WO2011095646A1 - Cojinete magnético pasivo de repulsión inversa - Google Patents

Cojinete magnético pasivo de repulsión inversa Download PDF

Info

Publication number
WO2011095646A1
WO2011095646A1 PCT/ES2010/000344 ES2010000344W WO2011095646A1 WO 2011095646 A1 WO2011095646 A1 WO 2011095646A1 ES 2010000344 W ES2010000344 W ES 2010000344W WO 2011095646 A1 WO2011095646 A1 WO 2011095646A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
bearing
radial
repulsion
axial
Prior art date
Application number
PCT/ES2010/000344
Other languages
English (en)
French (fr)
Inventor
Ramón FERREIRO GARCÍA
Original Assignee
Ferreiro Garcia Ramon
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ferreiro Garcia Ramon filed Critical Ferreiro Garcia Ramon
Publication of WO2011095646A1 publication Critical patent/WO2011095646A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0423Passive magnetic bearings with permanent magnets on both parts repelling each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C39/00Relieving load on bearings
    • F16C39/06Relieving load on bearings using magnetic means
    • F16C39/063Permanent magnets

Definitions

  • the object of the invention is to provide the axial and radial support of rotary machine rotors by means of passive magnetic bearings that operate by reverse repulsion.
  • the proposed bearing model is equipped with the ability to stabilize the rotor of a rotating machine in a radial and axial equilibrium position by passive magnetic levitation.
  • Figure 4 The type shown in Figure 4, which consists of a model of passive axial magnetic bearing of direct repulsion formed by magnetic rings polarized alternately in some radial direction, and in axial direction others, and assembled under a Halbach structure.
  • Figure 1 shows three polarized magnetic rings in the three possible ways: (a), axially polarized magnetic ring (1). (b), a polarized magnetic ring in a convergent radial direction, in which the direction of the magnetic flux is inward (2). (c), a polarized magnetic ring in a divergent radial direction, in which the direction of the magnetic flux is outward (3).
  • the radial forces exerted by the passive magnetic fields generated by the stator magnets are directed radially from the central axis of symmetry of the rotor towards the periphery thereof, as detailed in the structure shown in figures 5 (b) and 6 (b) by hollow arrows.
  • the radial reverse passive magnetic bearing is made in two models: the model shown in Figure 5 (b) and the model shown in Figure 6 (b)
  • REPLACEMENT SHEET (RULE 26)
  • -A magnetic ring holder (9) fixed to the rotor (5) for radial bearing.
  • This support houses a pair of magnetic rings (1 1) axially polarized for radial bearing.
  • -A magnetic ring holder (10) fixed to the stator (4) for radial bearing.
  • This support contains a pair of polarized magnetic rings in the axial direction (1), whose mission is to expel the support (9) with its rings (1 1) in a divergent radial direction.
  • the radial reverse repulsion passive magnetic bearing model shown in Figure 6 (b) by means of a longitudinal section consists of the following components:
  • This support contains a radially polarized magnetic ring (3), whose mission is to exert the repulsive force on the support (9) with the ring (22) in a divergent radial direction.
  • the supports (9) and (10) may contain more than one pair of rings (3) and (22) respectively.
  • the passive axial reverse repulsion magnetic bearing is made in two models: the model shown in Figure 8 (a) and the model shown in Figure 8 (b)
  • the The rotor must be supported by a passive axial magnetic bearing with reverse repulsion at each end of the rotor.
  • the axial reverse repulsion passive magnetic bearing model shown by means of a longitudinal section in Figure 8 (a), consists of the following components:
  • This support houses an axially polarized magnetic ring (1) for axial bearing.
  • This support contains a magnetic ring (1) polarized in the axial direction, whose mission is to exert the force of repulsion on the ring (1) located in the support (6) in the axial direction.
  • the axial reverse repulsion passive magnetic bearing model shown by means of a longitudinal section in Figure 8 (b), consists of the following components:
  • This support houses a radially polarized magnetic ring (2) for axial bearing.
  • REPLACEMENT SHEET (RULE 26) -A magnetic ring holder (7) fixed to the stator (4) for axial bearing.
  • This support contains a radially polarized magnetic ring (2), whose mission is to exert the force of repulsion on the ring (2) located on the support (6) axially.
  • the number of pairs of supports (6) and (7) associated with their respective magnetic rings, which constitute each passive magnetic bearing of reverse repulsion, can be increased in several stages of repulsive force according to the structure shown in figures 9 and 10, that is to say in a number of two, three or more stages.
  • Figure 9 represents a longitudinal section of two repulsive stages while Figure 10 represents a longitudinal section of three repulsive stages.
  • Polarized magnetic ring (a), axially, (b), radially convergent, (c), radially divergent.
  • Figure 3 Types of radial passive magnetic bearings consisting of axially polarized magnetic rings. (a), stator rings with greater separation from each other than those of the rotor, (b), rotor rings with greater separation from each other than those of the stator.
  • REPLACEMENT SHEET (RULE 26) (a) Passive magnetic bearing of direct radial repulsion with radially polarized magnetic rings. The stator or housing repels the rotor radially by converging the resulting magnetic forces towards the central axis of symmetry of the rotor.
  • Figure 1 View of the preferred embodiment of the axial and radial reverse reverse passive magnetic bearing.
  • Magnetic ring support fixed to the rotor for axial bearing.
  • Magnetic ring support fixed to the stator for axial bearing.
  • Magnetic ring support fixed to the rotor for radial bearing.
  • Magnetic ring support fixed to the stator for radial bearing.
  • FIG 11 shows the arrangement of components that constitute the proposed configuration of the passive reverse-passive magnetic bearing.
  • This figure shows the rotor (5) magnetically supported by two radial bearings of the characteristics shown in Figure 5 (b) and two axial bearings of the characteristics shown in Figure 8 (a).
  • Both radial and axial bearings are assembled on both ends or sides of the rotor on which the inertial load of the rotor associated with the rotor load itself rests or rests. Therefore, each end of the rotor (5) is supported by a radial and an axial bearing.
  • Both axial and radial bearings at each end of the shaft are assembled to the frame structure forming a body with the housing or stator (4)
  • the proposed configuration of the passive inverse repulsion magnetic bearing is designed to operate vertically, that is, in the direction shown in Figure 1 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

El cojinete magnético pasivo de repulsión inversa consiste en el soporte axial y radial de rotores de máquinas rotativas en base a la fuerza de repulsión magnética inversa generada por aros magnéticos polarizados en sentido radial o axial según la aplicación. El modelo de cojinete que se propone está dotado de la capacidad para estabilizar el rotor de una máquina rotativa en una posición radial y axial de equilibrio mediante levitación magnética pasiva ante cargas de trabajo y vibraciones tanto procedentes del estator como del desequilibrio dinámico del rotor.

Description

COJINETE MAGNÉTICO PASIVO DE REPULSIÓN INVERSA
DESCRIPCIÓN OBJETO DE LA INVENCIÓN
El objeto de la invención consiste en proporcionar el soporte axial y radial de rotores de máquinas rotativas mediante cojinetes magnéticos pasivos que operan por repulsión inversa. El modelo de cojinete que se propone está dotado de la capacidad para estabilizar el rotor de una máquina rotativa en una posición radial y axial de equilibrio mediante levitación magnética pasiva.
ANTECEDENTES DE LA INVENCIÓN Como resultado de un minucioso rastreo sobre el estado de la tecnología relacionada con los diferentes tipos de cojinetes magnéticos pasivos utilizados actualmente en las máquinas rotativas de aplicación industrial, son conocidos los siguientes tipos:
-.Los tipos mostrados en la figura 2, que consisten en cojinetes magnéticos pasivos radiales de repulsión directa constituidos por aros magnéticos: (a) polarizados en sentido radial y (b), polarizados en sentido axial.
-.Los tipos mostrados en la figura 3, que consisten en cojinetes magnéticos pasivos radial-axial de repulsión directa constituidos por aros magnéticos polarizados axialmente: (a), con los aros del estator más separados entre sí que los del rotor y (b), con los aros del rotor más separados entre sí que los del estator.
-.El tipo mostrado en la figura 4, que consiste en un modelo de cojinete magnético pasivo axial de repulsión directa formado por aros magnéticos polarizados alternativamente en sentido radial unos, y en sentido axial otros, y ensamblados bajo una estructura Halbach.
-.Los tipos mostrados en la figura 7, que consisten en cojinetes magnéticos pasivos axiales de repulsión directa constituidos por aros magnéticos polarizados, (a), en sentido axial, y (b), en sentido radial.
En todos los casos de cojinetes conocidos se utiliza el principio de fuerzas de levitación por repulsión directa.
En el estado actual de la tecnología no se conocen cojinetes magnéticos pasivos de repulsión inversa, es decir, de las características similares a las de la presente invención.
HOJA DE REEMPLAZO (REGLA 26) DESCRIPCIÓN DE LA INVENCIÓN
Los elementos constitutivos de todo cojinete magnético pasivo responsables de la repulsión magnética son los aros magnéticos polarizados. La figura 1 muestra tres aros magnéticos polarizados de las tres formas posibles: (a), aro magnético polarizado en sentido axial (1). (b), aro magnético polarizado en sentido radial convergente, en el cual la dirección del flujo magnético es hacia el interior (2). (c), aro magnético polarizado en sentido radial divergente, en el cual, la dirección del flujo magnético es hacia el exterior (3).
A efectos de la descripción del cojinete magnético pasivo de repulsión inversa que se está realizando, se establecen las diferencias entre los cojinetes de repulsión directa y cojinetes de repulsión inversa.
En esta descripción se asumen como cojinetes de repulsión directa aquellos en los que la fuerza ejercida por los campos magnéticos pasivos generados por los imanes del estator están dirigidas hacia el eje central de simetría del eje o rotor, según se detalla en la estructura mostrada en las figuras 5 (a), 6(a), 7(a) y 7(b) mediante flechas huecas.
En esta descripción se asume como cojinetes de repulsión inversa aquellos en los que:
-para el caso de cojinete magnético pasivo de repulsión inversa radial, las fuerzas radiales ejercidas por los campos magnéticos pasivos generados por los imanes del estator está dirigidas radialmente desde el eje central de simetría del rotor hacia la periferia del mismo, según se detalla en la estructura mostrada en las figuras 5 (b) y 6 (b) mediante flechas huecas.
-para el caso de cojinete magnético pasivo de repulsión inversa axial, las fuerzas axiales ejercidas por los campos magnéticos pasivos generados por los imanes del estator está dirigidas axialmente desde el plano transversal de simetría del rotor hacia los extremos del mismo, según se detalla en la estructura mostrada en las figuras 8(a) y 8(b) mediante flechas huecas.
Con objeto de que el cojinete magnético pasivo de repulsión inversa que se describe sea capaz de operar en dos grados de libertad, es decir, axial y radial, se proponen dos modelos de cojinete magnético pasivo de repulsión inversa:
-Cojinete magnético pasivo de repulsión inversa radial, mostrado en las figuras 5(b) y 6(b).
-Cojinete magnético pasivo de repulsión inversa axial, mostrado en las figuras 8(a) y 8(b).
El cojinete magnético pasivo de repulsión inversa radial, está realizado en dos modelos: el modelo mostrado en la figura 5(b) y el modelo mostrado en la figura 6(b)
HOJA DE REEMPLAZO (REGLA 26) El modelo de cojinete magnético pasivo de repulsión inversa radial mostrado en la figura 5 (b) por medio de una sección longitudinal, está constituido por los siguientes componentes:
-Un soporte de aros magnéticos (9) fijado al rotor (5) para cojinete radial. Este soporte aloja un par de aros magnéticos (1 1) polarizados en sentido axial para cojinete radial. -Un soporte de aros magnéticos (10) fijado al estator (4) para cojinete radial. Este soporte contiene un par de aros magnéticos polarizados en sentido axial (1 ), cuya misión es la de ejercer la repulsión del soporte (9) con sus aros (1 1 ) en sentido radial divergente.
El modelo de cojinete magnético pasivo de repulsión inversa radial mostrado en la figura 6 (b) por medio de una sección longitudinal, está constituido por los siguientes componentes:
-Un soporte de aro magnético (9) fijado al rotor (5) para cojinete radial. Este soporte aloja un aro magnético (22) polarizado en sentido radial para cojinete radial.
-Un soporte de aros magnéticos (10) fijo al estator (4) para cojinete radial. Este soporte contiene un aro magnético polarizado en sentido radial (3), cuya misión es la de ejercer la fuerza de repulsión sobre el soporte (9) con el aro (22) en sentido radial divergente.
Con objeto de soportar la fuerza repulsiva necesaria, los soportes (9) y (10) pueden contener más de un par de aros (3) y (22) respectivamente.
El cojinete magnético pasivo de repulsión inversa axial, está realizado en dos modelos: el modelo mostrado en la figura 8(a) y el modelo mostrado en la figura 8(b) Para ambos modelos 8(a) y 8(b), el rotor tiene que estar soportado por un cojinete magnético pasivo axial de repulsión inversa en cada extremo del rotor.
El modelo de cojinete magnético pasivo de repulsión inversa axial mostrado por medio de una sección longitudinal en la figura 8 (a), está constituido por los siguientes componentes:
-Un soporte de aro magnético (6) fijado al rotor (5) para cojinete axial. Este soporte aloja un aro magnético (1 ) polarizado en sentido axial para cojinete axial.
-Un soporte de aro magnético (7) fijado al estator (4) para cojinete axial. Este soporte contiene un aro magnético (1 ) polarizado en sentido axial, cuya misión es la de ejercer la fuerza de repulsión sobre el aro (1) ubicado en el soporte (6) en sentido axial.
El modelo de cojinete magnético pasivo de repulsión inversa axial mostrado por medio de una sección longitudinal en la figura 8 (b), está constituido por los siguientes componentes:
-Un soporte de aro magnético (6) fijado al rotor (5) para cojinete axial. Este soporte aloja un aro magnético (2) polarizado en sentido radial para cojinete axial.
HOJA DE REEMPLAZO (REGLA 26) -Un soporte de aro magnético (7) fijado al estator (4) para cojinete axial. Este soporte contiene un aro magnético (2) polarizado en sentido radial, cuya misión es la de ejercer la fuerza de repulsión sobre el aro (2) ubicado en el soporte (6) en sentido axial.
Con objeto de soportar la fuerza repulsiva necesaria en sentido axial, la cantidad de pares de soportes (6) y (7) asociados a sus respectivos aros magnéticos, que constituyen cada cojinete magnético pasivo de repulsión inversa, pueden incrementarse en varias etapas de fuerza repulsiva según la estructura mostrada en las figuras 9 y 10, es decir en un número de dos, tres o mas etapas. La figura 9 representa una sección longitudinal de dos etapas repulsivas mientras que la figura 10 representa una sección longitudinal de tres etapas repulsivas.
DESCRIPCIÓN DE LAS FIGURAS Para documentar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características del invento, se acompaña a la presente memoria descriptiva, como parte integral de la misma, un juego de figuras en el que, con carácter ilustrativo y no limitativo, se representa lo siguiente:
Figura 1. Aro magnético polarizado: (a), en sentido axial, (b), en sentido radial convergente, (c), en sentido radial divergente.
Figura 2. Tipos de cojinetes magnéticos pasivos radiales constituidos por aros magnéticos polarizados: (a), en sentido radial, (b), en sentido axial.
Figura 3. Tipos de cojinetes magnéticos pasivos radiales constituidos por aros magnéticos polarizados axialmente. (a), aros del estator con mayor separación entre sí que los del rotor, (b), aros del rotor con mayor separación entre sí que los del estator.
Figura 4. Cojinete magnético pasivo axial formado por aros magnéticos polarizados según una estructura Halbach.
Figura 5. Cojinete magnético pasivo de repulsión radial:
(a) Cojinete magnético pasivo de repulsión radial directa con aros polarizados en sentido axial. El estator o carcasa repele el rotor en sentido radial haciendo converger la resultante de las fuerzas magnéticas hacia el eje central de simetría del rotor.
(b) Cojinete magnético pasivo de repulsión radial inversa con aros polarizados en sentido axial. El estator o carcasa repele el rotor en sentido radial haciendo diverger la resultante de las fuerzas magnéticas desde el eje de simetría del rotor, es decir solicitando el rotor desde su eje central de simetría.
Figura 6. Cojinete magnético pasivo de repulsión radial:
HOJA DE REEMPLAZO (REGLA 26) (a) Cojinete magnético pasivo de repulsión radial directa con aros magnéticos polarizados en sentido radial. El estator o carcasa repele el rotor en sentido radial haciendo converger la resultante de las fuerzas magnéticas hacia el eje central de simetría del rotor.
(b) Cojinete magnético pasivo de repulsión radial inversa con aros magnéticos polarizados en sentido radial. El estator o carcasa repele el rotor en sentido radial haciendo diverger la resultante de las fuerzas magnéticas desde el eje de simetría del rotor, es decir solicitando el rotor desde su eje central de simetría.
Figura 7. Cojinete magnético pasivo de repulsión axial directa: (a), con aros magnéticos polarizados en sentido axial, (b) con aros magnéticos polarizados en sentido radial.
Figura 8. Cojinete magnético pasivo de repulsión axial inversa: (a), con aros magnéticos polarizados en sentido axial, (b), con aros magnéticos polarizados en sentido radial.
Figura 9. Cojinete magnético pasivo de repulsión axial inversa de dos etapas repulsivas.
Figura 10. Cojinete magnético pasivo de repulsión axial inversa de tres etapas repulsivas.
Figura 1 1. Vista de la realización preferente del cojinete magnético pasivo de repulsión inversa axial y radial.
En estas figuras se hace referencia a un conjunto de elementos que son:
1. aro magnético polarizado en sentido axial.
2. aro magnético polarizado en sentido radial convergente.
3. aro magnético polarizado en sentido radial divergente.
4. estator y/o carcasa de la máquina rotativa.
5 rotor y/o eje de la máquina rotativa.
6. soporte de aro magnético fijado al rotor para cojinete axial.
7. soporte de aro magnético fijado al estator para cojinete axial.
8. pernos de afirmación soportes de aro magnético fijo al estator.
9. soporte de aro magnético fijo al rotor para cojinete radial.
10. soporte de aro magnético fijo al estator para cojinete radial.
1 1. aro magnético polarizado en sentido axial externo para cojinete radial.
22. aro magnético polarizado en sentido radial convergente externo para cojinete de estructura Halbach.
33. aro magnético polarizado en sentido radial divergente externo para cojinete de estructura Halbach.
HOJA DE REEMPLAZO (REGLA 26) DESCRIPCIÓN DE UNA REALIZACIÓN PREFERENTE
La figura 11 muestra la disposición de componentes que constituyen la configuración propuesta del cojinete magnético pasivo de repulsión inversa. En esta figura se muestra el rotor (5) sustentado magnéticamente por dos cojinetes radiales de las características mostradas en la figura 5(b) y dos cojinetes axiales de las características mostradas en la figura 8(a). Tanto los cojinetes radiales como los axiales están ensamblados a ambos extremos o lados del rotor sobre los que descansa o apoya la carga inercial del rotor asociada a la propia carga del rotor. Por tanto, cada extremo del rotor (5) está sustentado por un cojinete radial y otro axial.
Tanto los cojinetes axiales como los radiales en cada extremo del eje está ensamblados a la estructura de la bancada formando un cuerpo con la carcasa o estator (4)
La configuración propuesta del cojinete magnético pasivo de repulsión inversa está diseñada para operar en vertical, es decir en la dirección que aparece en la figura 1 1.
HOJA DE REEMPLAZO (REGLA 26)

Claims

REIVINDICACIONES
1. Cojinete magnético pasivo de repulsión inversa radial, caracterizado porque comprende dos modelos:
(a). -El modelo de cojinete magnético pasivo de repulsión inversa radial de aros magnéticos polarizados axialmente constituido por:
• Un soporte de aros magnéticos (9) fijado al rotor (5) para cojinete radial, que aloja un par de aros magnéticos (1 1 ) polarizados en sentido axial para cojinete radial.
· Un soporte de aros magnéticos (10) fijado al estator (4) para cojinete radial que contiene un par de aros magnéticos polarizados en sentido axial (1 ), cuya misión es la de ejercer la repulsión del soporte (9) con sus aros (1 1 ) en sentido radial divergente.
(b).-EI modelo de cojinete magnético pasivo de repulsión inversa radial de aros magnéticos polarizados radialmente constituido por:
• Un soporte de aro magnético (9) fijado al rotor (5) para cojinete radial que aloja un aro magnético (22) polarizado en sentido radial para cojinete radial.
• Un soporte de aros magnéticos (10) fijo al estator (4) para cojinete radial que contiene un aro magnético polarizado en sentido radial (3), cuya misión es la de ejercer la fuerza de repulsión sobre el soporte (9) con el aro (22) en sentido radial divergente.
2. Cojinete magnético pasivo de repulsión inversa radial, según reivindicación 1a, caracterizado por soportar la fuerza repulsiva necesaria, en base a los soportes (9) y (10) que pueden contener más de un par de aros (3) y (22) respectivamente.
3. Cojinete magnético pasivo de repulsión inversa radial, según reivindicaciones 1a, caracterizado porque la fuerza radial ejercida por los campos magnéticos pasivos generados por los imanes del estator está dirigida radialmente desde el eje central de simetría del rotor hacia las periferia del mismo.
4. Cojinete magnético pasivo de repulsión inversa axial, caracterizado porque comprende dos modelos:
(a). -El modelo de cojinete magnético pasivo de repulsión inversa axial de aros magnéticos polarizados axialmente constituido por:
• Un soporte de aro magnético (6) fijado al rotor (5) para cojinete axial que aloja un aro magnético (1 ) polarizado en sentido axial para cojinete axial.
· Un soporte de aro magnético (7) fijado al estator (4) para cojinete axial que contiene un aro magnético (1 ) polarizado en sentido axial, cuya misión es la de
HOJA DE REEMPLAZO (REGLA 26) ejercer la fuerza de repulsión sobre el aro (1) ubicado en el soporte (6) en sentido axial.
(b).-EI modelo de cojinete magnético pasivo de repulsión inversa axial de aros magnéticos polarizados radialmente constituido por:
« Un soporte de aro magnético (6) fijado al rotor (5) para cojinete axial, que aloja un aro magnético (2) polarizado en sentido radial para cojinete axial.
• Un soporte de aro magnético (7) fijado al estator (4) para cojinete axial, que contiene un aro magnético (2) polarizado en sentido radial, cuya misión es la de ejercer la fuerza de repulsión sobre el aro (2) ubicado en el soporte (6) en sentido axial.
5. Cojinete magnético pasivo de repulsión inversa axial, según reivindicación 4a, caracterizado por soportar la fuerza repulsiva necesaria en base al ensamblaje de varios pares de soportes (6) y (7) asociados a sus respectivos aros magnéticos, constituyendo varias etapas repulsivas.
6. Cojinete magnético pasivo de repulsión inversa axial, según reivindicaciones 4a, caracterizado porque la fuerza axial ejercida por los campos magnéticos pasivos generados por los imanes del estator están dirigidas axialmente desde el plano transversal de simetría del rotor hacia los extremos del mismo.
HOJA DE REEMPLAZO (REGLA 26)
PCT/ES2010/000344 2010-02-02 2010-07-29 Cojinete magnético pasivo de repulsión inversa WO2011095646A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201000139A ES2398835B1 (es) 2010-02-02 2010-02-02 Cojinete magnético pasivo de repulsión inversa.
ESP201000139 2010-02-02

Publications (1)

Publication Number Publication Date
WO2011095646A1 true WO2011095646A1 (es) 2011-08-11

Family

ID=44354991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/000344 WO2011095646A1 (es) 2010-02-02 2010-07-29 Cojinete magnético pasivo de repulsión inversa

Country Status (2)

Country Link
ES (1) ES2398835B1 (es)
WO (1) WO2011095646A1 (es)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130330219A1 (en) * 2012-05-17 2013-12-12 Heartware, Inc. Magnetically suspended pump
CN104295603A (zh) * 2013-07-15 2015-01-21 卓向东 永磁推力轴承及立式磁悬浮电动机
WO2016166006A1 (fr) * 2015-04-16 2016-10-20 Montres Breguet S.A. Antichoc magnétique pour arbre d'horlogerie
GB2564420A (en) * 2017-07-07 2019-01-16 Edwards Ltd Magnetic Bearing
CN109312779A (zh) * 2016-06-11 2019-02-05 阿比盖尔·卡森 旋转质量能量存储器
DE102021119947A1 (de) 2021-07-30 2023-02-02 NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen Zahnradpumpe mit Axialkraftkompensationseinrichtung

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113485472B (zh) * 2021-08-04 2022-02-11 北京航空航天大学 一种基于双通道陷波器的磁悬浮转子同频振动力矩抑制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5152679A (en) * 1990-08-10 1992-10-06 Ebara Corporation Turbo molecular pump
US20040113502A1 (en) * 2000-10-25 2004-06-17 Guo-Kun Li Magnetic suspension bearing
US20050140228A1 (en) * 2003-12-25 2005-06-30 Delta Electronics, Inc. Magnetic bearing system
DE102007017644A1 (de) * 2007-04-13 2008-10-30 Minebea Co., Ltd. Hybridlager
DE102008029482A1 (de) * 2008-06-20 2009-12-24 Schaeffler Kg Magnetische Lagerung, insbesondere Lagerung einer Faden-führungsrolle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5152679A (en) * 1990-08-10 1992-10-06 Ebara Corporation Turbo molecular pump
US20040113502A1 (en) * 2000-10-25 2004-06-17 Guo-Kun Li Magnetic suspension bearing
US20050140228A1 (en) * 2003-12-25 2005-06-30 Delta Electronics, Inc. Magnetic bearing system
DE102007017644A1 (de) * 2007-04-13 2008-10-30 Minebea Co., Ltd. Hybridlager
DE102008029482A1 (de) * 2008-06-20 2009-12-24 Schaeffler Kg Magnetische Lagerung, insbesondere Lagerung einer Faden-führungsrolle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130330219A1 (en) * 2012-05-17 2013-12-12 Heartware, Inc. Magnetically suspended pump
CN104295603A (zh) * 2013-07-15 2015-01-21 卓向东 永磁推力轴承及立式磁悬浮电动机
WO2016166006A1 (fr) * 2015-04-16 2016-10-20 Montres Breguet S.A. Antichoc magnétique pour arbre d'horlogerie
US10474107B2 (en) 2015-04-16 2019-11-12 Montres Breguet S.A. Magnetic anti-shock system for a timepiece arbor
CN109312779A (zh) * 2016-06-11 2019-02-05 阿比盖尔·卡森 旋转质量能量存储器
GB2564420A (en) * 2017-07-07 2019-01-16 Edwards Ltd Magnetic Bearing
DE102021119947A1 (de) 2021-07-30 2023-02-02 NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen Zahnradpumpe mit Axialkraftkompensationseinrichtung

Also Published As

Publication number Publication date
ES2398835A1 (es) 2013-03-22
ES2398835B1 (es) 2013-11-11

Similar Documents

Publication Publication Date Title
WO2011095646A1 (es) Cojinete magnético pasivo de repulsión inversa
ES2257837T3 (es) Maquina electrica cuyo rotor esta especialmente adaptado a las altas velocidades.
ES2502895T3 (es) Máquina eléctrica de flujo axial
US10797578B2 (en) Vertically mounted and magnetically driven power generation apparatus
EP1436879B1 (en) Repulsive lift systems, flywheel energy storage systems utilizing such systems and methods related thereto
CL2012000158A1 (es) Maquina electrica con dos estatores, que comprende un primer y segundo estator concentricos, una disposicion de guia, una pluralidad de elementos de rotor adyacentes dispuestos entre el primer y segundo estator, para formar un rotor, y que cooperan con la disposicion de guía, donde cada elemento de rotor tiene imanes montados en este.
CN104205573A (zh) 旋转电机
ES2587274T3 (es) Conjunto de dispositivos neumáticos y de aire
RU2014123642A (ru) Электромеханические маховики
TW201817132A (zh) 無配重塊之垂直式磁力傳動的節能發電裝置
CN102588433A (zh) 一种永磁悬浮轴承及其安装结构
ES2360132T3 (es) Cojinete de rotor para una máquina equilibradora.
CN102052402B (zh) 一种永磁悬浮轴承和永磁悬浮轴承组件
WO2016140426A1 (ko) 하이브리드 패시브 마그네틱 베어링
ES2875623T3 (es) Generador síncrono
ES2882065T3 (es) Configuración de matriz Halbach
RU124339U1 (ru) Магнитный подшипник
JP6626261B2 (ja) 風車の免震装置
KR20220142161A (ko) 무저항 발전기
JP2018102044A5 (es)
ES2650565B1 (es) Acumulador de energía, particularmente para instalaciones de ascensor
WO2016185496A1 (en) Energy storage device with a flywheel supported on rolling bearings and with permanent magnets to relieve the load on the rolling bearings
US20180229131A1 (en) Yo-yo having a magnetically supported bearing yoke integrated with the axle
WO2014158036A1 (es) Dispositivo que incrementa la energía mecánica ofrecida por un motor
ES2331902B1 (es) Generador de energia electrica.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10845128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10845128

Country of ref document: EP

Kind code of ref document: A1