WO2011095225A1 - Method for controlling a machine or an electrical load supplied with electric power over a long line - Google Patents

Method for controlling a machine or an electrical load supplied with electric power over a long line Download PDF

Info

Publication number
WO2011095225A1
WO2011095225A1 PCT/EP2010/051488 EP2010051488W WO2011095225A1 WO 2011095225 A1 WO2011095225 A1 WO 2011095225A1 EP 2010051488 W EP2010051488 W EP 2010051488W WO 2011095225 A1 WO2011095225 A1 WO 2011095225A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
machine
drive controller
terminals
current
Prior art date
Application number
PCT/EP2010/051488
Other languages
French (fr)
Inventor
Knut Rongve
Original Assignee
Abb As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abb As filed Critical Abb As
Priority to CA2789205A priority Critical patent/CA2789205C/en
Priority to PCT/EP2010/051488 priority patent/WO2011095225A1/en
Priority to MX2012009158A priority patent/MX2012009158A/en
Priority to AU2010345002A priority patent/AU2010345002B2/en
Priority to BR112012019646A priority patent/BR112012019646B1/en
Priority to RU2012136910/07A priority patent/RU2550143C2/en
Priority to DK10703184.1T priority patent/DK2534751T3/en
Priority to EP10703184.1A priority patent/EP2534751B1/en
Publication of WO2011095225A1 publication Critical patent/WO2011095225A1/en
Priority to US13/569,909 priority patent/US8519664B2/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/14Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage

Definitions

  • the present invention is concerned with a method for controlling an electrical load or machine which is supplied with AC power over a long line.
  • the load or machine may be supplied by motor controller such as a variable frequency power source, a variable frequency power inverter or converter. It is particular
  • loads or machines may be for example be mounted on the seabed tens of kilometers away from land or a topside platform.
  • Electrical equipment such as a subsea
  • multiphase pump or pressure booster pump or a subsea compressor used in Oil and Gas production or transfer installations may be operated underwater, eg on the seabed, at depths 1000 metres, or more .
  • the aim of the present invention is to remedy one or more of the above mentioned problems. This and other aims are obtained by a method characterised by claim 1.
  • a method for controlling a machine or an electrical load supplied by a variable speed drive controller over a long AC power cable, in which method said variable speed drive
  • controller is operated to provide AC current to said load or machine at a substantially constant ratio of voltage and frequency by obtaining an estimate or measurement of a current and voltage (Vconv) output in said drive controller, said method comprising calculating an estimated voltage (Vm_est) at the terminals of said machine or electrical load and adding a difference between the estimate and the output to control the drive controller to provide said constant ratio of voltage and frequency at the terminals of said load or machine based on the estimated voltage at the terminals.
  • Vconv current and voltage
  • a method for controlling a machine or an electrical load supplied by a variable speed drive controller over a long AC power cable, in which method an estimated voltage (Vm_est) at the terminals of said machine or electrical load is calculated or modelled and a difference between the estimate and the output added to control the variable speed drive controller to provide a substantially constant ratio of voltage and frequency at the terminals of said load or machine based on the estimated voltage at the terminals said method also comprising calculating the estimated current and voltage output in said drive controller based on a converter internal voltage reference to modulator as reference for dq transformation.
  • Vm_est estimated voltage
  • a method for controlling a machine or an electrical load supplied by a drive controller over a long AC power cable, in said method said drive controller is operated to provide AC current to said load or machine at a substantially constant ratio of voltage and frequency said method comprising
  • a method for controlling a machine or an electrical load supplied by a variable speed drive controller over a long AC power cable, in which method an estimated voltage (Vm_est) at the terminals of said machine or electrical load is calculated and a difference between the estimate and the output added to control the variable speed drive controller to provide a substantially constant ratio of voltage and frequency at the terminals of said load or machine based on the estimated voltage at the terminals said method also comprising calculating an estimated voltage (Vm_est) and estimated current at the
  • a method for controlling a machine or an electrical load supplied by a variable speed drive controller over a long AC power cable, in which method an estimated voltage (Vm_est) at the terminals of said machine or electrical load is calculated and a difference between the estimate and the output added to control the variable speed drive controller to provide a substantially constant ratio of voltage and frequency at the terminals of said load or machine based on the estimated voltage at the terminals said method also comprising calculating one or more estimates of current at the machine terminals and comparing the estimated current values with predetermined current limits for the purpose of providing thermal protection of the machine or electrical load.
  • Vm_est estimated voltage
  • a method for controlling a machine or an electrical load supplied by a variable speed drive controller over a long AC power cable, in which method an estimated voltage (Vm_est) at the terminals of said machine or electrical load is calculated and a difference between the estimate and the output added to control the drive controller to provide a substantially constant ratio of voltage and frequency at the terminals of said load or machine based on the estimated voltage at the terminals said method also comprising calculating one or more estimates of current at the machine terminals and comparing the estimated current values with predetermined current limits and providing data dependent on the comparison to a control process of said drive controller for the purpose of providing thermal protection of the machine or electrical load.
  • Vm_est estimated voltage
  • the solution involves estimating or calculating voltage and current at the machine terminals (load end) by using converter internal calculated and measured output voltage and current. This estimated voltage at the machine terminals is used as feedback to an add-on voltage controller in the converter to control the converter output voltage so as to obtain a constant ratio of voltage/frequency at the motor terminals.
  • This solution needs no data about the machine and can also be used for other electrical loads, since the load is not part of the calculation.
  • the algorithm or model uses the converter internal voltage reference to modulator as reference for dq transformation, The dq components of the converter output current are then calculated and filtered since filtering of dq components (DC signals) will not create a phase shift.
  • the motor voltage and current calculator needs to be
  • a power supply in the form of a variable speed controller which is arranged to provide electrical power from a power supply to a machine or an electrical load, which power is supplied by said variable speed drive controller over a long AC power cable wherein AC current is provided at a substantially constant ratio of voltage and frequency to said machine or electrical load
  • said variable speed drive controller is arranged with an estimator circuit for estimating and/or measuring a current and voltage (Vconv) output in said drive controller, characterized in that said drive controller comprises a calculating circuit for calculating an estimated value for voltage at the terminals of said machine or electrical load, and a comparison circuit for comparing voltage output (Vconv) with estimated voltage (Vm_est) at the machine terminals to identify any difference
  • said variable speed drive controller is further adapted to carry out a compensation for the difference and control the controller output to provide said constant ratio of voltage and frequency at the terminals of said machine or electrical load based on the estimated voltage (Vm_est) at the terminals.
  • a power supply in the form of a variable speed controller which is arranged to provide electrical power from a power supply to a machine or an electrical load
  • said variable speed drive controller is arranged with an estimator circuit for modelling and/or measuring a current and voltage (Vconv) output in said drive controller
  • said drive controller comprises a calculating circuit for calculating an estimated value for voltage at the terminals of said machine or electrical load, and a comparison circuit for comparing voltage output (Vconv) with estimated voltage (Vm_est) at the machine terminals to identify any difference
  • said estimator circuit for calculating an estimated current and voltage output in said drive controller uses a converter internal voltage reference to modulator as reference for dq transformation.
  • a power supply in the form of a variable speed controller which is arranged to provide electrical power from a power supply to a machine or an electrical load, which power is supplied at a substantially constant ratio of voltage and frequency to said machine or electrical load
  • said variable speed drive controller is arranged with an estimator circuit for estimating and/or measuring a current and voltage (Vconv) output in said drive controller
  • said drive controller comprises a calculating circuit for calculating an estimated value for voltage at the terminals of said machine or electrical load, and a comparison circuit for comparing voltage output (Vconv) with estimated voltage (Vm_est) at the machine terminals to identify any difference
  • an add-on voltage controller is provided with the difference between the output voltage (Vcon) in said drive controller and the estimated voltage (Vm_est) at the terminals and arranged for controlling the drive controller based on any difference between thus providing said constant ratio of voltage and frequency at the terminals of said machine or electrical load.
  • a power supply in the form of a variable speed controller which is arranged to provide electrical power from a power supply to a machine or an electrical load at a substantially constant ratio of voltage and frequency to said machine or electrical load
  • said variable speed drive controller is arranged with an estimator circuit for estimating and/or measuring a current and voltage (Vconv) output in said drive controller
  • said drive controller comprises a calculating circuit for calculating an estimated value for voltage at the terminals of said machine or electrical load, and a comparison circuit for comparing voltage output (Vconv) with estimated voltage (Vm_est) at the machine terminals to identify any difference
  • said estimator circuit or process for calculating an estimated voltage (Vm_est) and current at the terminals of said machine or electrical load is arranged to provide one or more estimates of current at the machine terminals to a control or monitoring process of said drive controller.
  • a power supply in the form of a variable speed controller which is arranged to provide electrical power from a power supply to a machine or an electrical load at a substantially constant ratio of voltage and frequency to said machine or electrical load
  • said variable speed drive controller is arranged with an estimator circuit for estimating and/or measuring a current and voltage (Vconv) output in said drive controller
  • said drive controller comprises a calculating circuit for calculating an estimated value for voltage at the terminals of said machine or electrical load, and a comparison circuit for comparing voltage output (Vconv) with estimated voltage (Vm_est) at the machine terminals to identify any difference
  • said Said variable speed drive controller comprises an estimator circuit or process for calculating one or more estimates of current at the machine terminals and providing the estimates to a process in said drive controller for comparing one or more values for current with predetermined current limits for the purpose of providing thermal protection of the machine or electrical load.
  • a computer program, a computer program stored in a memory storage device, and a computer program recorded on a computer- readable medium, which program is suitable for use with a processing unit having an internal memory in which the computer program or computer program product comprising software code portions may be loaded therein, is disclosed in another aspect of the invention.
  • Figure 1 shows a schematic diagram a model of a circuit used in a method to calculate voltage at the machine terminals according to an embodiment of the invention
  • Figure 2 shows the invention of Figure 1 and in particular a schematic for an electrical circuit with which the method of the invention is practised according to an embodiment of the invention
  • Figure 3 shows the invention of Figure 1 in a simplified diagram and showing in particular an arrangement of an electrical circuit according to an embodiment of the invention
  • Figure 4 shows the invention of Figure 1 and more particularly it shows a schematic flowchart for the method according to an embodiment of the invention.
  • Figure 2 shows a schematic diagram of the principal electrical components involved in practising the invention. It shows, from left to right, a power supply 10, an input transformer 11, a variable frequency power converter/inverter or converter 4, and a transformer 5 which is a step-up transformer. Transformer 5 is connected to a long power supply line or cable 6 operated in this exemplary example at a high voltage of 40 kV or more. The long high voltage power line 6 is further connected to a transformer 7, in this case a step down transformer, and transformer 7 is thereafter connected to a machine 8 or an electrical consuming load running in this example in the range 4-6 kV.
  • a power supply line or cable 6 operated in this exemplary example at a high voltage of 40 kV or more.
  • the long high voltage power line 6 is further connected to a transformer 7, in this case a step down transformer, and transformer 7 is thereafter connected to a machine 8 or an electrical consuming load running in this example in the range 4-6 kV.
  • power is supplied to a power converter/inverter, which may also be described as a variable speed drive, which provides AC power stepped up in a first transformer 5 at the converter end, applied at high voltage over long line 6, stepped down in a second transformer 7 at the machine end, and supplied to the machine 8.
  • a power converter/inverter which may also be described as a variable speed drive, which provides AC power stepped up in a first transformer 5 at the converter end, applied at high voltage over long line 6, stepped down in a second transformer 7 at the machine end, and supplied to the machine 8.
  • the method is practised by calculating what the voltage will be at the machine terminals as it varies dependent on the load of the machine 8 or other electrical load.
  • a simplified model of the circuit may be used to calculate (estimate) the voltage at the machine end.
  • a compensation is then applied to the drive controller output to compensate for any estimated deviation of the voltage at the machine terminals due to variation in load.
  • Figure 1 shows a simplified load flow model for a motor
  • the controller connected over a long line supplying AC power to a machine or load.
  • the figure shows, from left to right, the voltage in the converter Vconv, and the resistance/inductance characteristics of the step up transformer 5.
  • the second part the diagram model shows capacitance/resistance/inductance characteristics of the long cable 6.
  • At the right side of the model is shown the resistance/inductance characteristics of the step down transformer 7 and the position of the estimated voltage Vm_est at the machine 8 end of the model.
  • the variables shown are :
  • Rtl Step-up transformer resistance (per unit
  • Rt2 Step-down transformer resistance (pu)
  • the simplified load flow model is preferably calculated every 1ms and voltage calculated is then used to create actual feedback for compensation by way of a voltage add-on controller of the motor controller 4, also described as a drive controller.
  • the dimensions used in the calculations and the tests are for a power converter which is planned to supply a load via an undersea cable at a distance of nearly 50 kilometres from land.
  • the power supply is intended for a subsea compressor for an oil and gas
  • Such a long line or cable can supply subsea equipment placed on a seabed at depths up to 3,000 metres.
  • Subsea machines such as a multiphase pump are required to run continuously for months or years at a time.
  • Such pumps or compressors typically handle mixtures of petroleum oil
  • the density of the mixtures of petroleum and oil substances also may change in an unpredictable way, causing unpredictable changes in the load on the pump or other machine.
  • the solution described here has the advantage that there may be no need for actual measured voltage feedback in a long step-out system with long step-out cables. This solution may also prevent a need for a reactor at the subsea end in some applications with very long cables where voltage stability due to Ferranti effect would otherwise be regarded as an issue.
  • Id current component in phase with converter voltage (d-axis)
  • Iq current component 90 degree with converter voltage (q-axis)
  • Step-up transformer output dq-voltage
  • I3q Icq-I2q Step down transformer 7:
  • I5x I3x-I4x
  • Um_abs ( sqrt ( (Umx A 2 ) + ( Umy /N 2 ) ) *sqrt ( 3 )
  • Im_abs sqrt( (I5x A 2) ⁇ l ⁇ (I5y 2) )
  • Icq (q-axis component of the converter current per unit)
  • w (actual output electrical frequency per unit)
  • FIG. 3 shows a simple sketch of an installation for a power line between a power supply on land 20 and a machine 8 many kilometres out to sea 21.
  • the machine 8 or load is installed on the seabed 22, but the machine or load could equally as well or instead be installed underwater in some other way, or installed on a fixed or floating platform or ship of some kind.
  • Step up transformer 5 is indicated as though it were in the same enclosure as variable speed drive 4
  • the step down transformer 7 is indicated as being inside the same enclosure underwater as the machine 8 or load; however, any of the transformers may be arranged as tand-alone units or inside another enclosure.
  • FIG. 4 is a flowchart for a method according to an embodiment. The flowchart shows a method that wherein
  • the difference between the converter output voltage in the converter Vconv and the estimated voltage at the motor terminals Vm_est is added to the converter voltage output, for example by means of an add-in controller, to compensate for the estimated voltage difference.
  • the example described is concerned with a power supply over a long line for an installation at sea.
  • the invention may also be applied on land, for example with an oil or gas pipeline in a machine or an electrical load is arranged to be powered by an AC cable sufficiently long that variation in frequency/load will occur at the machine/load terminals.
  • compressor motors in pipelines can benefit from practicing an embodiment of the invention .
  • the components, and particularly for the transformers 5, 7 and the cable 6, may be stored in a database or list.
  • the database may be stored in a non-volatile memory storage unit of a control unit arranged in or with the drive controller.
  • the database may be arranged as firmware.
  • the solution involves estimating (calculating) both voltage and current at the machine terminals (electrical load end) by using converter internal calculated and measured output voltage and current.
  • the calculated current is used as feedback for current limit function in the converter 4 to prevent thermal overloading of the machine 8. This is advantageous because in a very long step- out application, the converter output current rms (root mean square) value may vary a small amount during a variation from no load to full load, and so a normal current limit of the
  • converter current would not provide thermal protection of the machine from current overloading.
  • converter output current output may differ from the current supplied at the load end.
  • calculated motor current has been used as input for a current limiter in the motor controller (drive controller) in tests and
  • the converter inverter may be of the ACS 5000 type supplied by ABB.
  • the methods .of estimating a voltage (and/or a voltage and a current) at the machine terminals as described above and elsewhere in this specification may be carried out by a computer application comprising computer program elements or software code which, when loaded in a processor or computer, causes the computer or processor to carry out the method steps.
  • the functions of the estimator circuit may be carried out by processing digital functions, algorithms and/or computer programs and/or by analogue components or analogue circuits or by a combination of both digital and analogue functions.
  • An estimator circuit may be comprised as a hardware or configurable hardware such as a Field-Programmable Gate Array (FPGA) or as another type of processors such as a Complex Programmable Logic Device (CPLD) or a type of Application Specific Integrated Circuit (ASIC) .
  • FPGA Field-Programmable Gate Array
  • CPLD Complex Programmable Logic Device
  • ASIC Application Specific Integrated Circuit
  • the methods of the invention such as those method steps shown in Figure 4 may, as previously described, be carried out by means of one or more computer programs comprising computer program code or software portions running on a computer or a processor.
  • a such processor may be arranged with a memory storage unit of a process system control unit or a motor control unit, or an addon voltage controller or other motor control system part thereof.
  • a part of the program or software carrying out the methods may be stored in a processor as above, but also in a ROM, RAM, PROM, EPROM or EEPROM chip or similar memory means.
  • the program in part or in whole may also be stored on, or in, other suitable computer readable medium such as a magnetic disk, magneto-optical memory storage means, in volatile memory, in flash memory, as firmware, stored on a data server or on one or more arrays of data servers or even on removable memory media such as flash memories, hard drives etc.
  • Data may be accessed by means of any of: OPC, OPC servers, an Object Request Broker such as COM, DCOM or CORBA, a web service.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Electric Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

The invention comprises a drive controller arranged to provide electrical power from a power supply (10) to a machine (8) or load, over a long AC power cable of the order of kilometers. The drive controller (4) is arranged with circuits and/or control processes to provide AC current at a constant ratio of voltage and frequency to said machine (8) or load. The drive controller maintains voltage and frequency at the machine terminals despite fluctuations in voltage and/or frequency that would ordinarily be caused by the load. This is done by estimating the voltage and current at the machine terminals and adapting the drive controller output accordingly to actively vary the converter output dependent on the load of the machine or other load. In other aspects of the invention a method and a computer program for carrying out the method are described.

Description

Method for controlling a machine or an electrical load supplied with electric power over a long line
TECHNICAL FIELD.
The present invention is concerned with a method for controlling an electrical load or machine which is supplied with AC power over a long line. The load or machine may be supplied by motor controller such as a variable frequency power source, a variable frequency power inverter or converter. It is particular
advantageous when used to control an electrical load or machine in an installation for production, distribution and/or
processing in the industry of Oil and Gas.
TECHNICAL BACKGROUND
When feeding AC power through long cables in transmission systems feeding an electrical load (machines/or other loads), the voltage at consumer end will be heavily influenced by electrical load drawn by the consumer. An example of such a long cable is a cable some kilometres in length connecting a power supply on land to a transformer or to a motor of a pump
installed out to sea. In the field of Oil and Gas exploration and production, such loads or machines may be for example be mounted on the seabed tens of kilometers away from land or a topside platform. Electrical equipment such as a subsea
multiphase pump or pressure booster pump or a subsea compressor used in Oil and Gas production or transfer installations may be operated underwater, eg on the seabed, at depths 1000 metres, or more .
When a power cable becomes very long and/or frequency becomes high, the voltage becomes even more dependent on the electrical load drawn by the consumer or consuming unit, and at a point it is not possible to keep the voltage within acceptable limits without doing active actions, examples of which may be:
1. Active control of the voltage at the motor terminals by using measured motor voltage feedback with regulation of voltage at sending end of the cable;
2. Control of reactive power by means of adding reactors at the sending end, or receiving end, Static Var compensation (fast- acting reactive power compensation), or similar equipment.
One solution would be to measure the voltage in the transmission end, ie at the load end, and use this as feedback for closed- loop control of the voltage. However, this may become a
challenging and more costly solution especially for subsea systems, since this will the lead to additional equipment being installed subsea. Another technical challenge is additional penetration of subsea equipment and measurement transfer link the converter control system. Water penetration at sea and water pressure at subsea depths are added technical issues. This type of solution may thus create technical challenges and questions with relation to reliability of the system in case of component failure .
SUMMARY OF THE INVENTION
The aim of the present invention is to remedy one or more of the above mentioned problems. This and other aims are obtained by a method characterised by claim 1.
According to a first aspect of the invention a method is disclosed for controlling a machine or an electrical load supplied by a variable speed drive controller over a long AC power cable, in which method said variable speed drive
controller is operated to provide AC current to said load or machine at a substantially constant ratio of voltage and frequency by obtaining an estimate or measurement of a current and voltage (Vconv) output in said drive controller, said method comprising calculating an estimated voltage (Vm_est) at the terminals of said machine or electrical load and adding a difference between the estimate and the output to control the drive controller to provide said constant ratio of voltage and frequency at the terminals of said load or machine based on the estimated voltage at the terminals.
According to an embodiment of the invention, a method is provided for controlling a machine or an electrical load supplied by a variable speed drive controller over a long AC power cable, in which method an estimated voltage (Vm_est) at the terminals of said machine or electrical load is calculated or modelled and a difference between the estimate and the output added to control the variable speed drive controller to provide a substantially constant ratio of voltage and frequency at the terminals of said load or machine based on the estimated voltage at the terminals said method also comprising calculating the estimated current and voltage output in said drive controller based on a converter internal voltage reference to modulator as reference for dq transformation.
According to another embodiment of the invention, a method is provided for controlling a machine or an electrical load supplied by a drive controller over a long AC power cable, in said method said drive controller is operated to provide AC current to said load or machine at a substantially constant ratio of voltage and frequency said method comprising
calculating or modelling an estimated voltage (Vm_est) at the terminals of said machine or electrical load and adding a difference between the estimate and the output to control the drive controller to provide said constant ratio of voltage and frequency at the terminals of said load or machine based on the estimated voltage at the terminals, said method further comprising providing the difference between the voltage estimate (Vm_est) and the voltage output (Vconv) to an add-on voltage controller arranged for controlling the variable speed drive controller and compensating for the difference thus providing said constant ratio of voltage and frequency at the terminals of said machine or electrical load.
According to another embodiment of the invention, a method is provided for controlling a machine or an electrical load supplied by a variable speed drive controller over a long AC power cable, in which method an estimated voltage (Vm_est) at the terminals of said machine or electrical load is calculated and a difference between the estimate and the output added to control the variable speed drive controller to provide a substantially constant ratio of voltage and frequency at the terminals of said load or machine based on the estimated voltage at the terminals said method also comprising calculating an estimated voltage (Vm_est) and estimated current at the
terminals at said machine or electrical load and providing one or more estimates of current at the machine terminals to a monitoring or control process of the variable speed drive controller .
According to an embodiment of the invention, a method is provided for controlling a machine or an electrical load supplied by a variable speed drive controller over a long AC power cable, in which method an estimated voltage (Vm_est) at the terminals of said machine or electrical load is calculated and a difference between the estimate and the output added to control the variable speed drive controller to provide a substantially constant ratio of voltage and frequency at the terminals of said load or machine based on the estimated voltage at the terminals said method also comprising calculating one or more estimates of current at the machine terminals and comparing the estimated current values with predetermined current limits for the purpose of providing thermal protection of the machine or electrical load.
According to an embodiment of the invention, a method is provided for controlling a machine or an electrical load supplied by a variable speed drive controller over a long AC power cable, in which method an estimated voltage (Vm_est) at the terminals of said machine or electrical load is calculated and a difference between the estimate and the output added to control the drive controller to provide a substantially constant ratio of voltage and frequency at the terminals of said load or machine based on the estimated voltage at the terminals said method also comprising calculating one or more estimates of current at the machine terminals and comparing the estimated current values with predetermined current limits and providing data dependent on the comparison to a control process of said drive controller for the purpose of providing thermal protection of the machine or electrical load.
During development for a subsea Oil and Gas project in the North Sea off the coast of Norway the inventor has developed a solution to the above problems. The solution involves estimating or calculating voltage and current at the machine terminals (load end) by using converter internal calculated and measured output voltage and current. This estimated voltage at the machine terminals is used as feedback to an add-on voltage controller in the converter to control the converter output voltage so as to obtain a constant ratio of voltage/frequency at the motor terminals. This solution needs no data about the machine and can also be used for other electrical loads, since the load is not part of the calculation.
The algorithm or model uses the converter internal voltage reference to modulator as reference for dq transformation, The dq components of the converter output current are then calculated and filtered since filtering of dq components (DC signals) will not create a phase shift.
The motor voltage and current calculator needs to be
parameterized with electrical data from any step-up and/or step- down transformers and the cable, as will be described in more detail in the following sections.
According to another aspect of the invention, a power supply in the form of a variable speed controller is provided which is arranged to provide electrical power from a power supply to a machine or an electrical load, which power is supplied by said variable speed drive controller over a long AC power cable wherein AC current is provided at a substantially constant ratio of voltage and frequency to said machine or electrical load, said variable speed drive controller is arranged with an estimator circuit for estimating and/or measuring a current and voltage (Vconv) output in said drive controller, characterized in that said drive controller comprises a calculating circuit for calculating an estimated value for voltage at the terminals of said machine or electrical load, and a comparison circuit for comparing voltage output (Vconv) with estimated voltage (Vm_est) at the machine terminals to identify any difference, wherein said variable speed drive controller is further adapted to carry out a compensation for the difference and control the controller output to provide said constant ratio of voltage and frequency at the terminals of said machine or electrical load based on the estimated voltage (Vm_est) at the terminals.
According to an embodiment of the invention, a power supply in the form of a variable speed controller is provided which is arranged to provide electrical power from a power supply to a machine or an electrical load, said variable speed drive controller is arranged with an estimator circuit for modelling and/or measuring a current and voltage (Vconv) output in said drive controller, said drive controller comprises a calculating circuit for calculating an estimated value for voltage at the terminals of said machine or electrical load, and a comparison circuit for comparing voltage output (Vconv) with estimated voltage (Vm_est) at the machine terminals to identify any difference, wherein said estimator circuit for calculating an estimated current and voltage output in said drive controller uses a converter internal voltage reference to modulator as reference for dq transformation.
According to another embodiment of the invention, a power supply in the form of a variable speed controller is provided which is arranged to provide electrical power from a power supply to a machine or an electrical load, which power is supplied at a substantially constant ratio of voltage and frequency to said machine or electrical load, said variable speed drive controller is arranged with an estimator circuit for estimating and/or measuring a current and voltage (Vconv) output in said drive controller, said drive controller comprises a calculating circuit for calculating an estimated value for voltage at the terminals of said machine or electrical load, and a comparison circuit for comparing voltage output (Vconv) with estimated voltage (Vm_est) at the machine terminals to identify any difference, wherein an add-on voltage controller is provided with the difference between the output voltage (Vcon) in said drive controller and the estimated voltage (Vm_est) at the terminals and arranged for controlling the drive controller based on any difference between thus providing said constant ratio of voltage and frequency at the terminals of said machine or electrical load.
According to another embodiment of the invention, a power supply in the form of a variable speed controller is provided which is arranged to provide electrical power from a power supply to a machine or an electrical load at a substantially constant ratio of voltage and frequency to said machine or electrical load, said variable speed drive controller is arranged with an estimator circuit for estimating and/or measuring a current and voltage (Vconv) output in said drive controller, wherein said drive controller comprises a calculating circuit for calculating an estimated value for voltage at the terminals of said machine or electrical load, and a comparison circuit for comparing voltage output (Vconv) with estimated voltage (Vm_est) at the machine terminals to identify any difference, wherein said estimator circuit or process for calculating an estimated voltage (Vm_est) and current at the terminals of said machine or electrical load is arranged to provide one or more estimates of current at the machine terminals to a control or monitoring process of said drive controller.
According to another embodiment of the invention, a power supply in the form of a variable speed controller is provided which is arranged to provide electrical power from a power supply to a machine or an electrical load at a substantially constant ratio of voltage and frequency to said machine or electrical load, said variable speed drive controller is arranged with an estimator circuit for estimating and/or measuring a current and voltage (Vconv) output in said drive controller, wherein said drive controller comprises a calculating circuit for calculating an estimated value for voltage at the terminals of said machine or electrical load, and a comparison circuit for comparing voltage output (Vconv) with estimated voltage (Vm_est) at the machine terminals to identify any difference, wherein said Said variable speed drive controller comprises an estimator circuit or process for calculating one or more estimates of current at the machine terminals and providing the estimates to a process in said drive controller for comparing one or more values for current with predetermined current limits for the purpose of providing thermal protection of the machine or electrical load.
A computer program, a computer program stored in a memory storage device, and a computer program recorded on a computer- readable medium, which program is suitable for use with a processing unit having an internal memory in which the computer program or computer program product comprising software code portions may be loaded therein, is disclosed in another aspect of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
A more complete understanding of the method and system of the present invention may be had by reference to the following detailed description when taken in conjunction with the
accompanying drawings wherein:
Figure 1 shows a schematic diagram a model of a circuit used in a method to calculate voltage at the machine terminals according to an embodiment of the invention;
Figure 2 shows the invention of Figure 1 and in particular a schematic for an electrical circuit with which the method of the invention is practised according to an embodiment of the invention;
Figure 3 shows the invention of Figure 1 in a simplified diagram and showing in particular an arrangement of an electrical circuit according to an embodiment of the invention;
Figure 4 shows the invention of Figure 1 and more particularly it shows a schematic flowchart for the method according to an embodiment of the invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Figure 2 shows a schematic diagram of the principal electrical components involved in practising the invention. It shows, from left to right, a power supply 10, an input transformer 11, a variable frequency power converter/inverter or converter 4, and a transformer 5 which is a step-up transformer. Transformer 5 is connected to a long power supply line or cable 6 operated in this exemplary example at a high voltage of 40 kV or more. The long high voltage power line 6 is further connected to a transformer 7, in this case a step down transformer, and transformer 7 is thereafter connected to a machine 8 or an electrical consuming load running in this example in the range 4-6 kV.
To summarise, power is supplied to a power converter/inverter, which may also be described as a variable speed drive, which provides AC power stepped up in a first transformer 5 at the converter end, applied at high voltage over long line 6, stepped down in a second transformer 7 at the machine end, and supplied to the machine 8.
The method is practised by calculating what the voltage will be at the machine terminals as it varies dependent on the load of the machine 8 or other electrical load. A simplified model of the circuit may be used to calculate (estimate) the voltage at the machine end. A compensation is then applied to the drive controller output to compensate for any estimated deviation of the voltage at the machine terminals due to variation in load.
Figure 1 shows a simplified load flow model for a motor
controller connected over a long line supplying AC power to a machine or load. The figure shows, from left to right, the voltage in the converter Vconv, and the resistance/inductance characteristics of the step up transformer 5. The second part the diagram model shows capacitance/resistance/inductance characteristics of the long cable 6. At the right side of the model is shown the resistance/inductance characteristics of the step down transformer 7 and the position of the estimated voltage Vm_est at the machine 8 end of the model. The variables shown are :
Rtl = Step-up transformer resistance (per unit
Ltl = Step-up transformer inductance (pu)
Ccc = Cable reactance/2 (pu)
Rcl = Cable reactance (pu)
Lcl = Cable inductance (pu)
Rt2 = Step-down transformer resistance (pu)
Lt2 = Step-down transformer inductance (pu)
The simplified load flow model is preferably calculated every 1ms and voltage calculated is then used to create actual feedback for compensation by way of a voltage add-on controller of the motor controller 4, also described as a drive controller.
Simulations, calculations and tests carried out with small-scale and full scale test set-ups and on-site installations have shown promising results regarding the performance of the voltage addon controller and voltage estimator. The dimensions used in the calculations and the tests are for a power converter which is planned to supply a load via an undersea cable at a distance of nearly 50 kilometres from land. In one example the power supply is intended for a subsea compressor for an oil and gas
installation. In general such a long line or cable can supply subsea equipment placed on a seabed at depths up to 3,000 metres. Subsea machines such as a multiphase pump are required to run continuously for months or years at a time. Such pumps or compressors typically handle mixtures of petroleum oil
substances. The density of the mixtures of petroleum and oil substances also may change in an unpredictable way, causing unpredictable changes in the load on the pump or other machine. The solution described here has the advantage that there may be no need for actual measured voltage feedback in a long step-out system with long step-out cables. This solution may also prevent a need for a reactor at the subsea end in some applications with very long cables where voltage stability due to Ferranti effect would otherwise be regarded as an issue.
The following formulas may be applied in the drive controller, the variable speed drive or converter 4 :
Calculations in dq coordinates (d-axis aligned to converter voltage vector)
Id = current component in phase with converter voltage (d-axis) Iq = current component 90 degree with converter voltage (q-axis) Calculations of the dq coordinates:
Step up transformer 5
Step-up transformer output dq-voltage:
Utld = Ucd - Icd*Rtl+Icq*w*Ltl
Utlq = Ucq- Icq*Rtl-Icd*w*Ltl
Cable capacitance leakage dq-current flowing through Ccc at cable at converter side;
I2d = -Utlq*w*Ccc
I2q = Utld*w*Ccc
dq-Current flowing through Lcl and Lcl in cable model
I3d = Icd-I2d
I3q = Icq-I2q Step down transformer 7:
Step down transformer dq-voltage
Ut2d = Utld - I3d*Rcl+l3q*w*Lcl
Ut2q = Utlq - I3q*Rcl-I3d*w*Lcl
Cable capacitance leakage dq-current flowing through Ccc at cable at electrical load side;
I4d = -Ut2q*w*Ccc
I4q = Ut2d*w*Ccc
Motor or electrical load dq-current
I5x = I3x-I4x
I5y = I3y-I4y
Voltage and current at machine 8
Motor or electrical load dq voltage
Umd = Ut2d - I5d*Rt2+I5q*w*Lt2
Umq = Ut2q- I5q*Rt2-I5d*w*Lt2 ;
Motor or electrical load absolute voltage vector
Um_abs = ( sqrt ( (UmxA2 ) + ( Umy/N2 ) ) ) *sqrt ( 3 )
Motor or electrical load absolute current vector
Im_abs = sqrt( (I5xA2)~l~(I5y 2) ) where
Ucd = (d-axis component of the converter voltage per unit) led = (d-axis component of the converter current per unit)
Icq = (q-axis component of the converter current per unit) w = (actual output electrical frequency per unit)
Figure 3 shows a simple sketch of an installation for a power line between a power supply on land 20 and a machine 8 many kilometres out to sea 21. In this example the machine 8 or load is installed on the seabed 22, but the machine or load could equally as well or instead be installed underwater in some other way, or installed on a fixed or floating platform or ship of some kind. Step up transformer 5 is indicated as though it were in the same enclosure as variable speed drive 4, and the step down transformer 7 is indicated as being inside the same enclosure underwater as the machine 8 or load; however, any of the transformers may be arranged as tand-alone units or inside another enclosure.
Figure 4 is a flowchart for a method according to an embodiment. The flowchart shows a method that wherein
41. An estimate and/or measurement of output voltage Vconv is made in the drive controller or converter 4
43. An estimate is made of the voltage VM_est at the terminals of machine 8 or other electrical load
45. The values of the converter output voltage in the converter Vconv and the estimated voltage at the motor terminals Vm_est are compared and any difference found
47. The difference between the converter output voltage in the converter Vconv and the estimated voltage at the motor terminals Vm_est is added to the converter voltage output, for example by means of an add-in controller, to compensate for the estimated voltage difference.
The example described is concerned with a power supply over a long line for an installation at sea. However the invention may also be applied on land, for example with an oil or gas pipeline in a machine or an electrical load is arranged to be powered by an AC cable sufficiently long that variation in frequency/load will occur at the machine/load terminals. Thus compressor motors in pipelines can benefit from practicing an embodiment of the invention .
Derived and measured data including electrical characteristics such as resistance, inductance, capacitance of certain
components, and particularly for the transformers 5, 7 and the cable 6, may be stored in a database or list. The database may be stored in a non-volatile memory storage unit of a control unit arranged in or with the drive controller. The database may be arranged as firmware.
In another preferred embodiment of the invention, the solution involves estimating (calculating) both voltage and current at the machine terminals (electrical load end) by using converter internal calculated and measured output voltage and current. The calculated current is used as feedback for current limit function in the converter 4 to prevent thermal overloading of the machine 8. This is advantageous because in a very long step- out application, the converter output current rms (root mean square) value may vary a small amount during a variation from no load to full load, and so a normal current limit of the
converter current would not provide thermal protection of the machine from current overloading. In a very long step out operation converter output current output may differ from the current supplied at the load end. In this embodiment calculated motor current has been used as input for a current limiter in the motor controller (drive controller) in tests and
simulations. In a preferred embodiment the converter inverter may be of the ACS 5000 type supplied by ABB.
The methods .of estimating a voltage (and/or a voltage and a current) at the machine terminals as described above and elsewhere in this specification may be carried out by a computer application comprising computer program elements or software code which, when loaded in a processor or computer, causes the computer or processor to carry out the method steps. The functions of the estimator circuit may be carried out by processing digital functions, algorithms and/or computer programs and/or by analogue components or analogue circuits or by a combination of both digital and analogue functions. An estimator circuit may be comprised as a hardware or configurable hardware such as a Field-Programmable Gate Array (FPGA) or as another type of processors such as a Complex Programmable Logic Device (CPLD) or a type of Application Specific Integrated Circuit (ASIC) .
The methods of the invention such as those method steps shown in Figure 4 may, as previously described, be carried out by means of one or more computer programs comprising computer program code or software portions running on a computer or a processor. A such processor may be arranged with a memory storage unit of a process system control unit or a motor control unit, or an addon voltage controller or other motor control system part thereof. A part of the program or software carrying out the methods may be stored in a processor as above, but also in a ROM, RAM, PROM, EPROM or EEPROM chip or similar memory means. The program in part or in whole may also be stored on, or in, other suitable computer readable medium such as a magnetic disk, magneto-optical memory storage means, in volatile memory, in flash memory, as firmware, stored on a data server or on one or more arrays of data servers or even on removable memory media such as flash memories, hard drives etc.. Data may be accessed by means of any of: OPC, OPC servers, an Object Request Broker such as COM, DCOM or CORBA, a web service.
Details are given in this specification for an example based on a drive controller and in particular a power converter but the invention is not limited to this type of controlled power supply device and may be practised using other technologies such as PWM (pulse width modulation) PA (pulse amplitude modulation) or thyristor controlled converter using a type of cascade control.
It should be noted that while the above describes exemplifying embodiments of the invention, there are several variations and modifications of controlling a machine or an electrical load supplied with AC power over a long line which may be made to the disclosed solution without departing from the scope of the present invention as defined in the appended claims.

Claims

1. A method for controlling a machine (8) or an electrical load supplied by a drive controller (4) over a long AC power cable (6), in which method said drive controller is operated to provide AC current to said load or machine at a substantially constant ratio of voltage and frequency by obtaining an estimate or measurement of a current and voltage (Vconv) output in said drive controller (4), characterized by calculating an estimated voltage (Vm_est) at the terminals of said machine (8) or electrical load and adding a difference between the estimate and the output to control the drive controller to provide said constant ratio of voltage and frequency at the terminals of said load or machine based on the estimated voltage (Vm_est) at the terminals .
2. A method according to claim 1, characterised by calculating the estimated current and voltage output in said drive
controller (4) based on a converter internal voltage reference to modulator as reference for dq transformation.
3. A method according to claim 1, characterised by providing the difference between the voltage estimate (Vm_est) and the voltage output (Vconv) to an add-on voltage controller arranged for controlling the drive controller (4) and compensating for the difference thus providing said constant ratio of voltage and frequency at the terminals of said machine (8) or electrical load .
4. A method according to claim 1, characterised by calculating an estimated voltage (Vm_est) and estimated current at the terminals at said machine (8) or electrical load and providing one or more estimates of current at the machine terminals to a monitoring or control process of the drive controller (4) .
5. A method according to claim 1 or 4, characterised by
calculating one or more estimates of current at the machine terminals and comparing the estimated current values with predetermined current limits for the purpose of providing thermal protection of the machine (8) or electrical load.
6. A method according to claim 1 or 4, characterised by
calculating one or more estimates of current at the machine terminals and comparing the estimated current values with predetermined current limits and providing data dependent on the comparison to a control process of said drive controller for the purpose of providing thermal protection of the machine (8) or electrical load.
7. A drive controller (4) arranged to provide electrical power from a power supply (10) to a machine (8) or an electrical load, which power is supplied by said drive controller over a long AC power cable wherein AC current is provided at a substantially constant ratio of voltage and frequency to said machine (8) or electrical load, said drive controller (4) is arranged with an estimator circuit for estimating and/or measuring a current and voltage (Vconv) output in said drive controller, characterized in that said drive controller (4) comprises a calculating circuit for calculating an estimated value for voltage at the terminals of said machine (8) or electrical load, and a
comparison circuit for comparing voltage output (Vconv) with estimated voltage (Vm_est) at the machine terminals to identify any difference, wherein said drive controller (4) is further adapted to carry out a compensation for the difference and control the controller output to provide said constant ratio of voltage and frequency at the terminals of said machine (8) or electrical load based on the estimated voltage (Vm_est) at the terminals .
8. A drive controller according to claim 7, characterized in that said estimator circuit for calculating an estimated current and voltage output in said drive controller (4) uses a converter internal voltage reference to modulator as reference for dq transformation .
9. A drive controller according to claim 7, characterized by an add-on voltage controller provided with the difference between the output voltage (Vcon) in said drive controller (4) and the estimated voltage (Vm_est) at the terminals and arranged for controlling the drive controller based on the difference between thus providing said constant ratio of voltage and frequency at the terminals of said machine (8) or electrical load.
10. A drive controller it according to claim 7, characterized in that said estimator circuit or process for calculating an estimated voltage (Vm_est) and current at the terminals of said machine (8) or electrical load is arranged to provide one or more estimates of current at the machine terminals to a control or monitoring process of said drive controller (4) .
11. A drive controller according to claim 7 or 9, characterized by an estimator circuit or process for calculating one or more estimates of current at the machine terminals and providing the estimates to a process in said drive controller (4) for
comparing one or more values for current with predetermined current limits for the purpose of providing thermal protection of the machine (8) or electrical load.
12. A drive controller according to claim 7, characterized by an estimator circuit that comprises software or computer program code for carrying out the function of estimating the current and voltage at the terminals of the machine (8) or electrical load supplied by said drive controller.
13. A drive controller according to claim 7, characterized by a non-volatile memory storage device on which is stored derived and measured data including electrical characteristics of any component connected to the drive controller (4) including data from any of the transformers (5, 7) and/or cable (6) .
14. A drive controller according to claim 7, characterized by a memory storage device comprising software code portions or computer code to cause a computer or processor to carry out the method according to claim 1.
15. A computer program for controlling a machine (8) or load supplied with power by a drive controller (4) over a long AC power cable (6) said program comprising software code portions or computer code to cause a computer or processor to carry out the steps of a method according to claim 1.
16. A computer program product recorded on a computer readable medium, comprising computer program code or software code portions which when read into a computer or processor will cause the computer or processor to carry out the steps of a method according claim 1.
17. Use of a drive controller (4) according to claim 10, arranged to provide electrical power from a power supply (10) to a machine (8) or an electrical load, which power is supplied by said drive controller over a long AC power cable (6), and wherein said drive controller is operated to provide AC current at constant ratio of voltage and frequency to said machine (8) or load to control and supply a machine (8) or an electrical load in an installation for production, transmission,
distribution or processing of oil and/or gas.
18. An energy efficient drive controller (4) for providing electrical power to a machine (8) or an electrical load, which power is supplied by said drive controller over a long AC power cable, in which said drive controller is operated to provide AC current at a substantially constant ratio of voltage and frequency to said machine (8) or electrical load, wherein said drive controller (4) is arranged with an estimator circuit for measuring or estimating a current and voltage (Vconv) output in said drive controller, further comprising a calculating circuit for calculating an estimated value for voltage at the terminals of said machine (8) or electrical load and said drive controller (4) is also arranged with an add-on voltage controller arranged to control the controller output to provide said constant ratio of voltage and frequency at the terminals of said machine (8) or load based on the estimated voltage (Vm_est) at the
terminals .
PCT/EP2010/051488 2010-02-08 2010-02-08 Method for controlling a machine or an electrical load supplied with electric power over a long line WO2011095225A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CA2789205A CA2789205C (en) 2010-02-08 2010-02-08 Method for controlling a machine or an electrical load supplied with electric power over a long line
PCT/EP2010/051488 WO2011095225A1 (en) 2010-02-08 2010-02-08 Method for controlling a machine or an electrical load supplied with electric power over a long line
MX2012009158A MX2012009158A (en) 2010-02-08 2010-02-08 Method for controlling a machine or an electrical load supplied with electric power over a long line.
AU2010345002A AU2010345002B2 (en) 2010-02-08 2010-02-08 Method for controlling a machine or an electrical load supplied with electric power over a long line
BR112012019646A BR112012019646B1 (en) 2010-02-08 2010-02-08 method for controlling a machine or electrical charge, drive controller and use of the drive controller
RU2012136910/07A RU2550143C2 (en) 2010-02-08 2010-02-08 Method of control of unit or electric load powered through extended power transmission line
DK10703184.1T DK2534751T3 (en) 2010-02-08 2010-02-08 PROCEDURE FOR REGULATING A MACHINE OR ELECTRIC LOAD SUPPLIED WITH ELECTRICAL ENERGY OVER A LONG CABLE
EP10703184.1A EP2534751B1 (en) 2010-02-08 2010-02-08 Method for controlling a machine or an electrical load supplied with electric power over a long line
US13/569,909 US8519664B2 (en) 2010-02-08 2012-08-08 Method for controlling a machine or an electrical load supplied with electric power over a long line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2010/051488 WO2011095225A1 (en) 2010-02-08 2010-02-08 Method for controlling a machine or an electrical load supplied with electric power over a long line

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/569,909 Continuation US8519664B2 (en) 2010-02-08 2012-08-08 Method for controlling a machine or an electrical load supplied with electric power over a long line

Publications (1)

Publication Number Publication Date
WO2011095225A1 true WO2011095225A1 (en) 2011-08-11

Family

ID=42797083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/051488 WO2011095225A1 (en) 2010-02-08 2010-02-08 Method for controlling a machine or an electrical load supplied with electric power over a long line

Country Status (9)

Country Link
US (1) US8519664B2 (en)
EP (1) EP2534751B1 (en)
AU (1) AU2010345002B2 (en)
BR (1) BR112012019646B1 (en)
CA (1) CA2789205C (en)
DK (1) DK2534751T3 (en)
MX (1) MX2012009158A (en)
RU (1) RU2550143C2 (en)
WO (1) WO2011095225A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015039682A1 (en) * 2013-09-18 2015-03-26 Statoil Petroleum As Voltage regulation for a subsea control system

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2697800B1 (en) 2011-04-12 2016-11-23 Southwire Company, LLC Electrical transmission cables with composite cores
JP6055461B2 (en) 2011-04-12 2016-12-27 ティコナ・エルエルシー Composite core for electric cable
US8624530B2 (en) * 2011-06-14 2014-01-07 Baker Hughes Incorporated Systems and methods for transmission of electric power to downhole equipment
CN103777114B (en) * 2014-01-26 2016-11-23 浙江大学 A kind of single-ended band shunt reactor transmission line of electricity single-phase permanent fault recognition methods
KR102213786B1 (en) * 2014-10-15 2021-02-08 엘에스일렉트릭(주) Apparatus for restarting medium-voltage inverter
NO340118B1 (en) * 2015-07-03 2017-03-13 Fmc Kongsberg Subsea As Method and a system for operating a variable speed motor
US10044315B2 (en) * 2016-07-15 2018-08-07 Onesubsea Ip Uk Limited Systems and methods for mitigating resonance in long cable drives
EP3337290B1 (en) * 2016-12-13 2019-11-27 Nexans Subsea direct electric heating system
US10778124B2 (en) * 2017-02-24 2020-09-15 General Electric Company Integrated monitoring of an electric motor assembly
EP3641128B1 (en) * 2018-10-17 2024-05-29 ABB Schweiz AG Method, computer program and control system of controlling a motor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4731688A (en) * 1986-04-08 1988-03-15 Asea Ab Range limitation for a protection device in a power supply network
JPS63314134A (en) * 1987-06-12 1988-12-22 Mitsubishi Electric Corp Generator voltage regulator
JPH05122806A (en) 1991-10-25 1993-05-18 Toshiba Syst Technol Kk Controller for converter
US20070124093A1 (en) * 2005-11-05 2007-05-31 Myongji University Industry And Academia Cooperation Foundation Method for locating line-to-ground fault point of underground power cable system
US20090256519A1 (en) 2008-03-12 2009-10-15 Baker Hughes Incorporated System, Method and Program Product For Cable Loss Compensation In An Electrical Submersible Pump System

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3500132A (en) * 1966-12-19 1970-03-10 Combustion Eng Electric circuit for transmission of power and information by common lines
FR1560518A (en) * 1968-01-24 1969-03-21
JP3284589B2 (en) * 1992-06-01 2002-05-20 株式会社日立製作所 Transmission line protection method and protection relay device
US5438502A (en) 1992-12-22 1995-08-01 Rozman; Gregory I. VSCF system with voltage estimation
US5610501A (en) * 1995-02-01 1997-03-11 Westinghouse Electric Corporation Dynamic power and voltage regulator for an ac transmission line
JPH09230945A (en) 1996-02-28 1997-09-05 Fuji Electric Co Ltd Output voltage controller
US5754035A (en) * 1997-01-14 1998-05-19 Westinghouse Electric Corporation Apparatus and method for controlling flow of power in a transmission line including stable reversal of power flow
JP3982232B2 (en) 2001-10-25 2007-09-26 株式会社日立製作所 Sensorless control device and control method for synchronous generator
RU2302073C1 (en) * 2005-10-10 2007-06-27 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования "ИВАНОВСКИЙ ГОСУДАРСТВЕННЫЙ ЭНЕРГЕТИЧЕСКИЙ УНИВЕРСИТЕТ им. В.И. Ленина" Electric drive
US7365511B2 (en) 2006-09-12 2008-04-29 Hamilton Sundstrand Corporation Methods to control high speed electric machines having a front-end EMI filter attached

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4731688A (en) * 1986-04-08 1988-03-15 Asea Ab Range limitation for a protection device in a power supply network
JPS63314134A (en) * 1987-06-12 1988-12-22 Mitsubishi Electric Corp Generator voltage regulator
JPH05122806A (en) 1991-10-25 1993-05-18 Toshiba Syst Technol Kk Controller for converter
US20070124093A1 (en) * 2005-11-05 2007-05-31 Myongji University Industry And Academia Cooperation Foundation Method for locating line-to-ground fault point of underground power cable system
US20090256519A1 (en) 2008-03-12 2009-10-15 Baker Hughes Incorporated System, Method and Program Product For Cable Loss Compensation In An Electrical Submersible Pump System

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015039682A1 (en) * 2013-09-18 2015-03-26 Statoil Petroleum As Voltage regulation for a subsea control system
GB2537482A (en) * 2013-09-18 2016-10-19 Statoil Petroleum As Voltage regulation for a subsea control system
GB2537482B (en) * 2013-09-18 2020-07-01 Equinor Energy As Voltage regulation for a subsea control system

Also Published As

Publication number Publication date
US8519664B2 (en) 2013-08-27
DK2534751T3 (en) 2014-01-27
RU2012136910A (en) 2014-03-20
BR112012019646A2 (en) 2016-05-03
AU2010345002A1 (en) 2012-08-02
BR112012019646B1 (en) 2019-09-03
EP2534751B1 (en) 2013-10-30
RU2550143C2 (en) 2015-05-10
CA2789205C (en) 2016-08-09
AU2010345002B2 (en) 2015-09-24
EP2534751A1 (en) 2012-12-19
MX2012009158A (en) 2012-09-21
US20120319628A1 (en) 2012-12-20
CA2789205A1 (en) 2011-08-11

Similar Documents

Publication Publication Date Title
US8519664B2 (en) Method for controlling a machine or an electrical load supplied with electric power over a long line
US9203342B2 (en) Subsea measurement and monitoring
Viholainen et al. Energy-efficient control strategy for variable speed-driven parallel pumping systems
Wang et al. Low-switching-loss finite control set model predictive current control for IMs considering rotor-related inductance mismatch
WO2022007680A1 (en) Control system for oil/water-submersible system
Grynning et al. Tyrihans subsea raw seawater injection system
US10291164B2 (en) Method and a system for operating a variable speed motor
Jabłoński et al. Industrial implementations of control algorithms for voltage inverters supplying induction motors
Bakman et al. Efficiency control for adjustment of number of working pumps in multi-pump system
Iudin et al. Electrical submersible pump complex model for sensorless parameters observing
EP3006949B1 (en) Method and arrangement for determining leakage inductances of double fed induction generator
Rocha et al. Mitigating oscillations in hydraulic pumping systems by using a supplementary damping controller
Niestrój et al. Study of adaptive proportional observer of state variables of induction motor taking into consideration the generation mode
JP2014214711A (en) Fluid device
Kolesnikov et al. A digital model for evaluating the thermal behavior of power cable couplings
Nivelo et al. Evaluating voltage drop snapshot and time motor starting study methodologies—An offshore platform case study
JP2016086480A (en) Fluid system
JP2006059986A (en) Method for monitoring natural-energy use electric power generation
Soares et al. Feasibility Analysis of Subsea DC Distribution Grid for Oil Processing Projects
Svetti et al. Practical guidelines for oil & gas plant design against sub-synchronous torsional interaction phenomena
Leforgeais et al. POWER INTERCONNECTION BETWEEN TWO EXISTING DEEP-WATER FPSOs-A KEY ENABLER FOR PRODUCTION INCREASE
US20200127590A1 (en) Method Of Controlling A Motor
Germanov Design of the sensorless pressure control system for a centrifugal pump
Lin et al. Parameters setting and tuning for transition to a digital-based excitation system
Chryssostomidis et al. Quarterly Report On the Contributions from MIT To the Electric Ship Research and Development Consortium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10703184

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010703184

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010345002

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2010345002

Country of ref document: AU

Date of ref document: 20100208

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2789205

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/009158

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2012136910

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012019646

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012019646

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120806