体は、実質的にSupernova-Greenと同じ活性を有するものである。「Supernova-Greenと同じ活性」とは、光照射により活性酸素を産生すること、光照射により蛍光を発生すること、試料中において単量体で存在すること、そして励起極大波長及び蛍光極大波長がそれぞれ約439nm及び496nmであることを意味する。なお励起極大波長及び蛍光極大波長がそれぞれ約439nm及び496nmであるとは、好ましくは429~449nm及び486~506nmであり、より好ましくは434~444nm及び591~501nmであることを意味する。すなわち、第3機能的等価改変体は、励起波長及び蛍光波長として、それぞれ約439nm及び496nmを用いることが可能であり、実質的にSupernova-Greenと同じ機能を有することを意味する。第3機能的等価改変体としては、例えば、前記配列番号8で表されるアミノ酸配列において、L162T、F164T、Y68W及びV46Aの置換が導入されたタンパク質、及び前記タンパク質において、第2番目のグリシン及び第3番目のセリンを欠如したタンパク質、並びに前記配列番号6で表されるアミノ酸配列において、第2番目のグリシン及び第3番目のセリンを欠如したタンパク質を挙げることができる。
In the third photosensitized fluorescent protein or the like of the present invention, KillerRed, which was a dimer by substitution of L162T and F164T, becomes a monomer, and by exchanging Y68W and V46A, the excitation maximum wavelength and the fluorescence maximum wavelength are respectively 439 nm and 496 nm.
The third functional equivalent variant of the present invention has substantially the same activity as Supernova-Green. “Same activity as Supernova-Green” means that active oxygen is generated by light irradiation, fluorescence is generated by light irradiation, exists in a monomer in the sample, and the excitation maximum wavelength and fluorescence maximum wavelength are Meaning about 439 nm and 496 nm, respectively. The excitation maximum wavelength and the fluorescence maximum wavelength are about 439 nm and 496 nm, respectively, preferably 429 to 449 nm and 486 to 506 nm, and more preferably 434 to 444 nm and 591 to 501 nm. That is, the third functional equivalent variant can use about 439 nm and 496 nm as the excitation wavelength and the fluorescence wavelength, respectively, which means that it has substantially the same function as Supernova-Green. Examples of the third functional equivalent variant include, for example, a protein in which substitution of L162T, F164T, Y68W and V46A is introduced in the amino acid sequence represented by SEQ ID NO: 8, and the second glycine and Examples thereof include a protein lacking the third serine and a protein lacking the second glycine and the third serine in the amino acid sequence represented by SEQ ID NO: 6.
 本発明の光増感性蛍光タンパク質の第4の実施態様は、配列番号9で表されるアミノ酸配列を含むタンパク質(以下、第4光増感性蛍光タンパク質と称する)又はその機能的等価改変体(以下、第4機能的等価改変体と称する;以下、第4光増感性蛍光タンパク質及び第4機能的等価改変体を、まとめて第4光増感性蛍光タンパク質等と称することがある)であり、配列番号9で表されるアミノ酸配列からなるタンパク質又はその機能的等価改変体であることが好ましい。
 第4光増感性蛍光タンパク質は、配列番号8で表されるアミノ酸配列からなる光増感性蛍光タンパク質(すなわち、KillerRed)のアミノ酸配列において、L162T、F164T、及びN147Sの置換を有するアミノ酸配列を含む光増感性蛍光タンパク質である。代表的な第4光増感性蛍光タンパク質は、配列番号9で表されるアミノ酸配列からなるタンパク質であるKillerRed_L162T_F164T_N147Sである。
 KillerRed_L162T_F164T_N147Sの励起極大波長は、512nmであり、蛍光は黄緑色(目視)を示す。
The fourth embodiment of the photosensitized fluorescent protein of the present invention is a protein comprising the amino acid sequence represented by SEQ ID NO: 9 (hereinafter referred to as the fourth photosensitized fluorescent protein) or a functional equivalent variant thereof (hereinafter referred to as the fourth photosensitized fluorescent protein). Hereinafter, the fourth photosensitized fluorescent protein and the fourth functional equivalent modified protein may be collectively referred to as a fourth photosensitized fluorescent protein, etc.) It is preferably a protein consisting of the amino acid sequence represented by No. 9 or a functionally equivalent variant thereof.
The fourth photosensitized fluorescent protein is a light containing an amino acid sequence having substitutions of L162T, F164T, and N147S in the amino acid sequence of the photosensitized fluorescent protein (that is, KillerRed) consisting of the amino acid sequence represented by SEQ ID NO: 8. It is a sensitizing fluorescent protein. A representative fourth photosensitizing fluorescent protein is KillerRed_L162T_F164T_N147S, which is a protein consisting of the amino acid sequence represented by SEQ ID NO: 9.
The excitation maximum wavelength of KillerRed_L162T_F164T_N147S is 512 nm, and the fluorescence shows yellowish green (visually).
 本発明の第4光増感性蛍光タンパク質等において、前記L162T及びF164Tの置換により二量体であったKillerRedが単量体となり、N147Sの置換により、励起極大波長が512nmで、蛍光が黄緑色となる。 In the fourth photosensitized fluorescent protein of the present invention, KillerRed, which was a dimer by substitution of L162T and F164T, becomes a monomer, and by substitution of N147S, the excitation maximum wavelength is 512 nm and the fluorescence is yellow-green. Become.
 本発明の第4機能的等価改変体は、実質的にKillerRed_L162T_F164T_N147Sと同じ活性を有するものである。「KillerRed_L162T_F164T_N147Sと同じ活性」とは、光照射により活性酸素を産生すること、光照射により蛍光を発生すること、試料中において単量体で存在すること、そして励起極大波長が約512nm及び蛍光が黄緑色であることを意味する。なお、励起極大波長が約512nmであるとは、好ましくは502~522nmであり、より好ましくは507~517nmであることを意味する。すなわち、第4機能的等価改変体は、励起波長として、それぞれ約512nmを用いることが可能であり、実質的にKillerRed_L162T_F164T_N147Sと同じ機能を有することを意味する。第4機能的等価改変体としては、例えば、前記配列番号9で表されるアミノ酸配列において、第2番目のグリシン及び第3番目のセリンを欠如したタンパク質を挙げることができる。 The fourth functional equivalent variant of the present invention has substantially the same activity as KillerRed_L162T_F164T_N147S. “The same activity as KillerRed_L162T_F164T_N147S” means that active oxygen is produced by light irradiation, fluorescence is generated by light irradiation, exists as a monomer in the sample, and the excitation maximum wavelength is about 512 nm and the fluorescence is yellow. Means green. The excitation maximum wavelength of about 512 nm preferably means 502 to 522 nm, and more preferably 507 to 517 nm. That is, the fourth functional equivalent variant can use about 512 nm as the excitation wavelength, which means that it has substantially the same function as KillerRed_L162T_F164T_N147S. Examples of the fourth functional equivalent variant include a protein lacking the second glycine and the third serine in the amino acid sequence represented by SEQ ID NO: 9.
 本発明の光増感性蛍光タンパク質の第5の実施態様は、配列番号10で表されるアミノ酸配列を含むタンパク質(以下、第5光増感性蛍光タンパク質と称する)又はその機能的等価改変体(以下、第5機能的等価改変体と称する;以下、第5光増感性蛍光タンパク質及び第5機能的等価改変体を、まとめて第5光増感性蛍光タンパク質等と称することがある)であり、配列番号10で表されるアミノ酸配列からなるタンパク質又はその機能的等価改変体であることが好ましい。
 第5光増感性蛍光タンパク質は、配列番号8で表されるアミノ酸配列からなる光増感性蛍光タンパク質(すなわち、KillerRed)のアミノ酸配列において、L162TF164T、G5V、N147S、L174K、M206T、及びV46Aの置換を有するアミノ酸配列を含む光増感性蛍光タンパク質である。代表的な第5光増感性蛍光タンパク質は、配列番号10で表されるアミノ酸配列からなるタンパク質であるSupernova-Red_V46Aである。
 Supernova-Red_V46Aの励起極大波長及び蛍光極大波長は、それぞれ509nm及び594nmである。
The fifth embodiment of the photosensitized fluorescent protein of the present invention is a protein comprising the amino acid sequence represented by SEQ ID NO: 10 (hereinafter referred to as the fifth photosensitized fluorescent protein) or a functional equivalent variant thereof (hereinafter referred to as the fifth photosensitized fluorescent protein). Hereinafter, the fifth photosensitized fluorescent protein and the fifth functional equivalent modified protein may be collectively referred to as a fifth photosensitized fluorescent protein). A protein consisting of the amino acid sequence represented by No. 10 or a functionally equivalent variant thereof is preferred.
The fifth photosensitizing fluorescent protein has a substitution of L162TF164T, G5V, N147S, L174K, M206T, and V46A in the amino acid sequence of the photosensitizing fluorescent protein consisting of the amino acid sequence represented by SEQ ID NO: 8 (ie, KillerRed). It is a photosensitized fluorescent protein containing an amino acid sequence. A representative fifth photosensitized fluorescent protein is Supernova-Red_V46A, which is a protein consisting of the amino acid sequence represented by SEQ ID NO: 10.
The excitation maximum wavelength and the fluorescence maximum wavelength of Supernova-Red_V46A are 509 nm and 594 nm, respectively.
 本発明の第5光増感性蛍光タンパク質等において、前記L162T及びF164Tの置換により二量体であったKillerRedが単量体となり、G5V、N147S、L174K、M206T、及びV46Aの置換により、励起極大波長及び蛍光極大波長が、それぞれ509nm及び594nmとなる。 In the fifth photosensitized fluorescent protein and the like of the present invention, KillerRed that was a dimer becomes a monomer by the substitution of L162T and F164T, and the excitation maximum wavelength is obtained by substitution of G5V, N147S, L174K, M206T, and V46A And the fluorescence maximum wavelength are 509 nm and 594 nm, respectively.
 本発明の第5機能的等価改変体は、実質的にSupernova-Red_V46Aと同じ活性を有するものである。「Supernova-Red_V46Aと同じ活性」とは、光照射により活性酸素を産生すること、光照射により蛍光を発生すること、試料中において単量体で存在すること、そして励起極大波長及び蛍光極大波長がそれぞれ約509nm及び594nmであることを意味する。なお、励起極大波長及び蛍光極大波長がそれぞれ約509nm及び594nmであるとは、好ましくは499~519nm及び584~604nmであり、より好ましくは504~514nm及び589~599nmであることを意味する。すなわち、第5機能的等価改変体は、励起波長及び蛍光波長として、それぞれ約509nm及び594nmを用いることが可能であり、実質的にSupernova-Red_V46Aと同じ機能を有することを意味する。第5機能的等価改変体としては、例えば、前記配列番号10で表されるアミノ酸配列において、第2番目のグリシン及び第3番目のセリンを欠如したタンパク質を挙げることができる。 The fifth functional equivalent variant of the present invention has substantially the same activity as Supernova-Red_V46A. “Same activity as Supernova-Red_V46A” means that active oxygen is generated by light irradiation, fluorescence is generated by light irradiation, exists in a monomer in the sample, and excitation maximum wavelength and fluorescence maximum wavelength are Meaning about 509 nm and 594 nm, respectively. The excitation maximum wavelength and the fluorescence maximum wavelength are about 509 nm and 594 nm, respectively, preferably 499 to 519 nm and 584 to 604 nm, and more preferably 504 to 514 nm and 589 to 599 nm. That is, the fifth functional equivalent variant can use about 509 nm and 594 nm as the excitation wavelength and the fluorescence wavelength, respectively, which means that it has substantially the same function as Supernova-Red_V46A. Examples of the fifth functional equivalent variant include a protein lacking the second glycine and the third serine in the amino acid sequence represented by SEQ ID NO: 10.
 本発明の光増感性蛍光タンパク質及び機能的等価改変体(以下、まとめて本発明の光増感性蛍光タンパク質等と称することがある)は、光の照射によって、活性酸素(例えば、一重項酸素)を産生することが可能である。従って、本発明のタンパク質等を細胞内に導入し、適当な励起波長の光を照射することによって、一重項酸素を発生させ、細胞に障害を与え、更には細胞を死滅させることもできる。
 また、本発明のタンパク質等は、発色団補助光不活性化法に用いることもできる。具体的には本発明の光増感性蛍光タンパク質等を標的タンパク質に結合させ、光の照射によって活性酸素(例えば、一重項酸素)を産生することによって、その標的タンパク質の機能を抑制、又はその標的タンパク質を破壊することによって、標的タンパク質の機能を解析することができる。
The photosensitized fluorescent protein and functionally equivalent variant of the present invention (hereinafter sometimes collectively referred to as the photosensitized fluorescent protein of the present invention) are activated oxygen (for example, singlet oxygen) upon irradiation with light. Can be produced. Therefore, by introducing the protein of the present invention into a cell and irradiating it with light having an appropriate excitation wavelength, singlet oxygen can be generated, the cell can be damaged, and the cell can be killed.
The protein of the present invention can also be used in a chromophore-assisted photoinactivation method. Specifically, the photosensitizing fluorescent protein of the present invention is bound to a target protein and active oxygen (for example, singlet oxygen) is produced by light irradiation, thereby suppressing the function of the target protein or the target By destroying the protein, the function of the target protein can be analyzed.
 本発明による光増感性蛍光タンパク質及び機能的等価改変体は、種々の公知の方法によって得ることができ、例えば、光増感性蛍光タンパク質であるKillerRedをコードするDNAを含むプラスミドベクターを用いて公知の遺伝子工学的手法により調製することができる。より具体的には、部位特異的突然変異誘発法(site-directed mutagenesis)により調製することが可能である。
 更に得られたプラスミドを用いて、大腸菌などの宿主細胞を形質転換し、形質転換体を得ることができる。得られた形質転換体(すなわち、本発明による光増感性蛍光タンパク質又は機能的等価改変体をコードするDNAを含むプラスミドを有する形質転換体)を、前記光増感性蛍光タンパク質等の発現が可能な条件下で培養し、タンパク質の分離及び精製に一般的に用いられる方法により、その培養物から光増感性蛍光タンパク質等を分離及び精製することにより調製することができる。前記の分離及び精製方法としては、例えば、光増感性蛍光タンパク質にHisタグを付けニッケルNTAカラムで生成する方法、硫安塩析、イオン交換セルロースを用いるイオン交換カラムクロマトグラフィー、分子篩ゲルを用いる分子篩カラムクロマトグラフィー、プロテインA結合多糖類を用いる親和性カラムクロマトグラフィー、透析、又は凍結乾燥等を挙げることができる。
The photosensitized fluorescent protein and the functional equivalent variant according to the present invention can be obtained by various known methods. For example, the photosensitized fluorescent protein can be obtained by using a plasmid vector containing DNA encoding the photosensitized fluorescent protein KillerRed. It can be prepared by genetic engineering techniques. More specifically, it can be prepared by site-directed mutagenesis.
Furthermore, using the obtained plasmid, host cells such as E. coli can be transformed to obtain a transformant. The obtained transformant (that is, a transformant having a plasmid containing DNA encoding the photosensitizing fluorescent protein or functionally equivalent variant according to the present invention) can be expressed as the photosensitizing fluorescent protein or the like. It can be prepared by culturing under conditions and separating and purifying photosensitized fluorescent protein and the like from the culture by a method generally used for protein separation and purification. Examples of the separation and purification method include a method of producing a photosensitized fluorescent protein with a His tag and using a nickel NTA column, ammonium sulfate salting out, ion exchange column chromatography using ion exchange cellulose, and molecular sieve column using molecular sieve gel. Examples thereof include chromatography, affinity column chromatography using protein A-linked polysaccharide, dialysis, and lyophilization.
 本発明の光増感性蛍光タンパク質等は、他のタンパク質と結合した融合タンパク質とすることができる。融合される他のタンパク質は、光増感性蛍光タンパク質等の活性を完全に阻害しない限り、特に制限されるものではなく、例えば、発色団補助光不活性化法における標的タンパク質、又は標的分子に結合させる結合タンパク質を挙げることができる。 The photosensitized fluorescent protein or the like of the present invention can be a fusion protein bound to another protein. Other proteins to be fused are not particularly limited as long as the activity of the photosensitized fluorescent protein or the like is not completely inhibited. For example, it binds to the target protein or target molecule in the chromophore-assisted photoinactivation method. The binding protein to be made can be mentioned.
 前記標的タンパク質は、発色団補助光不活性化法において、機能を解析されるタンパク質である。標的タンパク質を本発明の光増感性蛍光タンパク質等との融合タンパク質とした場合、光の照射により光増感性蛍光タンパク質等から産生された活性酸素が、容易に標的タンパク質を不活化することができる。これは、産生された活性酸素により、半径約10~50Åに存在する標的分子が特異的に不活化されるためである。本発明の光増感性蛍光タンパク質等は、単量体であるため、標的タンパク質の細胞内における本来の局在性や活性を妨害することが少ない。後述の実施例で示すように、Supernova-Redと、標的タンパク質(例えば、チューブリン、ケラチン、又はCx43)とを、融合タンパク質として発現させた場合、標的タンパク質の局在化に影響を与えなかった。
 また、発色団補助光不活性化法に用いる融合タンパク質を作製する場合、標的タンパク質と、本発明の光増感性蛍光タンパク質とをリンカーペプチドによって結合させてもよい。リンカーペプチドを用いることによって、標的タンパク質の機能の障害を防いだり、活性酸素による標的タンパク質の不活化を容易にすることもある。リンカーペプチドのアミノ酸配列は、特に制限されるものではなく、通常使用されているものを用いることができるが、例えば「G」、「GG」、「GGGS」、「GGS」、「GGGGS」、「GGSGG」、又は「GGSGGSGGS」を挙げることができる。
The target protein is a protein whose function is analyzed in the chromophore-assisted light inactivation method. When the target protein is a fusion protein with the photosensitized fluorescent protein or the like of the present invention, the active oxygen produced from the photosensitized fluorescent protein or the like by light irradiation can easily inactivate the target protein. This is because the target molecule present in a radius of about 10 to 50 cm is specifically inactivated by the produced active oxygen. Since the photosensitized fluorescent protein of the present invention is a monomer, it hardly interferes with the original localization or activity of the target protein in the cell. As shown in Examples below, when Supernova-Red and a target protein (for example, tubulin, keratin, or Cx43) were expressed as a fusion protein, the localization of the target protein was not affected. .
Moreover, when preparing the fusion protein used for the chromophore assisted photoinactivation method, the target protein and the photosensitized fluorescent protein of the present invention may be bound by a linker peptide. By using a linker peptide, the function of the target protein may be prevented from being impaired, and inactivation of the target protein by active oxygen may be facilitated. The amino acid sequence of the linker peptide is not particularly limited, and those commonly used can be used. For example, “G”, “GG”, “GGGS”, “GGS”, “GGGGS”, “ GGSGG "or" GGSGGGSGGS "can be mentioned.
 前記結合タンパク質は、発色団補助光不活性化法において、標的分子に光増感性蛍光タンパク質を結合させるタンパク質である。結合タンパク質は、標的分子に結合することのできるタンパク質であれば、特に限定されるものではないが、例えば、抗体及びその抗原結合性フラグメント(例えば、scFv、Fab、又は抗体可変領域全長の遺伝子産物)、レセプター、又はリガンドを挙げることができる。 The binding protein is a protein that binds the photosensitized fluorescent protein to the target molecule in the chromophore-assisted photoinactivation method. The binding protein is not particularly limited as long as it is a protein that can bind to a target molecule. For example, an antibody and an antigen-binding fragment thereof (eg, scFv, Fab, or gene product of the entire antibody variable region) ), Receptors, or ligands.
 前記融合タンパク質は、公知の遺伝子組み換え技術によって、調製することが可能である。具体的には、光増感性蛍光タンパク質等をコードするDNAと、他のタンパク質をコードするDNAとを、定法に従って、発現用プラスミドに導入する。得られたプラスミドを、形質転換などにより、宿主細胞に導入することによって、融合タンパク質を発現させることが可能である。 The fusion protein can be prepared by a known genetic recombination technique. Specifically, DNA encoding a photosensitized fluorescent protein or the like and DNA encoding another protein are introduced into an expression plasmid according to a conventional method. The resulting plasmid can be expressed by introducing the resulting plasmid into a host cell by transformation or the like.
 本発明によるDNAは、本発明の光増感性蛍光タンパク質等をコードする限り、特に限定されるものではなく、例えば、配列表の配列番号1、3、5、19、又は20で表される塩基配列からなるDNAを挙げることができる。配列表の配列番号1で表される塩基配列からなる前記DNAは、配列表の配列番号2で表されるアミノ酸配列からなるSupernova-Redをコードする。また、配列表の配列番号3で表される塩基配列からなる前記DNAは、配列表の配列番号4で表されるアミノ酸配列からなるSupernova-Orangeをコードする。更に、配列表の配列番号5で表される塩基配列からなる前記DNAは、配列表の配列番号6で表されるアミノ酸配列からなるSupernova-Greenをコードする。配列表の配列番号19で表される塩基配列からなる前記DNAは、配列表の配列番号9で表されるアミノ酸配列からなるKillerRed_L162T_F164T_N147Sをコードする。配列表の配列番号20で表される塩基配列からなる前記DNAは、配列表の配列番号10で表されるアミノ酸配列からなるSupernova-Red_V46Aをコードする。
 また、本発明のDNAを、例えば前記の発現用プラスミドを用いて発現させる場合、開始コドンの前にコザック配列(Kozak配列)を付してもよい。コザック配列としては、例えば、ccaccatggを用いることができる。コザック配列を付すことにより、真核生物のタンパク質の発現がよくなることがあるからである。
The DNA according to the present invention is not particularly limited as long as it encodes the photosensitizing fluorescent protein or the like of the present invention. For example, the base represented by SEQ ID NO: 1, 3, 5, 19, or 20 in the sequence listing A DNA comprising a sequence can be mentioned. The DNA consisting of the base sequence represented by SEQ ID NO: 1 in the sequence listing encodes Supernova-Red consisting of the amino acid sequence represented by SEQ ID NO: 2 in the sequence listing. Further, the DNA consisting of the base sequence represented by SEQ ID NO: 3 in the sequence listing encodes Supernova-Orange consisting of the amino acid sequence represented by SEQ ID NO: 4 in the sequence listing. Furthermore, the DNA consisting of the base sequence represented by SEQ ID NO: 5 in the sequence listing encodes Supernova-Green consisting of the amino acid sequence represented by SEQ ID NO: 6 in the sequence listing. The DNA comprising the base sequence represented by SEQ ID NO: 19 in the sequence listing encodes KillerRed_L162T_F164T_N147S comprising the amino acid sequence represented by SEQ ID NO: 9 in the sequence listing. The DNA composed of the base sequence represented by SEQ ID NO: 20 in the sequence listing encodes Supernova-Red_V46A composed of the amino acid sequence represented by SEQ ID NO: 10 in the sequence listing.
In addition, when the DNA of the present invention is expressed using, for example, the above-described expression plasmid, a Kozak sequence (Kozak sequence) may be added before the start codon. For example, caccatgg can be used as the Kozak array. This is because the expression of eukaryotic proteins may be improved by adding a Kozak sequence.
 本発明によるプラスミドは、本発明による前記DNAを含む限り、特に限定されるものではなく、例えば、用いる宿主細胞に応じて適宜選択した公知の発現ベクターに、本発明による前記DNAを挿入することにより得られるプラスミドを挙げることができる。
得られたプラスミドを所望の宿主細胞に形質転換することにより、形質転換体を得ることができる。前記形質転換体も、本発明による前記プラスミドを含む限り、特に限定されるものではない。
The plasmid according to the present invention is not particularly limited as long as it contains the DNA according to the present invention. For example, by inserting the DNA according to the present invention into a known expression vector appropriately selected according to the host cell to be used. Mention may be made of the resulting plasmid.
A transformant can be obtained by transforming the obtained plasmid into a desired host cell. The transformant is not particularly limited as long as it contains the plasmid according to the present invention.
 前記宿主細胞としては、例えば、通常使用される公知の微生物、例えば、大腸菌又は酵母(Saccharomyces cerevisiae)、あるいは、公知の培養細胞、例えば、動物細胞(例えば、CHO細胞、HEK-293細胞、又はCOS細胞)又は昆虫細胞(例えば、BmN4細胞)を挙げることができる。 Examples of the host cell include commonly used known microorganisms such as Escherichia coli or yeast (Saccharomyces cerevisiae), or known cultured cells such as animal cells (eg, CHO cells, HEK-293 cells, or COS). Cell) or insect cells (eg BmN4 cells).
 また、公知の前記発現ベクターとしては、例えば、大腸菌に対しては、pUC、pTV、pGEX、pKK、又はpTrcHisを;酵母に対しては、pEMBLY又はpYES2を;CHO細胞に対してはpcDNA3又はpMAMneoを;HEK-293細胞に対してはpcDNA3を;COS細胞に対してはpcDNA3を;BmN4細胞に対しては、カイコ核多角体ウイルス(BmNPV)のポリヘドリンプロモーターを有するベクター(例えば、pBK283)を挙げることができる。 Examples of the known expression vector include pUC, pTV, pGEX, pKK, or pTrcHis for E. coli; pEMBLY or pYES2 for yeast; pcDNA3 or pMAMneo for CHO cells. PcDNA3 for HEK-293 cells; pcDNA3 for COS cells; for BmN4 cells, vector with silkworm nuclear polyhedrosis virus (BmNPV) polyhedrin promoter (eg, pBK283) Can be mentioned.
 本発明の光増感性の活性酸素産生方法においては、本発明の光増感性蛍光タンパク質等を用いる。前記光増感性蛍光タンパク質等に、励起光を照射することにより、光増感性蛍光タンパク質等から活性酸素が産生される。
 本発明の光増感性の活性酸素産生方法によれば、例えば、細胞に前記光増感性蛍光タンパク質等を導入し、そして励起光を照射することにより、光増感性蛍光タンパク質等から活性酸素が産生され、細胞を死滅させることができる。
 前記励起光の波長は、本発明の光増感性蛍光タンパク質等から活性酸素を産生させることのできる波長である。本発明の第1光増感性蛍光タンパク質等では、前記励起波長は、490~620nmの範囲が好ましく、490~600nmがより好ましく、490~580nmの範囲がより好ましく、540~580nmの範囲が更に好ましく、560~580nmの範囲が最も好ましい。本発明の第2光増感性蛍光タンパク質等では、前記励起波長は400~550mの範囲が好ましく、420~550nmの範囲がより好ましく、440~540nmの範囲がより好ましく、470~520nmが更に好ましく、485~505nmの範囲が最も好ましい。本発明の第3光増感性蛍光タンパク質等では、前記励起波長は390~480nmの範囲が好ましく、390~460nmの範囲がより好ましく、430~450nmの範囲が最も好ましい。なお、390~440nmを用いることもできる。本発明の第4光増感性蛍光タンパク質等では、前記励起波長は462~562nmの範囲が好ましく、482~542nmの範囲がより好ましく、502~522nmの範囲が最も好ましい。本発明の第5光増感性蛍光タンパク質等では、前記励起波長は459~559nmの範囲が好ましく、479~539nmの範囲がより好ましく、499~519nmの範囲が最も好ましい。
 本発明の活性酸素産生方法において、用いる励起波長は、前記の範囲のすべての波長を用いてもよく、前記の範囲の1点の波長を用いてもよい。例えば、後述の実施例に示すように、SuperNova-Redの励起光として561.5nmレーザーを用いることができる。
 また前記励起光としては、前記励起波長の光のほか、多光子励起現象にもとづき、前記励起波長のおよそ整数倍の波長を有する光を用いることもできる。
In the photosensitized active oxygen production method of the present invention, the photosensitized fluorescent protein of the present invention is used. By irradiating the photosensitized fluorescent protein or the like with excitation light, active oxygen is produced from the photosensitized fluorescent protein or the like.
According to the photosensitizing active oxygen production method of the present invention, for example, by introducing the photosensitizing fluorescent protein or the like into a cell and irradiating with excitation light, active oxygen is produced from the photosensitizing fluorescent protein or the like. And can kill the cells.
The wavelength of the excitation light is a wavelength capable of producing active oxygen from the photosensitized fluorescent protein of the present invention. In the first photosensitizing fluorescent protein of the present invention, the excitation wavelength is preferably in the range of 490 to 620 nm, more preferably 490 to 600 nm, more preferably 490 to 580 nm, and still more preferably 540 to 580 nm. A range of 560 to 580 nm is most preferred. In the second photosensitized fluorescent protein and the like of the present invention, the excitation wavelength is preferably in the range of 400 to 550 m, more preferably in the range of 420 to 550 nm, more preferably in the range of 440 to 540 nm, still more preferably 470 to 520 nm, A range of 485 to 505 nm is most preferred. In the third photosensitizing fluorescent protein of the present invention, the excitation wavelength is preferably in the range of 390 to 480 nm, more preferably in the range of 390 to 460 nm, and most preferably in the range of 430 to 450 nm. Note that 390 to 440 nm can also be used. In the fourth photosensitized fluorescent protein of the present invention, the excitation wavelength is preferably in the range of 462 to 562 nm, more preferably in the range of 482 to 542 nm, and most preferably in the range of 502 to 522 nm. In the fifth photosensitized fluorescent protein of the present invention, the excitation wavelength is preferably in the range of 459 to 559 nm, more preferably in the range of 479 to 539 nm, and most preferably in the range of 499 to 519 nm.
In the active oxygen production method of the present invention, as the excitation wavelength to be used, all wavelengths in the above range may be used, or a single wavelength in the above range may be used. For example, as shown in an example described later, a 561.5 nm laser can be used as SuperNova-Red excitation light.
In addition to the light having the excitation wavelength, the excitation light may be light having a wavelength that is approximately an integral multiple of the excitation wavelength based on a multiphoton excitation phenomenon.
 本発明の光増感性の活性酸素産生方法によれば、細胞のアポトーシスを誘導することが可能である。アポトーシスを誘導することにより、本発明の光増感性の活性酸素産生方法は、光線力学療法(PDT)に用いることができる。光線力学療法とは、光増感性の物質を腫瘍細胞に取り込ませ、光を照射することにより、細胞を死滅させる腫瘍の治療方法である。より具体的には、腫瘍細胞又は腫瘍組織内の新生血管の内皮細胞内に、本発明の光増感性蛍光タンパク質等を導入し、適当な光を照射することにより、活性酸素を発生させる。この活性酸素により、腫瘍細胞又は腫瘍組織が傷害され、腫瘍が消失するものである。 According to the photosensitizing active oxygen production method of the present invention, it is possible to induce cell apoptosis. By inducing apoptosis, the photosensitizing active oxygen production method of the present invention can be used for photodynamic therapy (PDT). Photodynamic therapy is a method of treating a tumor in which a photosensitizing substance is taken into tumor cells and irradiated with light to kill the cells. More specifically, the photosensitizing fluorescent protein of the present invention is introduced into tumor cells or endothelial cells of new blood vessels in the tumor tissue, and active oxygen is generated by irradiating with appropriate light. This active oxygen damages tumor cells or tumor tissue, and the tumor disappears.
 本発明の標的分子の機能解析方法は、本発明の光増感性蛍光タンパク質等を用いる。前記光増感性蛍光タンパク質等に、励起光を照射することにより、光増感性蛍光タンパク質等から活性酸素が産生される。産生された活性酸素は近傍の標的分子を破壊し、それにより破壊された標的分子の機能を解析することが可能である。
 前記励起光の波長は、本発明の光増感性蛍光タンパク質等から活性酸素を産生させることのできる波長である。本発明の第1光増感性蛍光タンパク質等では、前記励起波長は、490~620nmの範囲が好ましく、490~600nmの範囲がより好ましく、540~580nmの範囲が更に好ましく、560~580nmの範囲が最も好ましい。本発明の第2光増感性蛍光タンパク質等では、前記励起波長は400~550mの範囲が好ましく、420~550nmの範囲がより好ましく、440~540nmの範囲がより好ましく、470~520nmが更に好ましく、485~505nmの範囲が最も好ましい。本発明の第3光増感性蛍光タンパク質等では、前記励起波長は390~480nmの範囲が好ましく、390~460nmの範囲がより好ましく、430~450nmの範囲が最も好ましい。なお、390~440nmを用いることもできる。本発明の第4光増感性蛍光タンパク質等では、前記励起波長は462~562nmの範囲が好ましく、482~542nmの範囲がより好ましく、502~522nmの範囲が最も好ましい。本発明の第5光増感性蛍光タンパク質等では、前記励起波長は459~559nmの範囲が好ましく、479~539nmの範囲がより好ましく、499~519nmの範囲が最も好ましい。
 本発明の活性酸素産生方法において、用いる励起波長は、前記の範囲のすべての波長を用いてもよく、前記の範囲の1点の波長を用いてもよい。例えば、後述の実施例に示すように、SuperNova-Redの励起光として561.5nmレーザーを用いることができる。
 また前記励起光としては、前記励起波長の光のほか、多光子励起現象にもとづき、前記励起波長のおよそ整数倍の波長を有する光を用いることもできる。
 より具体的には本発明の標的分子の機能解析方法は、発色団補助光不活性化法として、用いることができる。すなわち、標的タンパク質と本発明の光増感性蛍光タンパク質との融合タンパク質を、細胞内に導入することによって、融合タンパク質は標的タンパク質が本来、発現している細胞内の位置に移動する。その後、細胞に光増感性蛍光タンパク質を励起される光を照射することによって、光増感性蛍光タンパク質から一重項酸素(活性酸素)が発生し、標的タンパク質の機能を破壊する。標的タンパク質の機能が破壊されることによって、細胞に変化が現れ、標的タンパク質の機能を解析することが可能である。
The function analysis method of the target molecule of the present invention uses the photosensitized fluorescent protein of the present invention. By irradiating the photosensitized fluorescent protein or the like with excitation light, active oxygen is produced from the photosensitized fluorescent protein or the like. The produced active oxygen destroys the target molecule in the vicinity and can analyze the function of the target molecule destroyed thereby.
The wavelength of the excitation light is a wavelength capable of producing active oxygen from the photosensitized fluorescent protein of the present invention. In the first photosensitized fluorescent protein of the present invention, the excitation wavelength is preferably in the range of 490 to 620 nm, more preferably in the range of 490 to 600 nm, still more preferably in the range of 540 to 580 nm, and in the range of 560 to 580 nm. Most preferred. In the second photosensitized fluorescent protein and the like of the present invention, the excitation wavelength is preferably in the range of 400 to 550 m, more preferably in the range of 420 to 550 nm, more preferably in the range of 440 to 540 nm, still more preferably 470 to 520 nm, A range of 485 to 505 nm is most preferred. In the third photosensitizing fluorescent protein of the present invention, the excitation wavelength is preferably in the range of 390 to 480 nm, more preferably in the range of 390 to 460 nm, and most preferably in the range of 430 to 450 nm. Note that 390 to 440 nm can also be used. In the fourth photosensitized fluorescent protein of the present invention, the excitation wavelength is preferably in the range of 462 to 562 nm, more preferably in the range of 482 to 542 nm, and most preferably in the range of 502 to 522 nm. In the fifth photosensitized fluorescent protein of the present invention, the excitation wavelength is preferably in the range of 459 to 559 nm, more preferably in the range of 479 to 539 nm, and most preferably in the range of 499 to 519 nm.
In the active oxygen production method of the present invention, as the excitation wavelength to be used, all wavelengths in the above range may be used, or a single wavelength in the above range may be used. For example, as shown in an example described later, a 561.5 nm laser can be used as SuperNova-Red excitation light.
In addition to the light having the excitation wavelength, the excitation light may be light having a wavelength that is approximately an integral multiple of the excitation wavelength based on a multiphoton excitation phenomenon.
More specifically, the target molecule functional analysis method of the present invention can be used as a chromophore-assisted photoinactivation method. That is, by introducing a fusion protein of the target protein and the photosensitized fluorescent protein of the present invention into the cell, the fusion protein moves to a position in the cell where the target protein is originally expressed. Then, singlet oxygen (active oxygen) is generated from the photosensitized fluorescent protein by irradiating the cells with light that excites the photosensitized fluorescent protein, and the function of the target protein is destroyed. When the function of the target protein is destroyed, a change appears in the cell, and the function of the target protein can be analyzed.
 本発明の方法において、標的分子とは、その生理的機能を解明する対象となる生体分子をいい、特にこれらに限定されないが、例えば、タンパク質、ペプチド、炭水化物、脂質、DNA、RNA、糖、シグナル伝達物質などが挙げられる。特には、本発明の方法において好ましい標的分子は、タンパク質であり、酵素、受容体タンパク質、リガンドタンパク質、シグナル伝達タンパク質、転写制御タンパク質、骨格タンパク質、細胞接着タンパク質、スキャホールドタンパク質等を挙げることができる。 In the method of the present invention, the target molecule refers to a biomolecule that is a target for elucidating its physiological function, and is not particularly limited to, for example, protein, peptide, carbohydrate, lipid, DNA, RNA, sugar, signal Examples include transmitter substances. In particular, a preferred target molecule in the method of the present invention is a protein, and examples thereof include an enzyme, a receptor protein, a ligand protein, a signal transduction protein, a transcription control protein, a skeletal protein, a cell adhesion protein, and a scaffold protein. .
 前記光増感性蛍光タンパク質等が産生する活性酸素は、一重項酸素である。前記一重項酸素は、励起状態の光増感性蛍光タンパク質発色団が項間交差によって励起3重項状態に遷移し、発色団近傍に存在する基底状態の3重項酸素にエネルギーを転移することにより発生する。発生した一重項酸素は、約10~50Åの半径で光増感性蛍光タンパク質等に結合された標的分子(例えば、標的タンパク質)あるいはその機能性部位を選択的に不活化することができる。このようにして、標的分子自体あるいは標的分子の特定部位を不活性化することによって、その標的物質の生理的機能を解析することができる。例えば、このような不活性化によって、タンパク質の機能性部位の同定、その機能性部位の機能の確認、リガンドの機能の確認、機能性部位のタンパク質寿命に及ぼす影響の確認、機能性部位のタンパク質動態に及ぼす影響の確認、機能性部位のタンパク質フォールディングに及ぼす影響の確認などを行うことができる。
 なお、本発明の標的分子の機能解析方法は、in vitro及びin vivoアッセイに、また細胞内外の標的分子に利用可能である。
The active oxygen produced by the photosensitized fluorescent protein or the like is singlet oxygen. The singlet oxygen is obtained by transferring energy to the ground state triplet oxygen existing in the vicinity of the chromophore by the transition of the photosensitized fluorescent protein chromophore in the excited state to the excited triplet state by intersystem crossing. appear. The generated singlet oxygen can selectively inactivate a target molecule (for example, target protein) or a functional site thereof bound to a photosensitized fluorescent protein or the like with a radius of about 10 to 50 mm. In this way, the physiological function of the target substance can be analyzed by inactivating the target molecule itself or a specific site of the target molecule. For example, by such inactivation, identification of the functional site of the protein, confirmation of the function of the functional site, confirmation of the function of the ligand, confirmation of the effect of the functional site on the life of the protein, protein of the functional site Confirmation of effects on kinetics, confirmation of effects of functional sites on protein folding, and the like.
The function analysis method of the target molecule of the present invention can be used for in vitro and in vivo assays, and for target molecules inside and outside the cell.
 本発明の標的分子の機能解析方法において、光増感性蛍光タンパク質等を標的分子(例えば、タンパク質、炭水化物、脂質、DNA、RNA、糖、シグナル伝達物質)に結合させる方法は、特に限定されず、例えば化学結合によることが好ましい。光増感性蛍光タンパク質等を標的分子に共有結合により結合させることができる。また、光増感性蛍光タンパク質等に標的分子に対する抗体を共有結合により結合させ、その抗体により光増感性蛍光タンパク質等を標的分子に結合させることができる。更に、光増感性蛍光タンパク質等と標的分子に対する抗体とを融合タンパク質として発現させ、その抗体により光増感性蛍光タンパク質等を標的分子に結合させることができる。更には、標的分子がタンパク質の場合は、光増感性蛍光タンパク質等と標的タンパク質とを融合タンパク質として発現させることができる。 In the method for analyzing the function of a target molecule of the present invention, a method for binding a photosensitized fluorescent protein or the like to a target molecule (eg, protein, carbohydrate, lipid, DNA, RNA, sugar, signal transmitter) is not particularly limited, For example, a chemical bond is preferable. A photosensitized fluorescent protein or the like can be covalently bound to a target molecule. Further, an antibody against a target molecule can be covalently bound to a photosensitized fluorescent protein or the like, and the photosensitized fluorescent protein or the like can be bound to the target molecule by the antibody. Furthermore, a photosensitized fluorescent protein or the like and an antibody against the target molecule can be expressed as a fusion protein, and the photosensitized fluorescent protein or the like can be bound to the target molecule by the antibody. Furthermore, when the target molecule is a protein, a photosensitized fluorescent protein or the like and the target protein can be expressed as a fusion protein.
 以下、実施例によって本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。 Hereinafter, the present invention will be specifically described by way of examples, but these do not limit the scope of the present invention.
《実施例1》
 本実施例では、KillerRedのアミノ酸配列に変異を導入することにより、単量体として存在することのできる光増感蛍光タンパク質の作製を試みた。
 具体的には、KillerRedのアミノ酸配列における5番目のグリシン(G)、147番目のアスパラギン(N)、162番目のロイシン(L)、164番目のフェニルアラニン(F)、174番目のロイシン(L)、206番目のメチオニン(M)を、それぞれ、バリン(V)、セリン(S)、トレオニン(T)、トレオニン(T)、リシン(K)、トレオニン(T)に変異させるために、Sawanoらの方法(Sawano A and Miyawaki A. Nucleic Acid Research 28,E78,2000)に従って、部位特異的突然変異誘発法により、順次変異を導入した。
Example 1
In this example, an attempt was made to produce a photosensitized fluorescent protein that can exist as a monomer by introducing a mutation into the amino acid sequence of KillerRed.
Specifically, in the amino acid sequence of KillerRed, the 5th glycine (G), the 147th asparagine (N), the 162nd leucine (L), the 164th phenylalanine (F), the 174th leucine (L), In order to mutate the 206th methionine (M) to valine (V), serine (S), threonine (T), threonine (T), lysine (K), threonine (T), respectively, the method of Sawano et al. According to (Sawano A and Miyawaki A. Nucleic Acid Research 28, E78, 2000), mutations were sequentially introduced by site-directed mutagenesis.
(1)162番目のロイシン(L)のトレオニン(T)への置換
 162番目のロイシン(L)をトレオニン(T)に置換するため、以下の変異導入用のプライマーを合成した。
Primer-L162T:5’-GTGCGCCAGACCGCCACCATC-3’(配列番号11)
 Primer-L162Tの末端は、T4ポリヌクレオチドキナーゼによってリン酸化した。変異を導入する鋳型プラスミドDNAとしては、KillerRed遺伝子を含むプラスミドベクターを鋳型に用いたポリメラーゼ連鎖反応により、KillerRed遺伝子の上流と下流にそれぞれBamHI及びEcoRIを付加してKillerRed遺伝子を増幅した後、制限酵素BamHI及びEcoRIで切り出し、プラプラスミドpRSET(インビロロジェン社)に挿入して得られたKillerRed/pRSETBを用いた。
(1) Replacement of 162nd leucine (L) with threonine (T) In order to replace the 162nd leucine (L) with threonine (T), the following primers for mutagenesis were synthesized.
Primer-L162T: 5′-GTGCGCCAGACCGCCACCATC-3 ′ (SEQ ID NO: 11)
The end of Primer-L162T was phosphorylated by T4 polynucleotide kinase. As a template plasmid DNA for introducing the mutation, BamHI and EcoRI are added upstream and downstream of the KillerRed gene, respectively, by polymerase chain reaction using a plasmid vector containing the KillerRed gene as a template, and then the restriction enzyme is amplified. KillerRed / pRSETB obtained by cutting out with BamHI and EcoRI and inserting it into the plastic plasmid pRSET B (Inviologen) was used.
 突然変異鎖の合成は、以下の通り行った。以下の組成の反応溶液40μLを準備し、PCR法によりin vitroで合成した。
KillerRed/pRSET  50ng、
Primer-L162T      10pmol、
dNTP              3.75nmol、
PfuDNAポリメラーゼ      1.25U、
PfuDNAリガーゼ        20U
 なお、PfuDNAポリメラーゼはSTRATAGENE社製であり、10×Pfuポリメラーゼバッファー中に溶解したものである。また、PfuDNAリガーゼは、STRATAGENE社製のものであり、10×PfuDNAリガーゼバッファー中に溶解したものである。
 サーマルサイクラーは以下の通りプログラムした。すなわち、まず、65℃、5分のプレインキュベーションを行ってPfuDNAリガーゼによる鋳型DNAのニックを修復し、その後94℃、1分の最初の変性を行った。続いて、94℃、10秒のDNA変性、55℃、30秒のアニーリング反応及び65℃、10分の伸長・連結反応を1サイクルとして35サイクル行った。最後に75℃、10分のポストインキュベーションを行った。
The mutant strand was synthesized as follows. 40 μL of a reaction solution having the following composition was prepared and synthesized in vitro by the PCR method.
KillerRed / pRSET B 50 ng,
Primer-L162T 10 pmol,
dNTP 3.75 nmol,
Pfu DNA polymerase 1.25U,
Pfu DNA ligase 20U
Pfu DNA polymerase is manufactured by STRATAGENE and dissolved in 10 × Pfu polymerase buffer. PfuDNA ligase is manufactured by STRATAGENE and dissolved in 10 × PfuDNA ligase buffer.
The thermal cycler was programmed as follows. That is, first, pre-incubation at 65 ° C. for 5 minutes was performed to repair the nick of the template DNA by Pfu DNA ligase, and then the first denaturation at 94 ° C. for 1 minute was performed. Subsequently, the DNA denaturation at 94 ° C. for 10 seconds, the annealing reaction at 55 ° C. for 30 seconds, and the extension / ligation reaction at 65 ° C. for 10 minutes were performed as 35 cycles for 35 cycles. Finally, post-incubation at 75 ° C. for 10 minutes was performed.
 得られたPCR産物を、以下の反応条件に従い、DpnIによって切断し、変異の導入されていないメチル化又はヘミメチル化した鋳型プラスミドDNAを選択的に消化した。具体的には、前記PCR後の反応溶液40μLに1μL(20U)のDpnI(New England BioLab社製)を加え、37℃で2時間インキュベートした。なお、DpnIは〔5’-Gm6ATC-3’〕を認識して2本鎖DNAを切断するエンドヌクレアーゼである。更に、DpnIで処理した反応溶液20.4μLに対して、フェノールクロロホルム抽出を行ってサンプルを精製し、上清をエタノール沈殿して乾燥させた。 The obtained PCR product was cleaved with DpnI according to the following reaction conditions, and a methylated or hemimethylated template plasmid DNA into which no mutation was introduced was selectively digested. Specifically, 1 μL (20 U) of DpnI (manufactured by New England BioLab) was added to 40 μL of the reaction solution after PCR and incubated at 37 ° C. for 2 hours. DpnI is an endonuclease that recognizes [5′-G m6 ATC-3 ′] and cleaves double-stranded DNA. Further, 20.4 μL of the reaction solution treated with DpnI was subjected to phenol chloroform extraction to purify the sample, and the supernatant was ethanol precipitated and dried.
 次に、得られたDNAを用いて、形質転換及び発現を行った。前記1本鎖突然変異導入環状DNA鎖を用いて、ヒートショック法により大腸菌(E.coli)コンピテントセル(JM109(DE3))を形質転換した。そして形質転換した大腸菌細胞を、100μg/mLのアンピシリンを含むLB固体培地で37℃にて培養し、生育した単一コロニーをピックアップして100μg/mLのアンピシリンを含むLB培養液2mL中へ移し、37℃で一晩培養して増殖させた。
162番目のロイシン(L)のトレオニン(T)への置換は、定法に従い、塩基配列のシークエンスを行い、変異の導入されたプラスミドを、KillerRed_L162T/pRSETと命名した。
Next, transformation and expression were performed using the obtained DNA. E. coli competent cells (JM109 (DE3)) were transformed by the heat shock method using the single-stranded mutagenized circular DNA strand. Then, the transformed E. coli cells were cultured at 37 ° C. in an LB solid medium containing 100 μg / mL ampicillin, and the grown single colony was picked up and transferred to 2 mL of an LB culture solution containing 100 μg / mL ampicillin. The cells were grown overnight at 37 ° C and grown.
Substitution of the 162nd leucine (L) to threonine (T) was performed by sequencing the nucleotide sequence according to a conventional method, and the mutation-introduced plasmid was named KillerRed_L162T / pRSET B.
(2)164番目のフェニルアラニン(F)のトレオニン(T)への置換
 KillerRed_L162T/pRSETの164番目のフェニルアラニン(F)をトレオニン(T)に置換するため、以下の変異導入用のプライマーを合成した。
Primer-F164T:5’-CAGACCGCCACCATCGGCTTC-3’(配列番号12)
 164番目のフェニルアラニン(F)をトレオニン(T)への置換は、鋳型プラスミドDNAとして、KillerRed_L162T/pRSETを用いること、及びプライマーとしてPrimer-F164Tを用いることを除いては、前記(1)の操作を繰り返し、164番目のフェニルアラニン(F)をトレオニン(T)に置換されたタンパク質をコードするDNAを含むプラスミドKillerRed_L162T_F164T/pRSETを得た。
(2) Replacement of 164th phenylalanine (F) with threonine (T) To replace 164th phenylalanine (F) of KillerRed_L162T / pRSET B with threonine (T), the following primers for mutagenesis were synthesized. .
Primer-F164T: 5′-CAGACCGCCACCATCGGCTTC-3 ′ (SEQ ID NO: 12)
The substitution of 164th phenylalanine (F) with threonine (T) is carried out as described in (1) above, except that KillerRed_L162T / pRSET B is used as the template plasmid DNA and Primer-F164T is used as the primer. The plasmid KillerRed_L162T_F164T / pRSET B containing DNA encoding a protein in which the 164th phenylalanine (F) was replaced with threonine (T) was obtained.
(3)KillerRed_L162T_F164Tの発現
 得られたプラスミドKillerRed_L162T_F164T/pRSETタンパク質は、T7発現系(pRSET/JM109(DE3))を用いて発現させた。すなわち、大腸菌(E.coli)コンピテントセル(JM109(DE3))をKillerRed_L162T_F164T/pRSETで形質転換し、100μg/mLのアンピシリンを含むLB固体培地で37℃にて培養した。その後、生育した単一コロニーをピックアップして100μg/mLのアンピシリンを含むLB培養液300mL中へ植菌し、23℃で4日間培養した。得られた細胞をフレンチプレスにより破砕し、得られた上清液から、ニッケルキレートカラム(QIAGEN社製)を用いてポリヒスチジン標識化タンパク質を精製した。更に、この溶出液(100mMイミダゾール、50mM Tris-Cl、pH7.4、300mM NaCl)をPD10脱塩・バッファー交換カラム(GE healthcare Bio-Sciences社製)により、1×PBS(pH7.4)を用いて精製し、タンパク質KillerRed_L162T_F164Tを得た。
(3) Expression of KillerRed_L162T_F164T The resulting plasmid KillerRed_L162T_F164T / pRSET B protein was expressed using the T7 expression system (pRSET B / JM109 (DE3)). That is, E. coli competent cells (JM109 (DE3)) were transformed with KillerRed_L162T_F164T / pRSET B and cultured at 37 ° C. in an LB solid medium containing 100 μg / mL ampicillin. Thereafter, the grown single colony was picked up, inoculated into 300 mL of LB culture solution containing 100 μg / mL ampicillin, and cultured at 23 ° C. for 4 days. The obtained cells were disrupted with a French press, and the polyhistidine-labeled protein was purified from the resulting supernatant using a nickel chelate column (QIAGEN). Further, this eluate (100 mM imidazole, 50 mM Tris-Cl, pH 7.4, 300 mM NaCl) is used in a PD10 desalting / buffer exchange column (manufactured by GE healthcare Bio-Sciences) using 1 × PBS (pH 7.4). The protein KillerRed_L162T_F164T was obtained.
(4)KillerRed_L162T_F164Tの発色及び単量体化の確認
 得られたKillerRed_L162T_F164Tを、pseudo native PAGEにより解析した。KillerRed_L162T_F164Tのバンドは、二量体のKillerRedのバンドと比較すると、低分子量にシフトし、単量体として存在した。
 しかしながら、KillerRed_L162T_F164Tは、KillerRedと比較すると、610nmにおける蛍光が減衰した。結果を、表1に示す。
(4) Color development and confirmation of monomerization of KillerRed_L162T_F164T The obtained KillerRed_L162T_F164T was analyzed by pseudo native PAGE. The KillerRed_L162T_F164T band shifted to a lower molecular weight compared to the dimeric KillerRed band and was present as a monomer.
However, KillerRed_L162T_F164T attenuated fluorescence at 610 nm compared to KillerRed. The results are shown in Table 1.
(5)G5V、N147S、L174K、及びM206Tの置換の導入
 G5V、N147S、L174K、及びM206Tの置換を、KillerRed_L162T/F164Tに導入するため、以下のプライマーを合成した。
Primer-G5V:5’-GGTTCAGAGGTCGGCCCCGCC-3’(配列番号13)
Primer-N147S:5’-CAGACCGCCACCATCGGCTTC-3’(配列番号14)
Primer-L174K:5’-GACGGCGGCAAGATGATGGGC-3’(配列番号15)
Primer-M206T:5’-ACCAAGCAGACGAGGGACACT-3’(配列番号16)
(5) Introduction of substitution of G5V, N147S, L174K, and M206T In order to introduce substitution of G5V, N147S, L174K, and M206T into KillerRed_L162T / F164T, the following primers were synthesized.
Primer-G5V: 5′-GGTTCAGAGGTCGGCCCCGCC-3 ′ (SEQ ID NO: 13)
Primer-N147S: 5′-CAGACCGCCACCATCGGCTTC-3 ′ (SEQ ID NO: 14)
Primer-L174K: 5′-GACGGCGGCAAGATGATGGGC-3 ′ (SEQ ID NO: 15)
Primer-M206T: 5′-ACCAAGCAGACGAGGGACACT-3 ′ (SEQ ID NO: 16)
 5番目のグリシン(G)のバリン(V)への置換は、鋳型プラスミドDNAとして、KillerRed_L162T_F164T/pRSETを用いること、及びプライマーとしてPrimer-G5Vを用いることを除いては、前記(1)の操作を繰り返し、5番目のグリシン(G)のバリン(V)に置換されたタンパク質をコードするDNAを含むプラスミドKillerRed_L162T_F164T_G5V/pRSETを得た。
 以下、同様の操作により、順次変異を導入し、KillerRedのアミノ酸配列において、147番目のアスパラギン(N)をセリン(S)に、174番目のロイシン(L)をリシン(K)に、そして206番目のメチオニン(M)をトレオニン(T)に置換したタンパク質をコードするDNAを含むプラスミドSupernova-Red/pRSETを得た。
The fifth glycine (G) is replaced with valine (V) by the same procedure as in (1) except that KillerRed_L162T_F164T / pRSET B is used as a template plasmid DNA and Primer-G5V is used as a primer. The plasmid KillerRed_L162T_F164T_G5V / pRSET B containing DNA encoding the protein substituted with the valine (V) of the fifth glycine (G) was obtained.
Thereafter, mutations were sequentially introduced in the same manner, and in the amino acid sequence of KillerRed, the 147th asparagine (N) was changed to serine (S), the 174th leucine (L) was changed to lysine (K), and the 206th position. Plasmid Supernova-Red / pRSET B containing a DNA encoding a protein obtained by substituting methionine (M) with threonine (T) was obtained.
(6)Supernova-Redの発現
 Supernova-Redタンパク質は、プラスミドとしてSupernova-Red/pRSETを用いたことを除いては、前記(3)の操作を繰り返し、精製タンパク質Supernova-Red(配列番号2)を得た。
(6) Expression of Supernova-Red For Supernova-Red protein, the purified protein Supernova-Red (SEQ ID NO: 2) was repeated except that Supernova-Red / pRSET B was used as a plasmid, except that Supernova-Red / pRSET B was used. Got.
《比較例1~21》
 比較例1~21では、二量体のKillerRedを、単量体にするための変異の導入を試みた。具体的には、各比較例では以下のアミノ酸の置換を行った。
比較例1:126番目のアスパラギンをアルギニン(N126R)に置換した。
比較例2:128番目のアスパラギン酸をトレオニン(D128T)に置換した。
比較例3:126番目のアスパラギンをアルギニンに置換(N126R)し、128番目のアスパラギン酸をトレオニン(N126R/D128T)に置換した。
比較例4:154番目のヒスチジンをグルタミン酸(H154E)に置換した。
比較例5:165番目のイソロイシンをアルギニン(I165R)に置換した。
比較例6:163番目のアラニンをリシン(A163K/I165R)に置換し、165番目のイソロイシンをアルギニン(N126R/D128T)に置換した。
比較例7:176番目のメチオニンをアスパラギン酸(M176D)に置換した。
比較例8:196番目のプロリンをアラニン(P196A)に置換した。
比較例9:198番目のフェニルアラニンをリシン(F198K)に置換した。
比較例10:140番目のグルタミンをアラニン(Q140A)に置換した。
比較例11:26番目のリシンをグルタミン酸(K26E)に置換した。
比較例12:174番目のロイシンをヒスチジン(L174H)に置換した。
比較例13:174番目のロイシンをアルギニン(L174R)に置換した。
比較例14:227番目のバリンをリシン(V227K)に置換した。
比較例15:230番目のイソロイシンをリシン(I230K)に置換した。
比較例16:234番目のイソロイシンをリシン(I234K)に置換した。
比較例17:152番目のフェニルアラニンをトレオニン(F152T)に置換した。
比較例18:162番目のロイシンをリシン(L162K)に置換した。
比較例19:164番目のフェニルアラニンをリシン(F164K)に置換した。
比較例20:167番目のフェニルアラニンをリシン(F167K)に置換した。
比較例21:167番目のフェニルアラニンをトレオニン(F167T)に置換した。
 前記各比較例において、それぞれの置換に対応するプライマーを合成し、それぞれのプライマーを用いたことを除いては、前記実施例1の工程(1)の操作を繰り返すことにより、それぞれの変異を有するタンパク質をコードするDNAを含むプラスミドを得た。
得られたプラスミドを用いることを除いては、前記実施例の工程(3)及び(4)の操作を繰り返すことにより、それぞれのタンパク質の発色及び単量体化を確認した。比較例1~21では、得られたタンパク質は、二量体のままで、単量体化しなかった。結果を纏めて、表1に示す。
<< Comparative Examples 1 to 21 >>
In Comparative Examples 1 to 21, an attempt was made to introduce a mutation to make the dimer KillerRed a monomer. Specifically, in each comparative example, the following amino acid substitution was performed.
Comparative Example 1: The 126th asparagine was replaced with arginine (N126R).
Comparative Example 2: The 128th aspartic acid was replaced with threonine (D128T).
Comparative Example 3: The 126th asparagine was substituted with arginine (N126R), and the 128th aspartic acid was substituted with threonine (N126R / D128T).
Comparative Example 4 The 154th histidine was replaced with glutamic acid (H154E).
Comparative Example 5: The 165th isoleucine was replaced with arginine (I165R).
Comparative Example 6: The 163rd alanine was replaced with lysine (A163K / I165R), and the 165th isoleucine was replaced with arginine (N126R / D128T).
Comparative Example 7 The 176th methionine was replaced with aspartic acid (M176D).
Comparative Example 8: The 196th proline was substituted with alanine (P196A).
Comparative Example 9: The 198th phenylalanine was replaced with lysine (F198K).
Comparative Example 10: The 140th glutamine was substituted with alanine (Q140A).
Comparative Example 11: The 26th lysine was replaced with glutamic acid (K26E).
Comparative Example 12: The 174th leucine was replaced with histidine (L174H).
Comparative Example 13: The 174th leucine was replaced with arginine (L174R).
Comparative Example 14: The 227th valine was replaced with lysine (V227K).
Comparative Example 15: The 230th isoleucine was replaced with lysine (I230K).
Comparative Example 16: The 234th isoleucine was replaced with lysine (I234K).
Comparative Example 17: The 152 th phenylalanine was replaced with threonine (F152T).
Comparative Example 18: The 162nd leucine was replaced with lysine (L162K).
Comparative Example 19 The 164th phenylalanine was replaced with lysine (F164K).
Comparative Example 20: The 167th phenylalanine was replaced with lysine (F167K).
Comparative Example 21 The 167th phenylalanine was replaced with threonine (F167T).
In each of the comparative examples, primers corresponding to the respective substitutions were synthesized, and the respective mutations were obtained by repeating the operation of step (1) of Example 1 except that the respective primers were used. A plasmid containing the DNA encoding the protein was obtained.
Except for using the obtained plasmid, coloration and monomerization of each protein were confirmed by repeating the operations of steps (3) and (4) of the above-mentioned Examples. In Comparative Examples 1 to 21, the obtained protein remained a dimer and was not monomerized. The results are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
《実施例2》
 本実施例では、前記タンパク質Supernova-Redの68番目のチロシン(Y)をトリプトファン(W)に置換した。
 68番目のチロシン(Y)をトリプトファン(W)に置換するため、以下の変異導入用のプライマーを合成した。
Primer-Y68W:5’-GCCACCTGATCCAGTGGGGCGAGCCC-3’(配列番号17)
 鋳型プラスミドDNAとして、Supernova-Red/pRSETを用いること、及びプライマーとしてPrimer-Y68Wを用いることを除いては、前記実施例1の工程(1)の操作を繰り返し、プラスミドSupernova-Orange/pRSETを得た。
 更に、プラスミドSupernova-Orange/pRSETを用いることを除いては、前記実施例1の工程(3)の操作を繰り返し、タンパク質Supernova-Orange(配列番号4)を得た。
Example 2
In this example, the 68th tyrosine (Y) of the protein Supernova-Red was substituted with tryptophan (W).
In order to replace the 68th tyrosine (Y) with tryptophan (W), the following primers for mutagenesis were synthesized.
Primer-Y68W: 5′-GCCACCTGATCCAGTGGGGCGAGCCC-3 ′ (SEQ ID NO: 17)
Except for using Supernova-Red / pRSET B as the template plasmid DNA and using Primer-Y68W as the primer, the procedure of Example 1 (step 1) was repeated, and the plasmid Supernova-Orange / pRSET B was used. Got.
Further, except that the plasmid Supernova-Orange / pRSET B was used, the operation of the step (3) in Example 1 was repeated to obtain a protein Supernova-Orange (SEQ ID NO: 4).
《実施例3》
 本実施例では、前記タンパク質Supernova-Orangeの46番目のバリン(V)をアラニン(A)に置換した。
 46番目のバリン(V)をアラニン(A)に置換するため、以下の変異導入用のプライマーを合成した。
Primer-V46A:5’-GGCGACTTCAACGCCCACGCCGTG-3’(配列番号18)
 鋳型プラスミドDNAとして、Supernova-Orange/pRSETを用いること、及びプライマーとしてPrimer-V46Aを用いることを除いては、前記実施例1の工程(1)の操作を繰り返し、プラスミドSupernova-Green/pRSETを得た。
 更に、プラスミドSupernova-Green/pRSETを用いることを除いては、前記実施例1の工程(3)の操作を繰り返し、タンパク質Supernova-Green(配列番号6)を得た。
Example 3
In this example, the 46th valine (V) of the protein Supernova-Orange was substituted with alanine (A).
In order to replace the 46th valine (V) with alanine (A), the following primers for mutagenesis were synthesized.
Primer-V46A: 5'-GGCGACTTCAACGCCCACGCCGTG-3 '(SEQ ID NO: 18)
Except for using Supernova-Orange / pRSET B as the template plasmid DNA and using Primer-V46A as the primer, the procedure of Step (1) of Example 1 was repeated, and the plasmid Supernova-Green / pRSET B Got.
Further, except that the plasmid Supernova-Green / pRSET B was used, the operation of the step (3) of Example 1 was repeated to obtain a protein Supernova-Green (SEQ ID NO: 6).
《実施例4》
 本実施例では、タンパク質KillerRed_L162T_F164Tに、更にN147Sの置換を導入し、KillerRed_L162T_F164T_N147Sの作製を試みた。
 鋳型プラスミドDNAとして、KillerRed_L162T_F164T/pRSETを用いること、及びプライマーとしてPrimer-V46Aを用いることを除いては、前記実施例1の工程(1)の操作を繰り返し、プラスミドKillerRed_L162T_F164T_V46A/pRSETを得た。
 更に、プラスミドKillerRed_L162T_F164T_V46A/pRSETを用いることを除いては、前記実施例1の工程(3)の操作を繰り返し、タンパク質KillerRed_L162T_F164T_N147S(配列番号9)を得た。
Example 4
In this example, substitution of N147S was further introduced into the protein KillerRed_L162T_F164T, and an attempt was made to produce KillerRed_L162T_F164T_N147S.
Except for using KillerRed_L162T_F164T / pRSET B as a template plasmid DNA and using Primer-V46A as a primer, the procedure of Step (1) of Example 1 was repeated to obtain a plasmid KillerRed_L162T_F164T_V46A / pRSET B.
Further, except for using the plasmid KillerRed_L162T_F164T_V46A / pRSET B , the operation of the step (3) of Example 1 was repeated to obtain a protein KillerRed_L162T_F164T_N147S (SEQ ID NO: 9).
《実施例5》
 本実施例では、前記タンパク質Supernova-Redの46番目のバリン(V)をアラニン(A)に置換した。
 鋳型プラスミドDNAとして、Supernova-Red/pRSETを用いること、及びプライマーとしてPrimer-V46Aを用いることを除いては、前記実施例1の工程(1)の操作を繰り返し、プラスミドSupernova-Red_V46A/pRSETを得た。更に、プラスミドSupernova-Red_V46A/pRSETを用いることを除いては、前記実施例1の工程(3)の操作を繰り返し、タンパク質Supernova-Red_V46A(配列番号10)を得た。
Example 5
In this example, the 46th valine (V) of the protein Supernova-Red was substituted with alanine (A).
Except for using Supernova-Red / pRSET B as the template plasmid DNA and using Primer-V46A as the primer, the procedure of Step (1) of Example 1 was repeated, and the plasmid Supernova-Red_V46A / pRSET B Got. Further, except that the plasmid Supernova-Red_V46A / pRSET B was used, the operation of the step (3) of Example 1 was repeated to obtain a protein Supernova-Red_V46A (SEQ ID NO: 10).
《比較例22~27》
 比較例22~27では、Supernova-Redの発色団の発色を変化させるための変異の導入を試みた。具体的には、各比較例では、L162T/F164Tの置換に、更に以下のアミノ酸の置換を行った。
比較例22:150番目のヒスチジンをトレオニン(H150T)に置換した。
比較例23:148番目のグルタミン酸をトレオニン(E148T)に置換した。
比較例24:148番目のグルタミン酸をリシン(E148K)に置換した。
比較例25:148番目のグルタミン酸をバリン(E148V)に置換した。
比較例26:226番目のセリンをイソロイシン(S226I)に置換した。
比較例27:148番目のグルタミン酸をバリン(E148V)に置換し、226番目のセリンをイソロイシン(S226I)に置換した。
 前記各比較例において、それぞれの置換に対応するプライマーを合成し、それぞれのプライマーを用いたことを除いては、前記実施例1の工程(5)の操作を繰り返すことにより、それぞれの変異を有するタンパク質をコードするDNAを含むプラスミドを得た。
 得られたプラスミドを用いることを除いては、前記実施例の工程(3)及び(4)の操作を繰り返すことにより、それぞれのタンパク質の発色及び単量体化を確認した。比較例22~27で得られたタンパク質は、赤色からの発色のシフトは見られず、また、発色の増強も見られなかった。結果を纏めて表2に示す。
<< Comparative Examples 22 to 27 >>
In Comparative Examples 22 to 27, an attempt was made to introduce a mutation for changing the color development of the Supernova-Red chromophore. Specifically, in each comparative example, the following amino acids were further substituted for L162T / F164T.
Comparative Example 22: The 150th histidine was replaced with threonine (H150T).
Comparative Example 23: The 148th glutamic acid was replaced with threonine (E148T).
Comparative Example 24: The 148th glutamic acid was replaced with lysine (E148K).
Comparative Example 25: The 148th glutamic acid was replaced with valine (E148V).
Comparative Example 26: The 226th serine was replaced with isoleucine (S226I).
Comparative Example 27: The 148th glutamic acid was replaced with valine (E148V), and the 226th serine was replaced with isoleucine (S226I).
In each of the comparative examples, a primer corresponding to each substitution was synthesized, and each of the mutations was obtained by repeating the operation of step (5) of Example 1 except that each primer was used. A plasmid containing the DNA encoding the protein was obtained.
Except for using the obtained plasmid, coloration and monomerization of each protein were confirmed by repeating the operations of steps (3) and (4) of the above-mentioned Examples. The proteins obtained in Comparative Examples 22 to 27 showed no shift in color development from red, and no enhancement of color development. The results are summarized in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
《実施例6》
 得られたタンパク質が所望の突然変異を導入したものであることを、該タンパク質の励起波長及び蛍光波長を測定するとともに既存のタンパク質(KillerRed等)の励起波長及び蛍光波長と比較することにより確認した。
 得られたタンパク質の励起波長を測定し、規格化したものを図1(A)中に曲線で示す。また、得られたタンパク質の蛍光波長を測定し、正規化したものを図1(B)中曲線で示す。なお、図1(A)及び(B)には、比較のためにKillerRed、Supernova-Redについて励起波長及び蛍光波長を併せて示す。図1(A)及び(B)に示すように、上述した方法で変異を導入したタンパク質Supernova-Orangeは励起波長のピークが493nm、蛍光波長のピークが552nmであり、Supernova-Greenは励起波長のピークが439nm、蛍光波長のピークが469nmであることがわかる。これに対してKillerRedの励起波長のピークは585nmであり、蛍光波長のピークは610nm、またSupernova-Redの励起波長のピークは579nmであり、蛍光波長のピークは610nmである。
 なお、この表3において、λabsはナノメーター単位での吸光度スペクトルのピークを表している。(ε)は10-1cm-1単位でのモル吸光係数である。λemはナノメーター単位での蛍光スペクトルのピークを表している。
Example 6
It was confirmed by measuring the excitation wavelength and fluorescence wavelength of the protein and comparing it with the excitation wavelength and fluorescence wavelength of an existing protein (KillerRed etc.) that the obtained protein was introduced with the desired mutation. .
The excitation wavelength of the obtained protein was measured and normalized, and the curve is shown in FIG. Moreover, the fluorescence wavelength of the obtained protein was measured and normalized, and the curve in FIG. FIGS. 1A and 1B show the excitation wavelength and fluorescence wavelength for KillerRed and Supernova-Red for comparison. As shown in FIGS. 1 (A) and 1 (B), the protein Supernova-Orange that has been mutated by the method described above has an excitation wavelength peak of 493 nm and a fluorescence wavelength peak of 552 nm, and Supernova-Green represents the excitation wavelength. It can be seen that the peak is 439 nm and the fluorescence wavelength peak is 469 nm. In contrast, the peak of the excitation wavelength of KillerRed is 585 nm, the peak of the fluorescence wavelength is 610 nm, the peak of the excitation wavelength of Supernova-Red is 579 nm, and the peak of the fluorescence wavelength is 610 nm.
In Table 3, λabs represents the peak of the absorbance spectrum in nanometer units. (Ε) is the molar extinction coefficient in units of 10 3 M −1 cm −1 . λem represents the peak of the fluorescence spectrum in nanometer units.
 更に、実施例4で得られたKillerRed_L162T_F164T_N147S及び、実施例5で得られたSupernova-Red_V46Aについても、励起波長及び、蛍光波長を測定した。KillerRed_L162T_F164T_N147Sは、励起波長のピークが512nm、そして蛍光が黄緑色であり、Supernova-Red_V46Aは励起波長のピークが509nm、蛍光波長のピークが594nmであった。 Furthermore, the excitation wavelength and the fluorescence wavelength were measured for KillerRed_L162T_F164T_N147S obtained in Example 4 and Supernova-Red_V46A obtained in Example 5. KillerRed_L162T_F164T_N147S had an excitation wavelength peak of 512 nm and fluorescence of yellow-green, and Supernova-Red_V46A had an excitation wavelength peak of 509 nm and a fluorescence wavelength peak of 594 nm.
《実施例7》
 また、KillerRed、Supernova-Red、Supernova-Orange及びSupernova-Greenについて活性酸素量の測定を行った。ここではまず、10μM anthracene-9,10-dipropionic acid(以下、ADPAと称する)を含む50μSupernova-Red、Supernova-Red、Supernova-Orange及びSupernova-Greenタンパク質溶液をそれぞれ100μLずつ調製した。ADPAは励起極大が380nm、蛍光極大が430nmの一重項酸素検出用試薬である。一重項酸素とは活性酸素の一種で、大変強力な酸化能力を有しており、ADPAが一重項酸素と反応することでADPAは過酸化物へと変化し、430nmにある蛍光ピークが失われる。
 得られたサンプル溶液を以下の測定条件に従って、活性酸素測定を行った。すなわち、15μLをテラサキディッシュに添加し、YAGレーザー(LOTIS社、LS-2137U-YAG、周波数10Hz、パルス幅15ns)の第三高調波(355nm)をオプティカルパラメトリック発振器(LOTIS社、LT-2214-OPO)を用いて波長変換し、20mJ/cm/パルスのエネルギー密度で5分間照射した後、これを1mLの1×PBSで希釈し、分光蛍光光度計F-2500(日立)を用いてADPAの退色率を測定した。レーザーの波長はそれぞれKillerRedとSupernova-Redが580nm、Supernova-Orangeが450nm、Supernova-Greenが440nmである。上述した突然変異を導入した蛍光タンパク質を含む4つの蛍光タンパク質の活性酸素量の比較を図2に示す。図2においてKR各種光増感性蛍光タンパク質によるADPA褪色率、すなわち活性酸素放出量を示している。なお、図2では比較のためフルオレセインイソチオシアネート(FITC)の活性酸素量で規格化した。
Example 7
In addition, the amount of active oxygen was measured for KillerRed, Supernova-Red, Supernova-Orange, and Supernova-Green. Here, 100 μL each of 50 μ Supernova-Red, Supernova-Red, Supernova-Orange, and Supernova-Green protein solutions each containing 10 μM anthracene-9,10-dipropionic acid (hereinafter referred to as ADPA) was prepared. ADPA is a singlet oxygen detection reagent having an excitation maximum of 380 nm and a fluorescence maximum of 430 nm. Singlet oxygen is a kind of active oxygen and has a very strong oxidizing ability. When ADPA reacts with singlet oxygen, ADPA changes to peroxide and the fluorescence peak at 430 nm is lost. .
The obtained sample solution was subjected to active oxygen measurement according to the following measurement conditions. That is, 15 μL is added to the Terrasaki dish, and the third harmonic (355 nm) of the YAG laser (LOTIS, LS-2137U-YAG, frequency 10 Hz, pulse width 15 ns) is optical parametric oscillator (LOTIS, LT-2214-OPO). ), And after irradiation for 5 minutes at an energy density of 20 mJ / cm 2 / pulse, this was diluted with 1 mL of 1 × PBS, and ADPA was used with a spectrofluorometer F-2500 (Hitachi). The fading rate was measured. Laser wavelengths are 580 nm for KillerRed and Supernova-Red, 450 nm for Supernova-Orange, and 440 nm for Supernova-Green, respectively. FIG. 2 shows a comparison of the amount of active oxygen of four fluorescent proteins including the fluorescent protein into which the mutation described above is introduced. FIG. 2 shows the ADPA fading rate, that is, the amount of active oxygen released by KR various photosensitizing fluorescent proteins. In FIG. 2, for the purpose of comparison, the amount of active oxygen of fluorescein isothiocyanate (FITC) was normalized.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
《実施例8》
 本実施例では、実施例1において得られたSupernova-Redを、チューブリン、ケラチン、又はCx43との融合タンパク質として発現させた。前記Supernova-Red/pRSETに、PCRで得られたチューブリン、ケラチン、又はCx43をコードするDNAを挿入した。得られたプラスミドを、それぞれtublin-Supernova-Red/pRSET、keratin-Supernova-Red/pRSET、及びCx43-Supernova-Red/pRSETと称する。
 得られたプラスミドtublin-Supernova-Red/pRSET、keratin-Supernova-Red/pRSET、及びCx43-Supernova-Red/pRSETを、HeLa細胞にトランスフェクションし、細胞内局在を蛍光顕微鏡で調べた。
 チューブリン、ケラチン、又はCx43は、それぞれ細胞の微小管、中間系フィラメント、及びギャップジャンクションに局在しており、それぞれのタンパク質が存在している位置で発現しており、タンパク質の局在化に影響を与えなかった。
Example 8
In this example, Supernova-Red obtained in Example 1 was expressed as a fusion protein with tubulin, keratin, or Cx43. DNA encoding tubulin, keratin, or Cx43 obtained by PCR was inserted into the Supernova-Red / pRSET B. The resulting plasmids are referred to as tublin-Supernova-Red / pRSET B , keratin-Supernova-Red / pRSET B , and Cx43-Supernova-Red / pRSET B , respectively.
The resulting plasmids tublin-Supernova-Red / pRSET B , keratin-Supernova-Red / pRSET B , and Cx43-Supernova-Red / pRSET B were transfected into HeLa cells, and the intracellular localization was examined with a fluorescence microscope. .
Tubulin, keratin, or Cx43 is localized in the microtubules, intermediate filaments, and gap junctions of cells, and is expressed at the position where each protein is present. There was no effect.
《実施例9》
 本実施例では、前記Supernova-Redにミトコンドリアマトリクス移行シグナルをつなげることで細胞内のミトコンドリアに導入し、光照射によってミトコンドリア機能を不活性化することによりアポトーシスを誘導した。
 1μgのプラスミド_Supernova-Red/pcDNA3、を、トランスフェクション試薬(Superfect QIAGEN社)を用いて、35mmガラスボトム皿上で培養しているHela細胞に導入した。2日間培養後、580nmの光を8W/cmのパワー密度で90秒間照射した後、0時間、3時間、及び6時間の細胞を微分干渉顕微鏡を用いて観察した。Supernova-Redが、ミトコンドリアに発現している細胞は、6時間後には退縮し、死滅した。
Example 9
In this example, apoptosis was induced by ligating the mitochondrial matrix translocation signal to Supernova-Red to introduce it into intracellular mitochondria and inactivating mitochondrial function by light irradiation.
1 μg of plasmid_Supernova-Red / pcDNA3 was introduced into Hela cells cultured on 35 mm glass bottom dishes using transfection reagent (Superfect QIAGEN). After culturing for 2 days, light at 580 nm was irradiated at a power density of 8 W / cm 2 for 90 seconds, and then cells at 0, 3 and 6 hours were observed using a differential interference microscope. Cells in which Supernova-Red was expressed in mitochondria regressed and died after 6 hours.
《実施例10》
 本実施例では、Supernova-Redを、リンカーペプチドを用いてチューブリン、ケラチン、又はコネキシン43との融合タンパク質として発現させ、それぞれの融合タンパク質の細胞局在化を検討した。
 チューブリンとの融合タンパク質の発現用ベクターの作製は、以下のように行った。EGFPのC末端側に細胞骨格系のタンパク質αチューブリンを融合させたタンパク質を哺乳類細胞で発現させるためのベクターpEGFP-tub(Clontech)のNheIとXhoIサイトの間のEGFP遺伝子を、SuperNova-Redに置換し、SuperNova-Redとチューブリンとの融合蛋白質の(SuperNova-Red-tubulin)発現ベクターを作製した。なお、SuperNova-Redの遺伝子配列の開始コドンの前にkozak配列(ccaccatgg)を付加し、3’末端側のXhoIサイトの直前にGGSGGSGGSリンカー配列(配列番号21)をコードするヌクレオチド配列(GGCGGCTCCGGCGGCTCCGGCGGCTCT;配列番号22)を付加した。
Example 10
In this example, Supernova-Red was expressed as a fusion protein with tubulin, keratin, or connexin 43 using a linker peptide, and cell localization of each fusion protein was examined.
A vector for expression of a fusion protein with tubulin was prepared as follows. The EGFP gene between the NheI and XhoI sites of the vector pEGFP-tub (Clontech) for expressing a protein in which cytoskeletal protein α-tubulin is fused to the C-terminal side of EGFP in mammalian cells is transferred to SuperNova-Red. Substitution was performed, and an expression vector of a SuperNova-Red-tubulin fusion protein (SuperNova-Red-tubulin) was prepared. In addition, a nucleotide sequence (GGCGGSCGGSGGGGCCTCGGCGCTCT; sequence encoding a GGSGGGSGGS linker sequence (SEQ ID NO: 21) immediately before the XhoI site on the 3 ′ end side is added before the start codon of the SuperNova-Red gene sequence. Number 22) was added.
 ケラチンとの融合タンパク質の発現用ベクターの作製は、以下のように行った。蛍光タンパク質mTFP1のN末端側に細胞骨格系のタンパク質ケラチンを融合させたタンパク質を哺乳類細胞で発現させるためのベクターpmTFP1-Keratin(Ai HW 他、Biochem J.400,531-540,2006)のEcoRIとNotIサイトの間のmTFP1遺伝子を、SuperNova-Red遺伝子に置換して、ケラチンとSuperNova-Redの融合タンパク質(keratin-SuperNova-Red)の発現ベクターを作製した。なお、SuperNova-Redの遺伝子配列の開始コドンの前にkozak配列(ccaccatgg)を付加した。 Preparation of a vector for expression of a fusion protein with keratin was performed as follows. EcoRI of the vector pmTFP1-Keratin (Ai HW et al., Biochem J. 400, 531-540, 2006) for expressing a protein in which cytoskeletal protein keratin is fused to the N-terminal side of the fluorescent protein mTFP1 in mammalian cells. The mTFP1 gene between NotI sites was replaced with the SuperNova-Red gene to prepare an expression vector for a keratin and SuperNova-Red fusion protein (keratin-SuperNova-Red). In addition, a kozak sequence (ccaccatgg) was added before the start codon of the gene sequence of SuperNova-Red.
 コネキシン43との融合タンパク質の発現用ベクターの作製は、以下のように行った。蛍光タンパク質mRFP1のN末端側にギャップ結合タンパク質コネキシン43を融合させたタンパク質を哺乳類細胞で発現させるためのベクターpmRFP1-Cx43(Campbell RE 他、Proc.Natl.Acad.Sci.USA 99,7877-7882,2002)のAgeIとNotIサイトの間のmRFP1遺伝子を、SuperNova-Red遺伝子に置換して、コネキシン43とSuperNova-Redの融合タンパク質(Cx43-SuperNova-Red)を発現させるためのベクターを作製した。なお、SuperNova-Redの遺伝子配列の開始コドンの前にkozak配列(ccaccatgg)を付加した。 Preparation of a fusion protein expression vector with connexin 43 was performed as follows. Vector pmRFP1-Cx43 (Campbell RE et al., Proc. Natl. Acad. Sci. USA 99, 7877-7882, for expressing a protein in which the gap junction protein connexin 43 is fused to the N-terminal side of the fluorescent protein mRFP1 in mammalian cells. In 2002), the mRFP1 gene between the AgeI and NotI sites was replaced with the SuperNova-Red gene to prepare a vector for expressing the connexin 43 and SuperNova-Red fusion protein (Cx43-SuperNova-Red). In addition, a kozak sequence (ccaccatgg) was added before the start codon of the gene sequence of SuperNova-Red.
 作製したそれぞれの発現ベクターを、Superfect(QIAGEN)を用いて35mmガラスボトムディッシュ上で培養したHeLa細胞に形質導入して24-48時間後に観察を行った。イメージングはPlanApo60x(NA1.4)オイル対物レンズ、観察用マルチアルゴンレーザー光源、光刺激用半導体レーザーを装着した共焦点倒立顕微鏡A1(Nikon)で行った。励起光として561.5nmレーザーを用いた。
 SuperNova-Red融合タンパク質を発現する細胞を顕微鏡観察下で観察した。SuperNova-Red-tubulinは細胞の微小管に、keratin-SuperNova-Redは中間系フィラメントに、そしてCx43-SuperNova-Redはギャップジャンクションに発現しており、それぞれのタンパク質が本来存在している位置に局在していた。(図4a、図4b、及び図4c)。
Each of the prepared expression vectors was transduced into HeLa cells cultured on a 35 mm glass bottom dish using Superfect (QIAGEN) and observed 24 to 48 hours later. Imaging was performed with a confocal inverted microscope A1 (Nikon) equipped with a PlanApo60x (NA1.4) oil objective lens, a multi-argon laser light source for observation, and a semiconductor laser for light stimulation. A 561.5 nm laser was used as excitation light.
Cells expressing the SuperNova-Red fusion protein were observed under a microscope. SuperNova-Red-tubulin is expressed in microtubules of cells, keratin-SuperNova-Red is expressed in intermediate filaments, and Cx43-SuperNova-Red is expressed in gap junctions. Existed. (FIGS. 4a, 4b, and 4c).
《比較例28》
 前記SuperNova-Redをコードする遺伝子に代えて、KillerRedをコードする遺伝子を用いたことを除いては、前記実施例10の操作を繰り返して、KillerRedとチューブリンの融合タンパク質(KillerRed-tubulin)、ケラチンとKillerRedの融合タンパク質(keratin-KillerRed)、及びコネキシン43とKillerRedの融合タンパク質(Cx43-KillerRed)を発現させるためのベクターを得て、それぞれの融合タンパク質の細胞内での局在を確認した。図4d、図4e、及び図4fに示すように、KillerRed-tubulin、keratin-KillerRed、及びCx43-KillerRedは、チューブリン、ケラチン、及びコネキシン43が、本来存在している位置で発現しなかった。
<< Comparative Example 28 >>
The procedure of Example 10 was repeated except that a gene encoding KillerRed was used in place of the gene encoding SuperNova-Red, and a KillerRed-tubulin fusion protein (KillerRed-tubulin), keratin And KillerRed fusion proteins (keratin-KillerRed) and connexin43 and KillerRed fusion proteins (Cx43-KillerRed) were obtained, and the localization of each fusion protein in the cells was confirmed. As shown in FIGS. 4d, 4e, and 4f, KillerRed-tubulin, keratin-KillerRed, and Cx43-KillerRed did not express tubulin, keratin, and connexin 43 at their original locations.
《実施例11》
 本実施例では、細胞内の接着斑において、アクチニンに対するCALIを行い、細胞骨格の縮退を確認した。
 EGFPのN末端側に筋原繊維タンパク質αアクチニンを融合させたタンパク質を哺乳類細胞で発現させるためのベクターα-actinin-EGFP/pcDNA3(Rajfur Z他、Nat Cell Biol.4,286-293,2002)のEGFP遺伝子を、SuperNova-Red遺伝子に置換して、SuperNova-Redとαアクチニンの融合タンパク質(α-actinin-SuperNova-Red)発現ベクターを作製した。
Example 11
In this example, CALI for actinin was performed on intracellular adhesion plaques to confirm degeneration of the cytoskeleton.
Vector α-actinin-EGFP / pcDNA3 for expressing a protein in which myofibrillar protein α-actinin is fused to the N-terminal side of EGFP in mammalian cells (Rajfur Z et al., Nat Cell Biol. 4, 286-293, 2002) The EGFP gene was replaced with the SuperNova-Red gene, and a SuperNova-Red and α-actinin fusion protein (α-actinin-SuperNova-Red) expression vector was prepared.
 作製した発現ベクターをSuperfect(QIAGEN)を用いて35mmガラスボトムディッシュ上で培養したHeLa細胞に形質導入して24-48時間後に観察を行った。イメージングはPlanApo 60x(NA1.4)オイル対物レンズ、観察用マルチアルゴンレーザー光源、光刺激用半導体レーザーを装着した共焦点倒立顕微鏡A1(Nikon)で行った。SuperNova-Red蛍光観察の励起光として561.5nmレーザー(power 6.0%)、CALIには561.5nmレーザー(power 100%)を用いた。細胞形態の観察には微分干渉像を用いた。 The produced expression vector was transduced into HeLa cells cultured on a 35 mm glass bottom dish using Superfect (QIAGEN) and observed 24 to 48 hours later. Imaging was performed with a confocal inverted microscope A1 (Nikon) equipped with a PlanApo 60x (NA1.4) oil objective lens, a multi-argon laser light source for observation, and a semiconductor laser for light stimulation. A 561.5 nm laser (power 6.0%) was used as excitation light for SuperNova-Red fluorescence observation, and a 561.5 nm laser (power 100%) was used for CALI. Differential interference images were used for observation of cell morphology.
 α-actinin-SuperNova-Red を発現する細胞の突起状の領域に561.5nmレーザー光を10秒間照射して領域中に局在するα-actininを破壊した。照射直後の取得画像では、領域内のSuperNova-Redの蛍光は消失し、照射の3分後にはアクチニン架橋の崩壊に伴う細胞の縮退が観察された(図5) The projection region of cells expressing α-actinin-SuperNova-Red was irradiated with a 561.5 nm laser beam for 10 seconds to destroy α-actinin localized in the region. In the acquired image immediately after irradiation, the SuperNova-Red fluorescence in the region disappeared, and after 3 minutes of irradiation, cell degeneration accompanied by the collapse of the actinin bridge was observed (FIG. 5).
 本発明の光増感性蛍光タンパク質又はその機能的等価改変体は、発色団補助光不活性化法に用いることが可能であり、標的分子の機能解析に用いることができる。
 以上、本発明を特定の態様に沿って説明したが、当業者に自明の変形や改良は本発明の範囲に含まれる。
The photosensitized fluorescent protein of the present invention or a functional equivalent variant thereof can be used for the chromophore-assisted photoinactivation method and can be used for functional analysis of the target molecule.
As mentioned above, although this invention was demonstrated along the specific aspect, the deformation | transformation and improvement obvious to those skilled in the art are included in the scope of the present invention.

Claims (10)

  1.  配列表の配列番号2で表されるアミノ酸配列、配列番号4で表されるアミノ酸配列、配列番号6で表されるアミノ酸配列、配列番号9で表されるアミノ酸配列、及び配列番号10で表されるアミノ酸配列、からなる群から選択される少なくとも1つのアミノ酸配列を含む光増感性蛍光タンパク質又はその機能的等価改変体。 The amino acid sequence represented by SEQ ID NO: 2, the amino acid sequence represented by SEQ ID NO: 4, the amino acid sequence represented by SEQ ID NO: 6, the amino acid sequence represented by SEQ ID NO: 9, and the amino acid sequence represented by SEQ ID NO: 10 A photosensitized fluorescent protein comprising at least one amino acid sequence selected from the group consisting of:
  2.  前記光増感性蛍光タンパク質又はその機能的等価改変体が、他のタンパク質と結合した融合タンパク質を構成する、請求項1に記載のタンパク質又はその機能的等価改変体。 The protein according to claim 1 or a functional equivalent variant thereof, wherein the photosensitized fluorescent protein or a functional equivalent variant thereof constitutes a fusion protein bound to another protein.
  3.  請求項1又は2に記載の光増感性蛍光タンパク質又はその機能的等価改変体をコードするDNA。 DNA encoding the photosensitized fluorescent protein according to claim 1 or 2 or a functional equivalent variant thereof.
  4.  配列表の配列番号1で表される塩基配列、配列番号3で表される塩基配列、配列番号5で表される塩基配列、配列番号19で表される塩基配列、及び配列番号20で表される塩基配列からなる群から選択される少なくとも1つの塩基配列からなる、請求項3に記載のDNA。 The nucleotide sequence represented by SEQ ID NO: 1, the nucleotide sequence represented by SEQ ID NO: 3, the nucleotide sequence represented by SEQ ID NO: 5, the nucleotide sequence represented by SEQ ID NO: 19, and the nucleotide sequence represented by SEQ ID NO: 20. The DNA according to claim 3, comprising at least one base sequence selected from the group consisting of:
  5.  請求項3又は4に記載のDNAを含むプラスミド。 A plasmid containing the DNA according to claim 3 or 4.
  6.  請求項1又は2に記載の光増感性蛍光タンパク質又はその機能的等価改変体を用いた、光増感性の活性酸素産生方法であって、前記光増感性蛍光タンパク質又はその機能的等価改変体に、励起光を照射することを特徴とする、前記方法。 A photosensitized active oxygen production method using the photosensitized fluorescent protein according to claim 1 or 2 or a functional equivalent variant thereof, wherein the photosensitized fluorescent protein or a functional equivalent variant thereof is used. The method is characterized by irradiating excitation light.
  7.  前記配列番号2で表されるアミノ酸配列を含む光増感性蛍光タンパク質又はその機能的等価改変体においては、490~620nmの範囲の励起光波長を用い、配列番号4で表されるアミノ酸配列を含む光増感性蛍光タンパク質又はその機能的等価改変体においては、400~550nmの範囲の励起光波長を用い、配列番号6で表されるアミノ酸配列を含む光増感性蛍光タンパク質又はその機能的等価改変体においては、390~440nmの範囲の励起光波長を用い、配列番号9で表されるアミノ酸配列を含む光増感性蛍光タンパク質又はその機能的等価改変体においては、462~562nmの範囲の励起光波長を用い、そして配列番号10で表されるアミノ酸配列を含む光増感性蛍光タンパク質又はその機能的等価改変体においては、459~559nmの範囲の励起光波長を用いる請求項6に記載の光増感性の活性酸素産生方法。 The photosensitized fluorescent protein comprising the amino acid sequence represented by SEQ ID NO: 2 or a functional equivalent variant thereof includes an amino acid sequence represented by SEQ ID NO: 4 using an excitation light wavelength in the range of 490 to 620 nm. In the photosensitized fluorescent protein or a functional equivalent variant thereof, the photosensitizing fluorescent protein containing the amino acid sequence represented by SEQ ID NO: 6 using an excitation light wavelength in the range of 400 to 550 nm or a functional equivalent variant thereof In the present invention, an excitation light wavelength in the range of 390 to 440 nm is used, and in the photosensitized fluorescent protein comprising the amino acid sequence represented by SEQ ID NO: 9 or a functional equivalent variant thereof, the excitation light wavelength in the range of 462 to 562 nm And a photosensitized fluorescent protein comprising the amino acid sequence represented by SEQ ID NO: 10 or a functional equivalent variant thereof , Active oxygen production method of photosensitizing according to claim 6 using an excitation wavelength in the range of 459 ~ 559 nm.
  8.  請求項1又は2に記載の光増感性蛍光タンパク質又はその機能的等価改変体を用いた、標的分子の機能解析方法であって、前記光増感性蛍光タンパク質又はその機能的等価改変体に、励起光を照射することを特徴とする、前記方法。 A method for analyzing the function of a target molecule using the photosensitized fluorescent protein or functional equivalent variant thereof according to claim 1 or 2, wherein the photosensitized fluorescent protein or functional equivalent variant thereof is excited. Irradiating light, said method.
  9.  前記配列番号2で表されるアミノ酸配列を含む光増感性蛍光タンパク質又はその機能的等価改変体においては、490~620nmの範囲の励起光波長を用い、配列番号4で表されるアミノ酸配列を含む光増感性蛍光タンパク質又はその機能的等価改変体においては、400~550nmの範囲の励起光波長を用い、配列番号6で表されるアミノ酸配列を含む光増感性蛍光タンパク質又はその機能的等価改変体においては、390~440nmの範囲の励起光波長を用い、配列番号9で表されるアミノ酸配列を含む光増感性蛍光タンパク質又はその機能的等価改変体においては、462~562nmの範囲の励起光波長を用い、そして配列番号10で表されるアミノ酸配列を含む光増感性蛍光タンパク質又はその機能的等価改変体においては、459~559nmの範囲の励起光波長を用いる請求項8に記載の標的分子の機能解析方法。 The photosensitized fluorescent protein comprising the amino acid sequence represented by SEQ ID NO: 2 or a functional equivalent variant thereof includes an amino acid sequence represented by SEQ ID NO: 4 using an excitation light wavelength in the range of 490 to 620 nm. In the photosensitized fluorescent protein or a functional equivalent variant thereof, the photosensitizing fluorescent protein containing the amino acid sequence represented by SEQ ID NO: 6 using an excitation light wavelength in the range of 400 to 550 nm or a functional equivalent variant thereof In the present invention, an excitation light wavelength in the range of 390 to 440 nm is used, and in the photosensitized fluorescent protein comprising the amino acid sequence represented by SEQ ID NO: 9 or a functional equivalent variant thereof, the excitation light wavelength in the range of 462 to 562 nm And a photosensitized fluorescent protein comprising the amino acid sequence represented by SEQ ID NO: 10 or a functional equivalent variant thereof , Functional analysis method of a target molecule according to claim 8 using an excitation wavelength in the range of 459 ~ 559 nm.
  10.  前記標的分子が、タンパク質、DNA、RNA、糖質、及び脂質からなる群から選択される少なくとも1つの標的分子である、請求項9に記載の標的分子の機能解析方法。 The method for analyzing a function of a target molecule according to claim 9, wherein the target molecule is at least one target molecule selected from the group consisting of protein, DNA, RNA, carbohydrate, and lipid.
PCT/JP2011/052300 2010-02-03 2011-02-03 Photosensitizing fluorescent protein WO2011096501A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-022603 2010-02-03
JP2010022603A JP2013078264A (en) 2010-02-03 2010-02-03 Photosensitizing fluorescent protein

Publications (1)

Publication Number Publication Date
WO2011096501A1 true WO2011096501A1 (en) 2011-08-11

Family

ID=44355494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052300 WO2011096501A1 (en) 2010-02-03 2011-02-03 Photosensitizing fluorescent protein

Country Status (2)

Country Link
JP (1) JP2013078264A (en)
WO (1) WO2011096501A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016537008A (en) * 2013-09-06 2016-12-01 プレジデント アンド フェローズ オブ ハーバード カレッジ Cas9 variants and their use
WO2017155101A1 (en) * 2016-03-10 2017-09-14 国立大学法人大阪大学 Fluorescent protein

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2599443C2 (en) * 2013-07-29 2016-10-10 Федеральное государственное бюджетное образовательное учреждение высшего образования "Нижегородская государственная медицинская академия" Министерства здравоохранения Российской Федерации (ФГБОУ ВО НижГМА Минздрава России) Modified genetically coded photosensitizer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006117694A2 (en) * 2005-02-08 2006-11-09 Evrogen Genetically encoded photosensitizers and methods for using same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006117694A2 (en) * 2005-02-08 2006-11-09 Evrogen Genetically encoded photosensitizers and methods for using same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BULINA ME. ET AL.: "A genetically encoded photosensitizer", NAT. BIOTECHNOL., vol. 24, pages 95 - 99 *
CARPENTIER P. ET AL.: "Structural basis for the phototoxicity of the fluorescent protein KillerRed", FEBS LETT., vol. 583, no. 17, 2009, pages 2839 - 2842 *
PLETNEV S. ET AL.: "Structural basis for phototoxicity of the genetically encoded photosensitizer KillerRed", J. BIOL. CHEM., vol. 284, no. 46, 2009, pages 32028 - 32039 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016537008A (en) * 2013-09-06 2016-12-01 プレジデント アンド フェローズ オブ ハーバード カレッジ Cas9 variants and their use
WO2017155101A1 (en) * 2016-03-10 2017-09-14 国立大学法人大阪大学 Fluorescent protein
CN108834418A (en) * 2016-03-10 2018-11-16 国立大学法人大阪大学 Fluorescence protein
US10899804B2 (en) 2016-03-10 2021-01-26 Osaka University Fluorescent protein

Also Published As

Publication number Publication date
JP2013078264A (en) 2013-05-02

Similar Documents

Publication Publication Date Title
Zhou et al. Controlling optical and catalytic activity of genetically engineered proteins by ultrasound
US20110243849A1 (en) Heme-binding photoactive polypeptides and methods of use thereof
WO2008039173A2 (en) Methods and compositions for inhibiting cell death or enhancing cell proliferation
WO2011096501A1 (en) Photosensitizing fluorescent protein
WO2009020197A1 (en) Fluorescent protein with deep blue color
Xia et al. PM1-loaded recombinant human H-ferritin nanocages: A novel pH-responsive sensing platform for the identification of cancer cells
JP6401795B2 (en) Carbosilane dendrimer and aggregating carrier for drug delivery system using the dendrimer
US8679749B2 (en) Red fluorescent proteins with enhanced bacterial expression, increased brightness and reduced aggregation
US20110177003A1 (en) Proteins that fluoresce at infrared wavelengths or generate singlet oxygen upon illumination
CN107429075B (en) Activatable two-component photosensitizer
KR20140008411A (en) Probe for analyzing biological tissue and method for utilizing same
US20080153161A1 (en) Genetically Encoded Photosensitizers and Methods for Using Same
US10501502B2 (en) Allophycocyanin alpha-subunit evolved labeling proteins (smURFPs)
US20230313168A1 (en) Mutant aminoacyl-trna synthetases
US10962528B2 (en) Blue fluorescent protein monomers and uses thereof
KR102341951B1 (en) Red Fluorescence Protein Variants for Enhancing Fluorescent Intensity
CN110177575B (en) Endocytosis enhancing agents for drug delivery systems
JP6925019B2 (en) Fusion protein for monitoring changes in intracellular oxygen concentration
JPWO2006068187A1 (en) Target physiological function inactivating agent using fluorescent protein labeled with photosensitizer
US20130230885A1 (en) Lov-domain protein for photosensitive defunctionalization
US20210347833A1 (en) Blue fluorescent protein monomers and uses thereof
Rai et al. Deciphering the liquid–liquid phase separation induced modulation in the structure, dynamics, and enzymatic activity of an ordered protein β-lactoglobulin
US20050089908A1 (en) Variants of cyan fluorescent protein with improved fluorescent properties
梶原 et al. Photochemical and Supramolecular Properties of
TWI580691B (en) Blue fluorescent protein derived fromstichodactyla haddoni

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11739849

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11739849

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP