WO2011093559A1 - Composition for the prevention or treatment of gastric cancer containing ursodeoxycholic acid as an active ingredient - Google Patents

Composition for the prevention or treatment of gastric cancer containing ursodeoxycholic acid as an active ingredient Download PDF

Info

Publication number
WO2011093559A1
WO2011093559A1 PCT/KR2010/005080 KR2010005080W WO2011093559A1 WO 2011093559 A1 WO2011093559 A1 WO 2011093559A1 KR 2010005080 W KR2010005080 W KR 2010005080W WO 2011093559 A1 WO2011093559 A1 WO 2011093559A1
Authority
WO
WIPO (PCT)
Prior art keywords
gastric cancer
udca
apoptosis
cells
caspase
Prior art date
Application number
PCT/KR2010/005080
Other languages
French (fr)
Korean (ko)
Inventor
한송이
임성철
Original Assignee
조선대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 조선대학교산학협력단 filed Critical 조선대학교산학협력단
Publication of WO2011093559A1 publication Critical patent/WO2011093559A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/575Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of three or more carbon atoms, e.g. cholane, cholestane, ergosterol, sitosterol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the present invention relates to a composition for preventing or treating gastric cancer, which contains ursodeoxycholic acid (UDCA) as an active ingredient.
  • UDCA ursodeoxycholic acid
  • Stomach cancer is the highest cancer morbidity and cancer mortality in the world and is the most common cause of death from cancer in Korea, Japan, China, Russia, Central Europe, South and Central America, Hong Kong and Scandinavia. More than 16% of Korean and Japanese men are dying from stomach cancer.
  • the incidence rate of gastric cancer is higher than that of other continental races. It is reported to come from a difference.
  • the daily salt intake is about 20g, which is twice as much as that of Westerners.
  • the incidence of gastric cancer is reported in Korea, Japan, Finland, and Iceland, which have a habit of eating salted fish.
  • genetic causes other than eating habits are involved, and it is known that the incidence of gastric cancer is high in the first generation offspring of gastric cancer patients.
  • the symptoms of gastric cancer show a variety of symptoms ranging from no symptoms to severe pain, the symptoms of gastric cancer does not have any characteristics but general digestive symptoms, most of the early symptoms of stomach cancer And, even if the symptoms are relatively mild to feel a slight indigestion or upper abdominal discomfort, most people are easy to overlook this, causing the death rate of stomach cancer.
  • Surgical surgery is effective for removing tumor tissue or surrounding tissue but cannot be used to treat tumors in difficult-to-operate areas such as the spine or to disperse diffuse tumors scattered throughout the body, such as leukemia.
  • Chemotherapy can treat cancer by disrupting cell replication or cell metabolism, but can be used for the treatment of various tumors, but it also acts on normal cells, causing serious side effects. In particular, it acts on hematopoietic organs in which cell division and cell metabolism are active, causing serious side effects that weaken the patient's immune system.
  • ursodeoxycholic acid (3 ⁇ , 7 ⁇ -dihydroxy-5 ⁇ -cholanoic acid, hereinafter referred to as 'UDCA') has been used for liver, biliary system diseases in Korea, China, and Japan for a long time.
  • 'UDCA' ursodeoxycholic acid
  • the UDCA has a function of cleaning the microbilitery in vivo, thus releasing wastes and toxic bile acids in the microbilitery, stabilizing and protecting hepatocytes, increasing hepatic blood flow, inhibiting cholesterol absorption and biosynthesis, It has the effect of dissolving gallstones, inhibiting production, and pharmacological activity to normalize immune activity. It is a drug used with major clinical indications for gallstones and biliary tract diseases, chronic liver disease and liver function improvement, indigestion after small intestine resection and fatty liver. .
  • the mechanism of cholesterol gallstone dissolving effect of UDCA decreases the activity of HMG CoA reductase, an enzyme required for cholesterol synthesis in the liver, reduces cholesterol secretion into bile, increases 7 ⁇ -hydroxylase activity, and absorbs cholesterol in the intestine. It is known to act to lower.
  • administration of UDCA transforms cholesterol-saturated bile into unsaturated bile. Desaturation of bile resulting from the administration of UDCA increases the ability to transport cholesterol and is a highly soluble multilamellar liposome in bile. (multilamellar liposome (mesophase)) forms liquid crystals in bile saturated with cholesterol. Therefore, gallstones are dissolved in bile supersaturated with cholesterol after UDCA due to the formation of liquid crystals.
  • UDCA is widely used as a therapeutic agent for liver-related diseases, and recently, it has been found that UDCA can effectively treat rectal cancer (Korean Patent Publication No. 2008-0061327), and is induced by environmental hormones including dioxin. It has also been reported that there is an effect that can suppress the toxicity (Republic of Korea Patent No. 0368936).
  • an object of the present invention is to provide a composition for preventing or treating gastric cancer, which comprises ursodeoxycholic acid (UDCA) or a salt thereof as an active ingredient.
  • UDCA ursodeoxycholic acid
  • It is another object of the present invention to provide an apoptosis inducer composition comprising urousodeoxycholic acid (UDCA) or a salt thereof as an active ingredient.
  • UDCA urousodeoxycholic acid
  • UDCA urousodeoxycholic acid
  • the present invention provides a composition for the prevention or treatment of gastric cancer comprising ursodeoxycholic acid (UDCA) or a salt thereof as an active ingredient.
  • UDCA ursodeoxycholic acid
  • the urousodeoxycholic acid (UDCA) or salts thereof may have anticancer activity by inducing apoptosis of gastric cancer cells to induce cell death.
  • the apoptosis is by the treatment of urosodeoxycholine acid (UDCA) or salts thereof, promoting the activity of caspase (gaspase) in gastric cancer cells; Promoting activity or expression of cell death receptors; Translocation of the protein kinase C (PKC) ⁇ protein from the cytosol to the membrane; Or by the generation of reactive oxygen species (ROS).
  • UDCA urosodeoxycholine acid
  • PDC protein kinase C
  • ROS reactive oxygen species
  • the caspase may be selected from the group consisting of caspase-3, caspase-6, caspase-8, caspase-9, and combinations thereof.
  • the cell death receptor may be selected from the group consisting of DR3, DR4, DR5, DR6, FAS, TNFR and combinations thereof.
  • promoting the activity or expression of the cell death receptor may be to induce apoptosis in gastric cancer cells by promoting the activity of FADD or RIP1 protein.
  • the generation of reactive oxygen species (ROS) or the activity of PKC (protein kinase C) ⁇ protein may be controlled by a lipid raft located in the cell membrane.
  • ROS reactive oxygen species
  • PKC protein kinase C
  • the urousodeoxycholic acid may be included in 50 ⁇ M ⁇ 5,000 ⁇ M relative to the total weight of the composition.
  • the present invention also provides an apoptosis inducer composition comprising urousodeoxycholic acid (UDCA) or a salt thereof as an active ingredient.
  • UDCA urousodeoxycholic acid
  • the composition may induce apoptosis in gastric cancer cells.
  • the present invention also provides a method for the prevention or treatment of gastric cancer, comprising administering urousodeoxycholic acid (UDCA) or a salt thereof to a subject in need thereof, including a human, with a pharmaceutically acceptable carrier. to provide.
  • UDCA urousodeoxycholic acid
  • the carrier may be one or more selected from the group consisting of diluents, lubricants, binders, disintegrants, sweeteners, stabilizers and preservatives.
  • Urosodeoxycholine acid or a salt thereof according to the present invention promotes the activity of caspase in gastric cancer cells, promotes the activity or expression of apoptosis receptors, promotes the activity of PKC and the activity of reactive oxygen species (ROS). Since it promotes production and ultimately induces apoptosis of gastric cancer cells, it can be usefully used for preventing or treating gastric cancer.
  • ROS reactive oxygen species
  • Figure 1A shows the concentration of UDCA and DCA (0, 250, 500, 1000 ⁇ M) for each cell line of gastric cancer cell lines snu-601, snu-638, snu-1 and snu-216, respectively, MTT assay It is a graph showing the comparison of the cell survival rate, apoptotic body percent and LDH activity percent through each,
  • Figure 1B shows the photo of the colony formed on the plate after the treatment of UDCA at each concentration for the gastric cancer cell lines
  • 1C is a graph showing counting the number of colonies formed.
  • FIG. 2A shows Z-DEVD-FMK, Z-VEID-FMK, Z-IETD-FMK, Z-LEHD-FMK, or Z-VAD-FMK, inhibitors of caspase 3, 6, 7, and 8 for gastric cancer cell lines
  • Figure 2B after treating 1000 ⁇ M UDCA to gastric cancer cell line, The results of measuring the activation of caspase-8 using a FLICE / Caspase 8-colorimetric assay kit are shown
  • FIG. 2C is first treated with Z-IETD-FMK in gastric cancer cell lines, followed by 1000 ⁇ M UDCA treatment.
  • Western blot shows the results of confirming the amount of protein cut caspase 3, 6 and PARP.
  • FIG. 3A shows siRNA FAS, siRNA DR4, siRNA DR5, or siRNA Control for gastric cancer cell lines snu-601 and snu-638 after transduction through AMAXA method, followed by 1000 ⁇ M UDCA, followed by HO / PI double
  • Figure 3B shows the result of confirming the protein amount of caspase 3, 6 and PARP cut through Western blot
  • Figure 3C is FLICE / The results of measuring the caspase-8 activation using the caspase 8-colorimetric assay kit are shown.
  • Figure 4A is transduced siRNA FADD, siRNA RIP1 or siRNA Control for the gastric cancer cell lines snu-601 and snu-638 through the AMAXA method, and then treated with 1000 ⁇ M UDCA, and then killed cells by HO / PI double staining
  • Figure 4B shows the result of measuring the degree (nucleus fragmentation or condensation of the nucleus)
  • Figure 4B shows the result of confirming the amount of protein of caspase 3, 6 and PARP, FADD and RIP1 cut through Western blot
  • Figure 4C The results of measuring caspase-8 activation using the FLICE / Caspase 8-color assay kit are shown.
  • Figure 5A is treated with 1000 ⁇ M UDCA for gastric cancer cell lines snu-601 and snu-638, followed by incubation with time, and then fractionated the cytosolic protein and organ / membrane protein fractions from the cells, respectively.
  • Western blot shows the results of confirming the amount of PKC ⁇ , PKC ⁇ , PKC ⁇ , and PKC ⁇ protein
  • Figure 5B is treated with a PKC inhibitor such as rottlerin (Rottlerin), and then HO / PI double staining method
  • the degree of cell death (nucleus fragmentation or nuclear condensation) and Western blot showed the expression level of DR5 protein and the amount of cut caspase 3 and 6 protein, and FIG.
  • 5C shows siRNA for each gastric cancer cell line.
  • PKC ⁇ or siRNA Control was transduced via AMAXA method, treated with 1000 ⁇ M UDCA, followed by HO / PI double staining to confirm the degree of cell death (nucleus fragmentation or nuclear condensation) and Western blot Via PKC The expression levels of the ⁇ and DR5 proteins and the amounts of the caspase 3, 6 and PKC ⁇ proteins that were truncated are shown.
  • FIG. 6A shows the results of measuring the production of ROS by treating 1000 ⁇ M UDCA against gastric cancer cell lines snu-601 and snu-638 and calculating the ratio of DCFH-DA / HO per cell after 3 hours or 5 hours.
  • 6B shows treatment of ROS inhibitors, 10 mM NAC, 100 ⁇ M BHA, 10 mM Tiron, 2 ⁇ M DPI, or 1000 U catalase, respectively, followed by 1000 ⁇ M UDCA treatment and HO / PI double staining for gastric cancer cell lines.
  • Degree nucleus fragmentation or nuclear condensation
  • FIG. 6C measures the amount of caspase-3, 6, and PARP protein truncated via Western blot for gastric cancer cell lines treated as in FIG. 6B above. The results are shown.
  • FIG. 7A shows that the snu-601 gastric cancer cell line was treated with 1000 ⁇ M UDCA in the presence or absence of 10 mM NAC or 100 ⁇ M BHA, respectively, and then the expression level of DR5 was confirmed by Western blotting
  • FIG. 7B is the snu-638 gastric cancer cell line. After treatment with 1000 ⁇ M UDCA in the presence or absence of 10 mM NAC or 100 ⁇ M BHA, respectively, the expression level of DR5 was confirmed by Western blot.
  • FIG. 8A shows pretreatment of 10 mM NAC to snu-601 gastric cancer cell line followed by 1000 ⁇ M UDCA and fractionation of cytosolic and organ / membrane protein fractions from cells, followed by Western blot for PKC ⁇ .
  • Figure 8B shows the measurement of the expression level
  • Figure 8B shows the measurement of the expression level of PKC ⁇ by performing the same experiment as in Figure 8A for the snu-638 gastric cancer cell line.
  • FIG. 10A shows that MBCD was previously treated in gastric cancer cell lines snu-601 and snu-638, and treated with 1000 ⁇ M UDCA, respectively, and cell viability was obtained through MTT assay, and the degree of cell death through HO / PI double staining (nucleus) Fragmentation or condensation of the nucleus),
  • FIG. 10B shows FLICE / Caspase 8-coloration, including the results of measuring the expression level of DR5 and the amount of caspase-3, 6, and PARP protein truncated by Western blot. The results of measuring the caspase-8 activation using the assay kit are shown.
  • FIG. 11A shows that 1 mM MBCD was pretreated with gastric cancer cell lines snu-601 and snu-638, and treated with 1000 ⁇ M UDCA, respectively, followed by fractionation of cytosolic protein and organ / membrane protein fractions from cells. , Western blot confirmed the amount of PKC ⁇ protein
  • Figure 11B is pre-treated with gastric cancer cell lines snu-601 and snu-638 MBM of 1mM or 2mM, and treated with 1000 ⁇ M UDCA, respectively, DCFH per cell
  • the result of ROS generation was measured by calculating the ratio of -DA / HO.
  • FIG. 12A and 12B show subcutaneous injection of 5 ⁇ 10 6 cells / 200 ul of snu-601 cells into the side of 6 week old Athymic balb / c nude mice, and the experimental group was treated with UDCA solution (150 mg / kg / day). , 6days / week), the control group to the control group (vehicle) by intraperitoneal injection as a result of analyzing the growth of xenograft tumor in vivo,
  • Figure 12A shows the size of the tumor (volume) formed on the side of the nude mouse It is a photograph
  • FIG. 12B is a result graph which shows the size of the tumor of the experimental group and a control group from the 14th to 33rd day. Statistical significance was confirmed by paired T-test.
  • the present invention is characterized by providing a composition for preventing or treating gastric cancer comprising ursodeoxycholic acid (UDCA) or a salt thereof as an active ingredient.
  • UDCA ursodeoxycholic acid
  • the pharmacologically active ingredient of the composition for preventing or treating gastric cancer may be the ursodeoxycholic acid (UDCA) compound, and the urusdeoxycholic acid compound is a salt, preferably pharmaceutical It can also be used in the form of acceptable salts.
  • UDCA ursodeoxycholic acid
  • the salt is preferably an acid addition salt formed by a pharmaceutically acceptable free acid, and an organic acid and an inorganic acid may be used as the free acid.
  • the organic acid is not limited thereto, citric acid, acetic acid, lactic acid, tartaric acid, maleic acid, fumaric acid, formic acid, propionic acid, oxalic acid, trifluoroacetic acid, benzoic acid, gluconic acid, metasulfonic acid, glycolic acid, succinic acid, 4-toluenesulfonic acid, Glutamic acid and aspartic acid.
  • the inorganic acid may include, but is not limited to, hydrochloric acid, bromic acid, sulfuric acid, and phosphoric acid.
  • Urusodeoxycholic acid is a component present in the bile of the animal in general, it can be used that is isolated from the bile of the animal or prepared by chemical synthesis known in the art, commercially available urusode Any of oxycholic acid can be used.
  • the separation can be obtained from the bile using the method of extracting and separating conventional materials.
  • the extraction can be extracted using a suitable solvent known in the art, that is, water or an organic solvent, preferably purified water, methanol (methanol), ethanol (ethanol), propanol, isopropanol ), Butanol, acetone, ether, benzene, chloroform, ethyl acetate, methylene chloride, hexane and cyclohexane
  • a suitable solvent known in the art, that is, water or an organic solvent, preferably purified water, methanol (methanol), ethanol (ethanol), propanol, isopropanol ), Butanol, acetone, ether, benzene, chloroform, ethyl acetate, methylene chloride, hexane and cyclohexane
  • a suitable solvent known in the art, that is, water or an organic solvent, preferably purified water,
  • separation and purification of urusodeoxycholic acid extracted using the extraction solvent is performed by column chromatography and high-speed liquid filled with various synthetic resins such as silica gel or activated alumina.
  • Chromatography HPLC; High Performance Liquid Chromatography
  • the method of extracting and separating and purifying the active ingredient is not necessarily limited to the above-mentioned methods, and any method used in the art may be used. It is possible.
  • the present invention is characterized by the first time that the urusodeoxycholic acid (UDCA) or salts thereof have the activity to prevent or treat gastric cancer.
  • UDCA urusodeoxycholic acid
  • urosodeoxycholine acid or a salt thereof of the present invention is characterized by having anticancer activity by inducing apoptosis in gastric cancer cells.
  • apoptosis control therapy is recently used to block the pathological growth of unregulated cells such as cancer cells.
  • Existing extensive necrosis drug therapy for diseases such as cancer Cytotoxic enzymes (e.g., lysozyme) leaked by killing pathological cells and destroying cell membranes of pathological cells show cytotoxicity to surrounding normal cells, which inevitably leads to excessive inflammation, resulting in high side effects. There is this.
  • cell apoptosis control therapy by apoptosis induces spontaneous killing of pathological cells or strongly inhibits the growth of these cells, which can reduce the inflammatory side effects induced by cell death of cancer cells compared to cell necrosis. There is this.
  • Apoptosis is genetically controlled programmed cell death, which refers to active cell death, and the apoptosis process requires energy and exhibits characteristic cell morphology.
  • the cell death is determined within the cell, and the cell death process is performed.
  • the cell shows characteristic biochemical and morphological changes, and when the cell death progresses, the cell contracts.
  • the cell membrane becomes bubble-like (blebbing), and the nucleus is condensed, the DNA in the nucleus is cut into small oligonucleotide fragments, forming an apoptotic body.
  • the apoptotic body thus formed undergoes a series of processes in which phagocytosis by macrophages causes cell death.
  • Apoptosis can also be broadly divided into two pathways, one is the mitochondrial regulatory endogenous pathway and the other is the exogenous pathway.
  • Exogenous pathways involve the assembly of a death inducing signaling complex (DISC) from activation of a death receptor (eg, FADD) induced by a ligand and thus the activation of the protease caspases.
  • DISC death inducing signaling complex
  • FADD death receptor
  • caspase 8 and 10 activates cleavage of caspase-3 and proceeds downstream of the caspase chain reaction pathway (U. Sartorius et al., Chembiochem 2 (2001) 20-29).
  • caspase-8 activates Bid and translocates it to the mitochondria, which releases cytochrome c into the cytoplasm.
  • Cytochrome c interacts with Apaf-1 and Apaf-1 activates caspase-9, which in turn activates caspase dependent pathways (EA Slee et al, J. Cell Biol. 144 (1999) 281-292) .
  • Mitochondria play a key role as modulators in the endogenous apoptosis pathway, where cellular damage is mediated by DNA damage, hypoxia, cellular stress or chemotherapeutic agents (A. Ashkenazi, Nature Reviews Cancer 2 (2002), 420-430). Disruption of the mitochondria leads to the release of SMAC / DIABLO and cytochrome c into the cytoplasm.
  • UDCA urosodeoxycholine acid
  • UDCA urosodeoxycholine acid
  • the initiation of the cell death mechanism is activated from the reaction of the death receptor and the ligand, and then the adapter associated with the cell death to the death receptor.
  • Factors are recruited and involved in oligomerization (Krammer PH. CD95 (APO-1 / Fas) -mediated apoptosis: Live and let die. Adv Immunol . 71: 163-210,1999).
  • TRAIL TNF-associated apoptosis-inducing ligand
  • TRAIL TNF-related apoptosis-inducing ligand
  • DR5 TNF-related apoptosis-inducing ligand
  • TNF Tumor Necrosis Factor
  • PKC protein kinase C
  • PKC protein kinase C
  • PKC also increases the transcription of certain genes.
  • the activity of PKC by DAG in secondary messengers produced by hydrolysis of phosphatidylinositol may be similarly expressed by the binding of monoacylglycerol or phorbol esters.
  • Phorbol esters have the function of a cancer promoter in animal cells and are known to induce the growth of cancer cells.
  • PKC is known to play an important role in the production of free radicals (ROS) in the cell
  • ROS free radicals
  • the production of free radicals such as superoxide anion in the cell is a flavoprotein-containing enzyme NADPH oxidase, It is known to occur through xanthine oxidase, NO synthase, and mitochondrial electron transport system.
  • PKCs are subdivided into three different subfamily and there are more than 12 isomeric forms in mammalian cells.
  • the activity of PKC ⁇ and migration into the cell membrane act to induce the initiation of apoptosis in cells, which is responsible for promoting the activity of caspase 3 and lower signal transduction to induction of apoptosis.
  • Known Brodie C and Blumberg PM.Regulation of cell apoptosis by protein kinase c ⁇ . Apoptosis . 8: 19-27,2003).
  • the present inventors analyzed whether caspases, which are cell death factors, are involved in apoptosis induction by UDCA.
  • UDCA a caspase inhibitor in a gastric cancer cell line
  • Treatment with UDCA and confirming the induction of apoptosis of cells showed that treatment with caspase inhibitors inhibited apoptosis by UDCA compared to the absence of treatment (see FIG. 2A). It has been shown that there is activity to increase (see FIG. 2B), and when the inhibitor of caspase 8 was treated, it was found that cleavage of caspase 3, 6 and PARP by activation of apoptosis did not occur (FIG. 2C). Reference).
  • the UDCA of the present invention can induce apoptosis by activating caspases in gastric cancer cells, which may be, but are not limited to, caspases-3, 6, 8 and 9, preferably Apoptosis can be induced by activating caspase-8 and cascaded caspases 3, 6 and 9 present downstream thereof.
  • the UDCA of the present invention is characterized by having an action of promoting the expression or activity of apoptosis receptors in gastric cancer cells, the apoptosis receptor is not limited thereto, DR3, DR4, DR5, DR6, FAS and TNFR It may include.
  • the expression of DR5 was increased when UDCA was treated to gastric cancer cells, whereas siRNA was used to suppress the expression of DR4, DR5 and FAS in gastric cancer cells. Subsequently, treatment with UDCA showed that apoptosis by UDCA was suppressed (see FIGS. 3A-3C).
  • UDCA when apoptosis is induced by UDCA in gastric cancer cells, to investigate the effect of UDCA on the expression or activity of cell death factors, ie FADD and RIP1, using siRNA After suppressing the expression of the gene, treatment of gastric cancer cells with UDCA showed that apoptosis was reduced compared to the control (see FIGS. 4A and 4B).
  • the UDCA of the present invention promotes expression or activity of apoptosis receptors in gastric cancer cells, and activation of such apoptosis receptors promotes apoptosis by promoting the activity of adapter factors (eg, FADD or RIP1) associated with cell death.
  • adapter factors eg, FADD or RIP1
  • the present inventors examined whether UDCA can activate PKC in a cell death mechanism of gastric cancer cells by UDCA, and according to an embodiment of the present invention, after treating UDCA to gastric cancer cell lines, cytoplasmic fraction and membrane of cells The fractions were extracted and Western blots were used to confirm the positional shifts of the PKC isomers in the cells. In the case of PKC ⁇ , the migration from the cytosol to the membrane by UDCA was confirmed (see FIG. 5A).
  • the present inventors found that the activity of the death receptor DR5 and caspases in the apoptosis of cancer cells by UDCA is regulated by PKC ⁇ , so that PKC ⁇ plays a very important role in the initiation of apoptosis of cancer cells by UDCA. I could see that.
  • ROS reactive oxygen species
  • ROS reactive oxygen species
  • radical a singlet oxygen, hydrogen, as well as radicals such as superoxide anion radicals (O2-), hydroxyl radicals (OH.), Peroxyl radicals (ROO), and the like. It refers to all non-radical materials such as peroxide, etc. Its variety is very diverse, and the reaction time of ROS is very short while the reaction force is very large, so that it is possible to denature various proteins, lipid peroxidation and DNA in vivo.
  • ROS is involved in the anticancer activity of gastric cancer of UDCA.
  • UDCA when UDCA was treated to gastric cancer cells, the production of ROS increased and cell death was increased.
  • treatment with ROS scavenger reduced ROS production and decreased cell death (see FIGS. 6A to 6C).
  • FIGS. 7A, 7B, 8A, and 8B Expression of DR5 by UDCA and PKC ⁇ activity (from cytosol to membrane) It can be seen that the movement of is also regulated by ROS production (see FIGS. 7A, 7B, 8A, and 8B), and the fact that UDCA has an effect of inducing ROS production was first identified in the present invention.
  • cholesterol present in the cell membrane of eukaryotic cells is a component that plays a very important role in the composition, maintenance and fluidity of the membrane, such cholesterol is not formed in a uniform form in the cell membrane but is formed in a dense form at a specific site, This site in the stomach is referred to as "lipid raft".
  • these lipid raft domains contain relatively high amounts of cholesterol and glycosphingolipids, and include signal transduction proteins such as Src-family kinase, hetero-trimeric G protein subunits, and receptor tyrosine kinase to activate the phosphorylation chain reaction.
  • signal transduction proteins such as Src-family kinase, hetero-trimeric G protein subunits, and receptor tyrosine kinase to activate the phosphorylation chain reaction.
  • MBCD a reagent that removes cholesterol from lipid rafts and damages the structure of lipid rafts, in order to investigate whether lipid raft domains are involved in the death signal transmission process of cancer cells by UDCA, in particular, apoptosis.
  • UDCA death signal transmission process of cancer cells by UDCA
  • apoptosis by UDCA was observed, and MBCD treatment resulted in inhibition of caspases activity by UDCA, decreased expression of DR5 and ultimately suppressed apoptosis (FIG. 9, 10A and 10B).
  • the present inventors have found that the structure of the lipid raft domain present in the cell membrane during the apoptosis process of gastric cancer cells by the UDCA of the present invention acts as an important regulator of cell death signal transduction.
  • ursodeoxycholic acid (UDCA) of the present invention is effective in treating gastric cancer by inducing cell death in gastric cancer cells, and the gastric cancer cells in the present invention may include any gastric cancer cells. And for example snu-601, snu-638, snu-1 and snu-216.
  • the present invention can provide a composition for preventing or treating gastric cancer, which includes ursodeoxycholic acid (UDCA) or a salt thereof as an active ingredient.
  • UDCA ursodeoxycholic acid
  • the composition for preventing or treating gastric cancer may include a pharmaceutically effective amount of the urousodeoxycholic acid compound alone or may include one or more pharmaceutically acceptable carriers, excipients or diluents.
  • the pharmaceutically effective amount in the above means an amount sufficient to prevent, ameliorate and treat gastric cancer symptoms.
  • the pharmaceutically effective amount of urosodeoxycholic acid according to the present invention is 0.1 to 1,500 mg / day / kg body weight, preferably 0.5 to 900 mg / day / kg body weight.
  • the pharmaceutically effective amount may be appropriately changed depending on the degree of gastric cancer symptoms, the age, weight, health condition, sex, route of administration and duration of treatment of the patient.
  • pharmaceutically acceptable refers to a composition that is physiologically acceptable and does not normally cause an allergic reaction, such as gastrointestinal disorders, dizziness, or the like when administered to a human.
  • Examples of such carriers, excipients and diluents include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, acacia rubber, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methyl cellulose, Polyvinylpyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil.
  • fillers, anti-coagulants, lubricants, wetting agents, fragrances, emulsifiers and preservatives may be further included.
  • compositions of the present invention may be formulated using methods known in the art to provide rapid, sustained or delayed release of the active ingredient after administration to a mammal.
  • the formulations may be in the form of powders, granules, tablets, emulsions, syrups, aerosols, soft or hard gelatin capsules, sterile injectable solutions, sterile powders.
  • composition for preventing or treating gastric cancer symptoms according to the present invention may be administered through various routes including oral, transdermal, subcutaneous, intravenous or muscle, and the dosage of the active ingredient is determined by the route of administration, age, sex, weight and It may be appropriately selected depending on various factors such as the severity of the patient.
  • the composition for preventing or treating gastric cancer of the present invention can be administered in parallel with a known compound having the effect of preventing, improving or treating gastric cancer symptoms.
  • the present invention may provide a method for preventing or treating gastric cancer, comprising administering urosodeoxycholic acid to a subject in need thereof except a human with a pharmaceutically acceptable carrier.
  • a pharmaceutically acceptable carrier May be used at least one selected from the group consisting of diluents, lubricants, binders, disintegrants, sweeteners, stabilizers and preservatives.
  • the present invention can provide an apoptosis inducer composition comprising ursodeoxycholic acid (UDCA) or a salt thereof as an active ingredient, and the apoptosis inducer composition according to the present invention can induce apoptosis in gastric cancer cells.
  • UDCA ursodeoxycholic acid
  • the apoptosis inducer composition according to the present invention can induce apoptosis in gastric cancer cells.
  • cancer is caused mostly by an imbalance between cell death by apoptosis and cell proliferation by intracellular signal transduction mechanisms.
  • the signal transduction mechanisms involved in cell proliferation are activated, whereas cells related to apoptosis are activated. It is well known in the art that internal signal transduction is inhibited.
  • apoptosis inducers are effective in treating cancer by activating apoptosis in cancer cells and inducing planned cell death in cancer cells.
  • the apoptosis can be induced through any apoptosis activity mechanism occurring in the cell, and preferably, by the treatment of urosodeoxycholine acid (UDCA), caspase in gastric cancer cells (caspase) Promotion of activity); Promoting activity or expression of apoptosis receptors; Translocation of the protein kinase C (PKC) ⁇ protein from the cytosol to the membrane; Or by the generation of reactive oxygen species (ROS).
  • UDCA urosodeoxycholine acid
  • caspase caspase in gastric cancer cells
  • ROS reactive oxygen species
  • gastric cancer prevention or treatment composition and apoptosis inducer composition comprising the urusodeoxycholic acid (UDCA) or a salt thereof according to the present invention as an active ingredient in an amount of 250 ⁇ M to 1000 ⁇ M based on the total weight of the composition. May be included.
  • UDCA urusodeoxycholic acid
  • Ursodeoxycholic acid was purchased from ICN Biomedical or Sigma, and Deoxycholic acid (DCA), Z-DEVD-FMK (caspase-3 inhibitor) ), Z-VEID-FMK (caspase-6 inhibitor), Z-IETD-FMK (caspase-8 inhibitor), Z-LEHD-FMK (caspase-9 inhibitor), Z-VAD-FMK (poly-caspase inhibitor) Ac-LEVD-CHO (caspase-4 inhibitor) was purchased from Calbiochem and used N-acetyl-L-cysteine (NAC), Butylated hydroxyanisole (BHA) and 1,2-dihydroxybenzene-3, 5-disulforic acid (Tiron) was purchased from Roche, Methyl- ⁇ -Cyclodextrin (MBCD), catalase and DPI were purchased from Sigma Aldrich, UO126, PD98059, Rottlerin,
  • Cleaved caspase-3 (Asp175) antibody, Cleaved caspase-6 (Asp315) antibody, p-MEK1 / 2 antibody, t-MEK1 / 2 antibody, p-EGFR antibody and t-EGFR antibody were P-ERK1 / 2 antibody, t-ERK1 / 2 antibody, FADD antibody, Caveolin-1, Goat anti-mouse IgG-HRP antibody and Goat anti-rabbit IgG-HRP were used from Cell signaling.
  • Antibodies were purchased from Santa Cruz Biotechnology Inc., and anti-PARP antibodies, RIP1 antibodies, PKC ⁇ , PKC ⁇ , PKC ⁇ and PKC ⁇ were those purchased from BD pharmingen.
  • DR4 antibody and DR5 antibody were used from ProSic, and Tubulin was used from Biogenex Laboratories.
  • the cells used in the following examples used human gastric cancer cell lines (snu-601, snu-638, snu-1 and snu-216 cells), and the cells were obtained from the Korea Cell Line Bank of Seoul National University (Korea) These cells were RPMI 1640 medium (Invitrogen, CA) supplemented with heat-inactivated 10% fetal bovine serum (FBS; Invitrogen, CA) and 1% penicillin-streptomycin (Welzen, Seoul, Korea). Incubated at 37 ° C. and at 5% carbon dioxide conditions.
  • FBS fetal bovine serum
  • penicillin-streptomycin Welzen, Seoul, Korea
  • the cells were also incubated overnight for drug exposure testing, then 5 ⁇ 10 6 cells / 20 cm 2 dish, 1.5 ⁇ 10 6 cells / 10 cm 2 dish, 5 ⁇ 10 5 cells / 6 cm 2 dish, 2 ⁇ 10
  • the cells were divided into 5 cells / 3.5 cm 2 dishes, and in the case of 24 well plates, cells were divided and used to have a cell number of 5 ⁇ 10 4 cells / well.
  • UDCA urosodeoxycholine acid
  • the MTT assay is treated with 0.5 ⁇ g / ml MTT to each of the cells cultured after treatment with UDCA and incubated for 4 hours, the cells of each plate collected and collected at room temperature for 5 minutes at 1000 rpm for 5 minutes Centrifuged. The medium was then removed, 750 ul of DMSO was added to dissolve the formazin crystal, and the absorbance was measured at 540 nm using an ELISA microplate reader (Pekin-Elmer). In this case, cells treated with nothing were used as a control group, and the cell viability of the cells was measured based on 100%.
  • HO Hoechst 33342
  • PI Propidium Iodide
  • HO / PI double staining using this principle is performed by dispensing snu-601, snu-638, snu-1 and snu-216 cells into 2 ⁇ 10 5 cells / 3.5 cm 2 dishes, respectively, followed by the same concentration as in the MTT assay.
  • UDCA and cells were stained by treating the cells with 1 ⁇ g / ml Hoechst 33342 and 5 ⁇ g / ml PI for each hour. Cells were then collected by treatment with trypsin, centrifuged at 1500 rpm for 10 minutes at a temperature of 4 ° C., and the cells collected at the bottom were washed with 1 ⁇ cold PBS solution and then centrifuged again as above conditions.
  • LDH lactate dehydrogenase
  • snu-601, snu-638, snu-1 and snu-216 cells are each dispensed into 5 ⁇ 10 4 cells / well in a 24-well plate, incubated in 500 ul RPMI medium, and the method described above.
  • UDCA was treated for each concentration in the same manner.
  • 50ul of LDH lysis buffer was added 30 minutes before the end of constant culture time of each cell to lyse the cells. Lysed cells were centrifuged at 600 g for 10 minutes, each supernatant was placed in a 24-well micro-dispensing plate of 10 ul, followed by 100 ul of LDH reaction mixture (mix of 200 ul of WST substrate mixture and 10.5 ml of LDH assay buffer).
  • the plate was stirred at room temperature for 30 minutes, and measured at a wavelength of 450 nm and a reference wavelength of 650 nm at a primary wavelength using a plate reader (Bio Rad, USA).
  • the percent release of LDH released from each cell was calculated by the following formula.
  • Toxicity [(Experimental LDH Release)-(Spontaneous LDH Release by Effector or Target) / (LDH Release Maximum)-(Voluntary LDH Release)] ⁇ 100%
  • LDH activity spontaneously released from control cells was less than 2% LDH release maximum measured from fully lysed cells.
  • the UDCA was treated for 12 hours at concentrations of 250, 500, and 1000 ⁇ M for the gastric cancer cell lines, respectively, followed by 37 ° C./5% CO. 2 Under conditions Incubate for 2 weeks and the colonies were stained with crystal violet to analyze the degree of colony formation through the colony formation assay. At this time, the measurement of the degree of colony formation was visually observed colonies formed on the plate (> 1mm).
  • gastric cancer cell lines were treated with UDCA and subjected to double staining using HO / PI, gastric cancer cells were confirmed to induce cell death by apoptosis, whereas cell necrosis in all gastric cancer cell lines was associated with apoptosis. Almost no induction was observed.
  • lactate dehydrogenase (LDH) release analysis showed that the activity of LDH was almost 1% or less in gastric cancer cell lines treated with UDCA.
  • LDH lactate dehydrogenase
  • cell death of gastric cancer cells by UDCA of the present invention is caused by apoptosis rather than cell necrosis.
  • UDCA induces cell death by apoptosis in gastric cancer cells, but does not induce cell death by cell necrosis.
  • DCA Deoxycholine acid
  • DCA treatment similarly to the treatment of gastric cancer cells with UDCA, DCA treatment also induced apoptosis of gastric cancer cells in a concentration-dependent manner, but HO / PI double staining showed 0.5 mM DCA.
  • Abnormal treatment resulted in a significant decrease in apoptotic body percentage compared to UDCA treatment.
  • DCA was shown to induce cell necrosis in gastric cancer cells, unlike UDCA.
  • gastric cancer cells were found to increase the release of LDH out of the cell membrane in a concentration-dependent manner.
  • DCA has an activity of inducing apoptosis of gastric cancer cells, but unlike UDCA, the mechanism of inducing cell death is achieved through cell necrosis, which is treated with UDCA in FIG. 1A.
  • Apoptotic bis are formed without LDH release, which is supported by the presence of LDH release when treated with DCA.
  • the present inventors performed the following experiment to confirm the effect of caspases on the apoptosis action by UDCA as UDCA confirms that the UDCA induces apoptosis in gastric cancer cells, resulting in cell death.
  • 5 ⁇ 10 5 gastric cancer cells were treated with 1000 ⁇ M of UDCA, and then cultured for 12, 18, 24 and 48 hours, respectively, and the cells were collected by centrifugation.
  • the cells were then lysed with 50 ul of cold cell lysis buffer, incubated on ice for 10 minutes and centrifuged at 4 ° C. for 1 minute at 10,000 g. Transfer the supernatant to a new tube, quantify using the Biorend Protein Assay Kit, dilute to 150 ul to 50 ul with cell lysis buffer, 50 ul of 2x reaction buffer (containing 10 mM DTT) and 5 ul of 4 mM IETD- pNA substrate was added to a final concentration of 200 ⁇ . The cells were incubated at 37 ° C. for 2 hours, and the absorbance was measured at 405 nm using a plate reader. As a control, untreated cells were used.
  • the present inventors treated Z-IETD-FMK (20 ⁇ M), an inhibitor of caspase 8, with the gastric cancer cell line for 1 hour in advance in order to confirm the importance of caspase 8 in apoptosis of gastric cancer cells by UDCA, 1000 ⁇ M of UDCA was treated to snu-601 (for 24 hours) and snu-638 cells (for 36 hours), respectively, and the amount of protein of cleaved caspase 3, cleaved caspase 6, cleaved PARP and tubulin was measured. Confirmed by performing blots.
  • apoptosis induction of gastric cancer cells by UDCA was shown to be inhibited when treated with caspase inhibitors, more specifically caspase-3 inhibitors (Z-DEVD-FMK) , Caspase-6 inhibitor (Z-VEID-FMK), caspase-7 inhibitor (Z-IETD-FMK), caspase-8 inhibitor (Z-LEHD-FMK), or pan-caspase inhibitor Z-VAD-FMK
  • caspase inhibitors more specifically caspase-3 inhibitors (Z-DEVD-FMK)
  • Caspase-6 inhibitor Z-VEID-FMK
  • caspase-7 inhibitor Z-IETD-FMK
  • caspase-8 inhibitor Z-LEHD-FMK
  • pan-caspase inhibitor Z-VAD-FMK pan-caspase inhibitor
  • caspase 8 The activity of caspase 8 was shown to increase in activity by treatment of UDCA (see FIG. 2B).
  • FIG. 2C western blot after treatment with caspase-8 inhibitor to confirm whether caspase 8 plays an important role, as shown in FIG. 2C, caspase 3, 6 , And sections with PARP cleaved were not observed. This is more evident compared to the Western blot results on the right side of FIG. 2A.
  • UDCA increases caspase 8 activity in the process of inducing apoptosis of gastric cancer cells by UDCA, thus inducing apoptosis of cells by a signal transduction system related to caspase 8 downstream.
  • caspase 8 and caspase 3, 6, and 9 were related to apoptosis of gastric cancer cells by UDCA.
  • the maximum activity of caspase-8 is observed at 24 hours in snu-601 but is delayed at this time in snu-638.
  • the time point for examining the apoptosis mechanism in snu-601 cells is 24 hours. 36 hours were selected for snu-536.
  • cell surface killing receptors such as DR4, DR5 and FAS play an important role in the induction of cell death in cancer cells.
  • the present inventors investigated whether cell surface killing receptors such as DR4, DR5 and FAS are involved in apoptosis induction of gastric cancer cells by UDCA.
  • siRNAs of cell surface killing receptors described in Table 1 below that is, siRNA (8ug) of each receptor was transferred to 1 ⁇ 10 6 cells of gastric cancer cells. Cells transfected with siRNA were incubated for 40 hours at 37 ° C. and 5% carbon dioxide, and then treated with 1000 ⁇ M of UDCA, respectively, and cultured for a period of time (24 or 36 hours). Then, caspase-8 activity, MTT assay and HO / PI double staining assay were performed in the same manner as described in the above examples.
  • siRNA sequence Cell surface death receptor siRNA sequence SEQ ID NO: siRNA FAS (S) 5'-GCUUAUACAUAGCAAUGGU (dtdt) -3 ' One siRNA FAS (AS) 5'-ACCAUUGCUAUGUAUAAGC (dtdt) -3 ' 2 siRNA RIP1 (S) 5'-CACACAGUCUCAGAUUGAU (dtdt) -3 ' 3 siRNA RIP1 (AS) 5'-AUCAAUCUGAGACUGUGUG (dtdt) -3 ' 4 siRNA FADD (S) 5'-CCAAGAUCGACAGCAUCGA (dtdt) -3 ' 5 siRNA FADD (AS) 5'-UCGAUGCUGUCGAUCUUGG (dtdt) -3 ' 6 siRNA DR4 (S) 5'-CUGGAAAGUUCAUCUACUU (dtdt) -3 ' 7 siRNA DR4 (AS) 5'-AAGUAGAUGAACU
  • apoptosis of cells by UDCA was found to decrease apoptosis when siRNA DR5 or siRNA FAS was introduced in snu-601 cells, whereas apoptosis was reduced by siRNA DR4. Turned out not to be.
  • siRNA DR4 or siRNA DR5 in snu-638 cells has been shown to reduce apoptosis
  • siRNA FAS has not been shown to reduce apoptosis.
  • 6 and PARP activity was the same result (see Fig. 3B).
  • the results indicate that the apoptosis induction process of gastric cancer cells by UDCA is regulated by DR5 and FAS in snu-601 cells and by DR4 or DR5 in snu-638 cells.
  • DR5 induces a regulatory action, ie the onset of apoptosis by UDCA, in both gastric cancer cells.
  • TRAIL When apoptosis is induced in cells, TRAIL generally binds to the death receptors DR4 and DR5, and FAS ligands are characterized by inducing FADD to bind to FAS through their killing effect domains. Caspase 8 is induced to bind, resulting in the assembly of apoptosis inducing signal complexes to the receptor.
  • the present inventors transduced siRNA FADD and siRNA RIP1 described in Example 3 into gastric cancer cells, and then treated and cultured with 1000 ⁇ M of UDCA. Then, the HO / PI double staining method, the Western blot and the caspase 8 activity measuring method described in the above examples were performed, respectively.
  • the apoptosis level of the cells by UDCA was reduced by siRNA FADD and siRNA RIP1 in both the cells of snu-601 and snu-638.
  • the activity of caspase 3, 6 and PARP was also reduced by siRNA FADD and siRNA RIP1.
  • the activity of caspase 8 was also shown to be reduced by siRNA FADD and siRNA RIP1.
  • PKC ⁇ is a type of PKC super family that is known to be involved in cell apoptosis, and when PKC ⁇ is transported to the cell membrane, mitochondria and nucleus, it activates specific mechanisms to activate caspase 3 and ultimately induce apoptosis, thus, The activity of PKC is reported to be due to redistribution of kinase at cytosol and other intracellular locations.
  • the present inventors treated 1000 ⁇ M of UDCA in gastric cancer cells, and then cultured each hour (0, 1, 2, 4, 8 and 12 hours).
  • Cellular proteins (fraction 1) and organ / membrane proteins (fraction 2) were extracted using the Proteoextract subcellular proteome extraction kit (Calbiochem), and PKC ⁇ , PKC ⁇ , PKC ⁇ , and PKC ⁇ cytosolic membranes were extracted by Western blot. The shift was analyzed.
  • the treatment of UDCA had the effect of shifting PKC ⁇ from the cytosol to the membrane, and the migration of PKC ⁇ to the cell membrane was performed prior to the apoptosis of cells by UDCA (snu-601, UDCA). 2-4 hours after treatment, and 4-8 hours after UDCA treatment in snu-638). In PKC ⁇ , PKC ⁇ and PKC ⁇ , no significant shift to the cell membrane was observed.
  • the present inventors treated 5 ⁇ M rottlerin, ie, PKC ⁇ inhibitors, and 1000 ⁇ M UDCA for gastric cancer cell lines, respectively, in order to confirm the degree of change in apoptosis by UDCA by treating the inhibitor of PKC ⁇ . Then, Western blot was performed using double staining of HO / PI and antibodies of caspases. Furthermore, after transduction into gastric cancer cells using siRNA PKC ⁇ , the expression level of caspases in the cells was confirmed by Western blot. It was. In addition, in addition to the above-described inhibitor of PKC ⁇ , roletrin, other PKC inhibitors, GF109203X (1 ⁇ M), and PKC ⁇ inhibitor GO6979 (1 ⁇ M) were also tested.
  • the present inventors have found that when UDCA is treated in gastric cancer cells, PKC ⁇ is induced by UDCA to the cell membrane and induces apoptosis through activation of cell death factors.
  • UDCA induces the expression of DR5 in gastric cancer cells through the above-described examples, to analyze the relationship between DR5 and PKC ⁇ in apoptosis by UDCA, 5 ⁇ M of rottlerin in gastric cancer cell lines.
  • Western blot was performed to investigate the expression level of DR5, and also after transducing siRNA PKC ⁇ into gastric cancer cell lines, treated with UDCA and Western blot Was performed to investigate the expression level of DR5 and PKC ⁇ .
  • ROS Reactive oxygen species
  • the present inventors treated 1000 ⁇ M of UDCA in gastric cancer cell lines to confirm whether ROS are involved in apoptosis of gastric cancer cells by UDCA, and then analyzed the degree of ROS generation after 3 hours or 5 hours of incubation. Double staining of PI was performed, and the expression level of caspases was confirmed by Western blot.
  • scavengers of ROS, NAC (10 mM), BHA (100 ⁇ M), Trion (10 mM), DPI (2 ⁇ M), and catalase (1000U), respectively were added to the gastric cancer cells through the same method as described above. The degree of apoptosis was measured.
  • the ROS assay was divided into 5 ⁇ 10 4 cell number of gastric cancer cells in a 24-well plate, incubated with 500ul RPMI medium, and then treated with UDCA and the cells were again cultured under the same conditions. Then, 50 ⁇ M of 2 ', 7'-dichlorofluorescein diacetate (DCFDA, Molecular probe) and 0.5 ⁇ g / ml of HO were added to each cell to confirm the generation of reactive oxygen species (ROS) and incubated for 1 hour. It was.
  • DCFDA reactive oxygen species
  • DCFDA was measured using a fluorocount model MQM200 plate reader (Packard instrument, USA) at an excitation wavelength of 490 nm and an emission wavelength of 530 nm, and the measurement of HO was performed at an excitation wavelength of 340 nm and of 425 nm. Measured at the emission wavelength. The amount of ROS produced was calculated by measuring the ratio of DCFDA / HO per well.
  • the inventors added NAC or BHA, which is a scavenger of UDCA and ROS, to the gastric cancer cells, respectively, and examined DR5 through Western blot to investigate how the expression of ROS is induced by UDCA. The expression level of was investigated.
  • DR5 induced by UDCA in gastric cancer cells was found to have decreased expression by NAC and BHA.
  • the results indicate that the expression of DR5 by UDCA is regulated by the production of ROS, and furthermore, ROS acts as another important regulator in the expression of DR5 by UDCA.
  • PKC ⁇ is known as a factor present downstream of the ROS generation mechanism. Therefore, the present inventors performed an experiment to determine whether the production of ROS regulates the trasnlocation of PKC ⁇ during apoptosis of gastric cancer cells by UDCA, that is, 1 hour treatment of 10 mM of NAC for gastric cancer cell lines for 1 hour.
  • the results indicate that the migration of PKC ⁇ by UDCA is regulated by the production of ROS, and PKC ⁇ is present downstream of the ROS production mechanism in the process of apoptosis by UDCA in gastric cancer cells. It was confirmed that the factor.
  • Cholesterol has been known to play a very important role in the composition, maintenance and fluidity of the membrane.
  • a cholesterol-rich microdomain also known as a lipid raft, plays an important role in signal transduction of apoptosis and is associated with plasma cholesterol associated with the formation of FAS-FADD, DR4 or DR5-FADD complexes and activation of caspase 8 It is known to play an important role in the change.
  • the present inventors used MBCD, a lipid raft deficient reagent, to investigate the relationship between apoptosis and lipid raft of gastric cancer cells by UDCA.
  • the gastric cancer cell line was treated with a vehicle or UDCA for 8 hours.
  • the gastric cancer cell line treated with 0.5 or 1 mM MBCD for 1 hour, and then treated with 1000 ⁇ M of UDCA, followed by incubation for 24 and 36 hours, respectively, MTT assay, HO / PI double staining method and caspase 8 activity
  • MTT assay MTT assay
  • HO / PI double staining method MTT assay
  • caspase 8 activity MTT assay
  • Example 7 confirmed that the lipid raft plays a very important role in the cell death mechanism of gastric cancer cells by UDCA, whether the lipid raft is also involved in the activity of the ROS / PKC ⁇ confirmed through the previous embodiment Investigated.
  • FIGS. 11A-11B the cytosolic migration of PKC ⁇ by UDCA to membranes in gastric cancer cells was shown to be inhibited due to the treatment of MBCD (see FIG. 11A), and through these results PKC ⁇ It can be seen that is a downstream event of lipid raft during apoptosis of cells.
  • ROS production assays showed that ROS production by UDCA in gastric cancer cells was reduced due to the treatment of MBCD (see FIG. 11B).
  • lipid raft is a function of DR5 by UDCA production of ROS and movement of PKC ⁇ from cytosol to cell membrane. It was found that it acts as a very important regulator of apoptosis in gastric cancer cells.
  • mice 6-week-old Athymic balb / c nude mice were purchased (Orien Bios, Korea) and snu-601 cells in the flank region of these mice. was injected ssikeul 5 ⁇ 10 6 gae / 200ul (subcutaneous injection). From the day after injecting gastric cancer cells (day 1), 10 mice per group were administered intraperitoneally with UDCA solution (150mg / kg / day, 6days / week) or carrier (volume) formed from day 14 was measured and the experiment was continued until day 33. Tumor size was expressed as relative value of mean tumor size formed on day 14. The body weight of the mice was also measured during the experiment, and no significant difference in body weight was observed between the UDCA treated group and the control group. Statistical significance was confirmed by paired T-test.
  • Figs. 12A and 12B compared with the control group administered the carrier 300ul after snu-601 cell injection (upper line in Fig. 12A and the line in Fig. 12B), 300ul of UDCA after snu-601 cell injection. It can be seen that the tumor size of mice (bottom of FIG. 12A and line ⁇ of FIG. 12B) of the group to which 300 ul of the solution was administered decreased noticeably.
  • the present invention is a result supported by the following Korean national R & D projects:

Landscapes

  • Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present invention relates to a composition for the prevention or treatment of gastric cancer containing ursodeoxycholic acid (UDCA) or a salt thereof as an active ingredient, and more specifically the present invention relates to a composition for the prevention or treatment of gastric cancer comprising ursodeoxycholic acid or a salt thereof as an active ingredient, and relates to a method for the prevention or treatment of gastric cancer comprising the step of administering an apoptosis-inducing-agent composition and ursodeoxycholic acid or a salt thereof together with a pharmaceutically acceptable carrier to an individual in need thereof. The ursodeoxycholic acid or the salt thereof according to the present invention can be used to advantage in the prevention or treatment of gastric cancer because it has an outstanding activity in activating caspase, and ultimately in inducing apoptosis in gastric cancer cells, by inducing the activity of PKC and growth promotion of oxygen species (ROS) in a fashion which is lipid-raft dependent in gastric cancer cells, and adjusting the expression or activity of cell death receptors (TNF receptor super family).

Description

우루소데옥시콜린산을 유효 성분으로 함유하는 위암의 예방 또는 치료용 조성물Composition for the prevention or treatment of gastric cancer, which contains urosodeoxycholic acid as an active ingredient
본 발명은 우루소데옥시콜린산(ursodeoxycholic acid; UDCA)을 유효 성분으로 함유하는 위암의 예방 또는 치료용 조성물에 관한 것이다.The present invention relates to a composition for preventing or treating gastric cancer, which contains ursodeoxycholic acid (UDCA) as an active ingredient.
위암은 전세계적으로 암이환율 및 암사망율이 가장 높은 암이며, 한국을 비롯하여 일본, 중국, 러시아, 중유럽, 남중미, 홍콩, 스칸디나비아 등에서 암으로 인한 사망 중 가장 많은 원인을 차지하고 있다. 한국이나 일본 남성의 16% 이상이 위암으로 사망하고 있는 것으로 나타나고 있다.Stomach cancer is the highest cancer morbidity and cancer mortality in the world and is the most common cause of death from cancer in Korea, Japan, China, Russia, Central Europe, South and Central America, Hong Kong and Scandinavia. More than 16% of Korean and Japanese men are dying from stomach cancer.
특히, 한국이나 일본 등 아시아의 경우, 다른 대륙의 인종들에 비해 위암 발병율이 높은 것으로 보고되고 있는데, 이는 민족이나 인종의 차이로 보기는 어렵고, 암 발생에 제일 중요한 생활 환경의 차이, 특히 식생활의 차이에서 오는 것으로 보고되고 있다. 한국인의 경우, 하루 소금 섭취량은 약 20g으로 서양인보다 두 배 가까이 많이 섭취하고 있으며, 특히 소금에 절인 생선을 먹는 습관이 있는 한국, 일본, 핀란드, 아이슬란드 등에서 위암의 발생률이 높은 것으로 보고되고 있다. 또 한 위암의 발병원인으로 식습관 이 외에도 유전적인 원인이 관여하고 있는데, 위암 환자의 1세대 자손들에게 위암의 발생률이 높은 것으로 알려져 있다.In particular, in Asia such as Korea and Japan, the incidence rate of gastric cancer is higher than that of other continental races. It is reported to come from a difference. In the case of Koreans, the daily salt intake is about 20g, which is twice as much as that of Westerners. In particular, the incidence of gastric cancer is reported in Korea, Japan, Finland, and Iceland, which have a habit of eating salted fish. In addition, as a cause of gastric cancer, genetic causes other than eating habits are involved, and it is known that the incidence of gastric cancer is high in the first generation offspring of gastric cancer patients.
또한, 위암의 증상은 전혀 증상이 없는 경우에서부터 격심한 통증에 이르기까지 다양한 양상을 나타내고 있으며, 위암의 증상이 어떤 특성을 가지는 것이 아니라 일반적인 소화기 증상을 보이며, 위암의 초기에는 증상이 없는 경우가 대부분이며, 증상이 있다고 하더라도 비교적 경미하여 약간의 소화불량이나 상복부 불편감을 느끼는 정도이므로 대부분의 사람들이 이를 간과하기 쉬워 위암의 사망률을 높이는 원인이 되기도 한다.In addition, the symptoms of gastric cancer show a variety of symptoms ranging from no symptoms to severe pain, the symptoms of gastric cancer does not have any characteristics but general digestive symptoms, most of the early symptoms of stomach cancer And, even if the symptoms are relatively mild to feel a slight indigestion or upper abdominal discomfort, most people are easy to overlook this, causing the death rate of stomach cancer.
현재 위암을 포함하여 각종 암을 치료하는 주요한 치료법으로는 외과적인 수술, 방사선조사 및 화학요법 중 1 가지 또는 이들의 조합을 통한 치료법이 사용되고 있는데, 수술은 질병 조직을 대부분 제거하는 것을 포함하며, 이러한 외과적 수술은 종양조직 또는 이들 주변의 조직을 제거하는 데에는 효과적이지만 척추와 같이 수술하기 어려운 구역에 있는 종양을 치료하거나 백혈병과 같은 전신에 흩어져 있는 분산성 종양을 치료하는 데는 사용할 수 없다. 화학요법은 세포 복제 또는 세포 대사를 붕괴시켜 암을 치료하는 것으로서 각종 종양의 치료에 사용될 수 있으나, 정상세포에도 작용하므로 심각한 부작용을 일으킨다. 특히, 세포분열과 세포대사가 활발하게 일어나는 조혈기관에 작용하여 환자의 면역 체계를 약화시키는 심각한 부작용을 일으키기도 한다. 이러한 부작용은 환자의 생명에 큰 영향을 미치며, 또한, 약물의 투여시 주의해야 하는 주용량 제한 독성(DLT)이 있다. 이와 같이 화학치료제 및 방사선 치료에 의한 부작용들은 암 환자의 임상적 처치시 주요 문제가 되고 있으므로, 화학요법 치료제의 부작용을 감소시킬 수 있는 체내 안정성이 우수한 새로운 항암제의 개발이 시급한 실정이다.Currently, the main treatments for various cancers, including gastric cancer, are used by one or a combination of surgical surgery, irradiation and chemotherapy, which includes removing most of the diseased tissue. Surgical surgery is effective for removing tumor tissue or surrounding tissue but cannot be used to treat tumors in difficult-to-operate areas such as the spine or to disperse diffuse tumors scattered throughout the body, such as leukemia. Chemotherapy can treat cancer by disrupting cell replication or cell metabolism, but can be used for the treatment of various tumors, but it also acts on normal cells, causing serious side effects. In particular, it acts on hematopoietic organs in which cell division and cell metabolism are active, causing serious side effects that weaken the patient's immune system. These side effects have a great impact on the patient's life and also have a main dose limiting toxicity (DLT) which should be taken into account when administering the drug. As side effects caused by chemotherapeutic agents and radiation therapy are a major problem in the clinical treatment of cancer patients, it is urgent to develop new anticancer drugs having excellent stability in the body that can reduce the side effects of chemotherapy treatments.
한편, 우루소데옥시콜린산(ursodeoxycholic acid, 3α,7β-dihydroxy-5β-cholanoic acid, 이하 ‘UDCA’라 함)은 오래전부터 한국, 중국, 일본 등에서 간, 담도계 질환에 사용되어 왔던 소위 웅담의 주성분으로서, 담즙에서 발견되는 담즙산의 한 종류이고, 분자량은 392.58이며 분자식은 C24H40O4이다. 이러한 UDCA는 생체내의 미세담도를 청소하는 작용을 가지고 있어 미세담도내 노폐물과 독성 담즙산을 배출하는 작용, 간세포막의 안정화와 간세포 보호 작용, 간혈류량 증가 작용, 콜레스테롤의 흡수와 생합성을 억제하는 작용, 담석을 용해시키고 생성을 억제시키는 작용 및 면역 활성을 정상화시키는 약리 활성을 가지고 있어 담석증과 담도계 질환, 만성 간질환과 간기능 개선, 소장 절제 후의 소화 불량과 지방간에 주요 임상 적응증을 가지고 사용되고 있는 약물이다. 특히, UDCA의 콜레스테롤 담석 용해 효과에 대한 기전은 간에서 콜레스테롤 합성에 필요한 효소인 HMG CoA 환원 효소의 활동을 저하시켜 담즙으로의 콜레스테롤 분비를 감소시키고, 7α-hydroxylase 활성도를 증가시키며 장에서의 콜레스테롤 흡수를 저하시키는 작용을 하는 것으로 알려져 있다. 또한, UDCA를 투여하면 콜레스테롤이 과포화된 담즙을 불포화 담즙으로 변화시키는데, UDCA 투여로 인해 생기는 담즙의 탈포화(Desaturation)는 콜레스테롤을 운반할 수 있는 능력을 증가시키며, 담즙에서 용해력이 높은 멀티라멜라 리포좀(multilamellar liposome(mesophase))을 형성하여 콜레스테롤로 포화된 담즙에서도 액상 결정(liquid crystal)을 형성한다. 따라서 액상 결정을 형성하는 이유로 UDCA를 사용 후 콜레스테롤로 과포화된 담즙에서도 담석이 용해된다.Meanwhile, ursodeoxycholic acid (3α, 7β-dihydroxy-5β-cholanoic acid, hereinafter referred to as 'UDCA') has been used for liver, biliary system diseases in Korea, China, and Japan for a long time. As a main component, it is a type of bile acid found in bile, has a molecular weight of 392.58, and a molecular formula of C 24 H 40 O 4 . The UDCA has a function of cleaning the microbilitery in vivo, thus releasing wastes and toxic bile acids in the microbilitery, stabilizing and protecting hepatocytes, increasing hepatic blood flow, inhibiting cholesterol absorption and biosynthesis, It has the effect of dissolving gallstones, inhibiting production, and pharmacological activity to normalize immune activity. It is a drug used with major clinical indications for gallstones and biliary tract diseases, chronic liver disease and liver function improvement, indigestion after small intestine resection and fatty liver. . In particular, the mechanism of cholesterol gallstone dissolving effect of UDCA decreases the activity of HMG CoA reductase, an enzyme required for cholesterol synthesis in the liver, reduces cholesterol secretion into bile, increases 7α-hydroxylase activity, and absorbs cholesterol in the intestine. It is known to act to lower. In addition, administration of UDCA transforms cholesterol-saturated bile into unsaturated bile. Desaturation of bile resulting from the administration of UDCA increases the ability to transport cholesterol and is a highly soluble multilamellar liposome in bile. (multilamellar liposome (mesophase)) forms liquid crystals in bile saturated with cholesterol. Therefore, gallstones are dissolved in bile supersaturated with cholesterol after UDCA due to the formation of liquid crystals.
그러므로 이러한 UDCA는 간과 관련된 질환들의 치료제로 널리 사용되고 있으며, 또한, 최근에는 UDCA가 직장암을 효과적으로 치료할 수 있다는 내용이 밝혀졌고(대한민국공개특허 제2008-0061327호), 다이옥신을 포함하여 환경 호르몬에 의해 유발되는 독성을 억제할 수 있는 효과가 있다는 내용도 보고된 바 있다(대한민국 등록 특허 제0368936호). Therefore, UDCA is widely used as a therapeutic agent for liver-related diseases, and recently, it has been found that UDCA can effectively treat rectal cancer (Korean Patent Publication No. 2008-0061327), and is induced by environmental hormones including dioxin. It has also been reported that there is an effect that can suppress the toxicity (Republic of Korea Patent No. 0368936).
그러나 아직까지 UDCA에 대하여 위암을 예방하거나 치료할 수 있는 효과가 있다는 내용에 대해서는 전혀 보고된 바 없다.However, there have been no reports on the effects of UDCA on preventing or treating gastric cancer.
따라서 본 발명의 목적은 우루소데옥시콜린산(ursodeoxycholic acid:UDCA) 또는 그의 염을 유효 성분으로 포함하는 위암의 예방용 또는 치료용 조성물을 제공하는 것이다.Accordingly, an object of the present invention is to provide a composition for preventing or treating gastric cancer, which comprises ursodeoxycholic acid (UDCA) or a salt thereof as an active ingredient.
본 발명의 또 하나의 목적은 우루소데옥시콜린산(UDCA) 또는 그의 염을 유효 성분으로 포함하는 아폽토시스(apoptosis) 유도제 조성물을 제공하는 것이다. It is another object of the present invention to provide an apoptosis inducer composition comprising urousodeoxycholic acid (UDCA) or a salt thereof as an active ingredient.
본 발명의 또 하나의 목적은 우루소데옥시콜린산(UDCA)을 약학적으로 허용 가능한 담체와 함께 인간을 제외한 이를 필요로 하는 개체에 투여하는 단계를 포함하는, 위암의 예방 또는 치료 방법을 제공하는 것이다.It is another object of the present invention to provide a method for preventing or treating gastric cancer, comprising administering urousodeoxycholic acid (UDCA) to a subject in need thereof except a human with a pharmaceutically acceptable carrier. It is.
상기 목적을 달성하기 위하여, 본 발명은 우루소데옥시콜린산 (ursodeoxycholic acid: UDCA) 또는 그의 염을 유효 성분으로 포함하는 위암 예방 또는 치료용 조성물을 제공한다.In order to achieve the above object, the present invention provides a composition for the prevention or treatment of gastric cancer comprising ursodeoxycholic acid (UDCA) or a salt thereof as an active ingredient.
본 발명의 일실시예에 있어서, 상기 우루소데옥시콜린산(UDCA) 또는 그의 염은 위암 세포의 아폽토시스(apoptosis)를 유도하여 세포 사멸을 유발시킴으로써 항암 활성을 가질 수 있다. In one embodiment of the present invention, the urousodeoxycholic acid (UDCA) or salts thereof may have anticancer activity by inducing apoptosis of gastric cancer cells to induce cell death.
본 발명의 일실시예에 있어서, 상기 아폽토시스(apoptosis)는 우루소데옥시콜린산(UDCA) 또는 그의 염의 처리에 의해, 위암 세포에서 카스파제(caspase)의 활성 촉진; 세포 사멸 수용체의 활성 또는 발현 촉진; 사이토졸(cytosol)에서 막(membrane)으로 PKC(protein kinase C) δ 단백질의 이동(translocation); 또는 활성 산소종(ROS)의 생성에 의해 유도될 수 있다. In one embodiment of the present invention, the apoptosis (apoptosis) is by the treatment of urosodeoxycholine acid (UDCA) or salts thereof, promoting the activity of caspase (gaspase) in gastric cancer cells; Promoting activity or expression of cell death receptors; Translocation of the protein kinase C (PKC) δ protein from the cytosol to the membrane; Or by the generation of reactive oxygen species (ROS).
본 발명의 일실시예에 있어서, 상기 카스파제(caspase)는 카스파제-3, 카스파제-6, 카스파제-8, 카스파제-9 및 이들의 조합으로 이루어진 군 중에서 선택될 수 있다. In one embodiment of the present invention, the caspase may be selected from the group consisting of caspase-3, caspase-6, caspase-8, caspase-9, and combinations thereof.
본 발명의 일실시예에 있어서, 상기 세포 사멸 수용체는 DR3, DR4, DR5, DR6, FAS, TNFR 및 이들의 조합으로 이루어진 군 중에서 선택될 수 있다. In one embodiment of the present invention, the cell death receptor may be selected from the group consisting of DR3, DR4, DR5, DR6, FAS, TNFR and combinations thereof.
본 발명의 일실시예에 있어서, 상기 세포 사멸 수용체의 활성 또는 발현 촉진은 FADD 또는 RIP1 단백질의 활성을 촉진시켜 위암 세포에서 아폽토시스를 유도하는 것일 수 있다. In one embodiment of the present invention, promoting the activity or expression of the cell death receptor may be to induce apoptosis in gastric cancer cells by promoting the activity of FADD or RIP1 protein.
본 발명의 일실시예에 있어서, 상기 활성 산소종(ROS)의 생성 또는 PKC(protein kinase C) δ 단백질의 활성은 세포막에 위치하고 있는 리피드 래프트(lipid raft)에 의해 조절되는 것일 수 있다. In one embodiment of the present invention, the generation of reactive oxygen species (ROS) or the activity of PKC (protein kinase C) δ protein may be controlled by a lipid raft located in the cell membrane.
본 발명의 일실시예에 있어서, 상기 우루소데옥시콜린산은 조성물 총 중량에 대하여 50μM~5,000μM로 포함될 수 있다.In one embodiment of the present invention, the urousodeoxycholic acid may be included in 50μM ~ 5,000μM relative to the total weight of the composition.
또한, 본 발명은 우루소데옥시콜린산(UDCA) 또는 그의 염을 유효 성분으로 포함하는 아폽토시스(apoptosis) 유도제 조성물을 제공한다. The present invention also provides an apoptosis inducer composition comprising urousodeoxycholic acid (UDCA) or a salt thereof as an active ingredient.
본 발명의 일실시예에 있어서, 상기 조성물은 위암 세포에서 아폽토시스를 유발할 수 있다. In one embodiment of the invention, the composition may induce apoptosis in gastric cancer cells.
또한, 본 발명은 우루소데옥시콜린산(UDCA) 또는 그의 염을 약학적으로 허용 가능한 담체와 함께 인간을 포함하여 이를 필요로 하는 개체에 투여하는 단계를 포함하는, 위암의 예방 또는 치료 방법을 제공한다.The present invention also provides a method for the prevention or treatment of gastric cancer, comprising administering urousodeoxycholic acid (UDCA) or a salt thereof to a subject in need thereof, including a human, with a pharmaceutically acceptable carrier. to provide.
본 발명의 일실시예에 있어서, 상기 담체는 희석제, 활택제, 결합제, 붕해제, 감미제, 안정제 및 방부제로 이루어진 군 중에서 선택되는 하나 이상일 수 있다. In one embodiment of the present invention, the carrier may be one or more selected from the group consisting of diluents, lubricants, binders, disintegrants, sweeteners, stabilizers and preservatives.
본 발명에 따른 우루소데옥시콜린산 또는 그의 염은 위암 세포에서 카스파제(caspase)의 활성 촉진시키고, 세포 사멸 수용체의 활성 또는 발현을 촉진시키며, PKC의 활성 촉진 및 활성 산소종(ROS)의 생성을 촉진시켜 궁극적으로 위암 세포의 아폽토시스를 유도하는 활성이 우수하므로 위암을 예방 또는 치료하는데 유용하게 사용할 수 있다. Urosodeoxycholine acid or a salt thereof according to the present invention promotes the activity of caspase in gastric cancer cells, promotes the activity or expression of apoptosis receptors, promotes the activity of PKC and the activity of reactive oxygen species (ROS). Since it promotes production and ultimately induces apoptosis of gastric cancer cells, it can be usefully used for preventing or treating gastric cancer.
도 1A는 위암 세포주인 snu-601, snu-638, snu-1 및 snu-216의 각 세포주에 대해 농도별 UDCA 와 DCA (0, 250, 500, 1000μM)를 각각 처리한 후, MTT 어세이를 통한 세포 생존율, 아폽토틱 바디 퍼센트 및 LDH 활성 퍼센트를 각각 비교하여 나타낸 그래프이고, 도 1B는 상기 위암 세포주들에 대해 각 농도별 UDCA를 처리한 후, 플레이트에 형성된 콜로니를 육안으로 관찰한 사진을 나타낸 것이며, 도 1C는 형성된 콜로니의 수를 카운팅하여 나타낸 그래프이다.Figure 1A shows the concentration of UDCA and DCA (0, 250, 500, 1000μM) for each cell line of gastric cancer cell lines snu-601, snu-638, snu-1 and snu-216, respectively, MTT assay It is a graph showing the comparison of the cell survival rate, apoptotic body percent and LDH activity percent through each, Figure 1B shows the photo of the colony formed on the plate after the treatment of UDCA at each concentration for the gastric cancer cell lines 1C is a graph showing counting the number of colonies formed.
도 2A는 위암 세포주들에 대해 카스파제 3, 6, 7 및 8의 억제제들인 Z-DEVD-FMK, Z-VEID-FMK, Z-IETD-FMK, Z-LEHD-FMK, 또는 Z-VAD-FMK을 먼저 처리한 후, 1000μM UDCA를 처리한 다음, HO/PI 이중 염색법을 통해 세포의 사멸 정도(핵 절편화)를 측정한 결과를 나타낸 것이고, 도 2B는 1000μM UDCA를 위암 세포주에 처리한 후, FLICE/카스파제 8-비색 분석 키트를 이용하여 카스파제-8의 활성화를 측정한 결과를 나타낸 것이며, 도 2C는 Z-IETD-FMK를 위암 세포주에 먼저 처리한 후, 1000μM UDCA를 처리한 다음, 웨스턴 블럿을 통해 잘려진 카스파제 3, 6 및 PARP의 단백질 양을 확인한 결과를 나타낸 것이다.2A shows Z-DEVD-FMK, Z-VEID-FMK, Z-IETD-FMK, Z-LEHD-FMK, or Z-VAD-FMK, inhibitors of caspase 3, 6, 7, and 8 for gastric cancer cell lines After the first treatment, and then treated with 1000μM UDCA, and shows the result of measuring the degree of cell death (nucleus fragmentation) by HO / PI double staining method, Figure 2B after treating 1000μM UDCA to gastric cancer cell line, The results of measuring the activation of caspase-8 using a FLICE / Caspase 8-colorimetric assay kit are shown, and FIG. 2C is first treated with Z-IETD-FMK in gastric cancer cell lines, followed by 1000 μM UDCA treatment. Western blot shows the results of confirming the amount of protein cut caspase 3, 6 and PARP.
도 3A는 위암 세포주인 snu-601 및 snu-638에 대해 siRNA FAS, siRNA DR4, siRNA DR5 또는 siRNA 컨트롤(Control)을 AMAXA 방법을 통해 형질 도입시킨 후, 1000μM UDCA를 처리한 다음, HO/PI 이중 염색법을 통해 세포의 사멸 정도(핵 절편화)를 측정한 결과를 나타낸 것이고, 도 3B는 웨스턴 블럿을 통해 잘려진 카스파제 3, 6 및 PARP의 단백질 양을 확인한 결과를 나타낸 것이며, 도 3C는 FLICE/카스파제 8-비색 분석 키트를 이용하여 카스파제-8의 활성화를 측정한 결과를 나타낸 것이다.FIG. 3A shows siRNA FAS, siRNA DR4, siRNA DR5, or siRNA Control for gastric cancer cell lines snu-601 and snu-638 after transduction through AMAXA method, followed by 1000 μM UDCA, followed by HO / PI double The result of measuring the degree of cell death (nucleus fragmentation) by staining method is shown, Figure 3B shows the result of confirming the protein amount of caspase 3, 6 and PARP cut through Western blot, Figure 3C is FLICE / The results of measuring the caspase-8 activation using the caspase 8-colorimetric assay kit are shown.
도 4A는 위암 세포주인 snu-601 및 snu-638에 대해 siRNA FADD, siRNA RIP1 또는 siRNA Control을 AMAXA 방법을 통해 형질 도입시킨 후, 1000μM UDCA를 처리한 다음, HO/PI 이중 염색법을 통해 세포의 사멸 정도(핵 절편화 또는 핵의 응축)를 측정한 결과를 나타낸 것이고, 도 4B는 웨스턴 블럿을 통해 잘려진 카스파제 3, 6 및 PARP, FADD 및 RIP1의 단백질 양을 확인한 결과를 나타낸 것이며, 도 4C는 FLICE/카스파제 8-비색 분석 키트를 이용하여 카스파제-8의 활성화를 측정한 결과를 나타낸 것이다.Figure 4A is transduced siRNA FADD, siRNA RIP1 or siRNA Control for the gastric cancer cell lines snu-601 and snu-638 through the AMAXA method, and then treated with 1000μM UDCA, and then killed cells by HO / PI double staining Figure 4B shows the result of measuring the degree (nucleus fragmentation or condensation of the nucleus), Figure 4B shows the result of confirming the amount of protein of caspase 3, 6 and PARP, FADD and RIP1 cut through Western blot, Figure 4C The results of measuring caspase-8 activation using the FLICE / Caspase 8-color assay kit are shown.
도 5A는 위암 세포주인 snu-601 및 snu-638에 대해 1000μM UDCA를 처리한 후, 시간별로 배양한 다음, 세포들로부터 세포질(cytosolic) 단백질 분획 및 기관/막 단백질 분획을 각각 분획화한 후, 웨스턴 블럿을 통해 PKC δ, PKC α, PKC θ, 및 PKC ε 단백질의 양을 확인한 결과를 나타낸 것이고, 도 5B는 로틀레린(rottlerin) 등의 PKC 억제제를 처리한 다음, HO/PI 이중 염색법을 통해 세포의 사멸 정도(핵 절편화 또는 핵의 응축) 및 웨스턴 블럿을 통해 DR5 단백질의 발현 정도와, 잘려진 카스파제 3 및 6의 단백질 양을 확인한 결과를 나타낸 것이며, 도 5C는 각 위암 세포주에 대해 siRNA PKC δ 또는 siRNA 대조군(siRNA Control)을 AMAXA 방법을 통해 형질 도입시킨 후, 1000μM UDCA를 처리한 다음 HO/PI 이중 염색법을 통해 세포의 사멸 정도(핵 절편화 또는 핵의 응축) 확인 및 웨스턴 블럿을 통해 PKC δ 및 DR5 단백질의 발현 정도와, 잘려진 카스파제 3, 6 및 PKC δ 단백질 양을 확인한 결과를 나타낸 것이다.Figure 5A is treated with 1000μM UDCA for gastric cancer cell lines snu-601 and snu-638, followed by incubation with time, and then fractionated the cytosolic protein and organ / membrane protein fractions from the cells, respectively. Western blot shows the results of confirming the amount of PKC δ, PKC α, PKC θ, and PKC ε protein, Figure 5B is treated with a PKC inhibitor such as rottlerin (Rottlerin), and then HO / PI double staining method The degree of cell death (nucleus fragmentation or nuclear condensation) and Western blot showed the expression level of DR5 protein and the amount of cut caspase 3 and 6 protein, and FIG. 5C shows siRNA for each gastric cancer cell line. PKC δ or siRNA Control was transduced via AMAXA method, treated with 1000 μM UDCA, followed by HO / PI double staining to confirm the degree of cell death (nucleus fragmentation or nuclear condensation) and Western blot Via PKC The expression levels of the δ and DR5 proteins and the amounts of the caspase 3, 6 and PKC δ proteins that were truncated are shown.
도 6A는 위암 세포주인 snu-601 및 snu-638에 대해 1000μM UDCA를 처리하고, 3시간 또는 5시간 후에 각 세포당 DCFH-DA/HO의 비율을 계산하여 ROS의 생성 정도를 측정한 결과를 나타낸 것이고, 도 6B는 위암 세포주에 대해 ROS 억제제인 10mM NAC, 100μM BHA, 10mM Tiron, 2μM DPI 또는 1000U 카탈라제(catalase)를 각각 처리한 후, 1000μM UDCA를 처리하고 HO/PI 이중 염색법을 통해 세포의 사멸 정도(핵 절편화 또는 핵의 응축)를 나타낸 것이고, 도 6C는 상기 도 6B에서와 같이 처리된 위암 세포주들에 대해 웨스턴 블럿을 통해 잘려진 카스파제-3, 6, 및 PARP 단백질의 양을 측정한 결과를 나타낸 것이다.FIG. 6A shows the results of measuring the production of ROS by treating 1000 μM UDCA against gastric cancer cell lines snu-601 and snu-638 and calculating the ratio of DCFH-DA / HO per cell after 3 hours or 5 hours. 6B shows treatment of ROS inhibitors, 10 mM NAC, 100 μM BHA, 10 mM Tiron, 2 μM DPI, or 1000 U catalase, respectively, followed by 1000 μM UDCA treatment and HO / PI double staining for gastric cancer cell lines. Degree (nucleus fragmentation or nuclear condensation), and FIG. 6C measures the amount of caspase-3, 6, and PARP protein truncated via Western blot for gastric cancer cell lines treated as in FIG. 6B above. The results are shown.
도 7A는 snu-601 위암 세포주에 10mM NAC 또는 100μM BHA의 존재 또는 비존재 하에서 1000μM UDCA를 각각 처리한 다음, DR5의 발현 정도를 웨스턴 블럿을 통해 확인한 것을 나타낸 것이고, 도 7B는 snu-638 위암 세포주에 10mM NAC 또는 100μM BHA의 존재 또는 비존재 하에서 1000μM UDCA를 각각 처리한 다음, DR5의 발현 정도를 웨스턴 블럿을 통해 확인한 것을 나타낸 것이다.FIG. 7A shows that the snu-601 gastric cancer cell line was treated with 1000 μM UDCA in the presence or absence of 10 mM NAC or 100 μM BHA, respectively, and then the expression level of DR5 was confirmed by Western blotting, and FIG. 7B is the snu-638 gastric cancer cell line. After treatment with 1000 μM UDCA in the presence or absence of 10 mM NAC or 100 μM BHA, respectively, the expression level of DR5 was confirmed by Western blot.
도 8A는 snu-601 위암 세포주에 10mM NAC를 미리 처리한 다음, 1000μM UDCA를 처리하고 세포로부터 세포질(cytosolic) 단백질 분획 및 기관/막 단백질 분획을 각각 분획화한 다음, 웨스턴 블럿을 통해 PKC δ의 발현 정도를 측정한 것을 나타낸 것이고, 도 8B는 snu-638 위암 세포주에 대해 상기 도 8A에서와 동일한 실험을 수행하여 PKC δ의 발현 정도를 측정한 것을 나타낸 것이다.FIG. 8A shows pretreatment of 10 mM NAC to snu-601 gastric cancer cell line followed by 1000 μM UDCA and fractionation of cytosolic and organ / membrane protein fractions from cells, followed by Western blot for PKC δ. Figure 8B shows the measurement of the expression level, Figure 8B shows the measurement of the expression level of PKC δ by performing the same experiment as in Figure 8A for the snu-638 gastric cancer cell line.
도 9는 위암 세포주를 담체(vehicle) 또는 UDCA로 처리하고, 고정 및 염색시킨 후 리피드 래프트를 선택염색하는 콜레라톡신-형광염색체(CTx-FITC)와 DR5 항체로 염색후 공초점 현미경(confocal microcsope)으로 관찰한 것이다.9 shows confocal microcsope after treatment with gastric cancer cell lines with vehicle or UDCA, staining and staining lipid rafts with choleratoxin-fluorosome (CTx-FITC) and DR5 antibody. As observed.
도 10A는 MBCD를 위암 세포주인 snu-601 및 snu-638에 미리 처리하고, 1000μM UDCA를 각각 처리한 다음, MTT 어세이를 통해 세포 생존율을, HO/PI 이중 염색법을 통해 세포의 사멸 정도(핵 절편화 또는 핵의 응축)를 나타낸 것이며, 도 10B는 웨스턴 블럿을 통해 DR5의 발현 정도와, 잘려진 카스파제-3, 6, 및 PARP 단백질의 양을 측정한 결과를 비롯하여 FLICE/카스파제 8-비색 분석 키트를 이용하여 카스파제-8의 활성화를 측정한 결과를 나타낸 것이다.FIG. 10A shows that MBCD was previously treated in gastric cancer cell lines snu-601 and snu-638, and treated with 1000 μM UDCA, respectively, and cell viability was obtained through MTT assay, and the degree of cell death through HO / PI double staining (nucleus) Fragmentation or condensation of the nucleus), FIG. 10B shows FLICE / Caspase 8-coloration, including the results of measuring the expression level of DR5 and the amount of caspase-3, 6, and PARP protein truncated by Western blot. The results of measuring the caspase-8 activation using the assay kit are shown.
도 11A는 1mM의 MBCD를 위암 세포주인 snu-601 및 snu-638에 미리 처리하고, 1000μM UDCA를 각각 처리한 다음, 세포로부터 세포질(cytosolic) 단백질 분획 및 기관/막 단백질 분획을 각각 분획화한 후, 웨스턴 블럿을 통해 PKC δ단백질의 양을 확인한 것이고, 도 11B는 1mM 또는 2mM의 MBCD를 위암 세포주인 snu-601 및 snu-638에 미리 처리하고, 1000μM UDCA를 각각 처리한 다음, 각 세포당 DCFH-DA/HO의 비율을 계산하여 ROS의 생성 정도를 측정한 결과를 나타낸 것이다. FIG. 11A shows that 1 mM MBCD was pretreated with gastric cancer cell lines snu-601 and snu-638, and treated with 1000 μM UDCA, respectively, followed by fractionation of cytosolic protein and organ / membrane protein fractions from cells. , Western blot confirmed the amount of PKC δ protein, Figure 11B is pre-treated with gastric cancer cell lines snu-601 and snu-638 MBM of 1mM or 2mM, and treated with 1000μM UDCA, respectively, DCFH per cell The result of ROS generation was measured by calculating the ratio of -DA / HO.
[규칙 제91조에 의한 정정 28.09.2010] 
도 12A 및 도 12B는 6주령된 아티믹 발브(Athymic balb)/c 누드 마우스의 측면에 snu-601 세포 5×106개/200ul 씩을 피하 주입한 후, 실험군에는 UDCA 용액 (150mg/kg/day, 6days/week)을, 대조군에는 담체(vehicle)을 복강 주사로 투여하여 생체 내 이종 이식 종양의 성장을 분석한 결과를 나타낸 것으로서, 도 12A는 누드 마우스 측면에 형성된 종양의 크기(volume)를 보여주는 사진이며, 도 12B는 14일째부터 33일째까지의 실험군 및 대조군의 종양의 크기를 그래프로 나타낸 결과 그래프이다. 이때 통계적 유의성은 대응 표본 T-테스트(paired T-test)로 확인하였다.
[Revisions under Rule 91 28.09.2010]
12A and 12B show subcutaneous injection of 5 × 10 6 cells / 200 ul of snu-601 cells into the side of 6 week old Athymic balb / c nude mice, and the experimental group was treated with UDCA solution (150 mg / kg / day). , 6days / week), the control group to the control group (vehicle) by intraperitoneal injection as a result of analyzing the growth of xenograft tumor in vivo, Figure 12A shows the size of the tumor (volume) formed on the side of the nude mouse It is a photograph, FIG. 12B is a result graph which shows the size of the tumor of the experimental group and a control group from the 14th to 33rd day. Statistical significance was confirmed by paired T-test.
본 발명은 우루소데옥시콜린산(ursodeoxycholic acid:UDCA) 또는 그의 염을 유효 성분으로 포함하는 위암의 예방 또는 치료용 조성물을 제공함에 그 특징이 있다.The present invention is characterized by providing a composition for preventing or treating gastric cancer comprising ursodeoxycholic acid (UDCA) or a salt thereof as an active ingredient.
본 발명에서 위암의 예방 또는 치료용 조성물의 약리학적 유효 성분은 상기 우루소데옥시콜린산(ursodeoxycholic acid:UDCA) 화합물일 수 있으며, 상기 우루소데옥시콜린산 화합물은 염, 바람직하게는 약학적으로 허용 가능한 염의 형태로도 사용될 수 있다.In the present invention, the pharmacologically active ingredient of the composition for preventing or treating gastric cancer may be the ursodeoxycholic acid (UDCA) compound, and the urusdeoxycholic acid compound is a salt, preferably pharmaceutical It can also be used in the form of acceptable salts.
상기 염으로는 약학적으로 허용 가능한 유리산(free acid)에 의하여 형성된 산 부가염이 바람직하며, 상기 유리산으로는 유기산과 무기산을 사용할 수 있다. 상기 유기산은 이에 제한되는 것은 아니나, 구연산, 초산, 젖산, 주석산, 말레인산, 푸마르산, 포름산, 프로피온산, 옥살산, 트리플로오로아세트산, 벤조산, 글루콘산, 메타술폰산, 글리콜산, 숙신산, 4-톨루엔술폰산, 글루탐산 및 아스파르트산을 포함한다. 또한, 상기 무기산은 이에 제한되는 것은 아니나, 염산, 브롬산, 황산 및 인산을 포함할 수 있다. The salt is preferably an acid addition salt formed by a pharmaceutically acceptable free acid, and an organic acid and an inorganic acid may be used as the free acid. The organic acid is not limited thereto, citric acid, acetic acid, lactic acid, tartaric acid, maleic acid, fumaric acid, formic acid, propionic acid, oxalic acid, trifluoroacetic acid, benzoic acid, gluconic acid, metasulfonic acid, glycolic acid, succinic acid, 4-toluenesulfonic acid, Glutamic acid and aspartic acid. In addition, the inorganic acid may include, but is not limited to, hydrochloric acid, bromic acid, sulfuric acid, and phosphoric acid.
본 발명에 따른 우루소데옥시콜린산은 일반적으로 동물의 담즙에 존재하는 성분으로서, 동물의 담즙에서 분리되거나 당업계에 공지된 화학적 합성법으로 제조된 것을 사용할 수 있으며, 시중에서 판매되고 있는 우루소데옥시콜린산이라면 모두 사용할 수 있다. Urusodeoxycholic acid according to the present invention is a component present in the bile of the animal in general, it can be used that is isolated from the bile of the animal or prepared by chemical synthesis known in the art, commercially available urusode Any of oxycholic acid can be used.
상기 동물의 담즙에서 분리된 우루소데옥시콜린산을 사용할 경우, 상기 분리는 종래의 물질을 추출 및 분리하는 방법을 사용하여 담즙으로부터 우루소데옥시콜린산을 수득할 수 있다. 이때, 상기 추출은 당업계에 공지된 적절한 용매, 즉, 물 또는 유기 용매를 사용하여 추출할 수 있으며, 바람직하게는 정제수, 메탄올(methanol), 에탄올(ethanol), 프로판올(propanol), 이소프로판올(isopropanol), 부탄올(butanol), 아세톤(acetone), 에테르(ether), 벤젠(benzene), 클로로포름(chloroform), 에틸아세테이트(ethyl acetate), 메틸렌클로라이드(methylene chloride), 헥산(hexane) 및 시클로헥산(cyclohexane) 등의 각종 용매를 단독으로 혹은 혼합하여 사용할 수 있다. When using urusodeoxycholic acid separated from the bile of the animal, the separation can be obtained from the bile using the method of extracting and separating conventional materials. At this time, the extraction can be extracted using a suitable solvent known in the art, that is, water or an organic solvent, preferably purified water, methanol (methanol), ethanol (ethanol), propanol, isopropanol ), Butanol, acetone, ether, benzene, chloroform, ethyl acetate, methylene chloride, hexane and cyclohexane Various solvents, such as), can be used alone or in combination.
또한, 상기 추출 용매를 이용하여 추출된 우루소데옥시콜린산의 분리 및 정제는 실리카겔(silica gel)이나 활성 알루미나(alumina) 등의 각종 합성 수지를 충진한 컬럼 크로마토그라피(column chromatography) 및 고속 액체 크로마토그라피(HPLC; High Performance Liquid Chromatography) 등을 단독으로 혹은 병행 사용하여 수행할 수 있으며, 유효 성분의 추출 및 분리 정제 방법은 반드시 상기한 방법에 한정되지 않고 당업계에서 수행되고 있는 방법이라면 모두 사용 가능하다. In addition, separation and purification of urusodeoxycholic acid extracted using the extraction solvent is performed by column chromatography and high-speed liquid filled with various synthetic resins such as silica gel or activated alumina. Chromatography (HPLC; High Performance Liquid Chromatography) may be performed alone or in combination, and the method of extracting and separating and purifying the active ingredient is not necessarily limited to the above-mentioned methods, and any method used in the art may be used. It is possible.
본 발명의 일실시예에서는 ICN 바이오메티칼사 또는 시그마에서 판매하는 우루소데옥시콜린산을 구입하여 사용하였다.In one embodiment of the present invention was used to purchase urosodeoxycholine acid sold by ICN Biomedical or Sigma.
한편, 본 발명에서는 상기 우루소데옥시콜린산(ursodeoxycholic acid:UDCA) 또는 그의 염이 위암을 예방 또는 치료할 수 있는 활성이 있음을 최초로 규명하였다는 특징이 있다.On the other hand, the present invention is characterized by the first time that the urusodeoxycholic acid (UDCA) or salts thereof have the activity to prevent or treat gastric cancer.
특히, 본 발명의 우루소데옥시콜린산 또는 그의 염은 위암 세포에서 아폽토시스(apoptosis)을 유도함으로써 항암 활성을 갖는다는 특징이 있다.In particular, urosodeoxycholine acid or a salt thereof of the present invention is characterized by having anticancer activity by inducing apoptosis in gastric cancer cells.
암을 치료하는 방법에 있어서, 암세포와 같이 조절되지 않은 세포의 병리적 성장을 차단시키기 위해 세포 사멸 조절 요법이 최근 들어 사용되고 있는데, 암과 같은 질병의 경우 기존의 광범위한 세포 괴사(necrosis) 약물 요법은 병리 세포를 죽임과 동시에 병리 세포의 세포막이 파괴됨으로써 유출되는 세포 독성을 지닌 효소들(예컨대, 리소자임)이 주변의 정상 세포에까지 세포 독성을 나타내어 과도한 염증 발현을 필연적으로 수반하게 되어 그 부작용이 크다는 단점이 있다. In the method of treating cancer, apoptosis control therapy is recently used to block the pathological growth of unregulated cells such as cancer cells. Existing extensive necrosis drug therapy for diseases such as cancer Cytotoxic enzymes (e.g., lysozyme) leaked by killing pathological cells and destroying cell membranes of pathological cells show cytotoxicity to surrounding normal cells, which inevitably leads to excessive inflammation, resulting in high side effects. There is this.
그러나, 아폽토시스(apoptosis)에 의한 세포 사멸 조절 요법은 병리 세포의 자발적인 사멸을 유도하거나 이러한 세포의 성장을 강하게 억제하기 때문에 암세포의 세포 사멸에 의해 유도되는 염증성 부작용을 세포 괴사에 비해 감소시킬 수 있는 장점이 있다.However, cell apoptosis control therapy by apoptosis induces spontaneous killing of pathological cells or strongly inhibits the growth of these cells, which can reduce the inflammatory side effects induced by cell death of cancer cells compared to cell necrosis. There is this.
아폽토시스(Apoptosis)란 유전적으로 조절되는 프로그램된 세포 사멸로서, 능동적인 세포 사멸을 의미하며, 아폽토시스 과정은 에너지를 필요로 하며 특징적인 세포 형태를 보인다. 즉, 세포 사멸 신호가 전달되면 세포 내에서는 세포 사멸을 결정하고, 이를 실행되는 단계로 진행하여 실행 단계에서는 세포가 특징적인 생화학적, 형태학적 변화를 보이는데, 세포 사멸이 진행되면 세포가 수축(shrinkage)되면서 접하고 있던 주변 세포와 떨어지게 되고 세포막이 기포 모양(블레빙; blebbing)으로 변하게 되며, 더 나아가 핵은 응축(condensation)되고 핵 내의 DNA가 작은 올리고뉴클레오타이드 절편으로 잘려지며 아폽토틱 바디를 형성한다. 이렇게 형성된 아폽토틱 바디가 매크로파지에 의해 파고사이토시스되는 일련의 과정을 거쳐 세포 사멸이 일어나게 된다. Apoptosis is genetically controlled programmed cell death, which refers to active cell death, and the apoptosis process requires energy and exhibits characteristic cell morphology. In other words, when apoptosis signal is transmitted, the cell death is determined within the cell, and the cell death process is performed. In the execution step, the cell shows characteristic biochemical and morphological changes, and when the cell death progresses, the cell contracts. The cell membrane becomes bubble-like (blebbing), and the nucleus is condensed, the DNA in the nucleus is cut into small oligonucleotide fragments, forming an apoptotic body. The apoptotic body thus formed undergoes a series of processes in which phagocytosis by macrophages causes cell death.
또한, 아폽토시스는 크게 두 가지 경로로 나누어질 수 있는데, 하나는 미토콘드리아 조절 내인성 경로이고, 다른 하나는 외인성 경로이다. Apoptosis can also be broadly divided into two pathways, one is the mitochondrial regulatory endogenous pathway and the other is the exogenous pathway.
외인성 경로에서는 리간드에 의하여 유도되는 사멸 수용체(예컨대, FADD)의 활성화로부터의 사멸 유도 신호 전달 복합체(death inducing signaling complex: DISC)의 어셈블리 및 그로 인한 프로테아제인 카스파제(caspase)들의 활성화가 개입된다. 특히 카스파제 8 및 10의 활성화는 카스파제-3의 절단을 활성화하여 카스파제 연쇄 반응 경로의 하류로 진행시킨다(U. Sartorius et al., Chembiochem 2 (2001) 20-29). Exogenous pathways involve the assembly of a death inducing signaling complex (DISC) from activation of a death receptor (eg, FADD) induced by a ligand and thus the activation of the protease caspases. In particular, activation of caspase 8 and 10 activates cleavage of caspase-3 and proceeds downstream of the caspase chain reaction pathway (U. Sartorius et al., Chembiochem 2 (2001) 20-29).
다른 세포 타입에서는, 활성화된 수용체로부터 오는 신호는 세포 사멸이 단행될 정도로 강한 카스파제 신호 전달 연쇄 반응을 생성하지 않는다. 이 경우, 미토콘드리아 의존적 아폽토시스 경로를 통하여 신호가 증폭될 필요성이 있다. 이 경로에서 카스파제-8은 Bid를 활성화하여 미토콘드리아로 전위시켜 시토크롬 c를 세포질 내로 배출한다. 시토크롬 c는 Apaf-1과 상호 작용하고 Apaf-1은 카스파제-9를 활성화시키며, 순서대로 카스파제 의존적 경로를 활성화시킨다(E. A. Slee et al, J. Cell Biol. 144 (1999) 281-292). In other cell types, signals from activated receptors do not produce caspase signal transduction cascades that are strong enough to cause cell death. In this case, the signal needs to be amplified via the mitochondrial dependent apoptosis pathway. In this pathway, caspase-8 activates Bid and translocates it to the mitochondria, which releases cytochrome c into the cytoplasm. Cytochrome c interacts with Apaf-1 and Apaf-1 activates caspase-9, which in turn activates caspase dependent pathways (EA Slee et al, J. Cell Biol. 144 (1999) 281-292) .
미토콘드리아는 내인성 아폽토시스 경로에서 조절자로서 핵심적인 역할을 하는데, 여기서는 세포 손상이 DNA 손상, 저산소증, 세포 스트레스 또는 화학 치료제에 의하여 매개된 경우(A. Ashkenazi, Nature Reviews Cancer 2 (2002), 420-430) 미토콘드리아의 붕괴가 SMAC/DIABLO 및 시토크롬 c를 세포질 내로 배출하게 된다.Mitochondria play a key role as modulators in the endogenous apoptosis pathway, where cellular damage is mediated by DNA damage, hypoxia, cellular stress or chemotherapeutic agents (A. Ashkenazi, Nature Reviews Cancer 2 (2002), 420-430). Disruption of the mitochondria leads to the release of SMAC / DIABLO and cytochrome c into the cytoplasm.
이에 본 발명자들은 위암 세포에 대해 우루소데옥시콜린산이 아폽토시스를 유도하는 효과가 있는지를 조사하였는데, 본 발명의 일실시예에 따르면, 위암 세포주인 snu-601, snu-638, snu-1 및 snu-216 세포주들에 대해 우루소데옥시콜린산(UDCA)를 각각 처리하고, MTT 어세이 분석, 아폽토틱 바디 퍼센트, LDH 활성 퍼센트, 콜로니 형성 분석, HO/PI 이중 염색법 등을 수행하여 아폽토시스가 유도되는지를 확인한 결과, 상기 위암 세포주들 모두에서 UDCA에 의해 아폽토시스가 유도되어 세포 사멸이 발생한다는 사실을 확인할 수 있었고(도 1A 내지 1C 참조), UDCA의 농도 의존적으로 세포 사멸이 증가되는 것으로 나타났으며, 특히, UDCA에 의한 세포 사멸은 세포 괴사(necrosis)가 아닌 아폽토시스(apoptosis)에 의해 유발되는 것임을 확인할 수 있었다.Therefore, the present inventors investigated whether urosodeoxycholic acid has an effect of inducing apoptosis on gastric cancer cells. According to one embodiment of the present invention, gastric cancer cell lines snu-601, snu-638, snu-1 and snu Induction of apoptosis by treatment of urosodeoxycholine acid (UDCA) with -216 cell lines, respectively, followed by MTT assay, apoptotic body percent, LDH activity percent, colony formation assay, HO / PI double staining, etc. As a result, it was confirmed that apoptosis was induced by UDCA in all of the gastric cancer cell lines, resulting in cell death (see FIGS. 1A to 1C), and it was shown that cell death was increased in a concentration-dependent manner of UDCA. In particular, it was confirmed that cell death by UDCA is caused by apoptosis (apoptosis) rather than cell necrosis (necrosis).
따라서, 상기 결과를 통해 본 발명자들은 본 발명의 우루소데옥시콜린산(UDCA)에 의한 위암 세포 사멸은 세포 괴사(necrosis)가 아닌 아폽토시스(apoptosis) 기작에 의한 것임을 알 수 있었다. Therefore, the present inventors have found that gastric cancer cell death by urosodeoxycholine acid (UDCA) of the present invention is due to apoptosis mechanism, not cell necrosis.
또한, 아폽토시스 과정에서 사멸 수용체의 활성화로부터 유도되는 세포 사멸의 경우, 세포 사멸 기작의 개시는 사멸 수용체(death receptor)와 리간드와의 반응으로부터 활성화되며, 이후 사멸 수용체에 세포 사멸과 관련된 어뎁터(adaptor) 인자들이 유인(recruit)되고 올리고머화하는 과정이 수반된다(Krammer PH. CD95(APO-1/Fas)-mediated apoptosis: Live and let die. AdvImmunol.71:163-210,1999). In addition, in the case of cell death induced by activation of the death receptor in the apoptosis process, the initiation of the cell death mechanism is activated from the reaction of the death receptor and the ligand, and then the adapter associated with the cell death to the death receptor. Factors are recruited and involved in oligomerization (Krammer PH. CD95 (APO-1 / Fas) -mediated apoptosis: Live and let die. Adv Immunol . 71: 163-210,1999).
이러한 사멸 수용체 단백질들은 대부분 타입 I 트랜스막 단백질들로서, TNFR-1, CD95/Fas, TNF-관련 아폽토시스-유도 리간드(TRAIL) 수용체-1(DR4), TNF-관련 아폽토시스-유도 리간드(TRAIL) 수용체-2(DR5), 사멸 수용체 3 및 6을 포함하는 종양 괴사 인자(TNF) 수용체 수퍼 패밀리에 속하며, TRAIL이 DR4 또는 DR5에 결합하거나 또는 Fas 리간드가 CD95/Fas에 결합할 경우, 수용체로 Fas-관련 사멸 도메인(death domain)(FADD)을 유인(recruit)하게 되며, FADD는 다시 카스파제-8을 사멸 수용체로 유인하여 사멸 유인성 신호 복합체(DISC)를 형성하게 된다. 형성된 DISC는 카스파제-8을 활성화시키고 활성화된 카스파제-8은 이의 하부 신호 전달 체계에 따라 세포 내에서 아폽토시스를 유도하게 된다.These death receptor proteins are mostly type I transmembrane proteins, such as TNFR-1, CD95 / Fas, TNF-associated apoptosis-inducing ligand (TRAIL) receptor-1 (DR4), TNF-related apoptosis-inducing ligand (TRAIL) receptor- 2 (DR5), belonging to the Tumor Necrosis Factor (TNF) receptor superfamily, including death receptors 3 and 6, and when TRAIL binds to DR4 or DR5 or Fas ligand binds to CD95 / Fas, it is Fas-associated as a receptor Recruit the death domain (FADD), FADD again attracts caspase-8 to the death receptor to form a death attracting signal complex (DISC). DISC formed activates caspase-8 and activated caspase-8 induces apoptosis in cells according to its underlying signaling system.
한편, PKC(protein kinase C)는 뇌, 비장, 심장 과 같은 동물의 조직 또는 기관에서 많이 존재하는 단백질로서, 신호 전달(signal transdution), 세포 성장, 유전자의 발현 및 종양 프로모터 (tumor promotor)의 기능을 가진 것으로 알려져 있다. 많은 동물 세포의 경우, PKC의 인산화 및 Na+, H+의 농도 변화에 의한 pH 변화는 세포의 활성에 관여하는 것으로 알려져 있으며, 어떤 세포에서는 증식(proliferation)의 신호가 되기도 하는 것으로 알려져 있다. On the other hand, PKC (protein kinase C) is a protein present in many tissues or organs of animals such as the brain, spleen, and heart, and functions as signal transdution, cell growth, gene expression, and tumor promotor. It is known to have In many animal cells, changes in pH due to phosphorylation of PKC and concentration changes of Na + and H + are known to be involved in cell activity, and in some cells are also known to be proliferation signals.
또한, PKC는 특정 유전자의 전사를 증가시키기도 한다. 특히, 포스파티딜리노시톨(phosphatidylinositol)의 가수 분해에 의해 생성되는 2차 전달자 중 DAG에 의한 PKC의 활성은 모노아실글리세롤(monoacylglycerol) 또는 포르볼 에스테르(phorbol ester)의 결합에 의해서도 유사하게 나타날 수 있다. 포르볼 에스테르는 동물 세포에서 암 프로모터의 기능을 보유하고 있어 암 세포의 성장을 유도하는 것으로 알려져 있다. PKC also increases the transcription of certain genes. In particular, the activity of PKC by DAG in secondary messengers produced by hydrolysis of phosphatidylinositol may be similarly expressed by the binding of monoacylglycerol or phorbol esters. . Phorbol esters have the function of a cancer promoter in animal cells and are known to induce the growth of cancer cells.
또한, PKC는 세포 내의 활성 산소(ROS)의 생성에도 중요한 역할을 하는 것으로 알려져 있는데, 세포 내에서 초과산소(superoxide) 음이온과 같은 활성 산소의 생성은 플라보단백질(flavoprotein) 함유 효소인 NADPH oxidase, xanthine oxidase, NO synthase, 및 미토콘드리아 전자 전달계를 통해 이루어지는 것으로 알려져 있다.In addition, PKC is known to play an important role in the production of free radicals (ROS) in the cell, the production of free radicals such as superoxide anion in the cell is a flavoprotein-containing enzyme NADPH oxidase, It is known to occur through xanthine oxidase, NO synthase, and mitochondrial electron transport system.
또한, 불활성화 형태의 PKC의 경우에는 세포 내에서 대부분의 PKC가 사이토졸(cytosol)에 존재하며, PKC가 활성화가 될 경우에는 사이토졸에서 세포막, 핵 및 막과 연관된 세포 골격(cytoskeleton)으로 이동(translocation)된다(Nishizuka Y. The molecular heterogeneity of protein kinase C and its implication for cellular regulation. Nature.334:661-665,1998). In addition, in the inactivated form of PKC, most of the PKC is present in the cytosol, and when PKC is activated, the cytosol moves from the cytosol to the cytoskeleton associated with the cell membrane, nucleus and membrane. (translocation) is (Nishizuka Y. The molecular heterogeneity of protein kinase C and its implication for cellular regulation Nature .334:. 661-665,1998).
또한, PKC는 3개의 상이한 서브패밀리로 세분화되며 포유 동물 세포에서는 12개 이상의 이성질 형태가 존재한다. 이러한 이성질 형태 중, 특히 PKC δ의 활성 및 세포막으로의 이동은 세포 내에서 아폽토시스의 개시를 유도하는 작용을 하는데, 카스파제 3의 활성 및 아폽토시스 유도에 대한 하부 신호 전달을 촉진하는 역할을 하는 것으로 알려져 있다(Brodie C and Blumberg PM. Regulation of cell apoptosis by protein kinase c δ. Apoptosis. 8:19-27,2003).In addition, PKCs are subdivided into three different subfamily and there are more than 12 isomeric forms in mammalian cells. Among these isomeric forms, in particular the activity of PKC δ and migration into the cell membrane act to induce the initiation of apoptosis in cells, which is responsible for promoting the activity of caspase 3 and lower signal transduction to induction of apoptosis. Known (Brodie C and Blumberg PM.Regulation of cell apoptosis by protein kinase c δ. Apoptosis . 8: 19-27,2003).
이에 본 발명자들은 UDCA에 의한 아폽토시스 유도 과정에서 세포 사멸 인자들인 카스파제(caspase)들이 관련되어 있는지를 분석하였는데, 본 발명의 일실시예에 따르면, 위암 세포주를 대상으로 카스파제 억제제를 처리한 후, UDCA를 처리하고 세포들의 아폽토시스 유도를 확인한 결과, 카스파제 억제제를 처리한 경우, 처리하지 않은 경우에 비해 UDCA에 의한 아폽토시스가 억제되는 것으로 나타났으며(도 2A 참조), UDCA는 카스파제 8의 활성을 증가시키는 활성이 있는 것으로 나타났고(도 2B 참조), 카스파제 8의 억제제를 처리한 경우, 아폽토시스의 활성화에 의한 카스파제 3, 6 및 PARP의 절단 현상이 일어나지 않는다는 것을 알 수 있었다(도 2C 참조).Accordingly, the present inventors analyzed whether caspases, which are cell death factors, are involved in apoptosis induction by UDCA. According to one embodiment of the present invention, after treating a caspase inhibitor in a gastric cancer cell line, Treatment with UDCA and confirming the induction of apoptosis of cells showed that treatment with caspase inhibitors inhibited apoptosis by UDCA compared to the absence of treatment (see FIG. 2A). It has been shown that there is activity to increase (see FIG. 2B), and when the inhibitor of caspase 8 was treated, it was found that cleavage of caspase 3, 6 and PARP by activation of apoptosis did not occur (FIG. 2C). Reference).
따라서, 본 발명의 UDCA는 위암 세포 내에서 카스파제들을 활성화시켜 아폽토시스를 유도할 수 있으며, 상기 카스파제들로는 이에 제한되지는 않으나, 카스파제-3, 6, 8 및 9일 수 있고, 바람직하게는 카스파제-8을 활성화시켜 이의 다운 스트림에 존재하는 카스파제 3, 6 및 9를 연쇄적으로 활성화시킴으로써 아폽토시스를 유도할 수 있다.Thus, the UDCA of the present invention can induce apoptosis by activating caspases in gastric cancer cells, which may be, but are not limited to, caspases-3, 6, 8 and 9, preferably Apoptosis can be induced by activating caspase-8 and cascaded caspases 3, 6 and 9 present downstream thereof.
또한, 본 발명의 UDCA는 위암 세포에서 세포 사멸 수용체의 발현 또는 활성을 촉진시키는 작용을 갖는 특징이 있는데, 상기 세포 사멸 수용체로는 이에 제한되지는 않으나, DR3, DR4, DR5, DR6, FAS 및 TNFR을 포함할 수 있다.In addition, the UDCA of the present invention is characterized by having an action of promoting the expression or activity of apoptosis receptors in gastric cancer cells, the apoptosis receptor is not limited thereto, DR3, DR4, DR5, DR6, FAS and TNFR It may include.
이러한 예로, 본 발명의 일실시예에 따르면, UDCA를 위암 세포에 처리하였을 경우, DR5의 발현이 증가되는 것으로 나타났고, 반면, siRNA를 사용하여 DR4, DR5 및 FAS의 발현을 위암 세포에서 억제한 후, UDCA를 처리한 결과 UDCA에 의한 아폽토시스가 억제되는 것으로 나타났다(도 3A 내지 3C 참조).For example, according to one embodiment of the present invention, the expression of DR5 was increased when UDCA was treated to gastric cancer cells, whereas siRNA was used to suppress the expression of DR4, DR5 and FAS in gastric cancer cells. Subsequently, treatment with UDCA showed that apoptosis by UDCA was suppressed (see FIGS. 3A-3C).
본 발명의 다른 일실시예에 따르면, 위암 세포에서 UDCA에 의해 아폽토시스가 유발될 때, UDCA가 세포 사멸 인자들, 즉 FADD 및 RIP1의 발현 또는 활성에 미치는 영향을 조사하기 위하여, siRNA를 사용하여 상기 유전자의 발현을 억제한 후, UDCA를 위암 세포에 처리한 결과, 아폽토시스가 대조군에 비해 감소된 것으로 나타났다(도 4A 및 4B 참조).According to another embodiment of the present invention, when apoptosis is induced by UDCA in gastric cancer cells, to investigate the effect of UDCA on the expression or activity of cell death factors, ie FADD and RIP1, using siRNA After suppressing the expression of the gene, treatment of gastric cancer cells with UDCA showed that apoptosis was reduced compared to the control (see FIGS. 4A and 4B).
따라서, 본 발명의 UDCA는 위암 세포에서 세포 사멸 수용체의 발현 또는 활성을 촉진시키고, 이러한 세포 사멸 수용체의 활성화는 세포 사멸과 관련된 어뎁터(adaptor) 인자(예컨대, FADD 또는 RIP1)들의 활성을 촉진시켜 아폽토시스를 유도할 수 있다. Thus, the UDCA of the present invention promotes expression or activity of apoptosis receptors in gastric cancer cells, and activation of such apoptosis receptors promotes apoptosis by promoting the activity of adapter factors (eg, FADD or RIP1) associated with cell death. Can be derived.
나아가 본 발명자들은 UDCA에 의한 위암 세포의 세포 사멸 기작에서 UDCA가 PKC를 활성화시킬 수 있는지를 조사한 결과, 본 발명의 일실시예에 따르면, 위암 세포주에 UDCA를 처리한 다음, 세포의 세포질 분획 및 막 분획을 각각 추출하고 웨스턴 블럿을 통해 PKC 이성질체들이 세포 내에서 어떠한 위치 이동을 보이고 있는지 확인한 결과, PKC δ의 경우, UDCA에 의해 사이토졸에서 막으로 이동되어지는 현상을 확인할 수 있었고(도 5A 참조), 반면, PKC δ 억제제 또는 siRNA PKC δ 를 처리하여 PKC δ의 발현 또는 활성을 억제하였을 경우, 카스파제들의 활성이 억제될 뿐만 아니라 사멸 수용체인 DR5의 발현도 감소되어 아폽토시스가 억제되는 것으로 나타났다(도 5B 및 5C 참조).Furthermore, the present inventors examined whether UDCA can activate PKC in a cell death mechanism of gastric cancer cells by UDCA, and according to an embodiment of the present invention, after treating UDCA to gastric cancer cell lines, cytoplasmic fraction and membrane of cells The fractions were extracted and Western blots were used to confirm the positional shifts of the PKC isomers in the cells. In the case of PKC δ, the migration from the cytosol to the membrane by UDCA was confirmed (see FIG. 5A). On the other hand, when PKC δ inhibitor or siRNA PKC δ was treated to inhibit the expression or activity of PKC δ, caspases not only inhibited the activity but also decreased the expression of the death receptor DR5, indicating that apoptosis was suppressed (FIG. 5B and 5C).
따라서, 본 발명자들은 UDCA에 의한 암 세포의 아폽토시스 과정에서 사멸 수용체인 DR5와 카스파제들의 활성은 PKC δ에 의해 조절된다는 사실을 통해, PKC δ는 UDCA에 의한 암 세포의 아폽토시스 개시 과정에서 매우 중요한 역할을 한다는 것을 알 수 있었다.Therefore, the present inventors found that the activity of the death receptor DR5 and caspases in the apoptosis of cancer cells by UDCA is regulated by PKC δ, so that PKC δ plays a very important role in the initiation of apoptosis of cancer cells by UDCA. I could see that.
한편, 반응성 산소종(Reactive oxygen species, ROS), 즉, 활성 산소는 산소에 의해 파생되는 물질이라고 해서 oxygen-derived species라고도 일컬어지며 일부는 최외각에 단일 전자를 하나 가지고 있어 반응성이 매우 크기 때문에 라디칼 (radical)이라고도 알려져 있다. ROS는 수퍼옥사이드 음이온 라디칼(superoxide anion radical; O2-), 히드록실 라디칼(hydroxyl radical; OH.), 퍼옥실 라디칼(peroxyl radical; ROO.) 등과 같은 산소 라디칼(radical) 뿐만 아니라, singlet oxygen, hydrogen peroxide 등과 같은 비-라디칼(non-radical)을 모두 지칭하는 말로써 그 종류가 매우 다양하며, ROS의 반응 시간은 매우 짧은 반면에 반응력은 매우 커서 생체 내에서 각종 단백질의 변성, 지질과산화, DNA의 변이 등과 같은 유해한 작용을 하는 것으로 알려져 있으며(Li W, Hill H.Z., Induced melanin reduces mutations and cell killing in mouse melanoma. Phytochem Photobiol. 65, pp.480-485, 1997), 궁극적으로 세포의 손상 및 세포 사멸을 유도하는 작용을 하는 것으로 알려져 있다(McCord JM. Human disease, free radicals and the oxidant/antioxidant balance. ClinBiochem. 26:351-357,1993).On the other hand, reactive oxygen species (ROS), that is, active oxygen, are also called oxygen-derived species because they are oxygen-derived materials, and some of them have a single electron at the outermost shell and are highly reactive. Also known as (radical). ROS is a singlet oxygen, hydrogen, as well as radicals such as superoxide anion radicals (O2-), hydroxyl radicals (OH.), Peroxyl radicals (ROO), and the like. It refers to all non-radical materials such as peroxide, etc. Its variety is very diverse, and the reaction time of ROS is very short while the reaction force is very large, so that it is possible to denature various proteins, lipid peroxidation and DNA in vivo. It is known to have harmful effects such as mutation (Li W, Hill HZ, Induced melanin reduces mutations and cell killing in mouse melanoma.Phytochem Photobiol . 65, pp.480-485, 1997), ultimately cell damage and cell death. (McCord JM. Human disease, free radicals and the oxidant / antioxidant balance. Clin Biochem . 26: 351-357,1993).
이에 본 발명자들은 UDCA의 위암에 대한 항암 활성 과정에서 이러한 ROS가 관여하는지 확인한 결과, 본 발명의 일실시예에 따르면, 위암 세포에 UDCA를 처리하였더니 ROS의 생성이 증가하여 세포 사멸이 증가한 것으로 나타난 반면, ROS의 소거제를 처리한 경우에는 ROS의 생성이 감소되어 세포 사멸 또한 감소되는 것으로 나타났고(도 6A 내지 6C 참조), UDCA에 의한 DR5의 발현 및 PKC δ의 활성(사이토졸에서 막으로의 이동)도 ROS 생성에 의해 조절된다는 것을 알 수 있었으며(도 7A, 7B, 8A 및 8B 참조), UDCA가 ROS의 생성을 유도하는 효과가 있다는 사실은 본 발명에서 최초로 규명하였다.Therefore, the inventors confirmed that such ROS is involved in the anticancer activity of gastric cancer of UDCA. According to one embodiment of the present invention, when UDCA was treated to gastric cancer cells, the production of ROS increased and cell death was increased. On the other hand, treatment with ROS scavenger reduced ROS production and decreased cell death (see FIGS. 6A to 6C). Expression of DR5 by UDCA and PKC δ activity (from cytosol to membrane) It can be seen that the movement of is also regulated by ROS production (see FIGS. 7A, 7B, 8A, and 8B), and the fact that UDCA has an effect of inducing ROS production was first identified in the present invention.
한편, 진핵 세포의 세포막에 존재하는 콜레스테롤은 막의 구성, 유지 및 유동성에 매우 중요한 역할을 하는 성분으로서, 이러한 콜레스테롤은 세포막에 균일한 형태로 존재하는 것이 아니라 특정 부위에 밀집된 형태로 형성되어 있는데, 세포막 상에서 이러한 부위를 "리피드 래프트(lipid raft)"라고 일컫는다. On the other hand, cholesterol present in the cell membrane of eukaryotic cells is a component that plays a very important role in the composition, maintenance and fluidity of the membrane, such cholesterol is not formed in a uniform form in the cell membrane but is formed in a dense form at a specific site, This site in the stomach is referred to as "lipid raft".
따라서, 이러한 리피드 래프트 도메인은 상대적으로 많은 양의 콜레스테롤과 glycosphingolipids가 밀집되어 있으며, Src-family kinase, hetero-trimeric G protein subunits, receptor tyrosine kinase들과 같은 신호 전달 단백질들이 포함되어 있어 인산화 연쇄 반응을 활성화하거나 억제하여 신호 전달을 조절하는 역할을 하는 것으로 알려져 있다(Simons K and Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol.1:31-9,2000; Dimanche-Boitrel MT, Meurette O, Rebillard A and Lacour S. Role of early plasma membrane events in chemotherapy-induced cell death. Drug Resist Updat.8:5-14,2005).Thus, these lipid raft domains contain relatively high amounts of cholesterol and glycosphingolipids, and include signal transduction proteins such as Src-family kinase, hetero-trimeric G protein subunits, and receptor tyrosine kinase to activate the phosphorylation chain reaction. (Simons K and Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 1: 31-9,2000; Dimanche-Boitrel MT, Meurette O, Rebillard) A and Lacour S. Role of early plasma membrane events in chemotherapy-induced cell death.Drug Resist Updat. 8: 5-14, 2005).
따라서, 본 발명자들은 UDCA에 의한 암 세포의 사멸 신호 전달 과정, 특히 아폽토시스 과정에서 리피드 래프트 도메인이 관여하고 있는지 조사하기 위해, 리피드 래프트에서 콜레스테롤을 제거하여 리피드 래프트의 구조를 손상시키는 시약인 MBCD를 위암 세포에 처리한 후, UDCA에 의한 아폽토시스를 관찰한 결과, MBCD를 처리한 경우, UDCA에 의한 카스파제들의 활성이 억제되었고, DR5의 발현도 감소되었으며 궁극적으로 아폽토시스가 억제되는 것으로 나타났다(도 9, 10A 및 10B 참조).Accordingly, the present inventors have investigated MBCD, a reagent that removes cholesterol from lipid rafts and damages the structure of lipid rafts, in order to investigate whether lipid raft domains are involved in the death signal transmission process of cancer cells by UDCA, in particular, apoptosis. After treatment with cells, apoptosis by UDCA was observed, and MBCD treatment resulted in inhibition of caspases activity by UDCA, decreased expression of DR5 and ultimately suppressed apoptosis (FIG. 9, 10A and 10B).
또한, 본 발명의 다른 일실시예를 통해, MBCD를 처리하여 리피드 래프트 도메인의 구조를 손상시킨 결과, UDCA에 의한 ROS의 생성이 부분적으로 억제되며 PKC δ의 활성도 억제되는 것으로 나타났다(도 11A 및 11B 참조).In addition, through another embodiment of the present invention, as a result of damaging the structure of the rapid raft domain by treating MBCD, it was shown that the production of ROS by UDCA is partially inhibited and the activity of PKC δ is also inhibited (FIGS. 11A and 11B). Reference).
따라서, 본 발명자들은 본 발명의 UDCA에 의한 위암 세포의 아폽토시스 과정에서 세포막에 존재하는 리피드 래프트 도메인의 구조가 세포 사멸 신호 전달에 아주 중요한 조절인자로 작용한다는 사실을 알 수 있었다.Thus, the present inventors have found that the structure of the lipid raft domain present in the cell membrane during the apoptosis process of gastric cancer cells by the UDCA of the present invention acts as an important regulator of cell death signal transduction.
그러므로, 본 발명의 우루소데옥시콜린산(ursodeoxycholic acid:UDCA)은 위암 세포에서 세포 사멸을 유도함으로써 위암을 치료할 수 있는 효과가 있으며, 본 발명에서 상기 위암 세포는 어떠한 위암 세포라도 모두 포함할 수 있으며, 예컨대 snu-601, snu-638, snu-1 및 snu-216일 수 있다.Therefore, ursodeoxycholic acid (UDCA) of the present invention is effective in treating gastric cancer by inducing cell death in gastric cancer cells, and the gastric cancer cells in the present invention may include any gastric cancer cells. And for example snu-601, snu-638, snu-1 and snu-216.
이에 본 발명은 우루소데옥시콜린산(ursodeoxycholic acid:UDCA) 또는 그의 염을 유효 성분으로 포함하는 위암의 예방 또는 치료용 조성물을 제공할 수 있다.Accordingly, the present invention can provide a composition for preventing or treating gastric cancer, which includes ursodeoxycholic acid (UDCA) or a salt thereof as an active ingredient.
본 발명에서 상기 위암의 예방 또는 치료용 조성물은 약학적으로 유효한 양의 우루소데옥시콜린산 화합물을 단독으로 포함하거나 하나 이상의 약학적으로 허용되는 담체, 부형제 또는 희석제를 포함할 수 있다. 상기에서 약학적으로 유효한 양이란 위암 증상을 예방, 개선 및 치료하기에 충분한 양을 말한다.In the present invention, the composition for preventing or treating gastric cancer may include a pharmaceutically effective amount of the urousodeoxycholic acid compound alone or may include one or more pharmaceutically acceptable carriers, excipients or diluents. The pharmaceutically effective amount in the above means an amount sufficient to prevent, ameliorate and treat gastric cancer symptoms.
본 발명에 따른 우루소데옥시콜린산의 약학적으로 유효한 양은 0.1 ~ 1,500 mg/day/체중kg, 바람직하게는 0.5 ~ 900 mg/day/체중kg이다. 그러나 상기 약학적으로 유효한 양은 위암 증상의 정도, 환자의 연령, 체중, 건강 상태, 성별, 투여 경로 및 치료 기간 등에 따라 적절히 변화될 수 있다.The pharmaceutically effective amount of urosodeoxycholic acid according to the present invention is 0.1 to 1,500 mg / day / kg body weight, preferably 0.5 to 900 mg / day / kg body weight. However, the pharmaceutically effective amount may be appropriately changed depending on the degree of gastric cancer symptoms, the age, weight, health condition, sex, route of administration and duration of treatment of the patient.
또한, 상기에서 "약학적으로 허용되는"이란 생리학적으로 허용되고 인간에게 투여될 때 통상적으로 위장 장애, 현기증과 같은 알레르기 반응 또는 이와 유사한 반응을 일으키지 않는 조성물을 말한다.In addition, "pharmaceutically acceptable" as used herein refers to a composition that is physiologically acceptable and does not normally cause an allergic reaction, such as gastrointestinal disorders, dizziness, or the like when administered to a human.
상기 담체, 부형제 및 희석제의 예로는, 락토즈, 덱스트로즈, 수크로즈, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 폴리비닐피롤리돈, 물, 메틸하이드록시벤조에이트, 프로필하이드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유를 들 수 있다. 또한, 충진제, 항응집제, 윤활제, 습윤제, 향료, 유화제 및 방부제 등을 추가로 포함할 수 있다. Examples of such carriers, excipients and diluents include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, acacia rubber, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methyl cellulose, Polyvinylpyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil. In addition, fillers, anti-coagulants, lubricants, wetting agents, fragrances, emulsifiers and preservatives may be further included.
또한, 본 발명의 조성물은 포유동물에 투여된 후 활성 성분의 신속, 지속 또는 지연된 방출을 제공할 수 있도록 당업계에 공지된 방법을 사용하여 제형화될 수 있다. 제형은 분말, 과립, 정제, 에멀젼, 시럽, 에어로졸, 연질 또는 경질 젤라틴 캅셀, 멸균 주사용액, 멸균 분말의 형태일 수 있다. In addition, the compositions of the present invention may be formulated using methods known in the art to provide rapid, sustained or delayed release of the active ingredient after administration to a mammal. The formulations may be in the form of powders, granules, tablets, emulsions, syrups, aerosols, soft or hard gelatin capsules, sterile injectable solutions, sterile powders.
본 발명에 따른 위암 증상의 예방 또는 치료용 조성물은 경구, 경피, 피하, 정맥 또는 근육을 포함한 여러 경로를 통해 투여될 수 있으며, 활성 성분의 투여량은 투여 경로, 환자의 연령, 성별, 체중 및 환자의 중증도 등의 여러 인자에 따라 적절히 선택될 수 있다. 또한, 본 발명의 위암 예방 또는 치료용 조성물은 위암 증상을 예방, 개선 또는 치료하는 효과를 가지는 공지의 화합물과 병행하여 투여할 수 있다.The composition for preventing or treating gastric cancer symptoms according to the present invention may be administered through various routes including oral, transdermal, subcutaneous, intravenous or muscle, and the dosage of the active ingredient is determined by the route of administration, age, sex, weight and It may be appropriately selected depending on various factors such as the severity of the patient. In addition, the composition for preventing or treating gastric cancer of the present invention can be administered in parallel with a known compound having the effect of preventing, improving or treating gastric cancer symptoms.
그러므로 본 발명은 우루소데옥시콜린산을 약학적으로 허용 가능한 담체와 함께 인간을 제외한 이를 필요로 하는 개체에 투여하는 단계를 포함하는 위암을 예방 또는 치료하는 방법을 제공할 수 있으며, 상기 담체로는 희석제, 활택제, 결합제, 붕해제, 감미제, 안정제 및 방부제로 이루어진 군 중에서 선택되는 하나 이상을 사용할 수 있다. Therefore, the present invention may provide a method for preventing or treating gastric cancer, comprising administering urosodeoxycholic acid to a subject in need thereof except a human with a pharmaceutically acceptable carrier. May be used at least one selected from the group consisting of diluents, lubricants, binders, disintegrants, sweeteners, stabilizers and preservatives.
나아가 본 발명은 우루소데옥시콜린산(ursodeoxycholic acid:UDCA) 또는 그의 염을 유효 성분으로 포함하는 아폽토시스 유도제 조성물을 제공할 수 있으며, 본 발명에 따른 아폽토시스 유도제 조성물은 위암 세포에 대해 아폽토시스를 유발할 수 있다.Furthermore, the present invention can provide an apoptosis inducer composition comprising ursodeoxycholic acid (UDCA) or a salt thereof as an active ingredient, and the apoptosis inducer composition according to the present invention can induce apoptosis in gastric cancer cells. have.
일반적으로 암은 대부분 아폽토시스에 의한 세포 사멸 및 세포 내 신호 전달 기전에 의한 세포 증식 사이의 불균형에 의하여 발생하는 것으로서, 일반적으로 암조직에서는 세포 증식에 관련된 신호 전달 기전은 활성화되는 반면, 아폽토시스에 관련된 세포 내 신호 전달은 억제된다는 것이 당업계에 주지되어 있다. In general, cancer is caused mostly by an imbalance between cell death by apoptosis and cell proliferation by intracellular signal transduction mechanisms. In general, in cancer tissues, the signal transduction mechanisms involved in cell proliferation are activated, whereas cells related to apoptosis are activated. It is well known in the art that internal signal transduction is inhibited.
따라서, 아폽토시스 유도제는 암세포에서 아폽토시스를 활성화시켜, 암세포에서 계획된 세포 사멸을 유도시킴으로써 암을 치료할 수 있는 효과가 있다.Thus, apoptosis inducers are effective in treating cancer by activating apoptosis in cancer cells and inducing planned cell death in cancer cells.
본 발명에서 상기 아폽토시스(apoptosis)는 세포 내에서 발생하는 모든 아폽토시스 활성 기작을 통해 유도될 수 있으며, 바람직하게는, 우루소데옥시콜린산(UDCA)의 처리에 의해, 위암 세포에서 카스파제(caspase)의 활성 촉진; 세포사멸 수용체의 활성 또는 발현 촉진; 사이토졸(cytosol)에서 막(membrane)으로 PKC(protein kinase C) δ 단백질의 이동(translocation); 또는 활성산소종(ROS)의 생성에 의해 유도될 수 있다.In the present invention, the apoptosis (apoptosis) can be induced through any apoptosis activity mechanism occurring in the cell, and preferably, by the treatment of urosodeoxycholine acid (UDCA), caspase in gastric cancer cells (caspase) Promotion of activity); Promoting activity or expression of apoptosis receptors; Translocation of the protein kinase C (PKC) δ protein from the cytosol to the membrane; Or by the generation of reactive oxygen species (ROS).
또한, 본 발명에 따른 상기 우루소데옥시콜린산(ursodeoxycholic acid:UDCA) 또는 그의 염을 유효 성분으로 포함하는 위암 예방 또는 치료용 조성물 및 아폽토시스 유도제 조성물은 조성물 총 중량에 대하여 250μM~1000μM의 양으로 포함될 수 있다.In addition, gastric cancer prevention or treatment composition and apoptosis inducer composition comprising the urusodeoxycholic acid (UDCA) or a salt thereof according to the present invention as an active ingredient in an amount of 250 μM to 1000 μM based on the total weight of the composition. May be included.
이하 본 발명을 실시예에 의하여 더욱 상세하게 설명한다. 이들 실시예는 단지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 국한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다. Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention in more detail, it will be apparent to those skilled in the art that the scope of the present invention is not limited to these examples.
<실시예><Example>
(1) 실험 재료(1) experimental material
하기 실시예들의 실험에서 사용된 시약 및 항체들은 다음과 같다. 즉, 우루소데옥시콜린산(Ursodeoxycholic acid; UDCA)은 ICN 바이오메티칼사 또는 시그마사로부터 구입한 것을 사용하였고, 데옥시콜린산(Deoxycholic acid; DCA), Z-DEVD-FMK (caspase-3 inhibitor), Z-VEID-FMK (caspase-6 inhibitor), Z-IETD-FMK (caspase-8 inhibitor), Z-LEHD-FMK (caspase-9 inhibitor), Z-VAD-FMK (poly-caspase inhibitor) 및 Ac-LEVD-CHO (caspase-4 inhibitor)는 칼바이오켐(Calbiochem)사로부터 구입하여 사용하였으며, N-acetyl-L-cysteine (NAC), Butylated hydroxyanisole (BHA) 및 1,2-dihydroxybenzene-3,5-disulforic acid (Tiron)은 로체(Roche)사로부터 구입하여 사용하였고, Methyl-β-Cyclodextrin (MBCD), 카탈라제 및 DPI는 시그마 알드리치사로부터 구입한 것을 사용하였으며, UO126, PD98059, Rottlerin, 109203x 및 GO6976 시약은 에이지 사이언티픽(A.G. Scientific)사로부터 구입한 것을 사용하였다. The reagents and antibodies used in the experiments of the following examples are as follows. That is, Ursodeoxycholic acid (UDCA) was purchased from ICN Biomedical or Sigma, and Deoxycholic acid (DCA), Z-DEVD-FMK (caspase-3 inhibitor) ), Z-VEID-FMK (caspase-6 inhibitor), Z-IETD-FMK (caspase-8 inhibitor), Z-LEHD-FMK (caspase-9 inhibitor), Z-VAD-FMK (poly-caspase inhibitor) Ac-LEVD-CHO (caspase-4 inhibitor) was purchased from Calbiochem and used N-acetyl-L-cysteine (NAC), Butylated hydroxyanisole (BHA) and 1,2-dihydroxybenzene-3, 5-disulforic acid (Tiron) was purchased from Roche, Methyl-β-Cyclodextrin (MBCD), catalase and DPI were purchased from Sigma Aldrich, UO126, PD98059, Rottlerin, 109203x and The GO6976 reagent was used from AG Scientific.
또한, 사용한 항체들의 경우, Cleaved caspase-3 (Asp175) 항체, Cleaved caspase-6 (Asp315) 항체, p-MEK1/2 항체, t-MEK1/2 항체, p-EGFR 항체 및 t-EGFR 항체는 세포 시그널링사(Cell signaling)로부터 구입한 것을 사용하였고, p-ERK1/2 항체, t-ERK1/2 항체, FADD 항체, Caveolin-1, Goat anti-mouse IgG-HRP 항체 및 Goat anti-rabbit IgG-HRP 항체는 산타그루즈 바이오테크놀러지사로부터 구입한 것을 사용하였으며, Anti-PARP 항체, RIP1 항체, PKC α, PKC δ, PKC θ 및 PKC ε는 BD 파민젠(BD pharmingen)사로부터 구입한 것을 사용하였고, DR4 항체 및 DR5 항체는 ProSic사로부터 구입한 것을 사용하였으며, Tubulin는 Biogenex Laboratories사로부터 구입한 것을 사용하였다.In addition, for antibodies used, Cleaved caspase-3 (Asp175) antibody, Cleaved caspase-6 (Asp315) antibody, p-MEK1 / 2 antibody, t-MEK1 / 2 antibody, p-EGFR antibody and t-EGFR antibody were P-ERK1 / 2 antibody, t-ERK1 / 2 antibody, FADD antibody, Caveolin-1, Goat anti-mouse IgG-HRP antibody and Goat anti-rabbit IgG-HRP were used from Cell signaling. Antibodies were purchased from Santa Cruz Biotechnology Inc., and anti-PARP antibodies, RIP1 antibodies, PKC α, PKC δ, PKC θ and PKC ε were those purchased from BD pharmingen. DR4 antibody and DR5 antibody were used from ProSic, and Tubulin was used from Biogenex Laboratories.
(2) 세포 배양(2) cell culture
또한, 하기 실시예들에서 사용된 세포는 인간 위암 세포주(snu-601, snu-638, snu-1 및 snu-216 세포)를 사용하였고, 상기 세포들은 서울대학교의 한국세포주은행(대한민국)으로부터 입수하였으며, 이들 세포들은 열-불활성화 10% 소태아 혈청(FBS; 인비트로젠, CA) 및 1% 페니실린-스트렙토마이신(웰젠, 서울, 한국)이 첨가된 RPMI 1640 배지(인비트로젠, CA)에서 37℃의 온도 및 5%의 이산화탄소 조건하에서 배양하였다. In addition, the cells used in the following examples used human gastric cancer cell lines (snu-601, snu-638, snu-1 and snu-216 cells), and the cells were obtained from the Korea Cell Line Bank of Seoul National University (Korea) These cells were RPMI 1640 medium (Invitrogen, CA) supplemented with heat-inactivated 10% fetal bovine serum (FBS; Invitrogen, CA) and 1% penicillin-streptomycin (Welzen, Seoul, Korea). Incubated at 37 ° C. and at 5% carbon dioxide conditions.
또한, 상기 세포들은 약물 노출 테스트를 위해 밤새도록 배양한 후, 5×106cells/20cm2dish, 1.5×106cells/10cm2dish, 5×105cells/6 cm2dish, 2×105cells/3.5cm2dish으로 각각 분주하였으며, 24웰 플레이트의 경우에는 5×104cells/well의 세포수가 되도록 세포를 분주하여 사용하였다. The cells were also incubated overnight for drug exposure testing, then 5 × 10 6 cells / 20 cm 2 dish, 1.5 × 10 6 cells / 10 cm 2 dish, 5 × 10 5 cells / 6 cm 2 dish, 2 × 10 The cells were divided into 5 cells / 3.5 cm 2 dishes, and in the case of 24 well plates, cells were divided and used to have a cell number of 5 × 10 4 cells / well.
<실시예 1><Example 1>
MTTMTT 어세이에In an assay 의한 세포 생존율,  Cell survival rate, 아폽토틱Apoptotic 바디body 퍼센트,  percent, LDHLDH 퍼센트 및  Percent and 콜로니Colony 형성 분석을 통한 인간 위암 세포에서  In human gastric cancer cells through formation analysis UDCAUDCA of 아폽토시스Apoptosis 유도 측정  Induction measurement
[규칙 제91조에 의한 정정 28.09.2010] 
본 발명자들은 위암 세포주들에 대하여 우루소데옥시콜린산(UDCA)이 상기 암세포들의 아폽토시스를 유도하는 활성이 있는지를 조사하였는데, 이를 위해 암세포주로서 위암 세포주인 snu-601, snu-638, snu-1 및 snu-216 세포주를 사용하였고, 상기 세포들은 24웰 플레이트에 5×104cells/웰이 되도록 각각 분주하고, UDCA를 250, 500 및 1000μM의 농도로 처리한 다음, 도 1A 내지 도 1C에서는 모든 세포에서 48시간 배양하였으며, 그 이후 실험에서는 SNU601은 24시간, SNU638은 48시간 씩 각각 배양하고, MTT 분석을 통해 세포들의 생존율을 분석하였다.
[Revisions under Rule 91 28.09.2010]
The present inventors investigated whether urosodeoxycholine acid (UDCA) has activity to induce apoptosis of the cancer cells against gastric cancer cell lines. For this purpose, the cancer cell lines snu-601, snu-638, snu- 1 and snu-216 cell lines were used, and the cells were each dispensed into 24 well plates at 5 × 10 4 cells / well, treated with UDCA at concentrations of 250, 500 and 1000 μM and then in FIGS. 1A-1C. All cells were incubated for 48 hours, and in subsequent experiments, SNU601 was incubated for 24 hours and SNU638 for 48 hours, respectively, and the survival rate of the cells was analyzed by MTT analysis.
이때, 상기 MTT 분석은 UDCA를 처리한 후 배양한 세포들에 대하여 0.5μg/ml의 MTT를 각 세포들에 처리하고 4시간 배양한 다음, 각 플레이트의 세포들을 모아서 5분 동안 상온에서 1000 rpm으로 원심 분리하였다. 이후, 배지를 제거하고, 750ul의 DMSO를 첨가하여 포르마진 크리스탈을 용해시켰고, ELISA 마이크로플레이트 리더(페킨-엘머)를 사용하여 540nm에서 흡광도를 측정하였다. 이때, 대조군으로는 아무것도 처리하지 않은 세포를 사용하였고 이를 100%로 기준하여 상기 세포들에 대한 세포 생존율을 측정하였다. In this case, the MTT assay is treated with 0.5μg / ml MTT to each of the cells cultured after treatment with UDCA and incubated for 4 hours, the cells of each plate collected and collected at room temperature for 5 minutes at 1000 rpm for 5 minutes Centrifuged. The medium was then removed, 750 ul of DMSO was added to dissolve the formazin crystal, and the absorbance was measured at 540 nm using an ELISA microplate reader (Pekin-Elmer). In this case, cells treated with nothing were used as a control group, and the cell viability of the cells was measured based on 100%.
또한, UDCA에 의한 위암 세포들의 세포 사멸 형태를 분석하기 위해, Hoechst 33342(HO) 및 PI(Propidium Iodide)를 이용한 이중 염색법을 수행하였는데, HO는 세포의 핵을 파란 형광색으로 염색하는 반면, PI는 손상된 세포의 세포막에 침투하여 형광을 띄는 특징이 있다. 따라서 HO/PI를 이용한 이중 염색법은 세포가 살아있는 경우 파란색의 정상적인 둥근 핵모양이 관찰되며, 초기 아폽토시스 단계의 경우에는 응축 및 절단된 파란색의 핵을 관찰할 수 있고, 후기 아폽토시스 단계(이차 네트로틱)의 경우에는 응축 및 절단된 핑크빛의 핵을 관찰할 수 있으며, 세포 괴사(necrotic cell)일 경우에는 응축 및 절단되지않고 둥근 모양을 유지한 핑크빛 핵으로 관찰된다. In addition, to analyze the apoptosis form of gastric cancer cells by UDCA, a double staining method using Hoechst 33342 (HO) and PI (Propidium Iodide) was performed. HO stains the nuclei of cells with blue fluorescence, while PI It penetrates the cell membrane of damaged cells and is characterized by fluorescence. Thus, double staining with HO / PI shows normal round nuclei of blue when the cells are alive, condensed and cleaved blue nuclei in the early apoptotic phase, and late apoptotic phase (secondary necrotic). In the case of condensation and cleaved pink nucleus can be observed, in the case of cell necrotic (necrotic cell) it is observed as a pink nucleus that maintains a round shape without condensation and cleavage.
이러한 원리를 이용한 HO/PI 이중 염색법은 snu-601, snu-638, snu-1 및 snu-216 세포들을 2×105cells/3.5cm2dish으로 각각 분주한 다음, 상기 MTT 분석에서와 같은 농도의 UDCA를 처리하고, 각 시간별로 상기 세포들을 1μg/ml의 Hoechst 33342 및 5μg/ml의 PI를 세포들에 처리하여 세포들을 염색하였다. 이후, 세포들은 트립신으로 처리하여 모은 다음, 4℃의 온도에서 10분 동안 1500rmp으로 원심 분리하였고, 바닥에 모아진 세포들을 1x의 차가운 PBS 용액으로 세척한 다음 다시 상기 조건과 같이 원심 분리하였다. 이후 세포들을 500ul의 3.7% 파라포름알데히드로 용해시키고 5분간 반응시킨 다음, 사이토스피너(cytospinner)에서 원심 분리하였다. 이후 슬라이드를 마운티드 겔로 즉시 고정시키고 물로 세척한 다음, 건조시키고 글래스 커버 슬립으로 덮었다. 상기 슬라이드를 흥분/방출 파장이 각각 340/425nm(HO) 및 580/630nm(PI)인 조건하에서 DM5000 형광 현미경(한일)으로 관찰하여 아폽토시스가 유발된 세포들을 확인하였다.HO / PI double staining using this principle is performed by dispensing snu-601, snu-638, snu-1 and snu-216 cells into 2 × 10 5 cells / 3.5 cm 2 dishes, respectively, followed by the same concentration as in the MTT assay. UDCA and cells were stained by treating the cells with 1 μg / ml Hoechst 33342 and 5 μg / ml PI for each hour. Cells were then collected by treatment with trypsin, centrifuged at 1500 rpm for 10 minutes at a temperature of 4 ° C., and the cells collected at the bottom were washed with 1 × cold PBS solution and then centrifuged again as above conditions. Cells were then lysed with 500ul of 3.7% paraformaldehyde and allowed to react for 5 minutes, and then centrifuged in a cytospinner. The slides were then immediately fixed with mounted gels, washed with water, dried and covered with a glass cover slip. The slides were observed under a DM5000 fluorescence microscope (Hanil) under excitation / emission wavelengths of 340/425 nm (HO) and 580/630 nm (PI), respectively, to identify apoptosis-induced cells.
나아가, 본 발명자들은 UDCA가 위암 세포의 세포 사멸을 유도하는 과정에 있어서, 세포 괴사를 유도하는 과정에도 영향을 미치는지 확인하기 위해 젖산 탈수소효소(lactate dehydrogenase:LDH) 방출 분석을 수행하였는데, 즉, 상기 분석은 세포막 손상에 의한 독성(cytotoxicity)정도를 측정하는데 사용되며, LDH는 비교적 안정한 효소로서 모든 세포 타입에 존재하며 세포막이 손상되었을 경우 세포 배지로 빠르게 방출되는 특성이 있다. Furthermore, the present inventors performed lactate dehydrogenase (LDH) release assay to determine whether UDCA affects the process of inducing cell necrosis in the process of inducing apoptosis of gastric cancer cells. The assay is used to measure the degree of cytotoxicity caused by cell membrane damage. LDH is a relatively stable enzyme, present in all cell types and rapidly released into the cell medium when the cell membrane is damaged.
이를 위해, snu-601, snu-638, snu-1 및 snu-216 세포들을 24웰 플레이트에 5×104cells/웰이 되도록 각각 분주한 뒤, 500ul의 RPMI 배지에서 배양하고, 상기 기술된 방법과 동일하게 각 농도별로 UDCA를 처리하였다. 이후, 50ul의 LDH lysis 버퍼를 각 세포의 일정 배양 마침 시간 30분 전에 첨가하여 세포들을 용해시켰다. 용해된 세포들은 10분 동안 600g로 원심 분리하였고, 각 상층액을 10ul씩 24웰 마이크로 분주 플레이트에 넣은 후, 100ul의 LDH 반응 혼합액(200ul의 WST 기질 혼합물과 10.5ml의 LDH 어세이 버퍼의 혼합물)을 첨가하여 혼합시켰다. 이후, 상기 플레이트를 상온에서 30분 동안 교반시키고, 플레이트 리더(바이오 래드사, 미국)기기를 이용하여 일차 파장으로 450nm 및 기준 파장 650nm 조건에서 측정하였다. 또한, 각 세포로부터 방출된 LDH의 방출 퍼센트 계산은 다음과 같은 수식을 통해 계산하였다.To this end, snu-601, snu-638, snu-1 and snu-216 cells are each dispensed into 5 × 10 4 cells / well in a 24-well plate, incubated in 500 ul RPMI medium, and the method described above. UDCA was treated for each concentration in the same manner. Thereafter, 50ul of LDH lysis buffer was added 30 minutes before the end of constant culture time of each cell to lyse the cells. Lysed cells were centrifuged at 600 g for 10 minutes, each supernatant was placed in a 24-well micro-dispensing plate of 10 ul, followed by 100 ul of LDH reaction mixture (mix of 200 ul of WST substrate mixture and 10.5 ml of LDH assay buffer). Was added and mixed. Thereafter, the plate was stirred at room temperature for 30 minutes, and measured at a wavelength of 450 nm and a reference wavelength of 650 nm at a primary wavelength using a plate reader (Bio Rad, USA). In addition, the percent release of LDH released from each cell was calculated by the following formula.
퍼센트(%) 독성=[(실험에 의한 LDH 방출)-(효과기 또는 타겟에 의한 자발적 LDH 방출)/(LDH 방출 최대값)-(자발적 LDH 방출값)] × 100% Percent (%) Toxicity = [(Experimental LDH Release)-(Spontaneous LDH Release by Effector or Target) / (LDH Release Maximum)-(Voluntary LDH Release)] × 100%
여기서, 대조군 세포로부터 자발적으로 방출된 LDH 활성도는 완전히 용해된 세포로부터 측정된 LDH 방출 최대값은 2% 미만이었다.Here, LDH activity spontaneously released from control cells was less than 2% LDH release maximum measured from fully lysed cells.
또한, UDCA가 위암 세포들의 콜로니 형성을 억제할 수 있는지를 확인하기 위해, 상기 위암 세포주들에 대해 UDCA를 250, 500 및 1000μM의 농도로 12시간 동안 각각 처리한 다음, 37℃/5% CO2 조건 하에서 2주 동안 배양하고 콜로니를 크리스탈 바이올렛으로 염색하여 콜로니 형성 어세이를 통해 콜로니 형성 정도를 분석하였다. 이때, 상기 콜로니 형성 정도의 측정은 플레이트에 형성된 콜로니들을 육안으로 관찰하였다(〉1mm).In addition, to confirm that UDCA can inhibit colony formation of gastric cancer cells, the UDCA was treated for 12 hours at concentrations of 250, 500, and 1000 μM for the gastric cancer cell lines, respectively, followed by 37 ° C./5% CO.2Under conditions Incubate for 2 weeks and the colonies were stained with crystal violet to analyze the degree of colony formation through the colony formation assay. At this time, the measurement of the degree of colony formation was visually observed colonies formed on the plate (> 1mm).
그 결과, 도 1A에 나타낸 바와 같이, 인간의 위암 세포주를 대상으로 UDCA를 처리하였을 경우, MTT 분석 결과, 위암 세포들의 생존율은 감소하는 것으로 나타났고, 생존 감소 효과는 처리한 UDCA의 농도가 높을수록, 처리 시간이 길수록 더 생존율이 감소하는 것으로 나타났다. As a result, as shown in FIG. 1A, when UDCA was treated in human gastric cancer cell lines, MTT analysis showed that survival rate of gastric cancer cells decreased, and the effect of reducing survival was that the higher the concentration of treated UDCA, As a result, the longer the treatment time, the lower the survival rate.
또한, 위암 세포주들에 UDCA를 처리하고 HO/PI를 이용한 이중 염색법을 수행한 경우, 위암 세포들은 모두 아폽토시스에 의해 세포 사멸이 유도된 것을 확인할 수 있었고, 반면, 위암 세포주 모두에서 세포 괴사는 아폽토시스에 비해 거의 유도되지 않는 것으로 나타났다. In addition, when gastric cancer cell lines were treated with UDCA and subjected to double staining using HO / PI, gastric cancer cells were confirmed to induce cell death by apoptosis, whereas cell necrosis in all gastric cancer cell lines was associated with apoptosis. Almost no induction was observed.
또한, 젖산 탈수소효소(lactate dehydrogenase:LDH) 방출 분석 결과, UDCA를 처리한 위암 세포주들의 경우, LDH의 활성은 거의 1% 이하인 것으로 나타났다. 일반적으로 세포 괴사는 세포막 손상이 발생하였을 경우, 세포 사멸의 초기 단계에서 LDH의 방출이 발생하며, 이는 전형적인 세포 괴사(necrotic cell death)의 특징이다. 반면, 본 발명의 UDCA에 의한 위암 세포의 세포 사멸은 LDH의 방출을 유도하지 않았음을 알 수 있었다. In addition, lactate dehydrogenase (LDH) release analysis showed that the activity of LDH was almost 1% or less in gastric cancer cell lines treated with UDCA. In general, when cell membrane damage occurs, the release of LDH occurs in the early stages of cell death, which is typical of necrotic cell death. On the other hand, cell death of gastric cancer cells by the UDCA of the present invention did not induce the release of LDH.
따라서, 본 발명의 UDCA에 의한 위암 세포의 세포 사멸은 세포 괴사 아닌 아폽토시스에 의한 것임을 알 수 있다. Therefore, it can be seen that cell death of gastric cancer cells by UDCA of the present invention is caused by apoptosis rather than cell necrosis.
따라서, 상기 결과를 통해 본 발명자들은 UDCA가 위암 세포에서 아폽토시스에 의한 세포 사멸을 유도하는 반면, 세포 괴사 등에 의한 세포 사멸을 유도하지 않는다는 것을 알 수 있었다.Therefore, the present inventors have found that UDCA induces cell death by apoptosis in gastric cancer cells, but does not induce cell death by cell necrosis.
[규칙 제91조에 의한 정정 28.09.2010] 
이러한 UDCA를 처리한 경우의 실험 결과와 대비하기 위하여 도 1A 내지 도 1C에는 UDCA 뿐 아니라 DCA에 대한 실험 결과도 나타내었다.
[Revisions under Rule 91 28.09.2010]
1A to 1C show the experimental results for DCA as well as the UDCA to prepare for the experimental results when the UDCA was treated.
데옥시콜린산(DCA)의 경우, 간 세포 및 대장암 세포에서 아폽토시스를 유도시킨다는 내용이 개시된 바 있다. 그러나, 데옥시콜린산의 경우, 위암 세포에서 아폽토시스를 유도시킨다는 내용에 대해서는 전혀 공지된 바 없어, 본 발명자들은 데옥시콜린산을 위암 세포주에 각각 처리한 다음, MTT 어세이, HO/PI 이중 염색법 및 LDH 방출 분석 실험을 수행하였다.Deoxycholine acid (DCA) has been disclosed to induce apoptosis in liver cells and colon cancer cells. However, there is no known content of inducing apoptosis in gastric cancer cells in the case of deoxycholic acid, and the present inventors treated deoxycholic acid with gastric cancer cell lines, respectively, followed by MTT assay, HO / PI double staining. And LDH release assays.
MTT 분석 결과, UDCA를 위암 세포에 처리하였을 경우와 비슷하게, DCA를 처리한 경우 역시 농도 의존적으로 위암 세포의 세포 사멸을 유도하는 것으로 나타났지만, HO/PI 이중 염색법에 의한 분석 결과, DCA를 0.5 mM 이상 처리하는 경우 UDCA를 처리한 경우에 비하여 아폽토틱 바디 퍼센트가 크게 감소되는 것을 확인할 수 있으며, 다시 말해, UDCA와는 달리 DCA는 위암 세포에서 세포 괴사를 유도하는 것으로 나타났으며, LDH 방출 분석 실험을 통해 LDH 활성의 면에서 DCA을 처리한 경우 위암 세포에서 농도 의존적으로 세포막 밖으로 LDH의 방출량이 증가하는 것으로 나타났다. MTT analysis showed that, similarly to the treatment of gastric cancer cells with UDCA, DCA treatment also induced apoptosis of gastric cancer cells in a concentration-dependent manner, but HO / PI double staining showed 0.5 mM DCA. Abnormal treatment resulted in a significant decrease in apoptotic body percentage compared to UDCA treatment.In other words, DCA was shown to induce cell necrosis in gastric cancer cells, unlike UDCA. In the case of DCA treatment in terms of LDH activity, gastric cancer cells were found to increase the release of LDH out of the cell membrane in a concentration-dependent manner.
상기 결과를 통해 본 발명자들은 DCA의 경우 위암 세포의 세포 사멸을 유도하는 활성이 있으나, 세포 사멸의 유도 기작이 UDCA와는 달리 세포 괴사를 통해 이루어짐을 알 수 있고, 이는 도 1A에 있어 UDCA를 처리한 경우 LDH 방출 없이 아폽토틱 바이가 형성되는데 비하여 DCA를 처리한 경우에는 LDH 방출이 있다는 것에 의하여 뒷받침된다. Through the above results, the present inventors found that DCA has an activity of inducing apoptosis of gastric cancer cells, but unlike UDCA, the mechanism of inducing cell death is achieved through cell necrosis, which is treated with UDCA in FIG. 1A. Apoptotic bis are formed without LDH release, which is supported by the presence of LDH release when treated with DCA.
또한, 도 1B 및 1C에 있어서, 콜로니 형성도 UDCA의 처리 농도가 높을수록 형성된 콜로니의 수가 현저하게 감소되는 것으로 나타났으며, 특히 1000μM의 UDCA를 처리한 경우 콜로니는 거의 형성되지 않는 것으로 나타났다. In addition, in FIG. 1B and 1C, the number of colonies formed was also markedly reduced as the concentration of UDCA was increased. In particular, when treated with 1000 μM of UDCA, almost no colonies were formed.
<< 실시예EXAMPLE 2> 2>
위암 세포에서 UDCA에 의한 아폽토시스 유도에서 카스파제들의 영향 분석Analysis of the effects of caspases on induction of apoptosis by UDCA in gastric cancer cells
본 발명자들은 상기 실시예 1을 통해 UDCA가 위암 세포에서 아폽토시스를 유도하여 세포 사멸을 일으킨다는 사실을 확인함에 따라 UDCA에 의한 아폽토시스 작용에서 카스파제들의 영향을 확인하기 위해 다음과 같은 실험을 수행하였다. The present inventors performed the following experiment to confirm the effect of caspases on the apoptosis action by UDCA as UDCA confirms that the UDCA induces apoptosis in gastric cancer cells, resulting in cell death.
즉, 상기 실시예에서 사용한 위암 세포주인 snu-601 및 snu-638세포에 10μM의 카스파제 억제제(Z-DEVD-FMK, Z-VEID-FMK, Z-IETD-FMK, Z-LEHD-FMK 또는 Z-VAD-FMK)를 각각 30분 동안 처리한 후, 1000μM의 UDCA를 처리한 다음, snu-601 세포의 경우 24시간을 배양하였고, snu-638 세포의 경우에는 36시간을 배양하였다. 이후 상기 세포들은 상기 실시예에서 수행한 HO/PI 이중 염색법 방법을 이용하여 아폽토시스가 유발된 세포들을 확인하였으며, 핵의 응집 또는 단편화된 정도를 측정하였다. That is, 10 μM of caspase inhibitors (Z-DEVD-FMK, Z-VEID-FMK, Z-IETD-FMK, Z-LEHD-FMK or Z) in the gastric cancer cell lines snu-601 and snu-638 cells used in the above examples. -VAD-FMK) was treated for 30 minutes, and then treated with 1000 μM of UDCA, and then cultured for 24 hours for snu-601 cells and 36 hours for snu-638 cells. The cells were then identified by apoptosis-induced cells using the HO / PI double staining method performed in the above example, and the degree of nucleation aggregation or fragmentation was measured.
또한, UDCA 처리에 의한 위암 세포에서 카스파제 8의 활성화 정도를 IETD-pNA 기질 절단 분석을 통해 관찰하였는데, 상기 분석은 FADD-유사 IL-1β-전환 효소(FLICE)/카스파제-8 비색 분석 키트(바이오비전)를 사용하여 상기 키트의 사용 방법에 따라 실험을 수행하였다. In addition, the degree of activation of caspase 8 in gastric cancer cells by UDCA treatment was observed through IETD-pNA substrate cleavage assay, which assay was performed using FADD-like IL-1β-converting enzyme (FLICE) / Caspase-8 colorimetric assay kit. Experiments were performed according to the method of use of the kit using (Biovision).
즉, 5×105의 위암 세포에 1000μM의 UDCA를 처리한 후 12, 18, 24 및 48시간 동안 각각 배양한 다음, 세포들은 원심 분리하여 수집하였다. 이후 수집한 세포들을 50ul의 차가운 세포 용해 버퍼로 세포들을 용해(lysis)시킨 후, 10분 동안 얼음에 배양하고 10,000g의 속도로 4℃에서 1분간 원심 분리하였다. 상등액을 새 튜브에 옮긴 후, 바이오 렌드 단백질 분석 키트를 사용하여 정량한 다음, 세포 용해 버퍼로 150ul~50ul의 부피로 희석시키고, 50ul의 2x 반응 버퍼(10mM의 DTT 함유) 및 5ul의 4mM IETD-pNA 기질을 첨가하여 최종 농도가 200μM가 되도록 하였다. 37℃에서 2시간 배양하고 405nm에서 플레이트 리더로 흡광도를 측정하였고, 대조군으로는 아무것도 처리하지 않은 세포를 사용하였다. In other words, 5 × 10 5 gastric cancer cells were treated with 1000 μM of UDCA, and then cultured for 12, 18, 24 and 48 hours, respectively, and the cells were collected by centrifugation. The cells were then lysed with 50 ul of cold cell lysis buffer, incubated on ice for 10 minutes and centrifuged at 4 ° C. for 1 minute at 10,000 g. Transfer the supernatant to a new tube, quantify using the Biorend Protein Assay Kit, dilute to 150 ul to 50 ul with cell lysis buffer, 50 ul of 2x reaction buffer (containing 10 mM DTT) and 5 ul of 4 mM IETD- pNA substrate was added to a final concentration of 200 μΜ. The cells were incubated at 37 ° C. for 2 hours, and the absorbance was measured at 405 nm using a plate reader. As a control, untreated cells were used.
또한, 본 발명자들은 UDCA에 의한 위암 세포의 아폽토시스에서 카스파제 8의 중요도를 확인하기 위해, 카스파제 8의 억제제인 Z-IETD-FMK(20μM)를 상기 위암 세포주에 미리 1시간 동안 처리한 다음, 1000μM의 UDCA를 snu-601(24시간 동안) 및 snu-638 세포(36시간 동안)에 각각 처리하고, 절단된 카스파제 3, 절단된 카스파제 6, 절단된 PARP 및 튜불린의 단백질 양을 웨스턴 블럿을 수행하여 확인하였다.In addition, the present inventors treated Z-IETD-FMK (20 μM), an inhibitor of caspase 8, with the gastric cancer cell line for 1 hour in advance in order to confirm the importance of caspase 8 in apoptosis of gastric cancer cells by UDCA, 1000 μM of UDCA was treated to snu-601 (for 24 hours) and snu-638 cells (for 36 hours), respectively, and the amount of protein of cleaved caspase 3, cleaved caspase 6, cleaved PARP and tubulin was measured. Confirmed by performing blots.
즉, 아폽토시스가 발생하게 되면, 카스파제는 활성화되며, PARP(poly(ADP-ribose) polymerase)가 절단되어지는 특징이 있는데, 본 발명에 따른 UDCA를 처리하기 전에 카스파제 8의 억제제인 Z-IETD-FMK(20μM)을 위암 세포주에 처리한 결과, 카스파제-3, 카스파제-6 및 PARP의 절단된 절편들의 양을 확인하였다.That is, when apoptosis occurs, caspase is activated, and PARP (poly (ADP-ribose) polymerase) is cleaved, which is characterized by Z-IETD, an inhibitor of caspase 8, before treating UDCA according to the present invention. Treatment of gastric cancer cell lines with -FMK (20 μM) confirmed the amount of cleaved sections of caspase-3, caspase-6 and PARP.
그 결과, 도 2A에 나타낸 바와 같이, UDCA에 의한 위암 세포의 아폽토시스 유도는 카스파제 억제제를 처리할 경우, 억제되는 것으로 나타났으며, 보다 상세하게는 카스파제-3 억제제(Z-DEVD-FMK), 카스파제-6 억제제(Z-VEID-FMK), 카스파제-7 억제제(Z-IETD-FMK), 카스파제-8 억제제(Z-LEHD-FMK), 또는 pan-caspase inhibitor Z-VAD-FMK를 처리할 경우 UDCA에 의한 위암 세포의 아톱포시스의 유도는 거의 완전히 억제되고, 카스파제-9 억제제(Z-LEHD-FMK)를 처리할 경우 UDCA에 의한 위암 세포의 아톱포시스의 유도는 상기의 경우보다는 덜 억제되며, 카스파제-4 억제제(Z-LEVD-FMK)를 처리할 경우 UDCA에 의한 위암 세포의 아톱포시스의 유도는 거의 억제되지 않는 것으로 나타났고, 이러한 결과로부터 UDCA 에 의한 위암 세포의 아톱포시스가 주로 외인성 경로에 의하여 조절되는 것으로 확인할 수 있다.As a result, as shown in Figure 2A, apoptosis induction of gastric cancer cells by UDCA was shown to be inhibited when treated with caspase inhibitors, more specifically caspase-3 inhibitors (Z-DEVD-FMK) , Caspase-6 inhibitor (Z-VEID-FMK), caspase-7 inhibitor (Z-IETD-FMK), caspase-8 inhibitor (Z-LEHD-FMK), or pan-caspase inhibitor Z-VAD-FMK Induction of atopocytosis of gastric cancer cells by UDCA is almost completely inhibited by treatment of atopossis of gastric cancer cells by treatment of caspase-9 inhibitor (Z-LEHD-FMK). It was shown to be less suppressed than in the case of treatment, and the treatment of caspase-4 inhibitor (Z-LEVD-FMK) showed little inhibition of atopocsis of gastric cancer cells by UDCA. Apoptosis of cells is mainly regulated by exogenous pathways. C.
카스파제 8의 활성은 UDCA의 처리에 의해 활성도가 증가하는 것으로 나타났다(도 2B 참조). 또한, UDCA에 의한 위암 세포의 아폽토시스의 경우, 카스파제 8이 중요한 역할을 하는지를 확인하기 위해 카스파제-8 억제제를 처리 후 웨스턴 블럿을 수행한 결과, 도 2C에 나타낸 바와 같이, 카스파제 3, 6, 및 PARP가 절단된 절편들이 관찰되지 않았다. 이는 도 2A의 오른쪽의 웨스턴 블럿 결과와 대비하면 더욱 분명하다.The activity of caspase 8 was shown to increase in activity by treatment of UDCA (see FIG. 2B). In addition, in the case of apoptosis of gastric cancer cells by UDCA, western blot after treatment with caspase-8 inhibitor to confirm whether caspase 8 plays an important role, as shown in FIG. 2C, caspase 3, 6 , And sections with PARP cleaved were not observed. This is more evident compared to the Western blot results on the right side of FIG. 2A.
따라서, 상기 결과를 통해, 본 발명자들은 UDCA에 의한 위암 세포의 아폽토시스 유도 과정에서 UDCA가 카스파제 8의 활성을 증가시키고, 따라서 카스파제 8의 다운 스트림에 관련된 신호 전달 체계에 의해 세포의 아폽토시스가 유도된다는 사실을 알 수 있었으며, 나아가 UDCA에 의한 위암 세포의 아폽토시스는 카스파제 8과 카스파제 3, 6 및 9가 관련되어 있음을 알 수 있었다.Thus, through the above results, we found that UDCA increases caspase 8 activity in the process of inducing apoptosis of gastric cancer cells by UDCA, thus inducing apoptosis of cells by a signal transduction system related to caspase 8 downstream. In addition, it was found that caspase 8 and caspase 3, 6, and 9 were related to apoptosis of gastric cancer cells by UDCA.
한편, 도 2B에 있어서, 카스파제-8의 최대 활성은 snu-601에 있어서 24 시간에 관찰되지만 snu-638에서는 이보다 지연되므로, snu-601 세포에 있어서 아폽토시스 메카니즘을 조사하는 시점을 24시간으로, snu-536에 있어서 36시간으로 선택하였다.On the other hand, in FIG. 2B, the maximum activity of caspase-8 is observed at 24 hours in snu-601 but is delayed at this time in snu-638. Thus, the time point for examining the apoptosis mechanism in snu-601 cells is 24 hours. 36 hours were selected for snu-536.
<실시예 3><Example 3>
UDCA에 의한 DR5의 발현 유도 분석Expression Induction Analysis of DR5 by UDCA
암 세포에서 세포 사멸의 유도 과정에 있어서, DR4, DR5 및 FAS와 같은 세포표면 사멸 수용체가 중요한 역할을 하는 것은 잘 알려진 사실이다. 이에 본 발명자들은 UDCA에 의한 위암 세포의 아폽토시스 유도 과정에서 DR4, DR5 및 FAS와 같은 세포 표면 사멸 수용체가 관여하는지를 조사하였다. It is well known that cell surface killing receptors such as DR4, DR5 and FAS play an important role in the induction of cell death in cancer cells. The present inventors investigated whether cell surface killing receptors such as DR4, DR5 and FAS are involved in apoptosis induction of gastric cancer cells by UDCA.
이를 위해 하기 표 1에 기재된 세포 표면 사멸 수용체들의 siRNA를 이용하여 세포 내에서 이들 수용체들의 발현을 제거시켰는데, 즉, 각 수용체들의 siRNA(8ug)를 1×106 세포수의 위암 세포에 AMAXA 방법에 의해 형질 도입시켰고, siRNA가 도입된 세포들을 37℃ 온도 및 5%의 이산화탄소의 조건 하에서 40시간 동안 배양한 다음, 1000μM의 UDCA를 상기 세포에 각각 처리하였고, 일정 시간 배양(24시간 또는 36시간)한 다음, 상기 실시예들에서 기술된 방법과 동일하게 카스파제-8 활성도, MTT 분석 및 HO/PI 이중 염색 분석을 수행하였다. To this end, the expression of these receptors was eliminated in cells using siRNAs of cell surface killing receptors described in Table 1 below. That is, siRNA (8ug) of each receptor was transferred to 1 × 10 6 cells of gastric cancer cells. Cells transfected with siRNA were incubated for 40 hours at 37 ° C. and 5% carbon dioxide, and then treated with 1000 μM of UDCA, respectively, and cultured for a period of time (24 or 36 hours). Then, caspase-8 activity, MTT assay and HO / PI double staining assay were performed in the same manner as described in the above examples.
표 1 siRNA 서열
세포 표면 사멸 수용체 siRNA 서열 서열번호
siRNA FAS(S) 5'-GCUUAUACAUAGCAAUGGU(dtdt)-3' 1
siRNA FAS(AS) 5'-ACCAUUGCUAUGUAUAAGC(dtdt)-3' 2
siRNA RIP1(S) 5'-CACACAGUCUCAGAUUGAU(dtdt)-3' 3
siRNA RIP1(AS) 5'-AUCAAUCUGAGACUGUGUG(dtdt)-3' 4
siRNA FADD(S) 5'-CCAAGAUCGACAGCAUCGA(dtdt)-3' 5
siRNA FADD(AS) 5'-UCGAUGCUGUCGAUCUUGG(dtdt)-3' 6
siRNA DR4(S) 5'-CUGGAAAGUUCAUCUACUU(dtdt)-3' 7
siRNA DR4(AS) 5'-AAGUAGAUGAACUUUCCAG(dtdt)-3' 8
siRNA DR5(S) 5'-CAGACUUGGUGCCCUUUG(dtdt)-3' 9
siRNA DR5(AS) 5'-UCAAAGGGCACCAAGUCUG(dtdt)-3' 10
siRNA c-Jun(S) 5'-ACUGUAGAUUGCUUCUGUA(dtdt)-3' 11
siRNA c-Jun(AS) 5'-UACAGAAGCAAUCUACAGU(dtdt)-3' 12
siRNA NF-kB(p65)(S) 5'-CCUGAGCACCAUCAACUAU(dtdt)-3' 13
siRNA NF-kB(p65)(AS) 5'-AUAGUUGAUGGUGCUCAGG(dtdt)-3' 14
siRNA ERK1(S) 5'-CUCUCUAACCGGCCCAUCU(dtdt)-3' 15
siRNA ERK1(AS) 5'-AGAUGGGCCGGUUAGAGAG(dtdt)-3' 16
siRNA PKCd(S) 5'-CUCAUGGUACUUCCUCUGU(dtdt)-3' 17
siRNA PKCd(AS) 5'-ACAGAGGAAGUACCAUGAG(dtdt)-3' 18
siRNA 대조군(S) 5'-CCUACGCCACCAAUUUCGU(dtdt)-3' 19
siRNA 대조군(AS) 5'-ACGAAAUUGGUGGCGUAGG(dtdt)-3' 20
Table 1 siRNA sequence
Cell surface death receptor siRNA sequence SEQ ID NO:
siRNA FAS (S) 5'-GCUUAUACAUAGCAAUGGU (dtdt) -3 ' One
siRNA FAS (AS) 5'-ACCAUUGCUAUGUAUAAGC (dtdt) -3 ' 2
siRNA RIP1 (S) 5'-CACACAGUCUCAGAUUGAU (dtdt) -3 ' 3
siRNA RIP1 (AS) 5'-AUCAAUCUGAGACUGUGUG (dtdt) -3 ' 4
siRNA FADD (S) 5'-CCAAGAUCGACAGCAUCGA (dtdt) -3 ' 5
siRNA FADD (AS) 5'-UCGAUGCUGUCGAUCUUGG (dtdt) -3 ' 6
siRNA DR4 (S) 5'-CUGGAAAGUUCAUCUACUU (dtdt) -3 ' 7
siRNA DR4 (AS) 5'-AAGUAGAUGAACUUUCCAG (dtdt) -3 ' 8
siRNA DR5 (S) 5'-CAGACUUGGUGCCCUUUG (dtdt) -3 ' 9
siRNA DR5 (AS) 5'-UCAAAGGGCACCAAGUCUG (dtdt) -3 ' 10
siRNA c-Jun (S) 5'-ACUGUAGAUUGCUUCUGUA (dtdt) -3 ' 11
siRNA c-Jun (AS) 5'-UACAGAAGCAAUCUACAGU (dtdt) -3 ' 12
siRNA NF-kB (p65) (S) 5'-CCUGAGCACCAUCAACUAU (dtdt) -3 ' 13
siRNA NF-kB (p65) (AS) 5'-AUAGUUGAUGGUGCUCAGG (dtdt) -3 ' 14
siRNA ERK1 (S) 5'-CUCUCUAACCGGCCCAUCU (dtdt) -3 ' 15
siRNA ERK1 (AS) 5'-AGAUGGGCCGGUUAGAGAG (dtdt) -3 ' 16
siRNA PKCd (S) 5'-CUCAUGGUACUUCCUCUGU (dtdt) -3 ' 17
siRNA PKCd (AS) 5'-ACAGAGGAAGUACCAUGAG (dtdt) -3 ' 18
siRNA control group (S) 5'-CCUACGCCACCAAUUUCGU (dtdt) -3 ' 19
siRNA control group (AS) 5'-ACGAAAUUGGUGGCGUAGG (dtdt) -3 ' 20
            
그 결과, 도 3A에 나타낸 바와 같이, UDCA에 의한 세포의 아폽토시스는 snu-601 세포에서 siRNA DR5 또는 siRNA FAS가 도입되었을 경우, 아폽토시스가 감소되는 것으로 나타났고, 반면, siRNA DR4에 의해서는 아폽토시스가 감소되지 않는 것으로 나타났다. 또한, snu-638 세포에서는 siRNA DR4 또는 siRNA DR5가 도입되었을 경우, 아폽토시스가 감소되는 것으로 나타났으며, 반면, siRNA FAS에 의해서는 아폽토시스가 감소되지 않는 것으로 나타났고, 이와 같은 결과는 카스파제-3, 6 및 PARP 활성도와도 같은 결과를 보였다(도 3B 참조). As a result, as shown in FIG. 3A, apoptosis of cells by UDCA was found to decrease apoptosis when siRNA DR5 or siRNA FAS was introduced in snu-601 cells, whereas apoptosis was reduced by siRNA DR4. Turned out not to be. In addition, the introduction of siRNA DR4 or siRNA DR5 in snu-638 cells has been shown to reduce apoptosis, while siRNA FAS has not been shown to reduce apoptosis. , 6 and PARP activity was the same result (see Fig. 3B).
또한, 카스파제 8의 활성도를 측정한 결과, UDCA에 의한 카스파제 8의 활성은 snu-601 세포의 경우, siRNA DR5 또는 siRNA FAS에 의해 억제되는 것으로 나타난 반면, siRNA DR4에 의해서는 억제되지 않는 것으로 나타났고, snu-638 세포의 경우, siRNA DR4 또는 siRNA DR5에 의해 카스파제 8의 활성이 감소되는 것으로 나타난 반면, siRNA FAS에 의해서는 감소되지 않는 것으로 나타났다(도 3C 참조).In addition, as a result of measuring the activity of caspase 8, it was shown that the activity of caspase 8 by UDCA was inhibited by siRNA DR5 or siRNA FAS in snu-601 cells, but not by siRNA DR4. In the case of snu-638 cells, the activity of caspase 8 was shown to be reduced by siRNA DR4 or siRNA DR5, while not by siRNA FAS (see FIG. 3C).
따라서, 상기 결과를 통해 본 발명자들은 UDCA에 의한 위암 세포의 아폽토시스 유도 과정은 snu-601 세포의 경우, DR5 및 FAS에 의해 조절되며, snu-638 세포의 경우에는 DR4 또는 DR5에 의해 조절된다는 사실을 알 수 있었고, 특히, DR5는 두가지의 위암 세포 모두에서 조절 작용, 즉 UDCA에 의한 아폽토시스의 개시를 유도한다는 사실을 알 수 있었다.Thus, the results indicate that the apoptosis induction process of gastric cancer cells by UDCA is regulated by DR5 and FAS in snu-601 cells and by DR4 or DR5 in snu-638 cells. In particular, it was found that DR5 induces a regulatory action, ie the onset of apoptosis by UDCA, in both gastric cancer cells.
<실시예 4><Example 4>
위암 세포에서 FADD 및 RIP을 통한 UDCA의 아폽토시스 활성 유도 Induction of apoptosis activity of UDCA via FADD and RIP in gastric cancer cells
세포에서 아폽토시스가 유도될 경우, 일반적으로 TRAIL은 사멸 수용체인 DR4 및 DR5에 결합하고, FAS 리간드는 FAS에 결합하게 되면, FADD가 결합되도록 유도하는 특징이 있는데, 이들의 사멸 효과 도메인들을 통해 FADD는 카스파제 8이 결합되도록 유도하여 결국 수용체에 세포 사멸 유도 신호 복합체가 조립되도록 한다. When apoptosis is induced in cells, TRAIL generally binds to the death receptors DR4 and DR5, and FAS ligands are characterized by inducing FADD to bind to FAS through their killing effect domains. Caspase 8 is induced to bind, resulting in the assembly of apoptosis inducing signal complexes to the receptor.
이에 본 발명자들은 UDCA에 의한 위암 세포의 아폽토시스가 세포 사멸 인자들을 통해 매개되는지를 확인하기 위해 상기 실시예 3에 기재된 siRNA FADD, siRNA RIP1을 위암 세포에 형질 도입한 후, 1000μM의 UDCA를 처리하고 배양한 다음, 상기 실시예에서 기술된 HO/PI 이중 염색법, 웨스턴 블럿 및 카스파제 8의 활성도 측정 방법을 각각 수행하였다.In order to confirm whether apoptosis of gastric cancer cells by UDCA is mediated through cell death factors, the present inventors transduced siRNA FADD and siRNA RIP1 described in Example 3 into gastric cancer cells, and then treated and cultured with 1000 μM of UDCA. Then, the HO / PI double staining method, the Western blot and the caspase 8 activity measuring method described in the above examples were performed, respectively.
그 결과, 도 4A 및 4B에 나타낸 바와 같이, snu-601 및 snu-638의 세포 모두에서 siRNA FADD 및 siRNA RIP1에 의해 UDCA에 의한 세포의 아폽토시스 정도가 대조군에 비해 감소된 것으로 나타났고, 또한, 도 4C에 나타낸 바와 같이, siRNA FADD 및 siRNA RIP1에 의해 카스파제 3, 6 및 PARP의 활성도 감소된 것으로 나타났다. 또한, siRNA FADD 및 siRNA RIP1에 의해 카스파제 8의 활성도 감소된 것으로 나타났다.As a result, as shown in FIGS. 4A and 4B, the apoptosis level of the cells by UDCA was reduced by siRNA FADD and siRNA RIP1 in both the cells of snu-601 and snu-638. As shown in 4C, the activity of caspase 3, 6 and PARP was also reduced by siRNA FADD and siRNA RIP1. In addition, the activity of caspase 8 was also shown to be reduced by siRNA FADD and siRNA RIP1.
따라서, 상기 결과를 통해 본 발명자들은 본 발명에 따른 UDCA에 의한 위암 세포의 아폽토시스는 FADD 및 RIP1의 세포 사멸 인자를 통해 이루어진다는 사실을 알 수 있었고, 이들은 카스파제 8을 사멸 수용체로 유도되는 작용을 하는데 중요한 역할을 한다는 사실을 알 수 있었다.Therefore, the above results showed that the apoptosis of gastric cancer cells by UDCA according to the present invention was carried out through apoptosis factors of FADD and RIP1, and they showed an effect of inducing caspase 8 as a death receptor. Was found to play an important role.
<실시예 5>Example 5
UDCA에 의해 발현 유도된 DR5에 의한 아폽토시스 작용에서 PKCδ의 역할Role of PKCδ in Apoptosis Action by DR5 Induced by UDCA
PKCδ는 PKC 슈퍼 패밀리의 한 종류로서, 세포의 아폽토시스에 관여하는 것으로 알려져 있으며, PKCδ가 세포막, 미토콘드리아 및 핵으로 이동되면 특정 기작을 활성화시켜 카스파제 3를 활성화시키고 궁극적으로 아폽토시스를 유도하며, 따라서, PKC의 활성은 사이토졸 및 기타 세포 내 위치에서 카이네이즈(kinase)의 재분배(redistribution)에 의한 것으로 보고되고 있다. PKCδ is a type of PKC super family that is known to be involved in cell apoptosis, and when PKCδ is transported to the cell membrane, mitochondria and nucleus, it activates specific mechanisms to activate caspase 3 and ultimately induce apoptosis, thus, The activity of PKC is reported to be due to redistribution of kinase at cytosol and other intracellular locations.
이에 본 발명자들은 UDCA가 세포 내 위치된 PKCδ를 활성화시키는지를 확인하기 위해, 위암 세포에 1000μM의 UDCA를 처리한 다음, 각 시간별(0, 1, 2, 4, 8 및 12시간)로 배양한 다음, Proteoextract subcellular proteome extraction kit(Calbiochem)를 이용하여 세포질 단백질(분획 1) 및 기관/막 단백질(분획 2)를 추출하였으며, 웨스턴 블럿을 이용하여 PKCδ, PKCα, PKCθ, PKCε의 사이토졸에서 막으로의 이동을 분석하였다.In order to confirm whether the UDCA activates the intracellularly placed PKCδ, the present inventors treated 1000 μM of UDCA in gastric cancer cells, and then cultured each hour (0, 1, 2, 4, 8 and 12 hours). Cellular proteins (fraction 1) and organ / membrane proteins (fraction 2) were extracted using the Proteoextract subcellular proteome extraction kit (Calbiochem), and PKCδ, PKCα, PKCθ, and PKCε cytosolic membranes were extracted by Western blot. The shift was analyzed.
그 결과, 도 5A에 나타낸 바와 같이, UDCA의 처리는 PKCδ를 사이토졸에서 막으로 이동하는 효과를 가져왔으며, 이러한 PKCδ의 세포막으로의 이동은 UDCA에 의한 세포의 아폽토시스 발생 이전(snu-601에서는 UDCA 처리 후 2-4 시간, snu-638에서는 UDCA 처리 후 4-8 시간)에 유도됨을 알 수 있었다. PKCα, PKCε 및 PKCθ에 있어서는 세포막으로의 유의미한 이동이 관찰되지 않았다.As a result, as shown in Fig. 5A, the treatment of UDCA had the effect of shifting PKCδ from the cytosol to the membrane, and the migration of PKCδ to the cell membrane was performed prior to the apoptosis of cells by UDCA (snu-601, UDCA). 2-4 hours after treatment, and 4-8 hours after UDCA treatment in snu-638). In PKCα, PKCε and PKCθ, no significant shift to the cell membrane was observed.
또한, 본 발명자들은 PKCδ의 억제제를 처리하여 UDCA에 의한 아폽토시스의 변화 정도를 확인하기 위해, 위암 세포주에 대해 각각 5μM의 로틀레린(rottlerin), 즉, PKCδ의 억제제를 처리하고, 1000μM의 UDCA를 처리한 다음, HO/PI의 이중 염색법 및 카스파제들의 항체들을 사용하여 웨스턴 블럿을 수행하였고, 나아가 siRNA PKCδ을 이용하여 위암 세포에 형질 도입시킨 후, 세포 내에서 카스파제들의 발현 정도를 웨스턴 블럿으로 확인하였다. 또한, 상기한 PKCδ의 억제제인 로틀레린 이외에 기타 PKC 억제제인 GF109203X(1μM)와, PKCα 억제제인 GO6979(1μM)도 사용하여 실험하였다.In addition, the present inventors treated 5 μM rottlerin, ie, PKCδ inhibitors, and 1000 μM UDCA for gastric cancer cell lines, respectively, in order to confirm the degree of change in apoptosis by UDCA by treating the inhibitor of PKCδ. Then, Western blot was performed using double staining of HO / PI and antibodies of caspases. Furthermore, after transduction into gastric cancer cells using siRNA PKCδ, the expression level of caspases in the cells was confirmed by Western blot. It was. In addition, in addition to the above-described inhibitor of PKCδ, roletrin, other PKC inhibitors, GF109203X (1 μM), and PKCα inhibitor GO6979 (1 μM) were also tested.
그 결과, 도 5B에 나타낸 바와 같이, PKCδ의 억제제인 로틀레린을 처리한 경우, UDCA에 의한 세포의 아폽토시스는 억제되는 것으로 나타났으며, 억제 정도는 농도 의존적으로 증가하는 것으로 나타났다(GF109203X와 GO6979를 처리한 경우, UDCA에 의한 세포의 아폽토시스는 거의 억제되지 않았음). 또한, 로틀레린을 처리한 경우, 세포 사멸 인자들인 카스파제들의 활성이 억제되는 것으로 나타났다.As a result, as shown in Fig. 5B, when treated with rotlerin, an inhibitor of PKCδ, apoptosis of cells by UDCA was suppressed, and the degree of inhibition was increased in a concentration-dependent manner (GF109203X and GO6979). When treated, apoptosis of cells by UDCA was hardly inhibited). In addition, when treated with rotlerin, the activity of caspases, a cell death factor, was shown to be inhibited.
도 5C에 의하면, siRNA PKCδ에 의해 위암 세포에서 PKCδ의 발현을 억제할 경우, UDCA에 의한 세포의 아폽토시스는 감소되고, 카스파제 3, 6 및 PARP의 활성도 억제되어 이들의 절단된 형태가 관찰되지 않았다.According to FIG. 5C, when inhibiting the expression of PKCδ in gastric cancer cells by siRNA PKCδ, apoptosis of the cells by UDCA was decreased, and the activity of caspase 3, 6 and PARP was also inhibited and no cleaved forms thereof were observed. .
따라서, 상기 결과를 통해 본 발명자들은 위암 세포에 UDCA를 처리할 경우, UDCA에 의해 PKCδ는 세포막으로 이동됨과 동시에 세포 사멸 인자들의 활성화를 통해 아폽토시스를 유도한다는 사실을 알 수 있었다.Therefore, the present inventors have found that when UDCA is treated in gastric cancer cells, PKCδ is induced by UDCA to the cell membrane and induces apoptosis through activation of cell death factors.
나아가 본 발명자들은 앞서 수행한 실시예를 통해 UDCA가 위암 세포에서 DR5의 발현을 유도한다는 사실을 확인함으로써 UDCA에 의한 아폽토시스에서 DR5 및 PKCδ의 관련성을 분석하기 위해 위암 세포주에 5μM의 로틀레린(rottlerin)을 1시간 동안 미리 처리한 다음, 1000μM의 UDCA를 처리한 다음, 웨스턴 블럿을 수행하여 DR5의 발현 정도를 조사하였고, 또한, siRNA PKCδ를 위암 세포주에 각각 형질 도입시킨 후, UDCA를 처리하고 웨스턴 블럿을 수행하여 DR5 및 PKCδ의 발현 정도를 조사하였다.In addition, the present inventors confirmed the fact that UDCA induces the expression of DR5 in gastric cancer cells through the above-described examples, to analyze the relationship between DR5 and PKCδ in apoptosis by UDCA, 5 μM of rottlerin in gastric cancer cell lines. After pretreatment for 1 hour, and then treated with 1000μM UDCA, Western blot was performed to investigate the expression level of DR5, and also after transducing siRNA PKCδ into gastric cancer cell lines, treated with UDCA and Western blot Was performed to investigate the expression level of DR5 and PKCδ.
그 결과, 도 5B에 나타낸 바와 같이, 위암 세포주에 PKCδ의 억제제인 로틀레린을 처리한 결과, UDCA에 의한 DR5의 발현은 감소되는 것으로 나타났으며, siRNA PKCδ를 사용하여 세포내에서 PKCδ의 발현을 억제한 경우, 역시 UDCA에 의한 DR5의 발현이 감소되는 것으로 나타났다(도 5C 참조). As a result, as shown in FIG. 5B, the treatment of gastric cancer cell line with rottlerin, an inhibitor of PKCδ, showed that the expression of DR5 by UDCA was decreased, and siRNA PKCδ was used to express PKCδ in cells. Inhibition also reduced the expression of DR5 by UDCA (see FIG. 5C).
따라서 상기 결과를 통해 본 발명자들은 UDCA에 의한 위암 세포의 아폽토시스 과정에서 DR5의 발현은 PKCδ에 의해 조절되어진다는 사실을 알 수 있었고, 따라서 PKCδ는 UDCA에 의한 DR5의 발현 및 위암 세포의 아폽토시스의 개시 과정에서 매우 중요한 역할을 한다는 사실을 알 수 있었다.Therefore, the above results showed that the inventors found that the expression of DR5 in the apoptosis process of gastric cancer cells by UDCA is regulated by PKCδ. Thus, PKCδ is the expression of DR5 by UDCA and initiation of apoptosis of gastric cancer cells. It was found to play a very important role in the process.
<실시예 6><Example 6>
UDCA에 의한 DR5의 발현 및 PKCδ의 이동에 의한 아폽토시스 작용에서 ROS 발생과의 관련성 분석Analysis of association with ROS generation in apoptosis action by expression of DR5 by UDCA and migration of PKCδ
반응성 산소종(ROS)는 아폽토시스 및 세포 괴사를 포함하는 세포 사멸 과정에서 세포사 모드를 결정하는 주요 인자로 알려져 있다. Reactive oxygen species (ROS) are known to be the major determinants of cell death mode in the process of cell death, including apoptosis and cell necrosis.
따라서, 본 발명자들은 UDCA에 의한 위암 세포의 아폽토시스 과정에서 ROS가 관여하는지를 확인하기 위해 위암 세포주에 1000μM의 UDCA를 처리한 다음, 3시간 또는 5시간 배양 후, ROS의 생성 정도를 분석하였고, HO/PI의 이중 염색법을 수행하였으며, 카스파제들의 발현 정도를 웨스턴 블럿을 통해 확인하였다. 또한, 이때 ROS의 소거제들인 NAC(10mM), BHA(100μM), Trion(10mM), DPI(2μM) 및 카탈라제(1000U)을 각각 첨가한 것들에 대해서도 상기와 같은 동일 방법들을 통해 위암 세포에서의 아폽토시스 정도를 측정하였다.Therefore, the present inventors treated 1000 μM of UDCA in gastric cancer cell lines to confirm whether ROS are involved in apoptosis of gastric cancer cells by UDCA, and then analyzed the degree of ROS generation after 3 hours or 5 hours of incubation. Double staining of PI was performed, and the expression level of caspases was confirmed by Western blot. In addition, scavengers of ROS, NAC (10 mM), BHA (100 μM), Trion (10 mM), DPI (2 μM), and catalase (1000U), respectively, were added to the gastric cancer cells through the same method as described above. The degree of apoptosis was measured.
이때 상기 ROS 분석은 24웰 플레이트에 5×104 세포수의 위암 세포들을 분주하고, 500ul의 RPMI 배지로 배양한 다음, UDCA를 처리하고 다시 세포들을 상기 조건과 동일 조건 하에서 배양하였다. 이후, 반응 산소종(ROS)의 생성 확인을 위해 50μM의 2',7'-디클로로플루오레세인 디아세테이트(DCFDA, Molecular probe) 및 0.5μg/ml의 HO를 각 세포에 첨가하고 1시간 동안 배양하였다. 이후, 세척한 다음, DCFDA의 측정은 490nm의 흥분 파장 및 530nm의 방출 파장에서 플루오로카운트 모델 MQM200 플레이트 리더(Packard instrument, USA)기를 사용하여 측정하였고, HO의 측정은 340nm의 흥분파장 및 425nm의 방출파장에서 측정하였다. 또한 ROS의 생성량은 각 웰당 DCFDA/HO의 비율을 측정함으로써 계산하였다.At this time, the ROS assay was divided into 5 × 10 4 cell number of gastric cancer cells in a 24-well plate, incubated with 500ul RPMI medium, and then treated with UDCA and the cells were again cultured under the same conditions. Then, 50 μM of 2 ', 7'-dichlorofluorescein diacetate (DCFDA, Molecular probe) and 0.5 μg / ml of HO were added to each cell to confirm the generation of reactive oxygen species (ROS) and incubated for 1 hour. It was. After washing, DCFDA was measured using a fluorocount model MQM200 plate reader (Packard instrument, USA) at an excitation wavelength of 490 nm and an emission wavelength of 530 nm, and the measurement of HO was performed at an excitation wavelength of 340 nm and of 425 nm. Measured at the emission wavelength. The amount of ROS produced was calculated by measuring the ratio of DCFDA / HO per well.
[규칙 제91조에 의한 정정 28.09.2010] 
그 결과, 도 6A 내지 도 6C에 나타낸 바와 같이, 위암 세포를 대상으로 UDCA를 처리한 경우, 세포에서 ROS의 생성은 증가하는 것으로 나타났고(도 6A 참조), 다양한 종류의 ROS의 소거제들을 처리한 경우, 특히 NAC 및 BHA는 UDCA에 의한 아폽토시스를 통한 세포 사멸을 억제하는 것으로 나타났다(도 6B 및 6C 참조).
[Revisions under Rule 91 28.09.2010]
As a result, as shown in Figs. 6A to 6C, when UDCA was treated in gastric cancer cells, the production of ROS was increased in the cells (see Fig. 6A), and various kinds of ROS scavengers were treated. In one case, in particular, NAC and BHA have been shown to inhibit cell death through apoptosis by UDCA (see FIGS. 6B and 6C).
따라서, 상기 결과를 통해 UDCA에 의한 위암 세포의 아폽토시스는 ROS의 생성을 통해 조절된다는 사실을 알 수 있었다.Thus, the results showed that apoptosis of gastric cancer cells by UDCA is regulated through the production of ROS.
또한, 본 발명자들은 UDCA에 의해 발현이 유도되는 DR5의 경우, ROS의 생성이 어떠한 영향을 미치는지 조사하기 위해, 위암 세포에 대해 UDCA 및 ROS의 소거제인 NAC 또는 BHA을 각각 첨가하고 웨스턴 블럿을 통해 DR5의 발현 정도를 조사하였다.In addition, the inventors added NAC or BHA, which is a scavenger of UDCA and ROS, to the gastric cancer cells, respectively, and examined DR5 through Western blot to investigate how the expression of ROS is induced by UDCA. The expression level of was investigated.
그 결과, 도 7A 및 7B에 나타낸 바와 같이, 위암 세포에서 UDCA에 의해 발현이 유도된 DR5는 NAC 및 BHA에 의해 발현이 감소되는 것으로 나타났다. As a result, as shown in FIGS. 7A and 7B, DR5 induced by UDCA in gastric cancer cells was found to have decreased expression by NAC and BHA.
따라서, 상기 결과를 통해 UDCA에 의한 DR5의 발현은 ROS의 생성에 의해 조절된다는 사실을 알 수 있었으며, 나아가 UDCA에 의한 DR5의 발현에 있어서 ROS가 또 다른 중요한 조절자로 작용한다는 사실을 알 수 있었다.Therefore, the results indicate that the expression of DR5 by UDCA is regulated by the production of ROS, and furthermore, ROS acts as another important regulator in the expression of DR5 by UDCA.
한편, PKCδ는 ROS 생성 기작의 다운 스트림에 존재하는 인자로 알려져 있다. 이에 본 발명자들은 UDCA에 의한 위암 세포의 아폽토시스 과정에서 ROS의 생성이 PKCδ의 이동(trasnlocation)을 조절하는지를 확인하는 실험을 수행하였는데, 즉, 위암 세포주에 대해 10mM의 NAC를 1시간 처리하고, 각 시간별(2, 4, 및 8시간)로 세포로부터 세포질 단백질(분획1:C) 및 기관/막 단백질(분획2:M)을 각각 수득한 다음, 웨스턴 블럿을 통해 PKCδ의 양을 측정하였다. On the other hand, PKCδ is known as a factor present downstream of the ROS generation mechanism. Therefore, the present inventors performed an experiment to determine whether the production of ROS regulates the trasnlocation of PKCδ during apoptosis of gastric cancer cells by UDCA, that is, 1 hour treatment of 10 mM of NAC for gastric cancer cell lines for 1 hour. Cellular protein (fraction 1: C) and organ / membrane protein (fraction 2: M), respectively, were obtained from the cells at (2, 4, and 8 hours) and then the amount of PKCδ was determined via western blot.
그 결과, UDCA에 의한 PKCδ의 사이토졸에서 막으로의 이동은 ROS의 생성 소거제인 NAC을 처리하였을 경우, 막으로의 이동이 감소되는 것으로 나타났다(도 8A 및 8B 참조). As a result, the migration of PKCδ cytosol to membrane by UDCA was found to be reduced when the NAC, a scavenger scavenger, was treated (see FIGS. 8A and 8B).
따라서, 상기 결과를 통해, UDCA에 의한 PKCδ의 이동은 ROS의 생성에 의해 조절되어진다는 사실을 알 수 있었고, PKCδ는 위암 세포에서 UDCA에 의한 세포 사멸 과정에서 ROS 생성 기작의 다운 스트림에 존재하는 인자임을 확인하였다. Thus, the results indicate that the migration of PKCδ by UDCA is regulated by the production of ROS, and PKCδ is present downstream of the ROS production mechanism in the process of apoptosis by UDCA in gastric cancer cells. It was confirmed that the factor.
<실시예 7><Example 7>
UDCA로 유도된 DR5의 발현에 의한 아폽토시스 작용에서 리피드 래프트(Lipid Raft in Apoptosis Action by Expression of DR5 Induced by UDCA lipid raft)의of lipid raft 역할 role
세포막에 있어서 콜레스테롤은 막의 구성 및 유지와 유동성에 매우 중요한 역할을 하는 것으로 알려진 바 있다. 특히 콜레스테롤이 풍부한 마이크로도메인, 일명 리피드 래프트(lipid raft)로 불리우는 도메인은 아폽토시스의 신호 전달에 중요한 역할을 하며, FAS-FADD, DR4 또는 DR5-FADD 복합체의 형성 및 카스파제 8의 활성화와 관련된 플라즈마 콜레스테롤의 변화에 중요한 역할을 하는 것으로 알려져 있다. Cholesterol has been known to play a very important role in the composition, maintenance and fluidity of the membrane. In particular, a cholesterol-rich microdomain, also known as a lipid raft, plays an important role in signal transduction of apoptosis and is associated with plasma cholesterol associated with the formation of FAS-FADD, DR4 or DR5-FADD complexes and activation of caspase 8 It is known to play an important role in the change.
이에 본 발명자들은 UDCA에 의한 위암 세포의 아폽토시스 및 리피드 래프트(lipid raft) 간의 관련성을 규명하기 위해 리피드 래프트 결핍 시약인 MBCD를 사용하였는데, 우선, 위암 세포주를 담체(vehicle) 또는 UDCA로 8시간 처리하고, 고정 및 anti-DR5/FITC-CTxB(10μg/ml)/HO(1μg/ml)로 30분간 염색시킨 후 공초점 현미경(confocal microcsope, FV1000, Olympus)로 관찰하였다. The present inventors used MBCD, a lipid raft deficient reagent, to investigate the relationship between apoptosis and lipid raft of gastric cancer cells by UDCA. First, the gastric cancer cell line was treated with a vehicle or UDCA for 8 hours. , Fixed and anti-DR5 / FITC-CTxB (10μg / ml) / HO (1μg / ml) staining for 30 minutes and observed by confocal microscopy (confocal microcsope, FV1000, Olympus).
또한, 위암 세포주에 0.5 또는 1mM의 MBCD을 1시간 동안 처리한 후, 1000μM의 UDCA를 처리한 다음, 24시간 및 36시간 동안 각각 배양하고, MTT 어세이, HO/PI 이중 염색법 및 카스파제 8 활성도 측정을 통해 세포의 사멸 정도를 측정하였다. 또한, 웨스턴 블럿을 통해 DR5의 발현 정도를 측정하였다.In addition, the gastric cancer cell line treated with 0.5 or 1 mM MBCD for 1 hour, and then treated with 1000 μM of UDCA, followed by incubation for 24 and 36 hours, respectively, MTT assay, HO / PI double staining method and caspase 8 activity The degree of death of the cells was measured through the measurement. In addition, the expression level of DR5 was measured by Western blot.
그 결과, 도 9에 나타낸 바와 같이, UDCA로 위암 세포를 처리한 결과, 리피드 래프트의 형성이 분명히 증가되는 것으로 나타났다. As a result, as shown in Fig. 9, treatment of gastric cancer cells with UDCA showed that the formation of lipid rafts was clearly increased.
또한, UDCA에 의한 위암 세포의 아폽토시스에 의한 세포 사멸은 MBCD을 처리한 경우, 억제되는 것으로 나타났다(도 10A 참조). 또한, HO/PI 염색 결과, MBCD을 처리한 경우, 위암 세포에서 아폽토시스를 나타내는 핵의 응축 및 단편화가 MBCD를 처리하지 않은 군에 비해 감소되는 것으로 나타났으며(도 10A 참조), UDCA에 의한 카스파제 8의 활성도 MBCD의 처리에 의해 억제되는 것으로 나타났다(도 10B 참조).In addition, cell death by apoptosis of gastric cancer cells by UDCA was shown to be inhibited when MBCD was treated (see FIG. 10A). In addition, HO / PI staining showed that, when MBCD treated, condensation and fragmentation of the nucleus showing apoptosis in gastric cancer cells was reduced compared to the group not treated with MBCD (see FIG. 10A), and caspa by UDCA Eighth activity was also shown to be inhibited by the treatment of MBCD (see Figure 10B).
또한, UDCA에 의해 발현이 유도된 DR5의 경우, MBCD의 처리에 의해 발현 정도에 변화가 있었는지를 확인한 결과, UDCA에 의한 DR5의 발현이 MBCD에 의해 억제되는 것으로 나타났다(도 10B 참조).In addition, in the case of DR5 induced expression by UDCA, it was confirmed that the expression level was changed by the treatment of MBCD. As a result, the expression of DR5 by UDCA was suppressed by MBCD (see FIG. 10B).
따라서 상기 결과를 통해 본 발명자들은 UDCA에 의한 위암 세포의 아폽토시스는 리피드 래프트에 의해 조절된다는 사실을 알 수 있었다. Accordingly, the results showed that the apoptosis of gastric cancer cells by UDCA was regulated by lipid rafts.
<실시예 8><Example 8>
UDCA로 활성화된 ROS/PKCδ에서 리피드 래프트(lipid raft)의 역할Role of Lipid Rafts in ROSCA-activated ROS / PKCδ
상기 실시예 7의 결과를 통해 UDCA에 의한 위암 세포의 세포 사멸 기작에서 리피드 래프트가 매우 중요한 역할을 한다는 사실을 확인함에 따라 앞서 수행한 실시예를 통해 확인한 ROS/PKCδ의 활성에도 리피드 래프트가 관여하는지는 조사하였다. As a result of Example 7 confirmed that the lipid raft plays a very important role in the cell death mechanism of gastric cancer cells by UDCA, whether the lipid raft is also involved in the activity of the ROS / PKCδ confirmed through the previous embodiment Investigated.
이를 위해 위암 세포주에 1 또는 2mM의 MBCD을 1시간 동안 처리한 후, 1000μM의 UDCA를 처리한 다음, 24시간 및 36시간 동안 각각 배양하고, 상기 세포들로부터 세포질 카탈라제관/막 분획을 각각 추출한 다음, 웨스턴 블럿을 통해 PKCδ의 발현 정도를 측정하였고, 상기 실시예에서 기술한 방법과 동일한 방법으로 ROS 생성 정도를 측정하였다.To this end, after treating 1 or 2 mM MBCD for gastric cancer cell line for 1 hour, 1000 μM of UDCA, followed by incubation for 24 hours and 36 hours, respectively, and extracting the cytoplasmic catalase / membrane fraction from the cells, respectively. The expression level of PKCδ was measured by Western blot, and the degree of ROS generation was measured by the same method as described in the above example.
[규칙 제91조에 의한 정정 28.09.2010] 
그 결과, 도 11A 내지 도 11B에 나타낸 바와 같이, 위암 세포에서 UDCA에 의한 PKCδ의 사이토졸에서 막으로의 이동은 MBCD의 처리로 인해 억제되는 것으로 나타났고(도 11A 참조), 이러한 결과를 통해 PKCδ는 세포의 아폽토시스 과정에서 리피드 래프트의 다운 스트림 이벤트임을 알 수 있었다. 또한, ROS 생성 분석 결과, 위암 세포에서 UDCA에 의한 ROS 생성은 MBCD의 처리로 인해 감소되는 것으로 나타났다(도 11B 참조).
[Revisions under Rule 91 28.09.2010]
As a result, as shown in FIGS. 11A-11B, the cytosolic migration of PKCδ by UDCA to membranes in gastric cancer cells was shown to be inhibited due to the treatment of MBCD (see FIG. 11A), and through these results PKCδ It can be seen that is a downstream event of lipid raft during apoptosis of cells. In addition, ROS production assays showed that ROS production by UDCA in gastric cancer cells was reduced due to the treatment of MBCD (see FIG. 11B).
따라서 상기 결과를 통해 UDCA에 의한 ROS/PKCδ의 활성은 리피드 래프트에 의해 조절된다는 사실을 알 수 있었고, 따라서 리피드 래프트는 UDCA에 의한 ROS의 생성 및 사이토졸에서 세포막으로의 PKCδ의 이동에 의한 DR5의 발현 등 위암 세포에서 아폽토시스 작용에 아주 중요한 조절인자로 작용한다는 사실을 알 수 있었다.Therefore, the above results indicate that the activity of ROS / PKCδ by UDCA is regulated by lipid raft. Thus, lipid raft is a function of DR5 by UDCA production of ROS and movement of PKCδ from cytosol to cell membrane. It was found that it acts as a very important regulator of apoptosis in gastric cancer cells.
<실시예 9>Example 9
생체내(in vivo)에서 UDCA 투여가 snu-601 이종 이식(xenograft) 마우스의 종양 성장에 미치는 영향 분석Analysis of the effect of UDCA administration on tumor growth in snu-601 xenograft mice in vivo
생체내 이종 이식 종양의 성장을 분석하기 위해, 6주령된 아티믹 발브(Athymic balb)/c 누드 마우스들을 구입하여(오리엔트 바이오사, 한국), 이 마우스의 측면(flank region)에 snu-601 세포 5×106개/200ul 씩을 주입하였다(subcutaneous injection). 위암 세포를 주입한 다음날부터 (day 1) 그룹 당 10마리씩 나누어 UDCA 용액 (150mg/kg/day, 6days/week) 또는 담체(vehicle)을 복강 주사로 투여하고 14일째부터 형성된 종양의 크기(volume)을 측정하였으며, 33일째까지 실험을 지속하였다. 종양의 크기는 14일째 형성된 평균 종양 크기의 상대 값으로 표기하였다. 실험 진행시 마우스의 체중도 함께 측정하였으며, UDCA 처리군과 대조군에서 체중 변화의 큰 차이는 관찰되지 않았다. 통계적 유의성은 대응 표본 T-테스트(paired T-test)로 확인하였다.To analyze the growth of xenograft tumors in vivo, 6-week-old Athymic balb / c nude mice were purchased (Orien Bios, Korea) and snu-601 cells in the flank region of these mice. was injected ssikeul 5 × 10 6 gae / 200ul (subcutaneous injection). From the day after injecting gastric cancer cells (day 1), 10 mice per group were administered intraperitoneally with UDCA solution (150mg / kg / day, 6days / week) or carrier (volume) formed from day 14 Was measured and the experiment was continued until day 33. Tumor size was expressed as relative value of mean tumor size formed on day 14. The body weight of the mice was also measured during the experiment, and no significant difference in body weight was observed between the UDCA treated group and the control group. Statistical significance was confirmed by paired T-test.
그 결과, 도 12A 및 도 12B에 나타낸 바와 같이, snu-601 세포 주입 후 담체 300ul를 투여한 대조군 그룹에 비해(도 12A의 위쪽 및 도 12B의 ● 라인), snu-601 세포 주입 후 300ul의 UDCA 용액 300ul를 투여한 그룹의 마우스(도 12A의 아래쪽 및 도 12B의 ▲ 라인)들의 종양의 크기가 눈에 띠게 줄어 들었음을 알 수 있었다.As a result, as shown in Figs. 12A and 12B, compared with the control group administered the carrier 300ul after snu-601 cell injection (upper line in Fig. 12A and the line in Fig. 12B), 300ul of UDCA after snu-601 cell injection. It can be seen that the tumor size of mice (bottom of FIG. 12A and line ▲ of FIG. 12B) of the group to which 300 ul of the solution was administered decreased noticeably.
즉, UDCA가 투여된 그룹에서 종양의 성장이 통계적으로 유의하게 억제됨을 알 수 있었다. In other words, it could be seen that the growth of tumors was statistically significantly suppressed in the UDCA-administered group.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허 청구 범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far I looked at the center of the preferred embodiment for the present invention. Those skilled in the art will appreciate that the present invention can be implemented in a modified form without departing from the essential features of the present invention. Therefore, the disclosed embodiments should be considered in descriptive sense only and not for purposes of limitation. The scope of the present invention is shown in the claims rather than the foregoing description, and all differences within the scope will be construed as being included in the present invention.
본 발명은 다음의 한국 국가 연구 개발 사업에 의하여 지원된 결과물이다:The present invention is a result supported by the following Korean national R & D projects:
(과제고유번호) R13-2003-009(Project unique number) R13-2003-009
(부처명)교육과학기술부/한국연구재단Ministry of Education, Science and Technology / Korea Research Foundation
(연구사업명)선도연구센터육성사업 기초의약학분야(MRC)(Research Project) Leading Research Center Development Project
(연구과제명) 1총괄 2 세부:내인성 인자에 의한 내성 기전의 규명 및 극복 전략 개발에 관한 연구(Name of Project) 1 Overall 2 Details: A Study on the Identification of Resistance Mechanisms by Endogenous Factors and Development of Overcoming Strategies
(주관기관) 내성세포 연구센터(Organizer) Resistant Cell Research Center
(연구기간)2003년 9월 1일~2012년 8월 31일.(Study period) September 1, 2003-August 31, 2012.

Claims (10)

  1. 우루소데옥시콜린산(ursodeoxycholic acid:UDCA) 또는 그의 염을 유효 성분으로 포함하는 위암 예방 또는 치료용 조성물.A composition for preventing or treating gastric cancer, comprising ursodeoxycholic acid (UDCA) or a salt thereof as an active ingredient.
  2. 제1항에 있어서,The method of claim 1,
    상기 우루소데옥시콜린산(UDCA) 또는 그의 염은 위암 세포의 아폽토시스(apoptosis)를 유도하여 세포 사멸을 유발시킴으로써 항암 활성을 갖는 것을 특징으로 하는 위암 예방 또는 치료용 조성물.The urosodeoxycholine acid (UDCA) or a salt thereof is a composition for preventing or treating gastric cancer, characterized by having anti-cancer activity by inducing apoptosis (apoptosis) of gastric cancer cells to induce cell death.
  3. 제2항에 있어서,The method of claim 2,
    상기 아폽토시스(apoptosis)는 우루소데옥시콜린산(UDCA) 또는 그의 염의 처리에 의해, 위암 세포에서 카스파제(caspase)의 활성 촉진; 세포 사멸 수용체의 활성 또는 발현 촉진; 사이토졸(cytosol)에서 막(membrane)으로 PKC(protein kinase C) δ 단백질의 이동(translocation); 또는 활성 산소종(ROS)의 생성에 의해 유도되는 것을 특징으로 하는 위암 예방 또는 치료용 조성물. The apoptosis (apoptosis) may be promoted by the treatment of urosodeoxycholine acid (UDCA) or salts thereof to promote the activity of caspase in gastric cancer cells; Promoting activity or expression of cell death receptors; Translocation of the protein kinase C (PKC) δ protein from the cytosol to the membrane; Or a composition for preventing or treating gastric cancer, which is induced by the generation of reactive oxygen species (ROS).
  4. 제3항에 있어서,The method of claim 3,
    상기 카스파제(caspase)는 카스파제-3, 카스파제-6, 카스파제-8, 카스파제-9 및 이들의 조합으로 이루어진 군 중에서 선택된 것을 특징으로 하는 위암 예방 또는 치료용 조성물.The caspase (caspase) is a composition for preventing or treating gastric cancer, characterized in that selected from the group consisting of caspase-3, caspase-6, caspase-8, caspase-9 and combinations thereof.
  5. 제3항에 있어서,The method of claim 3,
    상기 세포 사멸 수용체는 DR3, DR4, DR5, DR6, FAS, TNFR 및 이들의 조합으로 이루어진 군 중에서 선택된 것을 특징으로 하는 위암 예방 또는 치료용 조성물.The cell death receptor is a composition for preventing or treating gastric cancer, characterized in that selected from the group consisting of DR3, DR4, DR5, DR6, FAS, TNFR and combinations thereof.
  6. 제3항에 있어서,The method of claim 3,
    상기 세포 사멸 수용체의 활성 또는 발현 촉진은 FADD, RIP1 또는 둘 모두의 단백질의 활성을 촉진시켜 위암 세포에서 아폽토시스를 유도하는 것을 특징으로 하는 위암 예방 또는 치료용 조성물.Promoting the activity or expression of the cell death receptor is a composition for preventing or treating gastric cancer, characterized in that to promote the activity of the protein of FADD, RIP1 or both to induce apoptosis in gastric cancer cells.
  7. 제3항에 있어서,The method of claim 3,
    상기 활성 산소종(ROS)의 생성, PKC(protein kinase C) δ 단백질의 활성 또는 둘 모두는 세포막에 위치하고 있는 리피드 래프트(lipid raft)에 의해 조절되는 것을 특징으로 하는 위암 예방 또는 치료용 조성물.The production of reactive oxygen species (ROS), the activity of protein kinase C (PKC) δ protein or both are controlled by lipid raft (lipid raft) located in the cell membrane, characterized in that the composition for preventing or treating gastric cancer.
  8. 제1항에 있어서,The method of claim 1,
    상기 우루소데옥시콜린산 또는 그의 염은 조성물 총 중량에 대하여 250μM~1000μM로 포함되는 것을 특징으로 하는 위암 예방 또는 치료용 조성물.The urousodeoxycholic acid or its salt is a composition for preventing or treating gastric cancer, characterized in that it comprises 250μM ~ 1000μM relative to the total weight of the composition.
  9. 우루소데옥시콜린산(UDCA) 또는 그의 염을 유효 성분으로 포함하는 아폽토시스(apoptosis) 유도제 조성물. An apoptosis inducer composition comprising urousodeoxycholic acid (UDCA) or a salt thereof as an active ingredient.
  10. 제9항에 있어서,The method of claim 9,
    상기 조성물은 위암 세포에서 아폽토시스를 유발함을 특징으로 하는 아폽토시스 유도제 조성물. Wherein said composition induces apoptosis in gastric cancer cells.
PCT/KR2010/005080 2010-01-28 2010-08-02 Composition for the prevention or treatment of gastric cancer containing ursodeoxycholic acid as an active ingredient WO2011093559A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0007709 2010-01-28
KR1020100007709A KR101131675B1 (en) 2010-01-28 2010-01-28 Composition comprising ursodeoxycholic acid for preventing or treating gastric cancer

Publications (1)

Publication Number Publication Date
WO2011093559A1 true WO2011093559A1 (en) 2011-08-04

Family

ID=44319521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/005080 WO2011093559A1 (en) 2010-01-28 2010-08-02 Composition for the prevention or treatment of gastric cancer containing ursodeoxycholic acid as an active ingredient

Country Status (2)

Country Link
KR (1) KR101131675B1 (en)
WO (1) WO2011093559A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021119096A1 (en) * 2019-12-09 2021-06-17 Tyme, Inc. Pharmaceutical compositions and methods
US11534420B2 (en) 2019-05-14 2022-12-27 Tyme, Inc. Compositions and methods for treating cancer
US11607418B2 (en) 2020-05-14 2023-03-21 Tyme, Inc. Methods of treating SARS-CoV-2 infections

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160022433A (en) 2014-08-19 2016-03-02 아주대학교산학협력단 Anti-cancer supplement agent comprising dichloroacetate for gastric cancer
KR102496456B1 (en) * 2019-12-13 2023-02-06 주식회사 베리타스바이오테라퓨틱스 Composition for preventing, or treating cancer
JP7376718B2 (en) * 2019-12-13 2023-11-08 株式会社ベリタスバイオセラピューティクス Pharmaceutical composition for prevention or treatment of cancer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0155977B1 (en) * 1995-03-23 1998-11-16 서치영 Anticancer composition
KR20080061327A (en) * 2006-12-27 2008-07-02 성균관대학교산학협력단 Composition comprising soluble udca for preventing and treating colon cancer
EP2208497A1 (en) * 2009-01-15 2010-07-21 Charité-Universitätsmedizin Berlin (Charité) Use of Ursodeoxycholic acid (UDCA) for enhancing the general health condition of a tumor patient

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0155977B1 (en) * 1995-03-23 1998-11-16 서치영 Anticancer composition
KR20080061327A (en) * 2006-12-27 2008-07-02 성균관대학교산학협력단 Composition comprising soluble udca for preventing and treating colon cancer
EP2208497A1 (en) * 2009-01-15 2010-07-21 Charité-Universitätsmedizin Berlin (Charité) Use of Ursodeoxycholic acid (UDCA) for enhancing the general health condition of a tumor patient

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11534420B2 (en) 2019-05-14 2022-12-27 Tyme, Inc. Compositions and methods for treating cancer
WO2021119096A1 (en) * 2019-12-09 2021-06-17 Tyme, Inc. Pharmaceutical compositions and methods
US11607418B2 (en) 2020-05-14 2023-03-21 Tyme, Inc. Methods of treating SARS-CoV-2 infections

Also Published As

Publication number Publication date
KR101131675B1 (en) 2012-03-28
KR20110088007A (en) 2011-08-03

Similar Documents

Publication Publication Date Title
WO2011093559A1 (en) Composition for the prevention or treatment of gastric cancer containing ursodeoxycholic acid as an active ingredient
Lv et al. Corilagin alleviates acetaminophen-induced hepatotoxicity via enhancing the AMPK/GSK3β-Nrf2 signaling pathway
Fu et al. Genistein induces pancreatic β-cell proliferation through activation of multiple signaling pathways and prevents insulin-deficient diabetes in mice
Wang et al. Ghrelin inhibits cell apoptosis induced by lipotoxicity in pancreatic β-cell line
WO2017078440A1 (en) Peptide having neuronal loss prevention and regeneration effects, and composition containing same
US6953786B2 (en) Compositions comprising plant-derived polyphenolic compounds and inhibitors of reactive oxygen species and methods of using thereof
WO2017007162A1 (en) Azelaic acid composition having adipose tissue triglyceride degradation effect
WO2010053314A2 (en) Composition for cancer prevention or treatment containing as active ingredient plant stem cell line derived from cambium of panax ginseng including wild ginseng or ginseng
Esfandyari et al. The protective effect of sulforaphane against oxidative stress through activation of NRF2/ARE pathway in human granulosa cells
WO2017078405A9 (en) Pharmaceutical composition for treatment of lung cancer comprising glucocorticoid-based compound
WO2015111832A1 (en) Composition for preventing or treating prostate-related diseases, containing poncirus trifoliate extract
Huang et al. Mechanisms for the magnolol‐induced cell death of CGTH W‐2 thyroid carcinoma cells
WO2010011111A4 (en) Composition for control of aging and / or extension of life, containing dapsone as active ingredient
Yoo et al. Exendin-4, a glucagon-like peptide-1 receptor agonist, reduces hepatic steatosis and endoplasmic reticulum stress by inducing nuclear factor erythroid-derived 2-related factor 2 nuclear translocation
Shen et al. Exendin‑4 inhibits lipotoxicity‑induced oxidative stress in β‑cells by inhibiting the activation of TLR4/NF‑κB signaling pathway
WO2018080146A2 (en) Composition comprising protein phosphatase 1 inhibitory peptide for treating vascular diseases
WO2020091463A1 (en) Pharmaceutical composition comprising isolated mitochondria for preventing or treating tendinopathy
WO2020122391A1 (en) Composition for preventing or treating cellular senescence-associated diseases, containing homoharringtonine as active ingredient
WO2017023047A1 (en) Composition for preventing or treating inflammatory disease or cancer containing aripiprazole as an active ingredient
WO2015147369A1 (en) Pharmaceutical composition containing sirt2 inhibitor
WO2016144125A2 (en) Novel use of solanum nigrum l. extract
WO2020122393A1 (en) Composition for preventing or treating cellular senescence-related diseases comprising salinomycin as effective component
WO2013025004A2 (en) Pharmaceutical composition for preventing or treating cancer comprising radix lithospermi seu arnebiae extract as an active ingredient
AU2019381050B2 (en) Anticancer composition
WO2020122392A1 (en) Composition for preventing or treating cellular senescence-related diseases comprising zotarolimus as active ingredient

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10844783

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10844783

Country of ref document: EP

Kind code of ref document: A1