WO2011096258A1 - Magnetic pattern detection device - Google Patents

Magnetic pattern detection device Download PDF

Info

Publication number
WO2011096258A1
WO2011096258A1 PCT/JP2011/050449 JP2011050449W WO2011096258A1 WO 2011096258 A1 WO2011096258 A1 WO 2011096258A1 JP 2011050449 W JP2011050449 W JP 2011050449W WO 2011096258 A1 WO2011096258 A1 WO 2011096258A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
sensor element
medium
magnetic sensor
signal
Prior art date
Application number
PCT/JP2011/050449
Other languages
French (fr)
Japanese (ja)
Inventor
正吾 百瀬
直之 野口
Original Assignee
日本電産サンキョー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010024787A external-priority patent/JP5534842B2/en
Priority claimed from JP2010024789A external-priority patent/JP5534843B2/en
Application filed by 日本電産サンキョー株式会社 filed Critical 日本電産サンキョー株式会社
Priority to KR1020127013838A priority Critical patent/KR101485229B1/en
Priority to CN201180001718.7A priority patent/CN102369558B/en
Priority to KR1020147014014A priority patent/KR101442464B1/en
Publication of WO2011096258A1 publication Critical patent/WO2011096258A1/en

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/04Testing magnetic properties of the materials thereof, e.g. by detection of magnetic imprint
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/20Testing patterns thereon

Definitions

  • the present invention relates to a magnetic pattern detection device for detecting a magnetic pattern of a medium such as an object to which a magnetic material is attached or a banknote printed with magnetic ink.
  • the magnetic sensor element detects changes in magnetic flux when the medium passes.
  • the signal processing unit performs signal processing on the sensor output signal output from the magnetic sensor element.
  • the signal processing unit includes an amplifying unit configured by an amplifier to which a sensor output signal and a reference voltage composed of a constant voltage are input. After the sensor output signal is amplified by the amplifying unit, various signal processes are performed. (See Patent Documents 1 to 3).
  • the magnetic sensor element detects a change in magnetic flux when the medium passes, and detects a magnetic pattern based on a signal output from the magnetic sensor element.
  • the magnetic sensor element is, for example, a channel in the column direction Y (medium width direction) orthogonal to the moving direction X (row direction) of the medium 1. Twenty pieces are arranged for CH1 to CH20. By scanning the twenty magnetic sensor elements 40 in the column direction Y, a magnetic pattern is detected from the entire width direction of the medium 1.
  • the magnetic sensor element 40 shown in FIGS. 18A and 18B are scanned once, data is detected in each of the 20 magnetic sensor elements 40 of the channels CH1 to CH20.
  • the magnetic sensor element 40 is converted into a detection data digital signal in the magnetic sensor element 40 by an A / D converter in synchronization with the timing when the magnetic sensor element 40 is in the ON state, the magnetic field for one column of the medium 1 is obtained. A pattern can be detected.
  • the magnetic sensor element 40 is excited by an excitation signal having a frequency of 500 kHz.
  • the medium 1 moves in the row direction X.
  • the area where the magnetic sensor element 40 is located in the on state is shown as a hatched area, and the magnetic sensor element 40 is located in the on state during the current scan in the medium 1.
  • the next magnetic sensor element 40 is in an ON state in a region adjacent to the moving direction X (region with a downward slanting line) on the opposite side to the moving direction X (region with a slanting line to the right) become. Therefore, the magnetic pattern can be detected from the entire medium 1.
  • a magnetic pattern detection apparatus that scans a plurality of magnetic sensor elements 40 arranged in the column direction Y and moves the medium 1, the moving speed of the medium 1 and the magnetic sensor elements 40 in the moving direction X of the medium 1 Depending on the dimensions and the scanning speed, as shown in FIG. 18C, the area where the magnetic sensor element 40 is located in the ON state at the time of the current scan (the area with a diagonal line rising to the right) and the next time A gap G is generated between the area where the magnetic sensor element 40 is located in the ON state during scanning (an area with a slanting line to the right).
  • the medium 1 moves 0.32 mm while one scan is completed.
  • the dimension in the moving direction of the magnetic sensor element 1 is 0.3 mm, the area where the magnetic sensor element 40 is located in the ON state during the current scan and the magnetic sensor element 40 during the next scan.
  • a gap G of 0.02 mm is generated between the region where was positioned in the ON state. For this reason, in the area corresponding to the gap G in the medium 1, the magnetic characteristics cannot be detected by the magnetic sensor element 40, and it is difficult to accurately detect the magnetic pattern from the entire surface of the medium 1.
  • the magnetic sensor element 40 since the magnetic sensor element 40 normally has a sensing range that is equal to or larger than the projection area of the magnetic sensor element 40 with respect to the medium 1, if the gap G can be covered by such a sensing range, a magnetic pattern can be generated from the entire surface of the medium 1. Even in such a case, depending on the moving speed of the medium 1, the size of the sensing range of the magnetic sensor element 40 in the moving direction X of the medium 1, and the scanning speed, It is difficult to avoid the occurrence of the gap G between the sensing range in the next scan.
  • the first object of the present invention is to provide a magnetic pattern detection device capable of improving the gain without significantly increasing the cost.
  • the second problem of the present invention is that even when a method of scanning a plurality of magnetic sensor elements arranged in the column direction and moving the medium relative to the magnetic sensor is employed, the magnetic field is reliably detected from the entire surface of the medium.
  • An object of the present invention is to provide a magnetic pattern detection device capable of detecting a pattern.
  • the present invention provides a magnetic sensor element that detects a magnetic characteristic of a medium, and a signal processing unit that detects a magnetic pattern of the medium based on a detection result of the magnetic sensor element.
  • the signal processing unit includes an amplification unit that amplifies a sensor output signal output from the magnetic sensor element excited by an excitation signal, and the amplification unit outputs the sensor output.
  • the reference voltage that changes in conjunction with the excitation signal is used, so that the difference between the sensor output signal output from the magnetic sensor element and the reference voltage is small. Therefore, the amplifier gain can be increased and the S / N ratio can be increased without adding a cost-increasing circuit such as a bridge circuit. Further, since the reference voltage changes in conjunction with the excitation signal and is synchronized with the sensor output signal, the sensor output signal can be appropriately amplified.
  • the reference voltage is preferably a signal having a waveform obtained by differentiating the excitation signal. Since the sensor output signal corresponds to the time differentiation of the magnetic flux generated by the excitation signal, if the waveform signal obtained by differentiating the excitation signal is used as the reference voltage for the amplifier, the difference between the sensor output signal and the reference voltage is small. Can be increased.
  • the reference voltage generation unit includes a CR differentiation circuit that differentiates the excitation signal to generate the reference voltage. If comprised in this way, the differentiation circuit which differentiates an excitation signal and produces
  • the reference voltage generation unit may include a dummy magnetic sensor element that is excited by the excitation signal and outputs a signal obtained by differentiating the excitation signal as the reference voltage.
  • the output signal from the dummy magnetic sensor element corresponds to the time differentiation of the magnetic flux generated by the excitation signal, and a waveform signal obtained by differentiating the excitation signal can be generated as a reference voltage. Further, with such a reference voltage, the difference from the sensor output signal is extremely small, so that the gain can be increased.
  • the signal processing unit includes: a first integrating circuit that integrates a signal component having a positive polarity in a signal output from the amplifier; and a second integrating circuit that integrates a signal component having a negative polarity. It is preferable to provide. With this configuration, even when the pulse width of the signal output from the amplifier is narrow, the signal component having a positive polarity and the signal component having a negative polarity can be integrated to convert an amplitude change into an area change. Therefore, the apparent gain can be increased with a simple configuration.
  • Another embodiment of the present invention is a magnetic pattern detection device having a magnetic sensor element that detects a magnetic characteristic of a medium, and a signal processing unit that detects a magnetic pattern of the medium based on a detection result of the magnetic sensor element.
  • the signal processing unit includes a first integration circuit that integrates a signal component having a positive polarity in the sensor output, and a second integration circuit that integrates a signal component having a negative polarity. It is characterized by.
  • a signal component having a positive polarity and a signal component having a negative polarity can be integrated to convert an amplitude change into an area change. Can increase the apparent gain.
  • the magnetic sensor element preferably includes a plurality of coils for outputting the sensor output signal as a differential output. This configuration has the advantage that it is less susceptible to disturbances.
  • the present invention includes a magnetic sensor element that detects magnetic characteristics from a medium, and a transport mechanism that moves the medium relative to the magnetic sensor element.
  • a magnetic sensor element that detects magnetic characteristics from a medium
  • a transport mechanism that moves the medium relative to the magnetic sensor element.
  • the magnetic pattern detection device a plurality of the magnetic sensor elements are arranged in a row direction orthogonal to the moving direction of the medium, and the moving speed of the medium by the transport mechanism is v (mm / ⁇ sec)
  • T dimension of the magnetic sensor element in the moving direction
  • N the number of scans per unit time ta ( ⁇ sec) of the magnetic sensor element in the column direction
  • the moving speed v and the unit time ta, the dimension T, and the number of scans N are the following conditional expressions (v ⁇ ta) ⁇ (T ⁇ N)
  • N is characterized by satisfying an integer of 2 or more.
  • the moving speed v of the medium, the dimension T in the moving direction of the magnetic sensor element, and the number of scans N per unit time ta of the magnetic sensor element in the column direction are set so as to satisfy the above conditional expression.
  • the unit time ta is one scanning period for detecting a magnetic pattern for one column of the medium, and the data obtained by the magnetic sensor element by scanning performed during the one scanning period is used as the unit time ta. Based on this, it is possible to adopt a configuration in which a magnetic pattern for one column of the medium is detected. That is, a plurality of scans are performed during one scan period for detecting a magnetic pattern for one column. For this reason, it is possible to adopt a configuration that detects a magnetic pattern for one column based on data obtained by a plurality of scans, and according to such a configuration, noise or the like is included in any of the data obtained by the magnetic sensor element. Even when the influence is included, the influence of the noise can be reduced.
  • a magnetic field corresponding to one column of the medium based on data obtained by the magnetic sensor element by one scan or a plurality of scans out of N scans performed during the one scan period.
  • a configuration in which a pattern is detected can be employed. With this configuration, an optimum operation can be realized according to the type of medium, the detection accuracy required for the magnetic pattern detection device, and the like.
  • a magnetic pattern for one column of the medium is detected based on data obtained by the magnetic sensor element by a plurality of scans out of N scans performed during the one scan period. It is preferable. With this configuration, the magnetic characteristics of the medium can be detected with high accuracy. Even if any of the data obtained by the magnetic sensor element includes the influence of noise or the like, the influence of the noise can be mitigated.
  • the present invention it is possible to adopt a configuration in which a magnetic pattern for one column of the medium is detected based on all data obtained by the magnetic sensor element by N scans performed during the one scan period.
  • the area where the magnetic sensor element is projected to the medium at the same magnification partially overlaps in the current scan and the next scan, so that the magnetic characteristics of the medium can be detected with high accuracy.
  • the influence of the noise can be mitigated.
  • the present invention employs a configuration in which a magnetic pattern for one column of the medium is detected based on data obtained by the magnetic sensor element by a part of N scans performed during one scanning period. May be.
  • a region in which the magnetic sensor element is projected at the same magnification on the medium partially overlaps in the moving direction in the current scan and the next scan.
  • a plurality of data obtained by the magnetic sensor element by scanning two or more times and less than N times, or an area where the magnetic sensor element is projected at the same magnification on the medium is moved in the current scan and the next scan.
  • a configuration in which a magnetic pattern for one column of the medium is detected based on a plurality of data obtained by the magnetic sensor element by scanning at least twice and less than N times contacting without overlapping in the direction may be adopted. Good.
  • an area in which the magnetic sensor element is projected at the same magnification on the medium is partially in the moving direction between the current scan and the next scan. It is preferable that a magnetic pattern for one column of the medium is detected based on a plurality of data obtained by the magnetic sensor element by two or more overlapping scans and less than N scans. With this configuration, the area where the magnetic sensor element is projected to the medium at the same magnification partially overlaps in the current scan and the next scan, so that the magnetic characteristics of the medium can be detected with high accuracy. . Even if any of the data obtained by the magnetic sensor element includes the influence of noise or the like, the influence of the noise can be mitigated.
  • the sensing range in the moving direction of the magnetic sensor element is larger than the dimension T in the moving direction of the magnetic sensor element, the sensing range is N out of N scans performed during the one scanning period.
  • a plurality of data obtained by the magnetic sensor element by two or more scans and less than N scans partially overlapping in the moving direction in the current scan and the next scan, or the sensing range This scan and the next scan
  • a configuration in which a magnetic pattern for one row of the medium is detected based on a plurality of data obtained by the magnetic sensor element by scanning two times or more and less than N times in contact with each other without overlapping in the moving direction. It may be adopted.
  • the sensing range is obtained by performing the scan twice or more and less than N times partially overlapping in the moving direction in the current scan and the next scan. It is preferable that a magnetic pattern for one row of the medium is detected based on a plurality of data obtained by the magnetic sensor element. With this configuration, since the sensing range partially overlaps between the current scan and the next scan, the magnetic characteristics of the medium can be detected with high accuracy. Even if any of the data obtained by the magnetic sensor element includes the influence of noise or the like, the influence of the noise can be mitigated.
  • an averaging process is performed on the plurality of data. It is preferable. With this configuration, even when a magnetic pattern for one column of the medium is detected from a plurality of data, simple processing is sufficient. In addition, by averaging a plurality of data, even if any of the data obtained by the magnetic sensor element includes the influence of noise or the like, the influence of the noise can be reduced.
  • the excitation signal when the magnetic sensor element is excited by an excitation signal and outputs a signal, the excitation signal is added to a signal output by each of the plurality of magnetic sensor elements during a single scan for a plurality of cycles. It is preferable to have a frequency including a signal component by the excitation signal.
  • each signal output from each of the plurality of magnetic sensor elements during one scan includes a signal component due to excitation signals for a plurality of cycles, so that the magnetic characteristics of the medium can be accurately determined. Can be detected.
  • the reference voltage that changes in conjunction with the excitation signal is used.
  • the difference is small. Therefore, the amplifier gain can be increased and the S / N ratio can be increased without adding a cost-increasing circuit such as a bridge circuit. Further, since the reference voltage changes in conjunction with the excitation signal, the sensor output signal and the reference voltage are synchronized, so that the sensor output signal can be appropriately amplified.
  • the signal processing unit includes a first integration circuit that integrates a signal component having a positive polarity in the sensor output, and a signal component having a negative polarity.
  • 2nd integration circuit that integrates, so even if the pulse width of the sensor output signal is narrow, the signal component with positive polarity and the signal component with negative polarity are each integrated to convert the amplitude change into area change can do. Therefore, the apparent gain can be increased with a simple configuration.
  • the moving speed v of the medium, the dimension T in the moving direction of the magnetic sensor element, and the number of scans N per unit time ta of the magnetic sensor element in the column direction are (V ⁇ ta) ⁇ (T ⁇ N)
  • N is set so as to satisfy an integer of 2 or more, the area where the magnetic sensor element is located in the on state at the time of the current scan and the magnetic sensor element in the on state at the next scan No gap is generated between the region located at Therefore, even when a plurality of magnetic sensor elements arranged in the column direction are scanned and the medium is moved relative to the magnetic sensor, the magnetic pattern can be reliably detected from the entire surface of the medium.
  • FIG. 1 is an explanatory diagram showing the configuration of a magnetic pattern detection device including the magnetic sensor device according to the first embodiment of the present invention.
  • FIGS. 1 (a) and 1 (b) are magnetic pattern detection devices. It is explanatory drawing which shows typically a principal part structure, and explanatory drawing which shows a cross-sectional structure typically.
  • a magnetic pattern detection device 100 shown in FIG. 1 is a device that detects magnetism from a medium 1 such as a banknote or a securities, and performs authenticity determination or type determination.
  • a sheet is detected by a roller, a guide (not shown), or the like.
  • a magnetic sensor device 20 that detects magnetism from the medium 1 at an intermediate position of the medium moving path 11 by the conveying device 10.
  • the roller and the guide are made of a nonmagnetic material such as aluminum.
  • the magnetic sensor device 20 is disposed below the medium movement path 11, but may be disposed above the medium movement path 11. In any case, the magnetic sensor device 20 is arranged so that the sensor surface 21 faces the medium moving path 11.
  • the medium 1 is provided with a magnetic pattern with magnetic ink on a narrow magnetic region 1a extending in the moving direction X of the medium 1.
  • the magnetic pattern has a residual magnetic flux density Br and a permeability ⁇ .
  • the medium 1 is formed with a first magnetic pattern printed with magnetic ink containing hard material and a second magnetic pattern printed with magnetic ink containing soft material. Therefore, the magnetic pattern detection apparatus 100 of the present embodiment detects the presence / absence of each magnetic pattern in the medium 1 based on both the residual magnetic flux density level and the magnetic permeability level.
  • the magnetic sensor device 20 for detecting such two types of magnetic patterns is common. Therefore, the magnetic pattern detection apparatus 100 of this embodiment has the following configuration.
  • FIG. 2 is an explanatory diagram of the magnetic sensor device 20 according to the first embodiment of the present invention.
  • FIGS. 2A and 2B show the layout of the magnetic sensor elements and the like in the magnetic sensor device 20. It is explanatory drawing which shows, and explanatory drawing which shows direction of a magnetic sensor element.
  • the magnetic sensor device 20 includes a magnetic field applying magnet 30 that applies a magnetic field to the medium 1, and a medium after the magnetic field is applied.
  • 1 includes a magnetic sensor element 40 that detects a magnetic flux when a bias magnetic field is applied, and a nonmagnetic case 25 that covers the magnetic field applying magnet 30 and the magnetic sensor element 40.
  • the magnetic sensor device 20 includes a sensor surface 21 that is substantially flush with the medium movement path 11, and slope portions 22 and 23 that are connected to both sides of the sensor surface 21 in the movement direction of the medium 1.
  • the shape is defined by the shape of the case 25.
  • the magnetic sensor device 20 extends in a direction crossing the moving direction X of the medium 1, and a plurality of magnetic field applying magnets 30 and magnetic sensor elements 40 are arranged in a direction crossing the moving direction X of the medium 1. ing. In this embodiment, the magnetic sensor device 20 extends in the medium width direction Y orthogonal to the movement direction X among the directions intersecting the movement direction X of the medium 1, and the magnetic field applying magnet 30 and the magnetic sensor element 40. Are arranged in the medium width direction Y (column direction) orthogonal to the moving direction X, and arranged in a line at equal intervals.
  • the “on state” means an active state in which an excitation signal described later is applied to the magnetic sensor element 40 and signal processing is performed on a signal output from the magnetic sensor element 40.
  • the magnetic field application magnet 30 is arranged as a first magnetic field application magnet 31 and a second magnetic field application magnet 32 on both sides of the moving direction X of the medium 1 with respect to the magnetic sensor element 40, and the arrow X1
  • a magnetic field applying first magnet 31, a magnetic sensor element 40, and a magnetic field applying second magnet 32 are arranged in this order along the moving direction of the medium 1 shown in FIG.
  • a magnetic field application second magnet 32, a magnetic sensor element 40, and a magnetic field application first magnet 31 are arranged in this order along the moving direction of the medium 1 indicated by the arrow X2, and the medium 1 is indicated by the arrow X1.
  • the magnetic property of the medium 1 can be detected regardless of the direction and the direction indicated by the arrow X2.
  • the magnetic sensor element 40 is disposed at an intermediate position between the first magnetic field application magnet 31 and the second magnetic field application magnet 32, and is separated from the magnetic sensor element 40 from the first magnetic field application magnet 31.
  • the distance is equal to the separation distance between the magnetic field application second magnet 32 and the magnetic sensor element 40.
  • the first magnetic field application magnet 31, the magnetic sensor element 40, and the second magnetic field application magnet 32 are all arranged so as to face the sensor surface 21 of the magnetic sensor device 20.
  • the magnetic field application magnet 30 (the first magnetic field application magnet 31 and the second magnetic field application magnet 32) includes a permanent magnet 35 such as a ferrite or neodymium magnet.
  • the permanent magnet 35 has a pole on which the side located on the sensor surface 21 is different from the side opposite to the side on which the sensor surface 21 is located. Magnetized. For this reason, in the permanent magnet 35, a surface located on the sensor surface 21 side functions as a magnetized surface 350 for the medium 1.
  • the magnetic field applying first magnet 31 is changed to the medium 1.
  • the medium 1 after being magnetized by the magnetic field passes through the magnetic sensor element 40.
  • a magnetic field is applied to the medium 1 from the second magnetic field application magnet 32, and the medium is magnetized by the magnetic field. 1 passes through the magnetic sensor element 40.
  • the plurality of permanent magnets 35 used in the magnetic field applying magnet 30 are all the same in size and shape, but are arranged in the following orientations.
  • the permanent magnets 35 adjacent in the medium width direction (column direction) Y orthogonal to the moving direction X of the medium 1 are opposite to each other. Is magnetized in the direction of That is, of the plurality of permanent magnets 35 arranged in the medium width direction Y perpendicular to the moving direction X of the medium 1, one permanent magnet 35 is magnetized with an N pole at the end located on the medium moving path 11 side.
  • the end located on the side opposite to the medium moving path 11 side is magnetized to the S pole, but is adjacent to the permanent magnet 35 in the medium width direction Y perpendicular to the moving direction X of the medium 1.
  • the permanent magnet 35 has an end located on the medium moving path 11 side magnetized to the S pole, and an end located on the side opposite to the medium moving path 11 side magnetized to the N pole.
  • the permanent magnet 35 of the first magnetic field application magnet 31 and the permanent magnet 35 of the second magnetic field application magnet 32 that face each other in the moving direction of the medium 1 have different poles across the magnetic sensor element 40.
  • the permanent magnet 35 of the first magnetic field application magnet 31 and the permanent magnet 35 of the second magnetic field application magnet 32 that face each other in the moving direction of the medium 1 are arranged so that the same poles face each other across the magnetic sensor element 40. Sometimes placed.
  • FIG. 3 is an explanatory diagram of the magnetic sensor element 40 used in the magnetic sensor device 20 according to the first embodiment of the present invention.
  • FIGS. 3 (a), 3 (b), and 3 (c) are magnetic sensors.
  • FIG. 4 is a front view of the element 40, an explanatory diagram of an excitation waveform for the magnetic sensor element 40, and an explanatory diagram of an output signal from the magnetic sensor element 40.
  • 3A shows a state where the medium 1 moves in a direction perpendicular to the drawing.
  • each of the magnetic sensor elements 40 has a thin plate shape, and the size in the width direction W40 is larger than the size in the thickness direction T40.
  • the magnetic sensor element 40 is arranged with the thickness direction T40 facing the moving direction X of the medium 1, and the width direction W40 is oriented in the medium width direction (column direction) Y orthogonal to the moving direction X of the medium 1. ing.
  • the magnetic sensor element 40 is covered with a thin plate-like nonmagnetic member 47 having a thickness of about 0.3 mm to 1.0 mm whose both surfaces are made of ceramic or the like.
  • the thickness of the magnetic sensor element 40 including the nonmagnetic member 47 is also included.
  • the entire direction is the thickness dimension (dimension T) of the magnetic sensor element 40.
  • the magnetic sensor element 40 may be housed in a magnetic shield case (not shown). In this case, the magnetic shield case is opened at the top where the medium movement path is located, and the magnetic sensor element 40 is exposed from the magnetic shield case toward the medium movement path 11.
  • the magnetic sensor element 40 includes a sensor core 41, an excitation coil 48 wound around the sensor core 41, and a sensor core. And a detection coil 49 wound around 41.
  • the sensor core 41 includes a body part 42 extending in the width direction W40 of the magnetic sensor element 40, and a magnetic flux collecting protrusion 43 that protrudes from the body part 42 toward the medium moving path 11 side of the medium 1. It has.
  • the magnetic flux collecting projections 43 are configured as two magnetic flux collecting projections 431 and 432 protruding from both ends of the body portion 42 in the width direction W40 toward the medium moving path 11 side of the medium 1.
  • the two magnetic flux collecting projections 431 and 432 are separated in the width direction W40.
  • the sensor core 41 includes a protrusion 44 that protrudes from the body 42 to the side opposite to the magnetism-collecting protrusion 43.
  • the protrusion 44 has both end portions in the width direction W40 of the body 42. Are formed as two protrusions 441 and 442 protruding toward the opposite side of the medium 1 from the medium moving path 11 side.
  • the exciting coil 48 is wound around a portion sandwiched by the magnetic flux collecting projections 431 and 432 in the trunk portion 42.
  • the detection coil 49 is wound around the magnetic flux collecting projection 43, and in this embodiment, the detection coil 49 includes two magnetic flux collecting projections 43 (the magnetic flux collecting projections 431 and 432) of the sensor core 41.
  • a detection coil 491 wound around the magnetic flux collection protrusion 431 and a detection coil 492 wound around the magnetic flux collection protrusion 432 are included.
  • the two detection coils 491 and 492 are wound around the magnetic flux collecting projections 431 and 432 in opposite directions.
  • the two detection coils 491 and 492 are formed by continuously winding one coil wire around the magnetic flux collecting projections 431 and 432, the two detection coils 491 and 492 are electrically connected in series. It is connected to the.
  • the two detection coils 491 and 492 may be wound around the magnetic flux collecting projections 431 and 432, respectively, and then electrically connected in series.
  • the thickness direction T40 perpendicular to both the width direction W40 and the projecting direction (height direction V40) of the magnetic flux collecting projection 43 is directed to the moving direction X of the medium 1.
  • the width direction W40 in which the magnetic flux collecting protrusions 43 (magnetic flux collecting protrusions 431 and 432) and the detection coils 49 (detection coils 491 and 492) are separated from each other is It faces the medium width direction (column direction) Y orthogonal to the movement direction X.
  • an excitation signal composed of an alternating current (see FIG. 3B) is applied to the excitation coil 48 from an excitation circuit 50 described later with reference to FIG.
  • a bias magnetic field is formed around the sensor core 41, and a detection waveform signal shown in FIG. become.
  • the detected waveform shown in FIG. 3C is a temporal differential signal of the magnetic flux generated by the excitation signal, and is close to the temporal differential signal of the excitation signal.
  • the sensor core 41 of the magnetic sensor element 40 has a magnetic material layer 41c sandwiched between a nonmagnetic first substrate 41a and a nonmagnetic second substrate 41b, as shown in FIG. 1B. It has a structure.
  • the magnetic material layer 41c is made of a thin plate-like amorphous metal foil made of an amorphous (amorphous) metal magnetic material bonded to one surface of the first substrate 41a by an adhesive layer (not shown).
  • the second substrate 41b is bonded to one surface of the first substrate 41a by an adhesive layer so as to sandwich the magnetic material layer 41c therebetween.
  • Each of these adhesive layers is a layer formed by solidifying a prepreg formed by impregnating a resin material into a fiber reinforcing material such as glass cloth, carbon fiber, or aramid fiber.
  • a resin material an epoxy resin type or a phenol resin type is used.
  • a thermosetting resin such as polyester resin is used.
  • the amorphous metal foil used as the magnetic material layer 41c is formed by rolling with a roll, and examples of cobalt-based materials include Co—Fe—Ni—Mo—B—Si, Co—Fe—Ni—B—Si, and the like.
  • Amorphous alloys such as Fe-B-Si, Fe-B-Si-C, Fe-B-Si-Cr, Fe-Co-B-Si, Fe-Ni-Mo-B, etc. Can be illustrated.
  • the first substrate 41a and the second substrate 41b include ceramic substrates such as alumina substrates, glass substrates, and the like, and plastic substrates may be used as long as sufficient rigidity can be obtained.
  • FIG. 4 is a block diagram showing an electrical configuration of the magnetic pattern detection apparatus 100 according to the first embodiment of the present invention.
  • FIGS. 4A and 4B are views of the entire main part of the circuit unit. It is explanatory drawing which shows a structure, and is explanatory drawing which shows the structure of an amplifier part periphery among circuit parts.
  • the circuit unit 5 shown in FIGS. 4A and 4B generally includes an excitation circuit 50 for applying the alternating current shown in FIG. 3B as an excitation signal to the excitation coil 48 and a detection coil 49. And an electrically connected signal processing unit 60.
  • the excitation circuit 50 includes a plurality of excitation driver amplifiers 51 corresponding to each of the plurality of magnetic sensor elements 40 shown in FIG. 2, and a multiplexer 52 for sequentially supplying excitation signals to the plurality of excitation driver amplifiers 51.
  • an amplifier 53 that generates an excitation signal from the excitation command signal, and sequentially supplies the excitation signals amplified by the excitation driver amplifier 51 to the excitation coils 48 of the plurality of magnetic sensor elements 40.
  • the signal processing unit 60 generates a first signal S1 corresponding to the residual magnetic flux density level and a second signal S2 corresponding to the magnetic permeability level from the sensor output signal output from the detection coil 49 of the magnetic sensor device 20. Based on the first signal S1 and the second signal S2 and relative position information between the medium 1 and the magnetic sensor element 40, the control unit (not shown) determines whether or not there are a plurality of types of magnetic patterns in the medium 1 and The formation position is detected.
  • the signal processing unit 60 amplifies the sensor output signal output from the magnetic sensor element 40, and the extraction unit extracts the peak value and the bottom value from the signal output from the amplification unit 70.
  • the extraction unit 80 includes a multiplexer 81 that sequentially outputs the amplified signal output from the amplification unit 70 to the subsequent stage, a clamp circuit 82, and an offset adjustment unit 83 that performs offset adjustment of the signal output from the clamp circuit 82. ing.
  • the clamp circuit 82 includes a first diode 821 that rectifies the amplified sensor output signal output from the amplification unit 70, and a polarity inversion circuit 822 that performs polarity inversion of the amplified sensor output signal output from the amplification unit 70. And a second diode 823 that rectifies the signal whose polarity is inverted in the polarity inverting circuit 822.
  • the offset adjustment unit 83 includes a first offset adjustment circuit 831 for the output from the first diode 821 and a second offset adjustment circuit 832 for the output from the second diode 823, and the first offset adjustment circuit 831.
  • the second offset adjustment circuit 832 includes offset adjustment reference voltage generation circuits 831a and 832a and operational amplifiers 831b and 832b.
  • the extraction unit 80 includes a hold circuit 84 following the offset adjustment unit 83 and a gain setting unit 85 subsequent to the hold circuit 84.
  • the hold circuit 84 includes a first peak hold circuit 841 that holds the peak value of the output signal from the first offset adjustment circuit 831, and a second peak hold circuit that holds the peak value of the output signal from the second offset adjustment circuit 832. 842.
  • the second offset adjustment circuit 832 receives a signal obtained by inverting the polarity of the signal output from the amplification unit 70 by the polarity inverting circuit 822 and then rectifying the signal by the second diode 823.
  • the second peak hold circuit 842 corresponds to a bottom hold circuit that holds the bottom value of the amplified signal output from the amplification unit 70.
  • the gain setting unit 85 is held by the gain setting first amplifier 851 (main amplifier) and the second peak hold circuit 842 (bottom hold circuit) for setting the gain of the value held by the first peak hold circuit 841. And a gain setting second amplifier 852 (main amplifier) for setting the gain of the value.
  • the values held by the first peak hold circuit 841 and the second peak hold circuit 842 are set to a predetermined gain and digitally set.
  • the signal is output to the A / D converter 91 of the signal processing unit 90.
  • the digital signal processing unit 90 adds the value held by the first peak hold circuit 841 and the value held by the second peak hold circuit 842 to generate the first signal S1; A subtracting circuit 93 that subtracts the value held by the peak hold circuit 841 from the value held by the second peak hold circuit 842 to generate the second signal S2.
  • the digital signal processing unit 90 includes a control signal output unit 94 that outputs a switching control signal, an excitation command signal, an offset control signal, and the like.
  • the digital signal processing unit 90 configured in this manner outputs a first signal S1 and a second signal S2 to a higher-level control unit (not shown). In the control unit, the first signal S1 and the second signal S2 are output. The authenticity of the medium 1 is determined based on the two signals S2.
  • the upper control unit associates the first signal S1 and the second signal S2 with the relative position information between the magnetic sensor element 40 and the medium 1, and the comparison pattern recorded in advance in the recording unit. And a determination unit that determines whether the medium 1 is true or false.
  • the determination unit is a predetermined unit based on a program recorded in advance in a recording unit (not shown) such as a ROM or a RAM. Processing is performed to determine whether the medium 1 is true or false.
  • FIG. 5 is an explanatory diagram of signals and the like input to the amplifier in the amplification unit 70 of the magnetic pattern detection device 100 according to the first embodiment of the present invention.
  • FIGS. It is explanatory drawing which shows the waveform of an excitation signal, a sensor output signal, and a reference voltage, and explanatory drawing which shows the waveform after amplifying the difference of a sensor output signal and a reference voltage with an amplifier.
  • the excitation signal is indicated by a solid line L1
  • the sensor output signal is indicated by a solid line L2
  • the reference voltage is indicated by a solid line L3
  • the difference between the sensor output signal and the reference voltage is amplified.
  • the signal after amplification at is indicated by a solid line L4.
  • the amplification unit 70 includes a plurality of amplifiers 71 (preamplifiers) corresponding to each of the plurality of magnetic sensor elements 40 as shown in FIG. A sensor output signal output from the magnetic sensor element 40 and a reference voltage are input to 71.
  • the amplification unit 70 includes a reference voltage generation unit 72 that generates, as a reference voltage, a signal that changes in conjunction with the excitation signal.
  • the amplifier 71 generates the reference voltage generation unit 72. Signal is input as the reference voltage.
  • the reference voltage has a waveform indicated by a solid line L3 in FIGS. 5A and 5B, and this waveform is a waveform obtained by differentiating the excitation signal indicated by the solid line L1 in FIG. Equivalent to. Therefore, the reference voltage changes in conjunction with the excitation signal.
  • the reference voltage generation unit 72 is a CR differentiation circuit 73 including a capacitor C and a resistor R, and the CR differentiation circuit 73 generates a signal obtained by differentiating the excitation signal as a reference voltage. To do.
  • the reference voltage obtained by differentiating the excitation signal is the sensor output signal. Synchronized with. With such a reference voltage, the difference from the sensor output signal is small as shown in FIG. 5B, so that even if the gain of the amplifier 71 is increased, as shown by the solid line L4 in FIG. The output signal from 71 does not saturate.
  • FIG. 6 is an explanatory diagram showing characteristics and the like of various magnetic inks formed on the medium 1 in the magnetic pattern detection apparatus 100 according to the first embodiment of the present invention.
  • FIG. 7 is an explanatory diagram showing the principle of detecting the presence / absence of a magnetic pattern from the medium 1 on which different types of magnetic patterns are formed in the magnetic pattern detection apparatus 100 according to the first embodiment of the present invention.
  • the medium 1 is formed with a first magnetic pattern printed with a magnetic ink containing a hard material and a second magnetic pattern printed with a magnetic ink containing a soft material.
  • the magnetic ink containing the hard material has a high level of residual magnetic flux density Br when a magnetic field is applied, as shown in FIG. 6B1 by a hysteresis loop, such as residual magnetic flux density Br and permeability ⁇ .
  • the permeability ⁇ is low.
  • magnetic ink containing a soft material has a low residual magnetic flux density Br when a magnetic field is applied as shown in FIG. 6 (c1), but has a high magnetic permeability ⁇ .
  • the material of the magnetic ink can be determined by measuring the residual magnetic flux density Br and the magnetic permeability ⁇ . More specifically, since the magnetic permeability ⁇ has a correlation with the holding force Hc, in this embodiment, the residual magnetic flux density Br and the holding force Hc are measured, and the residual magnetic flux density Br is measured. And the holding force Hc differ depending on the magnetic ink (magnetic material). Therefore, the material of the magnetic ink can be determined. Further, the measured values of the residual magnetic flux density Br and the magnetic permeability ⁇ (holding force Hc) vary depending on the density of the ink and the distance between the medium 1 and the magnetic sensor device 20, but in this embodiment, the magnetic sensor device 20 is the same. Since the residual magnetic flux density Br and the magnetic permeability ⁇ (holding force Hc) are measured at the position, the material of the magnetic ink can be reliably determined according to the ratio of the residual magnetic flux density Br and the holding force Hc.
  • the magnetic pattern detection apparatus 100 of the present embodiment when the medium 1 moves in the direction indicated by the arrow X1 and passes through the magnetic sensor apparatus 20, first, a magnetic field is applied from the first magnetic field application magnet 31 to the medium 1, and the magnetic field The medium 1 after is applied passes through the magnetic sensor element 40. Until then, the detection coil 49 of the magnetic sensor element 40 outputs a signal corresponding to the BH curve of the sensor core 41 shown in FIG. 6 (a2), as shown in FIG. 6 (a3). Accordingly, the first signal S1 output from the adding circuit 92 shown in FIG. 4 and the second signal S2 output from the subtracting circuit 93 are as shown in FIG. 6 (a4).
  • the first magnetic pattern when the first magnetic pattern is formed on the medium 1 with the magnetic ink containing a hard material such as ferrite powder, the first magnetic pattern has a high level as shown in FIG. It has a residual magnetic flux density Br. Therefore, as shown in FIG. 7A1, when the medium 1 passes through the magnetic field application magnet 30, the first magnetic pattern becomes a magnet by the magnetic field from the magnetic field application magnet 30. Therefore, the signal output from the detection coil 49 of the magnetic sensor element 40 receives a direct current bias from the first magnetic pattern as shown in FIG. 6 (b2), and FIG. 6 (b3) and FIG. The waveform changes to (a2).
  • the peak voltage and the bottom voltage of the signal S0 are shifted in the same direction as indicated by arrows A1 and A2, and the shift amount of the peak voltage and the shift amount of the bottom voltage are different.
  • the signal S0 changes as the medium 1 moves. Therefore, the first signal S1 output from the adder circuit 92 shown in FIG. 4 is as shown in FIG. 6B4, and fluctuates every time the first magnetic pattern of the medium 1 passes through the magnetic sensor element 40. .
  • the magnetic permeability ⁇ is low in the first magnetic pattern formed by the magnetic ink containing the hard material, the first magnetic pattern has an influence on the shift of the peak voltage and the bottom voltage of the signal S0. It can be considered that only the residual magnetic flux density Br. Therefore, the second signal S2 output from the subtraction circuit 93 shown in FIG. 4 does not change even when the first magnetic pattern of the medium 1 passes through the magnetic sensor element 40, and the signal shown in FIG. 6 (b4). It is the same.
  • the second magnetic pattern when the second magnetic pattern is formed on the medium 1 with magnetic ink containing a soft material such as soft magnetic stainless steel powder, the hysteresis loop of the second magnetic pattern is shown in FIG. As shown, the level of the residual magnetic flux density Br is low through the inside of the hysteresis curve of the first magnetic pattern with the magnetic ink containing the hard material shown in FIG. 6 (b1). For this reason, even after the medium 1 passes through the magnetic field applying magnet 30, the second magnetic pattern has a low residual magnetic flux density Br. However, since the magnetic permeability ⁇ is high, the second magnetic pattern functions as a magnetic material as shown in FIG. For this reason, as shown in FIG.
  • the signal output from the detection coil 49 of the magnetic sensor element 40 has an increase in the permeability ⁇ due to the presence of the second magnetic pattern.
  • the waveform shown in FIG. 7 (b2) That is, the peak voltage of the signal S0 is shifted to the higher side as indicated by the arrow A3, while the bottom voltage is shifted to the lower side as indicated by the arrow A4. At that time, the absolute value of the shift amount of the peak voltage and the shift amount of the bottom voltage are substantially equal.
  • the signal S0 changes as the medium 1 moves. Therefore, the second signal S2 output from the subtraction circuit 93 shown in FIG. 4 is as shown in FIG. 6C4, and fluctuates every time the second magnetic pattern of the medium 1 passes through the magnetic sensor element 40. .
  • the second magnetic pattern formed by the magnetic ink containing the soft material since the second magnetic pattern formed by the magnetic ink containing the soft material has a low residual magnetic flux density Br, it is the second magnetic pattern that affects the shift of the peak voltage and the bottom voltage of the signal. It can be considered that only the magnetic permeability ⁇ of. Therefore, the first signal S1 output from the addition circuit 92 shown in FIG. 4 does not change even when the second magnetic pattern of the medium 1 passes through the magnetic sensor element 40, and the signal shown in FIG. 6 (c4). It is the same.
  • the first signal S1 obtained by adding the peak value and the bottom value of the signal output from the magnetic sensor element 40 in the addition circuit 92 is the residual magnetic flux density level of the magnetic pattern.
  • the second signal S2 obtained by subtracting the peak value and the bottom value of the signal output from the magnetic sensor element 40 in the subtraction circuit 93 is a signal corresponding to the magnetic permeability ⁇ of the magnetic pattern. If monitored, it is possible to detect the presence and position of the second magnetic pattern formed by the magnetic ink containing the soft material.
  • the presence / absence and formation position of each of the magnetic patterns in the medium 1 of a plurality of types of magnetic patterns having different residual magnetic flux density Br and magnetic permeability ⁇ when a magnetic field is applied are based on both the residual magnetic flux density level and the magnetic permeability level. Can be identified.
  • the amplifier 70 of the signal processing unit 60 amplifies the sensor output signal output from the magnetic sensor element 40 excited by the excitation signal and the reference voltage.
  • the reference voltage generating unit 72 When inputting to 71, the reference voltage generating unit 72 generates a signal that changes in conjunction with the excitation signal, and inputs the signal to the amplifier 71 as a reference voltage. For this reason, the difference between the sensor output signal output from the magnetic sensor element 40 and the reference voltage is small. Therefore, the gain of the amplifier 71 can be increased and the S / N ratio can be increased without adding a circuit that increases costs, such as a bridge circuit. Further, since the reference voltage changes in conjunction with the excitation signal, the sensor output signal and the reference voltage are synchronized, and the sensor output signal can be appropriately amplified.
  • the reference voltage generation unit 72 since the reference voltage generation unit 72 generates a signal having a waveform obtained by differentiating the excitation signal as the reference voltage, the difference between the sensor output signal and the reference voltage can be reduced. That is, since the sensor output signal corresponds to time differentiation of the magnetic flux generated by the excitation signal, if a signal having a waveform obtained by differentiating the excitation signal is used as the reference voltage of the amplifier 71, the difference between the sensor output signal and the reference voltage is small. So gain can be increased.
  • the reference voltage generation unit 72 includes a CR differentiation circuit 73 that differentiates the excitation signal to generate a reference voltage, the excitation signal is differentiated by using an inexpensive electric element such as a capacitor C or a resistor R. A reference voltage can be generated.
  • the common magnetic sensor device 20 detects the presence / absence and formation position of each magnetic pattern based on both the residual magnetic flux density level and the magnetic permeability level. There is no time difference between the measurement and the permeability level measurement. Therefore, even when the measurement is performed while moving the magnetic sensor device 20 and the medium 1, the signal processing unit 60 can perform highly accurate detection with a simple configuration. In addition, since the transport device 10 is also required to have running stability only at a location that passes through the magnetic sensor device 20, the configuration can be simplified.
  • the medium 1 on which the magnetic pattern is formed by the magnetic ink including both the hard material and the soft material, and the material positioned between the hard material and the soft material are included.
  • the magnetic pattern can also be detected for the medium 1 on which the magnetic pattern is formed with the magnetic ink. That is, as for the magnetic pattern whose magnetic characteristics are located between the first magnetic pattern and the second magnetic pattern, as shown in FIG. 6 (d1), the hysteresis loop has a hard loop as shown in FIG. 6 (b1). Since it is located between the hysteresis loop of the magnetic pattern of the material and the hysteresis loop of the magnetic pattern of the soft material shown in FIG. 6 (c1), the signal pattern shown in FIG. 6 (d4) can be obtained. In addition, the presence or absence and the formation position can be detected.
  • the magnetic field application magnets 30 are arranged as the first magnetic field application magnet 31 and the second magnetic field application magnet 32 on both sides of the magnetic sensor element 40 in the moving direction of the medium 1.
  • the medium 1 moving in the direction indicated by the arrow X1 is magnetized by the first magnetic field application magnet 31, and then the magnetic sensor element 40 biases the medium 1 after magnetization.
  • the magnetic flux can be detected in a state where a magnetic field is applied, and the medium 1 moving in the direction indicated by the arrow X2 is magnetized by the magnetic field applying second magnet 32, and then magnetized by the magnetic sensor element 40.
  • the magnetic flux in a state where a bias magnetic field is applied to the medium 1 can be detected. Therefore, if the magnetic pattern detection apparatus 100 of this embodiment is used for a depositing / dispensing machine, it is possible to determine the authenticity of the deposited medium 1 and also to determine the authenticity of the dispensed medium 1. .
  • FIG. 8 is an explanatory diagram showing a configuration around the amplification unit 70 in the circuit unit of the magnetic pattern detection apparatus 100 according to the first embodiment 2 of the present invention. Since the basic configuration of this embodiment is the same as that of Embodiment 1, common portions are denoted by the same reference numerals and description thereof is omitted.
  • the amplifier 70 is provided with a plurality of amplifiers 71 corresponding to each of the plurality of magnetic sensor elements 40.
  • a multiplexer 77 is provided after the sensor element 40, and an amplifier 71 is provided after the multiplexer 77. Therefore, sensor output signals output from the plurality of magnetic sensor elements 40 are sequentially output to the amplifier 71 by the multiplexer 77. For this reason, there exists an advantage that the sensor output signal output from the some magnetic sensor element 40 can be amplified with one amplifier 71.
  • the amplification unit 70 generates a signal that changes in conjunction with the excitation signal in the reference voltage generation unit 72 including the CR differentiation circuit 73, and the signal Is input to the amplifier 71 as a reference voltage. For this reason, since the difference between the sensor output signal output from the magnetic sensor element 40 and the reference voltage is small, the gain of the amplifier 71 can be increased without adding a cost-increasing circuit such as a bridge circuit. The same effects as those of the first embodiment are obtained.
  • a plurality of excitation driver amplifiers 51 corresponding to each of the plurality of magnetic sensor elements 40 are provided.
  • a multiplexer 54 is provided after the excitation driver amplifier 51.
  • a plurality of magnetic sensor elements 40 are provided downstream of the multiplexer 54. Therefore, the excitation signal output from the excitation driver amplifier 51 is sequentially output to the plurality of magnetic sensor elements 40 by the multiplexer 54. For this reason, there is an advantage that an excitation signal can be supplied to a plurality of magnetic sensor elements 40 by one excitation driver amplifier 51.
  • the switching timing of the multiplexer 77 may be finely adjusted in order to prevent a signal that is not originally required when switching the multiplexer 77, for example, noise generated when the detection signal is switched by the multiplexer 77 from passing through the subsequent stage.
  • an analog switch 79 may be added to the output stage of the amplifier 71 so that noise or the like does not pass through the subsequent stage.
  • FIG. 9 is an explanatory diagram showing a configuration of the amplifying unit 70 of the magnetic pattern detection device 100 according to the first embodiment 3 of the present invention, and FIGS. It is explanatory drawing which shows a structure, and explanatory drawing of the magnetic sensor element for dummy. Since the basic configuration of this embodiment is the same as that of the first and second embodiments, common portions are denoted by the same reference numerals and description thereof is omitted.
  • the reference voltage generation unit 72 including the CR differentiation circuit 73 is used.
  • a dummy magnetic sensor element 74 is provided.
  • a reference voltage generator 72 is provided. Therefore, the dummy magnetic sensor element 74 can generate a signal that changes in conjunction with the excitation signal, and can input this signal to the amplifier 71 as a reference voltage.
  • the dummy magnetic sensor element 74 is provided at a position separated from the medium moving path 11 shown in FIG. 1 and is not affected by the medium 1 or the magnetic sensor element 40 magnetically.
  • the dummy magnetic sensor element 74 has the same configuration as the magnetic sensor element 40 described with reference to FIGS. 2B and 3B.
  • the sensor core 41 has a structure in which an excitation coil 48 and a detection coil 49 are wound.
  • An excitation signal is supplied to the excitation coil 48 of the dummy magnetic sensor element 74 via the dummy excitation driver amplifier 510, and an output from the detection coil 49 of the dummy magnetic sensor element 74 is used as a reference voltage for the amplifier 71. Has been supplied to.
  • the dummy magnetic sensor element 74 is excited by the excitation signal and outputs a signal obtained by differentiating the excitation signal from the detection coil 49.
  • the output signal from the dummy magnetic sensor element 74 corresponds to the time differentiation of the magnetic flux generated by the excitation signal, and is a waveform signal obtained by differentiating the excitation signal. For this reason, since the difference between the reference voltage and the sensor output signal can be made extremely small, the gain can be increased.
  • the reference voltage generator 72 including the dummy magnetic sensor element 74 is provided based on the first embodiment 2. However, the dummy magnetic sensor element is different from the first embodiment. A reference voltage generation unit 72 having 74 may be provided.
  • FIG. 10 is an explanatory diagram showing a configuration around the amplification unit 70 of the magnetic pattern detection device 100 according to the first embodiment of the present invention. Since the basic configuration of this embodiment is the same as that of the first to third embodiments, common portions are denoted by the same reference numerals and description thereof is omitted.
  • the offset adjustment unit 83 is provided at the subsequent stage of the clamp circuit 82.
  • the offset adjustment unit 83 includes the first offset adjustment circuit 831 as shown in FIG.
  • the operational amplifier 831b and the operational amplifier 832b of the second offset adjustment circuit 832 are provided with capacitors, and the first offset adjustment circuit 831 and the second offset adjustment circuit 832 are configured as a first integration circuit 835 and a second integration circuit 836. ing.
  • the first integration circuit 835 integrates a signal component having a positive polarity in the signal output from the amplifier 71
  • the second integration circuit 836 integrates a signal component having a negative polarity. Therefore, even when the pulse width of the signal output from the amplifier 71 is narrow, the signal component having a positive polarity and the signal component having a negative polarity can be integrated to convert the amplitude change into an area change. The apparent gain can be increased with a simple configuration.
  • the amplification unit 70 generates a signal that changes in conjunction with the excitation signal in the reference voltage generation unit 72 including the CR differentiation circuit 73, and the signal Is input to the amplifier 71 as a reference voltage. For this reason, since the difference between the sensor output signal output from the magnetic sensor element 40 and the reference voltage is small, the gain of the amplifier 71 can be increased without adding a cost-increasing circuit such as a bridge circuit. The same effects as those of the first embodiment are obtained.
  • FIG. 11 is an explanatory diagram showing a configuration around the offset adjustment unit 83 of the magnetic pattern detection apparatus 100 according to the first embodiment of the present invention. Since the basic configuration of this embodiment is the same as that of the first to fourth embodiments, common portions are denoted by the same reference numerals and description thereof is omitted.
  • the reference voltage generation unit 72 is provided in the amplification unit 70. However, in this embodiment, the reference voltage generation unit 72 is not provided in the amplification unit 70 as shown in FIG.
  • the reference voltage of the amplifier 71 is a constant potential such as a ground potential.
  • the first offset adjustment circuit 831 and the second offset adjustment circuit 832 are configured as a first integration circuit 835 and a second integration circuit 836. Therefore, the first integration circuit 835 integrates a signal component having a positive polarity in the signal output from the magnetic sensor element 40, and the second integration circuit 836 integrates a signal component having a negative polarity.
  • the signal component having a positive polarity and the signal component having a negative polarity can be integrated to convert the amplitude change into an area change.
  • the apparent gain can be increased with a simple configuration.
  • FIG. 12 is an explanatory diagram of the magnetic sensor element 40 used in the magnetic pattern detection device 100 according to the first embodiment of the present invention. Since the basic configuration of this embodiment is the same as that of the first to first embodiments, common portions are denoted by the same reference numerals and description thereof is omitted.
  • the excitation signal is applied only to the excitation coil 48 of the magnetic sensor element 40 and the detection coil 49.
  • An excitation coil 48 and a detection coil 49 are connected in series, and an excitation signal is applied to the excitation coil 48 and the detection coil 49.
  • an amplifier 71 is connected to a connection portion between the excitation coil 48 and the detection coil 49, and a signal is differentially output to the amplifier 71 from a connection portion between the excitation coil 48 and the detection coil 49.
  • the amplification unit 70 generates a signal that changes in conjunction with the excitation signal in the reference voltage generation unit 72 including the CR differentiation circuit 73, and the signal Is input to the amplifier 71 as a reference voltage. For this reason, since the difference between the sensor output signal output from the magnetic sensor element 40 and the reference voltage is small, the gain of the amplifier 71 can be increased without adding a cost-increasing circuit such as a bridge circuit. The same effects as those of the first embodiment 1 are obtained.
  • FIGS. 1, 2, 3, 6, and 7 The same configuration and characteristics as the principle of detecting the presence / absence of a magnetic pattern, such as the magnetic pattern detection device, magnetic sensor device, magnetic sensor element, and magnetic ink characteristics described in 1. can be used. Detailed description here is omitted.
  • FIG. 13 is an explanatory diagram showing an electrical configuration of the magnetic pattern detection device 100 according to the second embodiment of the present invention.
  • FIGS. 13 (a) and 13 (b) show the entire main part of the circuit unit. It is explanatory drawing which shows a structure, and an explanatory view which shows a mode that a some magnetic sensor element is scanned, and is sequentially in an ON state.
  • the basic configuration of the circuit portion of this embodiment shown in FIG. 13A is the same as the configuration of the circuit portion of the first embodiment shown in FIG. Are described with the same reference numerals.
  • the circuit section 5 shown in FIG. 13A is generally configured by an excitation circuit 50 that applies the alternating current shown in FIG. 3B to the excitation coil 48 as an excitation signal, and a detection coil 49 of the magnetic sensor element 40. (See FIG. 2B and FIG. 3A) and a signal processing unit 60 that is electrically connected.
  • the excitation circuit 50 includes a plurality of excitation driver amplifiers 51 corresponding to each of the plurality of magnetic sensor elements 40 shown in FIG. 2, and a multiplexer 52 for sequentially supplying excitation signals to the plurality of excitation driver amplifiers 51. And an amplifier 53 for generating an excitation signal from the excitation command signal.
  • the excitation coil 48 (see FIGS.
  • the excitation driver amplifier 51 includes an excitation driver amplifier 51.
  • the excitation signals after being amplified in step 1 are sequentially supplied.
  • a common excitation driver amplifier 51 may be arranged for the plurality of magnetic sensor elements 40 at the subsequent stage of the multiplexer 52.
  • the signal processing unit 60 generates a first signal S1 corresponding to the residual magnetic flux density level and a second signal S2 corresponding to the magnetic permeability level from the sensor output signal output from the detection coil 49 of the magnetic sensor device 20.
  • the data is output to an upper control unit (not shown).
  • the signal processing unit 60 includes an amplification unit 70 including an amplifier 71 that amplifies the sensor output signal output from the magnetic sensor element 40, and a peak value and a bottom value from the signal output from the amplification unit 70. And a digital signal processing unit 90 provided with an A / D converter 91.
  • the extraction unit 80 includes a multiplexer 81 that sequentially outputs the amplified signal output from the amplification unit 70 to the subsequent stage, a clamp circuit 82, and an offset adjustment circuit 83 that performs offset adjustment of the signal output from the clamp circuit 82. ing.
  • the clamp circuit 82 includes a first diode 821 that rectifies the amplified sensor output signal output from the amplification unit 70, and a polarity inversion circuit 822 that performs polarity inversion of the amplified sensor output signal output from the amplification unit 70. , And a second diode 823 that rectifies the signal whose polarity has been inverted in the polarity inverting circuit 822. Therefore, the offset adjustment circuit 83 includes a first offset adjustment circuit 831 for the output from the first diode 821 and a second offset adjustment circuit 832 for the output from the second diode 823, and the first offset adjustment circuit 831.
  • the second offset adjustment circuit 832 includes offset adjustment reference voltage generation circuits 831a and 832a and operational amplifiers 831b and 832b.
  • a common amplifier 71 may be arranged for the plurality of magnetic sensor elements 40 at the subsequent stage of the multiplexer 81.
  • the extraction unit 80 includes a hold circuit 84 following the offset adjustment circuit 83 and a gain setting unit 85 subsequent to the hold circuit 84.
  • the hold circuit 84 includes a first peak hold circuit 841 that holds the peak value of the output signal from the first offset adjustment circuit 831, and a second peak hold circuit that holds the peak value of the output signal from the second offset adjustment circuit 832. 842.
  • the second offset adjustment circuit 832 receives a signal obtained by inverting the polarity of the signal output from the amplification unit 70 by the polarity inverting circuit 822 and then rectifying the signal by the second diode 823.
  • the second peak hold circuit 842 corresponds to a bottom hold circuit that holds the bottom value of the amplified signal output from the amplification unit 70.
  • the gain setting unit 85 sets the gain of the value held by the first peak hold circuit 841 and the gain of the value held by the second peak hold circuit 842 (bottom hold circuit).
  • the gain setting second amplifier 852 is set, and the values held by the first peak hold circuit 841 and the second peak hold circuit 842 are set to a predetermined gain, and the A / D of the digital signal processing unit 90 is set. Output to the converter 91.
  • the digital signal processor 90 adds the value held by the A / D converter 91, the first peak hold circuit 841, and the value held by the second peak hold circuit 842 to generate the first signal S1.
  • the addition circuit 92 includes a subtraction circuit 93 that subtracts the value held by the first peak hold circuit 841 and the value held by the second peak hold circuit 842 to generate the second signal S2.
  • the magnetic sensor element 40 outputs a plurality of signals (four signals in this embodiment) during one scanning period in order to determine the magnetic characteristics of one region on the medium 1. Therefore, the digital signal processing unit 90 includes an averaging processing unit 96 subsequent to the A / D converter 91. Therefore, the adder circuit 92 digitally signals the four values held by the first peak hold circuit 841 and the second peak hold circuit 842 by the A / D converter 91, and then the four values are averaged by the averaging processor 96. Addition processing is performed using the averaged values.
  • the subtracting circuit 93 digitalizes the four values held by the first peak hold circuit 841 and the second peak hold circuit 842 by the A / D converter 91 and then averages the four values by the averaging processing unit 96. Subtraction processing is performed using the converted value.
  • the digital signal processing unit 90 includes a control signal output unit 94 that outputs a switching control signal, an excitation command signal, an offset control signal, and the like.
  • the switching control signal controls the multiplexers 52 and 81, and FIG.
  • a plurality of magnetic sensor elements 40 arranged in the medium width direction, that is, in the column direction Y perpendicular to the row direction X, which is the moving direction of the medium 1, are arranged. This controls the scanning operation and the timing at which other circuits operate.
  • the digital signal processing unit 90 configured as described above outputs a first signal S1 and a second signal S2 to a higher-level control unit (not shown).
  • the first signal S1 and the second signal S2 are output.
  • the authenticity of the medium 1 is determined based on the two signals S2. More specifically, the upper control unit associates the first signal S1 and the second signal S2 with the relative position information between the magnetic sensor element 40 and the medium 1, and the comparison pattern recorded in advance in the recording unit.
  • a determination unit that determines whether the medium 1 is true or false.
  • the determination unit is a predetermined unit based on a program recorded in advance in a recording unit (not shown) such as a ROM or a RAM. Processing is performed to determine whether the medium 1 is true or false.
  • FIG. 14 is an explanatory diagram showing the scanning operation and the like of the magnetic pattern detection apparatus 100 according to the second embodiment of the present invention.
  • FIG. 2 is an explanatory diagram showing a state in which the magnetic sensor elements 40 are arranged in the column direction Y, an explanatory diagram showing an enlarged layout of the magnetic sensor elements, and a magnetic sensor element that is turned on during one scanning period for each scan.
  • An explanatory view showing a state where a position is moved on the medium 1 and an explanation showing an enlarged view of a state where a position where the magnetic sensor element which is in an on state is moved for each scan is moved on the medium 1 during one scan period.
  • FIGS. 15A and 15B are explanatory diagrams showing the operating conditions of the circuit unit in the magnetic pattern detection apparatus 100 according to the second embodiment of the present invention.
  • FIGS. 15A and 15B show the frequency and sample of the detection signal. It is explanatory drawing which shows the relationship with hold operation
  • the magnetic sensor element 40 is in the column direction Y (medium width direction) orthogonal to the moving direction X of the medium 1.
  • Twenty channels are arranged for the channels CH1 to CH20, and the magnetic pattern is detected from the entire width direction of the medium 1 by scanning the twenty magnetic sensor elements 40 in the column direction. That is, if a plurality of magnetic sensor elements 40 are scanned in the column direction, data is detected in each of the 20 magnetic sensor elements 40 of the channels CH1 to CH20. Further, the medium 1 moves in the row direction (movement direction X). For this reason, a magnetic pattern can be detected from the entire medium 1.
  • the moving speed of the medium 1 by the transport mechanism 10 is v (mm / ⁇ sec), and the dimension of the magnetic sensor element 40 in the moving direction X is T (mm).
  • the moving speed v, the unit time ta, the dimension T, and the number of scans N are expressed by the following conditional expression (v ⁇ ta) ⁇ (T ⁇ N)
  • N satisfies an integer of 2 or more.
  • the unit time ta is one scanning period for detecting a magnetic pattern for one column of the medium 1. Therefore, in this embodiment, the magnetic sensor element 40 is scanned N times in the column direction Y during one scanning period, and one column is based on all the data obtained by the magnetic sensor element 40 by the N times of scanning. Minute magnetic pattern is detected.
  • the dimension T (thickness dimension) of the magnetic sensor element 40 in the moving direction X of the medium 1 0.3 mm.
  • the medium 1 moves 0.08 mm while one scan is completed, but the dimension in the moving direction of the magnetic sensor element 1 is 0.3 mm. It is. For this reason, the area in which the magnetic sensor element 40 is projected onto the medium 1 at the same magnification partially overlaps in the movement direction X between the current scan and the next scan.
  • FIGS. 14C and 14D show an area where the magnetic sensor element 40 for the channel CH1 is in the ON state during the first scan in the n-th scanning period (the ON state with respect to the medium 1).
  • a region obtained by projecting the magnetic sensor element 40 for the channel CH1 at the same magnification) is indicated by a solid line SCH (n, 1).
  • a region in which the magnetic sensor element 40 for the channel CH1 is located in the ON state during the second scan in the current scanning period (n-th) is indicated by an alternate long and short dash line SCH (n, 2).
  • a region where the magnetic sensor element 40 for the channel CH1 is located in the ON state during the third scan in the current scanning period (n-th) is indicated by a dotted line SCH (n, 3).
  • a region where the magnetic sensor element 40 for the channel CH1 is located in the ON state during the fourth scan in the current scanning period (n-th) is indicated by a two-dot chain line SCH (n, 4).
  • the region where the magnetic sensor element 40 is in the on state moves in the same position in the medium width direction, that is, the column direction Y.
  • FIG. 14C and FIG. The position of each region is slightly shifted in the column direction Y so that it can be easily understood.
  • 14C and 14D show the magnetic sensor element for the channel CH1 during the n + 1th scanning period as a region where the magnetic sensor element 40 is positioned in the ON state during the n + 1th scanning period. Only the area 40 is located at the time of the first scan is shown.
  • a region where the element 40 is located partially overlaps in the movement direction X.
  • the same is true between the second scan and the third scan, and between the third scan and the fourth scan.
  • the region in which the magnetic sensor element 40 is located in the next scan partially overlaps in the movement direction X. Accordingly, in the current scan and the next scan, the area where the magnetic sensor element 40 is turned on at the current scan is projected onto the medium 1 at the same magnification, and the magnetic sensor element 40 is turned on at the next scan. There is no gap between the position projected onto the medium 1 and the same magnification. The same applies to the magnetic sensor elements 40 for other channels.
  • the region SCH1 (n) obtained by adding up the regions where the magnetic sensor element 40 for the channel CH1 is in the ON state during the first to fourth scans in the current scan period (nth) is indicated by the solid line SCH. It is a region obtained by adding up the region indicated by (n, 1), the region indicated by the one-dot chain line SCH (n, 2), the region indicated by the dotted line SCH (n, 3), and the region indicated by the two-dot chain line SCH (n, 2).
  • the region SCH1 (n) is a region (solid line CH1 (n + 1, 1) indicated by the solid sensor CH1 (n + 1, 1) where the magnetic sensor element 40 is in the on state during the first scan in the next scan period (n + 1th scan period).
  • Such a scan operation is represented as shown in FIG. 13B, and a scan in which the magnetic sensor elements 40 of the channels CH1 to CH20 are sequentially turned on is executed a total of four times during one scan period.
  • the frequency of the excitation signal shown in FIG. 3B is set to 2 MHz because the ON time of the magnetic sensor element 40 for each CH is shortened to 2.5 ⁇ sec.
  • the magnetic sensor element 40 has a plurality of signal components (sensor output signals) shown in FIG. 3C during one ON time (2.5 ⁇ sec).
  • the number is three in the form) and is output to the extraction unit 80 shown in FIG. That is, the excitation signal has a frequency at which the signal component of the excitation signal for a plurality of cycles is included in the signal output from each of the plurality of magnetic sensor elements 40 during one scan.
  • a plurality of signal components are included in each detection signal output from each of the plurality of magnetic sensor elements 40 during scanning. Therefore, even if the on-time of the magnetic sensor element 40 is short, in the hold circuit 84 shown in FIG. 13A, the first peak hold circuit 841 and the second peak hold circuit 842 can hold three times. Therefore, peak hold can be performed reliably.
  • the necessary band of the signal input to the A / D converter 91 shown in FIG. 13A is a relatively low frequency band, and therefore, the solid line is shown in FIG. 15B.
  • the sampling frequency of the A / D converter 91 is set to 20 kHz for each CH, and is set to a relatively low frequency. For this reason, the signal output from the magnetic sensor element 40 can be appropriately converted into a digital signal. That is, with the configuration described with reference to FIG. 18, the sampling frequency of the A / D converter 91 is set to 1 MHz as shown as a reference example in FIG. Even if the sampling is performed four times in the middle (the flat portion of the signal after being held in FIG.
  • the sampling frequency of the A / D converter 91 is set to 20 kHz, it is possible to reduce noise having a frequency component higher than 5 kHz even if the same averaging process is performed four times.
  • the moving speed v (mm / ⁇ sec) of the medium 1 the dimension T (mm) in the moving direction X of the magnetic sensor element 40, and the column direction that is the medium width direction.
  • the number of scans N per unit time ta ( ⁇ sec) of the magnetic sensor element 40 in Y is expressed by the following conditional expression (v ⁇ ta) ⁇ (T ⁇ N)
  • N satisfies an integer greater than or equal to 2
  • the unit time ta is one scanning period for detecting a magnetic pattern for one column of the medium 1, and the data obtained by the magnetic sensor element 40 by the scanning performed during the one scanning period.
  • the magnetic pattern for one column of the medium 1 is detected. That is, N scans (4 scans in this embodiment) are performed during one scan period for detecting a magnetic pattern for one column. For this reason, since a magnetic pattern for one column can be detected based on a plurality of data obtained by a plurality of scans, any of the data obtained by the magnetic sensor element 40 includes an influence such as noise. However, the influence of such noise can be mitigated.
  • the magnetic pattern for one column of the medium 1 is detected based on all data obtained by the magnetic sensor element 40 by N scans performed during one scanning period.
  • the area where the magnetic sensor element 40 is projected at the same magnification partially overlaps in the current scan and the next scan. Therefore, the magnetic characteristics of the medium 1 can be detected with high accuracy.
  • the common magnetic sensor device 20 detects the presence / absence and formation position of each magnetic pattern based on both the residual magnetic flux density level and the magnetic permeability level. There is no time difference between the measurement and the permeability level measurement. Therefore, even when the measurement is performed while moving the magnetic sensor device 20 and the medium 1, the signal processing unit 60 can perform highly accurate detection with a simple configuration. In addition, since the transport device 10 is also required to have running stability only at a location that passes through the magnetic sensor device 20, the configuration can be simplified.
  • the medium 1 on which the magnetic pattern is formed by the magnetic ink including both the hard material and the soft material, and the material positioned between the hard material and the soft material are included.
  • the magnetic pattern can also be detected for the medium 1 on which the magnetic pattern is formed with the magnetic ink. That is, as for the magnetic pattern whose magnetic characteristics are located between the first magnetic pattern and the second magnetic pattern, as shown in FIG. 6 (d1), the hysteresis loop has a hard loop as shown in FIG. 6 (b1). Since it is located between the hysteresis loop of the magnetic pattern of the material and the hysteresis loop of the magnetic pattern of the soft material shown in FIG. 6 (c1), the signal pattern shown in FIG. 6 (d4) can be obtained. In addition, the presence or absence and the formation position can be detected.
  • the magnetic field application magnets 30 are arranged as the first magnetic field application magnet 31 and the second magnetic field application magnet 32 on both sides of the magnetic sensor element 40 in the moving direction of the medium 1.
  • the medium 1 moving in the direction indicated by the arrow X1 is magnetized by the first magnetic field application magnet 31, and then the magnetic sensor element 40 biases the medium 1 after magnetization.
  • the magnetic flux can be detected in a state where a magnetic field is applied, and the medium 1 moving in the direction indicated by the arrow X2 is magnetized by the magnetic field applying second magnet 32, and then magnetized by the magnetic sensor element 40.
  • the magnetic flux in a state where a bias magnetic field is applied to the medium 1 can be detected. Therefore, if the magnetic pattern detection apparatus 100 of this embodiment is used for a depositing / dispensing machine, it is possible to determine the authenticity of the deposited medium 1 and also to determine the authenticity of the dispensed medium 1. .
  • FIG. 16 is an explanatory diagram showing the position of the magnetic sensor element 40 for each scan in the magnetic pattern detection apparatus 100 according to the second embodiment of the present invention.
  • the basic configuration of this embodiment is the same as that of the second embodiment. Accordingly, in the following description, common parts are denoted by the same reference numerals and description thereof is omitted.
  • the moving speed v (mm / ⁇ sec) of the medium 1, the dimension T (mm) in the moving direction X of the magnetic sensor element 40, and the column direction Y are the same as in the second embodiment.
  • the number of scans N per unit time ta ( ⁇ sec) of the magnetic sensor element 40 is expressed by the following conditional expression (v ⁇ ta) ⁇ (T ⁇ N) However, N satisfies an integer of 2 or more. For this reason, as shown in FIG. 16, in the two consecutive scans of the first to fourth scans, the region where the magnetic sensor element 40 is in the ON state is partially in the moving direction. overlapping.
  • the magnetic pattern for one column of the medium 1 is detected based on all the data obtained by the magnetic sensor element 40 by four scans performed during one scanning period.
  • a magnetic pattern for one column of the medium 1 is detected based on data obtained by the magnetic sensor element 40 by a part of the N scans performed during one scanning period.
  • an area in which the magnetic sensor element 40 is projected to the medium 1 at the same magnification is the medium in the current scan and the next scan.
  • a magnetic pattern for one row of the medium 1 is detected based on a plurality of data obtained by the magnetic sensor element 40 by two or more and less than N scans partially overlapping in one movement direction X.
  • the region where the magnetic sensor element 40 for the channel CH1 is in the ON state at the time of the first scan is the magnetic sensor element 40 for the channel CH1 at the time of the third scan. Partially overlaps with the moving direction X in the region where the is located in the ON state. Therefore, in this embodiment, an averaging process is performed on the data obtained by the magnetic sensor element 40 during the first scan and the data obtained by the magnetic sensor element 40 during the third scan, Based on the processing result, the magnetic pattern for one column of the medium 1 is detected.
  • the region where the magnetic sensor element 40 is projected to the medium 1 at an equal magnification is in contact with the current scan and the next scan in the medium 1 moving direction X without overlapping.
  • a magnetic pattern for one column of the medium 1 may be detected based on a plurality of data obtained by the magnetic sensor element 40 by scanning less than N times.
  • FIG. 17 is an explanatory diagram showing the position of the magnetic sensor element 40 and its sensing range for each scan in the magnetic pattern detection apparatus 100 according to the second embodiment of the present invention.
  • the basic configuration of this embodiment is the same as that of the second embodiment. Accordingly, in the following description, common parts are denoted by the same reference numerals and description thereof is omitted.
  • the moving speed v (mm / ⁇ sec) of the medium 1, the dimension T (mm) in the moving direction X of the magnetic sensor element 40, and the column direction Y are the same as in the second embodiment.
  • the number of scans N per unit time ta ( ⁇ sec) of the magnetic sensor element 40 is expressed by the following conditional expression (v ⁇ ta) ⁇ (T ⁇ N) However, N satisfies an integer of 2 or more. For this reason, as shown in FIG. 17, in the two consecutive scans of the first to fourth scans, the region where the magnetic sensor element 40 is located in the ON state is partially in the movement direction. overlapping.
  • the magnetic pattern for one column of the medium 1 is detected based on all the data obtained by the magnetic sensor element 40 by four scans performed during one scanning period.
  • a magnetic pattern for one column of the medium 1 is detected based on data obtained by the magnetic sensor element 40 by a part of the N scans performed during one scanning period.
  • the magnetic sensor element 40 has a wider actual sensing range than the area projected onto the medium 1 at the same magnification, and the sensing range of the magnetic sensor element 40 in the moving direction X of the medium 1.
  • the magnetic pattern for one column of the medium 1 is detected on the basis of a plurality of data obtained by the magnetic sensor element by the scan.
  • the sensing range when the magnetic sensor element 40 for the channel CH1 is turned on during the first scan is the same as the magnetic field for the channel CH1 during the third scan. It partially overlaps the sensing range when the sensor element 40 is turned on. Therefore, in this embodiment, an averaging process is performed on the data obtained by the magnetic sensor element 40 during the first scan and the data obtained by the magnetic sensor element 40 during the third scan, Based on the processing result, the magnetic pattern for one column of the medium 1 is detected.
  • the dimension T in the moving direction X of the magnetic sensor element 40, the number of scans N per unit time ta ( ⁇ sec) of the magnetic sensor element 40 in the column direction Y, etc., during one scanning period is in contact with the current scan and the next scan at least two times without overlapping in the moving direction X of the medium 1
  • a magnetic pattern for one column of the medium 1 may be detected based on a plurality of data obtained by the magnetic sensor element 40 by scanning less than N times.
  • the magnetic pattern for one column of the medium 1 based on the data obtained by the magnetic sensor element 40 by four or two of the N scans performed during one scan period.
  • one column of the medium 1 is determined based on data obtained by the magnetic sensor element 40 by one or three of the N scans performed during one scan period.
  • the medium 1 may be detected based on data obtained by the magnetic sensor element 40 by one scan or a plurality of scans out of N scans performed during one scan period. It is sufficient to detect the magnetic pattern for one column. More specifically, N scans are performed during one scan period, and data is acquired via the magnetic sensor element 40 for each scan. In determining the magnetic pattern for one column of the medium 1, Of the N scans performed during one scan period, data obtained by the magnetic sensor element 40 by one scan or a plurality of scans may be used.
  • the current scan and the next scan are obtained by a plurality of scans in which the sensing range in the magnetic sensor element 40 is connected.
  • the magnetic sensor element 40 in the current scan and the next scan among the N scans performed during one scan period may be detected based on data obtained by a plurality of scans that are not connected to each other and are separated.
  • the data obtained by the scan in which the sensing range in the magnetic sensor element 40 is connected in the current scan and the next scan and the sensing range in the magnetic sensor element 40 in the current scan and the next scan are not connected.
  • the magnetic pattern for one column of the medium 1 may be detected based on the data obtained by the scan.
  • N scans performed during one scanning period it is variable which one of the magnetic patterns for one column of the medium 1 is detected based on data obtained by the magnetic sensor element 40 at the time of scanning. It may be configured to be arbitrarily set by a command to the digital signal processing unit 90 from an upper control unit or the outside. With this configuration, it is possible to realize an optimum operation according to the type of the medium 1, the detection accuracy required for the magnetic pattern detection device 100, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inspection Of Paper Currency And Valuable Securities (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

Provided is a magnetic pattern detection device capable of increasing a gain without a large increase in cost. Specifically, in the magnetic pattern detection device (100); when an amplification unit (70) of a signal processing unit (60) inputs a sensor output signal and a reference voltage to an amplifier (71), the sensor output signal being output from a magnetic sensor element (40) which is excited by an excitation signal; a reference voltage generation unit (72) generates a signal varying in tandem with the excitation signal, and inputs the generated signal to an amplifier (71) as a reference voltage. The reference voltage generation unit (72) is provided with a CR differentiation circuit (73) which generates a reference voltage by differentiating the excitation signal, and, because the generated reference voltage is slightly diffrent from the sensor output signal output from the magnetic sensor element, the amplifier gain can be increased.

Description

磁気パターン検出装置Magnetic pattern detector
 本発明は、磁性体が取り付けられた物体や磁気インクで印刷が施された紙幣等といった媒体の磁気パターンを検出する磁気パターン検出装置に関するものである。 The present invention relates to a magnetic pattern detection device for detecting a magnetic pattern of a medium such as an object to which a magnetic material is attached or a banknote printed with magnetic ink.
 磁性体が取り付けられたカード等の物体や、磁気インクで印刷が施された紙幣等の媒体から磁気パターンを検出する磁気パターン検出装置では、媒体が通過した際の磁束変化を磁気センサ素子で検出し、磁気センサ素子から出力されたセンサ出力信号に対して信号処理部での信号処理を行なっている。ここで、信号処理部には、センサ出力信号と、定電圧からなる基準電圧とが入力されるアンプによって増幅部が構成されており、センサ出力信号を増幅部で増幅した後、各種信号処理を行なっている(特許文献1~3参照)。 In a magnetic pattern detection device that detects magnetic patterns from objects such as cards with magnetic materials attached, or paper such as banknotes printed with magnetic ink, the magnetic sensor element detects changes in magnetic flux when the medium passes. The signal processing unit performs signal processing on the sensor output signal output from the magnetic sensor element. Here, the signal processing unit includes an amplifying unit configured by an amplifier to which a sensor output signal and a reference voltage composed of a constant voltage are input. After the sensor output signal is amplified by the amplifying unit, various signal processes are performed. (See Patent Documents 1 to 3).
 また、このような磁気パターン検出装置では、媒体が通過した際の磁束変化を磁気センサ素子で検出し、磁気センサ素子から出力された信号に基づいて磁気パターンを検出する。ここで、磁気センサ素子は、図18(a)、(b)に示すように、媒体1の移動方向X(行方向)に対して直交する列方向Y(媒体幅方向)に、例えば、チャンネルCH1~CH20用として20個配列されており、かかる20個の磁気センサ素子40を列方向Yにスキャンすることにより、媒体1の幅方向全体から磁気パターンを検出するようになっている。 Further, in such a magnetic pattern detection device, the magnetic sensor element detects a change in magnetic flux when the medium passes, and detects a magnetic pattern based on a signal output from the magnetic sensor element. Here, as shown in FIGS. 18A and 18B, the magnetic sensor element is, for example, a channel in the column direction Y (medium width direction) orthogonal to the moving direction X (row direction) of the medium 1. Twenty pieces are arranged for CH1 to CH20. By scanning the twenty magnetic sensor elements 40 in the column direction Y, a magnetic pattern is detected from the entire width direction of the medium 1.
 すなわち、図18(a)、(b)に示す複数の磁気センサ素子40を1回スキャンすれば、チャンネルCH1~CH20の20個の磁気センサ素子40の各々でデータが検出されるので、図18(d)に示すように、磁気センサ素子40がオン状態にあるタイミングに同期させてA/Dコンバータで磁気センサ素子40での検出データデジタル信号に変換すれば、媒体1の1列分の磁気パターンを検出することができる。ここで、磁気センサ素子40は、周波数が500kHzの励磁信号により励磁される。 That is, if the plurality of magnetic sensor elements 40 shown in FIGS. 18A and 18B are scanned once, data is detected in each of the 20 magnetic sensor elements 40 of the channels CH1 to CH20. As shown in (d), if the magnetic sensor element 40 is converted into a detection data digital signal in the magnetic sensor element 40 by an A / D converter in synchronization with the timing when the magnetic sensor element 40 is in the ON state, the magnetic field for one column of the medium 1 is obtained. A pattern can be detected. Here, the magnetic sensor element 40 is excited by an excitation signal having a frequency of 500 kHz.
 また、媒体1は行方向Xに移動する。このため、磁気センサ素子40がオン状態で位置していた領域を斜線領域として図18(c)に示すように、媒体1において今回のスキャンの際に磁気センサ素子40がオン状態で位置していた領域(右上がりの斜線を付した領域)に対して移動方向Xとは反対側で隣り合う領域(右下がりの斜線を付した領域)に次回の磁気センサ素子40がオン状態で位置することになる。従って、媒体1全体から磁気パターンを検出することができる。 Also, the medium 1 moves in the row direction X. For this reason, as shown in FIG. 18C, the area where the magnetic sensor element 40 is located in the on state is shown as a hatched area, and the magnetic sensor element 40 is located in the on state during the current scan in the medium 1. The next magnetic sensor element 40 is in an ON state in a region adjacent to the moving direction X (region with a downward slanting line) on the opposite side to the moving direction X (region with a slanting line to the right) become. Therefore, the magnetic pattern can be detected from the entire medium 1.
特開2007-241653号公報JP 2007-241653 A 特開2007-241654号公報JP 2007-241654 A 特開2009-163336号公報JP 2009-163336 A
 しかしながら、特許文献1~3に記載の構成では、センサ出力信号を増幅させる際にアンプの基準電圧として定電圧を用いているため、センサ出力信号と基準電圧との差が大きい。このため、アンプから出力される信号が飽和しないようにアンプゲインを低く抑える必要があるため、検出ゲインを高めることができないという問題点がある。一方、ブリッジ回路を用いて磁気センサ素子からの出力信号を差動増幅すると、大幅なコストの増大を招くという問題点がある。 However, in the configurations described in Patent Documents 1 to 3, since a constant voltage is used as the reference voltage of the amplifier when amplifying the sensor output signal, the difference between the sensor output signal and the reference voltage is large. For this reason, since it is necessary to keep the amplifier gain low so that the signal output from the amplifier does not saturate, there is a problem that the detection gain cannot be increased. On the other hand, if the output signal from the magnetic sensor element is differentially amplified using a bridge circuit, there is a problem in that the cost is significantly increased.
 また、列方向Yに配列した複数の磁気センサ素子40をスキャンするとともに、媒体1を移動させる方式の磁気パターン検出装置では、媒体1の移動速度、媒体1の移動方向Xにおける磁気センサ素子40の寸法、スキャン速度によっては、図18(c)に示すように、今回のスキャンの際に磁気センサ素子40がオン状態で位置していた領域(右上がりの斜線を付した領域)と、次回のスキャンの際に磁気センサ素子40がオン状態で位置していた領域(右下がりの斜線を付した領域)との間に隙間Gが発生する。例えば、媒体1の移動速度が0.0016mm/μsec、列方向Yにおける磁気センサ素子のスキャン時間が200μsecである場合、1回のスキャンが完了するうちに媒体1が0.32mm移動するが、かかる場合に磁気センサ素子1の移動方向における寸法が0.3mmであると、今回のスキャンの際に磁気センサ素子40がオン状態で位置していた領域と、次回のスキャンの際に磁気センサ素子40がオン状態で位置していた領域との間には、0.02mmの隙間Gが発生してしまう。このため、媒体1において隙間Gに相当する領域は、磁気センサ素子40による磁気特性の検出が行なえず、媒体1の全面から磁気パターンを精度よく検出することが困難である。 Further, in a magnetic pattern detection apparatus that scans a plurality of magnetic sensor elements 40 arranged in the column direction Y and moves the medium 1, the moving speed of the medium 1 and the magnetic sensor elements 40 in the moving direction X of the medium 1 Depending on the dimensions and the scanning speed, as shown in FIG. 18C, the area where the magnetic sensor element 40 is located in the ON state at the time of the current scan (the area with a diagonal line rising to the right) and the next time A gap G is generated between the area where the magnetic sensor element 40 is located in the ON state during scanning (an area with a slanting line to the right). For example, when the moving speed of the medium 1 is 0.0016 mm / μsec and the scan time of the magnetic sensor element in the column direction Y is 200 μsec, the medium 1 moves 0.32 mm while one scan is completed. In this case, if the dimension in the moving direction of the magnetic sensor element 1 is 0.3 mm, the area where the magnetic sensor element 40 is located in the ON state during the current scan and the magnetic sensor element 40 during the next scan. A gap G of 0.02 mm is generated between the region where was positioned in the ON state. For this reason, in the area corresponding to the gap G in the medium 1, the magnetic characteristics cannot be detected by the magnetic sensor element 40, and it is difficult to accurately detect the magnetic pattern from the entire surface of the medium 1.
 一方、磁気センサ素子40は、通常、媒体1に対する磁気センサ素子40の等倍投影面積以上のセンシング範囲を備えているので、かかるセンシング範囲で隙間Gをカバーできれば、媒体1の全面から磁気パターンを検出することができるが、このような場合でも、媒体1の移動速度、媒体1の移動方向Xにおける磁気センサ素子40のセンシング範囲の寸法、スキャン速度によっては、今回のスキャンの際のセンシング範囲と、次回のスキャンの際のセンシング範囲との間に隙間Gが発生することを避けることは困難である。 On the other hand, since the magnetic sensor element 40 normally has a sensing range that is equal to or larger than the projection area of the magnetic sensor element 40 with respect to the medium 1, if the gap G can be covered by such a sensing range, a magnetic pattern can be generated from the entire surface of the medium 1. Even in such a case, depending on the moving speed of the medium 1, the size of the sensing range of the magnetic sensor element 40 in the moving direction X of the medium 1, and the scanning speed, It is difficult to avoid the occurrence of the gap G between the sensing range in the next scan.
 以上の問題点に鑑みて、本発明の第1の課題は、コストを大幅に増大させることなく、ゲインを向上することのできる磁気パターン検出装置を提供することにある。 In view of the above problems, the first object of the present invention is to provide a magnetic pattern detection device capable of improving the gain without significantly increasing the cost.
 また、本発明の第2の課題は、列方向に配列した複数の磁気センサ素子をスキャンするとともに、磁気センサに対して媒体を相対移動させる方式を採用した場合でも、媒体の全面から確実に磁気パターンを検出することができる磁気パターン検出装置を提供することにある。 In addition, the second problem of the present invention is that even when a method of scanning a plurality of magnetic sensor elements arranged in the column direction and moving the medium relative to the magnetic sensor is employed, the magnetic field is reliably detected from the entire surface of the medium. An object of the present invention is to provide a magnetic pattern detection device capable of detecting a pattern.
 上記第1の課題を解決するために、本発明は、媒体の磁気特性を検出する磁気センサ素子と、該磁気センサ素子での検出結果に基づいて前記媒体の磁気パターンを検出する信号処理部と、を有する磁気パターン検出装置であって、前記信号処理部は、励磁信号により励磁された前記磁気センサ素子から出力されたセンサ出力信号を増幅する増幅部を備え、当該増幅部は、前記センサ出力信号および基準電圧が入力されるアンプと、前記励磁信号に連動して変化する信号を前記基準電圧として生成する基準電圧生成部と、を備えていることを特徴とする。 In order to solve the first problem, the present invention provides a magnetic sensor element that detects a magnetic characteristic of a medium, and a signal processing unit that detects a magnetic pattern of the medium based on a detection result of the magnetic sensor element. The signal processing unit includes an amplification unit that amplifies a sensor output signal output from the magnetic sensor element excited by an excitation signal, and the amplification unit outputs the sensor output. An amplifier to which a signal and a reference voltage are input, and a reference voltage generation unit that generates a signal that changes in conjunction with the excitation signal as the reference voltage.
 本発明では、センサ出力信号をアンプで増幅する際、励磁信号に連動して変化する基準電圧を用いているため、磁気センサ素子から出力されるセンサ出力信号と基準電圧との差が小さい。従って、ブリッジ回路等といったコストが増大する回路を追加しなくても、アンプゲインを高めることができ、S/N比を高めることができる。また、基準電圧は、励磁信号に連動して変化し、センサ出力信号と同期しているので、センサ出力信号を適正に増幅することができる。 In the present invention, when the sensor output signal is amplified by the amplifier, the reference voltage that changes in conjunction with the excitation signal is used, so that the difference between the sensor output signal output from the magnetic sensor element and the reference voltage is small. Therefore, the amplifier gain can be increased and the S / N ratio can be increased without adding a cost-increasing circuit such as a bridge circuit. Further, since the reference voltage changes in conjunction with the excitation signal and is synchronized with the sensor output signal, the sensor output signal can be appropriately amplified.
 本発明において、前記基準電圧は、前記励磁信号を微分した波形を備えた信号であることが好ましい。センサ出力信号は、励磁信号により発生する磁束の時間微分に相当するため、励磁信号を微分した波形の信号をアンプの基準電圧として用いれば、センサ出力信号と基準電圧との差が小さいので、ゲインを高めることができる。 In the present invention, the reference voltage is preferably a signal having a waveform obtained by differentiating the excitation signal. Since the sensor output signal corresponds to the time differentiation of the magnetic flux generated by the excitation signal, if the waveform signal obtained by differentiating the excitation signal is used as the reference voltage for the amplifier, the difference between the sensor output signal and the reference voltage is small. Can be increased.
 本発明において、前記基準電圧生成部は、前記励磁信号を微分して前記基準電圧を生成するCR微分回路を備えていることが好ましい。このように構成すれば、キャパシタや抵抗といった安価な電気素子を用いて、励磁信号を微分して基準電圧を生成する微分回路を構成することができる。 In the present invention, it is preferable that the reference voltage generation unit includes a CR differentiation circuit that differentiates the excitation signal to generate the reference voltage. If comprised in this way, the differentiation circuit which differentiates an excitation signal and produces | generates a reference voltage can be comprised using cheap electrical elements, such as a capacitor and resistance.
 本発明において、前記基準電圧生成部は、前記励磁信号により励磁されて当該励磁信号を微分してなる信号を前記基準電圧として出力するダミー用磁気センサ素子を備えている構成を採用してもよい。ダミー用磁気センサ素子からの出力信号は、励磁信号により発生する磁束の時間微分に相当し、励磁信号を微分した波形の信号を基準電圧として生成することができる。また、かかる基準電圧であれば、センサ出力信号との差が極めて小さいので、ゲインを高めることができる。 In the present invention, the reference voltage generation unit may include a dummy magnetic sensor element that is excited by the excitation signal and outputs a signal obtained by differentiating the excitation signal as the reference voltage. . The output signal from the dummy magnetic sensor element corresponds to the time differentiation of the magnetic flux generated by the excitation signal, and a waveform signal obtained by differentiating the excitation signal can be generated as a reference voltage. Further, with such a reference voltage, the difference from the sensor output signal is extremely small, so that the gain can be increased.
 本発明において、前記信号処理部は、前記アンプから出力された信号のうち、極性が正の信号成分を積分する第1積分回路と、極性が負の信号成分を積分する第2積分回路とを備えていることが好ましい。このように構成すると、アンプから出力された信号のパルス幅が狭い場合でも、極性が正の信号成分および極性が負の信号成分を各々、積分して振幅変化を面積変化に変換することができるので、簡素な構成で見かけのゲインを高めることができる。 In the present invention, the signal processing unit includes: a first integrating circuit that integrates a signal component having a positive polarity in a signal output from the amplifier; and a second integrating circuit that integrates a signal component having a negative polarity. It is preferable to provide. With this configuration, even when the pulse width of the signal output from the amplifier is narrow, the signal component having a positive polarity and the signal component having a negative polarity can be integrated to convert an amplitude change into an area change. Therefore, the apparent gain can be increased with a simple configuration.
 本発明の別の形態は、媒体の磁気特性を検出する磁気センサ素子と、該磁気センサ素子での検出結果に基づいて前記媒体の磁気パターンを検出する信号処理部と、を有する磁気パターン検出装置であって、前記信号処理部は、前記センサ出力のうち、極性が正の信号成分を積分する第1積分回路と、極性が負の信号成分を積分する第2積分回路とを備えていることを特徴とする。 Another embodiment of the present invention is a magnetic pattern detection device having a magnetic sensor element that detects a magnetic characteristic of a medium, and a signal processing unit that detects a magnetic pattern of the medium based on a detection result of the magnetic sensor element. The signal processing unit includes a first integration circuit that integrates a signal component having a positive polarity in the sensor output, and a second integration circuit that integrates a signal component having a negative polarity. It is characterized by.
 本発明では、センサ出力信号のパルス幅が狭い場合でも、極性が正の信号成分および極性が負の信号成分を各々、積分して振幅変化を面積変化に変換することができるので、簡素な構成で見かけのゲインを高めることができる。 In the present invention, even when the pulse width of the sensor output signal is narrow, a signal component having a positive polarity and a signal component having a negative polarity can be integrated to convert an amplitude change into an area change. Can increase the apparent gain.
 本発明において、前記磁気センサ素子は、前記センサ出力信号を差動出力として出力するための複数のコイルを備えていることが好ましい。このように構成すると、外乱の影響を受けにくいという利点がある。 In the present invention, the magnetic sensor element preferably includes a plurality of coils for outputting the sensor output signal as a differential output. This configuration has the advantage that it is less susceptible to disturbances.
 また、上記第2の課題を解決するために、本発明は、媒体から磁気特性を検出する磁気センサ素子と、該磁気センサ素子に対して前記媒体を相対的に移動させる搬送機構と、を有する磁気パターン検出装置であって、前記磁気センサ素子は、前記媒体の移動方向に対して直交する列方向に複数配列され、前記搬送機構による前記媒体の移動速度をv(mm/μsec)とし、前記磁気センサ素子の前記移動方向における寸法をT(mm)とし、前記列方向における前記磁気センサ素子の単位時間ta(μsec)当たりのスキャン回数をN回としたとき、前記移動速度v、前記単位時間ta、前記寸法Tおよび前記スキャン回数Nは、以下の条件式
    (v×ta)≦(T×N)
      但し、Nは2以上の整数
を満たしていることを特徴とする。
In order to solve the second problem, the present invention includes a magnetic sensor element that detects magnetic characteristics from a medium, and a transport mechanism that moves the medium relative to the magnetic sensor element. In the magnetic pattern detection device, a plurality of the magnetic sensor elements are arranged in a row direction orthogonal to the moving direction of the medium, and the moving speed of the medium by the transport mechanism is v (mm / μsec), When the dimension of the magnetic sensor element in the moving direction is T (mm) and the number of scans per unit time ta (μsec) of the magnetic sensor element in the column direction is N times, the moving speed v and the unit time ta, the dimension T, and the number of scans N are the following conditional expressions (v × ta) ≦ (T × N)
However, N is characterized by satisfying an integer of 2 or more.
 本発明では、媒体の移動速度v、磁気センサ素子の移動方向における寸法T、列方向における磁気センサ素子の単位時間ta当たりのスキャン回数Nが上記の条件式を満たすように設定されているため、今回のスキャンの際に磁気センサ素子がオン状態で位置していた領域と、次回のスキャンの際に磁気センサ素子がオン状態で位置していた領域との間に隙間が発生しない。従って、列方向に配列した複数の磁気センサ素子をスキャンするとともに、磁気センサに対して媒体を相対移動させる方式を採用した場合でも、媒体の全面から確実に磁気パターンを検出することができる。 In the present invention, the moving speed v of the medium, the dimension T in the moving direction of the magnetic sensor element, and the number of scans N per unit time ta of the magnetic sensor element in the column direction are set so as to satisfy the above conditional expression. There is no gap between the area where the magnetic sensor element was positioned in the on state during the current scan and the area where the magnetic sensor element was positioned in the on state during the next scan. Therefore, even when a plurality of magnetic sensor elements arranged in the column direction are scanned and the medium is moved relative to the magnetic sensor, the magnetic pattern can be reliably detected from the entire surface of the medium.
 本発明において、前記単位時間taは、前記媒体の1列分の磁気パターンを検出するための1走査期間であり、当該1走査期間中に行なったスキャンにより前記磁気センサ素子で得られたデータに基づいて前記媒体の1列分の磁気パターンが検出される構成を採用することができる。すなわち、1列分の磁気パターンを検出するための1走査期間中に複数のスキャンを行なう。このため、複数回のスキャンにより得られたデータに基づいて1列分の磁気パターンを検出する構成を採用でき、かかる構成によれば、磁気センサ素子で得られたデータのいずれかにノイズ等の影響が含まれている場合でも、かかるノイズの影響を緩和することができる。 In the present invention, the unit time ta is one scanning period for detecting a magnetic pattern for one column of the medium, and the data obtained by the magnetic sensor element by scanning performed during the one scanning period is used as the unit time ta. Based on this, it is possible to adopt a configuration in which a magnetic pattern for one column of the medium is detected. That is, a plurality of scans are performed during one scan period for detecting a magnetic pattern for one column. For this reason, it is possible to adopt a configuration that detects a magnetic pattern for one column based on data obtained by a plurality of scans, and according to such a configuration, noise or the like is included in any of the data obtained by the magnetic sensor element. Even when the influence is included, the influence of the noise can be reduced.
 本発明において、前記1走査期間中に行なったN回のスキャンのうちの、1回のスキャンあるいは複数回のスキャンにより前記磁気センサ素子で得られたデータに基づいて前記媒体の1列分の磁気パターンが検出される構成を採用することができる。このように構成すると、媒体の種類や磁気パターン検出装置に求められる検出精度等に応じて最適な動作を実現することができる。 In the present invention, a magnetic field corresponding to one column of the medium based on data obtained by the magnetic sensor element by one scan or a plurality of scans out of N scans performed during the one scan period. A configuration in which a pattern is detected can be employed. With this configuration, an optimum operation can be realized according to the type of medium, the detection accuracy required for the magnetic pattern detection device, and the like.
 本発明において、前記1走査期間中に行なったN回のスキャンのうちの、複数回のスキャンにより前記磁気センサ素子で得られたデータに基づいて前記媒体の1列分の磁気パターンが検出されることが好ましい。このように構成すると、媒体の磁気特性を高い精度で検出することができる。また、磁気センサ素子で得られたデータのいずれかにノイズ等の影響が含まれている場合でも、かかるノイズの影響を緩和することができる。 In the present invention, a magnetic pattern for one column of the medium is detected based on data obtained by the magnetic sensor element by a plurality of scans out of N scans performed during the one scan period. It is preferable. With this configuration, the magnetic characteristics of the medium can be detected with high accuracy. Even if any of the data obtained by the magnetic sensor element includes the influence of noise or the like, the influence of the noise can be mitigated.
 本発明において、前記1走査期間中に行なったN回のスキャンにより前記磁気センサ素子で得られた全データに基づいて前記媒体の1列分の磁気パターンが検出される構成を採用することができる。このように構成すると、媒体に対して磁気センサ素子を等倍投影した領域が今回のスキャンと次回のスキャンとで部分的に重なっているので、媒体の磁気特性を高い精度で検出することができる。また、磁気センサ素子で得られたデータのいずれかにノイズ等の影響が含まれている場合でも、かかるノイズの影響を緩和することができる。 In the present invention, it is possible to adopt a configuration in which a magnetic pattern for one column of the medium is detected based on all data obtained by the magnetic sensor element by N scans performed during the one scan period. . With this configuration, the area where the magnetic sensor element is projected to the medium at the same magnification partially overlaps in the current scan and the next scan, so that the magnetic characteristics of the medium can be detected with high accuracy. . Even if any of the data obtained by the magnetic sensor element includes the influence of noise or the like, the influence of the noise can be mitigated.
 本発明では、1走査期間中に行なったN回のスキャンのうちの一部のスキャンにより磁気センサ素子で得られたデータに基づいて媒体の1列分の磁気パターンが検出される構成を採用してもよい。 The present invention employs a configuration in which a magnetic pattern for one column of the medium is detected based on data obtained by the magnetic sensor element by a part of N scans performed during one scanning period. May be.
 例えば、前記1走査期間中に行なったN回のスキャンのうち、前記媒体に対して前記磁気センサ素子を等倍投影した領域が今回のスキャンと次回のスキャンとで前記移動方向で部分的に重なる2回以上かつN回未満のスキャンにより前記磁気センサ素子で得られた複数のデータ、あるいは前記媒体に対して前記磁気センサ素子を等倍投影した領域が今回のスキャンと次回のスキャンとで前記移動方向で重ならずに接する2回以上かつN回未満のスキャンにより前記磁気センサ素子で得られた複数のデータに基づいて前記媒体の1列分の磁気パターンが検出される構成を採用してもよい。 For example, out of N scans performed during the one scan period, a region in which the magnetic sensor element is projected at the same magnification on the medium partially overlaps in the moving direction in the current scan and the next scan. A plurality of data obtained by the magnetic sensor element by scanning two or more times and less than N times, or an area where the magnetic sensor element is projected at the same magnification on the medium is moved in the current scan and the next scan. A configuration in which a magnetic pattern for one column of the medium is detected based on a plurality of data obtained by the magnetic sensor element by scanning at least twice and less than N times contacting without overlapping in the direction may be adopted. Good.
 この場合、前記1走査期間中に行なったN回のスキャンのうち、前記媒体に対して前記磁気センサ素子を等倍投影した領域が今回のスキャンと次回のスキャンとで前記移動方向で部分的に重なる2回以上かつN回未満のスキャンにより前記磁気センサ素子で得られた複数のデータに基づいて前記媒体の1列分の磁気パターンが検出されることが好ましい。このように構成すると、媒体に対して磁気センサ素子を等倍投影した領域が今回のスキャンと次回のスキャンとで部分的に重なっているので、媒体の磁気特性を高い精度で検出することができる。また、磁気センサ素子で得られたデータのいずれかにノイズ等の影響が含まれている場合でも、かかるノイズの影響を緩和することができる。 In this case, of the N scans performed during the one scan period, an area in which the magnetic sensor element is projected at the same magnification on the medium is partially in the moving direction between the current scan and the next scan. It is preferable that a magnetic pattern for one column of the medium is detected based on a plurality of data obtained by the magnetic sensor element by two or more overlapping scans and less than N scans. With this configuration, the area where the magnetic sensor element is projected to the medium at the same magnification partially overlaps in the current scan and the next scan, so that the magnetic characteristics of the medium can be detected with high accuracy. . Even if any of the data obtained by the magnetic sensor element includes the influence of noise or the like, the influence of the noise can be mitigated.
 また、前記磁気センサ素子の前記移動方向におけるセンシング範囲が前記磁気センサ素子の前記移動方向における寸法Tより大である場合、前記1走査期間中に行なったN回のスキャンのうち、前記センシング範囲が今回のスキャンと次回のスキャンとで前記移動方向で部分的に重なる2回以上かつN回未満のスキャンにより前記磁気センサ素子で得られた複数のデータ、あるいは前記センシング範囲今回のスキャンと次回のスキャンとで前記移動方向で重ならずに接する2回以上かつN回未満のスキャンにより前記磁気センサ素子で得られた複数のデータに基づいて前記媒体の1列分の磁気パターンが検出される構成を採用してもよい。 Further, when the sensing range in the moving direction of the magnetic sensor element is larger than the dimension T in the moving direction of the magnetic sensor element, the sensing range is N out of N scans performed during the one scanning period. A plurality of data obtained by the magnetic sensor element by two or more scans and less than N scans partially overlapping in the moving direction in the current scan and the next scan, or the sensing range This scan and the next scan And a configuration in which a magnetic pattern for one row of the medium is detected based on a plurality of data obtained by the magnetic sensor element by scanning two times or more and less than N times in contact with each other without overlapping in the moving direction. It may be adopted.
 この場合、前記1走査期間中に行なったN回のスキャンのうち、前記センシング範囲が今回のスキャンと次回のスキャンとで前記移動方向で部分的に重なる2回以上かつN回未満のスキャンにより前記磁気センサ素子で得られた複数のデータに基づいて前記媒体の1列分の磁気パターンが検出されることが好ましい。このように構成すると、このように構成すると、センシング範囲が今回のスキャンと次回のスキャンとで部分的に重なっているので、媒体の磁気特性を高い精度で検出することができる。また、磁気センサ素子で得られたデータのいずれかにノイズ等の影響が含まれている場合でも、かかるノイズの影響を緩和することができる。 In this case, among the N scans performed during the one scan period, the sensing range is obtained by performing the scan twice or more and less than N times partially overlapping in the moving direction in the current scan and the next scan. It is preferable that a magnetic pattern for one row of the medium is detected based on a plurality of data obtained by the magnetic sensor element. With this configuration, since the sensing range partially overlaps between the current scan and the next scan, the magnetic characteristics of the medium can be detected with high accuracy. Even if any of the data obtained by the magnetic sensor element includes the influence of noise or the like, the influence of the noise can be mitigated.
 本発明において、前記1走査期間中に前記磁気センサ素子で得られた複数のデータに基づいて前記媒体の1列分の磁気パターンを検出するにあたっては、当該複数のデータに平均化処理が行なわれることが好ましい。このように構成すると、複数のデータから媒体の1列分の磁気パターンを検出する場合でも簡素な処理で済む。また、複数のデータを平均化処理すれば、磁気センサ素子で得られたデータのいずれかにノイズ等の影響が含まれている場合でも、かかるノイズの影響を緩和することができる。 In the present invention, when detecting a magnetic pattern for one column of the medium based on a plurality of data obtained by the magnetic sensor element during the one scanning period, an averaging process is performed on the plurality of data. It is preferable. With this configuration, even when a magnetic pattern for one column of the medium is detected from a plurality of data, simple processing is sufficient. In addition, by averaging a plurality of data, even if any of the data obtained by the magnetic sensor element includes the influence of noise or the like, the influence of the noise can be reduced.
 本発明において、前記1走査期間中に行なったN回のスキャンのうち、いずれのスキャンの際の前記磁気センサ素子で得られたデータに基づいて前記媒体の1列分の磁気パターンを検出するかは、可変であることが好ましい。このように構成すると、媒体の種類や磁気パターン検出装置に求められる検出精度等に応じて最適な動作を実現することができる。 In the present invention, of N scans performed during the one scanning period, which magnetic pattern for one column of the medium is detected based on data obtained by the magnetic sensor element at the time of scanning Is preferably variable. With this configuration, an optimum operation can be realized according to the type of medium, the detection accuracy required for the magnetic pattern detection device, and the like.
 本発明において、前記磁気センサ素子は、励磁信号により励磁されて信号を出力する場合、当該励磁信号は、1回のスキャン中に前記複数の磁気センサ素子の各々が出力する信号に複数周期分の前記励磁信号による信号成分が含まれる周波数を有していることが好ましい。このように構成すると、1回のスキャン中に複数の磁気センサ素子の各々が出力する信号1つ1つに複数周期分の励磁信号による信号成分が含まれるので、媒体の磁気特性を高い精度で検出することができる。 In the present invention, when the magnetic sensor element is excited by an excitation signal and outputs a signal, the excitation signal is added to a signal output by each of the plurality of magnetic sensor elements during a single scan for a plurality of cycles. It is preferable to have a frequency including a signal component by the excitation signal. With this configuration, each signal output from each of the plurality of magnetic sensor elements during one scan includes a signal component due to excitation signals for a plurality of cycles, so that the magnetic characteristics of the medium can be accurately determined. Can be detected.
 第1の発明に係る磁気パターン検出装置においては、センサ出力信号をアンプで増幅する際、励磁信号に連動して変化する基準電圧を用いているため、磁気センサから出力される信号と基準電圧との差が小さい。従って、ブリッジ回路等といったコストが増大する回路を追加しなくても、アンプゲインを高めることができ、S/N比を高めることができる。また、基準電圧は、励磁信号に連動して変化するため、センサ出力信号と基準電圧とは同期しているので、センサ出力信号を適正に増幅することができる。 In the magnetic pattern detection device according to the first aspect of the invention, when the sensor output signal is amplified by the amplifier, the reference voltage that changes in conjunction with the excitation signal is used. The difference is small. Therefore, the amplifier gain can be increased and the S / N ratio can be increased without adding a cost-increasing circuit such as a bridge circuit. Further, since the reference voltage changes in conjunction with the excitation signal, the sensor output signal and the reference voltage are synchronized, so that the sensor output signal can be appropriately amplified.
 また、第1の発明の別の形態に係る磁気パターン検出装置において、信号処理部は、センサ出力のうち、極性が正の信号成分を積分する第1積分回路と、極性が負の信号成分を積分する第2積分回路とを備えているため、センサ出力信号のパルス幅が狭い場合でも、極性が正の信号成分および極性が負の信号成分を各々、積分して振幅変化を面積変化に変換することができる。それ故、簡素な構成で見かけのゲインを高めることができる。 In the magnetic pattern detection device according to another aspect of the first invention, the signal processing unit includes a first integration circuit that integrates a signal component having a positive polarity in the sensor output, and a signal component having a negative polarity. 2nd integration circuit that integrates, so even if the pulse width of the sensor output signal is narrow, the signal component with positive polarity and the signal component with negative polarity are each integrated to convert the amplitude change into area change can do. Therefore, the apparent gain can be increased with a simple configuration.
 また、第2の発明に係る磁気パターン検出装置では、媒体の移動速度v、磁気センサ素子の移動方向における寸法T、列方向における磁気センサ素子の単位時間ta当たりのスキャン回数Nが以下の条件式
    (v×ta)≦(T×N)
      但し、Nは2以上の整数
を満たすように設定されているため、今回のスキャンの際に磁気センサ素子がオン状態で位置していた領域と、次回のスキャンの際に磁気センサ素子がオン状態で位置していた領域との間に隙間が発生しない。従って、列方向に配列した複数の磁気センサ素子をスキャンするとともに、磁気センサに対して媒体を相対移動させる方式を採用した場合でも、媒体の全面から確実に磁気パターンを検出することができる。
In the magnetic pattern detection apparatus according to the second invention, the moving speed v of the medium, the dimension T in the moving direction of the magnetic sensor element, and the number of scans N per unit time ta of the magnetic sensor element in the column direction are (V × ta) ≦ (T × N)
However, since N is set so as to satisfy an integer of 2 or more, the area where the magnetic sensor element is located in the on state at the time of the current scan and the magnetic sensor element in the on state at the next scan No gap is generated between the region located at Therefore, even when a plurality of magnetic sensor elements arranged in the column direction are scanned and the medium is moved relative to the magnetic sensor, the magnetic pattern can be reliably detected from the entire surface of the medium.
本発明の第一の実施の形態1に係る磁気センサ装置を備えた磁気パターン検出装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the magnetic pattern detection apparatus provided with the magnetic sensor apparatus which concerns on 1st Embodiment of this invention. 本発明の第一の実施の形態1に係る磁気センサ装置の説明図である。It is explanatory drawing of the magnetic sensor apparatus which concerns on 1st Embodiment 1 of this invention. 本発明の第一の実施の形態1に係る磁気センサ装置に用いた磁気センサ素子の説明図である。It is explanatory drawing of the magnetic sensor element used for the magnetic sensor apparatus which concerns on 1st Embodiment of this invention. 本発明の第一の実施の形態1に係る磁気パターン検出装置の電気的構成を示すブロック図である。It is a block diagram which shows the electrical constitution of the magnetic pattern detection apparatus which concerns on 1st Embodiment of this invention. 本発明の第一の実施の形態1に係る磁気パターン検出装置の増幅部においてアンプに入力される信号等の説明図である。It is explanatory drawing of the signal etc. which are input into amplifier in the amplification part of the magnetic pattern detection apparatus which concerns on 1st Embodiment of this invention. 本発明の第一の実施の形態1に係る磁気パターン検出装置において媒体に形成される各種磁気インクの特性等を示す説明図である。It is explanatory drawing which shows the characteristic of the various magnetic inks formed in a medium in the magnetic pattern detection apparatus which concerns on 1st Embodiment of this invention. 本発明の第一の実施の形態1に係る磁気パターン検出装置において種類の異なる磁気パターンが形成された媒体から磁気パターンの有無を検出する原理を示す説明図である。It is explanatory drawing which shows the principle which detects the presence or absence of a magnetic pattern from the medium in which the magnetic pattern from which a kind differs was formed in the magnetic pattern detection apparatus which concerns on 1st Embodiment of this invention. 本発明の第一の実施の形態2に係る磁気パターン検出装置の回路部のうち、増幅部周辺の構成を示す説明図である。It is explanatory drawing which shows the structure around an amplifier part among the circuit parts of the magnetic pattern detection apparatus which concerns on 1st Embodiment of this invention. 本発明の第一の実施の形態3に係る磁気パターン検出装置の増幅部の構成を示す説明図である。It is explanatory drawing which shows the structure of the amplification part of the magnetic pattern detection apparatus which concerns on 1st Embodiment 3 of this invention. 本発明の第一の実施の形態4に係る磁気パターン検出装置の増幅部周辺の構成を示す説明図である。It is explanatory drawing which shows the structure of the amplifier part periphery of the magnetic pattern detection apparatus which concerns on 1st Embodiment of this invention. 本発明の第一の実施の形態5に係る磁気パターン検出装置のオフセット調整部周辺の構成を示す説明図である。It is explanatory drawing which shows the structure of the offset adjustment part periphery of the magnetic pattern detection apparatus which concerns on 1st Embodiment of this invention. 本発明の第一の実施の形態6に係る磁気パターン検出装置に用いた磁気センサ素子の説明図である。It is explanatory drawing of the magnetic sensor element used for the magnetic pattern detection apparatus which concerns on 1st Embodiment 6 of this invention. 本発明の第二の実施の形態1に係る磁気パターン検出装置の電気的構成を示す説明図である。It is explanatory drawing which shows the electrical structure of the magnetic pattern detection apparatus which concerns on 2nd Embodiment 1 of this invention. 本発明の第二の実施の形態1に係る磁気パターン検出装置のスキャン動作等を示す説明図である。It is explanatory drawing which shows the scanning operation | movement etc. of the magnetic pattern detection apparatus which concerns on 2nd Embodiment 1 of this invention. 本発明の第二の実施の形態1に係る磁気パターン検出装置における回路部の動作条件を示す説明図である。It is explanatory drawing which shows the operating conditions of the circuit part in the magnetic pattern detection apparatus which concerns on 2nd Embodiment 1 of this invention. 本発明の第二の実施の形態2に係る磁気パターン検出装置でのスキャン毎の磁気センサ素子の位置を示す説明図である。It is explanatory drawing which shows the position of the magnetic sensor element for every scan in the magnetic pattern detection apparatus concerning 2nd Embodiment of this invention. 本発明の第二の実施の形態3に係る磁気パターン検出装置でのスキャン毎の磁気センサ素子およびそのセンシング範囲の位置を示す説明図である。It is explanatory drawing which shows the position of the magnetic sensor element for every scan in the magnetic pattern detection apparatus concerning 2nd Embodiment 3 of this invention, and its sensing range. 従来の磁気パターン検出装置の説明図である。It is explanatory drawing of the conventional magnetic pattern detection apparatus.
1 媒体
11 媒体移動路
20 磁気センサ装置
40 磁気センサ素子
48 励磁コイル
49 検出コイル
60 信号処理部
70 増幅部
71 アンプ
72 基準電圧生成部
73 CR微分回路
74 ダミー用磁気センサ素子
83 オフセット調整部
100 磁気パターン検出装置
835 第1積分回路
836 第2積分回路
DESCRIPTION OF SYMBOLS 1 Medium 11 Medium moving path 20 Magnetic sensor apparatus 40 Magnetic sensor element 48 Excitation coil 49 Detection coil 60 Signal processing part 70 Amplification part 71 Amplifier 72 Reference voltage generation part 73 CR differentiation circuit 74 Dummy magnetic sensor element 83 Offset adjustment part 100 Magnetism Pattern detecting device 835 first integrating circuit 836 second integrating circuit
 [第一の実施の形態]
 図面を参照して、本発明の第一の実施の形態を説明する。なお、第一の実施の形態は、第1の発明について説明するものである。
[First embodiment]
A first embodiment of the present invention will be described with reference to the drawings. In the first embodiment, the first invention will be described.
 [第一の実施の形態1]
 (全体構成)
 図1は、本発明の第一の実施の形態1に係る磁気センサ装置を備えた磁気パターン検出装置の構成を示す説明図であり、図1(a)、(b)は、磁気パターン検出装置の要部構成を模式的に示す説明図、および断面構成を模式的に示す説明図である。
[First Embodiment 1]
(overall structure)
FIG. 1 is an explanatory diagram showing the configuration of a magnetic pattern detection device including the magnetic sensor device according to the first embodiment of the present invention. FIGS. 1 (a) and 1 (b) are magnetic pattern detection devices. It is explanatory drawing which shows typically a principal part structure, and explanatory drawing which shows a cross-sectional structure typically.
 図1に示す磁気パターン検出装置100は、銀行券、有価証券等の媒体1から磁気を検知して真偽判別や種類の判別を行なう装置であり、ローラやガイド(図示せず)等によってシート状の媒体1を媒体移動路11に沿って移動させる搬送装置10と、この搬送装置10による媒体移動路11の途中位置で媒体1から磁気を検出する磁気センサ装置20とを有している。本形態において、ローラやガイドは、アルミニウム等といった非磁性材料から構成されている。本形態において、磁気センサ装置20は、媒体移動路11の下方に配置されているが、媒体移動路11の上方に配置されることもある。いずれの場合も、磁気センサ装置20は、センサ面21を媒体移動路11に向けるように配置される。 A magnetic pattern detection device 100 shown in FIG. 1 is a device that detects magnetism from a medium 1 such as a banknote or a securities, and performs authenticity determination or type determination. A sheet is detected by a roller, a guide (not shown), or the like. And a magnetic sensor device 20 that detects magnetism from the medium 1 at an intermediate position of the medium moving path 11 by the conveying device 10. In this embodiment, the roller and the guide are made of a nonmagnetic material such as aluminum. In this embodiment, the magnetic sensor device 20 is disposed below the medium movement path 11, but may be disposed above the medium movement path 11. In any case, the magnetic sensor device 20 is arranged so that the sensor surface 21 faces the medium moving path 11.
 本形態において、媒体1には、媒体1の移動方向Xに延在する細幅の磁性領域1aに磁気インクによって磁気パターンが付されており、かかる磁気パターンは、残留磁束密度Brおよび透磁率μが異なる複数種類の磁気インクによる形成されている。例えば、媒体1には、ハード材を含む磁気インキにより印刷された第1の磁気パターンと、ソフト材を含む磁気インキにより印刷された第2の磁気パターンとが形成されている。そこで、本形態の磁気パターン検出装置100は、媒体1における磁気パターン毎の有無を残留磁束密度レベルおよび透磁率レベルの双方に基づいて検出する。また、本形態において、かかる2種類の磁気パターンの検出を行なうための磁気センサ装置20は共通である。従って、本形態の磁気パターン検出装置100は、以下の構成を有している。 In this embodiment, the medium 1 is provided with a magnetic pattern with magnetic ink on a narrow magnetic region 1a extending in the moving direction X of the medium 1. The magnetic pattern has a residual magnetic flux density Br and a permeability μ. Are formed of a plurality of types of magnetic inks. For example, the medium 1 is formed with a first magnetic pattern printed with magnetic ink containing hard material and a second magnetic pattern printed with magnetic ink containing soft material. Therefore, the magnetic pattern detection apparatus 100 of the present embodiment detects the presence / absence of each magnetic pattern in the medium 1 based on both the residual magnetic flux density level and the magnetic permeability level. In this embodiment, the magnetic sensor device 20 for detecting such two types of magnetic patterns is common. Therefore, the magnetic pattern detection apparatus 100 of this embodiment has the following configuration.
 (磁気センサ装置20の構成)
 図2は、本発明の第一の実施の形態1に係る磁気センサ装置20の説明図であり、図2(a)、(b)は、磁気センサ装置20における磁気センサ素子の等のレイアウトを示す説明図、および磁気センサ素子の向きを示す説明図である。
(Configuration of Magnetic Sensor Device 20)
FIG. 2 is an explanatory diagram of the magnetic sensor device 20 according to the first embodiment of the present invention. FIGS. 2A and 2B show the layout of the magnetic sensor elements and the like in the magnetic sensor device 20. It is explanatory drawing which shows, and explanatory drawing which shows direction of a magnetic sensor element.
 図1および図2(a)に示すように、本形態の磁気パターン検出装置100において、磁気センサ装置20は、媒体1に磁界を印加する磁界印加用磁石30と、磁界を印加した後の媒体1にバイアス磁界を印加した状態における磁束を検出する磁気センサ素子40と、磁界印加用磁石30および磁気センサ素子40を覆う非磁性のケース25とを備えている。磁気センサ装置20は、媒体移動路11と略同一平面を構成するセンサ面21と、センサ面21に対して媒体1の移動方向の両側に連接する斜面部22、23とを備えており、かかる形状は、ケース25の形状によって規定されている。 As shown in FIGS. 1 and 2A, in the magnetic pattern detection device 100 of the present embodiment, the magnetic sensor device 20 includes a magnetic field applying magnet 30 that applies a magnetic field to the medium 1, and a medium after the magnetic field is applied. 1 includes a magnetic sensor element 40 that detects a magnetic flux when a bias magnetic field is applied, and a nonmagnetic case 25 that covers the magnetic field applying magnet 30 and the magnetic sensor element 40. The magnetic sensor device 20 includes a sensor surface 21 that is substantially flush with the medium movement path 11, and slope portions 22 and 23 that are connected to both sides of the sensor surface 21 in the movement direction of the medium 1. The shape is defined by the shape of the case 25.
 磁気センサ装置20は、媒体1の移動方向Xと交差する方向に延在しており、磁界印加用磁石30および磁気センサ素子40は、媒体1の移動方向Xと交差する方向に複数、配列されている。本形態において、磁気センサ装置20は、媒体1の移動方向Xと交差する方向のうち、移動方向Xと直交する媒体幅方向Yに延在しており、磁界印加用磁石30および磁気センサ素子40は、移動方向Xと直交する媒体幅方向Y(列方向)に複数、一列に等間隔で配列されている。従って、媒体幅方向Yに配列された複数の磁気センサ素子40をスキャンして順次、オン状態にすれば、媒体1の媒体幅方向Yの磁気パターンを検出することができる。また、かかるスキャンに並行して媒体1を移動方向Xに移動させれば、媒体1全体の磁気パターンを検出することができる。なお、ここでいう「オン状態」とは、磁気センサ素子40に後述する励磁信号が印加されるとともに、磁気センサ素子40から出力された信号に信号処理が行なわれるアクティブ状態を意味する。 The magnetic sensor device 20 extends in a direction crossing the moving direction X of the medium 1, and a plurality of magnetic field applying magnets 30 and magnetic sensor elements 40 are arranged in a direction crossing the moving direction X of the medium 1. ing. In this embodiment, the magnetic sensor device 20 extends in the medium width direction Y orthogonal to the movement direction X among the directions intersecting the movement direction X of the medium 1, and the magnetic field applying magnet 30 and the magnetic sensor element 40. Are arranged in the medium width direction Y (column direction) orthogonal to the moving direction X, and arranged in a line at equal intervals. Therefore, if a plurality of magnetic sensor elements 40 arranged in the medium width direction Y are scanned and sequentially turned on, the magnetic pattern of the medium 1 in the medium width direction Y can be detected. If the medium 1 is moved in the movement direction X in parallel with the scan, the magnetic pattern of the entire medium 1 can be detected. Here, the “on state” means an active state in which an excitation signal described later is applied to the magnetic sensor element 40 and signal processing is performed on a signal output from the magnetic sensor element 40.
 本形態において、磁界印加用磁石30は、磁気センサ素子40に対して媒体1の移動方向Xの両側に磁界印加用第1磁石31と磁界印加用第2磁石32として配置されており、矢印X1で示す媒体1の移動方向に沿って、磁界印加用第1磁石31、磁気センサ素子40および磁界印加用第2磁石32がこの順に配置されている。また、矢印X2で示す媒体1の移動方向に沿って、磁界印加用第2磁石32、磁気センサ素子40および磁界印加用第1磁石31がこの順に配置されており、媒体1が矢印X1で示す方向および矢印X2で示す方向のいずれの方向に移動した場合でも、媒体1の磁気特性を検出することができる。ここで、磁気センサ素子40は、磁界印加用第1磁石31と磁界印加用第2磁石32との中間位置に配置されており、磁界印加用第1磁石31との磁気センサ素子40との離間距離と、磁界印加用第2磁石32と磁気センサ素子40との離間距離が等しい。なお、磁界印加用第1磁石31、磁気センサ素子40および磁界印加用第2磁石32はいずれも、磁気センサ装置20のセンサ面21に対向するように配置されている。 In this embodiment, the magnetic field application magnet 30 is arranged as a first magnetic field application magnet 31 and a second magnetic field application magnet 32 on both sides of the moving direction X of the medium 1 with respect to the magnetic sensor element 40, and the arrow X1 A magnetic field applying first magnet 31, a magnetic sensor element 40, and a magnetic field applying second magnet 32 are arranged in this order along the moving direction of the medium 1 shown in FIG. A magnetic field application second magnet 32, a magnetic sensor element 40, and a magnetic field application first magnet 31 are arranged in this order along the moving direction of the medium 1 indicated by the arrow X2, and the medium 1 is indicated by the arrow X1. The magnetic property of the medium 1 can be detected regardless of the direction and the direction indicated by the arrow X2. Here, the magnetic sensor element 40 is disposed at an intermediate position between the first magnetic field application magnet 31 and the second magnetic field application magnet 32, and is separated from the magnetic sensor element 40 from the first magnetic field application magnet 31. The distance is equal to the separation distance between the magnetic field application second magnet 32 and the magnetic sensor element 40. The first magnetic field application magnet 31, the magnetic sensor element 40, and the second magnetic field application magnet 32 are all arranged so as to face the sensor surface 21 of the magnetic sensor device 20.
 本形態において、磁界印加用磁石30(磁界印加用第1磁石31および磁界印加用第2磁石32)は、フェライトやネオジウム磁石等の永久磁石35を備えている。磁界印加用第1磁石31および磁界印加用第2磁石32のいずれにおいても、永久磁石35は、センサ面21に位置する側と、センサ面21が位置する側とは反対側とが異なる極に着磁されている。このため、永久磁石35において、センサ面21の側に位置する面が媒体1に対する着磁面350として機能する。すなわち、本形態の磁気パターン検出装置100においては、後述するように、矢印X1で示すように移動する媒体1が磁気センサ装置20を通過する際、まず、磁界印加用第1磁石31から媒体1に磁界が印加され、かかる磁界によって着磁された後の媒体1が磁気センサ素子40を通過する。また、矢印X2で示すように移動する媒体1が磁気センサ装置20を通過する際、まず、磁界印加用第2磁石32から媒体1に磁界が印加され、かかる磁界によって着磁された後の媒体1が磁気センサ素子40を通過することになる。 In this embodiment, the magnetic field application magnet 30 (the first magnetic field application magnet 31 and the second magnetic field application magnet 32) includes a permanent magnet 35 such as a ferrite or neodymium magnet. In both the first magnetic field application magnet 31 and the second magnetic field application magnet 32, the permanent magnet 35 has a pole on which the side located on the sensor surface 21 is different from the side opposite to the side on which the sensor surface 21 is located. Magnetized. For this reason, in the permanent magnet 35, a surface located on the sensor surface 21 side functions as a magnetized surface 350 for the medium 1. That is, in the magnetic pattern detection device 100 of the present embodiment, as described later, when the moving medium 1 as indicated by the arrow X1 passes through the magnetic sensor device 20, first, the magnetic field applying first magnet 31 is changed to the medium 1. The medium 1 after being magnetized by the magnetic field passes through the magnetic sensor element 40. Further, when the moving medium 1 passes through the magnetic sensor device 20 as shown by the arrow X2, first, a magnetic field is applied to the medium 1 from the second magnetic field application magnet 32, and the medium is magnetized by the magnetic field. 1 passes through the magnetic sensor element 40.
 磁界印加用磁石30に用いた複数の永久磁石35はいずれも、サイズや形状は同一であるが、各々は、以下の向きに配置されている。まず、磁界印加用第1磁石31および磁界印加用第2磁石32のいずれにおいても、媒体1の移動方向Xと直交する媒体幅方向(列方向)Yで隣り合う永久磁石35同士は、互いに反対の向きに着磁されている。すなわち、媒体1の移動方向Xと直交する媒体幅方向Yに配列された複数の永久磁石35のうち、1つの永久磁石35は、媒体移動路11側に位置する端部がN極に着磁され、媒体移動路11側とは反対側に位置する端部はS極に着磁されているが、この永久磁石35に対して媒体1の移動方向Xと直交する媒体幅方向Yで隣り合う永久磁石35は、媒体移動路11側に位置する端部がS極に着磁され、媒体移動路11側とは反対側に位置する端部はN極に着磁されている。なお、本形態では、媒体1の移動方向で対向する磁界印加用第1磁石31の永久磁石35と磁界印加用第2磁石32の永久磁石35とは、磁気センサ素子40を挟んで異なる極が対向している。但し、媒体1の移動方向で対向する磁界印加用第1磁石31の永久磁石35と磁界印加用第2磁石32の永久磁石35とは、磁気センサ素子40を挟んで同じ極が対向するように配置されることもある。 The plurality of permanent magnets 35 used in the magnetic field applying magnet 30 are all the same in size and shape, but are arranged in the following orientations. First, in both the first magnetic field application magnet 31 and the second magnetic field application magnet 32, the permanent magnets 35 adjacent in the medium width direction (column direction) Y orthogonal to the moving direction X of the medium 1 are opposite to each other. Is magnetized in the direction of That is, of the plurality of permanent magnets 35 arranged in the medium width direction Y perpendicular to the moving direction X of the medium 1, one permanent magnet 35 is magnetized with an N pole at the end located on the medium moving path 11 side. The end located on the side opposite to the medium moving path 11 side is magnetized to the S pole, but is adjacent to the permanent magnet 35 in the medium width direction Y perpendicular to the moving direction X of the medium 1. The permanent magnet 35 has an end located on the medium moving path 11 side magnetized to the S pole, and an end located on the side opposite to the medium moving path 11 side magnetized to the N pole. In this embodiment, the permanent magnet 35 of the first magnetic field application magnet 31 and the permanent magnet 35 of the second magnetic field application magnet 32 that face each other in the moving direction of the medium 1 have different poles across the magnetic sensor element 40. Opposite. However, the permanent magnet 35 of the first magnetic field application magnet 31 and the permanent magnet 35 of the second magnetic field application magnet 32 that face each other in the moving direction of the medium 1 are arranged so that the same poles face each other across the magnetic sensor element 40. Sometimes placed.
 (磁気センサ素子40の構成)
 図3は、本発明の第一の実施の形態1に係る磁気センサ装置20に用いた磁気センサ素子40の説明図であり、図3(a)、(b)、(c)は、磁気センサ素子40の正面図、この磁気センサ素子40に対する励磁波形の説明図、および磁気センサ素子40からの出力信号の説明図である。なお、図3(a)では、図面に対して垂直な方向で媒体1が移動する状態を示してある。
(Configuration of the magnetic sensor element 40)
FIG. 3 is an explanatory diagram of the magnetic sensor element 40 used in the magnetic sensor device 20 according to the first embodiment of the present invention. FIGS. 3 (a), 3 (b), and 3 (c) are magnetic sensors. FIG. 4 is a front view of the element 40, an explanatory diagram of an excitation waveform for the magnetic sensor element 40, and an explanatory diagram of an output signal from the magnetic sensor element 40. 3A shows a state where the medium 1 moves in a direction perpendicular to the drawing.
 図1(b)に示すように、磁気センサ素子40はいずれも、薄板状であり、幅方向W40のサイズは厚さ方向T40の寸法に比して大である。かかる磁気センサ素子40は、媒体1の移動方向Xに厚さ方向T40を向けて配置されており、媒体1の移動方向Xと直交する媒体幅方向(列方向)Yには幅方向W40が向いている。 As shown in FIG. 1B, each of the magnetic sensor elements 40 has a thin plate shape, and the size in the width direction W40 is larger than the size in the thickness direction T40. The magnetic sensor element 40 is arranged with the thickness direction T40 facing the moving direction X of the medium 1, and the width direction W40 is oriented in the medium width direction (column direction) Y orthogonal to the moving direction X of the medium 1. ing.
 磁気センサ素子40は、両面がセラミック等からなる厚さ0.3mm~1.0mm程度の薄板状の非磁性部材47により覆われており、非磁性部材47も含めた磁気センサ素子40の厚さ方向全体が磁気センサ素子40の厚さ寸法(寸法T)である。かかる磁気センサ素子40は、磁気シールドケース(図示せず)に収納されていることもある。この場合、磁気シールドケースは、媒体移動路が位置する上方が開口しており、磁気センサ素子40は、媒体移動路11に向けて磁気シールドケースから露出した状態にある。 The magnetic sensor element 40 is covered with a thin plate-like nonmagnetic member 47 having a thickness of about 0.3 mm to 1.0 mm whose both surfaces are made of ceramic or the like. The thickness of the magnetic sensor element 40 including the nonmagnetic member 47 is also included. The entire direction is the thickness dimension (dimension T) of the magnetic sensor element 40. The magnetic sensor element 40 may be housed in a magnetic shield case (not shown). In this case, the magnetic shield case is opened at the top where the medium movement path is located, and the magnetic sensor element 40 is exposed from the magnetic shield case toward the medium movement path 11.
 図1(b)、図2(a)、(b)、および図3(a)に示すように、磁気センサ素子40は、センサコア41と、センサコア41に巻回された励磁コイル48と、センサコア41に巻回された検出コイル49とを備えている。本形態において、センサコア41は、磁気センサ素子40の幅方向W40に延在する胴部42と、胴部42から媒体1の媒体移動路11の側に向けて突出する集磁用突部43とを備えている。ここで、集磁用突部43は、胴部42の幅方向W40の両端部から媒体1の媒体移動路11の側に向けて突出した2つの集磁用突部431、432として構成されており、2つの集磁用突部431、432は、幅方向W40で離間している。また、センサコア41は、胴部42から集磁用突部43とは反対側に突出した突部44を備えており、本形態において、突部44は、胴部42の幅方向W40の両端部から媒体1の媒体移動路11の側とは反対側に向けて突出した2つの突部441、442として構成されている。 As shown in FIGS. 1B, 2A, 2B, and 3A, the magnetic sensor element 40 includes a sensor core 41, an excitation coil 48 wound around the sensor core 41, and a sensor core. And a detection coil 49 wound around 41. In the present embodiment, the sensor core 41 includes a body part 42 extending in the width direction W40 of the magnetic sensor element 40, and a magnetic flux collecting protrusion 43 that protrudes from the body part 42 toward the medium moving path 11 side of the medium 1. It has. Here, the magnetic flux collecting projections 43 are configured as two magnetic flux collecting projections 431 and 432 protruding from both ends of the body portion 42 in the width direction W40 toward the medium moving path 11 side of the medium 1. The two magnetic flux collecting projections 431 and 432 are separated in the width direction W40. In addition, the sensor core 41 includes a protrusion 44 that protrudes from the body 42 to the side opposite to the magnetism-collecting protrusion 43. In this embodiment, the protrusion 44 has both end portions in the width direction W40 of the body 42. Are formed as two protrusions 441 and 442 protruding toward the opposite side of the medium 1 from the medium moving path 11 side.
 このように構成したセンサコア41に対して、励磁コイル48は、胴部42において集磁用突部431、432で挟まれた部分に巻回されている。また、検出コイル49は、集磁用突部43に巻回されており、本形態において、検出コイル49は、センサコア41の2つの集磁用突部43(集磁用突部431、432)のうち、集磁用突部431に巻回された検出コイル491と、集磁用突部432に巻回された検出コイル492とからなる。ここで、2つの検出コイル491、492は、集磁用突部431、432に対して互いに逆方向に巻回されている。また、2つの検出コイル491、492は、1本のコイル線を集磁用突部431、432に対して連続して巻回してなるため、2つの検出コイル491、492は、直列に電気的に接続されている。なお、2つの検出コイル491、492を各々集磁用突部431、432に巻回した後、直列に電気的に接続してもよい。 With respect to the sensor core 41 configured as described above, the exciting coil 48 is wound around a portion sandwiched by the magnetic flux collecting projections 431 and 432 in the trunk portion 42. Further, the detection coil 49 is wound around the magnetic flux collecting projection 43, and in this embodiment, the detection coil 49 includes two magnetic flux collecting projections 43 (the magnetic flux collecting projections 431 and 432) of the sensor core 41. Among them, a detection coil 491 wound around the magnetic flux collection protrusion 431 and a detection coil 492 wound around the magnetic flux collection protrusion 432 are included. Here, the two detection coils 491 and 492 are wound around the magnetic flux collecting projections 431 and 432 in opposite directions. Further, since the two detection coils 491 and 492 are formed by continuously winding one coil wire around the magnetic flux collecting projections 431 and 432, the two detection coils 491 and 492 are electrically connected in series. It is connected to the. The two detection coils 491 and 492 may be wound around the magnetic flux collecting projections 431 and 432, respectively, and then electrically connected in series.
 このように構成した磁気センサ素子40は、幅方向W40および集磁用突部43の突出方向(高さ方向V40)の双方に対して直交する厚さ方向T40が媒体1の移動方向Xに向くように配置されており、磁気センサ素子40において集磁用突部43(集磁用突部431、432)および検出コイル49(検出コイル491、492)が離間する幅方向W40は、媒体1の移動方向Xに対して直交する媒体幅方向(列方向)Yに向いている。 In the magnetic sensor element 40 configured as described above, the thickness direction T40 perpendicular to both the width direction W40 and the projecting direction (height direction V40) of the magnetic flux collecting projection 43 is directed to the moving direction X of the medium 1. In the magnetic sensor element 40, the width direction W40 in which the magnetic flux collecting protrusions 43 (magnetic flux collecting protrusions 431 and 432) and the detection coils 49 (detection coils 491 and 492) are separated from each other is It faces the medium width direction (column direction) Y orthogonal to the movement direction X.
 磁気センサ素子40において、励磁コイル48には、図4を参照して後述する励磁回路50から交番電流(図3(b)参照)からなる励磁信号が印加される。このため、図3(a)に示すように、センサコア41の周りには、バイアス磁界が形成されるとともに、検出コイル49からは、図3(c)に示す検出波形の信号が出力されることになる。ここで、図3(c)に示す検出波形は、励磁信号により発生する磁束の時間的な微分信号であり、励磁信号の時間的な微分信号に近いものとなる。 In the magnetic sensor element 40, an excitation signal composed of an alternating current (see FIG. 3B) is applied to the excitation coil 48 from an excitation circuit 50 described later with reference to FIG. For this reason, as shown in FIG. 3A, a bias magnetic field is formed around the sensor core 41, and a detection waveform signal shown in FIG. become. Here, the detected waveform shown in FIG. 3C is a temporal differential signal of the magnetic flux generated by the excitation signal, and is close to the temporal differential signal of the excitation signal.
 本形態において、磁気センサ素子40のセンサコア41は、図1(b)に示すように、非磁性の第1基板41aと非磁性の第2基板41bとの間に磁性材料層41cが挟まれた構造になっている。本形態において、磁性材料層41cは、第1基板41aの一方面に接着層(図示せず)によって接着されたアモルファス(非晶質)金属の磁性材料からなる薄板状のアモルファス金属箔からなり、かかる第1基板41aの一方面には、磁性材料層41cを間に挟むように第2基板41bが接着層によって接合されている。かかる接着層はいずれも、ガラスクロス、炭素繊維、アラミド繊維等の繊維補強材に樹脂材料を含浸してなるプリプレグを固化させてなる層であり、樹脂材料としては、エポキシ樹脂系やフェノール樹脂系、ポリエステル樹脂系等の熱硬化性樹脂が用いられる。磁性材料層41cとして用いたアモルファス金属箔は、ロールによる圧延によって形成されたものであり、コバルト系としては、Co-Fe-Ni-Mo-B-Si、Co-Fe-Ni-B-Si等のアモルファス合金、鉄系としては、Fe-B-Si、Fe-B-Si-C、Fe-B-Si-Cr、Fe-Co-B-Si、Fe-Ni-Mo-B等のアモルファス合金を例示することができる。第1基板41aおよび第2基板41bとしては、アルミナ基板等のセラミック基板や、ガラス基板等を例示でき、十分な剛性を得られるのであれば、プラスチック基板を用いてもよい。 In this embodiment, the sensor core 41 of the magnetic sensor element 40 has a magnetic material layer 41c sandwiched between a nonmagnetic first substrate 41a and a nonmagnetic second substrate 41b, as shown in FIG. 1B. It has a structure. In this embodiment, the magnetic material layer 41c is made of a thin plate-like amorphous metal foil made of an amorphous (amorphous) metal magnetic material bonded to one surface of the first substrate 41a by an adhesive layer (not shown). The second substrate 41b is bonded to one surface of the first substrate 41a by an adhesive layer so as to sandwich the magnetic material layer 41c therebetween. Each of these adhesive layers is a layer formed by solidifying a prepreg formed by impregnating a resin material into a fiber reinforcing material such as glass cloth, carbon fiber, or aramid fiber. As the resin material, an epoxy resin type or a phenol resin type is used. A thermosetting resin such as polyester resin is used. The amorphous metal foil used as the magnetic material layer 41c is formed by rolling with a roll, and examples of cobalt-based materials include Co—Fe—Ni—Mo—B—Si, Co—Fe—Ni—B—Si, and the like. Amorphous alloys such as Fe-B-Si, Fe-B-Si-C, Fe-B-Si-Cr, Fe-Co-B-Si, Fe-Ni-Mo-B, etc. Can be illustrated. Examples of the first substrate 41a and the second substrate 41b include ceramic substrates such as alumina substrates, glass substrates, and the like, and plastic substrates may be used as long as sufficient rigidity can be obtained.
 (信号処理部60の構成)
 図4は、本発明の第一の実施の形態1に係る磁気パターン検出装置100の電気的構成を示すブロック図であり、図4(a)、(b)は、回路部の要部全体の構成を示す説明図、および回路部のうち、増幅部周辺の構成を示す説明図である。
(Configuration of the signal processing unit 60)
FIG. 4 is a block diagram showing an electrical configuration of the magnetic pattern detection apparatus 100 according to the first embodiment of the present invention. FIGS. 4A and 4B are views of the entire main part of the circuit unit. It is explanatory drawing which shows a structure, and is explanatory drawing which shows the structure of an amplifier part periphery among circuit parts.
 本形態において、図4(a)、(b)に示す回路部5は、概ね、図3(b)に示す交番電流を励磁コイル48に励磁信号として印加する励磁回路50と、検出コイル49に電気的に接続された信号処理部60とを備えている。励磁回路50は、図2に示す複数の磁気センサ素子40の各々に対応する複数の励磁用ドライバアンプ51と、複数の励磁用ドライバアンプ51に対して励磁信号を順次供給するためのマルチプレクサ52と、励磁指令信号から励磁信号を生成するアンプ53とを備えており、複数の磁気センサ素子40の励磁コイル48に対して、励磁用ドライバアンプ51で増幅された後の励磁信号を順次供給する。 In this embodiment, the circuit unit 5 shown in FIGS. 4A and 4B generally includes an excitation circuit 50 for applying the alternating current shown in FIG. 3B as an excitation signal to the excitation coil 48 and a detection coil 49. And an electrically connected signal processing unit 60. The excitation circuit 50 includes a plurality of excitation driver amplifiers 51 corresponding to each of the plurality of magnetic sensor elements 40 shown in FIG. 2, and a multiplexer 52 for sequentially supplying excitation signals to the plurality of excitation driver amplifiers 51. And an amplifier 53 that generates an excitation signal from the excitation command signal, and sequentially supplies the excitation signals amplified by the excitation driver amplifier 51 to the excitation coils 48 of the plurality of magnetic sensor elements 40.
 信号処理部60は、磁気センサ装置20の検出コイル49から出力されるセンサ出力信号から、残留磁束密度レベルに対応する第1信号S1、および透磁率レベルに対応する第2信号S2を生成し、上記の制御部(図示せず)は、かかる第1信号S1および第2信号S2と、媒体1と磁気センサ素子40との相対位置情報に基づいて、媒体1における複数種類の磁気パターンの有無および形成位置を検出する。 The signal processing unit 60 generates a first signal S1 corresponding to the residual magnetic flux density level and a second signal S2 corresponding to the magnetic permeability level from the sensor output signal output from the detection coil 49 of the magnetic sensor device 20. Based on the first signal S1 and the second signal S2 and relative position information between the medium 1 and the magnetic sensor element 40, the control unit (not shown) determines whether or not there are a plurality of types of magnetic patterns in the medium 1 and The formation position is detected.
 より具体的には、信号処理部60は、磁気センサ素子40から出力されたセンサ出力信号を増幅する増幅部70と、増幅部70から出力された信号からピーク値およびボトム値を抽出する抽出部80と、A/Dコンバータ91を備えたデジタル信号処理部90とを有している。抽出部80は、増幅部70から出力された増幅信号を順次、後段に出力するマルチプレクサ81と、クランプ回路82と、クランプ回路82から出力された信号のオフセット調整を行なうオフセット調整部83とを備えている。クランプ回路82は、増幅部70から出力された増幅後のセンサ出力信号を整流する第1ダイオード821と、増幅部70から出力された増幅後のセンサ出力信号の極性反転を行なう極性反転回路822と、極性反転回路822において極性反転された信号を整流する第2ダイオード823とを備えている。従って、オフセット調整部83は、第1ダイオード821からの出力に対する第1オフセット調整回路831と、第2ダイオード823からの出力に対する第2オフセット調整回路832とを備えており、第1オフセット調整回路831および第2オフセット調整回路832は、オフセット調整用基準電圧生成回路831a、832aと、オペアンプ831b、832bとを備えている。 More specifically, the signal processing unit 60 amplifies the sensor output signal output from the magnetic sensor element 40, and the extraction unit extracts the peak value and the bottom value from the signal output from the amplification unit 70. 80 and a digital signal processing unit 90 having an A / D converter 91. The extraction unit 80 includes a multiplexer 81 that sequentially outputs the amplified signal output from the amplification unit 70 to the subsequent stage, a clamp circuit 82, and an offset adjustment unit 83 that performs offset adjustment of the signal output from the clamp circuit 82. ing. The clamp circuit 82 includes a first diode 821 that rectifies the amplified sensor output signal output from the amplification unit 70, and a polarity inversion circuit 822 that performs polarity inversion of the amplified sensor output signal output from the amplification unit 70. And a second diode 823 that rectifies the signal whose polarity is inverted in the polarity inverting circuit 822. Accordingly, the offset adjustment unit 83 includes a first offset adjustment circuit 831 for the output from the first diode 821 and a second offset adjustment circuit 832 for the output from the second diode 823, and the first offset adjustment circuit 831. The second offset adjustment circuit 832 includes offset adjustment reference voltage generation circuits 831a and 832a and operational amplifiers 831b and 832b.
 また、抽出部80は、オフセット調整部83の後段にホールド回路84を備えており、ホールド回路84の後段にゲイン設定部85を備えている。ホールド回路84は、第1オフセット調整回路831からの出力信号のピーク値をホードする第1ピークホールド回路841と、第2オフセット調整回路832からの出力信号のピーク値をホールドする第2ピークホールド回路842とを備えている。ここで、第2オフセット調整回路832には、増幅部70から出力された信号を極性反転回路822で極性反転した後、第2ダイオード823で整流した後の信号が入力されている。このため、第2ピークホールド回路842は、増幅部70から出力された増幅信号のボトム値をホールドするボトムホールド回路に相当する。 Further, the extraction unit 80 includes a hold circuit 84 following the offset adjustment unit 83 and a gain setting unit 85 subsequent to the hold circuit 84. The hold circuit 84 includes a first peak hold circuit 841 that holds the peak value of the output signal from the first offset adjustment circuit 831, and a second peak hold circuit that holds the peak value of the output signal from the second offset adjustment circuit 832. 842. Here, the second offset adjustment circuit 832 receives a signal obtained by inverting the polarity of the signal output from the amplification unit 70 by the polarity inverting circuit 822 and then rectifying the signal by the second diode 823. For this reason, the second peak hold circuit 842 corresponds to a bottom hold circuit that holds the bottom value of the amplified signal output from the amplification unit 70.
 ゲイン設定部85は、第1ピークホールド回路841でホールドされた値のゲインを設定するゲイン設定用第1アンプ851(メインアンプ)と、第2ピークホールド回路842(ボトムホールド回路)でホールドされた値のゲインを設定するゲイン設定用第2アンプ852(メインアンプ)とを備えており、第1ピークホールド回路841および第2ピークホールド回路842でホールドされた値を所定のゲインに設定してデジタル信号処理部90のA/Dコンバータ91に出力する。 The gain setting unit 85 is held by the gain setting first amplifier 851 (main amplifier) and the second peak hold circuit 842 (bottom hold circuit) for setting the gain of the value held by the first peak hold circuit 841. And a gain setting second amplifier 852 (main amplifier) for setting the gain of the value. The values held by the first peak hold circuit 841 and the second peak hold circuit 842 are set to a predetermined gain and digitally set. The signal is output to the A / D converter 91 of the signal processing unit 90.
 デジタル信号処理部90は、第1ピークホールド回路841でホールドされた値と、第2ピークホールド回路842でホールドされた値とを加算して第1信号S1を生成する加算回路92と、第1ピークホールド回路841でホールドされた値と、第2ピークホールド回路842でホールドされた値とを減算して第2信号S2を生成する減算回路93とを備えている。また、デジタル信号処理部90は、切替制御信号、励磁指令信号、オフセット制御信号等を出力する制御信号出力部94を備えている。このように構成したデジタル信号処理部90からは、上位の制御部(図示せず)に対して第1信号S1および第2信号S2が出力され、上記の制御部では、第1信号S1および第2信号S2に基づいて媒体1の真偽を判定する。より具体的には、上位の制御部には、第1信号S1および第2信号S2を磁気センサ素子40と媒体1との相対位置情報に関係づけて、記録部に予め記録されている比較パターンとの照合を行って媒体1の真偽を判定する判定部を備えており、かかる判定部は、ROMあるいはRAM等といった記録部(図示せず)に予め記録されているプログラムに基づいて所定の処理を行い、媒体1の真偽を判定する。 The digital signal processing unit 90 adds the value held by the first peak hold circuit 841 and the value held by the second peak hold circuit 842 to generate the first signal S1; A subtracting circuit 93 that subtracts the value held by the peak hold circuit 841 from the value held by the second peak hold circuit 842 to generate the second signal S2. The digital signal processing unit 90 includes a control signal output unit 94 that outputs a switching control signal, an excitation command signal, an offset control signal, and the like. The digital signal processing unit 90 configured in this manner outputs a first signal S1 and a second signal S2 to a higher-level control unit (not shown). In the control unit, the first signal S1 and the second signal S2 are output. The authenticity of the medium 1 is determined based on the two signals S2. More specifically, the upper control unit associates the first signal S1 and the second signal S2 with the relative position information between the magnetic sensor element 40 and the medium 1, and the comparison pattern recorded in advance in the recording unit. And a determination unit that determines whether the medium 1 is true or false. The determination unit is a predetermined unit based on a program recorded in advance in a recording unit (not shown) such as a ROM or a RAM. Processing is performed to determine whether the medium 1 is true or false.
 (増幅部70の詳細構成)
 図5は、本発明の第一の実施の形態1に係る磁気パターン検出装置100の増幅部70においてアンプに入力される信号等の説明図であり、図5(a)、(b)は、励磁信号、センサ出力信号および基準電圧の波形を示す説明図、およびセンサ出力信号と基準電圧の差をアンプで増幅した後の波形を示す説明図である。なお、図5(a)、(b)には、励磁信号を実線L1で示し、センサ出力信号を実線L2で示し、基準電圧を実線L3で示し、センサ出力信号と基準電圧との差をアンプで増幅した後の信号を実線L4で示してある。
(Detailed configuration of the amplification unit 70)
FIG. 5 is an explanatory diagram of signals and the like input to the amplifier in the amplification unit 70 of the magnetic pattern detection device 100 according to the first embodiment of the present invention. FIGS. It is explanatory drawing which shows the waveform of an excitation signal, a sensor output signal, and a reference voltage, and explanatory drawing which shows the waveform after amplifying the difference of a sensor output signal and a reference voltage with an amplifier. In FIGS. 5A and 5B, the excitation signal is indicated by a solid line L1, the sensor output signal is indicated by a solid line L2, the reference voltage is indicated by a solid line L3, and the difference between the sensor output signal and the reference voltage is amplified. The signal after amplification at is indicated by a solid line L4.
 本形態の磁気パターン検出装置100において、増幅部70は、図4(b)に示すように、複数の磁気センサ素子40の各々に対応する複数のアンプ71(プリアンプ)を備えており、かかるアンプ71には、磁気センサ素子40から出力されたセンサ出力信号と、基準電圧とが入力されている。ここで、増幅部70は、励磁信号に連動して変化する信号を基準電圧として生成する基準電圧生成部72を備えており、本形態において、アンプ71には、基準電圧生成部72によって生成された信号が基準電圧として入力されている。 In the magnetic pattern detection apparatus 100 of this embodiment, the amplification unit 70 includes a plurality of amplifiers 71 (preamplifiers) corresponding to each of the plurality of magnetic sensor elements 40 as shown in FIG. A sensor output signal output from the magnetic sensor element 40 and a reference voltage are input to 71. Here, the amplification unit 70 includes a reference voltage generation unit 72 that generates, as a reference voltage, a signal that changes in conjunction with the excitation signal. In this embodiment, the amplifier 71 generates the reference voltage generation unit 72. Signal is input as the reference voltage.
 本形態においては、基準電圧は、図5(a)、(b)に実線L3で示す波形を備えており、かかる波形は、図5(a)に実線L1で示す励磁信号を微分した波形に相当する。従って、基準電圧は、励磁信号に連動して変化している。より具体的には、本形態において、基準電圧生成部72は、キャパシタCと抵抗RとからなるCR微分回路73であり、かかるCR微分回路73は、励磁信号を微分した信号を基準電圧として生成する。ここで、図5(a)、(b)に実線L2で示すセンサ出力信号は、励磁信号により発生する磁束の時間微分に相当するため、励磁信号を微分してなる基準電圧は、センサ出力信号に同期している。かかる基準電圧であれば、図5(b)に示すように、センサ出力信号との差が小さいので、アンプ71のゲインを高めても、図5(b)に実線L4で示すように、アンプ71からの出力信号は飽和することがない。 In this embodiment, the reference voltage has a waveform indicated by a solid line L3 in FIGS. 5A and 5B, and this waveform is a waveform obtained by differentiating the excitation signal indicated by the solid line L1 in FIG. Equivalent to. Therefore, the reference voltage changes in conjunction with the excitation signal. More specifically, in this embodiment, the reference voltage generation unit 72 is a CR differentiation circuit 73 including a capacitor C and a resistor R, and the CR differentiation circuit 73 generates a signal obtained by differentiating the excitation signal as a reference voltage. To do. Here, since the sensor output signal indicated by the solid line L2 in FIGS. 5A and 5B corresponds to the time differentiation of the magnetic flux generated by the excitation signal, the reference voltage obtained by differentiating the excitation signal is the sensor output signal. Synchronized with. With such a reference voltage, the difference from the sensor output signal is small as shown in FIG. 5B, so that even if the gain of the amplifier 71 is increased, as shown by the solid line L4 in FIG. The output signal from 71 does not saturate.
 (検出原理)
 図6は、本発明の第一の実施の形態1に係る磁気パターン検出装置100において媒体1に形成される各種磁気インクの特性等を示す説明図である。図7は、本発明の第一の実施の形態1に係る磁気パターン検出装置100において種類の異なる磁気パターンが形成された媒体1から磁気パターンの有無を検出する原理を示す説明図である。
(Detection principle)
FIG. 6 is an explanatory diagram showing characteristics and the like of various magnetic inks formed on the medium 1 in the magnetic pattern detection apparatus 100 according to the first embodiment of the present invention. FIG. 7 is an explanatory diagram showing the principle of detecting the presence / absence of a magnetic pattern from the medium 1 on which different types of magnetic patterns are formed in the magnetic pattern detection apparatus 100 according to the first embodiment of the present invention.
 まず、図1および図2に示す矢印X1の方向に媒体1が移動する際に媒体1の真偽を判定する原理を説明する。本形態において、媒体1の磁性領域1aには、残留磁束密度Brおよび透磁率μが異なる複数種類の磁気パターンが形成されている。より具体的には、媒体1には、ハード材を含む磁気インキにより印刷された第1の磁気パターンと、ソフト材を含む磁気インキにより印刷された第2の磁気パターンとが形成されている。ここで、ハード材を含む磁気インキは、図6(b1)にヒステリシスループによって、残留磁束密度Brや透磁率μ等を示すように、磁界を印加したときの残留磁束密度Brのレベルは高いが、透磁率μは低い。これに対して、ソフト材を含む磁気インキは、図6(c1)にそのヒステリシスループを示すように、磁界を印加したときの残留磁束密度Brのレベルは低いが、透磁率μは高い。 First, the principle of determining the authenticity of the medium 1 when the medium 1 moves in the direction of the arrow X1 shown in FIGS. 1 and 2 will be described. In this embodiment, a plurality of types of magnetic patterns having different residual magnetic flux density Br and magnetic permeability μ are formed in the magnetic region 1 a of the medium 1. More specifically, the medium 1 is formed with a first magnetic pattern printed with a magnetic ink containing a hard material and a second magnetic pattern printed with a magnetic ink containing a soft material. Here, the magnetic ink containing the hard material has a high level of residual magnetic flux density Br when a magnetic field is applied, as shown in FIG. 6B1 by a hysteresis loop, such as residual magnetic flux density Br and permeability μ. The permeability μ is low. On the other hand, magnetic ink containing a soft material has a low residual magnetic flux density Br when a magnetic field is applied as shown in FIG. 6 (c1), but has a high magnetic permeability μ.
 従って、以下に説明するように、残留磁束密度Brと透磁率μとを測定すれば、磁気インキの材質の判別を行なうことができる。より具体的には、透磁率μは保持力Hcと相関性を有しているので、本形態では、残留磁束密度Brと保持力Hcとを測定していることになり、かかる残留磁束密度Brと保持力Hcとの比は、磁気インキ(磁性材料)によって相違する。それ故、磁気インキの材質の判別を行なうことができる。また、残留磁束密度Brおよび透磁率μ(保持力Hc)の測定値は、インキの濃淡や、媒体1と磁気センサ装置20との距離により変動するが、本形態では、磁気センサ装置20が同一位置で残留磁束密度Brおよび透磁率μ(保持力Hc)を測定するため、残留磁束密度Brと保持力Hcとの比によれば、磁気インキの材質を確実に判別することができる。 Therefore, as will be described below, the material of the magnetic ink can be determined by measuring the residual magnetic flux density Br and the magnetic permeability μ. More specifically, since the magnetic permeability μ has a correlation with the holding force Hc, in this embodiment, the residual magnetic flux density Br and the holding force Hc are measured, and the residual magnetic flux density Br is measured. And the holding force Hc differ depending on the magnetic ink (magnetic material). Therefore, the material of the magnetic ink can be determined. Further, the measured values of the residual magnetic flux density Br and the magnetic permeability μ (holding force Hc) vary depending on the density of the ink and the distance between the medium 1 and the magnetic sensor device 20, but in this embodiment, the magnetic sensor device 20 is the same. Since the residual magnetic flux density Br and the magnetic permeability μ (holding force Hc) are measured at the position, the material of the magnetic ink can be reliably determined according to the ratio of the residual magnetic flux density Br and the holding force Hc.
 本形態の磁気パターン検出装置100において、媒体1が矢印X1で示す方向に移動して磁気センサ装置20を通過する際、まず、磁界印加用第1磁石31から媒体1に磁界が印加され、磁界が印加された後の媒体1が磁気センサ素子40を通過する。それまでの間、磁気センサ素子40の検出コイル49からは、図6(a3)に示すように、図6(a2)に示すセンサコア41のB-Hカーブに対応する信号が出力される。従って、図4に示す加算回路92から出力される第1信号S1、および減算回路93から出力される第2信号S2は各々、図6(a4)に示す通りである。 In the magnetic pattern detection apparatus 100 of the present embodiment, when the medium 1 moves in the direction indicated by the arrow X1 and passes through the magnetic sensor apparatus 20, first, a magnetic field is applied from the first magnetic field application magnet 31 to the medium 1, and the magnetic field The medium 1 after is applied passes through the magnetic sensor element 40. Until then, the detection coil 49 of the magnetic sensor element 40 outputs a signal corresponding to the BH curve of the sensor core 41 shown in FIG. 6 (a2), as shown in FIG. 6 (a3). Accordingly, the first signal S1 output from the adding circuit 92 shown in FIG. 4 and the second signal S2 output from the subtracting circuit 93 are as shown in FIG. 6 (a4).
 ここで、フェライト粉等のハード材を含む磁気インキにより第1の磁気パターンが媒体1に形成されていると、かかる第1の磁気パターンは、図6(b1)に示すように、高レベルの残留磁束密度Brを有する。このため、図7(a1)に示すように、磁界印加用磁石30を媒体1が通過した際、第1の磁気パターンは、磁界印加用磁石30からの磁界により、磁石となる。このため、磁気センサ素子40の検出コイル49から出力される信号は、図6(b2)に示すように、第1の磁気パターンから直流的なバイアスを受けて、図6(b3)および図7(a2)に示す波形に変化する。すなわち、信号S0のピーク電圧およびボトム電圧が矢印A1、A2で示すように、同一の方向にシフトするとともに、ピーク電圧のシフト量とボトム電圧のシフト量が相違する。しかも、かかる信号S0は、媒体1の移動に伴って変化する。従って、図4に示す加算回路92から出力される第1信号S1は、図6(b4)に示す通りであり、磁気センサ素子40を媒体1の第1の磁気パターンが通過するたびに変動する。ここで、ハード材を含む磁気インクにより形成された第1の磁気パターンは、透磁率μが低いため、信号S0のピーク電圧およびボトム電圧のシフトに影響しているのは、第1の磁気パターンの残留磁束密度Brだけと見做すことができる。それ故、図4に示す減算回路93から出力される第2信号S2は、磁気センサ素子40を媒体1の第1の磁気パターンが通過しても変動せず、図6(b4)に示す信号と同様である。 Here, when the first magnetic pattern is formed on the medium 1 with the magnetic ink containing a hard material such as ferrite powder, the first magnetic pattern has a high level as shown in FIG. It has a residual magnetic flux density Br. Therefore, as shown in FIG. 7A1, when the medium 1 passes through the magnetic field application magnet 30, the first magnetic pattern becomes a magnet by the magnetic field from the magnetic field application magnet 30. Therefore, the signal output from the detection coil 49 of the magnetic sensor element 40 receives a direct current bias from the first magnetic pattern as shown in FIG. 6 (b2), and FIG. 6 (b3) and FIG. The waveform changes to (a2). That is, the peak voltage and the bottom voltage of the signal S0 are shifted in the same direction as indicated by arrows A1 and A2, and the shift amount of the peak voltage and the shift amount of the bottom voltage are different. Moreover, the signal S0 changes as the medium 1 moves. Therefore, the first signal S1 output from the adder circuit 92 shown in FIG. 4 is as shown in FIG. 6B4, and fluctuates every time the first magnetic pattern of the medium 1 passes through the magnetic sensor element 40. . Here, since the magnetic permeability μ is low in the first magnetic pattern formed by the magnetic ink containing the hard material, the first magnetic pattern has an influence on the shift of the peak voltage and the bottom voltage of the signal S0. It can be considered that only the residual magnetic flux density Br. Therefore, the second signal S2 output from the subtraction circuit 93 shown in FIG. 4 does not change even when the first magnetic pattern of the medium 1 passes through the magnetic sensor element 40, and the signal shown in FIG. 6 (b4). It is the same.
 これに対して、軟磁性ステンレス紛等のソフト材を含む磁気インキにより第2の磁気パターンが媒体1に形成されていると、かかる第2の磁気パターンのヒステリシスループは、図6(c1)に示すように、図6(b1)に示すハード材を含む磁気インクによる第1の磁気パターンのヒステリシスカーブの内側を通り、残留磁束密度Brのレベルが低い。このため、磁界印加用磁石30を媒体1が通過した後も、第2の磁気パターンは、残留磁束密度Brのレベルが低い。但し、第2の磁気パターンは透磁率μが高いため、図7(b1)に示すように、磁性体として機能する。このため、磁気センサ素子40の検出コイル49から出力される信号は、図6(c2)に示すように、第2の磁気パターンの存在によって透磁率μが高くなっている分、図6(c3)および図7(b2)に示す波形に変化する。すなわち、信号S0のピーク電圧は矢印A3で示すように高い方にシフトする一方、ボトム電圧は、矢印A4で示すように低い方にシフトする。その際、ピーク電圧のシフト量とボトム電圧のシフト量は絶対値が略等しい。しかも、かかる信号S0は、媒体1の移動に伴って変化する。従って、図4に示す減算回路93から出力される第2信号S2は、図6(c4)に示す通りであり、磁気センサ素子40を媒体1の第2の磁気パターンが通過するたびに変動する。ここで、ソフト材を含む磁気インクにより形成された第2の磁気パターンは、残留磁束密度Brが低いため、信号のピーク電圧およびボトム電圧のシフトに影響しているのは、第2の磁気パターンの透磁率μだけと見做すことができる。それ故、図4に示す加算回路92から出力される第1信号S1は、磁気センサ素子40を媒体1の第2の磁気パターンが通過しても変動せず、図6(c4)に示す信号と同様である。 On the other hand, when the second magnetic pattern is formed on the medium 1 with magnetic ink containing a soft material such as soft magnetic stainless steel powder, the hysteresis loop of the second magnetic pattern is shown in FIG. As shown, the level of the residual magnetic flux density Br is low through the inside of the hysteresis curve of the first magnetic pattern with the magnetic ink containing the hard material shown in FIG. 6 (b1). For this reason, even after the medium 1 passes through the magnetic field applying magnet 30, the second magnetic pattern has a low residual magnetic flux density Br. However, since the magnetic permeability μ is high, the second magnetic pattern functions as a magnetic material as shown in FIG. For this reason, as shown in FIG. 6C2, the signal output from the detection coil 49 of the magnetic sensor element 40 has an increase in the permeability μ due to the presence of the second magnetic pattern. ) And the waveform shown in FIG. 7 (b2). That is, the peak voltage of the signal S0 is shifted to the higher side as indicated by the arrow A3, while the bottom voltage is shifted to the lower side as indicated by the arrow A4. At that time, the absolute value of the shift amount of the peak voltage and the shift amount of the bottom voltage are substantially equal. Moreover, the signal S0 changes as the medium 1 moves. Therefore, the second signal S2 output from the subtraction circuit 93 shown in FIG. 4 is as shown in FIG. 6C4, and fluctuates every time the second magnetic pattern of the medium 1 passes through the magnetic sensor element 40. . Here, since the second magnetic pattern formed by the magnetic ink containing the soft material has a low residual magnetic flux density Br, it is the second magnetic pattern that affects the shift of the peak voltage and the bottom voltage of the signal. It can be considered that only the magnetic permeability μ of. Therefore, the first signal S1 output from the addition circuit 92 shown in FIG. 4 does not change even when the second magnetic pattern of the medium 1 passes through the magnetic sensor element 40, and the signal shown in FIG. 6 (c4). It is the same.
 このように、本形態の磁気パターン検出装置100では、加算回路92において磁気センサ素子40から出力される信号のピーク値とボトム値とを加算した第1信号S1は、磁気パターンの残留磁束密度レベルに対応する信号であり、かかる第1信号S1を監視すれば、ハード材を含む磁気インキにより形成された第1の磁気パターンの有無および形成位置を検出することができる。また、減算回路93において磁気センサ素子40から出力される信号のピーク値とボトム値とを減算した第2信号S2は、磁気パターンの透磁率μに対応する信号であり、かかる第2信号S2を監視すれば、ソフト材を含む磁気インキにより形成された第2の磁気パターンの有無および形成位置を検出することができる。それ故、磁界を印加したときの残留磁束密度Brおよび透磁率μが異なる複数種類の磁気パターンの媒体1における磁気パターン毎の有無および形成位置を残留磁束密度レベルおよび透磁率レベルの双方に基づいて識別することができる。 Thus, in the magnetic pattern detection apparatus 100 of the present embodiment, the first signal S1 obtained by adding the peak value and the bottom value of the signal output from the magnetic sensor element 40 in the addition circuit 92 is the residual magnetic flux density level of the magnetic pattern. By monitoring the first signal S1, it is possible to detect the presence and position of the first magnetic pattern formed by the magnetic ink containing the hard material. In addition, the second signal S2 obtained by subtracting the peak value and the bottom value of the signal output from the magnetic sensor element 40 in the subtraction circuit 93 is a signal corresponding to the magnetic permeability μ of the magnetic pattern. If monitored, it is possible to detect the presence and position of the second magnetic pattern formed by the magnetic ink containing the soft material. Therefore, the presence / absence and formation position of each of the magnetic patterns in the medium 1 of a plurality of types of magnetic patterns having different residual magnetic flux density Br and magnetic permeability μ when a magnetic field is applied are based on both the residual magnetic flux density level and the magnetic permeability level. Can be identified.
 (第一の実施の形態1の主な効果)
 以上説明したように、本形態の磁気パターン検出装置100では、信号処理部60の増幅部70において、励磁信号により励磁された磁気センサ素子40から出力されたセンサ出力信号と、基準電圧とをアンプ71に入力するにあたって、基準電圧生成部72において、励磁信号に連動して変化する信号を生成し、かかる信号を基準電圧としてアンプ71に入力する。このため、磁気センサ素子40から出力されるセンサ出力信号と基準電圧との差が小さい。従って、ブリッジ回路等といったコストが増大する回路を追加しなくても、アンプ71のゲインを高めることができ、S/N比を高めることができる。また、基準電圧は、励磁信号に連動して変化するため、センサ出力信号と基準電圧とは同期しており、センサ出力信号を適正に増幅することができる。
(Main effects of the first embodiment)
As described above, in the magnetic pattern detection device 100 of this embodiment, the amplifier 70 of the signal processing unit 60 amplifies the sensor output signal output from the magnetic sensor element 40 excited by the excitation signal and the reference voltage. When inputting to 71, the reference voltage generating unit 72 generates a signal that changes in conjunction with the excitation signal, and inputs the signal to the amplifier 71 as a reference voltage. For this reason, the difference between the sensor output signal output from the magnetic sensor element 40 and the reference voltage is small. Therefore, the gain of the amplifier 71 can be increased and the S / N ratio can be increased without adding a circuit that increases costs, such as a bridge circuit. Further, since the reference voltage changes in conjunction with the excitation signal, the sensor output signal and the reference voltage are synchronized, and the sensor output signal can be appropriately amplified.
 また、基準電圧生成部72は、基準電圧として、励磁信号を微分した波形を備えた信号を生成するため、センサ出力信号と基準電圧との差を小さくすることができる。すなわち、センサ出力信号は、励磁信号により発生する磁束の時間微分に相当するため、励磁信号を微分した波形の信号をアンプ71の基準電圧として用いれば、センサ出力信号と基準電圧との差が小さいので、ゲインを高めることができる。 In addition, since the reference voltage generation unit 72 generates a signal having a waveform obtained by differentiating the excitation signal as the reference voltage, the difference between the sensor output signal and the reference voltage can be reduced. That is, since the sensor output signal corresponds to time differentiation of the magnetic flux generated by the excitation signal, if a signal having a waveform obtained by differentiating the excitation signal is used as the reference voltage of the amplifier 71, the difference between the sensor output signal and the reference voltage is small. So gain can be increased.
 また、基準電圧生成部72は、励磁信号を微分して基準電圧を生成するCR微分回路73を備えているため、キャパシタCや抵抗Rといった安価な電気素子を用いて、励磁信号を微分して基準電圧を生成することができる。 Further, since the reference voltage generation unit 72 includes a CR differentiation circuit 73 that differentiates the excitation signal to generate a reference voltage, the excitation signal is differentiated by using an inexpensive electric element such as a capacitor C or a resistor R. A reference voltage can be generated.
 また、本形態の磁気パターン検出装置100では、共通の磁気センサ装置20によって、磁気パターン毎の有無および形成位置を残留磁束密度レベルおよび透磁率レベルの双方に基づいて検出するため、残留磁束密度レベルの測定と、透磁率レベルの測定との間に時間差が発生しない。それ故、磁気センサ装置20と媒体1とを移動させながら計測する場合でも、信号処理部60は、簡素な構成で高い精度の検出を行なうができる。また、搬送装置10についても、磁気センサ装置20を通過する箇所のみに走行安定性が求められるだけなので、構成の簡素化を図ることができる。 Further, in the magnetic pattern detection device 100 of this embodiment, the common magnetic sensor device 20 detects the presence / absence and formation position of each magnetic pattern based on both the residual magnetic flux density level and the magnetic permeability level. There is no time difference between the measurement and the permeability level measurement. Therefore, even when the measurement is performed while moving the magnetic sensor device 20 and the medium 1, the signal processing unit 60 can perform highly accurate detection with a simple configuration. In addition, since the transport device 10 is also required to have running stability only at a location that passes through the magnetic sensor device 20, the configuration can be simplified.
 さらに、本形態の磁気パターン検出装置100によれば、ハード材およびソフト材の双方を含む磁気インキにより磁気パターンが形成されている媒体1や、ハード材とソフト材の中間に位置する材料を含む磁気インキにより磁気パターンが形成されている媒体1についても、磁気パターンの検出を行なうことができる。すなわち、磁気特性が第1の磁気パターンと第2の磁気パターンの中間に位置するような磁気パターンについては、図6(d1)に示すように、ヒステリシスループが、図6(b1)に示すハード材の磁気パターンのヒステリシスループと図6(c1)に示すソフト材の磁気パターンのヒステリシスループとの中間に位置するので、図6(d4)に示す信号パターンを得ることができ、かかる磁気パターンについても、有無や形成位置を検出することができる。 Furthermore, according to the magnetic pattern detection apparatus 100 of the present embodiment, the medium 1 on which the magnetic pattern is formed by the magnetic ink including both the hard material and the soft material, and the material positioned between the hard material and the soft material are included. The magnetic pattern can also be detected for the medium 1 on which the magnetic pattern is formed with the magnetic ink. That is, as for the magnetic pattern whose magnetic characteristics are located between the first magnetic pattern and the second magnetic pattern, as shown in FIG. 6 (d1), the hysteresis loop has a hard loop as shown in FIG. 6 (b1). Since it is located between the hysteresis loop of the magnetic pattern of the material and the hysteresis loop of the magnetic pattern of the soft material shown in FIG. 6 (c1), the signal pattern shown in FIG. 6 (d4) can be obtained. In addition, the presence or absence and the formation position can be detected.
 しかも、本形態の磁気センサ装置20において、磁界印加用磁石30は、磁気センサ素子40に対して媒体1の移動方向の両側に磁界印加用第1磁石31と磁界印加用第2磁石32として配置されている。このため、図1に示すように、矢印X1で示す方向に移動する媒体1を磁界印加用第1磁石31によって着磁し、その後、磁気センサ素子40によって、着磁した後の媒体1にバイアス磁界を印加した状態における磁束を検出することができるとともに、矢印X2で示す方向に移動する媒体1を磁界印加用第2磁石32によって着磁し、その後、磁気センサ素子40によって、着磁した後の媒体1にバイアス磁界を印加した状態における磁束を検出することができる。それ故、本形態の磁気パターン検出装置100を入出金機に用いれば、入金された媒体1の真偽を判定することができるとともに、出金される媒体1の真偽を判定することもできる。 Moreover, in the magnetic sensor device 20 of this embodiment, the magnetic field application magnets 30 are arranged as the first magnetic field application magnet 31 and the second magnetic field application magnet 32 on both sides of the magnetic sensor element 40 in the moving direction of the medium 1. Has been. For this reason, as shown in FIG. 1, the medium 1 moving in the direction indicated by the arrow X1 is magnetized by the first magnetic field application magnet 31, and then the magnetic sensor element 40 biases the medium 1 after magnetization. The magnetic flux can be detected in a state where a magnetic field is applied, and the medium 1 moving in the direction indicated by the arrow X2 is magnetized by the magnetic field applying second magnet 32, and then magnetized by the magnetic sensor element 40. The magnetic flux in a state where a bias magnetic field is applied to the medium 1 can be detected. Therefore, if the magnetic pattern detection apparatus 100 of this embodiment is used for a depositing / dispensing machine, it is possible to determine the authenticity of the deposited medium 1 and also to determine the authenticity of the dispensed medium 1. .
 [第一の実施の形態2]
 図8は、本発明の第一の実施の形態2に係る磁気パターン検出装置100の回路部のうち、増幅部70周辺の構成を示す説明図である。なお、本形態の基本的な構成は、実施の形態1と同様であるため、共通する部分には同一の符号を付してそれらの説明を省略する。
[First Embodiment 2]
FIG. 8 is an explanatory diagram showing a configuration around the amplification unit 70 in the circuit unit of the magnetic pattern detection apparatus 100 according to the first embodiment 2 of the present invention. Since the basic configuration of this embodiment is the same as that of Embodiment 1, common portions are denoted by the same reference numerals and description thereof is omitted.
 第一の実施の形態1では、増幅部70は、複数の磁気センサ素子40の各々に対応する複数のアンプ71が設けられていたが、本形態では、図8に示すように、複数の磁気センサ素子40の後段にマルチプレクサ77が設けられ、マルチプレクサ77の後段にアンプ71が設けられている。このため、複数の磁気センサ素子40から出力されたセンサ出力信号は、マルチプレクサ77によってアンプ71に順次出力される。このため、複数の磁気センサ素子40から出力されたセンサ出力信号を1つのアンプ71で増幅することができるという利点がある。 In the first embodiment, the amplifier 70 is provided with a plurality of amplifiers 71 corresponding to each of the plurality of magnetic sensor elements 40. However, in this embodiment, as shown in FIG. A multiplexer 77 is provided after the sensor element 40, and an amplifier 71 is provided after the multiplexer 77. Therefore, sensor output signals output from the plurality of magnetic sensor elements 40 are sequentially output to the amplifier 71 by the multiplexer 77. For this reason, there exists an advantage that the sensor output signal output from the some magnetic sensor element 40 can be amplified with one amplifier 71. FIG.
 また、本形態でも、第一の実施の形態1と同様、増幅部70では、CR微分回路73を備えた基準電圧生成部72において、励磁信号に連動して変化する信号を生成し、かかる信号を基準電圧としてアンプ71に入力する。このため、磁気センサ素子40から出力されるセンサ出力信号と基準電圧との差が小さいので、ブリッジ回路等といったコストが増大する回路を追加しなくても、アンプ71のゲインを高めることができる等、実施の形態1と同様な効果を奏する。 Also in the present embodiment, as in the first embodiment, the amplification unit 70 generates a signal that changes in conjunction with the excitation signal in the reference voltage generation unit 72 including the CR differentiation circuit 73, and the signal Is input to the amplifier 71 as a reference voltage. For this reason, since the difference between the sensor output signal output from the magnetic sensor element 40 and the reference voltage is small, the gain of the amplifier 71 can be increased without adding a cost-increasing circuit such as a bridge circuit. The same effects as those of the first embodiment are obtained.
 また、第一の実施の形態1では、複数の磁気センサ素子40の各々に対応する複数の励磁用ドライバアンプ51が設けられていたが、本形態では、励磁用ドライバアンプ51の後段にマルチプレクサ54が設けられ、マルチプレクサ54の後段に複数の磁気センサ素子40が設けられている。このため、励磁用ドライバアンプ51から出力された励磁信号は、マルチプレクサ54によっての複数の磁気センサ素子40に順次出力される。このため、1つの励磁用ドライバアンプ51で複数の磁気センサ素子40に励磁信号を供給することができるという利点がある。 In the first embodiment, a plurality of excitation driver amplifiers 51 corresponding to each of the plurality of magnetic sensor elements 40 are provided. However, in this embodiment, a multiplexer 54 is provided after the excitation driver amplifier 51. Are provided, and a plurality of magnetic sensor elements 40 are provided downstream of the multiplexer 54. Therefore, the excitation signal output from the excitation driver amplifier 51 is sequentially output to the plurality of magnetic sensor elements 40 by the multiplexer 54. For this reason, there is an advantage that an excitation signal can be supplied to a plurality of magnetic sensor elements 40 by one excitation driver amplifier 51.
 なお、マルチプレクサ77の切替え時に本来必要ではない信号、例えば、検出信号をマルチプレクサ77で切替え時に生じるノイズ等を後段に通さないことを目的に、マルチプレクサ77の切替えタイミングを微調整してもよいが、図8に示すように、アンプ71の出力段にアナログスイッチ79を追加して、ノイズ等を後段に通さないようにしてもよい。 Note that the switching timing of the multiplexer 77 may be finely adjusted in order to prevent a signal that is not originally required when switching the multiplexer 77, for example, noise generated when the detection signal is switched by the multiplexer 77 from passing through the subsequent stage. As shown in FIG. 8, an analog switch 79 may be added to the output stage of the amplifier 71 so that noise or the like does not pass through the subsequent stage.
 [第一の実施の形態3]
 図9は、本発明の第一の実施の形態3に係る磁気パターン検出装置100の増幅部70の構成を示す説明図であり、図9(a)、(b)は、増幅部70周辺の構成を示す説明図、およびダミー用磁気センサ素子の説明図である。なお、本形態の基本的な構成は、第一の実施の形態1、2と同様であるため、共通する部分には同一の符号を付してそれらの説明を省略する。
[First Embodiment 3]
FIG. 9 is an explanatory diagram showing a configuration of the amplifying unit 70 of the magnetic pattern detection device 100 according to the first embodiment 3 of the present invention, and FIGS. It is explanatory drawing which shows a structure, and explanatory drawing of the magnetic sensor element for dummy. Since the basic configuration of this embodiment is the same as that of the first and second embodiments, common portions are denoted by the same reference numerals and description thereof is omitted.
 第一の実施の形態1、2では、CR微分回路73を備えた基準電圧生成部72を用いたが、本形態では、図9(a)に示すように、ダミー用磁気センサ素子74を備えた基準電圧生成部72を設けてある。従って、ダミー用磁気センサ素子74によって、励磁信号に連動して変化する信号を生成し、かかる信号を基準電圧としてアンプ71に入力することができる。ここで、ダミー用磁気センサ素子74は、図1に示す媒体移動路11から離間した位置に設けられており、媒体1や磁気センサ素子40から磁気的な影響を受けることがない。 In the first and second embodiments, the reference voltage generation unit 72 including the CR differentiation circuit 73 is used. However, in this embodiment, as shown in FIG. 9A, a dummy magnetic sensor element 74 is provided. A reference voltage generator 72 is provided. Therefore, the dummy magnetic sensor element 74 can generate a signal that changes in conjunction with the excitation signal, and can input this signal to the amplifier 71 as a reference voltage. Here, the dummy magnetic sensor element 74 is provided at a position separated from the medium moving path 11 shown in FIG. 1 and is not affected by the medium 1 or the magnetic sensor element 40 magnetically.
 かかるダミー用磁気センサ素子74は、図9(b)に示すように、図2(b)および図3(b)を参照して説明した磁気センサ素子40と同一の構成を有しており、センサコア41に励磁コイル48および検出コイル49が巻回された構造を有している。また、ダミー用磁気センサ素子74の励磁コイル48には、ダミーの励磁用ドライバアンプ510を介して励磁信号が供給され、ダミー用磁気センサ素子74の検出コイル49からの出力が基準電圧としてアンプ71に供給されている。 As shown in FIG. 9B, the dummy magnetic sensor element 74 has the same configuration as the magnetic sensor element 40 described with reference to FIGS. 2B and 3B. The sensor core 41 has a structure in which an excitation coil 48 and a detection coil 49 are wound. An excitation signal is supplied to the excitation coil 48 of the dummy magnetic sensor element 74 via the dummy excitation driver amplifier 510, and an output from the detection coil 49 of the dummy magnetic sensor element 74 is used as a reference voltage for the amplifier 71. Has been supplied to.
 このように構成した増幅部70では、ダミー用磁気センサ素子74は、励磁信号により励磁されて励磁信号を微分してなる信号を検出コイル49から出力する。ここで、ダミー用磁気センサ素子74からの出力信号は、励磁信号により発生する磁束の時間微分に相当し、励磁信号を微分した波形の信号である。このため、基準電圧とセンサ出力信号との差を極めて小さくすることができるので、ゲインを高めることができる。 In the amplifying unit 70 configured as described above, the dummy magnetic sensor element 74 is excited by the excitation signal and outputs a signal obtained by differentiating the excitation signal from the detection coil 49. Here, the output signal from the dummy magnetic sensor element 74 corresponds to the time differentiation of the magnetic flux generated by the excitation signal, and is a waveform signal obtained by differentiating the excitation signal. For this reason, since the difference between the reference voltage and the sensor output signal can be made extremely small, the gain can be increased.
 なお、本形態では、第一の実施の形態2をベースにして、ダミー用磁気センサ素子74を備えた基準電圧生成部72を設けたが、実施の形態1に対して、ダミー用磁気センサ素子74を備えた基準電圧生成部72を設けてもよい。 In this embodiment, the reference voltage generator 72 including the dummy magnetic sensor element 74 is provided based on the first embodiment 2. However, the dummy magnetic sensor element is different from the first embodiment. A reference voltage generation unit 72 having 74 may be provided.
 [第一の実施の形態4]
 図10は、本発明の第一の実施の形態4に係る磁気パターン検出装置100の増幅部70周辺の構成を示す説明図である。なお、本形態の基本的な構成は、第一の実施の形態1~3と同様であるため、共通する部分には同一の符号を付してそれらの説明を省略する。
[First Embodiment 4]
FIG. 10 is an explanatory diagram showing a configuration around the amplification unit 70 of the magnetic pattern detection device 100 according to the first embodiment of the present invention. Since the basic configuration of this embodiment is the same as that of the first to third embodiments, common portions are denoted by the same reference numerals and description thereof is omitted.
 第一の実施の形態1~3では、クランプ回路82の後段にオフセット調整部83を設けたが、本形態では、図10に示すように、オフセット調整部83において、第1オフセット調整回路831のオペアンプ831b、および第2オフセット調整回路832のオペアンプ832bにキャパシタが設けられており、第1オフセット調整回路831および第2オフセット調整回路832は、第1積分回路835および第2積分回路836として構成されている。 In the first to third embodiments, the offset adjustment unit 83 is provided at the subsequent stage of the clamp circuit 82. However, in the present embodiment, the offset adjustment unit 83 includes the first offset adjustment circuit 831 as shown in FIG. The operational amplifier 831b and the operational amplifier 832b of the second offset adjustment circuit 832 are provided with capacitors, and the first offset adjustment circuit 831 and the second offset adjustment circuit 832 are configured as a first integration circuit 835 and a second integration circuit 836. ing.
 このため、第1積分回路835は、アンプ71から出力された信号のうち、極性が正の信号成分を積分し、第2積分回路836は、極性が負の信号成分を積分する。従って、アンプ71から出力された信号のパルス幅が狭い場合でも、極性が正の信号成分および極性が負の信号成分を各々、積分して振幅変化を面積変化に変換することができるので、簡素な構成で見かけのゲインを高めることができる。 Therefore, the first integration circuit 835 integrates a signal component having a positive polarity in the signal output from the amplifier 71, and the second integration circuit 836 integrates a signal component having a negative polarity. Therefore, even when the pulse width of the signal output from the amplifier 71 is narrow, the signal component having a positive polarity and the signal component having a negative polarity can be integrated to convert the amplitude change into an area change. The apparent gain can be increased with a simple configuration.
 また、本形態でも、第一の実施の形態1と同様、増幅部70では、CR微分回路73を備えた基準電圧生成部72において、励磁信号に連動して変化する信号を生成し、かかる信号を基準電圧としてアンプ71に入力する。このため、磁気センサ素子40から出力されるセンサ出力信号と基準電圧との差が小さいので、ブリッジ回路等といったコストが増大する回路を追加しなくても、アンプ71のゲインを高めることができる等、実施の形態1と同様な効果を奏する。 Also in the present embodiment, as in the first embodiment, the amplification unit 70 generates a signal that changes in conjunction with the excitation signal in the reference voltage generation unit 72 including the CR differentiation circuit 73, and the signal Is input to the amplifier 71 as a reference voltage. For this reason, since the difference between the sensor output signal output from the magnetic sensor element 40 and the reference voltage is small, the gain of the amplifier 71 can be increased without adding a cost-increasing circuit such as a bridge circuit. The same effects as those of the first embodiment are obtained.
 なお、本形態は、第一の実施の形態1をベースに積分回路を設けた構成を適用したが、第一の実施の形態2、3に積分回路を設けた構成を適用してもよい。 In addition, although this embodiment applied the structure which provided the integration circuit based on 1st Embodiment 1, you may apply the structure which provided the integration circuit in 1st Embodiment 2 and 3. FIG.
 [第一の実施の形態5]
 図11は、本発明の第一の実施の形態5に係る磁気パターン検出装置100のオフセット調整部83周辺の構成を示す説明図である。なお、本形態の基本的な構成は、第一の実施の形態1~4と同様であるため、共通する部分には同一の符号を付してそれらの説明を省略する。
[First embodiment 5]
FIG. 11 is an explanatory diagram showing a configuration around the offset adjustment unit 83 of the magnetic pattern detection apparatus 100 according to the first embodiment of the present invention. Since the basic configuration of this embodiment is the same as that of the first to fourth embodiments, common portions are denoted by the same reference numerals and description thereof is omitted.
 第一の実施の形態1~4では、増幅部70に基準電圧生成部72を設けたが、本形態では、図11に示すように、増幅部70に基準電圧生成部72が設けられておらず、アンプ71の基準電圧はグランド電位等の定電位である。 In the first to fourth embodiments, the reference voltage generation unit 72 is provided in the amplification unit 70. However, in this embodiment, the reference voltage generation unit 72 is not provided in the amplification unit 70 as shown in FIG. The reference voltage of the amplifier 71 is a constant potential such as a ground potential.
 但し、本形態では、第一の実施の形態4と同様、オフセット調整部83において、第1オフセット調整回路831のオペアンプ831b、および第2オフセット調整回路832のオペアンプ832bにキャパシタが設けられており、第1オフセット調整回路831および第2オフセット調整回路832は、第1積分回路835および第2積分回路836として構成されている。このため、第1積分回路835は、磁気センサ素子40から出力された信号のうち、極性が正の信号成分を積分し、第2積分回路836は、極性が負の信号成分を積分する。従って、アンプ71から出力された信号のパルス幅が狭い場合でも、極性が正の信号成分および極性が負の信号成分を各々、積分して振幅変化を面積変化に変換することができるので、簡素な構成で見かけのゲインを高めることができる。 However, in this embodiment, as in the first embodiment 4, in the offset adjustment unit 83, capacitors are provided in the operational amplifier 831b of the first offset adjustment circuit 831 and the operational amplifier 832b of the second offset adjustment circuit 832. The first offset adjustment circuit 831 and the second offset adjustment circuit 832 are configured as a first integration circuit 835 and a second integration circuit 836. Therefore, the first integration circuit 835 integrates a signal component having a positive polarity in the signal output from the magnetic sensor element 40, and the second integration circuit 836 integrates a signal component having a negative polarity. Therefore, even when the pulse width of the signal output from the amplifier 71 is narrow, the signal component having a positive polarity and the signal component having a negative polarity can be integrated to convert the amplitude change into an area change. The apparent gain can be increased with a simple configuration.
 [第一の実施の形態6]
 図12は、本発明の第一の実施の形態6に係る磁気パターン検出装置100に用いた磁気センサ素子40の説明図である。なお、本形態の基本的な構成は、第一の実施の形態1~5と同様であるため、共通する部分には同一の符号を付してそれらの説明を省略する。
[First Embodiment 6]
FIG. 12 is an explanatory diagram of the magnetic sensor element 40 used in the magnetic pattern detection device 100 according to the first embodiment of the present invention. Since the basic configuration of this embodiment is the same as that of the first to first embodiments, common portions are denoted by the same reference numerals and description thereof is omitted.
 第一の実施の形態1~5では、磁気センサ素子40および検出コイル49のうち、励磁コイル48のみに励磁信号が印加される構成であったが、本形態では、図12に示すように、励磁コイル48と検出コイル49とが直列に接続されており、励磁コイル48および検出コイル49に励磁信号が印加される。また、励磁コイル48と検出コイル49との接続部分にアンプ71が接続されており、励磁コイル48と検出コイル49との接続部分からアンプ71に信号が差動出力される。 In the first to fifth embodiments, the excitation signal is applied only to the excitation coil 48 of the magnetic sensor element 40 and the detection coil 49. In the present embodiment, as shown in FIG. An excitation coil 48 and a detection coil 49 are connected in series, and an excitation signal is applied to the excitation coil 48 and the detection coil 49. In addition, an amplifier 71 is connected to a connection portion between the excitation coil 48 and the detection coil 49, and a signal is differentially output to the amplifier 71 from a connection portion between the excitation coil 48 and the detection coil 49.
 このように本形態では、センサ出力信号を差動出力として出力するための2つのコイル(励磁コイル48および検出コイル49)を備えており、差動出力がアンプ71に出力される。このため、温度変化等の外乱れを吸収することができる等の利点がある。 Thus, in this embodiment, two coils (excitation coil 48 and detection coil 49) for outputting the sensor output signal as a differential output are provided, and the differential output is output to the amplifier 71. For this reason, there exists an advantage that disturbances, such as a temperature change, can be absorbed.
 また、本形態でも、第一の実施の形態1と同様、増幅部70では、CR微分回路73を備えた基準電圧生成部72において、励磁信号に連動して変化する信号を生成し、かかる信号を基準電圧としてアンプ71に入力する。このため、磁気センサ素子40から出力されるセンサ出力信号と基準電圧との差が小さいので、ブリッジ回路等といったコストが増大する回路を追加しなくても、アンプ71のゲインを高めることができる等、第一の実施の形態1と同様な効果を奏する。 Also in the present embodiment, as in the first embodiment, the amplification unit 70 generates a signal that changes in conjunction with the excitation signal in the reference voltage generation unit 72 including the CR differentiation circuit 73, and the signal Is input to the amplifier 71 as a reference voltage. For this reason, since the difference between the sensor output signal output from the magnetic sensor element 40 and the reference voltage is small, the gain of the amplifier 71 can be increased without adding a cost-increasing circuit such as a bridge circuit. The same effects as those of the first embodiment 1 are obtained.
 なお、本形態は、第一の実施の形態1をベースに積分回路を設けた構成を適用したが、第一の実施の形態2~5に磁気センサ素子40の差動出力を利用した構成を適用してもよい。 In this embodiment, a configuration in which an integration circuit is provided based on the first embodiment is applied. However, a configuration using the differential output of the magnetic sensor element 40 in the first to second embodiments. You may apply.
 (第一の実施の形態のその他の実施の形態)
 上記形態では、媒体1と磁気センサ装置20とを相対移動させるにあたって、媒体1の方を移動させたが、媒体1が固定で磁気センサ装置20が移動する構成を採用してもよい。また、上記形態では、磁界印加用磁石30に永久磁石を用いたが、電磁石を用いてもよい。
(Other embodiments of the first embodiment)
In the above embodiment, when the medium 1 and the magnetic sensor device 20 are moved relative to each other, the medium 1 is moved. However, a configuration in which the medium 1 is fixed and the magnetic sensor device 20 moves may be employed. Moreover, in the said form, although the permanent magnet was used for the magnet 30 for magnetic field application, you may use an electromagnet.
 [第二の実施の形態]
 図面を参照して、本発明の第二の実施の形態を説明する。また、第二の実施の形態は、第2の発明について説明するものである。なお、第二の実施の形態における磁気パターン検出装置の構成、磁気パターン検出装置に用いた磁気センサ装置の構成、磁気センサ装置に用いた磁気センサ素子の構成、媒体に形成される各種磁気インクの特性等、磁気パターン検出装置において種類の異なる磁気パターンが形成された媒体から磁気パターンの有無を検出する原理は、第一の実施の形態の図1、図2、図3、図6、図7に記載の磁気パターン検出装置、磁気センサ装置、磁気センサ素子、磁気インクの特性等、磁気パターンの有無を検出する原理と同じ構成、特性等、原理を用いることができるので、同一の構成についてはここでの詳細な説明については省略する。
[Second Embodiment]
A second embodiment of the present invention will be described with reference to the drawings. In the second embodiment, the second invention is described. The configuration of the magnetic pattern detection device in the second embodiment, the configuration of the magnetic sensor device used in the magnetic pattern detection device, the configuration of the magnetic sensor element used in the magnetic sensor device, and the various magnetic inks formed on the medium The principle of detecting the presence / absence of a magnetic pattern from a medium on which different types of magnetic patterns are formed in the magnetic pattern detecting device, such as characteristics, is shown in FIGS. 1, 2, 3, 6, and 7 of the first embodiment. The same configuration and characteristics as the principle of detecting the presence / absence of a magnetic pattern, such as the magnetic pattern detection device, magnetic sensor device, magnetic sensor element, and magnetic ink characteristics described in 1. can be used. Detailed description here is omitted.
 [第二の実施の形態1] [Second embodiment 1]
 (信号処理部60の構成)
 図13は、本発明の第二の実施の形態1に係る磁気パターン検出装置100の電気的構成を示す説明図であり、図13(a)、(b)は、回路部の要部全体の構成を示す説明図、および複数の磁気センサ素子がスキャンされて順次オン状態となる様子を示す説明図である。なお、図13(a)に示す本形態の回路部の基本的な構成は、図4(a)記載の第一の実施の形態1の回路部の構成と同様であるため、共通する部分には同一の符号を付して説明する。
(Configuration of the signal processing unit 60)
FIG. 13 is an explanatory diagram showing an electrical configuration of the magnetic pattern detection device 100 according to the second embodiment of the present invention. FIGS. 13 (a) and 13 (b) show the entire main part of the circuit unit. It is explanatory drawing which shows a structure, and an explanatory view which shows a mode that a some magnetic sensor element is scanned, and is sequentially in an ON state. The basic configuration of the circuit portion of this embodiment shown in FIG. 13A is the same as the configuration of the circuit portion of the first embodiment shown in FIG. Are described with the same reference numerals.
 本形態において、図13(a)に示す回路部5は、概ね、図3(b)に示す交番電流を励磁コイル48に励磁信号として印加する励磁回路50と、磁気センサ素子40の検出コイル49(図2(b)および図3(a)参照)に電気的に接続された信号処理部60とを備えている。励磁回路50は、図2に示す複数の磁気センサ素子40の各々に対応する複数の励磁用ドライバアンプ51と、複数の励磁用ドライバアンプ51に対して励磁信号を順次供給するためのマルチプレクサ52と、励磁指令信号から励磁信号を生成するアンプ53とを備えており、複数の磁気センサ素子40の励磁コイル48(図2(b)および図3(a)参照)には、励磁用ドライバアンプ51で増幅された後の励磁信号が順次供給される。なお、マルチプレクサ52の後段に複数の磁気センサ素子40に対して共通の励磁用ドライバアンプ51が配置されることもある。 In this embodiment, the circuit section 5 shown in FIG. 13A is generally configured by an excitation circuit 50 that applies the alternating current shown in FIG. 3B to the excitation coil 48 as an excitation signal, and a detection coil 49 of the magnetic sensor element 40. (See FIG. 2B and FIG. 3A) and a signal processing unit 60 that is electrically connected. The excitation circuit 50 includes a plurality of excitation driver amplifiers 51 corresponding to each of the plurality of magnetic sensor elements 40 shown in FIG. 2, and a multiplexer 52 for sequentially supplying excitation signals to the plurality of excitation driver amplifiers 51. And an amplifier 53 for generating an excitation signal from the excitation command signal. The excitation coil 48 (see FIGS. 2B and 3A) of the plurality of magnetic sensor elements 40 includes an excitation driver amplifier 51. The excitation signals after being amplified in step 1 are sequentially supplied. Note that a common excitation driver amplifier 51 may be arranged for the plurality of magnetic sensor elements 40 at the subsequent stage of the multiplexer 52.
 信号処理部60は、磁気センサ装置20の検出コイル49から出力されるセンサ出力信号から、残留磁束密度レベルに対応する第1信号S1、および透磁率レベルに対応する第2信号S2を生成し、上位の制御部(図示せず)に出力する。 The signal processing unit 60 generates a first signal S1 corresponding to the residual magnetic flux density level and a second signal S2 corresponding to the magnetic permeability level from the sensor output signal output from the detection coil 49 of the magnetic sensor device 20. The data is output to an upper control unit (not shown).
 より具体的には、信号処理部60は、磁気センサ素子40から出力されたセンサ出力信号を増幅するアンプ71を備えた増幅部70と、増幅部70から出力された信号からピーク値およびボトム値を抽出する抽出部80と、A/Dコンバータ91を備えたデジタル信号処理部90とを有している。抽出部80は、増幅部70から出力された増幅信号を順次、後段に出力するマルチプレクサ81と、クランプ回路82と、クランプ回路82から出力された信号のオフセット調整を行なうオフセット調整回路83とを備えている。クランプ回路82は、増幅部70から出力された増幅後のセンサ出力信号を整流する第1ダイオード821と、増幅部70から出力された増幅後のセンサ出力信号の極性反転を行なう極性反転回路822と、極性反転回路822において極性反転された信号を整流する第2ダイオード823とを備えている。従って、オフセット調整回路83は、第1ダイオード821からの出力に対する第1オフセット調整回路831と、第2ダイオード823からの出力に対する第2オフセット調整回路832とを備えており、第1オフセット調整回路831および第2オフセット調整回路832は、オフセット調整用基準電圧生成回路831a、832aと、オペアンプ831b、832bとを備えている。なお、マルチプレクサ81の後段に複数の磁気センサ素子40に対して共通のアンプ71が配置されることもある。 More specifically, the signal processing unit 60 includes an amplification unit 70 including an amplifier 71 that amplifies the sensor output signal output from the magnetic sensor element 40, and a peak value and a bottom value from the signal output from the amplification unit 70. And a digital signal processing unit 90 provided with an A / D converter 91. The extraction unit 80 includes a multiplexer 81 that sequentially outputs the amplified signal output from the amplification unit 70 to the subsequent stage, a clamp circuit 82, and an offset adjustment circuit 83 that performs offset adjustment of the signal output from the clamp circuit 82. ing. The clamp circuit 82 includes a first diode 821 that rectifies the amplified sensor output signal output from the amplification unit 70, and a polarity inversion circuit 822 that performs polarity inversion of the amplified sensor output signal output from the amplification unit 70. , And a second diode 823 that rectifies the signal whose polarity has been inverted in the polarity inverting circuit 822. Therefore, the offset adjustment circuit 83 includes a first offset adjustment circuit 831 for the output from the first diode 821 and a second offset adjustment circuit 832 for the output from the second diode 823, and the first offset adjustment circuit 831. The second offset adjustment circuit 832 includes offset adjustment reference voltage generation circuits 831a and 832a and operational amplifiers 831b and 832b. In addition, a common amplifier 71 may be arranged for the plurality of magnetic sensor elements 40 at the subsequent stage of the multiplexer 81.
 また、抽出部80は、オフセット調整回路83の後段にホールド回路84を備えており、ホールド回路84の後段にゲイン設定部85を備えている。ホールド回路84は、第1オフセット調整回路831からの出力信号のピーク値をホードする第1ピークホールド回路841と、第2オフセット調整回路832からの出力信号のピーク値をホールドする第2ピークホールド回路842とを備えている。ここで、第2オフセット調整回路832には、増幅部70から出力された信号を極性反転回路822で極性反転した後、第2ダイオード823で整流した後の信号が入力されている。このため、第2ピークホールド回路842は、増幅部70から出力された増幅信号のボトム値をホールドするボトムホールド回路に相当する。 Further, the extraction unit 80 includes a hold circuit 84 following the offset adjustment circuit 83 and a gain setting unit 85 subsequent to the hold circuit 84. The hold circuit 84 includes a first peak hold circuit 841 that holds the peak value of the output signal from the first offset adjustment circuit 831, and a second peak hold circuit that holds the peak value of the output signal from the second offset adjustment circuit 832. 842. Here, the second offset adjustment circuit 832 receives a signal obtained by inverting the polarity of the signal output from the amplification unit 70 by the polarity inverting circuit 822 and then rectifying the signal by the second diode 823. For this reason, the second peak hold circuit 842 corresponds to a bottom hold circuit that holds the bottom value of the amplified signal output from the amplification unit 70.
 ゲイン設定部85は、第1ピークホールド回路841でホールドされた値のゲインを設定するゲイン設定用第1アンプ851と、第2ピークホールド回路842(ボトムホールド回路)でホールドされた値のゲインを設定するゲイン設定用第2アンプ852とを備えており、第1ピークホールド回路841および第2ピークホールド回路842でホールドされた値を所定のゲインに設定してデジタル信号処理部90のA/Dコンバータ91に出力する。 The gain setting unit 85 sets the gain of the value held by the first peak hold circuit 841 and the gain of the value held by the second peak hold circuit 842 (bottom hold circuit). The gain setting second amplifier 852 is set, and the values held by the first peak hold circuit 841 and the second peak hold circuit 842 are set to a predetermined gain, and the A / D of the digital signal processing unit 90 is set. Output to the converter 91.
 デジタル信号処理部90は、A/Dコンバータ91と、第1ピークホールド回路841でホールドされた値と、第2ピークホールド回路842でホールドされた値とを加算して第1信号S1を生成する加算回路92と、第1ピークホールド回路841でホールドされた値と、第2ピークホールド回路842でホールドされた値とを減算して第2信号S2を生成する減算回路93とを備えている。 The digital signal processor 90 adds the value held by the A / D converter 91, the first peak hold circuit 841, and the value held by the second peak hold circuit 842 to generate the first signal S1. The addition circuit 92 includes a subtraction circuit 93 that subtracts the value held by the first peak hold circuit 841 and the value held by the second peak hold circuit 842 to generate the second signal S2.
 ここで、磁気センサ素子40は、後述するように、媒体1上の1つの領域の磁気特性を確定するのに複数の信号(本形態では4つの信号)を1走査期間中に出力する。従って、デジタル信号処理部90は、A/Dコンバータ91の後段に平均化処理部96を備えている。このため、加算回路92は、第1ピークホールド回路841および第2ピークホールド回路842でホールドされた4つの値をA/Dコンバータ91でデジタル信号した後、4つの値を平均化処理部96で平均化処理した値を用いて加算処理を行なう。また、減算回路93は、第1ピークホールド回路841および第2ピークホールド回路842でホールドされた4つの値をA/Dコンバータ91でデジタル信号した後、4つの値を平均化処理部96で平均化処理した値を用いて減算処理を行なう。 Here, as will be described later, the magnetic sensor element 40 outputs a plurality of signals (four signals in this embodiment) during one scanning period in order to determine the magnetic characteristics of one region on the medium 1. Therefore, the digital signal processing unit 90 includes an averaging processing unit 96 subsequent to the A / D converter 91. Therefore, the adder circuit 92 digitally signals the four values held by the first peak hold circuit 841 and the second peak hold circuit 842 by the A / D converter 91, and then the four values are averaged by the averaging processor 96. Addition processing is performed using the averaged values. The subtracting circuit 93 digitalizes the four values held by the first peak hold circuit 841 and the second peak hold circuit 842 by the A / D converter 91 and then averages the four values by the averaging processing unit 96. Subtraction processing is performed using the converted value.
 また、デジタル信号処理部90は、切替制御信号、励磁指令信号、オフセット制御信号等を出力する制御信号出力部94を備えており、切替制御信号は、マルチプレクサ52、81を制御するとともに、図2(a)、(b)および図3(a)に示すように媒体幅方向、すなわち、媒体1の移動方向である行方向Xに対して直交する列方向Yに複数配列された磁気センサ素子40のスキャン動作や、他の回路が動作するタイミングを制御する。 The digital signal processing unit 90 includes a control signal output unit 94 that outputs a switching control signal, an excitation command signal, an offset control signal, and the like. The switching control signal controls the multiplexers 52 and 81, and FIG. As shown in FIGS. 3A and 3B, a plurality of magnetic sensor elements 40 arranged in the medium width direction, that is, in the column direction Y perpendicular to the row direction X, which is the moving direction of the medium 1, are arranged. This controls the scanning operation and the timing at which other circuits operate.
 このように構成したデジタル信号処理部90からは、上位の制御部(図示せず)に対して第1信号S1および第2信号S2が出力され、上記の制御部では、第1信号S1および第2信号S2に基づいて媒体1の真偽を判定する。より具体的には、上位の制御部には、第1信号S1および第2信号S2を磁気センサ素子40と媒体1との相対位置情報に関係づけて、記録部に予め記録されている比較パターンとの照合を行って媒体1の真偽を判定する判定部を備えており、かかる判定部は、ROMあるいはRAM等といった記録部(図示せず)に予め記録されているプログラムに基づいて所定の処理を行い、媒体1の真偽を判定する。 The digital signal processing unit 90 configured as described above outputs a first signal S1 and a second signal S2 to a higher-level control unit (not shown). In the control unit, the first signal S1 and the second signal S2 are output. The authenticity of the medium 1 is determined based on the two signals S2. More specifically, the upper control unit associates the first signal S1 and the second signal S2 with the relative position information between the magnetic sensor element 40 and the medium 1, and the comparison pattern recorded in advance in the recording unit. And a determination unit that determines whether the medium 1 is true or false. The determination unit is a predetermined unit based on a program recorded in advance in a recording unit (not shown) such as a ROM or a RAM. Processing is performed to determine whether the medium 1 is true or false.
 (磁気センサ素子40のスキャン動作)
 図14は、本発明の第二の実施の形態1に係る磁気パターン検出装置100のスキャン動作等を示す説明図であり、図14(a)、(b)、(c)、(d)は、列方向Yに磁気センサ素子40が配列されている様子を平面に示す説明図、磁気センサ素子のレイアウトを拡大して示す説明図、1走査期間中にオン状態の磁気センサ素子がスキャン毎に位置する箇所が媒体1上で移動する様子を示す説明図、および1走査期間中にオン状態の磁気センサ素子がスキャン毎に位置する箇所が媒体1上で移動する様子をさらに拡大して示す説明図である。図15は、本発明の第二の実施の形態1に係る磁気パターン検出装置100における回路部の動作条件を示す説明図であり、図15(a)、(b)は検出信号の周波数とサンプルホールド動作との関係を示す説明図、およびA/Dコンバータ91と図13(a)に示す平均化処理部96との周波数特性を示す説明図である。
(Scanning operation of the magnetic sensor element 40)
FIG. 14 is an explanatory diagram showing the scanning operation and the like of the magnetic pattern detection apparatus 100 according to the second embodiment of the present invention. FIGS. 14 (a), (b), (c), and (d) FIG. 2 is an explanatory diagram showing a state in which the magnetic sensor elements 40 are arranged in the column direction Y, an explanatory diagram showing an enlarged layout of the magnetic sensor elements, and a magnetic sensor element that is turned on during one scanning period for each scan. An explanatory view showing a state where a position is moved on the medium 1 and an explanation showing an enlarged view of a state where a position where the magnetic sensor element which is in an on state is moved for each scan is moved on the medium 1 during one scan period. FIG. FIGS. 15A and 15B are explanatory diagrams showing the operating conditions of the circuit unit in the magnetic pattern detection apparatus 100 according to the second embodiment of the present invention. FIGS. 15A and 15B show the frequency and sample of the detection signal. It is explanatory drawing which shows the relationship with hold operation | movement, and explanatory drawing which shows the frequency characteristic of the A / D converter 91 and the averaging process part 96 shown to Fig.13 (a).
 図14(a)、(b)に示すように、本形態の磁気パターン検出装置100において、磁気センサ素子40は、媒体1の移動方向Xに対して直交する列方向Y(媒体幅方向)にチャンネルCH1~CH20用として20個配列されており、かかる20個の磁気センサ素子40を列方向にスキャンすることにより、媒体1の幅方向全体から磁気パターンを検出する。すなわち、複数の磁気センサ素子40を列方向でスキャンすれば、チャンネルCH1~CH20の20個の磁気センサ素子40の各々でデータが検出される。また、媒体1は、行方向(移動方向X)に移動する。このため、媒体1全体から磁気パターンを検出することができる。 As shown in FIGS. 14A and 14B, in the magnetic pattern detection device 100 of the present embodiment, the magnetic sensor element 40 is in the column direction Y (medium width direction) orthogonal to the moving direction X of the medium 1. Twenty channels are arranged for the channels CH1 to CH20, and the magnetic pattern is detected from the entire width direction of the medium 1 by scanning the twenty magnetic sensor elements 40 in the column direction. That is, if a plurality of magnetic sensor elements 40 are scanned in the column direction, data is detected in each of the 20 magnetic sensor elements 40 of the channels CH1 to CH20. Further, the medium 1 moves in the row direction (movement direction X). For this reason, a magnetic pattern can be detected from the entire medium 1.
 このように構成した磁気パターン検出装置100において、本形態では、搬送機構10による媒体1の移動速度をv(mm/μsec)とし、磁気センサ素子40の移動方向Xにおける寸法をT(mm)とし、列方向Yにおける磁気センサ素子40の単位時間ta(μsec)当たりのスキャン回数をN回としたとき、移動速度v、単位時間ta、寸法Tおよびスキャン回数Nは、以下の条件式
    (v×ta)≦(T×N)
      但し、Nは2以上の整数
を満たしている。ここで、単位時間taは、媒体1の1列分の磁気パターンを検出するための1走査期間である。従って、本形態では、1走査期間中に、列方向Yでの磁気センサ素子40のスキャンをN回行い、かかるN回のスキャンにより磁気センサ素子40で得られた全データに基づいて、1列分の磁気パターンを検出する。
In the magnetic pattern detection apparatus 100 configured as described above, in this embodiment, the moving speed of the medium 1 by the transport mechanism 10 is v (mm / μsec), and the dimension of the magnetic sensor element 40 in the moving direction X is T (mm). When the number of scans per unit time ta (μsec) of the magnetic sensor element 40 in the column direction Y is N, the moving speed v, the unit time ta, the dimension T, and the number of scans N are expressed by the following conditional expression (v × ta) ≦ (T × N)
However, N satisfies an integer of 2 or more. Here, the unit time ta is one scanning period for detecting a magnetic pattern for one column of the medium 1. Therefore, in this embodiment, the magnetic sensor element 40 is scanned N times in the column direction Y during one scanning period, and one column is based on all the data obtained by the magnetic sensor element 40 by the N times of scanning. Minute magnetic pattern is detected.
 より具体的には、本形態の磁気パターン検出装置100において、移動速度v、単位時間ta、寸法Tおよびスキャン回数N等は、例えば、以下の条件
  媒体の移動速度v=0.0016mm/μsec
  単位時間ta(1走査期間)=200μsec(5kHz)
  媒体1の移動方向Xにおける磁気センサ素子40の寸法T(厚さ寸法)=0.3mm
  単位時間ta(1走査期間)におけるスキャン回数N=4
に設定されている。従って、1走査期間中の媒体1の移動距離等は、以下の条件
  1走査期間中の媒体1の移動距離=0.32mm
  1回のスキャン中の媒体1の移動距離=0.08mm
  1スキャン当たりの時間=50μsec(20kHz)
  1回のスキャンでの磁気センサ素子40のオン時間=2.5μsec
となる。このような条件であれば、以下の設定値
    (v×ta)=0.32mm
    (T×N)=1.2mm
になるので、以下条件
    (v×ta)≦(T×N)
      但し、Nは2以上の整数
を十分満たしている。
More specifically, in the magnetic pattern detection apparatus 100 of the present embodiment, the moving speed v, the unit time ta, the dimension T, the number of scans N, and the like are, for example, the following conditions: Medium moving speed v = 0.016 mm / μsec
Unit time ta (one scanning period) = 200 μsec (5 kHz)
The dimension T (thickness dimension) of the magnetic sensor element 40 in the moving direction X of the medium 1 = 0.3 mm.
Number of scans N = 4 in unit time ta (one scan period)
Is set to Therefore, the moving distance of the medium 1 during one scanning period is as follows: The moving distance of the medium 1 during one scanning period = 0.32 mm
Movement distance of medium 1 during one scan = 0.08 mm
Time per scan = 50 μsec (20 kHz)
On-time of the magnetic sensor element 40 in one scan = 2.5 μsec
It becomes. Under such conditions, the following setting value (v × ta) = 0.32 mm
(T × N) = 1.2mm
Therefore, the following condition (v × ta) ≦ (T × N)
However, N sufficiently satisfies an integer of 2 or more.
 従って、上記の条件で磁気センサ素子40を列方向Yにスキャンすると、1回のスキャンが完了するうちに媒体1が0.08mm移動するが、磁気センサ素子1の移動方向における寸法は0.3mmである。このため、媒体1に対して磁気センサ素子40を等倍投影した領域は、今回のスキャンと次回のスキャンとで移動方向Xで部分的に重なる。 Therefore, when the magnetic sensor element 40 is scanned in the column direction Y under the above conditions, the medium 1 moves 0.08 mm while one scan is completed, but the dimension in the moving direction of the magnetic sensor element 1 is 0.3 mm. It is. For this reason, the area in which the magnetic sensor element 40 is projected onto the medium 1 at the same magnification partially overlaps in the movement direction X between the current scan and the next scan.
 より具体的には、図14(c)、(d)に示すようになる。図14(c)、(d)には、n回目の走査期間において第1回目のスキャンの際にチャンネルCH1用の磁気センサ素子40がオン状態で位置する領域(媒体1に対してオン状態のチャンネルCH1用の磁気センサ素子40を等倍投影した領域)を実線SCH(n,1)で示してある。また、今回の走査期間(n回目)において第2回目のスキャンの際にチャンネルCH1用の磁気センサ素子40がオン状態で位置する領域を一点鎖線SCH(n,2)で示してある。また、今回の走査期間(n回目)において第3回目のスキャンの際にチャンネルCH1用の磁気センサ素子40がオン状態で位置する領域を点線SCH(n,3)で示してある。今回の走査期間(n回目)において第4回目のスキャンの際にチャンネルCH1用の磁気センサ素子40がオン状態で位置する領域を二点鎖線SCH(n,4)で示してある。なお、各スキャンの際に、磁気センサ素子40がオン状態で位置する領域は、媒体幅方向、すなわち、列方向Yで同一の位置を移動するが、図14(c)、(d)には、各領域の位置がわかりやすいように、列方向Yでわずかにずらしてある。また、図14(c)、(d)には、n+1回目の走査期間の際に磁気センサ素子40がオン状態で位置する領域として、n+1回目の走査期間の際にチャンネルCH1用の磁気センサ素子40が1回目のスキャン時に位置する領域のみを示してある。 More specifically, as shown in FIGS. 14 (c) and 14 (d). FIGS. 14C and 14D show an area where the magnetic sensor element 40 for the channel CH1 is in the ON state during the first scan in the n-th scanning period (the ON state with respect to the medium 1). A region obtained by projecting the magnetic sensor element 40 for the channel CH1 at the same magnification) is indicated by a solid line SCH (n, 1). Further, a region in which the magnetic sensor element 40 for the channel CH1 is located in the ON state during the second scan in the current scanning period (n-th) is indicated by an alternate long and short dash line SCH (n, 2). Further, a region where the magnetic sensor element 40 for the channel CH1 is located in the ON state during the third scan in the current scanning period (n-th) is indicated by a dotted line SCH (n, 3). A region where the magnetic sensor element 40 for the channel CH1 is located in the ON state during the fourth scan in the current scanning period (n-th) is indicated by a two-dot chain line SCH (n, 4). In each scan, the region where the magnetic sensor element 40 is in the on state moves in the same position in the medium width direction, that is, the column direction Y. FIG. 14C and FIG. The position of each region is slightly shifted in the column direction Y so that it can be easily understood. FIGS. 14C and 14D show the magnetic sensor element for the channel CH1 during the n + 1th scanning period as a region where the magnetic sensor element 40 is positioned in the ON state during the n + 1th scanning period. Only the area 40 is located at the time of the first scan is shown.
 本形態では、上記の条件式を満たしていることから、1回の走査期間において、第1回目のスキャンの際に磁気センサ素子40が位置する領域と、第2回目のスキャンの際に磁気センサ素子40が位置する領域とが移動方向Xで部分的に重なっている。第2回目のスキャン時と第3回目のスキャン時との間や、第3回目のスキャン時と第4回目のスキャン時との間でも同様であり、今回のスキャンの際に磁気センサ素子40が位置する領域と、次回のスキャンの際に磁気センサ素子40が位置する領域とが移動方向Xで部分的に重なる。従って、今回のスキャンと次回のスキャンとでは、今回のスキャン時に磁気センサ素子40がオンとなった位置を媒体1に等倍投影した領域と、次回のスキャン時に磁気センサ素子40がオンとなった位置を媒体1に等倍投影した領域との間には隙間が発生しない。なお、他のチャンネル用の磁気センサ素子40についても同様である。 In the present embodiment, since the above conditional expression is satisfied, in one scanning period, the region where the magnetic sensor element 40 is located during the first scan and the magnetic sensor during the second scan. A region where the element 40 is located partially overlaps in the movement direction X. The same is true between the second scan and the third scan, and between the third scan and the fourth scan. The region in which the magnetic sensor element 40 is located in the next scan partially overlaps in the movement direction X. Accordingly, in the current scan and the next scan, the area where the magnetic sensor element 40 is turned on at the current scan is projected onto the medium 1 at the same magnification, and the magnetic sensor element 40 is turned on at the next scan. There is no gap between the position projected onto the medium 1 and the same magnification. The same applies to the magnetic sensor elements 40 for other channels.
 また、今回の走査期間(n回目)において第1回目~第4回目のスキャンの際にチャンネルCH1用の磁気センサ素子40がオン状態で位置する領域を合算した領域SCH1(n)は、実線SCH(n,1)で示す領域、一点鎖線SCH(n,2)で示す領域、点線SCH(n,3)で示す領域、二点鎖線SCH(n,2)で示す領域を合算した領域であり、領域SCH1(n)は、次の走査期間(n+1回目の走査期間)において第1回目のスキャンの際に磁気センサ素子40がオン状態で位置する領域(実線CH1(n+1,1)で示す領域)と移動方向で部分的に重なっている。従って、今回の走査期間において最後にスキャンした際に磁気センサ素子40がオンとなった位置を媒体1に等倍投影した領域と、次回の走査期間において最初にスキャンした際に磁気センサ素子40がオンとなった位置を媒体1に等倍投影した領域との間には隙間が発生しない。なお、他のチャンネル用の磁気センサ素子40についても同様である。 In addition, the region SCH1 (n) obtained by adding up the regions where the magnetic sensor element 40 for the channel CH1 is in the ON state during the first to fourth scans in the current scan period (nth) is indicated by the solid line SCH. It is a region obtained by adding up the region indicated by (n, 1), the region indicated by the one-dot chain line SCH (n, 2), the region indicated by the dotted line SCH (n, 3), and the region indicated by the two-dot chain line SCH (n, 2). The region SCH1 (n) is a region (solid line CH1 (n + 1, 1) indicated by the solid sensor CH1 (n + 1, 1) where the magnetic sensor element 40 is in the on state during the first scan in the next scan period (n + 1th scan period). ) And partially overlap in the direction of movement. Therefore, the area where the magnetic sensor element 40 was turned on when it was last scanned in the current scanning period is projected onto the medium 1 at the same magnification, and the magnetic sensor element 40 is first scanned during the next scanning period. There is no gap between the turned-on position and the area projected on the medium 1 at the same magnification. The same applies to the magnetic sensor elements 40 for other channels.
 このようなスキャン動作は、図13(b)に示すように表され、1回の走査期間中において、各チャンネルCH1~CH20の磁気センサ素子40が順次オンになるスキャンが計4回実行され、かかる動作に連動して、図13(a)に示すA/Dコンバータ91は、各磁気センサ素子40がオンになるタイミングに合わせて、50μsecのサンプリング周期(サンプリング周波数=20kHz)で磁気センサ素子40が出力した信号を各CH毎にデジタル信号に変換する。 Such a scan operation is represented as shown in FIG. 13B, and a scan in which the magnetic sensor elements 40 of the channels CH1 to CH20 are sequentially turned on is executed a total of four times during one scan period. In conjunction with this operation, the A / D converter 91 shown in FIG. 13A matches the timing at which each magnetic sensor element 40 is turned on at a sampling period of 50 μsec (sampling frequency = 20 kHz). Is converted into a digital signal for each channel.
 ここで、本形態では、各CH毎の磁気センサ素子40のオン時間を2.5μsecまで短縮した分、図3(b)に示す励磁信号については、周波数を2MHzに設定してある。このため、磁気センサ素子40は、図15(a)に示すように、1回のオン時間(2.5μsec)中に、図3(c)に示す信号成分(センサ出力信号)が複数(本形態では3つ)、図13(a)に示す抽出部80に出力される。すなわち、励磁信号は、1回のスキャン中に複数の磁気センサ素子40の各々が出力する信号に複数周期分の励磁信号による信号成分が含まれる周波数を有しており、それ故、1回のスキャン中に複数の磁気センサ素子40の各々が出力する検出信号の1つ1つに複数の信号成分が含まれている。従って、磁気センサ素子40のオン時間が短くても、図13(a)に示すホールド回路84において、第1ピークホールド回路841および第2ピークホールド回路842は、3回のホールドを行なうことができるので、ピークホールドを確実に行なうことができる。 Here, in this embodiment, the frequency of the excitation signal shown in FIG. 3B is set to 2 MHz because the ON time of the magnetic sensor element 40 for each CH is shortened to 2.5 μsec. For this reason, as shown in FIG. 15A, the magnetic sensor element 40 has a plurality of signal components (sensor output signals) shown in FIG. 3C during one ON time (2.5 μsec). The number is three in the form) and is output to the extraction unit 80 shown in FIG. That is, the excitation signal has a frequency at which the signal component of the excitation signal for a plurality of cycles is included in the signal output from each of the plurality of magnetic sensor elements 40 during one scan. A plurality of signal components are included in each detection signal output from each of the plurality of magnetic sensor elements 40 during scanning. Therefore, even if the on-time of the magnetic sensor element 40 is short, in the hold circuit 84 shown in FIG. 13A, the first peak hold circuit 841 and the second peak hold circuit 842 can hold three times. Therefore, peak hold can be performed reliably.
 また、本形態では、図13(a)に示すA/Dコンバータ91に入力される信号のうち、必要な帯域は、比較的低周波帯域であることから、図15(b)に実線で示すように、A/Dコンバータ91のサンプリング周波数は、各CH毎に20kHzに設定されており、比較的低周波数に設定されている。このため、磁気センサ素子40が出力した信号をデジタル信号に適正に変換することができる。すなわち、図18を参照して説明した構成のままで、図15(b)に点線で参考例として示すように、A/Dコンバータ91のサンプリング周波数を1MHzに設定して、1回のオン時間中(図15(a)ホールド後の信号の平坦部)に4回サンプリングして平均処理しても、信号帯域(5kHz)より高い周波数成分のノイズ低減の効果は小さいという問題がある。しかるに本形態では、A/Dコンバータ91のサンプリング周波数が20kHzに設定されているため、同じ4回平均処理であっても、5kHzより高い周波数成分のノイズを低減することができる。 Further, in the present embodiment, the necessary band of the signal input to the A / D converter 91 shown in FIG. 13A is a relatively low frequency band, and therefore, the solid line is shown in FIG. 15B. As described above, the sampling frequency of the A / D converter 91 is set to 20 kHz for each CH, and is set to a relatively low frequency. For this reason, the signal output from the magnetic sensor element 40 can be appropriately converted into a digital signal. That is, with the configuration described with reference to FIG. 18, the sampling frequency of the A / D converter 91 is set to 1 MHz as shown as a reference example in FIG. Even if the sampling is performed four times in the middle (the flat portion of the signal after being held in FIG. 15A) and the average processing is performed, there is a problem that the effect of reducing the noise of the frequency component higher than the signal band (5 kHz) is small. However, in this embodiment, since the sampling frequency of the A / D converter 91 is set to 20 kHz, it is possible to reduce noise having a frequency component higher than 5 kHz even if the same averaging process is performed four times.
 (第二の実施の形態1の主な効果)
 以上説明したように、本形態の磁気パターン検出装置100では、媒体1の移動速度v(mm/μsec)、磁気センサ素子40の移動方向Xにおける寸法T(mm)、媒体幅方向である列方向Yにおける磁気センサ素子40の単位時間ta(μsec)当たりのスキャン回数Nは、以下の条件式
    (v×ta)≦(T×N)
      但し、Nは2以上の整数
を満たしているため、今回のスキャンの際に磁気センサ素子40がオン状態で位置していた領域と、次回のスキャンの際に磁気センサ素子40がオン状態で位置していた領域との間に隙間が発生しない。従って、列方向Yに配列した複数の磁気センサ素子40をスキャンするとともに、磁気センサ40に対して媒体1を相対移動させる方式を採用した場合でも、媒体1の全面から確実に磁気パターンを検出することができる。
(Main effects of the second embodiment 1)
As described above, in the magnetic pattern detection apparatus 100 of this embodiment, the moving speed v (mm / μsec) of the medium 1, the dimension T (mm) in the moving direction X of the magnetic sensor element 40, and the column direction that is the medium width direction. The number of scans N per unit time ta (μsec) of the magnetic sensor element 40 in Y is expressed by the following conditional expression (v × ta) ≦ (T × N)
However, since N satisfies an integer greater than or equal to 2, the area where the magnetic sensor element 40 was located in the on state during the current scan and the position where the magnetic sensor element 40 was in the on state during the next scan. There is no gap between the area and Accordingly, even when a plurality of magnetic sensor elements 40 arranged in the column direction Y are scanned and the medium 1 is moved relative to the magnetic sensor 40, the magnetic pattern is reliably detected from the entire surface of the medium 1. be able to.
 また、本形態において、単位時間taは、媒体1の1列分の磁気パターンを検出するための1走査期間であり、かかる1走査期間中に行なったスキャンにより磁気センサ素子40で得られたデータに基づいて媒体1の1列分の磁気パターンが検出される。すなわち、1列分の磁気パターンを検出するための1走査期間中にN回のスキャン(本形態では4回のスキャン)を行なう。このため、複数のスキャンにより得られた複数のデータに基づいて1列分の磁気パターンを検出できるので、磁気センサ素子40で得られたデータのいずれかにノイズ等の影響が含まれている場合でも、かかるノイズの影響を緩和することができる。 In this embodiment, the unit time ta is one scanning period for detecting a magnetic pattern for one column of the medium 1, and the data obtained by the magnetic sensor element 40 by the scanning performed during the one scanning period. Based on the above, the magnetic pattern for one column of the medium 1 is detected. That is, N scans (4 scans in this embodiment) are performed during one scan period for detecting a magnetic pattern for one column. For this reason, since a magnetic pattern for one column can be detected based on a plurality of data obtained by a plurality of scans, any of the data obtained by the magnetic sensor element 40 includes an influence such as noise. However, the influence of such noise can be mitigated.
 また、本形態では、1走査期間中に行なったN回のスキャンにより磁気センサ素子40で得られた全データに基づいて媒体1の1列分の磁気パターンを検出するため、媒体1に対して磁気センサ素子40を等倍投影した領域が今回のスキャンと次回のスキャンとで部分的に重なっている。それ故、媒体1の磁気特性を高い精度で検出することができる。 In this embodiment, the magnetic pattern for one column of the medium 1 is detected based on all data obtained by the magnetic sensor element 40 by N scans performed during one scanning period. The area where the magnetic sensor element 40 is projected at the same magnification partially overlaps in the current scan and the next scan. Therefore, the magnetic characteristics of the medium 1 can be detected with high accuracy.
 また、本形態の磁気パターン検出装置100では、共通の磁気センサ装置20によって、磁気パターン毎の有無および形成位置を残留磁束密度レベルおよび透磁率レベルの双方に基づいて検出するため、残留磁束密度レベルの測定と、透磁率レベルの測定との間に時間差が発生しない。それ故、磁気センサ装置20と媒体1とを移動させながら計測する場合でも、信号処理部60は、簡素な構成で高い精度の検出を行なうができる。また、搬送装置10についても、磁気センサ装置20を通過する箇所のみに走行安定性が求められるだけなので、構成の簡素化を図ることができる。 Further, in the magnetic pattern detection device 100 of this embodiment, the common magnetic sensor device 20 detects the presence / absence and formation position of each magnetic pattern based on both the residual magnetic flux density level and the magnetic permeability level. There is no time difference between the measurement and the permeability level measurement. Therefore, even when the measurement is performed while moving the magnetic sensor device 20 and the medium 1, the signal processing unit 60 can perform highly accurate detection with a simple configuration. In addition, since the transport device 10 is also required to have running stability only at a location that passes through the magnetic sensor device 20, the configuration can be simplified.
 さらに、本形態の磁気パターン検出装置100によれば、ハード材およびソフト材の双方を含む磁気インキにより磁気パターンが形成されている媒体1や、ハード材とソフト材の中間に位置する材料を含む磁気インキにより磁気パターンが形成されている媒体1についても、磁気パターンの検出を行なうことができる。すなわち、磁気特性が第1の磁気パターンと第2の磁気パターンの中間に位置するような磁気パターンについては、図6(d1)に示すように、ヒステリシスループが、図6(b1)に示すハード材の磁気パターンのヒステリシスループと図6(c1)に示すソフト材の磁気パターンのヒステリシスループとの中間に位置するので、図6(d4)に示す信号パターンを得ることができ、かかる磁気パターンについても、有無や形成位置を検出することができる。 Furthermore, according to the magnetic pattern detection apparatus 100 of the present embodiment, the medium 1 on which the magnetic pattern is formed by the magnetic ink including both the hard material and the soft material, and the material positioned between the hard material and the soft material are included. The magnetic pattern can also be detected for the medium 1 on which the magnetic pattern is formed with the magnetic ink. That is, as for the magnetic pattern whose magnetic characteristics are located between the first magnetic pattern and the second magnetic pattern, as shown in FIG. 6 (d1), the hysteresis loop has a hard loop as shown in FIG. 6 (b1). Since it is located between the hysteresis loop of the magnetic pattern of the material and the hysteresis loop of the magnetic pattern of the soft material shown in FIG. 6 (c1), the signal pattern shown in FIG. 6 (d4) can be obtained. In addition, the presence or absence and the formation position can be detected.
 しかも、本形態の磁気センサ装置20において、磁界印加用磁石30は、磁気センサ素子40に対して媒体1の移動方向の両側に磁界印加用第1磁石31と磁界印加用第2磁石32として配置されている。このため、図1に示すように、矢印X1で示す方向に移動する媒体1を磁界印加用第1磁石31によって着磁し、その後、磁気センサ素子40によって、着磁した後の媒体1にバイアス磁界を印加した状態における磁束を検出することができるとともに、矢印X2で示す方向に移動する媒体1を磁界印加用第2磁石32によって着磁し、その後、磁気センサ素子40によって、着磁した後の媒体1にバイアス磁界を印加した状態における磁束を検出することができる。それ故、本形態の磁気パターン検出装置100を入出金機に用いれば、入金された媒体1の真偽を判定することができるとともに、出金される媒体1の真偽を判定することもできる。 Moreover, in the magnetic sensor device 20 of this embodiment, the magnetic field application magnets 30 are arranged as the first magnetic field application magnet 31 and the second magnetic field application magnet 32 on both sides of the magnetic sensor element 40 in the moving direction of the medium 1. Has been. For this reason, as shown in FIG. 1, the medium 1 moving in the direction indicated by the arrow X1 is magnetized by the first magnetic field application magnet 31, and then the magnetic sensor element 40 biases the medium 1 after magnetization. The magnetic flux can be detected in a state where a magnetic field is applied, and the medium 1 moving in the direction indicated by the arrow X2 is magnetized by the magnetic field applying second magnet 32, and then magnetized by the magnetic sensor element 40. The magnetic flux in a state where a bias magnetic field is applied to the medium 1 can be detected. Therefore, if the magnetic pattern detection apparatus 100 of this embodiment is used for a depositing / dispensing machine, it is possible to determine the authenticity of the deposited medium 1 and also to determine the authenticity of the dispensed medium 1. .
 [第二の実施の形態2]
 図16は、本発明の第二の実施の形態2に係る磁気パターン検出装置100でのスキャン毎の磁気センサ素子40の位置を示す説明図である。なお、本形態の基本的な構成は、第二の実施の形態1同様である。従って、以下の説明では、共通する部分については同一の符号を付してそれらの説明を省略する。
[Second Embodiment 2]
FIG. 16 is an explanatory diagram showing the position of the magnetic sensor element 40 for each scan in the magnetic pattern detection apparatus 100 according to the second embodiment of the present invention. The basic configuration of this embodiment is the same as that of the second embodiment. Accordingly, in the following description, common parts are denoted by the same reference numerals and description thereof is omitted.
 本形態の磁気パターン検出装置100でも第二の実施の形態1と同様、媒体1の移動速度v(mm/μsec)、磁気センサ素子40の移動方向Xにおける寸法T(mm)、列方向Yにおける磁気センサ素子40の単位時間ta(μsec)当たりのスキャン回数Nは、以下の条件式
    (v×ta)≦(T×N)
      但し、Nは2以上の整数
を満たしている。このため、図16に示すように、第1回目~第4回目のスキャンのうち、連続して行なう2回のスキャンでは、磁気センサ素子40がオン状態で位置する領域が移動方向で部分的に重なっている。ここで、実施の形態1では、1走査期間中に行なった4回のスキャンにより磁気センサ素子40で得られた全データに基づいて媒体1の1列分の磁気パターンを検出したが、本形態では、1走査期間中に行なったN回のスキャンのうちの一部のスキャンにより磁気センサ素子40で得られたデータに基づいて媒体1の1列分の磁気パターンを検出する。
Also in the magnetic pattern detection apparatus 100 of this embodiment, the moving speed v (mm / μsec) of the medium 1, the dimension T (mm) in the moving direction X of the magnetic sensor element 40, and the column direction Y are the same as in the second embodiment. The number of scans N per unit time ta (μsec) of the magnetic sensor element 40 is expressed by the following conditional expression (v × ta) ≦ (T × N)
However, N satisfies an integer of 2 or more. For this reason, as shown in FIG. 16, in the two consecutive scans of the first to fourth scans, the region where the magnetic sensor element 40 is in the ON state is partially in the moving direction. overlapping. Here, in the first embodiment, the magnetic pattern for one column of the medium 1 is detected based on all the data obtained by the magnetic sensor element 40 by four scans performed during one scanning period. In this case, a magnetic pattern for one column of the medium 1 is detected based on data obtained by the magnetic sensor element 40 by a part of the N scans performed during one scanning period.
 より具体的には、本形態では、1走査期間中に行なったN回のスキャンのうち、媒体1に対して磁気センサ素子40を等倍投影した領域が今回のスキャンと次回のスキャンとで媒体1の移動方向Xで部分的に重なる2回以上かつN回未満のスキャンにより磁気センサ素子40で得られた複数のデータに基づいて媒体1の1列分の磁気パターンを検出する。 More specifically, in the present embodiment, out of N scans performed during one scan period, an area in which the magnetic sensor element 40 is projected to the medium 1 at the same magnification is the medium in the current scan and the next scan. A magnetic pattern for one row of the medium 1 is detected based on a plurality of data obtained by the magnetic sensor element 40 by two or more and less than N scans partially overlapping in one movement direction X.
 例えば、図16に示すように、第1回目のスキャンの際にチャンネルCH1用の磁気センサ素子40がオン状態で位置する領域は、第3回目のスキャンの際にチャンネルCH1用の磁気センサ素子40がオン状態で位置する領域と移動方向Xで部分的に重なっている。従って、本形態では、第1回目のスキャンの際により磁気センサ素子40で得られたデータと、第3回目のスキャンの際により磁気センサ素子40で得られたデータとに平均化処理を行い、かかる処理結果に基づいて、媒体1の1列分の磁気パターンを検出する。 For example, as shown in FIG. 16, the region where the magnetic sensor element 40 for the channel CH1 is in the ON state at the time of the first scan is the magnetic sensor element 40 for the channel CH1 at the time of the third scan. Partially overlaps with the moving direction X in the region where the is located in the ON state. Therefore, in this embodiment, an averaging process is performed on the data obtained by the magnetic sensor element 40 during the first scan and the data obtained by the magnetic sensor element 40 during the third scan, Based on the processing result, the magnetic pattern for one column of the medium 1 is detected.
 このような構成を採用した場合も、実施の形態1と同様、今回のスキャン(第1回目のスキャン)と次回のスキャン(第3回目のスキャン)とにおいて、磁気センサ素子40がオン状態で位置する領域が移動方向Xで部分的に重なっているので、媒体1の磁気特性を高い精度で検出することができる。また、2回のスキャンにより得られたデータに基づいて1列分の磁気パターンを検出できるので、磁気センサ素子40で得られたデータのいずれかにノイズ等の影響が含まれている場合でも、かかるノイズの影響を緩和することができる等の効果を奏する。 Even when such a configuration is adopted, as in the first embodiment, the position of the magnetic sensor element 40 in the ON state in the current scan (first scan) and the next scan (third scan). Since the regions to be overlapped partially in the movement direction X, the magnetic characteristics of the medium 1 can be detected with high accuracy. In addition, since the magnetic pattern for one column can be detected based on the data obtained by the two scans, even if any of the data obtained by the magnetic sensor element 40 includes the influence of noise or the like, There are effects such as the effect of such noise being mitigated.
 なお、媒体1の移動速度v、磁気センサ素子40の移動方向Xにおける寸法T、列方向Yにおける磁気センサ素子40の単位時間ta(μsec)当たりのスキャン回数N等によっては、1走査期間中に行なったN回のスキャンのうち、媒体1に対して磁気センサ素子40を等倍投影した領域が今回のスキャンと次回のスキャンとで媒体1移動方向Xで重ならずに接している2回以上かつN回未満のスキャンにより磁気センサ素子40で得られた複数のデータに基づいて媒体1の1列分の磁気パターンを検出してもよい。 Depending on the moving speed v of the medium 1, the dimension T in the moving direction X of the magnetic sensor element 40, the number of scans N per unit time ta (μsec) of the magnetic sensor element 40 in the column direction Y, etc., during one scanning period. Of the N scans performed, the region where the magnetic sensor element 40 is projected to the medium 1 at an equal magnification is in contact with the current scan and the next scan in the medium 1 moving direction X without overlapping. In addition, a magnetic pattern for one column of the medium 1 may be detected based on a plurality of data obtained by the magnetic sensor element 40 by scanning less than N times.
 [第二の実施の形態3]
 図17は、本発明の第二の実施の形態3に係る磁気パターン検出装置100でのスキャン毎の磁気センサ素子40およびそのセンシング範囲の位置を示す説明図である。なお、本形態の基本的な構成は、第二の実施の形態1同様である。従って、以下の説明では、共通する部分については同一の符号を付してそれらの説明を省略する。
[Second Embodiment 3]
FIG. 17 is an explanatory diagram showing the position of the magnetic sensor element 40 and its sensing range for each scan in the magnetic pattern detection apparatus 100 according to the second embodiment of the present invention. The basic configuration of this embodiment is the same as that of the second embodiment. Accordingly, in the following description, common parts are denoted by the same reference numerals and description thereof is omitted.
 本形態の磁気パターン検出装置100でも第二の実施の形態1と同様、媒体1の移動速度v(mm/μsec)、磁気センサ素子40の移動方向Xにおける寸法T(mm)、列方向Yにおける磁気センサ素子40の単位時間ta(μsec)当たりのスキャン回数Nは、以下の条件式
    (v×ta)≦(T×N)
      但し、Nは2以上の整数
を満たしている。このため、図17に示すように、第1回目~第4回目のスキャンのうち、連続して行なう2回のスキャンでは、磁気センサ素子40がオン状態で位置する領域が移動方向で部分的に重なっている。ここで、実施の形態1では、1走査期間中に行なった4回のスキャンにより磁気センサ素子40で得られた全データに基づいて媒体1の1列分の磁気パターンを検出したが、本形態では、1走査期間中に行なったN回のスキャンのうちの一部のスキャンにより磁気センサ素子40で得られたデータに基づいて媒体1の1列分の磁気パターンを検出する。
Also in the magnetic pattern detection apparatus 100 of this embodiment, the moving speed v (mm / μsec) of the medium 1, the dimension T (mm) in the moving direction X of the magnetic sensor element 40, and the column direction Y are the same as in the second embodiment. The number of scans N per unit time ta (μsec) of the magnetic sensor element 40 is expressed by the following conditional expression (v × ta) ≦ (T × N)
However, N satisfies an integer of 2 or more. For this reason, as shown in FIG. 17, in the two consecutive scans of the first to fourth scans, the region where the magnetic sensor element 40 is located in the ON state is partially in the movement direction. overlapping. Here, in the first embodiment, the magnetic pattern for one column of the medium 1 is detected based on all the data obtained by the magnetic sensor element 40 by four scans performed during one scanning period. In this case, a magnetic pattern for one column of the medium 1 is detected based on data obtained by the magnetic sensor element 40 by a part of the N scans performed during one scanning period.
 より具体的には、図17に示すように、磁気センサ素子40は、媒体1に等倍投影した領域よりも実際のセンシング範囲が広く、媒体1の移動方向Xにおける磁気センサ素子40のセンシング範囲は、移動方向Xにおける寸法Tより大きな寸法S(mm)を有している。そこで、本形態では、1走査期間中に行なったN回のスキャンのうち、センシング範囲が今回のスキャンと次回のスキャンとで媒体1の移動方向Xで部分的に重なる2回以上かつN回未満のスキャンにより磁気センサ素子で得られた複数のデータに基づいて媒体1の1列分の磁気パターンを検出する。 More specifically, as shown in FIG. 17, the magnetic sensor element 40 has a wider actual sensing range than the area projected onto the medium 1 at the same magnification, and the sensing range of the magnetic sensor element 40 in the moving direction X of the medium 1. Has a dimension S (mm) larger than the dimension T in the movement direction X. Therefore, in the present embodiment, out of N scans performed during one scan period, the sensing range partially overlaps in the moving direction X of the medium 1 in the current scan and the next scan at least twice and less than N times. The magnetic pattern for one column of the medium 1 is detected on the basis of a plurality of data obtained by the magnetic sensor element by the scan.
 例えば、図17に示すように、第1回目のスキャンの際にチャンネルCH1用の磁気センサ素子40がオン状態になったときのセンシング範囲は、第3回目のスキャンの際にチャンネルCH1用の磁気センサ素子40がオン状態になったときのセンシング範囲と部分的に重なっている。従って、本形態では、第1回目のスキャンの際により磁気センサ素子40で得られたデータと、第3回目のスキャンの際により磁気センサ素子40で得られたデータとに平均化処理を行い、かかる処理結果に基づいて、媒体1の1列分の磁気パターンを検出する。 For example, as shown in FIG. 17, the sensing range when the magnetic sensor element 40 for the channel CH1 is turned on during the first scan is the same as the magnetic field for the channel CH1 during the third scan. It partially overlaps the sensing range when the sensor element 40 is turned on. Therefore, in this embodiment, an averaging process is performed on the data obtained by the magnetic sensor element 40 during the first scan and the data obtained by the magnetic sensor element 40 during the third scan, Based on the processing result, the magnetic pattern for one column of the medium 1 is detected.
 このような構成を採用した場合も、第二の実施の形態1と同様、今回のスキャン(第1回目のスキャン)と次回のスキャン(第3回目のスキャン)とにおいて、磁気センサ素子40によるセンシング範囲が移動方向Xで部分的に重なっているので、媒体1の磁気特性を高い精度で検出することができる。また、2回のスキャンにより得られたデータに基づいて1列分の磁気パターンを検出できるので、磁気センサ素子40で得られたデータのいずれかにノイズ等の影響が含まれている場合でも、かかるノイズの影響を緩和することができる等の効果を奏する。 Even when such a configuration is adopted, as in the second embodiment, sensing by the magnetic sensor element 40 in the current scan (first scan) and the next scan (third scan). Since the ranges partially overlap in the moving direction X, the magnetic characteristics of the medium 1 can be detected with high accuracy. In addition, since the magnetic pattern for one column can be detected based on the data obtained by the two scans, even if any of the data obtained by the magnetic sensor element 40 includes the influence of noise or the like, There are effects such as the effect of such noise being mitigated.
 なお、媒体1の移動速度v、磁気センサ素子40の移動方向Xにおける寸法T、列方向Yにおける磁気センサ素子40の単位時間ta(μsec)当たりのスキャン回数N等によっては、1走査期間中に行なったN回のスキャンのうち、1走査期間中に行なったN回のスキャンのうち、センシング範囲が今回のスキャンと次回のスキャンとで媒体1の移動方向Xで重ならずに接する2回以上かつN回未満のスキャンにより磁気センサ素子40で得られた複数のデータに基づいて媒体1の1列分の磁気パターンを検出してもよい。 Depending on the moving speed v of the medium 1, the dimension T in the moving direction X of the magnetic sensor element 40, the number of scans N per unit time ta (μsec) of the magnetic sensor element 40 in the column direction Y, etc., during one scanning period. Of the N scans performed, out of the N scans performed during one scan period, the sensing range is in contact with the current scan and the next scan at least two times without overlapping in the moving direction X of the medium 1 In addition, a magnetic pattern for one column of the medium 1 may be detected based on a plurality of data obtained by the magnetic sensor element 40 by scanning less than N times.
 (第二の実施の形態のその他の実施の形態)
 上記形態では、媒体1と磁気センサ装置20とを相対移動させるにあたって、媒体1の方を移動させたが、媒体1が固定で磁気センサ装置20が移動する構成を採用してもよい。また、上記形態では、磁界印加用磁石30に永久磁石を用いたが、電磁石を用いてもよい。
(Other embodiments of the second embodiment)
In the above embodiment, when the medium 1 and the magnetic sensor device 20 are moved relative to each other, the medium 1 is moved. However, a configuration in which the medium 1 is fixed and the magnetic sensor device 20 moves may be employed. Moreover, in the said form, although the permanent magnet was used for the magnet 30 for magnetic field application, you may use an electromagnet.
 上記実施の形態では、1走査期間中に行なったN回のスキャンのうちの、4回あるいは2回のスキャンにより磁気センサ素子40で得られたデータに基づいて媒体1の1列分の磁気パターンを検出する例を説明したが、1走査期間中に行なったN回のスキャンのうちの、1回あるいは3回のスキャンにより磁気センサ素子40で得られたデータに基づいて媒体1の1列分の磁気パターンを検出してもよい等、1走査期間中に行なったN回のスキャンのうちの、1回のスキャンあるいは複数回のスキャンにより磁気センサ素子40で得られたデータに基づいて媒体1の1列分の磁気パターンを検出すればよい。より具体的には、1走査期間中にN回のスキャンを実施し、そのスキャン毎に磁気センサ素子40を介してデータを取得するが、媒体1の1列分の磁気パターンを確定するにあたっては、1走査期間中に行なったN回のスキャンのうちの、1回のスキャンあるいは複数回のスキャンにより磁気センサ素子40で得られたデータを用いればよい。 In the above embodiment, the magnetic pattern for one column of the medium 1 based on the data obtained by the magnetic sensor element 40 by four or two of the N scans performed during one scan period. Although an example in which the magnetic sensor element 40 is detected has been described, one column of the medium 1 is determined based on data obtained by the magnetic sensor element 40 by one or three of the N scans performed during one scan period. The medium 1 may be detected based on data obtained by the magnetic sensor element 40 by one scan or a plurality of scans out of N scans performed during one scan period. It is sufficient to detect the magnetic pattern for one column. More specifically, N scans are performed during one scan period, and data is acquired via the magnetic sensor element 40 for each scan. In determining the magnetic pattern for one column of the medium 1, Of the N scans performed during one scan period, data obtained by the magnetic sensor element 40 by one scan or a plurality of scans may be used.
 また、上記実施の形態では、1走査期間中に行なったN回のスキャンのうちの、今回のスキャンと次回のスキャンにおいて磁気センサ素子40でのセンシンング範囲が繋がった複数回のスキャンにより得られたデータに基づいて媒体1の1列分の磁気パターンを検出する例を説明したが、1走査期間中に行なったN回のスキャンのうちの、今回のスキャンと次回のスキャンとにおいて磁気センサ素子40でのセンシンング範囲が繋がらず離間した複数回のスキャンにより得られたデータに基づいて媒体1の1列分の磁気パターンを検出してもよい。また、今回のスキャンと次回のスキャンにおいて磁気センサ素子40でのセンシンング範囲が繋がったスキャンにより得られたデータと、今回のスキャンと次回のスキャンとにおいて磁気センサ素子40でのセンシンング範囲が繋がらず離間したスキャンにより得られたデータとに基づいて媒体1の1列分の磁気パターンを検出してもよい。 Further, in the above-described embodiment, out of N scans performed during one scan period, the current scan and the next scan are obtained by a plurality of scans in which the sensing range in the magnetic sensor element 40 is connected. Although the example in which the magnetic pattern for one column of the medium 1 is detected based on the data has been described, the magnetic sensor element 40 in the current scan and the next scan among the N scans performed during one scan period. The magnetic pattern for one column of the medium 1 may be detected based on data obtained by a plurality of scans that are not connected to each other and are separated. Further, the data obtained by the scan in which the sensing range in the magnetic sensor element 40 is connected in the current scan and the next scan and the sensing range in the magnetic sensor element 40 in the current scan and the next scan are not connected. The magnetic pattern for one column of the medium 1 may be detected based on the data obtained by the scan.
 さらに、1走査期間中に行なったN回のスキャンのうち、いずれのスキャンの際に磁気センサ素子40で得られたデータに基づいて媒体1の1列分の磁気パターンを検出するかは、可変になっており、上位の制御部や外部からデジタル信号処理部90への指令により任意に設定されるように構成してもよい。このように構成すると、媒体1の種類や磁気パターン検出装置100に求められる検出精度等に応じて最適な動作を実現することができる。 Further, of N scans performed during one scanning period, it is variable which one of the magnetic patterns for one column of the medium 1 is detected based on data obtained by the magnetic sensor element 40 at the time of scanning. It may be configured to be arbitrarily set by a command to the digital signal processing unit 90 from an upper control unit or the outside. With this configuration, it is possible to realize an optimum operation according to the type of the medium 1, the detection accuracy required for the magnetic pattern detection device 100, and the like.

Claims (20)

  1.  媒体の磁気特性を検出する磁気センサ素子と、該磁気センサ素子での検出結果に基づいて前記媒体の磁気パターンを検出する信号処理部と、を有する磁気パターン検出装置であって、
     前記信号処理部は、励磁信号により励磁された前記磁気センサ素子から出力されたセンサ出力信号を増幅する増幅部を備え、
     当該増幅部は、前記センサ出力信号および基準電圧が入力されるアンプと、前記励磁信号に連動して変化する信号を前記基準電圧として生成する基準電圧生成部と、を備えていることを特徴とする磁気パターン検出装置。
    A magnetic pattern detection apparatus comprising: a magnetic sensor element that detects magnetic characteristics of a medium; and a signal processing unit that detects a magnetic pattern of the medium based on a detection result of the magnetic sensor element,
    The signal processing unit includes an amplification unit that amplifies a sensor output signal output from the magnetic sensor element excited by an excitation signal,
    The amplification unit includes an amplifier to which the sensor output signal and a reference voltage are input, and a reference voltage generation unit that generates a signal that changes in conjunction with the excitation signal as the reference voltage. Magnetic pattern detection device.
  2.  前記基準電圧は、前記励磁信号を微分した波形を備えた信号であることを特徴とする請求項1に記載の磁気パターン検出装置。 2. The magnetic pattern detection device according to claim 1, wherein the reference voltage is a signal having a waveform obtained by differentiating the excitation signal.
  3.  前記基準電圧生成部は、前記励磁信号を微分して前記基準電圧を生成するCR微分回路を備えていることを特徴とする請求項2に記載の磁気パターン検出装置。 3. The magnetic pattern detection device according to claim 2, wherein the reference voltage generation unit includes a CR differentiation circuit that differentiates the excitation signal to generate the reference voltage.
  4.  前記基準電圧生成部は、前記励磁信号により励磁されて当該励磁信号を微分してなる信号を前記基準電圧として出力するダミー用磁気センサ素子を備えていることを特徴とする請求項2に記載の磁気パターン検出装置。 The said reference voltage production | generation part is equipped with the dummy magnetic sensor element which outputs the signal which is excited by the said excitation signal and differentiates the said excitation signal as the said reference voltage, The Claim 3 characterized by the above-mentioned. Magnetic pattern detection device.
  5.  前記信号処理部は、前記アンプから出力された信号のうち、極性が正の信号成分を積分する第1積分回路と、極性が負の信号成分を積分する第2積分回路とを備えていることを特徴とする請求項1に記載の磁気パターン検出装置。 The signal processing unit includes a first integration circuit that integrates a signal component having a positive polarity in the signal output from the amplifier, and a second integration circuit that integrates a signal component having a negative polarity. The magnetic pattern detection apparatus according to claim 1.
  6.  前記磁気センサ素子は、前記センサ出力信号を差動出力として出力するための複数のコイルを備えていることを特徴とする請求項1に記載の磁気パターン検出装置。 The magnetic pattern detection apparatus according to claim 1, wherein the magnetic sensor element includes a plurality of coils for outputting the sensor output signal as a differential output.
  7.  媒体の磁気特性を検出する磁気センサ素子と、該磁気センサ素子での検出結果に基づいて前記媒体の磁気パターンを検出する信号処理部と、を有する磁気パターン検出装置であって、
     前記信号処理部は、前記センサ出力のうち、極性が正の信号成分を積分する第1積分回路と、極性が負の信号成分を積分する第2積分回路とを備えていることを特徴とする磁気パターン検出装置。
    A magnetic pattern detection apparatus comprising: a magnetic sensor element that detects magnetic characteristics of a medium; and a signal processing unit that detects a magnetic pattern of the medium based on a detection result of the magnetic sensor element,
    The signal processing unit includes a first integration circuit that integrates a signal component having a positive polarity in the sensor output, and a second integration circuit that integrates a signal component having a negative polarity. Magnetic pattern detection device.
  8.  前記磁気センサ素子は、前記センサ出力信号を差動出力として出力するための複数のコイルを備えていることを特徴とする請求項7に記載の磁気パターン検出装置。 The magnetic pattern detection device according to claim 7, wherein the magnetic sensor element includes a plurality of coils for outputting the sensor output signal as a differential output.
  9.  媒体から磁気特性を検出する磁気センサ素子と、該磁気センサ素子に対して前記媒体を相対的に移動させる搬送機構と、を有する磁気パターン検出装置であって、
     前記磁気センサ素子は、前記媒体の移動方向に対して直交する列方向に複数配列され、
     前記搬送機構による前記媒体の移動速度をv(mm/μsec)とし、
     前記磁気センサ素子の前記移動方向における寸法をT(mm)とし、
     前記列方向における前記磁気センサ素子の単位時間ta(μsec)当たりのスキャン回数をN回としたとき、
     前記移動速度v、前記単位時間ta、前記寸法Tおよび前記スキャン回数Nは、以下の条件式
        (v×ta)≦(T×N)
          但し、Nは2以上の整数
    を満たしていることを特徴とする磁気パターン検出装置。
    A magnetic pattern detection device comprising: a magnetic sensor element that detects magnetic characteristics from a medium; and a transport mechanism that moves the medium relative to the magnetic sensor element.
    A plurality of the magnetic sensor elements are arranged in a column direction orthogonal to the moving direction of the medium,
    The moving speed of the medium by the transport mechanism is v (mm / μsec),
    The dimension of the magnetic sensor element in the moving direction is T (mm),
    When the number of scans per unit time ta (μsec) of the magnetic sensor element in the column direction is N times,
    The moving speed v, the unit time ta, the dimension T, and the number of scans N are expressed by the following conditional expression (v × ta) ≦ (T × N)
    However, the magnetic pattern detection apparatus characterized in that N satisfies an integer of 2 or more.
  10.  前記単位時間taは、前記媒体の1列分の磁気パターンを検出するための1走査期間であり、
     当該1走査期間中に行なったスキャンにより前記磁気センサ素子で得られたデータに基づいて前記媒体の1列分の磁気パターンが検出されることを特徴とする請求項9に記載の磁気パターン検出装置。
    The unit time ta is one scanning period for detecting a magnetic pattern for one column of the medium,
    The magnetic pattern detection device according to claim 9, wherein a magnetic pattern for one column of the medium is detected based on data obtained by the magnetic sensor element by scanning performed during the one scanning period. .
  11.  前記1走査期間中に行なったN回のスキャンのうちの、1回のスキャンあるいは複数回のスキャンにより前記磁気センサ素子で得られたデータに基づいて前記媒体の1列分の磁気パターンが検出されることを特徴とする請求項10に記載の磁気パターン検出装置。 A magnetic pattern for one column of the medium is detected based on data obtained by the magnetic sensor element by one scan or a plurality of scans out of N scans performed during the one scan period. The magnetic pattern detection apparatus according to claim 10.
  12.  前記1走査期間中に行なったN回のスキャンのうちの、複数回のスキャンにより前記磁気センサ素子で得られたデータに基づいて前記媒体の1列分の磁気パターンが検出されることを特徴とする請求項11に記載の磁気パターン検出装置。 A magnetic pattern for one column of the medium is detected based on data obtained by the magnetic sensor element by a plurality of scans out of N scans performed during the one scan period. The magnetic pattern detection apparatus according to claim 11.
  13.  前記1走査期間中に行なったN回のスキャンにより前記磁気センサ素子で得られた全データに基づいて前記媒体の1列分の磁気パターンが検出されることを特徴とする請求項12に記載の磁気パターン検出装置。 The magnetic pattern for one column of the medium is detected based on all data obtained by the magnetic sensor element by N scans performed during the one scan period. Magnetic pattern detection device.
  14.  前記1走査期間中に行なったN回のスキャンのうち、前記媒体に対して前記磁気センサ素子を等倍投影した領域が今回のスキャンと次回のスキャンとで前記移動方向で部分的に重なる2回以上かつN回未満のスキャンにより前記磁気センサ素子で得られた複数のデータ、あるいは前記媒体に対して前記磁気センサ素子を等倍投影した領域が今回のスキャンと次回のスキャンとで前記移動方向で重ならずに接する2回以上かつN回未満のスキャンにより前記磁気センサ素子で得られた複数のデータに基づいて前記媒体の1列分の磁気パターンが検出されることを特徴とする請求項12に記載の磁気パターン検出装置。 Of the N scans performed during the one scan period, the region in which the magnetic sensor element is projected to the medium at the same magnification partially overlaps in the moving direction in the current scan and the next scan. A plurality of data obtained by the magnetic sensor element by the above scan and less than N scans, or an area where the magnetic sensor element is projected at the same magnification on the medium is the moving direction in the current scan and the next scan in the moving direction. 13. The magnetic pattern for one column of the medium is detected based on a plurality of data obtained by the magnetic sensor element by scanning two times or more and less than N times in contact with each other without overlapping. The magnetic pattern detection apparatus described in 1.
  15.  前記1走査期間中に行なったN回のスキャンのうち、前記媒体に対して前記磁気センサ素子を等倍投影した領域が今回のスキャンと次回のスキャンとで前記移動方向で部分的に重なる2回以上かつN回未満のスキャンにより前記磁気センサ素子で得られた複数のデータに基づいて前記媒体の1列分の磁気パターンが検出されることを特徴とする請求項14に記載の磁気パターン検出装置。 Of the N scans performed during the one scan period, the region in which the magnetic sensor element is projected to the medium at the same magnification partially overlaps in the moving direction in the current scan and the next scan. 15. The magnetic pattern detection device according to claim 14, wherein a magnetic pattern for one column of the medium is detected based on a plurality of data obtained by the magnetic sensor element by scanning less than N times. .
  16.  前記磁気センサ素子の前記移動方向におけるセンシング範囲は、前記磁気センサ素子の前記移動方向における寸法Tより大であり、
     前記1走査期間中に行なったN回のスキャンのうち、前記センシング範囲が今回のスキャンと次回のスキャンとで前記移動方向で部分的に重なる2回以上かつN回未満のスキャンにより前記磁気センサ素子で得られた複数のデータ、あるいは前記センシング範囲今回のスキャンと次回のスキャンとで前記移動方向で重ならずに接する2回以上かつN回未満のスキャンにより前記磁気センサ素子で得られた複数のデータに基づいて、前記媒体の1列分の磁気パターンが検出されることを特徴とする請求項12に記載の磁気パターン検出装置。
    The sensing range in the moving direction of the magnetic sensor element is larger than the dimension T in the moving direction of the magnetic sensor element,
    Of the N scans performed during the one scan period, the magnetic sensing element is formed by scanning the sensing range at least twice and less than N times that partially overlap in the moving direction in the current scan and the next scan. Or a plurality of data obtained by the magnetic sensor element by two or more and less than N scans that touch each other without overlapping in the moving direction in the current scan and the next scan. The magnetic pattern detection apparatus according to claim 12, wherein a magnetic pattern for one column of the medium is detected based on the data.
  17.  前記1走査期間中に行なったN回のスキャンのうち、前記センシング範囲が今回のスキャンと次回のスキャンとで前記移動方向で部分的に重なる2回以上かつN回未満のスキャンにより前記磁気センサ素子で得られた複数のデータに基づいて前記媒体の1列分の磁気パターンが検出されることを特徴とする請求項16に記載の磁気パターン検出装置。 Among the N scans performed during the one scanning period, the magnetic sensing element is formed by scanning the sensing range at least twice and less than N times partially overlapping in the moving direction in the current scan and the next scan. The magnetic pattern detection apparatus according to claim 16, wherein a magnetic pattern for one column of the medium is detected based on the plurality of data obtained in step 1.
  18.  前記1走査期間中に前記磁気センサ素子で得られた複数のデータに基づいて前記媒体の1列分の磁気パターンを検出するにあたっては、当該複数のデータに平均化処理が行なわれることを特徴とする請求項12に記載の磁気パターン検出装置。 In detecting a magnetic pattern for one column of the medium based on a plurality of data obtained by the magnetic sensor element during the one scanning period, an averaging process is performed on the plurality of data. The magnetic pattern detection apparatus according to claim 12.
  19.  前記1走査期間中に行なったN回のスキャンのうち、いずれのスキャンの際の前記磁気センサ素子で得られたデータに基づいて前記媒体の1列分の磁気パターンを検出するかは、可変であることを特徴とする請求項11に記載の磁気パターン検出装置。 Of the N scans performed during the one scan period, it is variable whether the magnetic pattern for one column of the medium is detected based on the data obtained by the magnetic sensor element at the time of the scan. The magnetic pattern detection apparatus according to claim 11, wherein the magnetic pattern detection apparatus is provided.
  20.  前記磁気センサ素子は、励磁信号により励磁されて信号を出力し、
     当該励磁信号は、1回のスキャン中に前記複数の磁気センサ素子の各々が出力する信号に複数周期分の前記励磁信号による信号成分が含まれる周波数を有していることを特徴とする請求項9に記載の磁気パターン検出装置。
    The magnetic sensor element is excited by an excitation signal and outputs a signal,
    The excitation signal has a frequency at which a signal component of the excitation signal for a plurality of cycles is included in a signal output from each of the plurality of magnetic sensor elements during one scan. 9. The magnetic pattern detection apparatus according to 9.
PCT/JP2011/050449 2010-02-05 2011-01-13 Magnetic pattern detection device WO2011096258A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020127013838A KR101485229B1 (en) 2010-02-05 2011-01-13 Magnetic pattern detection device
CN201180001718.7A CN102369558B (en) 2010-02-05 2011-01-13 Magnetic pattern detection device
KR1020147014014A KR101442464B1 (en) 2010-02-05 2011-01-13 Magnetic pattern detection device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010024787A JP5534842B2 (en) 2010-02-05 2010-02-05 Magnetic pattern detector
JP2010-024787 2010-02-05
JP2010-024789 2010-02-05
JP2010024789A JP5534843B2 (en) 2010-02-05 2010-02-05 Magnetic pattern detector

Publications (1)

Publication Number Publication Date
WO2011096258A1 true WO2011096258A1 (en) 2011-08-11

Family

ID=44355268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050449 WO2011096258A1 (en) 2010-02-05 2011-01-13 Magnetic pattern detection device

Country Status (3)

Country Link
KR (2) KR101485229B1 (en)
CN (3) CN102369558B (en)
WO (1) WO2011096258A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2869276A1 (en) 2013-10-30 2015-05-06 Glory Ltd. Paper sheet magnetic detection apparatus
EP3125202A1 (en) * 2014-03-25 2017-02-01 Multidimension Technology Co., Ltd. Magneto resistance sensor for identifying magnetic image

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3087535B1 (en) * 2013-12-23 2019-08-28 Shenzhen Pu Ying Innovation Technology Corporation Limited Device and method for decoding magnetic patterns
CN108182754A (en) * 2016-12-08 2018-06-19 株式会社村田制作所 Magnetic detection device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05108922A (en) * 1991-10-14 1993-04-30 Oki Electric Ind Co Ltd Paper money discriminating device
JPH09180026A (en) * 1995-12-26 1997-07-11 Glory Ltd Paper money discriminating device
JP2009163336A (en) * 2007-12-28 2009-07-23 Nidec Sankyo Corp Magnetic pattern detection device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH087152A (en) * 1994-06-20 1996-01-12 Murata Mfg Co Ltd Signal processing circuit for magnetic sensor
US5535871A (en) * 1995-08-29 1996-07-16 Authentication Technologies, Inc. Detector for a security thread having at least two security detection features
JPH09330451A (en) * 1996-06-12 1997-12-22 Kooa Giken Kk Automatic adjusting circuit of paper money detection sensor
JPH11110604A (en) * 1997-10-01 1999-04-23 Omron Corp Magnetic sensor
CN1294543C (en) * 2001-01-08 2007-01-10 德拉鲁国际公司 Magnetic thread reader
JP3603872B2 (en) * 2001-05-16 2004-12-22 松下電器産業株式会社 Magnetic sensor and banknote recognition device using it
CN1639741B (en) * 2002-08-30 2010-11-03 富士通先端科技株式会社 Paper sheets characteristic detection device and paper sheets characteristic detection method
JP2005259068A (en) * 2004-03-15 2005-09-22 Hitachi Omron Terminal Solutions Corp Paper sheet identification device
JP2006099197A (en) * 2004-09-28 2006-04-13 Saxa Inc Bill identification unit
JP4771738B2 (en) * 2005-05-02 2011-09-14 日本電産サンキョー株式会社 Paper sheet identification device and magnetic sensor for paper sheet identification
JP4953665B2 (en) * 2006-03-08 2012-06-13 日本電産サンキョー株式会社 Magnetic sensor device and identification device
JP2008077795A (en) * 2006-09-22 2008-04-03 Fujitsu Ltd Clock extraction method for patterned medium, clock extraction circuit for patterned medium and patterned medium
US20080116941A1 (en) * 2006-11-16 2008-05-22 Qualcomm Incorporated Peak signal detector
CN101201945B (en) * 2007-12-21 2010-08-11 中国印钞造币总公司 Module for recognizing paper money

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05108922A (en) * 1991-10-14 1993-04-30 Oki Electric Ind Co Ltd Paper money discriminating device
JPH09180026A (en) * 1995-12-26 1997-07-11 Glory Ltd Paper money discriminating device
JP2009163336A (en) * 2007-12-28 2009-07-23 Nidec Sankyo Corp Magnetic pattern detection device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2869276A1 (en) 2013-10-30 2015-05-06 Glory Ltd. Paper sheet magnetic detection apparatus
US10242520B2 (en) 2013-10-30 2019-03-26 Glory Ltd. Paper sheet magnetic detection apparatus
EP3125202A1 (en) * 2014-03-25 2017-02-01 Multidimension Technology Co., Ltd. Magneto resistance sensor for identifying magnetic image
EP3125202A4 (en) * 2014-03-25 2017-12-20 Multidimension Technology Co., Ltd. Magneto resistance sensor for identifying magnetic image

Also Published As

Publication number Publication date
KR101485229B1 (en) 2015-01-22
CN104063938A (en) 2014-09-24
CN104063938B (en) 2016-09-21
KR20120140644A (en) 2012-12-31
KR101442464B1 (en) 2014-09-22
CN102369558A (en) 2012-03-07
CN102369558B (en) 2014-12-31
CN104123781B (en) 2017-01-18
CN104123781A (en) 2014-10-29
KR20140082849A (en) 2014-07-02

Similar Documents

Publication Publication Date Title
JP5719515B2 (en) Magnetic sensor device
JP5542466B2 (en) Magnetic sensor device
JP5127440B2 (en) Magnetic pattern detector
JP4894040B2 (en) Magnetic sensor
EP3032252B1 (en) Magnetic detection device and paper sheet processing device
JP6359858B2 (en) Magnetic field detection device and magnetic identification device
WO2013146755A1 (en) Paper sheet magnetism evaluation device and paper sheet magnetism evaluation method
WO2011096258A1 (en) Magnetic pattern detection device
JP5881395B2 (en) Magnetic sensor device
WO2006120825A1 (en) Magnetic sensor and device for identifying sheet
JP5534843B2 (en) Magnetic pattern detector
JP5687483B2 (en) Magnetic pattern detector
JP2012137451A (en) Magnetic sensor unit
JP5534842B2 (en) Magnetic pattern detector
JP2014010118A (en) Magnetic sensor device
US5276396A (en) Planar magnetic harmonic sensor for detecting small quantities of magnetic substances
JP5680951B2 (en) Magnetic pattern detector
JP2022189283A (en) Magnetic identification sensor and magnetic identification device
WO2006129716A1 (en) Magnetic charge sensor, magnetic charge sensor device, and device for identifying sheet
JP2003202326A (en) Magnetic detector

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180001718.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11739607

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127013838

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11739607

Country of ref document: EP

Kind code of ref document: A1