WO2011096066A1 - Device for detecting shift/select position in parallel-shaft transmission for vehicle - Google Patents

Device for detecting shift/select position in parallel-shaft transmission for vehicle Download PDF

Info

Publication number
WO2011096066A1
WO2011096066A1 PCT/JP2010/051642 JP2010051642W WO2011096066A1 WO 2011096066 A1 WO2011096066 A1 WO 2011096066A1 JP 2010051642 W JP2010051642 W JP 2010051642W WO 2011096066 A1 WO2011096066 A1 WO 2011096066A1
Authority
WO
WIPO (PCT)
Prior art keywords
shift
operation position
select
shaft
gap sensor
Prior art date
Application number
PCT/JP2010/051642
Other languages
French (fr)
Japanese (ja)
Inventor
清水 健次
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2010/051642 priority Critical patent/WO2011096066A1/en
Publication of WO2011096066A1 publication Critical patent/WO2011096066A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/68Inputs being a function of gearing status
    • F16H59/70Inputs being a function of gearing status dependent on the ratio established
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/30Constructional features of the final output mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/30Constructional features of the final output mechanisms
    • F16H2063/3083Shift finger arrangements, e.g. shape or attachment of shift fingers

Definitions

  • the present invention relates to a shift select operation position detection device for a parallel shaft transmission for a vehicle, and more particularly to a technique for reducing manufacturing costs.
  • It has an engagement arm projecting on the outer peripheral side, is provided so as to be rotatable around the axis and movable in the axial direction, and is predetermined in one of the axial direction and the circumferential direction around the axis.
  • a plurality of predetermined select operation positions that are selected in one of the plurality of select operation positions, and are located in one of the plurality of select operation positions in the circumferential direction around the axis and in the other direction of the axis direction.
  • the shift select operation position detection device described in Patent Document 1 includes a plurality of select operation position detection hall sensors and a plurality of shift operation position detection hall sensors arranged on the outer peripheral side of the shift select shaft, A plurality of magnets that are integrally fixed to the outer peripheral surface of the select shaft and that switch the detection state of each of the hall sensors in accordance with the operation position of the shift select shaft, and that each of the hall sensors is detected from a predetermined relationship.
  • the operation position of the shift select shaft is determined based on the state.
  • the conventional shift select operation position detection device has a problem that the manufacturing cost is high because a plurality of hall sensors and magnets are required.
  • the present invention has been made against the background of the above circumstances, and an object of the present invention is to provide a shift select for a low-cost parallel shaft transmission for a vehicle that can detect the operation position of the shift select shaft with a small number of sensors. An object of the present invention is to provide an operation position detection device.
  • the gist of the invention according to claim 1 is that: (a) an engagement arm projecting on the outer peripheral side of the rod is provided so as to be rotatable around the axis and in the axial direction. Selectable to any one of a plurality of select operation positions determined in advance in one of the axial direction and a circumferential direction around the axis, and is selected from the plurality of select operation positions. 1 is shifted to any one of a plurality of predetermined shift operation positions located in the other direction of the axial direction and the circumferential direction around the axial center.
  • Shift select operation position detecting device for detecting an operation position of the shift select shaft in a parallel shaft transmission for a vehicle having a shift select shaft for switching gear positions And (b) a gap sensor provided at a fixed position on the outer peripheral side of the shift select shaft, and (c) a distance between the shift sensor and the gap sensor fixed to the shift select shaft. And an operation position detecting member having a plurality of detected surfaces different for each of a plurality of shift operation positions.
  • the gist of the invention according to claim 2 is that, in the invention according to claim 1, the detected surface of the operation position detecting member has a distance detected by the gap sensor of the shift select shaft. It is different in each of the plurality of select operation positions in the one direction and different from any of the plurality of shift operation positions of the shift select shaft.
  • the gist of the invention according to claim 3 is that, in the invention according to claim 2, the plurality of detected surfaces of the operation position detecting member are continuously adjacent to each other in the one direction and the other direction. It is that it is formed.
  • the gist of the invention according to claim 4 is that, in the invention according to any one of claims 1 to 3, the detected surface of the operation position detecting member has a distance detected by the gap sensor.
  • the shift operation position on the low speed stage side is smaller than the shift operation position on the high speed stage side of the shift select shaft.
  • the gist of the invention according to claim 5 is that, in the invention according to any one of claims 1 to 4, the gap sensor detected by the gap sensor and the operation position from a predetermined relationship.
  • the distance between the gap sensor provided at a fixed position on the outer peripheral side of the shift select shaft and the gap sensor Includes an operation position detecting member having a plurality of detected surfaces that differ for each of a plurality of shift operation positions of the shift select shaft, so that the shift operation of the shift select shaft is performed based on the distance detected by the gap sensor. Since the position can be detected by a small number of, for example, one gap sensor, it is not necessary to provide a plurality of sensors, for example, and the manufacturing cost can be reduced.
  • the detected surface of the operation position detecting member has a distance detected by the gap sensor for each of the plurality of select operation positions of the shift select shaft. Since it is different and formed so as to be different from any of a plurality of shift operation positions of the shift select shaft, the select operation position is detected by a small number of gap sensors, for example, in addition to the shift operation position of the shift select shaft. Therefore, it is not necessary to provide a plurality of sensors, for example, and the manufacturing cost can be reduced.
  • the plurality of detection surfaces of the operation position detection member are continuously formed adjacent to each other in the one direction and the other direction. Therefore, it is possible to detect the stroke of at least one of the shift direction and the select direction of the shift select shaft based on the distance detected by the gap sensor from a predetermined relationship, and the operation amount from the original operation position. Can be estimated.
  • the detected surface of the operation position detecting member has a distance detected by the gap sensor at the shift operation position on the high speed stage side of the shift select shaft. Since the shift operation position on the low speed stage side is formed so as to be smaller than that, the detection accuracy of the shift operation position on the low speed stage side is improved.
  • the vehicle drive source for example, the engine rotation speed control is performed according to the shift stage of the vehicle parallel shaft transmission determined from the shift operation position, the engine rotation speed due to erroneous detection of the shift operation position.
  • the shock generated in the vehicle due to the sudden change in the value increases as the shift operation position on the low speed stage side is erroneously detected. Therefore, with the above configuration, since the erroneous detection of the shift operation position on the low speed stage side is reduced, the shock generated in the vehicle is reduced.
  • the shift select operation position detecting device of the invention based on a predetermined relationship, based on the distance between the gap sensor detected by the gap sensor and the operation position detecting member. Since the operation position determination means for determining the operation position of the shift select shaft is included, based on the distance detected by the gap sensor, the shift operation position and the select operation position of the shift select shaft are set to a small number, for example, one Since it can detect with a gap sensor, it is not necessary to provide a some sensor, for example, and manufacturing cost can be reduced.
  • FIG. 3 is a diagram showing a state in which the shift select shaft of FIG. 2 is shifted to a reverse shift operation position located on one side in the circumferential direction of a first select operation position.
  • FIG. 3 is a diagram showing a state in which the shift select shaft of FIG. 2 is shifted to a first shift operation position and a second shift operation position that are located on one side and the other side in the circumferential direction of a second select operation position, respectively.
  • FIG. 3 is a diagram showing a state in which the shift select shaft of FIG. 2 is shifted to a third shift operation position and a fourth shift operation position that are located on one side and the other side in the circumferential direction of a third select operation position, respectively. It is a figure which shows the state by which the shift select shaft of FIG. 2 was respectively shifted to the 5th shift operation position and the 6th shift operation position which are located in the circumferential direction one side and the other side of the 4th select operation position. It is a functional block diagram explaining the control function of the electronic control apparatus which functions as a control part of a shift select operation position detection apparatus. It is a figure which shows the predetermined relationship between the distance detected and supplied by a gap sensor, and the operation position of a shift select shaft.
  • FIG. 1 is a diagram showing a main part of a shift operation mechanism 10 of a parallel shaft transmission for a vehicle to which the present invention is applied.
  • the parallel-shaft transmission for a vehicle includes, for example, an input shaft and an output shaft that are provided in parallel to each other, a plurality of gear pairs that have different gear ratios and are always meshed, and the gear pairs.
  • the speed change mechanism of the present embodiment includes, for example, six forward gear pairs and one reverse gear pair, and seven synchronous mesh clutches respectively provided on them.
  • the speed change operation mechanism 10 is for changing the speed of the speed change mechanism by switching the engagement state of the seven synchronous mesh clutches of the speed change mechanism.
  • the first gear stage and the second gear stage correspond to the low speed stage in the present invention
  • the fifth gear stage and the sixth gear stage correspond to the high speed stage in the present invention.
  • the speed change operation mechanism 10 can rotate around an axis C1 indicated by arrows a and b in the transmission case 12 and can move in an axis C1 direction indicated by an arrow c in FIG. And a plurality of shift fork shafts movably provided in axial directions orthogonal to the direction parallel to the axis C1.
  • the plurality of shift fork shafts include a first shift fork shaft and a second shift fork shaft (not shown), a third shift fork shaft 16, and a fourth shift fork shaft 18.
  • the shift select shaft 14 is elongated in the direction of the axis C1, and can be rotated around the axis C1 and moved in the direction of the axis C1 by, for example, a bearing (not shown) provided in the transmission case 12.
  • the shaft-shaped member 20 supported at both ends and a part of the outer periphery thereof, for example, by spline fitting, cannot be rotated relative to the shaft-shaped member 20 around the axis C1 and cannot move relative to the axis C1.
  • a cylindrical member 24 having an engaging arm 22 projecting integrally from the outer peripheral surface partially to the outer peripheral side.
  • the shift select shaft 14 is selected to any one of a plurality of select operation positions predetermined in the direction of the axis C1, and is positioned in the circumferential direction around the axis C1 at any one of the plurality of select operation positions.
  • the gear stage is switched via the engagement arm 22 when the shift operation is performed to any one of a plurality of predetermined shift operation positions.
  • the direction of the axis C1 corresponds to one of the axial direction and the circumferential direction around the axis in the present invention, and the circumferential direction around the axis C1 corresponds to the axial direction and the axis in the present invention. This corresponds to the other circumferential direction.
  • the shift select shaft 14 of this embodiment has a first select operation position, a second select operation position, which are sequentially positioned in the axial center C1 direction in the axial center C1 direction, that is, in the select direction indicated by an arrow c in FIG.
  • the select operation is performed at any one of the third select operation position and the fourth select operation position.
  • the shift select shaft 14 is one side in the circumferential direction of the first select operation position.
  • the shift operation is performed to the reverse shift operation position located on the arrow a side in FIG.
  • the reverse shift operation position is a shift operation position for shifting the speed change mechanism to the reverse gear.
  • the shift select shaft 14 is located on one side and the other side in the circumferential direction of the second select operation position, that is, on the arrow b side in FIG.
  • the shift operation is performed to any one of the first shift operation position and the second shift operation position.
  • the first shift operation position and the second shift operation position are shift operation positions for shifting the speed change mechanism to the first gear stage and the second gear stage, respectively. Equivalent to.
  • the shift select shaft 14 has a third shift operation position and a first position located on one side and the other side in the circumferential direction of the third select operation position.
  • the shift operation is performed to any one of the four shift operation positions.
  • the third shift operation position and the fourth shift operation position are shift operation positions for shifting the speed change mechanism to the third gear stage and the fourth gear stage, respectively.
  • the shift select shaft 14 has a fifth shift operation position and a fifth shift operation position located on one side and the other side in the circumferential direction of the fourth select operation position in the circumferential direction around the axis C1 of the fourth select operation position.
  • the shift operation is performed to any one of the 6 shift operation positions.
  • the fifth shift operation position and the sixth shift operation position are shift operation positions for shifting the speed change mechanism to the fifth gear stage and the sixth gear stage, respectively. Equivalent to.
  • FIG. 1 shows a state where the shift select shaft 14 is located at the third select operation position.
  • Each of the first to fourth shift fork shafts has a longitudinal shape in each axial direction, and is provided with a shaft portion 26 supported at both ends by, for example, bearings provided in the transmission case 12, and each shaft portion. 26.
  • An engaging arm 22 of the shift select shaft 14 that protrudes integrally from the outer peripheral surface of the gear 26 toward the shift select shaft 14 side, and is operated at a predetermined select operation position in each axial direction at the tip thereof.
  • an engagement arm portion 30 formed with an engagement groove 28 that can be engaged.
  • the first shift fork shaft is fixedly provided with a first fork member that engages with a sleeve of the synchronous meshing clutch that is involved in the establishment of the reverse gear of the speed change mechanism among the plurality of synchronous meshing clutches.
  • the second shift fork shaft is engaged with a sleeve of a synchronous meshing clutch that is involved in establishment of the first gear stage and the second gear stage of the transmission mechanism among the plurality of synchronous meshing clutches.
  • a fork member is fixed.
  • the third shift fork shaft 16 is engaged with a sleeve of the synchronous meshing clutch that is involved in the establishment of the third gear stage and the fourth gear stage of the transmission mechanism among the plurality of synchronous meshing clutches.
  • a fork member 32 is fixed. Further, the fourth shift fork shaft 18 is engaged with a sleeve of the synchronous meshing clutch involved in establishment of the fifth gear stage and the sixth gear stage of the transmission mechanism among the plurality of synchronous meshing clutches. A fork member 34 is fixed.
  • the engagement arm 22 is selectively engaged with any one of the engagement grooves 28 of each shift fork shaft.
  • the plurality of shift fork shafts engaged with the engagement arm 22 are moved in the axial direction.
  • the corresponding synchronous mesh clutch is operated via the fork member of the shift fork shaft moved in the axial direction, and the first to sixth gear stages and the reverse gear stage are operated in the transmission mechanism. Any one of the above is selectively established.
  • the parallel-shaft transmission for vehicles provided with the shift operation mechanism 10 includes a shift select operation position detection device 36 for detecting the operation position of the shift select shaft 14 of the shift operation mechanism 10.
  • FIG. 2 is an enlarged view showing the shift select shaft 14 shown in FIG. 1 and its peripheral portion.
  • FIG. 3 is a view showing the III arrow portion of the shift select shaft 14 of FIG.
  • the shift select operation position detection device 36 is provided at a fixed position on the transmission case 12 on the outer peripheral side of the shift select shaft 14 and detects the distance G between the shift select shaft 14 and the shift select shaft 14.
  • the distance G between the gap sensor 38 and the shift select shaft 14 is fixed to the cylindrical member 24 of the shift select shaft 14.
  • the distance G between the gap sensor 38 and the gap sensor 38 is different for each of the plurality of select operation positions and the plurality of shift operation positions.
  • an operation position detecting member 40 having a plurality of detection surfaces formed differently.
  • the detected surface of the operation position detection member 40 of the present embodiment is such that each distance G between the operation position detection member 40 and the gap sensor 38 when the shift select shaft 14 is located at a plurality of shift operation positions, respectively. They are formed different from each other. Further, the detection surface of the operation position detection member 40 is such that the distances G between the operation position detection member 40 and the gap sensor 38 when the shift select shaft 14 is positioned at a plurality of select operation positions are mutually different. The distances G are different from those of the shift operation positions of the shift select shaft 14.
  • the gap sensor 38 is a non-contact type, and has a detection point A at the center of the front end surface of the cylindrical detection unit facing the operation position detection member 40, and passes through the detection point A and is orthogonal to the front end surface.
  • the distance G to the surface (detected surface) of the operation position detecting member 40 positioned in the direction of the axis C2 is detected.
  • the gap sensor 38 includes, for example, a coil that generates a high-frequency magnetic field, and the eddy current of the operation position detection member 40 increases as the metal operation position detection member 40 approaches the coil.
  • an eddy current that can detect the distance G from the operation position detecting member 40 by measuring the degree to which the magnetic field of the coil is weakened by a magnetic field opposite to the high-frequency magnetic field generated by the eddy current.
  • a displacement sensor can be used.
  • the gap sensor 38 for example, a semiconductor magnetoresistor that is provided on the surface of the operation position detection member 40 by magnetizing or is disposed opposite to, for example, a magnet that generates a magnetic field fixed separately.
  • a distance G between the semiconductor magnetoresistive element 40 and the operation position detecting member 40 can be detected based on the resistance value of the semiconductor magnetoresistive element changing according to the distance between the semiconductor magnetoresistive element and the magnet.
  • a semiconductor magnetoresistive element displacement sensor can be used.
  • an ultrasonic wave generating member such as a piezoelectric ceramic that generates an ultrasonic beam
  • the ultrasonic beam emitted from the ultrasonic wave generating member is reflected on the operation position detecting member 40.
  • the distance G to the operation position detection member 40 can be detected based on the fact that the wave reception level when receiving the returned wave changes according to the distance to the operation position detection member 40.
  • a possible ultrasonic sensor can be used.
  • the gap sensor 38 for example, a laser oscillation member that oscillates a laser, and two laser diffused lights that are oscillated by the laser oscillation member and reflected by a predetermined reference plane and the operation position detection member 40, respectively.
  • a laser indicator that can detect the distance G between the predetermined reference plane and the operation position detecting member 40 can be used.
  • the operation position detecting member 40 includes a first protrusion 42, a second protrusion 44, a third protrusion 46, and a first protrusion 42, which are continuously formed adjacent to each other at a predetermined interval in the direction of the axis C1.
  • Four protrusions 48 are provided. These protrusions are disposed at positions facing the gap sensors 38 when the shift select shaft 14 is positioned at each select operation position.
  • a reverse shift operation detected surface 50 for detecting a distance G (Rev) between the shift select shaft 14 located at the reverse shift operation position and the gap sensor 38;
  • a first select operation detection surface 52 for detecting the distance G (R) between the shift select shaft 14 located at the first select operation position and the gap sensor 38 is one from the other side in the circumferential direction. It is continuously formed adjacent to the side in order.
  • the reverse shift operation detection surface 50 and the first select operation detection surface 52 are formed in a partial cylindrical surface having the axis C1 as the center line of curvature.
  • the detection surface 50 for reverse shift operation is formed so as to face the detection point A of the gap sensor 38 in the direction of the axis C2 when the shift select shaft 14 is located at the reverse shift operation position.
  • the first select operation detection surface 50 is formed to face the detection point A of the gap sensor 38 in the direction of the axis C2 when the shift select shaft 14 is located at the first select operation position.
  • the select operation is performed in the select direction parallel to the axis C1 indicated by the arrow c in FIG.
  • the gap sensor 38 detects the distance G (R) between the detection point A of the gap sensor 38 and the first select operation detection surface 50 facing it in the direction of the axis C2. .
  • the shift select shaft 14 is shifted from the state where the shift select shaft 14 is positioned at the first select operation position as described above to one side in the circumferential direction as shown in FIG.
  • the gap sensor 38 detects the distance G (Rev) between the detection point A of the gap sensor 38 and the reverse shift operation detection surface 52 facing the detection point A in the direction of the axis C2.
  • the distances G (Rev) and G (R) are set so as to decrease in that order.
  • a first shift operation detected surface 54 for detecting a distance G (1st) between the shift select shaft 14 located at the first shift operation position and the gap sensor 38.
  • a second select operation detection surface 56 for detecting a distance G (L) between the shift select shaft 14 and the gap sensor 38 located at the second select operation position, and a position at the second shift operation position.
  • a second shift operation detection surface 58 for detecting a distance G (2nd) between the shift select shaft 14 and the gap sensor 38 which are adjacent to each other in order from the other side in the circumferential direction. Is formed.
  • the first shift operation detection surface 54, the second select operation detection surface 56, and the second shift operation detection surface 56 are partial cylindrical surfaces having the axis C1 as the center of curvature.
  • the first shift operation detection surface 54 is formed to face the detection point A of the gap sensor 38 in the axial center C2 direction when the shift select shaft 14 is located at the first shift operation position.
  • the second select operation detection surface 56 is formed to face the detection point A of the gap sensor 38 in the direction of the axis C2 when the shift select shaft 14 is located at the second select operation position.
  • the second shift operation detection surface 58 is formed to face the detection point A of the gap sensor 38 in the direction of the axis C2 when the shift select shaft 14 is located at the second shift operation position.
  • a gap sensor 38 detects a distance G (L) between the detection point A of the sensor 38 and the second selection operation detection surface 56 facing the detection point A in the direction of the axis C2.
  • the shift select shaft 14 is shifted from the state where it is positioned at the second select operation position as described above to the one side in the circumferential direction as shown by the solid line in FIG. ,
  • the distance G (1st) between the detection point A of the gap sensor 38 and the first shift operation detection surface 54 opposed to the detection point A in the direction of the axis C2 is detected by the gap sensor 38. Is done.
  • the shift select shaft 14 is shifted from the state where it is located at the second select operation position to the other side in the circumferential direction as shown by a two-dot chain line in FIG.
  • the gap sensor 38 detects the distance G (2nd) between the detection point A of the gap sensor 38 and the second shift operation detection surface 58 facing the detection point A in the direction of the axis C2.
  • the distances G (2nd), G (1st), and G (L) are set to decrease in that order.
  • the distances G (1st) and G (2nd) are set to be smaller than the distance G (R) and smaller than distances G (6th), G (5th), and G (H) described later. ing.
  • the first to sixth shift operation detection surfaces of the operation position detection member 40 of the present embodiment have the distance G detected by the gap sensor 38 set to the shift operation position on the high speed stage side of the shift select shaft 14. Compared to the corresponding fifth shift operation position and the sixth shift operation position, the first shift operation position and the second shift operation position corresponding to the shift operation position on the low speed stage side are formed to be smaller.
  • a third shift operation detected surface 60 for detecting a distance G (3rd) between the shift select shaft 14 located at the third shift operation position and the gap sensor 38 is provided on the outer peripheral surface of the third protrusion 46. And a third select operation detection surface 62 for detecting the distance G (N) between the shift select shaft 14 and the gap sensor 38 located at the third select operation position, and the fourth shift operation position. And a fourth shift operation detection surface 64 for detecting a distance G (4th) between the shift select shaft 14 and the gap sensor 38 that are adjacent to each other in order from the other side in the circumferential direction. Is formed.
  • the third shift operation detection surface 60, the third select operation detection surface 62, and the fourth shift operation detection surface 64 are partially cylindrical surfaces having the axis C1 as the center of curvature.
  • the third shift operation detection surface 60 is formed to face the detection point A of the gap sensor 38 in the direction of the axis C2 when the shift select shaft 14 is located at the third shift operation position.
  • the third select operation detection surface 62 is formed to face the detection point A of the gap sensor 38 in the direction of the axis C2 when the shift select shaft 14 is located at the third select operation position.
  • the fourth shift operation detection surface 64 is formed to face the detection point A of the gap sensor 38 in the direction of the axis C2 when the shift select shaft 14 is located at the fourth shift operation position.
  • the shift select shaft 14 is positioned at the third select operation position as described above, the shift select shaft 14 is shifted to one side in the circumferential direction as shown by a solid line in FIG. , The distance G (3rd) between the detection point A of the gap sensor 38 and the third shift operation detection surface 60 facing the detection point A in the direction of the axis C2 is detected by the gap sensor 38. Is done.
  • the shift select shaft 14 is shifted from the state where the shift select shaft 14 is located at the third select operation position to the other side in the circumferential direction as shown by a two-dot chain line in FIG.
  • the gap sensor 38 detects the distance G (4th) between the detection point A of the gap sensor 38 and the fourth shift operation detection surface 64 facing the detection point A in the direction of the axis C2.
  • the distances G (4th), G (3rd), and G (N) are set so as to decrease in that order.
  • the distance G (4th) is set to be smaller than the distance G (N).
  • a fifth shift operation detected surface 66 for detecting a distance G (5th) between the shift select shaft 14 located at the fifth shift operation position and the gap sensor 38.
  • a fourth select operation detection surface 68 for detecting the distance G (H) between the shift select shaft 14 and the gap sensor 38 located at the fourth select operation position, and the sixth shift operation position.
  • a sixth shift operation detection surface 70 for detecting a distance G (6th) between the shift select shaft 14 and the gap sensor 38 that are adjacent to each other in order from the one side to the other side in the circumferential direction. Is formed.
  • the fifth shift operation detection surface 66, the fourth select operation detection surface 68, and the sixth shift operation detection surface 70 are partially cylindrical surfaces having the axis C1 as the center of curvature.
  • the fifth shift operation detection surface 66 is formed to face the detection point A of the gap sensor 38 in the axial center C2 direction when the shift select shaft 14 is located at the fifth shift operation position.
  • the fourth select operation detection surface 68 is formed to face the detection point A of the gap sensor 38 in the direction of the axis C2 when the shift select shaft 14 is located at the fourth select operation position.
  • the sixth shift operation detection surface 64 is formed to face the detection point A of the gap sensor 38 in the direction of the axis C2 when the shift select shaft 14 is located at the sixth shift operation position. Note that the first to fourth select operation detection target surfaces are continuously formed adjacent to each other in the direction of the axis C1.
  • a gap sensor 38 detects a distance G (H) between the detection point A of the sensor 38 and the fourth selection operation detection surface 68 facing the detection point A in the direction of the axis C2.
  • the shift select shaft 14 is shifted from the state where it is positioned at the fourth select operation position as described above to the one side in the circumferential direction as shown by the solid line in FIG. ,
  • the distance G (5th) between the detection point A of the gap sensor 38 and the fifth shift operation detection surface 66 facing it in the direction of the axis C2 is detected by the gap sensor 38. Is done.
  • the shift select shaft 14 is shifted from the state in the fourth select operation position to the other side in the circumferential direction as shown by a two-dot chain line in FIG. 7 and is positioned in the sixth shift operation position.
  • the gap sensor 38 detects the distance G (6th) between the detection point A of the gap sensor 38 and the sixth shift operation detection surface 70 facing the detection point A in the direction of the axis C2.
  • the distances G (6th), G (5th), and G (H) are set to decrease in that order.
  • the distance G (6th) is set to be smaller than the distance G (R).
  • FIG. 8 is a functional block diagram illustrating the main part of the control function of the electronic control device 72 that functions as the control unit of the shift select operation position detection device 36.
  • the electronic control unit 72 includes a plurality of so-called microcomputers including a CPU, a ROM, a RAM, an input / output interface, and the like, and is stored in advance in the ROM while using a temporary storage function of the RAM. By performing signal processing according to the program, the operation position detection control of the shift select shaft 14 is executed.
  • the electronic control device 72 includes an operation position determination unit 74.
  • the operation position determination means 74 has a distance G between the gap sensor 38 detected by the gap sensor 38 and the operation position detection member 40 based on a predetermined relationship shown in FIG. Based on the above, the shift operation position and the select operation position of the actual shift select shaft 14 are determined.
  • the shift stage indicates the gear stage of the transmission mechanism of the vehicle parallel shaft transmission corresponding to the operation position of the shift select shaft 14.
  • the gap order indicates the order in which the distance G detected by the gap sensor 38 is small among the plurality of shift operation positions and the plurality of select operation positions of the shift select shaft 14.
  • the operation position determining means 74 determines that the shift select shaft 14 is in the third select position. It is determined that it is located at the operation position.
  • the operation position determination means 74 indicates that the shift select shaft 14 is at the third shift operation position when the distance G is within a preset third shift operation position determination range G (3rd) min to G (3rd) max. It is determined that it is located.
  • the operation position determination means 74 indicates that the shift select shaft 14 is at the fourth shift operation position when the distance G is within a preset fourth shift operation position determination range G (4th) min to G (4th) max. It is determined that it is located.
  • the operation position determining means 74 is configured such that when the distance G is within a preset second select operation position determination range G (L) min to G (L) max, the shift select shaft 14 is set to the second select operation position. It is determined that it is located.
  • the operation position determination means 74 is configured such that when the distance G is within a preset first shift operation position determination range G (1st) min to G (1st) max, the shift select shaft 14 is set to the first shift operation position. It is determined that it is located.
  • the operation position determination means 74 indicates that the shift select shaft 14 is at the second shift operation position when the distance G is within a preset second shift operation position determination range G (2nd) min to G (2nd) max. It is determined that it is located.
  • the operation position determining means 74 is configured such that when the distance G is within a preset fourth select operation position determination range G (H) min to G (H) max, the shift select shaft 14 is set to the fourth select operation position. It is determined that it is located.
  • the operation position determination means 74 determines that the shift select shaft 14 is at the fifth shift operation position when the distance G is within a preset fifth shift operation position determination range G (5th) min to G (5th) max. It is determined that it is located.
  • the operation position determination means 74 determines that the shift select shaft 14 is at the sixth shift operation position when the distance G is within a preset sixth shift operation position determination range G (6th) min to G (6th) max. It is determined that it is located.
  • the operation position determination means 74 determines that the shift select shaft 14 is at the first select operation position when the distance G is within a preset first select operation position determination range G (R) min to G (R) max. It is determined that it is located.
  • the operation position determination means 74 determines that the shift select shaft 14 is positioned at the reverse shift operation position when the distance G is within a preset reverse shift operation position determination range G (Rev) min to G (Rev) max. judge.
  • the detection result of the operation position of the shift select shaft 14 by the operation position determination means 74 is, for example, from the relationship shown in FIG. 9, the actual gear stage (shift stage) of the vehicle parallel shaft transmission (transmission mechanism). This is used to determine which of the first to sixth gears and the reverse gear is.
  • the determination result of the gear stage of the vehicle parallel shaft transmission is used, for example, for a vehicle drive source, for example, engine rotational speed control.
  • the engine rotational speed control includes, for example, control for suppressing a shock generated in the vehicle when the vehicle parallel shaft transmission is shifted.
  • the distance G between the gap sensor 38 and the shift select shaft 14 includes a plurality of select operation positions and a plurality of select operation positions.
  • the distance G between the gap sensor 38 and the operation position detection member 40 based on a predetermined relationship between the operation position detection member 40 having a plurality of detection surfaces formed differently for each shift operation position.
  • the first to sixth shift operation detection surfaces and the first to fourth selection operation detection surfaces of the operation position detection member 40 are shifted. Are formed adjacent to each other in the direction and the select direction, and based on the distance G detected by the gap sensor 38, the shift direction and the select direction of the shift select shaft 14 are determined based on a predetermined relationship. At least one stroke can be detected, and the operation amount from the original operation position can be estimated. From such an operation amount, for example, it is possible to determine a jump gear shift operation and to perform control corresponding thereto, for example, engine output control.
  • the first to sixth shift operation detection surfaces of the operation position detection member 40 have a distance G detected by the gap sensor 38 so that the shift select is detected.
  • the first shift operation position and the second shift operation position corresponding to the shift operation position on the low speed stage side are compared. Therefore, the detection accuracy of the shift operation position on the low speed stage side is improved.
  • the vehicle drive source for example, the rotational speed control of the engine is controlled according to the gear position of the vehicle parallel shaft transmission determined from the detection result of the shift operation position of the operation position determination means 74, the shift operation is performed.
  • the shock generated in the vehicle due to a sudden change in the rotational speed of the engine due to erroneous position detection increases as the shift operation position on the low speed stage side is erroneously detected. Therefore, with the above configuration, erroneous detection of the first shift operation position and the second shift operation position is reduced, so that the shock generated in the vehicle is reduced.
  • the distance G from the gap sensor 38 of each detection surface formed on the operation position detection member 40 does not necessarily have to be formed so as to be different in the order as in the above-described embodiment.
  • an operation position detection member 80 shown in FIG. 10 may be provided instead of the operation position detection member 40 fixed to the shift select shaft 14 of the above-described embodiment.
  • the operation position detecting member 80 has a distance G detected by the gap sensor 38 such that the second select operation position, the first shift operation position, the second shift operation position, the third select operation position, and the third select operation position of the shift select shaft 14.
  • the third shift operation position, the fourth shift operation position, the fourth select operation position, the fifth shift operation position, and the sixth shift operation position are formed in this order.
  • the distance G detected by the gap sensor 38 is formed so as to be different for each of the plurality of shift operation positions and the plurality of select operation positions of the shift select shaft 14, the shift of the shift select shaft 14 by one sensor is performed. The effect that the operation position and the select operation position can be detected is obtained.
  • the first to sixth shift operation detection surfaces have a distance G detected by the gap sensor 38 that is not necessarily in the shift operation position on the low speed stage side compared to the shift operation position on the high speed stage side of the shift select shaft 14. It does not need to be formed to be smaller.
  • an operation position detection member 90 shown in FIG. 11 may be provided instead of the operation position detection member 40 fixed to the shift select shaft 14 of the above-described embodiment.
  • the operation position detecting member 90 has a distance G detected by the gap sensor 38 such that the fourth select operation position, the fifth shift operation position, the sixth shift operation position, the second select operation position, and the second select operation position of the shift select shaft 14.
  • the first shift operation position, the second shift operation position, the third select operation position, the third shift operation position, and the fourth shift operation position are formed in this order.
  • the distance G detected by the gap sensor 38 is formed so as to be different for each of the plurality of select operation positions of the shift select shaft 14, but is not necessarily different for each select operation position. There is no need to be done.
  • an operation position detection member 100 shown in FIG. 12 may be provided instead of the operation position detection member 40 fixed to the shift select shaft 14 of the above-described embodiment.
  • the operation position detecting member 100 is formed such that the distance G detected by the gap sensor 38 does not change for each of the plurality of select operation positions of the shift select shaft 14. Further, the operation position detecting member 100 has a distance G detected by the gap sensor 38 as compared with the shift operation position located on one side in the circumferential direction of the predetermined select operation position of the shift select shaft 14.
  • a shift operation position located on the other side in the circumferential direction of a predetermined select operation position is formed to be smaller.
  • the operation position detecting member 100 has a distance G detected by the gap sensor 38 as compared to a predetermined select operation position among the plurality of select operation positions of the shift select shaft 14 and one side in the circumferential direction thereof.
  • the shift operation position on the other side is formed to be smaller.
  • the distance G detected by the gap sensor 38 is different for each of the plurality of shift operation positions of the shift select shaft 14, the shift operation position of the shift select shaft 14 can be detected by one sensor. The effect of being able to be obtained.
  • each detected surface does not necessarily have to be formed in a partial cylindrical surface with the axis C1 as the center line of curvature.
  • each detected surface may be formed in a curved surface having a center of curvature other than the axis C1, or may be formed in a flat shape.
  • the operation position detection member 40 can be applied as long as the distance G between each non-detection surface of the operation position detection member 40 can be detected.
  • the shift operation mechanism 10 of the above-described embodiment is of a type in which the shift select shaft 14 and the first to fourth shift fork shafts are disposed so as to be orthogonal to each other.
  • the present invention can be applied even if the type is arranged in the above.
  • Shift select shaft 22 Engagement arm 36: Shift select operation position detection device 38: Gap sensors 40, 80, 90, 100: Operation position detection member 74: Operation position determination means C1: Axes G, G (R ), G (L), G (N), G (H), G (Rev), G (1st), G (2nd), G (3rd), G (4th), G (5th), G (6th ):distance

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Gear-Shifting Mechanisms (AREA)

Abstract

Disclosed is a low-cost device for detecting shift/select positions in a parallel-shaft transmission for a vehicle, capable of detecting the operative position of a shift/select shaft with a small number of sensors. Specifically, the device comprises a member (40) for operative position detection having a plurality of surfaces to be detected formed such that distances (G) between the surfaces and a gap sensor (38) differ for each of the select positions and the shift positions of a shift/select shaft (14); and an operative-position determining means (74) that determines the shift position and the select position of the shift/select shaft (14) on the basis of the distance (G) between the gap sensor (38) and the member (40) for operative position detection from a predetermined relationship. Since the shift position and the select position of the shift/select shaft (14) can be detected using only one gap sensor (38), for example, no additional sensors are required, and the production cost can be reduced.

Description

車両用平行軸式変速機のシフトセレクト操作位置検出装置Shift select operation position detecting device for parallel shaft transmission for vehicle
 本発明は、車両用平行軸式変速機のシフトセレクト操作位置検出装置に関し、特に、製造コストを低減するための技術に関するものである。 The present invention relates to a shift select operation position detection device for a parallel shaft transmission for a vehicle, and more particularly to a technique for reducing manufacturing costs.
 外周側に突設された係合アームを有して軸心まわりの回動可能且つ軸心方向の移動可能に設けられ、軸心方向および軸心まわりの周方向のうちの一方向において予め定められた複数のセレクト操作位置のいずれか1にセレクト操作され、それら複数のセレクト操作位置のいずれか1において軸心まわりの周方向および軸心方向のうちの他方向に位置する予め定められた複数のシフト操作位置のいずれか1にシフト操作されることにより、前記係合アームを介してギヤ段を切り換えるシフトセレクトシャフトを備える車両用平行軸式変速機において、そのシフトセレクトシャフトの操作位置を検出するためのシフトセレクト操作位置検出装置が知られている。例えば、特許文献1に記載されたものがそれである。 It has an engagement arm projecting on the outer peripheral side, is provided so as to be rotatable around the axis and movable in the axial direction, and is predetermined in one of the axial direction and the circumferential direction around the axis. A plurality of predetermined select operation positions that are selected in one of the plurality of select operation positions, and are located in one of the plurality of select operation positions in the circumferential direction around the axis and in the other direction of the axis direction. When the shift operation is performed to any one of the shift operation positions of the vehicle, the operation position of the shift select shaft is detected in the parallel shaft transmission for a vehicle including the shift select shaft that switches the gear stage via the engagement arm. A shift-select operation position detecting device for doing this is known. For example, it is described in Patent Document 1.
 上記特許文献1に記載されたシフトセレクト操作位置検出装置は、シフトセレクトシャフトの外周側に配列された複数のセレクト操作位置検出用のホールセンサーおよび複数のシフト操作位置検出用のホールセンサーと、シフトセレクトシャフトの外周面にそれぞれ一体に固定され、シフトセレクトシャフトの操作位置に応じて上記各ホールセンサーの検知状態をそれぞれ切り換える複数の磁石とを備え、予め定められた関係から上記各ホールセンサーの検出状態に基づいてシフトセレクトシャフトの操作位置を判定するように構成されている。 The shift select operation position detection device described in Patent Document 1 includes a plurality of select operation position detection hall sensors and a plurality of shift operation position detection hall sensors arranged on the outer peripheral side of the shift select shaft, A plurality of magnets that are integrally fixed to the outer peripheral surface of the select shaft and that switch the detection state of each of the hall sensors in accordance with the operation position of the shift select shaft, and that each of the hall sensors is detected from a predetermined relationship. The operation position of the shift select shaft is determined based on the state.
特開平6-293225号公報JP-A-6-293225
 ところが、上記従来のシフトセレクト操作位置検出装置においては、ホールセンサーおよび磁石が複数必要であるために製造コストが高くなるという問題があった。 However, the conventional shift select operation position detection device has a problem that the manufacturing cost is high because a plurality of hall sensors and magnets are required.
 本発明は以上の事情を背景としてなされたものであり、その目的とするところは、シフトセレクトシャフトの操作位置を少ないセンサーで検出することができる低コストな車両用平行軸式変速機のシフトセレクト操作位置検出装置を提供することにある。 The present invention has been made against the background of the above circumstances, and an object of the present invention is to provide a shift select for a low-cost parallel shaft transmission for a vehicle that can detect the operation position of the shift select shaft with a small number of sensors. An object of the present invention is to provide an operation position detection device.
 かかる目的を達成するための請求項1にかかる発明の要旨とするところは、(a) 外周側に突設された係合アームを有して軸心まわりの回動可能且つ前記軸心方向の移動可能に設けられ、前記軸心方向および前記軸心まわりの周方向のうちの一方向において予め定められた複数のセレクト操作位置のいずれか1にセレクト操作され、前記複数のセレクト操作位置のいずれか1において前記軸心方向および前記軸心まわりの周方向のうちの他方向に位置する予め定められた複数のシフト操作位置のいずれか1にシフト操作されることにより、前記係合アームを介してギヤ段を切り換えるシフトセレクトシャフトを備える車両用平行軸式変速機において、前記シフトセレクトシャフトの操作位置を検出するためのシフトセレクト操作位置検出装置であって、(b) 前記シフトセレクトシャフトの外周側に位置固定に設けられたギャップセンサーと、(c) 前記シフトセレクトシャフトに固定され、前記ギャップセンサーとの間の距離がそのシフトセレクトシャフトの前記複数のシフト操作位置毎に異なる複数の被検出面を有する操作位置検出用部材とを、含むことにある。 In order to achieve this object, the gist of the invention according to claim 1 is that: (a) an engagement arm projecting on the outer peripheral side of the rod is provided so as to be rotatable around the axis and in the axial direction. Selectable to any one of a plurality of select operation positions determined in advance in one of the axial direction and a circumferential direction around the axis, and is selected from the plurality of select operation positions. 1 is shifted to any one of a plurality of predetermined shift operation positions located in the other direction of the axial direction and the circumferential direction around the axial center. Shift select operation position detecting device for detecting an operation position of the shift select shaft in a parallel shaft transmission for a vehicle having a shift select shaft for switching gear positions And (b) a gap sensor provided at a fixed position on the outer peripheral side of the shift select shaft, and (c) a distance between the shift sensor and the gap sensor fixed to the shift select shaft. And an operation position detecting member having a plurality of detected surfaces different for each of a plurality of shift operation positions.
 また、請求項2にかかる発明の要旨とするところは、請求項1にかかる発明において、前記操作位置検出用部材の被検出面は、前記ギャップセンサーにより検出される距離が、前記シフトセレクトシャフトの前記一方向の複数のセレクト操作位置毎に異なり、且つ前記シフトセレクトシャフトの前記複数のシフト操作位置のいずれとも異なるように形成されていることにある。 Further, the gist of the invention according to claim 2 is that, in the invention according to claim 1, the detected surface of the operation position detecting member has a distance detected by the gap sensor of the shift select shaft. It is different in each of the plurality of select operation positions in the one direction and different from any of the plurality of shift operation positions of the shift select shaft.
 また、請求項3にかかる発明の要旨とするところは、請求項2にかかる発明において、前記操作位置検出用部材の複数の被検出面は、前記一方向および前記他方向において互いに隣接して連続的に形成されていることにある。 The gist of the invention according to claim 3 is that, in the invention according to claim 2, the plurality of detected surfaces of the operation position detecting member are continuously adjacent to each other in the one direction and the other direction. It is that it is formed.
 また、請求項4にかかる発明の要旨とするところは、請求項1乃至3のいずれか1にかかる発明において、前記操作位置検出用部材の被検出面は、前記ギャップセンサーにより検出される距離が、前記シフトセレクトシャフトの高速段側のシフト操作位置に比べて低速段側のシフト操作位置の方が小さくなるように形成されていることにある。 The gist of the invention according to claim 4 is that, in the invention according to any one of claims 1 to 3, the detected surface of the operation position detecting member has a distance detected by the gap sensor. The shift operation position on the low speed stage side is smaller than the shift operation position on the high speed stage side of the shift select shaft.
 また、請求項5にかかる発明の要旨とするところは、請求項1乃至4のいずれか1にかかる発明において、予め定められた関係から、前記ギャップセンサーにより検出されるそのギャップセンサーと前記操作位置検出用部材との間の距離に基づいて、前記シフトセレクトシャフトの操作位置を判定する操作位置判定手段を含むことにある。 The gist of the invention according to claim 5 is that, in the invention according to any one of claims 1 to 4, the gap sensor detected by the gap sensor and the operation position from a predetermined relationship. There is an operation position determining means for determining the operation position of the shift select shaft based on the distance to the detection member.
 請求項1にかかる発明の車両用平行軸式変速機のシフトセレクト操作位置検出装置によれば、シフトセレクトシャフトの外周側に位置固定に設けられたギャップセンサーと、そのギャップセンサーとの間の距離がシフトセレクトシャフトの複数のシフト操作位置毎に異なる複数の被検出面を有する操作位置検出用部材とを、含むことから、ギャップセンサーにより検出される前記距離に基づいて、シフトセレクトシャフトのシフト操作位置を少数のたとえば1つのギャップセンサーで検出することができるので、例えば複数のセンサーを設ける必要がなく、製造コストを低減することができる。 According to the shift select operation position detecting device for a parallel shaft transmission for a vehicle of the first aspect of the present invention, the distance between the gap sensor provided at a fixed position on the outer peripheral side of the shift select shaft and the gap sensor. Includes an operation position detecting member having a plurality of detected surfaces that differ for each of a plurality of shift operation positions of the shift select shaft, so that the shift operation of the shift select shaft is performed based on the distance detected by the gap sensor. Since the position can be detected by a small number of, for example, one gap sensor, it is not necessary to provide a plurality of sensors, for example, and the manufacturing cost can be reduced.
 また、請求項2にかかる発明のシフトセレクト操作位置検出装置によれば、操作位置検出用部材の被検出面は、ギャップセンサーにより検出される距離が、シフトセレクトシャフトの複数のセレクト操作位置毎に異なり、且つシフトセレクトシャフトの複数のシフト操作位置のいずれとも異なるように形成されていることから、シフトセレクトシャフトのシフト操作位置に加えて、セレクト操作位置を少数のたとえば1つのギャップセンサーで検出することができるので、例えば複数のセンサーを設ける必要がなく、製造コストを低減することができる。 According to the shift select operation position detecting device of the invention of claim 2, the detected surface of the operation position detecting member has a distance detected by the gap sensor for each of the plurality of select operation positions of the shift select shaft. Since it is different and formed so as to be different from any of a plurality of shift operation positions of the shift select shaft, the select operation position is detected by a small number of gap sensors, for example, in addition to the shift operation position of the shift select shaft. Therefore, it is not necessary to provide a plurality of sensors, for example, and the manufacturing cost can be reduced.
 また、請求項3にかかる発明のシフトセレクト操作位置検出装置によれば、操作位置検出用部材の複数の被検出面は、前記一方向および他方向において互いに隣接して連続的に形成されていることから、予め定められた関係から、ギャップセンサーにより検出される前記距離に基づいて、シフトセレクトシャフトのシフト方向およびセレクト方向の少なくとも一方のストロークを検出することができ、原操作位置からの操作量を推定できる。 According to the shift select operation position detection device of the invention of claim 3, the plurality of detection surfaces of the operation position detection member are continuously formed adjacent to each other in the one direction and the other direction. Therefore, it is possible to detect the stroke of at least one of the shift direction and the select direction of the shift select shaft based on the distance detected by the gap sensor from a predetermined relationship, and the operation amount from the original operation position. Can be estimated.
 また、請求項4にかかる発明のシフトセレクト操作位置検出装置によれば、操作位置検出用部材の被検出面は、ギャップセンサーにより検出される距離がシフトセレクトシャフトの高速段側のシフト操作位置に比べて低速段側のシフト操作位置の方が小さくなるように形成されていることから、低速段側のシフト操作位置の検出精度が高められている。ここで、シフト操作位置から判断される車両用平行軸式変速機の変速段に応じて車両用駆動源たとえばエンジンの回転速度制御が行われる場合において、シフト操作位置の誤検出によるエンジンの回転速度の急変に起因して車両に生じるショックは、低速段側のシフト操作位置が誤検出されるときほど大きくなる。そのため、前記のようにすれば、低速段側のシフト操作位置の誤検出が少なくなるので、上記車両に生じるショックが低減される。 According to the shift select operation position detecting device of the invention of claim 4, the detected surface of the operation position detecting member has a distance detected by the gap sensor at the shift operation position on the high speed stage side of the shift select shaft. Since the shift operation position on the low speed stage side is formed so as to be smaller than that, the detection accuracy of the shift operation position on the low speed stage side is improved. Here, when the vehicle drive source, for example, the engine rotation speed control is performed according to the shift stage of the vehicle parallel shaft transmission determined from the shift operation position, the engine rotation speed due to erroneous detection of the shift operation position. The shock generated in the vehicle due to the sudden change in the value increases as the shift operation position on the low speed stage side is erroneously detected. Therefore, with the above configuration, since the erroneous detection of the shift operation position on the low speed stage side is reduced, the shock generated in the vehicle is reduced.
 また、請求項5にかかる発明のシフトセレクト操作位置検出装置によれば、予め定められた関係から、前記ギャップセンサーにより検出されるそのギャップセンサーと前記操作位置検出用部材との間の距離に基づいて、前記シフトセレクトシャフトの操作位置を判定する操作位置判定手段を含むことから、ギャップセンサーにより検出される前記距離に基づいて、シフトセレクトシャフトのシフト操作位置およびセレクト操作位置を少数のたとえば1つのギャップセンサーで検出することができるので、例えば複数のセンサーを設ける必要がなく、製造コストを低減することができる。 According to the shift select operation position detecting device of the invention according to claim 5, based on a predetermined relationship, based on the distance between the gap sensor detected by the gap sensor and the operation position detecting member. Since the operation position determination means for determining the operation position of the shift select shaft is included, based on the distance detected by the gap sensor, the shift operation position and the select operation position of the shift select shaft are set to a small number, for example, one Since it can detect with a gap sensor, it is not necessary to provide a some sensor, for example, and manufacturing cost can be reduced.
本発明が適用された車両用平行軸式変速機の変速操作機構の要部を示す図である。It is a figure which shows the principal part of the speed change operation mechanism of the parallel-shaft transmission for vehicles with which this invention was applied. 図1に示すシフトセレクトシャフトおよびその周辺部位を拡大して示す図である。It is a figure which expands and shows the shift select shaft shown in FIG. 1, and its peripheral part. 図2のシフトセレクトシャフト14のIII矢視部を示す図である。It is a figure which shows the III arrow part of the shift select shaft 14 of FIG. 図2のシフトセレクトシャフトが、第1セレクト操作位置の周方向の一方側に位置する後進シフト操作位置へシフト操作された状態を示す図である。FIG. 3 is a diagram showing a state in which the shift select shaft of FIG. 2 is shifted to a reverse shift operation position located on one side in the circumferential direction of a first select operation position. 図2のシフトセレクトシャフトが、第2セレクト操作位置の周方向の一方側および他方側に位置する第1シフト操作位置および第2シフト操作位置へそれぞれシフト操作された状態を示す図である。FIG. 3 is a diagram showing a state in which the shift select shaft of FIG. 2 is shifted to a first shift operation position and a second shift operation position that are located on one side and the other side in the circumferential direction of a second select operation position, respectively. 図2のシフトセレクトシャフトが、第3セレクト操作位置の周方向の一方側および他方側に位置する第3シフト操作位置および第4シフト操作位置へそれぞれシフト操作された状態を示す図である。FIG. 3 is a diagram showing a state in which the shift select shaft of FIG. 2 is shifted to a third shift operation position and a fourth shift operation position that are located on one side and the other side in the circumferential direction of a third select operation position, respectively. 図2のシフトセレクトシャフトが、第4セレクト操作位置の周方向の一方側および他方側に位置する第5シフト操作位置および第6シフト操作位置へそれぞれシフト操作された状態を示す図である。It is a figure which shows the state by which the shift select shaft of FIG. 2 was respectively shifted to the 5th shift operation position and the 6th shift operation position which are located in the circumferential direction one side and the other side of the 4th select operation position. シフトセレクト操作位置検出装置の制御部として機能する電子制御装置の制御機能を説明する機能ブロック線図である。It is a functional block diagram explaining the control function of the electronic control apparatus which functions as a control part of a shift select operation position detection apparatus. ギャップセンサーにより検出されて供給される距離と、シフトセレクトシャフトの操作位置との、予め定められた関係を示す図である。It is a figure which shows the predetermined relationship between the distance detected and supplied by a gap sensor, and the operation position of a shift select shaft. 本発明の他の実施例におけるシフトセレクト操作位置検出装置のシフトセレクトシャフト固設された操作位置検出用部材の形状を説明するための図である。It is a figure for demonstrating the shape of the member for operation position detection fixed to the shift select shaft of the shift select operation position detection apparatus in the other Example of this invention. 本発明の他の実施例におけるシフトセレクト操作位置検出装置のシフトセレクトシャフト固設された操作位置検出用部材の形状を説明するための断面図である。It is sectional drawing for demonstrating the shape of the member for operation position detection fixed to the shift select shaft of the shift select operation position detection apparatus in the other Example of this invention. 本発明の他の実施例におけるシフトセレクト操作位置検出装置のシフトセレクトシャフト固設された操作位置検出用部材の形状を説明するための図である。It is a figure for demonstrating the shape of the member for operation position detection fixed to the shift select shaft of the shift select operation position detection apparatus in the other Example of this invention.
 以下、本発明の一実施例を図面を参照して詳細に説明する。なお、以下の実施例において図は説明を容易にするために適宜簡略化或いは変形されており、各部の寸法比および形状等は必ずしも正確に描かれていない。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. In the following embodiments, the drawings are appropriately simplified or modified for ease of explanation, and the dimensional ratios, shapes, and the like of the respective parts are not necessarily drawn accurately.
 図1は、本発明が適用された車両用平行軸式変速機の変速操作機構10の要部を示す図である。上記車両用平行軸式変速機は、例えば、相互に平行に設けられた入力軸および出力軸と、それら軸間に設けられたギヤ比が異なり且つ常時噛み合う複数対のギヤ対と、それらギヤ対のいずれか1を介して為される上記軸間の動力伝達状態を選択的に切り換えるための複数の同期噛合クラッチとを備える良く知られた所謂常時噛合型平行軸式の変速機構を含んで構成されている。本実施例の変速機構は、例えば、6対の前進用ギヤ対および1対の後進用ギヤ対と、それらにそれぞれ設けられた7つの同期噛合クラッチとを備えている。そして、上記7対のギヤ対のいずれか1を介して為される上記入力軸と出力軸との間の動力伝達状態が選択的に切り換えられることにより、ギヤ比の異なる前進用の第1ギヤ段乃至第6ギヤ段および後進ギヤ段の間で変速が行われる。前記変速操作機構10は、上記変速機構の7つの同期噛合クラッチの係合状態を切り換えることによって前記変速機構の変速を行うためのものである。なお、第1ギヤ段および第2ギヤ段は、本発明における低速段に相当し、また、第5ギヤ段および第6ギヤ段は、本発明における高速段に相当する。 FIG. 1 is a diagram showing a main part of a shift operation mechanism 10 of a parallel shaft transmission for a vehicle to which the present invention is applied. The parallel-shaft transmission for a vehicle includes, for example, an input shaft and an output shaft that are provided in parallel to each other, a plurality of gear pairs that have different gear ratios and are always meshed, and the gear pairs. Including a well-known so-called always-meshing parallel shaft type speed change mechanism including a plurality of synchronous meshing clutches for selectively switching the power transmission state between the shafts through any one of Has been. The speed change mechanism of the present embodiment includes, for example, six forward gear pairs and one reverse gear pair, and seven synchronous mesh clutches respectively provided on them. Then, by selectively switching the power transmission state between the input shaft and the output shaft made through any one of the seven gear pairs, the forward first gear having a different gear ratio is used. Shifting is performed between the sixth to sixth gears and the reverse gear. The speed change operation mechanism 10 is for changing the speed of the speed change mechanism by switching the engagement state of the seven synchronous mesh clutches of the speed change mechanism. The first gear stage and the second gear stage correspond to the low speed stage in the present invention, and the fifth gear stage and the sixth gear stage correspond to the high speed stage in the present invention.
 図1に示すように、変速操作機構10は、変速機ケース12内において、矢印aおよびbで示す軸心C1まわりに回転可能且つ後述の図3に矢印cで示す軸心C1方向に移動可能に設けられたシフトセレクトシャフト14と、軸心C1に平行な方向にそれぞれ直交する軸心方向にそれぞれ移動可能に設けられた複数のシフトフォークシャフトとを備えている。上記複数のシフトフォークシャフトには、図示しない第1シフトフォークシャフトおよび第2シフトフォークシャフトと、第3シフトフォークシャフト16と、第4シフトフォークシャフト18とが含まれる。 As shown in FIG. 1, the speed change operation mechanism 10 can rotate around an axis C1 indicated by arrows a and b in the transmission case 12 and can move in an axis C1 direction indicated by an arrow c in FIG. And a plurality of shift fork shafts movably provided in axial directions orthogonal to the direction parallel to the axis C1. The plurality of shift fork shafts include a first shift fork shaft and a second shift fork shaft (not shown), a third shift fork shaft 16, and a fourth shift fork shaft 18.
 上記シフトセレクトシャフト14は、軸心C1方向に長手状を成し、変速機ケース12内に設けられた例えば図示しない軸受などによって軸心C1まわりの回動可能且つ軸心C1方向の移動可能に両端部が支持された軸状部材20と、その外周部の一部に例えばスプライン嵌合されることでその軸状部材20に軸心C1まわりの相対回転不能且つ軸心C1方向の相対移動不能に設けられると共に、外周面から部分的に外周側に一体に突設された係合アーム22を有する円筒状部材24とを備えている。このシフトセレクトシャフト14は、軸心C1方向において予め定められた複数のセレクト操作位置のいずれか1にセレクト操作され、それら複数のセレクト操作位置のいずれか1において軸心C1まわりの周方向に位置する予め定められた複数のシフト操作位置のいずれか1にシフト操作されることにより、係合アーム22を介してギヤ段を切り換えるものである。上記軸心C1方向は、本発明における軸心方向および軸心まわりの周方向のうちの一方向に相当し、また、上記軸心C1まわりの周方向は、本発明における軸心方向および軸心まわりの周方向のうちの他方向に相当する。 The shift select shaft 14 is elongated in the direction of the axis C1, and can be rotated around the axis C1 and moved in the direction of the axis C1 by, for example, a bearing (not shown) provided in the transmission case 12. The shaft-shaped member 20 supported at both ends and a part of the outer periphery thereof, for example, by spline fitting, cannot be rotated relative to the shaft-shaped member 20 around the axis C1 and cannot move relative to the axis C1. And a cylindrical member 24 having an engaging arm 22 projecting integrally from the outer peripheral surface partially to the outer peripheral side. The shift select shaft 14 is selected to any one of a plurality of select operation positions predetermined in the direction of the axis C1, and is positioned in the circumferential direction around the axis C1 at any one of the plurality of select operation positions. The gear stage is switched via the engagement arm 22 when the shift operation is performed to any one of a plurality of predetermined shift operation positions. The direction of the axis C1 corresponds to one of the axial direction and the circumferential direction around the axis in the present invention, and the circumferential direction around the axis C1 corresponds to the axial direction and the axis in the present invention. This corresponds to the other circumferential direction.
 本実施例のシフトセレクトシャフト14は、軸心C1方向すなわち後述の図3に矢印cで示すセレクト方向においては、その軸心C1方向に順次位置する第1セレクト操作位置、第2セレクト操作位置、第3セレクト操作位置、および第4セレクト操作位置のいずれか1にセレクト操作される。 The shift select shaft 14 of this embodiment has a first select operation position, a second select operation position, which are sequentially positioned in the axial center C1 direction in the axial center C1 direction, that is, in the select direction indicated by an arrow c in FIG. The select operation is performed at any one of the third select operation position and the fourth select operation position.
 そして、シフトセレクトシャフト14は、上記第1セレクト操作位置の軸心C1まわりの周方向すなわち図1に矢印aおよびbで示すシフト方向においては、その第1セレクト操作位置の周方向の一方側すなわち図1の矢印a側に位置する後進用シフト操作位置にシフト操作される。この後進用シフト操作位置は、前記変速機構を後進ギヤ段に変速するためのシフト操作位置である。 In the circumferential direction around the axis C1 of the first select operation position, that is, in the shift direction indicated by arrows a and b in FIG. 1, the shift select shaft 14 is one side in the circumferential direction of the first select operation position. The shift operation is performed to the reverse shift operation position located on the arrow a side in FIG. The reverse shift operation position is a shift operation position for shifting the speed change mechanism to the reverse gear.
 また、シフトセレクトシャフト14は、上記第2セレクト操作位置の軸心C1まわりの周方向においては、その第2セレクト操作位置の周方向の一方側および他方側すなわち図1の矢印b側に位置する第1シフト操作位置および第2シフト操作位置のいずれか1にシフト操作される。これら第1シフト操作位置および第2シフト操作位置は、前記変速機構を第1ギヤ段および第2ギヤ段にそれぞれ変速するためのシフト操作位置であり、本発明における低速段側のシフト操作位置に相当する。 The shift select shaft 14 is located on one side and the other side in the circumferential direction of the second select operation position, that is, on the arrow b side in FIG. The shift operation is performed to any one of the first shift operation position and the second shift operation position. The first shift operation position and the second shift operation position are shift operation positions for shifting the speed change mechanism to the first gear stage and the second gear stage, respectively. Equivalent to.
 また、シフトセレクトシャフト14は、上記第3セレクト操作位置の軸心C1まわりの周方向においては、その第3セレクト操作位置の周方向の一方側および他方側に位置する第3シフト操作位置および第4シフト操作位置のいずれか1にシフト操作される。これら第3シフト操作位置および第4シフト操作位置は、前記変速機構を第3ギヤ段および第4ギヤ段にそれぞれ変速するためのシフト操作位置である。 Further, in the circumferential direction around the axis C1 of the third select operation position, the shift select shaft 14 has a third shift operation position and a first position located on one side and the other side in the circumferential direction of the third select operation position. The shift operation is performed to any one of the four shift operation positions. The third shift operation position and the fourth shift operation position are shift operation positions for shifting the speed change mechanism to the third gear stage and the fourth gear stage, respectively.
 また、シフトセレクトシャフト14は、上記第4セレクト操作位置の軸心C1まわりの周方向においては、その第4セレクト操作位置の周方向の一方側および他方側に位置する第5シフト操作位置および第6シフト操作位置のいずれか1にシフト操作される。これら第5シフト操作位置および第6シフト操作位置は、前記変速機構を第5ギヤ段および第6ギヤ段にそれぞれ変速するためのシフト操作位置であり、本発明における高速段側のシフト操作位置に相当する。なお、図1は、シフトセレクトシャフト14が第3セレクト操作位置に位置する状態を示している。 The shift select shaft 14 has a fifth shift operation position and a fifth shift operation position located on one side and the other side in the circumferential direction of the fourth select operation position in the circumferential direction around the axis C1 of the fourth select operation position. The shift operation is performed to any one of the 6 shift operation positions. The fifth shift operation position and the sixth shift operation position are shift operation positions for shifting the speed change mechanism to the fifth gear stage and the sixth gear stage, respectively. Equivalent to. FIG. 1 shows a state where the shift select shaft 14 is located at the third select operation position.
 前記第1乃至第4シフトフォークシャフトは、各軸心方向に長手状を成し、変速機ケース12内に設けられた例えば軸受などによって両端部がそれぞれ支持された軸部26と、各軸部26の外周面から部分的にシフトセレクトシャフト14側に向けて一体に突設され、その先端部に各軸心方向において所定のセレクト操作位置に操作されたシフトセレクトシャフト14の係合アーム22と係合することができる係合溝28が形成された係合アーム部30とを、それぞれ備えている。これら第1乃至第4シフトフォークシャフトは、各係合アーム部30の係合溝28がそれぞれ軸心C1と平行な方向に連ねられた状態で互いに平行に配設されている。 Each of the first to fourth shift fork shafts has a longitudinal shape in each axial direction, and is provided with a shaft portion 26 supported at both ends by, for example, bearings provided in the transmission case 12, and each shaft portion. 26. An engaging arm 22 of the shift select shaft 14 that protrudes integrally from the outer peripheral surface of the gear 26 toward the shift select shaft 14 side, and is operated at a predetermined select operation position in each axial direction at the tip thereof. And an engagement arm portion 30 formed with an engagement groove 28 that can be engaged. These first to fourth shift fork shafts are arranged in parallel to each other with the engagement grooves 28 of the respective engagement arm portions 30 being connected in the direction parallel to the axis C1.
 前記第1シフトフォークシャフトには、前記複数の同期噛合クラッチのうち前記変速機構の後進ギヤ段の成立に関与する同期噛合クラッチのスリーブに対して係合する第1フォーク部材が固設されている。また、前記第2シフトフォークシャフトには、前記複数の同期噛合クラッチのうち前記変速機構の第1ギヤ段および第2ギヤ段の成立に関与する同期噛合クラッチのスリーブに対して係合する第2フォーク部材が固設されている。また、第3シフトフォークシャフト16には、前記複数の同期噛合クラッチのうち前記変速機構の第3ギヤ段および第4ギヤ段の成立に関与する同期噛合クラッチのスリーブに対して係合する第3フォーク部材32が固設されている。また、第4シフトフォークシャフト18には、前記複数の同期噛合クラッチのうち前記変速機構の第5ギヤ段および第6ギヤ段の成立に関与する同期噛合クラッチのスリーブに対して係合する第4フォーク部材34が固設されている。 The first shift fork shaft is fixedly provided with a first fork member that engages with a sleeve of the synchronous meshing clutch that is involved in the establishment of the reverse gear of the speed change mechanism among the plurality of synchronous meshing clutches. . Further, the second shift fork shaft is engaged with a sleeve of a synchronous meshing clutch that is involved in establishment of the first gear stage and the second gear stage of the transmission mechanism among the plurality of synchronous meshing clutches. A fork member is fixed. In addition, the third shift fork shaft 16 is engaged with a sleeve of the synchronous meshing clutch that is involved in the establishment of the third gear stage and the fourth gear stage of the transmission mechanism among the plurality of synchronous meshing clutches. A fork member 32 is fixed. Further, the fourth shift fork shaft 18 is engaged with a sleeve of the synchronous meshing clutch involved in establishment of the fifth gear stage and the sixth gear stage of the transmission mechanism among the plurality of synchronous meshing clutches. A fork member 34 is fixed.
 このように構成された変速操作機構10においては、シフトセレクトシャフト14がセレクト操作されることで係合アーム22が前記各シフトフォークシャフトの係合溝28のいずれか1に選択的に係合され、その状態でシフトセレクトシャフト14がシフト操作されることで複数のシフトフォークシャフトのうち係合アーム22に係合されたものがその軸心方向に移動させられる。これにより、上記軸心方向に移動させられたシフトフォークシャフトのフォーク部材を介してそれに対応する同期噛合クラッチが作動させられて、前記変速機構において第1ギヤ段乃至第6ギヤ段および後進ギヤ段のいずれか1が選択的に成立させられるようになっている。 In the shift operation mechanism 10 configured as described above, when the shift select shaft 14 is selected, the engagement arm 22 is selectively engaged with any one of the engagement grooves 28 of each shift fork shaft. In this state, when the shift select shaft 14 is shifted, the plurality of shift fork shafts engaged with the engagement arm 22 are moved in the axial direction. As a result, the corresponding synchronous mesh clutch is operated via the fork member of the shift fork shaft moved in the axial direction, and the first to sixth gear stages and the reverse gear stage are operated in the transmission mechanism. Any one of the above is selectively established.
 上記変速操作機構10を備える前記車両用平行軸式変速機は、その変速操作機構10のシフトセレクトシャフト14の操作位置を検出するためのシフトセレクト操作位置検出装置36を備えている。 The parallel-shaft transmission for vehicles provided with the shift operation mechanism 10 includes a shift select operation position detection device 36 for detecting the operation position of the shift select shaft 14 of the shift operation mechanism 10.
 図2は、図1に示すシフトセレクトシャフト14およびその周辺部位を拡大して示す図である。また、図3は、図2のシフトセレクトシャフト14のIII矢視部を示す図である。図2および図3に示すように、シフトセレクト操作位置検出装置36は、シフトセレクトシャフト14の外周側において変速機ケース12に位置固定に設けられ、シフトセレクトシャフト14との間の距離Gを検出するギャップセンサー38と、シフトセレクトシャフト14の円筒状部材24に一体に固設され、ギャップセンサー38との間の距離Gがシフトセレクトシャフト14の複数のセレクト操作位置および複数のシフト操作位置毎に異なるように形成された複数の被検出面を有する操作位置検出用部材40とを、含んで構成されている。本実施例の操作位置検出用部材40の被検出面は、シフトセレクトシャフト14が複数のシフト操作位置にそれぞれ位置するときにおける操作位置検出用部材40とギャップセンサー38との間の各距離Gが相互に異なるように形成されている。また、操作位置検出用部材40の被検出面は、シフトセレクトシャフト14が複数のセレクト操作位置にそれぞれ位置するときにおける操作位置検出用部材40とギャップセンサー38との間の各距離Gが相互に異なり、且つ上記各距離Gが前記シフトセレクトシャフト14の複数のシフト操作位置のものとも相互に異なるように形成されている。 FIG. 2 is an enlarged view showing the shift select shaft 14 shown in FIG. 1 and its peripheral portion. FIG. 3 is a view showing the III arrow portion of the shift select shaft 14 of FIG. As shown in FIGS. 2 and 3, the shift select operation position detection device 36 is provided at a fixed position on the transmission case 12 on the outer peripheral side of the shift select shaft 14 and detects the distance G between the shift select shaft 14 and the shift select shaft 14. The distance G between the gap sensor 38 and the shift select shaft 14 is fixed to the cylindrical member 24 of the shift select shaft 14. The distance G between the gap sensor 38 and the gap sensor 38 is different for each of the plurality of select operation positions and the plurality of shift operation positions. And an operation position detecting member 40 having a plurality of detection surfaces formed differently. The detected surface of the operation position detection member 40 of the present embodiment is such that each distance G between the operation position detection member 40 and the gap sensor 38 when the shift select shaft 14 is located at a plurality of shift operation positions, respectively. They are formed different from each other. Further, the detection surface of the operation position detection member 40 is such that the distances G between the operation position detection member 40 and the gap sensor 38 when the shift select shaft 14 is positioned at a plurality of select operation positions are mutually different. The distances G are different from those of the shift operation positions of the shift select shaft 14.
 上記ギャップセンサー38は、非接触式のものであり、操作位置検出用部材40に対向する円筒状検出部の先端面の中心の検出点Aと、その検出点Aを通り且つ上記先端面に直交する軸心C2方向に位置する操作位置検出用部材40の表面(被検出面)との間の距離Gを検出するものである。このギャップセンサー38としては、例えば、高周波磁界を発生させるコイルを備え、そのコイルに対して金属製の操作位置検出用部材40が近づくほどその操作位置検出用部材40の渦電流が大きくなることに基づいて、その渦電流によって生じる上記高周波磁界とは逆向きの磁界により上記コイルの磁界が弱くなる程度を計測することにより、操作位置検出用部材40との距離Gを検出することができる渦電流変位センサーが用いられ得る。また、ギャップセンサー38としては、例えば、操作位置検出用部材40の表面に着磁により一体に設けられ或いは別体で固定された磁界を発生させる例えば磁石等に対向して配置される半導体磁気抵抗素子を備え、この半導体磁気抵抗素子と上記磁石との距離に応じてその半導体磁気抵抗素子の抵抗値が変化することに基づいて、操作位置検出用部材40との距離Gを検出することができる半導体磁気抵抗素子変位センサーが用いられ得る。また、ギャップセンサー38としては、例えば、超音波ビームを発生させる例えば圧電セラミックス等の超音波発生部材を備え、その超音波発生部材から発射された超音波ビームが操作位置検出用部材40に反射して戻ってきたものを受波したときの受波レベルが、操作位置検出用部材40との距離に応じて変化することに基づいて、操作位置検出用部材40との距離Gを検出することができる超音波センサーが用いられ得る。また、ギャップセンサー38としては、例えば、レーザを発振させるレーザ発振部材と、そのレーザ発振部材により発振されて所定の基準面と操作位置検出用部材40とに反射された2つのレーザ拡散光をそれぞれ受光する受光レンズと、その受光レンズによりそれぞれ結像された上記2つのレーザ拡散光の位置を検出する素子とを備え、その素子により検出される上記2つのレーザ拡散光の位置の差に基づいて、上記所定の基準面と操作位置検出用部材40との距離Gを検出することができるレーザインジケータが用いられ得る。 The gap sensor 38 is a non-contact type, and has a detection point A at the center of the front end surface of the cylindrical detection unit facing the operation position detection member 40, and passes through the detection point A and is orthogonal to the front end surface. The distance G to the surface (detected surface) of the operation position detecting member 40 positioned in the direction of the axis C2 is detected. The gap sensor 38 includes, for example, a coil that generates a high-frequency magnetic field, and the eddy current of the operation position detection member 40 increases as the metal operation position detection member 40 approaches the coil. On the basis of this, an eddy current that can detect the distance G from the operation position detecting member 40 by measuring the degree to which the magnetic field of the coil is weakened by a magnetic field opposite to the high-frequency magnetic field generated by the eddy current. A displacement sensor can be used. Further, as the gap sensor 38, for example, a semiconductor magnetoresistor that is provided on the surface of the operation position detection member 40 by magnetizing or is disposed opposite to, for example, a magnet that generates a magnetic field fixed separately. A distance G between the semiconductor magnetoresistive element 40 and the operation position detecting member 40 can be detected based on the resistance value of the semiconductor magnetoresistive element changing according to the distance between the semiconductor magnetoresistive element and the magnet. A semiconductor magnetoresistive element displacement sensor can be used. Further, as the gap sensor 38, for example, an ultrasonic wave generating member such as a piezoelectric ceramic that generates an ultrasonic beam is provided, and the ultrasonic beam emitted from the ultrasonic wave generating member is reflected on the operation position detecting member 40. The distance G to the operation position detection member 40 can be detected based on the fact that the wave reception level when receiving the returned wave changes according to the distance to the operation position detection member 40. A possible ultrasonic sensor can be used. Further, as the gap sensor 38, for example, a laser oscillation member that oscillates a laser, and two laser diffused lights that are oscillated by the laser oscillation member and reflected by a predetermined reference plane and the operation position detection member 40, respectively. A light receiving lens for receiving light and an element for detecting the positions of the two laser diffused lights respectively formed by the light receiving lens, and based on a difference between the positions of the two laser diffused lights detected by the elements. A laser indicator that can detect the distance G between the predetermined reference plane and the operation position detecting member 40 can be used.
 前記操作位置検出用部材40は、図3に示すように、軸心C1方向において所定間隔で隣接して連続的に形成された第1突起42、第2突起44、第3突起46、および第4突起48を有している。これら各突起は、シフトセレクトシャフト14が各セレクト操作位置にそれぞれ位置するときにギャップセンサー38にそれぞれ対向する位置に配設される。 As shown in FIG. 3, the operation position detecting member 40 includes a first protrusion 42, a second protrusion 44, a third protrusion 46, and a first protrusion 42, which are continuously formed adjacent to each other at a predetermined interval in the direction of the axis C1. Four protrusions 48 are provided. These protrusions are disposed at positions facing the gap sensors 38 when the shift select shaft 14 is positioned at each select operation position.
 上記第1突起42の外周面には、後進シフト操作位置に位置するシフトセレクトシャフト14とギャップセンサー38との間の距離G(Rev)を検出するための後進シフト操作用被検出面50と、第1セレクト操作位置に位置するシフトセレクトシャフト14とギャップセンサー38との間の距離G(R)を検出するための第1セレクト操作用被検出面52とが、前記周方向の他方側から一方側へ順に隣接して連続的に形成されている。これら後進シフト操作用被検出面50および第1セレクト操作用被検出面52は、軸心C1を曲率中心線とする部分円筒状面に形成されている。そして、後進シフト操作用被検出面50は、シフトセレクトシャフト14が後進シフト操作位置に位置するときに、軸心C2方向においてギャップセンサー38の検出点Aに対向するように形成されている。一方、第1セレクト操作用被検出面50は、シフトセレクトシャフト14が第1セレクト操作位置に位置するときに、軸心C2方向においてギャップセンサー38の検出点Aに対向するように形成されている。 On the outer peripheral surface of the first protrusion 42, a reverse shift operation detected surface 50 for detecting a distance G (Rev) between the shift select shaft 14 located at the reverse shift operation position and the gap sensor 38; A first select operation detection surface 52 for detecting the distance G (R) between the shift select shaft 14 located at the first select operation position and the gap sensor 38 is one from the other side in the circumferential direction. It is continuously formed adjacent to the side in order. The reverse shift operation detection surface 50 and the first select operation detection surface 52 are formed in a partial cylindrical surface having the axis C1 as the center line of curvature. The detection surface 50 for reverse shift operation is formed so as to face the detection point A of the gap sensor 38 in the direction of the axis C2 when the shift select shaft 14 is located at the reverse shift operation position. On the other hand, the first select operation detection surface 50 is formed to face the detection point A of the gap sensor 38 in the direction of the axis C2 when the shift select shaft 14 is located at the first select operation position. .
 シフトセレクトシャフト14が、図2に示す第3セレクト操作位置に位置する状態から、図2中に矢印cで示す軸心C1に平行なセレクト方向へセレクト操作されて、第1セレクト操作位置へ位置させられたときには、ギャップセンサー38の検出点Aとそれに対して軸心C2方向に対向する第1セレクト操作用被検出面50との間の距離G(R)が、ギャップセンサー38により検出される。 From the state where the shift select shaft 14 is located at the third select operation position shown in FIG. 2, the select operation is performed in the select direction parallel to the axis C1 indicated by the arrow c in FIG. When this is done, the gap sensor 38 detects the distance G (R) between the detection point A of the gap sensor 38 and the first select operation detection surface 50 facing it in the direction of the axis C2. .
 また、シフトセレクトシャフト14が、上述のようにして第1セレクト操作位置に位置させられた状態から、図4に示すように前記周方向の一方側へシフト操作されて後進シフト操作位置へ位置させられたときには、ギャップセンサー38の検出点Aとそれに対して軸心C2方向に対向する後進シフト操作用被検出面52との間の距離G(Rev)が、ギャップセンサー38により検出される。上記距離G(Rev)およびG(R)は、その順で小さくなるように設定されている。 Further, the shift select shaft 14 is shifted from the state where the shift select shaft 14 is positioned at the first select operation position as described above to one side in the circumferential direction as shown in FIG. When it is determined, the gap sensor 38 detects the distance G (Rev) between the detection point A of the gap sensor 38 and the reverse shift operation detection surface 52 facing the detection point A in the direction of the axis C2. The distances G (Rev) and G (R) are set so as to decrease in that order.
 前記第2突起44の外周面には、第1シフト操作位置に位置するシフトセレクトシャフト14とギャップセンサー38との間の距離G(1st)を検出するための第1シフト操作用被検出面54と、第2セレクト操作位置に位置するシフトセレクトシャフト14とギャップセンサー38との間の距離G(L)を検出するための第2セレクト操作用被検出面56と、第2シフト操作位置に位置するシフトセレクトシャフト14とギャップセンサー38との間の距離G(2nd)を検出するための第2シフト操作用被検出面58とが、前記周方向の他方側から一方側へ順に隣接して連続的に形成されている。これら第1シフト操作用被検出面54、第2セレクト操作用被検出面56、および第2シフト操作用被検出面56は、軸心C1を曲率中心線とする部分円筒状面である。そして、第1シフト操作用被検出面54は、シフトセレクトシャフト14が第1シフト操作位置に位置するときに、軸心C2方向においてギャップセンサー38の検出点Aに対向するように形成されている。第2セレクト操作用被検出面56は、シフトセレクトシャフト14が第2セレクト操作位置に位置するときに、軸心C2方向においてギャップセンサー38の検出点Aに対向するように形成されている。第2シフト操作用被検出面58は、シフトセレクトシャフト14が第2シフト操作位置に位置するときに、軸心C2方向においてギャップセンサー38の検出点Aに対向するように形成されている。 On the outer peripheral surface of the second protrusion 44, a first shift operation detected surface 54 for detecting a distance G (1st) between the shift select shaft 14 located at the first shift operation position and the gap sensor 38. A second select operation detection surface 56 for detecting a distance G (L) between the shift select shaft 14 and the gap sensor 38 located at the second select operation position, and a position at the second shift operation position. And a second shift operation detection surface 58 for detecting a distance G (2nd) between the shift select shaft 14 and the gap sensor 38 which are adjacent to each other in order from the other side in the circumferential direction. Is formed. The first shift operation detection surface 54, the second select operation detection surface 56, and the second shift operation detection surface 56 are partial cylindrical surfaces having the axis C1 as the center of curvature. The first shift operation detection surface 54 is formed to face the detection point A of the gap sensor 38 in the axial center C2 direction when the shift select shaft 14 is located at the first shift operation position. . The second select operation detection surface 56 is formed to face the detection point A of the gap sensor 38 in the direction of the axis C2 when the shift select shaft 14 is located at the second select operation position. The second shift operation detection surface 58 is formed to face the detection point A of the gap sensor 38 in the direction of the axis C2 when the shift select shaft 14 is located at the second shift operation position.
 シフトセレクトシャフト14が、図2に示す第3セレクト操作位置に位置する状態から、図2中に矢印cで示すセレクト方向へセレクト操作されて、第2セレクト操作位置へ位置させられたときには、ギャップセンサー38の検出点Aとそれに対して軸心C2方向に対向する第2セレクト操作用被検出面56との間の距離G(L)が、ギャップセンサー38により検出される。 When the shift select shaft 14 is selected in the select direction indicated by the arrow c in FIG. 2 from the position at the third select operation position shown in FIG. A gap sensor 38 detects a distance G (L) between the detection point A of the sensor 38 and the second selection operation detection surface 56 facing the detection point A in the direction of the axis C2.
 また、シフトセレクトシャフト14が、上述のようにして第2セレクト操作位置に位置させられた状態から、図5に実線で示すように前記周方向の一方側へシフト操作されて第1シフト操作位置へ位置させられたときには、ギャップセンサー38の検出点Aとそれに対して軸心C2方向に対向する第1シフト操作用被検出面54との間の距離G(1st)が、ギャップセンサー38により検出される。 Further, the shift select shaft 14 is shifted from the state where it is positioned at the second select operation position as described above to the one side in the circumferential direction as shown by the solid line in FIG. , The distance G (1st) between the detection point A of the gap sensor 38 and the first shift operation detection surface 54 opposed to the detection point A in the direction of the axis C2 is detected by the gap sensor 38. Is done.
 また、シフトセレクトシャフト14が、第2セレクト操作位置に位置する状態から、図5に2点鎖線で示すように前記周方向の他方側へシフト操作されて第2シフト操作位置へ位置させられたときには、ギャップセンサー38の検出点Aとそれに対して軸心C2方向に対向する第2シフト操作用被検出面58との間の距離G(2nd)が、ギャップセンサー38により検出される。上記距離G(2nd)、G(1st)、およびG(L)は、その順で小さくなるように設定されている。そして、距離G(1st)およびG(2nd)は、前記距離G(R)よりも小さく且つ後述の距離G(6th)、G(5th)、およびG(H)よりも小さくなるように設定されている。すなわち、本実施例の操作位置検出用部材40の第1乃至第6シフト操作用被検出面は、ギャップセンサー38により検出される距離Gが、シフトセレクトシャフト14の高速段側のシフト操作位置に相当する第5シフト操作位置および第6シフト操作位置に比べて、低速段側のシフト操作位置に相当する第1シフト操作位置および第2シフト操作位置の方が小さくなるように形成されている。 Further, the shift select shaft 14 is shifted from the state where it is located at the second select operation position to the other side in the circumferential direction as shown by a two-dot chain line in FIG. In some cases, the gap sensor 38 detects the distance G (2nd) between the detection point A of the gap sensor 38 and the second shift operation detection surface 58 facing the detection point A in the direction of the axis C2. The distances G (2nd), G (1st), and G (L) are set to decrease in that order. The distances G (1st) and G (2nd) are set to be smaller than the distance G (R) and smaller than distances G (6th), G (5th), and G (H) described later. ing. That is, the first to sixth shift operation detection surfaces of the operation position detection member 40 of the present embodiment have the distance G detected by the gap sensor 38 set to the shift operation position on the high speed stage side of the shift select shaft 14. Compared to the corresponding fifth shift operation position and the sixth shift operation position, the first shift operation position and the second shift operation position corresponding to the shift operation position on the low speed stage side are formed to be smaller.
 前記第3突起46の外周面には、第3シフト操作位置に位置するシフトセレクトシャフト14とギャップセンサー38との間の距離G(3rd)を検出するための第3シフト操作用被検出面60と、第3セレクト操作位置に位置するシフトセレクトシャフト14とギャップセンサー38との間の距離G(N)を検出するための第3セレクト操作用被検出面62と、第4シフト操作位置に位置するシフトセレクトシャフト14とギャップセンサー38との間の距離G(4th)を検出するための第4シフト操作用被検出面64とが、前記周方向の他方側から一方側へ順に隣接して連続的に形成されている。これら第3シフト操作用被検出面60、第3セレクト操作用被検出面62、および第4シフト操作用被検出面64は、軸心C1を曲率中心線とする部分円筒状面である。そして、第3シフト操作用被検出面60は、シフトセレクトシャフト14が第3シフト操作位置に位置するときに、軸心C2方向においてギャップセンサー38の検出点Aに対向するように形成されている。第3セレクト操作用被検出面62は、シフトセレクトシャフト14が第3セレクト操作位置に位置するときに、軸心C2方向においてギャップセンサー38の検出点Aに対向するように形成されている。第4シフト操作用被検出面64は、シフトセレクトシャフト14が第4シフト操作位置に位置するときに、軸心C2方向においてギャップセンサー38の検出点Aに対向するように形成されている。 A third shift operation detected surface 60 for detecting a distance G (3rd) between the shift select shaft 14 located at the third shift operation position and the gap sensor 38 is provided on the outer peripheral surface of the third protrusion 46. And a third select operation detection surface 62 for detecting the distance G (N) between the shift select shaft 14 and the gap sensor 38 located at the third select operation position, and the fourth shift operation position. And a fourth shift operation detection surface 64 for detecting a distance G (4th) between the shift select shaft 14 and the gap sensor 38 that are adjacent to each other in order from the other side in the circumferential direction. Is formed. The third shift operation detection surface 60, the third select operation detection surface 62, and the fourth shift operation detection surface 64 are partially cylindrical surfaces having the axis C1 as the center of curvature. The third shift operation detection surface 60 is formed to face the detection point A of the gap sensor 38 in the direction of the axis C2 when the shift select shaft 14 is located at the third shift operation position. . The third select operation detection surface 62 is formed to face the detection point A of the gap sensor 38 in the direction of the axis C2 when the shift select shaft 14 is located at the third select operation position. The fourth shift operation detection surface 64 is formed to face the detection point A of the gap sensor 38 in the direction of the axis C2 when the shift select shaft 14 is located at the fourth shift operation position.
 シフトセレクトシャフト14が、図2および図3に示すように、第3セレクト操作位置に位置させられたときには、ギャップセンサー38の検出点Aとそれに対して軸心C2方向に対向する第3セレクト操作用被検出面62との間の距離G(N)が、ギャップセンサー38により検出される。 As shown in FIGS. 2 and 3, when the shift select shaft 14 is positioned at the third select operation position, the third select operation facing the detection point A of the gap sensor 38 and the axis C2 with respect thereto. A distance G (N) from the detection target surface 62 is detected by the gap sensor 38.
 また、シフトセレクトシャフト14が、上述のようにして第3セレクト操作位置に位置させられた状態から、図6に実線で示すように前記周方向の一方側へシフト操作されて第3シフト操作位置へ位置させられたときには、ギャップセンサー38の検出点Aとそれに対して軸心C2方向に対向する第3シフト操作用被検出面60との間の距離G(3rd)が、ギャップセンサー38により検出される。 Further, when the shift select shaft 14 is positioned at the third select operation position as described above, the shift select shaft 14 is shifted to one side in the circumferential direction as shown by a solid line in FIG. , The distance G (3rd) between the detection point A of the gap sensor 38 and the third shift operation detection surface 60 facing the detection point A in the direction of the axis C2 is detected by the gap sensor 38. Is done.
 また、シフトセレクトシャフト14が、第3セレクト操作位置に位置する状態から、図6に2点鎖線で示すように前記周方向の他方側へシフト操作されて第4シフト操作位置へ位置させられたときには、ギャップセンサー38の検出点Aとそれに対して軸心C2方向に対向する第4シフト操作用被検出面64との間の距離G(4th)が、ギャップセンサー38により検出される。上記距離G(4th)、G(3rd)、およびG(N)は、その順で小さくなるように設定されている。そして、距離G(4th)は、前記距離G(N)よりも小さくなるように設定されている。 Further, the shift select shaft 14 is shifted from the state where the shift select shaft 14 is located at the third select operation position to the other side in the circumferential direction as shown by a two-dot chain line in FIG. In some cases, the gap sensor 38 detects the distance G (4th) between the detection point A of the gap sensor 38 and the fourth shift operation detection surface 64 facing the detection point A in the direction of the axis C2. The distances G (4th), G (3rd), and G (N) are set so as to decrease in that order. The distance G (4th) is set to be smaller than the distance G (N).
 前記第4突起48の外周面には、第5シフト操作位置に位置するシフトセレクトシャフト14とギャップセンサー38との間の距離G(5th)を検出するための第5シフト操作用被検出面66と、第4セレクト操作位置に位置するシフトセレクトシャフト14とギャップセンサー38との間の距離G(H)を検出するための第4セレクト操作用被検出面68と、第6シフト操作位置に位置するシフトセレクトシャフト14とギャップセンサー38との間の距離G(6th)を検出するための第6シフト操作用被検出面70とが、前記周方向の一方側から他方側へ順に隣接して連続的に形成されている。これら第5シフト操作用被検出面66、第4セレクト操作用被検出面68、および第6シフト操作用被検出面70は、軸心C1を曲率中心線とする部分円筒状面である。そして、第5シフト操作用被検出面66は、シフトセレクトシャフト14が第5シフト操作位置に位置するときに、軸心C2方向においてギャップセンサー38の検出点Aに対向するように形成されている。第4セレクト操作用被検出面68は、シフトセレクトシャフト14が第4セレクト操作位置に位置するときに、軸心C2方向においてギャップセンサー38の検出点Aに対向するように形成されている。第6シフト操作用被検出面64は、シフトセレクトシャフト14が第6シフト操作位置に位置するときに、軸心C2方向においてギャップセンサー38の検出点Aに対向するように形成されている。なお、第1乃至第4セレクト操作用被検出面は、軸心C1方向において互いに隣接して連続的に形成されている。 On the outer peripheral surface of the fourth protrusion 48, a fifth shift operation detected surface 66 for detecting a distance G (5th) between the shift select shaft 14 located at the fifth shift operation position and the gap sensor 38. And a fourth select operation detection surface 68 for detecting the distance G (H) between the shift select shaft 14 and the gap sensor 38 located at the fourth select operation position, and the sixth shift operation position. And a sixth shift operation detection surface 70 for detecting a distance G (6th) between the shift select shaft 14 and the gap sensor 38 that are adjacent to each other in order from the one side to the other side in the circumferential direction. Is formed. The fifth shift operation detection surface 66, the fourth select operation detection surface 68, and the sixth shift operation detection surface 70 are partially cylindrical surfaces having the axis C1 as the center of curvature. The fifth shift operation detection surface 66 is formed to face the detection point A of the gap sensor 38 in the axial center C2 direction when the shift select shaft 14 is located at the fifth shift operation position. . The fourth select operation detection surface 68 is formed to face the detection point A of the gap sensor 38 in the direction of the axis C2 when the shift select shaft 14 is located at the fourth select operation position. The sixth shift operation detection surface 64 is formed to face the detection point A of the gap sensor 38 in the direction of the axis C2 when the shift select shaft 14 is located at the sixth shift operation position. Note that the first to fourth select operation detection target surfaces are continuously formed adjacent to each other in the direction of the axis C1.
 シフトセレクトシャフト14が、図2に示す第3セレクト操作位置に位置する状態から、図2中に矢印cで示すセレクト方向へセレクト操作されて、第4セレクト操作位置へ位置させられたときには、ギャップセンサー38の検出点Aとそれに対して軸心C2方向に対向する第4セレクト操作用被検出面68との間の距離G(H)が、ギャップセンサー38により検出される。 When the shift select shaft 14 is selected in the select direction indicated by the arrow c in FIG. 2 from the position at the third select operation position shown in FIG. A gap sensor 38 detects a distance G (H) between the detection point A of the sensor 38 and the fourth selection operation detection surface 68 facing the detection point A in the direction of the axis C2.
 また、シフトセレクトシャフト14が、上述のようにして第4セレクト操作位置に位置させられた状態から、図7に実線で示すように前記周方向の一方側へシフト操作されて第5シフト操作位置へ位置させられたときには、ギャップセンサー38の検出点Aとそれに対して軸心C2方向に対向する第5シフト操作用被検出面66との間の距離G(5th)が、ギャップセンサー38により検出される。 Further, the shift select shaft 14 is shifted from the state where it is positioned at the fourth select operation position as described above to the one side in the circumferential direction as shown by the solid line in FIG. , The distance G (5th) between the detection point A of the gap sensor 38 and the fifth shift operation detection surface 66 facing it in the direction of the axis C2 is detected by the gap sensor 38. Is done.
 また、シフトセレクトシャフト14が、第4セレクト操作位置に位置する状態から、図7に2点鎖線で示すように前記周方向の他方側へシフト操作されて第6シフト操作位置へ位置させられたときには、ギャップセンサー38の検出点Aとそれに対して軸心C2方向に対向する第6シフト操作用被検出面70との間の距離G(6th)が、ギャップセンサー38により検出される。上記距離G(6th)、G(5th)、およびG(H)は、その順で小さくなるように設定されている。そして、距離G(6th)は、前記距離G(R)よりも小さくなるように設定されている。 Further, the shift select shaft 14 is shifted from the state in the fourth select operation position to the other side in the circumferential direction as shown by a two-dot chain line in FIG. 7 and is positioned in the sixth shift operation position. Sometimes, the gap sensor 38 detects the distance G (6th) between the detection point A of the gap sensor 38 and the sixth shift operation detection surface 70 facing the detection point A in the direction of the axis C2. The distances G (6th), G (5th), and G (H) are set to decrease in that order. The distance G (6th) is set to be smaller than the distance G (R).
 図8は、シフトセレクト操作位置検出装置36の制御部として機能する電子制御装置72の制御機能の要部を説明する機能ブロック線図である。図8において、電子制御装置72は、CPU、ROM、RAM、及び入出力インターフェースなどから成る所謂マイクロコンピュータを複数含んで構成されており、RAMの一時記憶機能を利用しつつROMに予め記憶されたプログラムに従って信号処理を行うことにより、シフトセレクトシャフト14の操作位置検出制御を実行するものである。この電子制御装置72は、操作位置判定手段74を含んで構成される。 FIG. 8 is a functional block diagram illustrating the main part of the control function of the electronic control device 72 that functions as the control unit of the shift select operation position detection device 36. In FIG. 8, the electronic control unit 72 includes a plurality of so-called microcomputers including a CPU, a ROM, a RAM, an input / output interface, and the like, and is stored in advance in the ROM while using a temporary storage function of the RAM. By performing signal processing according to the program, the operation position detection control of the shift select shaft 14 is executed. The electronic control device 72 includes an operation position determination unit 74.
 上記操作位置判定手段74は、図9に示す予め定められて例えば前記ROM等に記憶された関係から、ギャップセンサー38により検出されるギャップセンサー38と操作位置検出用部材40との間の距離Gに基づいて、実際のシフトセレクトシャフト14のシフト操作位置およびセレクト操作位置を判定するものである。なお、図9において、シフト段とは、シフトセレクトシャフト14の操作位置に対応する前記車両用平行軸式変速機の変速機構のギヤ段を示すものである。また、図9において、ギャップ順序とは、シフトセレクトシャフト14の複数のシフト操作位置および複数のセレクト操作位置のうち、ギャップセンサー38により検出される距離Gが小さい順序を示すものである。 The operation position determination means 74 has a distance G between the gap sensor 38 detected by the gap sensor 38 and the operation position detection member 40 based on a predetermined relationship shown in FIG. Based on the above, the shift operation position and the select operation position of the actual shift select shaft 14 are determined. In FIG. 9, the shift stage indicates the gear stage of the transmission mechanism of the vehicle parallel shaft transmission corresponding to the operation position of the shift select shaft 14. In FIG. 9, the gap order indicates the order in which the distance G detected by the gap sensor 38 is small among the plurality of shift operation positions and the plurality of select operation positions of the shift select shaft 14.
 具体的には、操作位置判定手段74は、距離Gが予め設定された第3セレクト操作位置判定範囲G(N)min~G(N)max内であるときには、シフトセレクトシャフト14が第3セレクト操作位置に位置すると判定する。 Specifically, when the distance G is within a preset third select operation position determination range G (N) min to G (N) max, the operation position determining means 74 determines that the shift select shaft 14 is in the third select position. It is determined that it is located at the operation position.
 また、操作位置判定手段74は、距離Gが予め設定された第3シフト操作位置判定範囲G(3rd)min~G(3rd)max内であるときには、シフトセレクトシャフト14が第3シフト操作位置に位置すると判定する。 Further, the operation position determination means 74 indicates that the shift select shaft 14 is at the third shift operation position when the distance G is within a preset third shift operation position determination range G (3rd) min to G (3rd) max. It is determined that it is located.
 また、操作位置判定手段74は、距離Gが予め設定された第4シフト操作位置判定範囲G(4th)min~G(4th)max内であるときには、シフトセレクトシャフト14が第4シフト操作位置に位置すると判定する。 Further, the operation position determination means 74 indicates that the shift select shaft 14 is at the fourth shift operation position when the distance G is within a preset fourth shift operation position determination range G (4th) min to G (4th) max. It is determined that it is located.
 また、操作位置判定手段74は、距離Gが予め設定された第2セレクト操作位置判定範囲G(L)min~G(L)max内であるときには、シフトセレクトシャフト14が第2セレクト操作位置に位置すると判定する。 Further, the operation position determining means 74 is configured such that when the distance G is within a preset second select operation position determination range G (L) min to G (L) max, the shift select shaft 14 is set to the second select operation position. It is determined that it is located.
 また、操作位置判定手段74は、距離Gが予め設定された第1シフト操作位置判定範囲G(1st)min~G(1st)max内であるときには、シフトセレクトシャフト14が第1シフト操作位置に位置すると判定する。 Further, the operation position determination means 74 is configured such that when the distance G is within a preset first shift operation position determination range G (1st) min to G (1st) max, the shift select shaft 14 is set to the first shift operation position. It is determined that it is located.
 また、操作位置判定手段74は、距離Gが予め設定された第2シフト操作位置判定範囲G(2nd)min~G(2nd)max内であるときには、シフトセレクトシャフト14が第2シフト操作位置に位置すると判定する。 In addition, the operation position determination means 74 indicates that the shift select shaft 14 is at the second shift operation position when the distance G is within a preset second shift operation position determination range G (2nd) min to G (2nd) max. It is determined that it is located.
 また、操作位置判定手段74は、距離Gが予め設定された第4セレクト操作位置判定範囲G(H)min~G(H)max内であるときには、シフトセレクトシャフト14が第4セレクト操作位置に位置すると判定する。 Further, the operation position determining means 74 is configured such that when the distance G is within a preset fourth select operation position determination range G (H) min to G (H) max, the shift select shaft 14 is set to the fourth select operation position. It is determined that it is located.
 また、操作位置判定手段74は、距離Gが予め設定された第5シフト操作位置判定範囲G(5th)min~G(5th)max内であるときには、シフトセレクトシャフト14が第5シフト操作位置に位置すると判定する。 In addition, the operation position determination means 74 determines that the shift select shaft 14 is at the fifth shift operation position when the distance G is within a preset fifth shift operation position determination range G (5th) min to G (5th) max. It is determined that it is located.
 また、操作位置判定手段74は、距離Gが予め設定された第6シフト操作位置判定範囲G(6th)min~G(6th)max内であるときには、シフトセレクトシャフト14が第6シフト操作位置に位置すると判定する。 In addition, the operation position determination means 74 determines that the shift select shaft 14 is at the sixth shift operation position when the distance G is within a preset sixth shift operation position determination range G (6th) min to G (6th) max. It is determined that it is located.
 また、操作位置判定手段74は、距離Gが予め設定された第1セレクト操作位置判定範囲G(R)min~G(R)max内であるときには、シフトセレクトシャフト14が第1セレクト操作位置に位置すると判定する。 Further, the operation position determination means 74 determines that the shift select shaft 14 is at the first select operation position when the distance G is within a preset first select operation position determination range G (R) min to G (R) max. It is determined that it is located.
 また、操作位置判定手段74は、距離Gが予め設定された後進シフト操作位置判定範囲G(Rev)min~G(Rev)max内であるときには、シフトセレクトシャフト14が後進シフト操作位置に位置すると判定する。 Further, the operation position determination means 74 determines that the shift select shaft 14 is positioned at the reverse shift operation position when the distance G is within a preset reverse shift operation position determination range G (Rev) min to G (Rev) max. judge.
 なお、操作位置判定手段74によるシフトセレクトシャフト14の操作位置の検出結果は、例えば、図9に示す関係から、実際の車両用平行軸式変速機(変速機構)のギヤ段(シフト段)が第1乃至第6ギヤ段および後進ギヤ段のいずれであるかを判断すること等に用いられる。そして、上記車両用平行軸式変速機のギヤ段の判断結果は、例えば、車両用駆動源たとえばエンジンの回転速度制御などに用いられる。上記エンジンの回転速度制御には、例えば、前記車両用平行軸式変速機の変速に際して車両に生じるショックを抑制するための制御が含まれる。 The detection result of the operation position of the shift select shaft 14 by the operation position determination means 74 is, for example, from the relationship shown in FIG. 9, the actual gear stage (shift stage) of the vehicle parallel shaft transmission (transmission mechanism). This is used to determine which of the first to sixth gears and the reverse gear is. The determination result of the gear stage of the vehicle parallel shaft transmission is used, for example, for a vehicle drive source, for example, engine rotational speed control. The engine rotational speed control includes, for example, control for suppressing a shock generated in the vehicle when the vehicle parallel shaft transmission is shifted.
 上述のように、本実施例の車両用平行軸式変速機のシフトセレクト操作位置検出装置36によれば、ギャップセンサー38との間の距離Gがシフトセレクトシャフト14の複数のセレクト操作位置および複数のシフト操作位置毎に異なるように形成された複数の被検出面を有する操作位置検出用部材40と、予め定められた関係から、ギャップセンサー38と操作位置検出用部材40との間の距離Gに基づいて、シフトセレクトシャフト14のシフト操作位置およびセレクト操作位置を判定する操作位置判定手段74とを、含むことから、シフトセレクトシャフト14のシフト操作位置およびセレクト操作位置を1つのギャップセンサー38で検出することができるので、例えば複数のセンサーを設ける必要がなく、製造コストを低減することができる。 As described above, according to the shift select operation position detection device 36 of the parallel shaft transmission for a vehicle of the present embodiment, the distance G between the gap sensor 38 and the shift select shaft 14 includes a plurality of select operation positions and a plurality of select operation positions. The distance G between the gap sensor 38 and the operation position detection member 40 based on a predetermined relationship between the operation position detection member 40 having a plurality of detection surfaces formed differently for each shift operation position. The shift operation position of the shift select shaft 14 and the operation position determination means 74 for determining the select operation position. Accordingly, the shift operation position and the select operation position of the shift select shaft 14 are determined by one gap sensor 38. For example, it is not necessary to provide a plurality of sensors and the manufacturing cost can be reduced. Door can be.
 また、本実施例のシフトセレクト操作位置検出装置36によれば、操作位置検出用部材40の第1乃至第6シフト操作用被検出面および第1乃至第4セレクト操作用被検出面は、シフト方向およびセレクト方向において互いに隣接して連続的に形成されていることから、予め定められた関係から、ギャップセンサー38により検出される距離Gに基づいて、シフトセレクトシャフト14のシフト方向およびセレクト方向の少なくとも一方のストロークを検出することができ、原操作位置からの操作量を推定できる。このような操作量から、たとえば、飛び変速操作を判定してそれに応じた制御たとえばエンジン出力制御が可能となる。 Further, according to the shift select operation position detection device 36 of the present embodiment, the first to sixth shift operation detection surfaces and the first to fourth selection operation detection surfaces of the operation position detection member 40 are shifted. Are formed adjacent to each other in the direction and the select direction, and based on the distance G detected by the gap sensor 38, the shift direction and the select direction of the shift select shaft 14 are determined based on a predetermined relationship. At least one stroke can be detected, and the operation amount from the original operation position can be estimated. From such an operation amount, for example, it is possible to determine a jump gear shift operation and to perform control corresponding thereto, for example, engine output control.
 また、本実施例のシフトセレクト操作位置検出装置36によれば、操作位置検出用部材40の第1乃至第6シフト操作用被検出面は、ギャップセンサー38により検出される距離Gが、シフトセレクトシャフト14の高速段側のシフト操作位置に相当する第5シフト操作位置および第6シフト操作位置に比べて、低速段側のシフト操作位置に相当する第1シフト操作位置および第2シフト操作位置の方が小さくなるように形成されていることから、低速段側のシフト操作位置の検出精度が高められている。ここで、操作位置判定手段74のシフト操作位置の検出結果から判断される車両用平行軸式変速機のギヤ段に応じて車両用駆動源たとえばエンジンの回転速度制御が行われるときに、シフト操作位置の誤検出によるエンジンの回転速度の急変に起因して車両に生じるショックは、低速段側のシフト操作位置が誤検出されるときほど大きくなる。それ故に、前記のようにすれば、第1シフト操作位置および第2シフト操作位置の誤検出が少なくなるので、車両に生じるショックが低減される。 Further, according to the shift select operation position detection device 36 of the present embodiment, the first to sixth shift operation detection surfaces of the operation position detection member 40 have a distance G detected by the gap sensor 38 so that the shift select is detected. Compared to the fifth shift operation position and the sixth shift operation position corresponding to the shift operation position on the high speed stage side of the shaft 14, the first shift operation position and the second shift operation position corresponding to the shift operation position on the low speed stage side are compared. Therefore, the detection accuracy of the shift operation position on the low speed stage side is improved. Here, when the vehicle drive source, for example, the rotational speed control of the engine is controlled according to the gear position of the vehicle parallel shaft transmission determined from the detection result of the shift operation position of the operation position determination means 74, the shift operation is performed. The shock generated in the vehicle due to a sudden change in the rotational speed of the engine due to erroneous position detection increases as the shift operation position on the low speed stage side is erroneously detected. Therefore, with the above configuration, erroneous detection of the first shift operation position and the second shift operation position is reduced, so that the shock generated in the vehicle is reduced.
 以上、本発明の一実施例を図面を参照して詳細に説明したが、本発明はこの実施例に限定されるものではなく、別の態様でも実施され得る。 As mentioned above, although one Example of this invention was described in detail with reference to drawings, this invention is not limited to this Example, It can implement in another aspect.
 例えば、操作位置検出用部材40に形成された各被検出面のギャップセンサー38からの距離Gは、必ずしも前述の実施例のような順で異なるように形成される必要はない。例えば、前述の実施例のシフトセレクトシャフト14に固設された操作位置検出用部材40に代えて、図10に示す操作位置検出用部材80が設けられてもよい。この操作位置検出用部材80は、ギャップセンサー38により検出される距離Gが、シフトセレクトシャフト14の第2セレクト操作位置、第1シフト操作位置、第2シフト操作位置、第3セレクト操作位置、第3シフト操作位置、第4シフト操作位置、第4セレクト操作位置、第5シフト操作位置、および第6シフト操作位置の順で大きくなるように形成されている。要するに、ギャップセンサー38により検出される距離Gが、シフトセレクトシャフト14の複数のシフト操作位置および複数のセレクト操作位置毎に異なるように形成されていれば、1つのセンサーでシフトセレクトシャフト14のシフト操作位置およびセレクト操作位置を検出することができるという効果が得られる。 For example, the distance G from the gap sensor 38 of each detection surface formed on the operation position detection member 40 does not necessarily have to be formed so as to be different in the order as in the above-described embodiment. For example, instead of the operation position detection member 40 fixed to the shift select shaft 14 of the above-described embodiment, an operation position detection member 80 shown in FIG. 10 may be provided. The operation position detecting member 80 has a distance G detected by the gap sensor 38 such that the second select operation position, the first shift operation position, the second shift operation position, the third select operation position, and the third select operation position of the shift select shaft 14. The third shift operation position, the fourth shift operation position, the fourth select operation position, the fifth shift operation position, and the sixth shift operation position are formed in this order. In short, if the distance G detected by the gap sensor 38 is formed so as to be different for each of the plurality of shift operation positions and the plurality of select operation positions of the shift select shaft 14, the shift of the shift select shaft 14 by one sensor is performed. The effect that the operation position and the select operation position can be detected is obtained.
 また、第1乃至第6シフト操作用被検出面は、ギャップセンサー38により検出される距離Gが、必ずしもシフトセレクトシャフト14の高速段側のシフト操作位置に比べて低速段側のシフト操作位置の方が小さくなるように形成される必要はない。例えば、前述の実施例のシフトセレクトシャフト14に固設された操作位置検出用部材40に代えて、図11に示す操作位置検出用部材90が設けられてもよい。この操作位置検出用部材90は、ギャップセンサー38により検出される距離Gが、シフトセレクトシャフト14の第4セレクト操作位置、第5シフト操作位置、第6シフト操作位置、第2セレクト操作位置、第1シフト操作位置、第2シフト操作位置、第3セレクト操作位置、第3シフト操作位置、および第4シフト操作位置の順で大きくなるように形成されている。 Further, the first to sixth shift operation detection surfaces have a distance G detected by the gap sensor 38 that is not necessarily in the shift operation position on the low speed stage side compared to the shift operation position on the high speed stage side of the shift select shaft 14. It does not need to be formed to be smaller. For example, instead of the operation position detection member 40 fixed to the shift select shaft 14 of the above-described embodiment, an operation position detection member 90 shown in FIG. 11 may be provided. The operation position detecting member 90 has a distance G detected by the gap sensor 38 such that the fourth select operation position, the fifth shift operation position, the sixth shift operation position, the second select operation position, and the second select operation position of the shift select shaft 14. The first shift operation position, the second shift operation position, the third select operation position, the third shift operation position, and the fourth shift operation position are formed in this order.
 また、前述の実施例では、ギャップセンサー38により検出される距離Gが、シフトセレクトシャフト14の複数のセレクト操作位置毎に異なるように形成されていたが、必ずしもセレクト操作位置毎に異なるように形成される必要はない。例えば、前述の実施例のシフトセレクトシャフト14に固設された操作位置検出用部材40に代えて、図12に示す操作位置検出用部材100が設けられてもよい。この操作位置検出用部材100は、ギャップセンサー38により検出される距離Gが、シフトセレクトシャフト14の複数のセレクト操作位置毎に変化しないように形成されている。また、この操作位置検出用部材100は、ギャップセンサー38により検出される距離Gが、シフトセレクトシャフト14の所定のセレクト操作位置の前記周方向の一方側に位置するシフト操作位置に比べて、上記所定のセレクト操作位置の前記周方向の他方側に位置するシフト操作位置の方が小さくなるように形成されている。また、操作位置検出用部材100は、ギャップセンサー38により検出される距離Gが、シフトセレクトシャフト14の複数のセレクト操作位置のうちの所定のセレクト操作位置に比べて、その周方向の一方側および他方側のシフト操作位置の方がそれぞれ小さくなるように形成されている。要するに、ギャップセンサー38により検出される距離Gが、シフトセレクトシャフト14の複数のシフト操作位置毎に異なるように形成されていれば、1つのセンサーでシフトセレクトシャフト14のシフト操作位置を検出することができるという効果が得られる。 In the above-described embodiment, the distance G detected by the gap sensor 38 is formed so as to be different for each of the plurality of select operation positions of the shift select shaft 14, but is not necessarily different for each select operation position. There is no need to be done. For example, instead of the operation position detection member 40 fixed to the shift select shaft 14 of the above-described embodiment, an operation position detection member 100 shown in FIG. 12 may be provided. The operation position detecting member 100 is formed such that the distance G detected by the gap sensor 38 does not change for each of the plurality of select operation positions of the shift select shaft 14. Further, the operation position detecting member 100 has a distance G detected by the gap sensor 38 as compared with the shift operation position located on one side in the circumferential direction of the predetermined select operation position of the shift select shaft 14. A shift operation position located on the other side in the circumferential direction of a predetermined select operation position is formed to be smaller. Further, the operation position detecting member 100 has a distance G detected by the gap sensor 38 as compared to a predetermined select operation position among the plurality of select operation positions of the shift select shaft 14 and one side in the circumferential direction thereof. The shift operation position on the other side is formed to be smaller. In short, if the distance G detected by the gap sensor 38 is different for each of the plurality of shift operation positions of the shift select shaft 14, the shift operation position of the shift select shaft 14 can be detected by one sensor. The effect of being able to be obtained.
 また、各被検出面は、必ずしも軸心C1を曲率中心線とする部分円筒状面に形成される必要はない。たとえば、各被検出面は、上記軸心C1以外を曲率中心とする曲面状に形成されてもよく、また、平面状に形成されてもよい。 Further, each detected surface does not necessarily have to be formed in a partial cylindrical surface with the axis C1 as the center line of curvature. For example, each detected surface may be formed in a curved surface having a center of curvature other than the axis C1, or may be formed in a flat shape.
 また、前述の実施例のギャップセンサー38としては、渦電流変位センサー、半導体磁気抵抗素子変位センサー、超音波センサー、およびレーザ光を用いて測定面との間のギャップを検出する変位センサーの他にも、操作位置検出用部材40の各非検出面との間の距離Gを検出可能なものであれば適用可能である。 In addition to the eddy current displacement sensor, the semiconductor magnetoresistive element displacement sensor, the ultrasonic sensor, and the displacement sensor that detects the gap with the measurement surface using the laser light as the gap sensor 38 of the above-described embodiment. The operation position detection member 40 can be applied as long as the distance G between each non-detection surface of the operation position detection member 40 can be detected.
 また、前述の実施例の変速操作機構10は、シフトセレクトシャフト14と第1乃至第4シフトフォークシャフトとが、互いに直交するように配設される形式のものであったが、例えば、互いに平行に配設される形式のものであっても、本発明は適用可能である。 Further, the shift operation mechanism 10 of the above-described embodiment is of a type in which the shift select shaft 14 and the first to fourth shift fork shafts are disposed so as to be orthogonal to each other. The present invention can be applied even if the type is arranged in the above.
 なお、上述したのはあくまでも一実施形態であり、その他一々例示はしないが、本発明は、その主旨を逸脱しない範囲で当業者の知識に基づいて種々変更、改良を加えた態様で実施することができる。 It should be noted that the above description is merely an embodiment, and other examples are not illustrated. However, the present invention is implemented in variously modified and improved modes based on the knowledge of those skilled in the art without departing from the gist of the present invention. Can do.
14:シフトセレクトシャフト
22:係合アーム
36:シフトセレクト操作位置検出装置
38:ギャップセンサー
40,80,90,100:操作位置検出用部材
74:操作位置判定手段
C1:軸心
G,G(R),G(L),G(N),G(H),G(Rev),G(1st),G(2nd),G(3rd),G(4th),G(5th),G(6th):距離
14: Shift select shaft 22: Engagement arm 36: Shift select operation position detection device 38: Gap sensors 40, 80, 90, 100: Operation position detection member 74: Operation position determination means C1: Axes G, G (R ), G (L), G (N), G (H), G (Rev), G (1st), G (2nd), G (3rd), G (4th), G (5th), G (6th ):distance

Claims (5)

  1.  外周側に突設された係合アームを有して軸心まわりの回動可能且つ該軸心方向の移動可能に設けられ、該軸心方向および該軸心まわりの周方向のうちの一方向において予め定められた複数のセレクト操作位置のいずれか1にセレクト操作され、該複数のセレクト操作位置のいずれか1において該軸心方向および該軸心まわりの周方向のうちの他方向に位置する予め定められた複数のシフト操作位置のいずれか1にシフト操作されることにより、前記係合アームを介してギヤ段を切り換えるシフトセレクトシャフトを備える車両用平行軸式変速機において、該シフトセレクトシャフトの操作位置を検出するためのシフトセレクト操作位置検出装置であって、
     前記シフトセレクトシャフトの外周側に位置固定に設けられたギャップセンサーと、
     前記シフトセレクトシャフトに固定され、該ギャップセンサーとの間の距離が該シフトセレクトシャフトの前記複数のシフト操作位置毎に異なる複数の被検出面を有する操作位置検出用部材とを、
     含むことを特徴とする車両用平行軸式変速機のシフトセレクト操作位置検出装置。
    One of the axial direction and the circumferential direction around the axial center is provided with an engaging arm projecting on the outer peripheral side so as to be rotatable around the axial center and movable in the axial direction. Is selected in any one of a plurality of predetermined select operation positions, and is positioned in the other direction of the axial direction and the circumferential direction around the axial center in any one of the multiple select operation positions. In a vehicle parallel shaft transmission including a shift select shaft that switches a gear stage through the engagement arm by being shifted to any one of a plurality of predetermined shift operation positions, the shift select shaft A shift select operation position detection device for detecting the operation position of
    A gap sensor provided at a fixed position on the outer peripheral side of the shift select shaft;
    An operation position detecting member fixed to the shift select shaft and having a plurality of detection surfaces whose distance from the gap sensor is different for each of the plurality of shift operation positions of the shift select shaft;
    A shift select operation position detecting device for a parallel shaft transmission for a vehicle.
  2.  前記操作位置検出用部材の被検出面は、前記ギャップセンサーにより検出される距離が、前記シフトセレクトシャフトの前記一方向の複数のセレクト操作位置毎に異なり、且つ該シフトセレクトシャフトの前記複数のシフト操作位置のいずれとも異なるように形成されていることを特徴とする請求項1の車両用平行軸式変速機のシフトセレクト操作位置検出装置。 The detected surface of the operation position detection member has a distance detected by the gap sensor that is different for each of the plurality of select operation positions in the one direction of the shift select shaft, and the plurality of shifts of the shift select shaft. 2. The shift select operation position detecting device for a parallel shaft transmission for a vehicle according to claim 1, wherein the position is different from any of the operation positions.
  3.  前記操作位置検出用部材の複数の被検出面は、前記一方向および前記他方向において互いに隣接して連続的に形成されていることを特徴とする請求項2の車両用平行軸式変速機のシフトセレクト操作位置検出装置。 The parallel shaft type transmission for a vehicle according to claim 2, wherein the plurality of detection surfaces of the operation position detection member are continuously formed adjacent to each other in the one direction and the other direction. Shift select operation position detection device.
  4.  前記操作位置検出用部材の被検出面は、前記ギャップセンサーにより検出される距離が、前記シフトセレクトシャフトの高速段側のシフト操作位置に比べて低速段側のシフト操作位置の方が小さくなるように形成されていることを特徴とする請求項1乃至3のいずれか1の車両用平行軸式変速機のシフトセレクト操作位置検出装置。 The detected surface of the operation position detecting member is such that the distance detected by the gap sensor is smaller at the shift operation position on the low speed stage side than on the shift operation position on the high speed stage side of the shift select shaft. The shift select operation position detecting device for a parallel shaft transmission for a vehicle according to any one of claims 1 to 3, wherein
  5.  予め定められた関係から、前記ギャップセンサーにより検出される該ギャップセンサーと前記操作位置検出用部材との間の距離に基づいて、前記シフトセレクトシャフトの操作位置を判定する操作位置判定手段を含むことを特徴とする請求項1乃至4のいずれか1の車両用平行軸式変速機のシフトセレクト操作位置検出装置。 Operation position determination means for determining an operation position of the shift select shaft based on a distance between the gap sensor detected by the gap sensor and the operation position detection member based on a predetermined relationship. The shift select operation position detecting device for a parallel shaft transmission for a vehicle according to any one of claims 1 to 4.
PCT/JP2010/051642 2010-02-04 2010-02-04 Device for detecting shift/select position in parallel-shaft transmission for vehicle WO2011096066A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/051642 WO2011096066A1 (en) 2010-02-04 2010-02-04 Device for detecting shift/select position in parallel-shaft transmission for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/051642 WO2011096066A1 (en) 2010-02-04 2010-02-04 Device for detecting shift/select position in parallel-shaft transmission for vehicle

Publications (1)

Publication Number Publication Date
WO2011096066A1 true WO2011096066A1 (en) 2011-08-11

Family

ID=44355093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051642 WO2011096066A1 (en) 2010-02-04 2010-02-04 Device for detecting shift/select position in parallel-shaft transmission for vehicle

Country Status (1)

Country Link
WO (1) WO2011096066A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015178870A (en) * 2014-03-19 2015-10-08 本田技研工業株式会社 Gear position detector of manual transmission
FR3075300A1 (en) * 2017-12-19 2019-06-21 Renault S.A.S. ARRANGEMENT FOR DETECTING ANGULAR DISPLACEMENTS OF AN INTERNAL ELEMENT OF A MOTOR VEHICLE GEARBOX
CN112469929A (en) * 2018-07-23 2021-03-09 雷诺股份公司 Device for detecting the position of a control device inside a gearbox

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62149661U (en) * 1986-03-14 1987-09-22
JPS6372502U (en) * 1986-10-30 1988-05-14
JPH01134201A (en) * 1987-11-19 1989-05-26 Yuken Kogyo Kk Linear stroke detecting device and continuously variable transmission utilizing same
JP2004108382A (en) * 2002-07-23 2004-04-08 Toyota Motor Corp Change-over position detection device for driving change-over valve
JP2009503389A (en) * 2005-07-26 2009-01-29 クノル−ブレムゼ ジステーメ フューア ヌッツファールツォイゲ ゲゼルシャフト ミット ベシュレンクテル ハフツング Actuator for transmission

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62149661U (en) * 1986-03-14 1987-09-22
JPS6372502U (en) * 1986-10-30 1988-05-14
JPH01134201A (en) * 1987-11-19 1989-05-26 Yuken Kogyo Kk Linear stroke detecting device and continuously variable transmission utilizing same
JP2004108382A (en) * 2002-07-23 2004-04-08 Toyota Motor Corp Change-over position detection device for driving change-over valve
JP2009503389A (en) * 2005-07-26 2009-01-29 クノル−ブレムゼ ジステーメ フューア ヌッツファールツォイゲ ゲゼルシャフト ミット ベシュレンクテル ハフツング Actuator for transmission

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015178870A (en) * 2014-03-19 2015-10-08 本田技研工業株式会社 Gear position detector of manual transmission
FR3075300A1 (en) * 2017-12-19 2019-06-21 Renault S.A.S. ARRANGEMENT FOR DETECTING ANGULAR DISPLACEMENTS OF AN INTERNAL ELEMENT OF A MOTOR VEHICLE GEARBOX
CN112469929A (en) * 2018-07-23 2021-03-09 雷诺股份公司 Device for detecting the position of a control device inside a gearbox
JP2021531467A (en) * 2018-07-23 2021-11-18 ルノー エス.ア.エス.Renault S.A.S. Device for detecting the position of the internal control device for the gearbox
JP7292373B2 (en) 2018-07-23 2023-06-16 ルノー エス.ア.エス. Device for detecting the position of internal control devices for gearboxes

Similar Documents

Publication Publication Date Title
EP2568260A2 (en) Position sensor
CN103133679B (en) Speed-changing device
CN104074967A (en) Automatic shift device for automated transmission for vehicle
WO2011096066A1 (en) Device for detecting shift/select position in parallel-shaft transmission for vehicle
JP5862613B2 (en) Shift-by-wire control device
JP2013100857A (en) Transmission actuating device
JP2007285373A (en) Shift change device of transmission
JP2018071634A (en) Transmission for vehicle
JP2016109292A (en) Shift lever position determination device for vehicle
EP2541102A1 (en) Transmission
KR101890599B1 (en) Gear shift operation mechanism
GB2491940A (en) A predictive gear sensing system for a manual transmission
JP2015178870A (en) Gear position detector of manual transmission
JP5331387B2 (en) Transmission and transmission control method
JP6574991B2 (en) Automatic transmission
CN103912682A (en) Manual gearshift mechanism and gear recognition device
JP2004176894A (en) Automatic transmission operating device of gear type transmission
JP2013100856A (en) Transmission actuating device
KR101393749B1 (en) Shift gate and system for sensing position of shifting lever at shift gate
JP2011163370A (en) Shift selection operation position detecting device of parallel shaft type transmission for vehicle
JP2012197825A (en) Rotational position detecting device and transmission actuating device equipped with the same
WO2018079412A1 (en) Rotation detecting device, gear shift unit, and transmission system
KR20150046804A (en) Shifting state recognizing method for shifting manupulation apparatus
JP6676886B2 (en) transmission
JP2018076905A (en) Automatic transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10845202

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10845202

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP