WO2011093542A1 - Polymer actuator, catheter containing same, and preparation method thereof - Google Patents

Polymer actuator, catheter containing same, and preparation method thereof Download PDF

Info

Publication number
WO2011093542A1
WO2011093542A1 PCT/KR2010/000534 KR2010000534W WO2011093542A1 WO 2011093542 A1 WO2011093542 A1 WO 2011093542A1 KR 2010000534 W KR2010000534 W KR 2010000534W WO 2011093542 A1 WO2011093542 A1 WO 2011093542A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
ion exchange
driving
electrode
combinations
Prior art date
Application number
PCT/KR2010/000534
Other languages
French (fr)
Korean (ko)
Inventor
한문희
조재영
이계한
이장열
왕혁식
윤벼리
Original Assignee
서울대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교 산학협력단 filed Critical 서울대학교 산학협력단
Priority to PCT/KR2010/000534 priority Critical patent/WO2011093542A1/en
Publication of WO2011093542A1 publication Critical patent/WO2011093542A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/04Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/14Materials characterised by their function or physical properties, e.g. lubricating compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M25/09041Mechanisms for insertion of guide wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0043Catheters; Hollow probes characterised by structural features
    • A61M2025/0058Catheters; Hollow probes characterised by structural features having an electroactive polymer material, e.g. for steering purposes, for control of flexibility, for locking, for opening or closing

Definitions

  • the present invention provides a polymer driving body comprising a plurality of electrode coating layers present on a part of (i) the electrically conductive polymer laminate and ( ⁇ ) the surface of the lamp assembly, a manufacturing method thereof, and controlling the driving characteristics of the polymer driving body.
  • a catheter comprising a method and a polymer driver.
  • the catheter represents a thin tube or tube, which is used as a bypass for the urethra and esophagus, used to discharge the contents or to inject drugs, or to the heart or cerebrovascular vessels through blood vessels such as arteries. It is used for infusion of therapeutic devices, infusion of angiographic agents and removal of blood clots.
  • active catheters are the latter, aimed at performing certain surgical operations where they need to be examined or treated safely and quickly through complex and narrow pathways such as blood vessels.
  • the micro memory When injecting the catheter into the body, there is a risk of entering the unwanted direction at the vascular bifurcation or damaging the vascular wall.
  • SMA shape memory alloy
  • Multi-degree of freedom drive mechanism and sensor using a sieve (actuator) Attempts have been made to mount the catheter tip.
  • the study of active catheter to safely move the catheter to a certain place is one of the important techniques for minimally invasive surgery. This is the main research topic among researchers currently dealing with MEMS and microdrives. Most of these active catheters are predominantly technical techniques for the design of the mechanical operating part, in this case, the size of the operating part is large, there is a problem that can not operate in micro-vascular such as cerebrovascular.
  • shape memory alloy when used as an active catheter's driving body, deformation and recovery should occur between 49-52 ° C and 37 ° C, which is the minimum temperature that damages the tissues of skin or blood vessels.
  • the shape memory alloy that can be deformed at this temperature is the only alloy in which a small amount of third metal such as vanadium, crumb, manganese, and cobalt is added to the nickel-titanium alloy (Ni-Ti alloy), but the price of the raw material is high. The price has a high disadvantage.
  • the deformation temperature of shape memory alloy is very sensitive to the change of composition ratio.
  • the materials presented include shape memory alloys, superelastic alloy tubes and fluids, micro valves and balloons, and guide wires equipped with pressure sensors and ultrasonic probes. Most of them are confined to shape memory alloys and have limitations in clinical applications.
  • the polymer driving body has recently attracted attention as a next-generation driving device that can realize artificial muscle, and the polymer driving body has characteristics such as large strain rate, low driving pressure, softness and low density (light weight), so that it can be applied as an active catheter. It has the disadvantage of small generating force, low rigidity, low responsiveness, and low durability.
  • the polymer driving body is deformed by external stimulation such as electricity, chemistry, heat, light and magnetism, but the most practical one is the driving device by electrical stimulation.
  • Ionic Conducting Polymer Film (ICPF) actuators exhibit high-speed bending behavior when voltage is applied to the platinum layer electrodes on both sides of Nafion.
  • the present invention provides a polymer comprising (i) a light emitting electroactive polymer laminate and ( ⁇ ) a plurality of electrode coating layers present on a part of the surface of the light emitting laminate.
  • a catheter comprising a driving body and a polymer driving body is presented.
  • the present invention relates to an isotropic stack of electroactive polymers selected from ionic polymers, conductive polymers, carbon nanotubes, dielectric polymers, electrostrictive polymers, nanoclays, silica compounds, and combinations thereof
  • the present invention relates to a polymer driving body including a plurality of electrode coating layers present on a part of the surface of a laminate, wherein the driving characteristics are improved, as well as the ion exchange capacity of the ion groups present in the electroactive polymer, the number of silver groups, the distribution of the ion groups, and the relative cation. It is possible to adjust the driving characteristics by controlling at least one selected from the type of, the thickness of the ion exchange membrane, and the surface electrode thickness.
  • the present invention is a polymer that enables improvement and control of driving characteristics by a series of processes including an ion exchange membrane lamination step of a plurality of electroactive polymers, a pretreatment step of heating, a thermocompression step, an electrode coating step, and an insulating layer forming step.
  • the present invention (i) gideung type electroactive polymer laminate, and ( ⁇ ) gideung the stacked electrodes includes a plurality of the coating layer present on a portion of the water surface, the catheter polymer actuator ⁇ i for which it is characterized.
  • the present invention (b) laminating a plurality of electroactive polymer ion exchange membrane, (c) heating the laminated ion exchange membrane at 170-190 ° C for 10-20 minutes, (d) the heated Thermally compressing the ion exchange membrane at 6,500-7,000 psi and 170-190 ° C. for 10-20 minutes, (e) the thermally compressed
  • the present invention (b ') laminating a second exchange membrane so that a duct forming light is present between the plurality of ion-exchange membrane between the plurality of electroactive polymer ion exchange membrane, (c) the stacked ion exchange membrane 170- Heating at 190 X for 10-20 minutes; (d) thermocompressing the heated ion exchange membrane at 6,500-7,000 psi and 10-20 minutes at 170-190 ° C., (e ') of an isotropic stack.
  • thermo-compressed ion exchange membrane such that an inner duct is present in the longitudinal direction and removing the duct- like lamps to obtain a lamp stack, (h) coating an electrode on the surface of the lamp trap; And, (i) there is another feature in the method of manufacturing a polymer drive comprising the step of forming an insulating layer by removing a portion of the electrode coating layer.
  • the present invention is a catheter comprising a polymer driving body according to system 3, the driving force of 0.2 gi or more, the driving displacement of 40 ° or more, the strength of 8 X 1 7 Nra 2 or more, the density less than 0.25 g / cm 3 and 2.0
  • the catheter is used as a guidewire for catheter insertion or as an active catheter for device or drug injection. There is another feature of the catheter.
  • the present invention also relates to a columnar laminate of electroactive polymers selected from (i) ionic polymers, conductive polymers, carbon nanolevers, dielectric polymers, electrostrictive polymers, nanoclays, silica compounds, and combinations thereof. And ( ⁇ ) a polymer driving body comprising a plurality of electrode coating layers selected from platinum, gold, silver, copper, nickel, lead, cadmium, and alloys thereof present on a portion of the surface of the lamp body.
  • the polymer driving body and the catheter using the same according to the present invention can be smoothly adjusted by electric stimulation with high practicality, and it is possible to improve driving characteristics such as driving displacement, driving force, and strength, and to adjust driving characteristics so that the desired position in the blood vessel can be determined.
  • Fluorescence combined with the catheter and the imaging probe as well as the catheter for surgery and treatment with the improvement of the success rate of vascular treatment, reduction of complications, stability of the procedure and universalization of cerebrovascular diseases such as cerebral aneurysm. Its expectation is expected in the field of imaging.
  • Figure 1 shows a SEM photograph of the cross section (a) and shape (b, c) of the etc. of the shaped laminate prepared in Example 1-1 of the present invention.
  • Figure 2 shows the SEM image of the surface before (a) and after the coating (b) before the electrode coating on the surface of the light-emitting laminate prepared in Example 1-1 of the present invention.
  • the present invention zones (i) the electrically conductive polymer laminates, and ( ⁇ ) the etc.
  • the present invention is characterized by a polymer drive comprising (i) a luminescent electroactive polymer laminate and ( ⁇ ) a plurality of electrode coating layers present on a portion of the surface of the luminescent laminate.
  • the electroactive polymer forming the shaped laminate may be selected from ionic polymers, conductive polymers, carbon nanotubes, dielectric polymers, electrostrictive polymers, nanoclays, silica compounds, and combinations thereof.
  • the 'combination' includes both the above two kinds and a copolymer or a molten phase, or a liquid blend, a molten phase or a liquid or solid mixture of the two or more substances, and a combination thereof.
  • the ionic polymer is a fluorine-based polymer in which at least one selected from a sulfonic acid group and a carbonyl group and an ionic group are introduced, for example
  • One or a combination of two or more selected from- (CF 2 CF 2 )-(CF 2 CF) -and Cf: 3 may be used, and as one example, a fluorine-based group having a sulfonic acid group introduced into an anion group
  • Nafion8 containing O-CF ⁇ FiCF ⁇ OCF ⁇ F 2 can be used.
  • the conductive polymer may be selected from polyaniline, polypyrrole, polysulfone, polyacetylene, and combinations thereof
  • the dielectric polymer may be selected from polyacrylate, silicone, pulley vinylidene fluoride, and combinations thereof.
  • the electrostrained polymer may be selected from polyacrylates, silicones, polyurethanes, and combinations thereof, and nanoclays may be used in which one or more ionic groups selected from sulfonated and carbonyl groups are introduced.
  • the silver group of the nanoclay is generally used in the art and is not particularly limited.
  • the present invention uses a method of controlling the amount of silver group by irradiating gamma rays, but is not limited thereto.
  • the silica compound may use silica monomers modified through sulfonation or carbonylation and their superpolymers.
  • the conductive polymer, the carbon nano-lever, the dielectric polymer, the electrostrictive polymer, the nanoclay, the silica compound, etc. used as the electroactive polymer cause the swelling change by various physical and chemical changes. By the change, the driving performance is improved.
  • Conductive polymers have a volume change caused by the sequencing / extraction of hydrated ions during their oxidation / reduction process [J.
  • volume change is induced [Science, 1999, 284, 1340]; Dielectric polymers induce a volume change through the rearrangement of induced polarization molecules when a strong electric field is applied, especially when the acrylic polymer is tensioned before driving Much larger size changes are induced [Science, 2000, 287, 836]; electrostrained polymers exhibit changes in molecular structure under strong electric fields with a volumetric deformation of about 4% [Scifence, 1998, 836, 2101].
  • an oxide of a plate transition metal such as vanadium, which may be additionally used between the light emitting stack and the electrode coating layer, causes hydration of hydrates in the interlayer structure, causing volume change, and thus driving.
  • a plate transition metal such as vanadium
  • the driving force is improved.
  • a method of preparing a sieve, or manufacturing a polymer driving body with one kind of electroactive polymer and then coating another kind of electroactive polymer on the surface of the manufactured polymer driving body may be used.
  • a method of preparing a membrane using a solution phase mixture may be a three-dimensional constant casting method, which is generally used in the art, and the coating method may be a method in which another electroactive polymer is coated on the upper surface of one electroactive polymer.
  • a method of impregnating and coprecipitation in a polymer solution and then polymerizing on the surface is also possible.
  • Such column stacks can have a variety of shapes, in particular
  • the columnar laminate may be prepared by thermocompression bonding an electroactive polymer having a thickness of 175-185) to a final thickness of 900-1100 / an.
  • the final thickness of the electroactive polymer is less than 900 im, it may be difficult to use the catheter's driving body due to the reduction of the driving force. If the final thickness of the electroactive polymer exceeds 1100, the driving speed and displacement are significantly reduced due to the increase of its rigidity. Due to the problem that can not be inserted into the blood vessel can occur.
  • Electrode coating layer formed by coating on the surface of the light-emitting laminate is in the art although not particularly limited to those used, specifically, one selected from platinum, gold, copper, nickel, lead, cadmium, and alloys thereof may be used.
  • platinum is used as a metal for forming the electrode coating layer, but nickel, lead, copper, and silver are used for forming the electrode or [J. Electroanal. Chem., 1993, 360,
  • the electrode coating layer is present on a part of the surface of the light emitting stack, and is continuously or intermittently positioned in the longitudinal direction of the light stack.
  • the degree of freedom of the electrode is determined by the number of planes.
  • the electrode can not be used because it is rarely used. For example, for the entire surface area of an isotropic reptile with a square cross section,
  • the continuous electrode layer in the longitudinal direction of the stack
  • the electrode layer may be formed intermittently in the longitudinal direction by coating the electrode layer in the intermediate direction in the longitudinal direction of the laminate, or by removing the electrode layer having a predetermined thickness in the longitudinal direction of the electrode layer coated on the entire surface of the laminate. It is also possible to obtain an electrode layer formed intermittently in the direction.
  • the electrode layer is formed on a total of four surfaces to have four degrees of freedom.
  • the polymer driving body of the present invention may further include (iii) an internal duct existing in the longitudinal direction of the latticed stack, and the cross section of the duct may be selected in shape according to the intended use, and is not particularly limited. Do not.
  • the duct has a cross section with a long axis of 0.2-0.5 mm 3, and it is preferable that the ratio (D: d) of the long axis D of the cross section of the elongated laminate and the long axis d of the duct is 1: 0.2-0.5.
  • the long axis of the duct is less than 0.2 mm it may be difficult to administer the drug, if it exceeds 0.5 ⁇ , the thickness of the structure around the duct is reduced, there is a problem that can be cracked or broken when driving the polymer drive, and also If the ratio (D: d) of the long axis (D) of the cross section of the mold stack to the long axis (d) of the duct is less than 1: 0.2, it may be difficult to inject the instrument and drugs, and if it exceeds 1: 0.5, Problems can occur that cause breakage of the etc. stack.
  • the duct when used for the treatment of an aneurysm, it is desirable to secure a long axis of 0.2 mm or more so that the platinum coil can be inserted and a long axis of 0.2 mm or less when the duct is used for thrombolytic drug injection.
  • 'long axis' means the longest distance between two arbitrary points on the figure. For example, if the shape is a circle, the long axis is the diameter, the longest diagonal line, and the long axis corresponds to the ellipse.
  • the polymer driving body of the present invention may further include (iv) a single layer or two or more mixed layers selected from conductive polymers, carbon nanotubes, and transition metal oxides between the lamp stack and the electrode coating layer.
  • the conductive polymer, carbon nano-lube, transition metal oxide and inorganic particles in the art Although generally used is not particularly limited, specifically, the conductive polymer may be a polyaniline, polypyri, polysulfone or polyacetylene selected from the group consisting of one or two or more, and the transition metal oxide is a transition metal such as vanadium Oxides may be used.
  • These additionally included layers are formed using dip coating, layer by layer self-assembly, spin coating: atomic layer deposition sputtering, electropolymerization and chemical polymerization, which are commonly used in the art, and consider the effect on driving performance. Maintain a 10-200 IM thickness range.
  • (V) may further include at least one layer selected from silicon-based, polyurethane-based, parylene-based and epoxy-based coating layers present on the electrode coating layer. This layer is present not only on the electrode layer but also on the name between the electrode layers serving as the insulating layer.
  • the silicone-based, polyurethane-based, parylene bran [Smart Mater.
  • the coating layer formed of the cured epoxy resin improves the blocking force between the polymer driving body and the external tissues to improve the biocompatibility and blood compatibility. It is possible to secure.
  • the coating layer is also formed in the coating layer using the dip coating, thermal evaporation method, thermosetting method commonly used in the art, and maintains the thickness range of 1-3 ⁇ in consideration of the effect on the driving performance.
  • the polymer driving body according to the present invention preferably has a driving force of 0.1 g f or more, preferably 0.1-0.2 g f , a driving displacement of 40 ° or more, preferably 4 ° 90 ° , and an intensity of 8 X 10 "7 Nm 2 or more.
  • a driving force of 0.1 g f or more, preferably 0.1-0.2 g f
  • a driving displacement of 40 ° or more, preferably 4 ° 90 °
  • an intensity of 8 X 10 "7 Nm 2 or more For example, 1 X 10— 6 -5.2 ⁇ 10 "6 Nm 2 , the response speed is less than 2.0 mm / s, preferably 1.0-2.0 ⁇ / s, and the density is less than 0.3 g / cm 3, preferably 0.20-0.25. It is advisable to maintain the g / cm 3 range.
  • the range suggested by the factor representing the driving characteristics of the polymer driving body of the present invention means a degree capable of performing a role as the driving body, specifically, the driving characteristics are 'above', 'less',' less than ", But this The lower limit or the upper limit of the range is limited to the extent to which the role of the driving body in the art can be performed.
  • the present invention relates to (i) an isotropic stack of electroactive polymers selected from ionic polymers, conductive polymers, carbon nanolevers, dielectric polymers, electrostrictive polymers, nanoclays, silica compounds and combinations thereof, and
  • the electroactive polymer for a polymer driving body comprising a plurality of electrode coating layers selected from platinum, gold, silver, copper, nickel, lead, cadmium, and alloys thereof present on a portion of the surface of the lamp body;
  • a polymer driving body comprising a plurality of electrode coating layers selected from platinum, gold, silver, copper, nickel, lead, cadmium, and alloys thereof present on a portion of the surface of the lamp body;
  • the surface resistance continues to decrease, which plays a positive role in driving performance.
  • the driving force decreases due to an increase in the rigidity of the electrode itself.
  • the driving performance is different depending on the type of cation that can move inside, the larger the size of the hydrated cation, the driving displacement and driving force increases.
  • the present invention manufactures a polymer drive by using a lamination method of a film, in particular a lamination method by thermocompression bonding.
  • the lamination method by thermocompression is possible to form a uniform thickness as well as to secure the desired physical properties, it is easy to reproduce the square shape difficult to implement in various shapes, especially liquid casting method in a simple method.
  • a method of laminating membranes is widely known in addition to thermocompression bonding, such as casting of a liquid phase and adhesion between commercially available ion exchange membranes.
  • Method for producing a polymer driving body (b) laminating a plurality of electroactive polymer ion exchange membrane, (c) heating the laminated ion exchange membrane at 170-190 ° C for 10-20 minutes Step, (d) thermocompressing the heated ion exchange membrane at 6,500-7,000 psi and 170-190 1C ' for 10-20 minutes; (e) cutting the thermocompressed ion exchange membrane to obtain an etc. laminate And (h) coating an electrode on the surface of the lamp stack, and (i) forming an insulating layer by partially removing the electrode coating layer.
  • a plurality of electroactive polymer ion exchange membranes are laminated.
  • a silver exchange membrane so that the duct forming lamp is present between the plurality of electroactive polymer ion exchange membrane.
  • the duct forming lamp is not particularly limited as long as it is capable of forming a duct. Specifically, the shape of the duct is small and the deformation is maintained under the conditions of high pressure and high pressure of 6500-7000 psi and 170-190. It is possible to use a wire structure capable of maintaining the diameter and having various cross-sectional shapes.
  • metal wires such as wires, copper wires, and lead wires can be used. It is performed by, but is not limited thereto.
  • This stacking preferably forms the same number of ion exchange membranes on the surface of the guide lamp, so as to have the same thickness from the duct.
  • the laminating may be performed before laminating the electroactive polymer ion exchange membrane.
  • the washing is performed to remove dust, and when fine dust remains on the surface, it inhibits the formation of uniform and excellent electrodes, thereby preventing problems in catheter performance. There is a possibility to cause it.
  • This cleaning may be generally used for non-polar organic solvent such as n- nucleic acid used to perform the degree specifically 1-5 times or more times, in the related art.
  • thermocompression furnace is generally used in the art of the stainless steel bar, by controlling the thickness of the bar it is possible to control the thickness of the lamp laminate of the present invention.
  • the thickness of the mold is preferably maintained to 75-85% with respect to the thickness of the laminated electroactive polymer ion exchange membrane.
  • the fluidity of the membrane interface is improved by the heating pretreatment process, and the conditions thereof are appropriate conditions under which the fluidity of the internal structure is ensured through the experiment of the thermal properties of the ion exchange membrane and the functional groups are not destroyed.
  • the ion exchange membrane is melted or the interface between the surface and the membrane may burn.
  • the time is less than 10 minutes, the ion exchange membrane may not adhere, and if it exceeds 20 minutes, the surface-membrane interface may burn out.
  • the heated ion exchange membrane is thermocompressed at 6,500-7,000 psi and 170-190 ° C. for 10-20 minutes.
  • the compressive force between the remarkably low may not adhere to the ion exchange membrane
  • the thickness of the ion exchange membrane may be uneven or burned.
  • the time is less than 10 minutes, the ion-exchange membrane may not adhere, and if it exceeds 20 minutes, burning may occur, so it is preferable to maintain the above range.
  • the removal of impurities is specifically from 60-100 ° C for 5-6 hours the hydrogen peroxide cleaning hajeong, 90-120 ° C 3-4 It is carried out in a series of processes including washing the aqueous solution for 3 hours, washing the aqueous hydrochloric acid solution for 3-4 hours at 60-100 C, and washing the aqueous solution for 3-4 hours at 90-120 ° C.
  • the hydrogen peroxide and hydrochloric acid solution is preferably maintained at a concentration of 5-15% by weight.
  • Coating of the electrode forms an electrode coating layer on the surface of the etc. laminate using the electroless plating method commonly used in the art.
  • the electroless plating may be performed under a mixed solvent in which water and alcohol maintain a weight ratio of 100: 8-30.
  • each single solvent such as water and alcohol commonly used in the art is used.
  • the volume increase rate of the ion exchange membrane is increased and the interface state between the electrode and the ion exchange membrane is improved, which contributes to the improvement of driving characteristics such as driving speed, driving displacement and response speed of the manufactured polymer driving body. .
  • the driving performance is increased than when using a single solvent of water, but the driving performance of the present invention may not be satisfied, and when the amount of alcohol used exceeds 30 weight ratio It is preferable to maintain the above range because a problem of separation of the thermally laminated film may occur.
  • Alcohol is in the field of sugar
  • alcohols having 1 to 6 carbon atoms specifically methanol, ethanol, isopropanol, butanol, pentanol and nucleic acidol, preferably ethanol and methane, and more preferably ethane.
  • the thickness of the electrode coated by the above method is in the range of 10-30 /, preferably in the range of 20-30 fM. If the thickness range is less than 10, the electrode may be unevenly formed so that the driving performance may be degraded or may not be driven. And 30 When exceeding, it is preferable to maintain the above range because a problem that driving performance may be degraded due to the rigidity of the electrode occurs.
  • the insulating layer forming method may be performed using cutting, scratching, taping, and masking, which are generally used in the art, wherein the insulating layer has a thickness of 5-15 urn in a direction opposite to the length thereof, preferably 7-12 im. Two to eight, preferably four.
  • the present invention is a catheter comprising the polymer drive as described above, preferably 0.1 g f or more, preferably 0, 1-0.2 gf drive force, 40 ° or more drive displacement of 40-90 °, 8 10 "7 Nm 2 or more preferably 1 x 10 _6 -5.2 x 10 "6 Nm 2 strength and less than 2.0 mm / s preferably 1.0-2.0 mm / s
  • a catheter having a stepping speed and a diameter of 1.5 kPa or less, preferably in the range of 1.5-1 kPa, wherein the catheter is used as a gimwire for catheter insertion or as an active catheter for instrument or drug injection.
  • the drug is more suitable for use for thrombolysis using thrombolytics.
  • the catheter including the polymer drive device according to the present invention is located on the surface or inside the catheter distal end, locally injected drugs such as thrombolytics, or the catheter distal end
  • Such a catheter is not particularly limited to one having a structure and a design generally used in the art, but specifically, an active type connected to an end of a tube after bonding an electrode to a polymer driving body having an luminescent structure having a duct for drug administration therein.
  • Catheter structure, or guide wire structure that controls the direction of the tube by pushing another delivery catheter in the tube [IEEE International Conference on Robotics and Automat ion, 79, 1995].
  • Nafion (180 mm thick) was cut to a size of 24 mm 49 mm, and then the surface was cleaned with n-nucleic acid to remove dust on the surface of Nafion. Laminating six sheets of Nafion membranes whose surface was treated, and during the lamination
  • Lamination was carried out by inserting a wire 0.5 mm in diameter between the third and fourth.
  • the membrane was covered with a polyimide film having a characteristic of 50 (M thickness, heat resistance, etc. from above and below, and then placed in a stainless steel frame (25 mm .width X 50 mm length X 0.93 mm height.
  • the size of the Nafion membrane can be adjusted by placing the mold on a hot-press and leaving it under pressure for about 12 minutes at about 180 ° C to destroy the functionalities of the membrane's internal structure. Under conditions
  • the laminated napi was first stored in an aqueous solution for about 1 hour to remove impurities from the membrane. Afterwards, to get rid of the messy things on the four sides, cut the four sides with a knife to make a rectangular shape. Remove the wire contained inside the napi silver film and 10% by weight of about 60 x:
  • an electrode coating layer of platinum on the surface of the lampshade laminate, first, a solvent mixture of 100: 30 weight ratio of water and ethanol in which [Pt (NH 3 ) 4 ] 2 Cl 2 platinum salt is dissolved at a concentration of 2 mg / ral was impregnated with an ion exchange membrane. After 24 hours of impregnation, the ion exchange membrane was stirred at 100 rpm under a temperature of 40 ° C, and electroless plating was performed under the condition that 5 ml of NaBH 4 5 wt% mixed solvent was added 10 times every 30 minutes. In this case, the electrode coating layers are continuously positioned, and six are present in the opposite plane of the lamp stack.
  • Example 1-2 Change of Electroactive Polymer Type
  • Example 1 In order to apply to Example 1, a composite was prepared using a mixture of carbon nanotubes and a solution in which an ionic polymer membrane was peeled off. Nafion aqueous solution and carbon nanotubes were mixed in a 100: 15 weight ratio and stirred for 62 hours. After the 3D constant casting method. Membranes were prepared at a thickness within 180 where the thickness uniformity was maintained. At this time, the three-dimensional constant casting was carried out while evaporating the solvent within 5 hours in the 60 ° C silver range, in the process, the carbon nanotubes and Nafion solution was formed a complex film forming a uniform film. Since the lamination and electrode coating process was performed in the same process as in Example 1.
  • Example 1-3 Change of Electroactive Polymer Type
  • Example 2 Proceed in the same manner as in Example 1, in order to introduce the conductive polymer, Nafion lamp obtained after the manufacture of the lamp-shaped structure was impregnated with 0.07 M of blood in an aqueous solution for 5 minutes. Thereafter, the polypyrrole was polymerized near the surface by impregnation with 20 wt% hydrogen peroxide. The conductive polymer composite obtained through this process was repeatedly washed with 0.7 M sulfuric acid, nitric acid, and water at room temperature and high temperature (60 ° C) for 1 hour interval. Since the prepared composite is subjected to the electrode coating process the same as in Example 1
  • Example 1-4 Type change of electroactive polymer
  • Example 1-5 Type change of electroactive polymer
  • Example 1-6 Type change of electroactive polymer
  • a polymer driving body was prepared in the same manner as in Example 1-1, using nanoclay having a sulfonation group having a thickness of 180 urn instead of Nafion.
  • Example 1-7 Type change of electroactive polymer
  • Example 1-8 Adding a Layer to the Surface of the Polymer Actuator
  • Example 1-9 Change of loading conditions of the electroactive polymer
  • the polymer drive body was prepared by varying the lamination temperature of the electroactive polymer Nafion at 130 C, 200 C and the lamination pressure at 3000 psi and 8000 psi, respectively.
  • Example 1-10 Change in the type of mixed solvent in electroless plating
  • Example i instead of the electroless plating ethanol for forming the electrode layer, the electrode coating under the mixed solvent of water and methanol (100: 20 weight ratio), water and isopropanol (10 (): 20 weight ratio), respectively.
  • the electrode coating under the mixed solvent of water and methanol (100: 20 weight ratio), water and isopropanol (10 (): 20 weight ratio), respectively.
  • Example 1-11 Use of a Single Solvent System in Electroless Plating
  • a polymer driving body was prepared by performing electrode coating under a single solvent of water instead of a mixed solvent of water and ethanol.
  • Example 1-12 Change in the content of the mixed solvent in the electroless plating
  • the polymer was prepared by electrode coating at a composition ratio of 100: 5 weight ratio and 100: 60 weight ratio of water and ethane, respectively. .
  • the electrode coating layer is thinner and thinner than the embodiment 1-1, and the driving performance is lowered.
  • Example 1-13 Recovery change of electroless plating
  • Example 1-1 In the same manner as in Example 1-1, the electroless plating was repeated 2, 3 and 4 times to prepare a polymer driving body.
  • Example 2 In the same manner as in Example 1-1, using a commercially available Nafion membrane without lamination without lamination, the electrode was coated to prepare a catheter.
  • Commercially available Nafion 117 US DuPont
  • Example 1-1 the same procedure as in Example 1-1 was carried out, and the Nafion membrane was manufactured by using three-dimensional constant casting instead of lamination. At this time, the three-dimensional constant casting was made of 15 wt% Nafion solution at a temperature of 60 ° C. while evaporating the solvent within 5 hours at 180 ° (M thickness).
  • a catheter was prepared by adhering the prepared Nafion membrane or a commercially available membrane (Dupont Corporation 175-185 thick Nafion membrane) with Nafion solution ⁇ electrode coating. At this time, the Nafion solution was applied by applying a brush at a concentration of 15% by weight or by applying a Nafion solution with 3 ⁇ 4 coating and then adhesive was prepared by evaporating the solvent within 5 hours at 60 ° C temperature.
  • the ion exchange membrane was manufactured in the same manner as in Example 1-1 except that the Nafion membrane was laminated except for the wire in the lamination process.
  • the following procedure was performed to make the prepared membrane into a polymer driver having bidirectional and tetradirectional properties.
  • the laminated film is cut to a size of 1 mm X 1 ram X 30 mm, and then subjected to the same electrode coating process and insulation process as in Example 1-1.
  • the driving body for the guide wire which can drive in 4 directions was produced.
  • the same electrode coating process as in Example 1-1 was performed without cutting the laminated film.
  • the electrode-coated ionic polymer membrane was cut into a size of 1 mm X 1 mm X 30 mm, and a catheter for guide wires capable of driving in two directions, in which two pairs of electrodes were positioned on two opposite surfaces, was grayed out.
  • each of the guide wire catheter was used by using the polymer driver grayed out in Examples 1-2 to 1-12 and Comparative Examples 1 to 2.
  • the inner ribs made of a conventionally coated stainless steel coil and the outer wall of the inner ribs are covered with a stainless steel coil, and the stainless steel coil and the formed memory alloy coil (TiNiK wire diameter: 30 / m, coil are located in front of the inner tube outer wall). Background: becomes wrapped in the 150 // m) may,. And the whole is covered with a parylene-coated polyurethane, so the active catheter (thickness 1.4 mm)
  • the catheter prepared in Examples 2 and 3 was measured in the physical properties as described below and the results are shown in the following table.
  • Driving force Measure 10 seconds at DC 6V using a laser drive meter.
  • the chord speed means a mechanical response.
  • the electrical response which measures how long it starts to move when an electrical signal is given, occurs in the range of several seconds, making it difficult to measure it in practice.
  • the driving body the hydrated ear is driven by an electrical stimulus from the outside, and the driving speed is increased because the movement speed of ions is less than / s. Based on this, it is based on moving to a range of specific displacement, and it takes how long it takes to reach the point, and sets the mechanical response to the mechanical response speed. Set. With the limit of 15 mm, which is the maximum measurement limit of the current drive displacement accumulator, the time taken to reach the limit was measured, and the reaction rate was measured in units of 'mm / s'.
  • Example 1-1 2.030 33.3 1-5.2 1.43-0.25
  • rod A polymer drive body in which electrodes are coated on four sides of a columnar laminate.
  • tube Polymer driving body in which the duct exists in the longitudinal direction of the lamppost stack and the electrode is coated on the four sides of the lamppost stack.
  • the catheter manufactured using the polymer driving body according to the present invention has a driving force of 0.2 g f or more, a driving displacement of 40 ° or more, a response speed of less than 2.0 mm / s, and an intensity of X 8 is at least 10- 7 Nm 2, it was confirmed that the density of maintaining eu 0.25 g / cm under 3.
  • the catheter manufactured without applying the lamination method (Comparative Example 1) has a very good reaction speed and driving displacement due to the reduction of the rigidity of the ion exchange membrane itself, but due to the significant reduction of the driving force, which is the upper layer of the physical properties.
  • the catheter manufactured by 3D constant casting method (Comparative Example 2) has a problem that it is difficult to insert the metal wire sculpture for forming the internal duct, and therefore, the duct formation is very difficult. It was difficult to make the thickness uniform.
  • the casting to form a catheter sizeable thickness of 900-1100 im thickness occurs simultaneously with the evaporation of the internal solvent and the film formation on the surface during the film formation at high temperature (60-100 ° C) for rapid film production. Cracks on the surface of the membrane
  • the rigidity of the laminated film is increased too much, and when it is formed as a driving body, the displacement is significantly decreased.
  • the catheter using the shape memory alloy (Comparative Example 3) is largely moved based on the volume change using the change of the internal crystal structure of the metal according to the change of silver, which requires smooth and even heat transfer to the inside of the metal. That is, a sufficient drive is made only when a change of the structure is induced in a state in which sufficient heat and time are given.
  • the thermal response rate which requires sufficient time compared to the electrical response rate, is relatively slow (msec ⁇ min). Also
  • the temperature range for driving the shape memory alloy occurs in a higher range than the temperature range for the application in the body, there is a great deal of practical application in the human body.

Abstract

The present invention relates to a polymer actuator comprising: (i) a column-shaped electroactive polymer laminate; and (ii) a plurality of electrode coating layers present on a part of the surface of the column-shaped laminate, and a catheter containing the polymer actuator. The polymer actuator has low density and improved mechanical properties such as driving displacement, driving force and the like and response velocity, and driving characteristics can be controlled by controlling factors such as the ion exchange function of ionic groups present in an electroactive polymer, the number of the ionic groups, the distribution of the ionic groups, the type of coutercations, the thickness of an ion exchange membrane, the thickness of a surface electrode and the like, thereby enabling a catheter containing the same to be easily used as a guide wire or an active catheter.

Description

【명세서 】  【Specification 】
[발명의 명칭】  [Name of invention]
고분자 구동체, 이를 포함한 카테터 및 이의 제조방법 Polymeric driving body, catheter including the same and manufacturing method thereof
【기술분야】 Technical Field
본 발명은 (i) 기등형 전기활성 고분자 적층물 및 (Π) 상기 기등형 적층물 표면의 일부에 존재하는 복수 개의 전극 코팅층을 포함하는 고분자 구동체와 이의 제조방법, 고분자 구동체의 구동특성 조절방법 및 고분자 구동체를 포함하는 카테터에 관한 것이다. The present invention provides a polymer driving body comprising a plurality of electrode coating layers present on a part of (i) the electrically conductive polymer laminate and (Π) the surface of the lamp assembly, a manufacturing method thereof, and controlling the driving characteristics of the polymer driving body. A catheter comprising a method and a polymer driver.
【배경기술 】  Background technology
최근의 외과 수술은 회복기간 및 입원기간의 단축과 의료비의 삭감 등을 통해서 환자의 정신적, 육체적 부담을 경감하기 위하여 무통 (painfree) 내지는 최소침습 (minimally invasive) 수술 위주로 되고 있으며, 이를 위한 대표적인 의료기기의 하나가 카테터 (catheter)이다. 일반적으로 카테터는 가는 관 내지는 튜브를 나타내며, 요도와 식도 등의 바이패스로 사용하여 내용물을 배출하거나 약물 등을 투입할 때에 사용하거나, 동맥 등의 혈관올 경유해서 심장이나 뇌혈관에 약물이나 코일 등 치료기구의 주입과 혈관조영제의 주입과 혈전 제거 등을 위해서 사용되고 있다. 이 중에서 , 능동형 카테터는 후자에 해당되는 것으로 혈관과 같이 복잡하고 협소한 경로를 안전하고 신속하게 통과해서 검사나 치료를 필요로 하는 곳에서 특정 외과적 작업 수행을 목적으로 한다. Recently, surgical surgery has been focused on pain free or minimally invasive surgery to reduce the mental and physical burden of patients through the reduction of recovery period, hospitalization period, and medical cost reduction. One of them is the catheter. In general, the catheter represents a thin tube or tube, which is used as a bypass for the urethra and esophagus, used to discharge the contents or to inject drugs, or to the heart or cerebrovascular vessels through blood vessels such as arteries. It is used for infusion of therapeutic devices, infusion of angiographic agents and removal of blood clots. Of these, active catheters are the latter, aimed at performing certain surgical operations where they need to be examined or treated safely and quickly through complex and narrow pathways such as blood vessels.
카테터를 체내에 주입할 때 혈관 분기점에서 원하지 않는 방향으로 들어가거나 혈관 벽에 손상을 입힐 수 있는 위험성이 존재한다. 이를 극복하기 위하여 일정한 은도에서 형상을 기억시키면 형상기억 은도보다 낮은 온도에서 변형시켜도 형상회복온도까지 가열을 하면 다시 원래의 형태로 돌아가는 합금인 형상기억합금 (SMA: shape memory alloy)과 같은 미소한 구동체 (액츄에이터)를 이용한 다자유도의 구동기구 및 센서를 카테터 선단에 장착시키려는 시도가 있다. 이를 통하여, 카테터를 안전하게 소정의 장소까지 이동시키는 능동 카테터의 연구는 최소침습 수술을 위한 중요한 기술의 하나이며. , 현재 MEMS 및 마이크로 구동체를 다루는 연구자들 사이에 주된 연구 토픽이라 할 수 있다. 이러한 능동형 카테터는 대부분 기계적 동작부 설계에 대한 기술이 주종을 이루고 있는 바, 이 경우 동작부의 구조적 특성상 크기가 커져 뇌혈관과 같은 미세혈관 내에서의 작동이 불가능한 문제가 있다. When injecting the catheter into the body, there is a risk of entering the unwanted direction at the vascular bifurcation or damaging the vascular wall. In order to overcome this problem, if the shape is stored at a certain degree of silver, the micro memory is driven like a shape memory alloy (SMA), which is an alloy that returns to its original shape even when it is deformed at a lower temperature than the shape memory. Multi-degree of freedom drive mechanism and sensor using a sieve (actuator) Attempts have been made to mount the catheter tip. Through this, the study of active catheter to safely move the catheter to a certain place is one of the important techniques for minimally invasive surgery. This is the main research topic among researchers currently dealing with MEMS and microdrives. Most of these active catheters are predominantly technical techniques for the design of the mechanical operating part, in this case, the size of the operating part is large, there is a problem that can not operate in micro-vascular such as cerebrovascular.
또한 능동형 카테터의 구동체로 형상기억합금을 사용하는 경우 피부나 혈관의 생체조직에 손상을 주는 제한온도인 49-52 °C에서부터 최저은도인 체온 37 °C 사이에서 변형과 회복이 일어나야 한다. 이러한 온도에서 변형이 가능한 형상기억합금은 나켈-티타늄 합금 (Ni-Ti 합금)에 바나듐 , 크름, 망간 및 코발트 등의 제 3의 금속이 소량 첨가된 합금이 유일하나 이 금속의 가격이 비싸 원재료의 가격 높은 단점이 있다 . 이외에도 형상기억합금의 변형 온도는 조성비의 변화에 따라 매우 민감하게 In addition, when shape memory alloy is used as an active catheter's driving body, deformation and recovery should occur between 49-52 ° C and 37 ° C, which is the minimum temperature that damages the tissues of skin or blood vessels. The shape memory alloy that can be deformed at this temperature is the only alloy in which a small amount of third metal such as vanadium, crumb, manganese, and cobalt is added to the nickel-titanium alloy (Ni-Ti alloy), but the price of the raw material is high. The price has a high disadvantage. In addition, the deformation temperature of shape memory alloy is very sensitive to the change of composition ratio.
반응하므로 조성비의 미세한 조절이 요구되는 단점이 있다. Because of the reaction, there is a disadvantage that a fine control of the composition ratio is required.
최근 이러한 문제점을 개선하기 위하여 구동체의 소재를 다양화하는 기술이 제시되고 있으나 그 다양화의 범위가 다소 제한적이다. 그 동안 제시된 소재를 구체적으로 살펴보면, 형상기억합금, 초탄성 합금 튜브와 유체, 마이크로 밸브와 풍선 및 압각 센서와 초음파 프로브 (probe)를 장착한 가이드 와이어 (guide wire) 등이 포함되는데, 이들 중 거의 대부분은 형상기억합금 분야에 국한되어 있어 임상 적용에 한계점이 있다. Recently, in order to improve such a problem, a technique for diversifying the material of the driving body has been proposed, but the scope of the diversification is somewhat limited. Specifically, the materials presented include shape memory alloys, superelastic alloy tubes and fluids, micro valves and balloons, and guide wires equipped with pressure sensors and ultrasonic probes. Most of them are confined to shape memory alloys and have limitations in clinical applications.
이외에도 인공근육을 실현시킬 수 있는 차세대 구동체로서 고분자 구동체가 최근 주목받고 있는데, 고분자 구동체는 대변형율, 저구동압, 부드러움 및 저밀도 (경량) 등의 특성이 있어 능동형 카테터로의 적용이 가능하나, 발생력이 작고 강성이 낮으며 응답성이 늦고 내구성이 약한 단점이 있다. 고분자 구동체는 전기, 화학, 열, 광 및 자기 등 외부자극에 의해서 변형을 일으키지만 가장 실용성이 있는 것은 전기적 자극에 의한 구동체이고, 특히 이온 전도성 고분자 막 (ICPF, Ionic Conducting Polymer Film) 구동체는 나피온 양면에 존재하는 백금층 전극에 전압을 인가하면 고속으로 굴곡 동작을 보이게 한다. 전압에 의해서 구동되기 때문에 에너지 공급이 용이하고 구동전압이 1.5 V 정도로 낮기 때문에 수중에서의 전기분해도 거의 일어나지 않으며 , 기계 내부에 기포 축적도 적으므로 카테터용 구동체로서의 웅용이 기대되고 있다. 그러나 이러한 ICPF 구동체는 가이드와이어로 사용하는 용도는 다양한 문헌 등에서 제시되고 있으나, 구동력 및 강도의 기계적 물성이 뒷받침되지 못하여 이를 능동형 카테터로 적용하려는 구체적인 시도는 아직 제시되지 못하고 있는 실정이다. In addition, the polymer driving body has recently attracted attention as a next-generation driving device that can realize artificial muscle, and the polymer driving body has characteristics such as large strain rate, low driving pressure, softness and low density (light weight), so that it can be applied as an active catheter. It has the disadvantage of small generating force, low rigidity, low responsiveness, and low durability. The polymer driving body is deformed by external stimulation such as electricity, chemistry, heat, light and magnetism, but the most practical one is the driving device by electrical stimulation. Ionic Conducting Polymer Film (ICPF) actuators exhibit high-speed bending behavior when voltage is applied to the platinum layer electrodes on both sides of Nafion. Since it is driven by voltage, energy supply is easy and the driving voltage is about 1.5 V, so that electrolysis in water hardly occurs, and there is little bubble accumulation inside the machine, and thus, it is expected to be used as a catheter driving body. However, although the use of the ICPF driver as a guide wire has been suggested in various literatures, a specific attempt to apply it as an active catheter has not yet been presented because the mechanical properties of driving force and strength are not supported.
【발명의 상세한 설명】 、  【Detailed Description of the Invention】 、
[기술적 과제 ] 본 발명은 (i) 기등형 전기활성 고분자 적층물 및 (Π) 상기 기등형 적층물 표면의 일부에 존재하는 복수 개의 전극 코팅층을 포함하는 고분자  [Technical Problem] The present invention provides a polymer comprising (i) a light emitting electroactive polymer laminate and (Π) a plurality of electrode coating layers present on a part of the surface of the light emitting laminate.
구동체와 고분자 구동체를 포함하는 카테터를 제시하고자 한다 . A catheter comprising a driving body and a polymer driving body is presented.
구체적으로 본 발명은 이온성 고분자, 전도성 고분자, 탄소 나노튜브, 유전성 고분자, 전기변형 (electrostrictive) 고분자, 나노 클레이 , 실리카 화합물 및 이들의 조합물 중에서 선택된 전기활성 고분자의 기등형 적층물 및 상기 기등형 적층물 표면의 일부에 존재하는 복수 개의 전극 코팅층을 포함하는 고분자 구동체에 관한 것으로서, 구동특성 향상 뿐만 아니라 전기활성 고분자 내에 존재하는 이온기의 이온 교환능, 이은기의 개수, 이온기의 분포, 상대 양이온의 종류, 이온교환막의 두께, 표면 전극 두께 중에서 선택된 하나 이상의 인자 제어에 의해 구동특성의 조절이 가능하다. 또한, 본 발명은 복수 개의 전기활성 고분자의 이온교환막 적층 단계, 가열하는 전처리 단계, 열 압착 단계, 전극코팅 단계 및 절연층 형성 단계를 포함하는 일련의 공정으로 구동특성 향상 및 조절을 가능하게 하는 고분자 구동체를 제조하는 방법과, 상기 고분자 구동체를 포함하여 Specifically, the present invention relates to an isotropic stack of electroactive polymers selected from ionic polymers, conductive polymers, carbon nanotubes, dielectric polymers, electrostrictive polymers, nanoclays, silica compounds, and combinations thereof The present invention relates to a polymer driving body including a plurality of electrode coating layers present on a part of the surface of a laminate, wherein the driving characteristics are improved, as well as the ion exchange capacity of the ion groups present in the electroactive polymer, the number of silver groups, the distribution of the ion groups, and the relative cation. It is possible to adjust the driving characteristics by controlling at least one selected from the type of, the thickness of the ion exchange membrane, and the surface electrode thickness. In addition, the present invention is a polymer that enables improvement and control of driving characteristics by a series of processes including an ion exchange membrane lamination step of a plurality of electroactive polymers, a pretreatment step of heating, a thermocompression step, an electrode coating step, and an insulating layer forming step. Method for manufacturing a drive body, including the polymer drive
가이드와이.어 또는 능동형 카테터로 사용한 카테터를 제시하고자 한다. 【기술적 해결방법 】 Guide and this . To present a catheter used as an active or active catheter. 【Technical Solution】
본 발명은 (i) 기등형 전기활성 고분자 적층물, 및 (Π) 상기 기등형 적층물 표면의 일부에 존재하는 복수 개의 전극 코팅층을 포함'하는 카테터용 고분자 구동체 ^ᅵ 그 특징이 있다 . The present invention (i) gideung type electroactive polymer laminate, and (Π) gideung the stacked electrodes includes a plurality of the coating layer present on a portion of the water surface, the catheter polymer actuator ^ i for which it is characterized.
또한, 본 발명은 (b) 복수 개의 전기활성 고분자 이온교환막을 작층하는 단계 , (c) 상기 적층된 이온교환막을 170-190 °C에서 10-20 분 동안 가열하는 단계 , (d) 상기 가열된 이온교환막을 6,500-7,000 psi 및 170- 190 °C에서 10-20 분 동안 열압착하는 단계, (e) 상기 열압착된 In addition, the present invention (b) laminating a plurality of electroactive polymer ion exchange membrane, (c) heating the laminated ion exchange membrane at 170-190 ° C for 10-20 minutes, (d) the heated Thermally compressing the ion exchange membrane at 6,500-7,000 psi and 170-190 ° C. for 10-20 minutes, (e) the thermally compressed
이온교환막을 절단하여 기등형 적충물을 수득하는 단계, (h) 상기 기등형 적층물의 표면에 전극올 코팅하는 단계, 및 (i) 상기 전극 코팅층을 일부분 제거함으로써 절연층을 형성시키는 단계를 포함하는 고분자 구동체의 제조방법에 또 다른 특징이 있다. Cutting the ion exchange membrane to obtain an isotropic red worm, (h) coating an electrode on the surface of the isotropic laminate, and (i) forming an insulating layer by partially removing the electrode coating layer. There is another feature of the manufacturing method of the polymer driving body.
또한, 본 발명은 (b') 복수 개의 전기활성 고분자 이온교환막 사이에 덕트 형성용 기등이 상기 복수 개의 이온교환막 사이에 존재하도록 이은교환막을 적층하는 단계, (c) 상기 적충된 이온교환막을 170-190 X 에서 10-20 분 동안 가열하는 단계, (d) 상기 가열된 이온교환막을 6,500-7,000 psi 및 170-190 °C에서 10-20 분 동안 열압착하는 단계, (e') 기등형 적층물의 길이 방향으로 내부 덕트가 존재하도록 상기 열압착된 이온교환막을 절단하고 상기 덕트 형'성용 기등을 제거하여 기등형 적층물을 수득하는 단계, (h) 상기 기등형 적충물의 표면에 전극을 코팅하는 단계, 및 (i) 상기 전극 코팅층을 일부분 제거함으로써 절연층을 형성시키는 단계를 포함하는 고분자 구동체의 제조방법에 또 다른 특징이 있다. In addition, the present invention (b ') laminating a second exchange membrane so that a duct forming light is present between the plurality of ion-exchange membrane between the plurality of electroactive polymer ion exchange membrane, (c) the stacked ion exchange membrane 170- Heating at 190 X for 10-20 minutes; (d) thermocompressing the heated ion exchange membrane at 6,500-7,000 psi and 10-20 minutes at 170-190 ° C., (e ') of an isotropic stack. Cutting the thermo-compressed ion exchange membrane such that an inner duct is present in the longitudinal direction and removing the duct- like lamps to obtain a lamp stack, (h) coating an electrode on the surface of the lamp trap; And, (i) there is another feature in the method of manufacturing a polymer drive comprising the step of forming an insulating layer by removing a portion of the electrode coating layer.
또한, 본 발명은 계 3항에 따른 고분자 구동체를 포함하는 카테터로서, 0.2 gi 이상의 구동력, 40° 이상의 구동변위, 8 X 1으 7 Nra2 이상의 강도, 0.25 g/cm3미만의 밀도 및 2.0 mm/s 미만의 웅답속도를 가지고 직경이 1.5 瞧 이하이며, 상기 카테터는 카데터 삽입을 위한 가이드와이어로서의 용도로 또는 기구 또는 약물 주입용 능동형 카테터로서의 용도 S 사용되는 카테터에 또 다른 특징이 있다. In addition, the present invention is a catheter comprising a polymer driving body according to system 3, the driving force of 0.2 gi or more, the driving displacement of 40 ° or more, the strength of 8 X 1 7 Nra 2 or more, the density less than 0.25 g / cm 3 and 2.0 The catheter is used as a guidewire for catheter insertion or as an active catheter for device or drug injection. There is another feature of the catheter.
또한, 본 발명은 (i) 이온성 고분자, 전도성 고분자, 탄소 나노류브, 유전성 고분자, 전기변형 (electrostrictive) 고분자, 나노 클레이 , 실리카 화합물 및 이들의 조합물 ^에서 선택된 전기활성 고분자의 기둥형 적층물, 및 (Π) 상기 기등형 적층물 표면의 일부에 존재하는 백금, 금, 은, 구리, 니켈, 납, 카드뮴 및 이들의 합금 중에서 선택된 복수 개의 전극 코팅층을 포함하는 고분자 구동체에 대해서, 상기 전기활성 고분자 내에 존재하는 이은기의 이은교환능, 이온기의 개수, 이온기의 분포, 상대 양이은의 종류, 이온교환막의 두께, 표면 전극 두께 중에서 선택된 하나 이상의 인자를 조절함으로써, 구동력, 구동변위 및 웅답속도 중에서 선택된 고분자 구동체의 구동특성을 조절하는 방법에 또 다른 특징이 있다.  The present invention also relates to a columnar laminate of electroactive polymers selected from (i) ionic polymers, conductive polymers, carbon nanolevers, dielectric polymers, electrostrictive polymers, nanoclays, silica compounds, and combinations thereof. And (Π) a polymer driving body comprising a plurality of electrode coating layers selected from platinum, gold, silver, copper, nickel, lead, cadmium, and alloys thereof present on a portion of the surface of the lamp body. By controlling one or more factors selected from the silver exchange capacity of the silver group in the active polymer, the number of ion groups, the distribution of the ion groups, the relative amount of silver, the thickness of the ion exchange membrane, and the thickness of the surface electrode, the driving force, the driving displacement and the response rate There is another feature of the method for adjusting the driving characteristics of the selected polymer driver.
[유리한 효과】  Advantageous Effects
본 발명에 따른 고분자 구동체 및 이를 사용한 카테터는 실용성이 높은 전기 자극에 의하여 방향조정이 원활하게 수행되고 구동변위, 구동력, 강도 등의 구동특성 향상 및 구동특성 조절이 가능하여 혈관 내 원하는 위치 파악이 용이하고, 인체에 부작용이 없어, 뇌동맥류와 같은 뇌혈관질환의 혈관 내 치료 성공률 향상, 합병증 감소, 시술의 안정성 및 보편화의 우수성으로 수술 및 치료용 카테터 뿐만 아니라 상기 카테터와 영상 프로브가 결합된 형광 영상 진단기 분야에서의 그 웅용이 기대된다. The polymer driving body and the catheter using the same according to the present invention can be smoothly adjusted by electric stimulation with high practicality, and it is possible to improve driving characteristics such as driving displacement, driving force, and strength, and to adjust driving characteristics so that the desired position in the blood vessel can be determined. Fluorescence combined with the catheter and the imaging probe as well as the catheter for surgery and treatment with the improvement of the success rate of vascular treatment, reduction of complications, stability of the procedure and universalization of cerebrovascular diseases such as cerebral aneurysm. Its expectation is expected in the field of imaging.
【도면의 간단한 설명】  [Brief Description of Drawings]
도 1은 본 발명의 실시예 1-1에서 제조된 기등형 적층물의 단면 (a) 및 형상 (b, c)의 SEM 사진을 나타낸 것이다. Figure 1 shows a SEM photograph of the cross section (a) and shape (b, c) of the etc. of the shaped laminate prepared in Example 1-1 of the present invention.
도 2는 본 발명의 실시예 1-1에서 제조된 기등형 적층물 표면에 전극 코팅 전 (a)과 코팅 후 (b)의 표면 SEM 사진을 나타낸 것이다. Figure 2 shows the SEM image of the surface before (a) and after the coating (b) before the electrode coating on the surface of the light-emitting laminate prepared in Example 1-1 of the present invention.
【발명의 실시를 위한 형태】 、  [Mode for carrying out the invention]
본 발명죤 (i) 기등형 전기활성 고분자 작층물, 및 (Π) 상기 기등형 . The present invention zones (i) the electrically conductive polymer laminates, and (Π) the etc.
적층물 표면의 일부에 존재하는 복수 개의 전극 코팅층을 포함하는 고분자 구동체; 상기 전기활성 고분자 내에 존재하는 이온기의 이은교환능, 이온기의 개수, 이온기의 분포, 상대 양이은의 종류, 이온교환막의 두께 및 표면 전극 두께 중에서 선택된 하나 이상의 인자를 제어하여 고분자 구동체의 구동특성 조절방법 ; 복수 개의 전기활성 고분자의 이은교환막을 적층하는 단계 , 가열하는 전처리 단계, 열압착하는 단계, 전극 코팅하는 단계 및 절연층 형성하는 단계를 포함하는 일련의 공정으로 고분자 구동체를 제조하는 방법 ; 및 상기 고분자 구동체를 포함하는 카테터에 관한 것이다. A polymer comprising a plurality of electrode coating layers present on a portion of the laminate surface Driving body; Driving the polymer drive by controlling one or more factors selected from the silver exchange capacity of the ion groups present in the electroactive polymer, the number of ion groups, the distribution of ion groups, the type of relative positive silver, the thickness of the ion exchange membrane, and the surface electrode thickness. Characteristics adjustment method; A method of manufacturing a polymer drive body by a series of processes including laminating a plurality of silver exchange membranes of electroactive polymers, pretreatment step of heating, thermocompression bonding, electrode coating, and forming an insulating layer; And it relates to a catheter comprising the polymer drive.
이하, 본 발명을 상세히 설명하면 다음과 칼다. Hereinafter, the present invention will be described in detail as follows.
본 발명은 (i) 기등형 전기활성 고분자 적층물 및 (Π) 상기 기등형 적층물 표면의 일부에 존재하는 복수 개의 전극 코팅층을 포함하는 고분자 구동체에 특징이 있다. - 기등형 적층물을 형성하는 전기활성 고분자는 이온성 고분자, 전도성 고분자, 탄소 나노튜브, 유전성 고분자, 전기변형 (electrostrictive) 고분자, 나노 클레이, 실리카 화합물 및 이들의 조합물 중에서 선택된 것을 사용할 수 있다. 본 발명에 있어서 '조합물'이란 상기 2종 이상와 공중합체 또는 용융상, 또는 액상 블렌딩, 상기 2종 이상 물질의 용융상 또는 액상 또는 고상 흔합물 및 이들의 병용 사용을 모두 포함한다. The present invention is characterized by a polymer drive comprising (i) a luminescent electroactive polymer laminate and (Π) a plurality of electrode coating layers present on a portion of the surface of the luminescent laminate. The electroactive polymer forming the shaped laminate may be selected from ionic polymers, conductive polymers, carbon nanotubes, dielectric polymers, electrostrictive polymers, nanoclays, silica compounds, and combinations thereof. In the present invention, the 'combination' includes both the above two kinds and a copolymer or a molten phase, or a liquid blend, a molten phase or a liquid or solid mixture of the two or more substances, and a combination thereof.
구체적으로 이온성 고분자는 술폰산기 및 카르보닐기 중에서 선택된 1종 이상와 이온기가 도입된 불소계 고분자로서, 예를 들면
Figure imgf000007_0001
Specifically, the ionic polymer is a fluorine-based polymer in which at least one selected from a sulfonic acid group and a carbonyl group and an ionic group are introduced, for example
Figure imgf000007_0001
-(CF2CF2)-(CF2CF)- 및 Cf:3 중에서 선택된 1종 또는 2종 이상의 조합물을 사용할 수 있으며, 그 한 가지 예로서 음이온기로 술폰산기가 도입된 불소계 One or a combination of two or more selected from- (CF 2 CF 2 )-(CF 2 CF) -and Cf: 3 may be used, and as one example, a fluorine-based group having a sulfonic acid group introduced into an anion group
-(CFzCFHCFjCF^ -(CFzCFHCF j CF ^
고분자 중 O-CF^FiCF^OCF^F2을 포함한 나피온⑧을 사용할 수 있다 전도성 고분자는 구체적으로 폴리아닐린, 폴리피롤, 폴리설폰, 폴리아세틸렌 및 이들의 조합물 중에서 선택된 것을 사용할 수 있고, 유전성 고분자는 폴리아크릴레이트, 실리콘, 풀리비닐리덴플루오라이드 및 이들의 조합물 중에서 선택된 것을 사용할 수 있고, 전기변형 고분자는 폴리아크릴레이트, 실리콘, 폴리우레탄 및 이들의 조합물 중에서 선택된 것을 사용할 수 있으며, 나노 클레이는 술폰화기 및 카르보닐기 중에서 선택된 1종 이상의 이온기가 도입된 것을 사용할 수 있다. Among the polymers, Nafion⑧ containing O-CF ^ FiCF ^ OCF ^ F 2 can be used. Specifically, the conductive polymer may be selected from polyaniline, polypyrrole, polysulfone, polyacetylene, and combinations thereof, and the dielectric polymer may be selected from polyacrylate, silicone, pulley vinylidene fluoride, and combinations thereof. In addition, the electrostrained polymer may be selected from polyacrylates, silicones, polyurethanes, and combinations thereof, and nanoclays may be used in which one or more ionic groups selected from sulfonated and carbonyl groups are introduced.
나노클레이의 이은기 도입은 당 분야에서 일반적으로 사용되는 것으로 특별히 한정하지는 않으며, 일례로 본 발명은 감마선을 조사하여 이은기 양을 조절하는 방법을 사용하였으나 이에 한정된 것은 아니다. 실리카 화합물은 술폰화 또는 카르보닐화를 통해 개질된 실리카 단량체 및 이들의 초합물을 사용할 수 있다.  Introduction of the silver group of the nanoclay is generally used in the art and is not particularly limited. For example, the present invention uses a method of controlling the amount of silver group by irradiating gamma rays, but is not limited thereto. The silica compound may use silica monomers modified through sulfonation or carbonylation and their superpolymers.
본 발명에서 전기활성 고분자로 사용된 전도성 고분자, 탄소 나노류브, 유전성 고분자, 전기변형 (electrostrictive) 고분자, 나노 클레이 , 실리카 화합물 등은 다양한 물리 화학적 변화에 의해 부꾀변화를 유발한다는 것이 알려져 있는 바, 부피변화에 의해 구동성능이 향상되게 된다. In the present invention, it is known that the conductive polymer, the carbon nano-lever, the dielectric polymer, the electrostrictive polymer, the nanoclay, the silica compound, etc. used as the electroactive polymer cause the swelling change by various physical and chemical changes. By the change, the driving performance is improved.
이러한 전기활성 고분자의 부피변화 유발에 대한 문헌을 구체적으로 살펴보면 다음과 같다. 전도성 고분자는 자체적인 산화 /환원 과정에서 수화된 이온의 흔입 /축출이 연속적으로 이루어자 부피변화가 유발되고 [J.Looking at the literature on the volume change induction of such an electroactive polymer in detail. Conductive polymers have a volume change caused by the sequencing / extraction of hydrated ions during their oxidation / reduction process [J.
Phys. Chem, 1990, 94, 8614]; 탄소나노튜브는 전하 공급 시 전기 이중층。 생성되어 전해질 내에서 이은의 흔입 /축출이 연속적으로 이루어져 Phys. Chem, 1990, 94, 8614]; carbon nanotubes are formed in an electric double layer upon charge supply.
부피변화가 유발되고 [Science, 1999, 284, 1340]; 유전성 고분자는 강한 전기장을 걸어주었을 때 유도 분극 분자들의 재배열올 통한 부피 변화가 유도되며 , 특히 아크릴계 고분자를 구동 전 인장을 주었을 때 기존 크기보다 훨씬 더 큰 크기 변화가 유도되고 [Science, 2000, 287, 836]; 전기변형 고분자는 강한 전기장 하에서 분자구조의 변화를 보여 약 4%의 부피 변형를을 가진다 [Scifence, 1998, 836, 2101]고 알려져 있다. 이외에도, 본 발명에서 기등형 적층물과 전극 코팅층 사이에 추가로 사용될 수 있는 바나듐과 같은 판상 전이금속의 산화물은 층간 구조에 수화된 이온들이 이동 가능하게 되어 부피변화를 유발하고 이로 인하여 구동이 가능하다는 것이 이미 보고된 바 있다 [Nature materials, 2003, 2, 316] . 이러한 전기활성 고분자는 자체 구동이 가능할 뿐만 아니라 이들의 조합을 사용하는 경우 기존의 구동을 방해하지 않는 한도 내에서 구동체의 Volume change is induced [Science, 1999, 284, 1340]; Dielectric polymers induce a volume change through the rearrangement of induced polarization molecules when a strong electric field is applied, especially when the acrylic polymer is tensioned before driving Much larger size changes are induced [Science, 2000, 287, 836]; electrostrained polymers exhibit changes in molecular structure under strong electric fields with a volumetric deformation of about 4% [Scifence, 1998, 836, 2101]. Known. In addition, in the present invention, an oxide of a plate transition metal such as vanadium, which may be additionally used between the light emitting stack and the electrode coating layer, causes hydration of hydrates in the interlayer structure, causing volume change, and thus driving. Has already been reported [Nature materials, 2003, 2, 316]. These electroactive polymers are not only capable of self-driving but also using a combination of these, as long as they do not interfere with the existing driving.
구동력을 향상시키게 된다. The driving force is improved.
본 발명은 2 종 이상의 전기활성 고분자를 조합하여 사용하는 경우, 구체적으로 이온성 고분자와 탄소나노튜브를 조합하는 경우에는 이들을 용액상으로 흔합하여 175-185 범위의 막을 제조한 후 이를 적층하여 고분자 구동체를 제조하거나, 1종의 전기활성 고분자로 고분자 구동체를 제조한 후 제조된 고분자 구동체의 표면에 다른 종의 전기활성 고분자를 코팅하는 방법이 사용될 수 있다. 이때 용액상의 흔합물을 사용하여 막을 제조하는 방법은 당 분야에서 일반적으로 사용되는 3차원 정률 캐스팅법 등을 사용할 수 있으며, 코팅법도 1종의 전기활성 고분자 상면에 이와는 다른 전기활성 고분자가 코팅된 것이면 특별히 한정하지는 않는 바, 일례로 고분자 용액에 함침 및 공침 시킨 후 표면에서 중합하는 방법도 가능하다. In the present invention, when two or more kinds of electroactive polymers are used in combination, in particular, when the ionic polymers and the carbon nanotubes are combined, they are mixed in a solution to prepare a membrane in the range of 175-185, and then laminated to drive the polymer. A method of preparing a sieve, or manufacturing a polymer driving body with one kind of electroactive polymer and then coating another kind of electroactive polymer on the surface of the manufactured polymer driving body may be used. In this case, a method of preparing a membrane using a solution phase mixture may be a three-dimensional constant casting method, which is generally used in the art, and the coating method may be a method in which another electroactive polymer is coated on the upper surface of one electroactive polymer. Not particularly limited, for example, a method of impregnating and coprecipitation in a polymer solution and then polymerizing on the surface is also possible.
이러한 기둥형 적층물은 다양한 형태를 가질 수 있으며, 특히 구체적으로Such column stacks can have a variety of shapes, in particular
4각형, 6각형 8각형 및 원형 중에서 선택된 단면을 형성할 수 있다. It is possible to form a cross section selected from quadrilateral, hexagonal octagon and circular.
상기 기둥형 적층물은 두께 175-185 ) 의 전기활성 고분자를 열압착하여 최종 두께 900-1100 /an가 되도록 제조된 것을 사용할 수 있다. The columnar laminate may be prepared by thermocompression bonding an electroactive polymer having a thickness of 175-185) to a final thickness of 900-1100 / an.
전기활성 고분자의 최종 두께가 900 im 미만이면 구동력의 감소로 인하여 카테터용 구동체에의 웅용이 어려울 수 있으며 , 1100 를 초과하는 경우에는 자체 강성의 증가로 인하여 구동속도 및 변위가 현저히 떨어지며 크기의 한계로 인한 혈관 내 삽입이 불가능한 문제가 발생할 수 있다. If the final thickness of the electroactive polymer is less than 900 im, it may be difficult to use the catheter's driving body due to the reduction of the driving force.If the final thickness of the electroactive polymer exceeds 1100, the driving speed and displacement are significantly reduced due to the increase of its rigidity. Due to the problem that can not be inserted into the blood vessel can occur.
기등형 적층물 표면에 코팅되어 형성된 전극 코팅층은 당 분야에서 사용되는 것으로 특별히 한정하지는 않으나, 구체적으로 백금, 금, 구리, 니켈, 납, 카드뮴 및 이들의 합금 중에서 선택된 것을 사용할 수 있다. Electrode coating layer formed by coating on the surface of the light-emitting laminate is in the art Although not particularly limited to those used, specifically, one selected from platinum, gold, copper, nickel, lead, cadmium, and alloys thereof may be used.
본 발명은 전극 코팅층을 형성하는 금속으로 백금을 사용하고 있으나 니켈, 납, 구리, 은을 이용한 전극 형성이나 [J. Electroanal. Chem., 1993, 360, In the present invention, platinum is used as a metal for forming the electrode coating layer, but nickel, lead, copper, and silver are used for forming the electrode or [J. Electroanal. Chem., 1993, 360,
247], 금 [Chem. Mater. , 2000, 12, 1750]을 이용하여 전극을 형성하는 경우에도 백금과 동일한 구동을 가지는 바, 백금에 한정되지는 않는다. 247, gold [Chem. Mater. , 2000, 12, 1750], even when the electrode is formed by the same drive as platinum, it is not limited to platinum.
전극 코팅층은 기등형 적층물 표면의 일부에 존재하는 것으로, 기등형 적층물의 길이 방향으로 연속적 또는 간헐적으로 위치하며, 기등형 The electrode coating layer is present on a part of the surface of the light emitting stack, and is continuously or intermittently positioned in the longitudinal direction of the light stack.
적층물의 마주보는 평면 또는 곡면의 표면에 대응되도록 짝수개로 존재하고, 복수 개의 전극 코팅층 간에 틈이 존재하여 절연된다. 상기 길이 There are even numbers so as to correspond to the surfaces of opposite or flat surfaces of the stack, and a gap exists between the plurality of electrode coating layers to insulate them. Above length
방향에 간헐적으로 전극을 제작하고 각 전극에 인가전압을 절함으로써 S 형상 등 다양한 형상의 변형을 발생시켜 구동부의 유연도를 크게 향상시킬 수 있다. ' By producing electrodes intermittently in the direction and cutting the applied voltage to each electrode, deformation of various shapes such as an S shape can be generated to greatly improve the flexibility of the driving unit. '
일반적으로 전극은 면수에 따라 자유도가 결정되는데, 전극이 2면인 경우In general, the degree of freedom of the electrode is determined by the number of planes.
( + )극 1개 (-)극 1개의 2자유도; 3면인 경우 ( + )극 2개 (-)극 1개 또는 Two degrees of freedom of one (+) pole and one (-) pole; 2 sides (+) 2 poles (-) poles or
( + )극 1개 (-)극 2개의 3자유도; 4면인 경우 (+)극과 (-)극이 각각 2개씩인 Three degrees of freedom of one (+) pole and two (-) poles; In case of four sides, each of two (+) and (-)
4자유도를 가지게 된다. 그러나 상기 3자유도인 경우에는 하나의 It has four degrees of freedom. However, in the case of the above three degrees of freedom, one
전극은 사용을 못하게 되므로 이를 이용한 경우는 거의 없다고 볼 수 있다. 예를 들어 , 단면적이 정 4각형인 기등형 적충물의 표면적 전체에 대해 The electrode can not be used because it is rarely used. For example, for the entire surface area of an isotropic reptile with a square cross section,
전극층을 코팅함으로써 적층물의 길이 방향으로 연속적인 전극층을 By coating the electrode layer, the continuous electrode layer in the longitudinal direction of the stack
형성시킬 수 있다. 이와는 달리 , 적층물의 길이 방향으로 전극층이 중간중간에 절연되도록 코팅함으로써 길이 방향으로 간헐적으로 전극층을 형성시킬 수도 있으며, 또는 적층물 전체 표면에 코팅된 전극층의 길이 방향으로 일정 두께의 전극층을 제거함으로써 길이 방향으로 간헐적으로 형성된 전극층을 얻을 수도 있다. Can be formed. Alternatively, the electrode layer may be formed intermittently in the longitudinal direction by coating the electrode layer in the intermediate direction in the longitudinal direction of the laminate, or by removing the electrode layer having a predetermined thickness in the longitudinal direction of the electrode layer coated on the entire surface of the laminate. It is also possible to obtain an electrode layer formed intermittently in the direction.
단면적미 정 4각형인 기등형 적층물의 표면에 이와 같이 형성된 연속적 또는 간헐적인 전극층에 대해서, 상기 정 4각형의 모서리의 전극충을 제거함으로써 전극층의 면수에 따른 자유도를 변화시킬 수도 있다. For the continuous or intermittent electrode layer formed in this way on the surface of the rectangular stack having a square cross section, By removing, the degree of freedom according to the number of surface of an electrode layer can also be changed.
예를 들어, 길이 방향으로 연속적인 전극층에 대해 4모서리를 모두 벗겨내는 경우에 총 4면에 전극층이 형성되어 4자유도를 가지게 된다. 한편, 정 4각형의 마주보는 면을 통째로 얇게 잘라냄으로써 2자유도를 갖는 총 2면의 전극층을 형성시킬 수도 있다.  For example, when all four corners are peeled off with respect to the continuous electrode layer in the longitudinal direction, the electrode layer is formed on a total of four surfaces to have four degrees of freedom. On the other hand, it is also possible to form a total of two sides of the electrode layer having two degrees of freedom by cutting the whole face of the regular square thinly.
본 발명의 고분자 구동체는 (iii) 상기 기등형 적층물의 길이 방향으로 존재하는 내부 덕트 (duct)를 추가로 포함할 수 있으며, 덕트의 단면은 그 사용 용도에 맞게 형태를 선택할 수 있으며 특별히 제한하지는 않는다. 덕트는 장축이 0.2-0.5 隱인 단면을 가지고, 기등형 적층물 단면의 장축 (D)과 덕트의 장축 (d)의 비율 (D:d)은 1:0.2-0.5을 유지하는 것이 바람직하다. 상기 덕트의 장축이 0.2 mm 미만이면 약물의 투여가 어려울 수 있고, 0.5 隱을 초과하는 경우에는 덕트 주위의 구조물 두께가 줄어들어 고분자 구동체를 구동하는 경우에 갈라지거나 깨질 수 있는 문제가 있으며, 또한 기등형 적층물 단면의 장축 (D)과 덕트의 장축 (d)의 비율 (D:d)이 1:0.2 미만이면 기구 및 약물 주입이 곤란해 질 수 있으며 , 1:0.5를 초과하는 경우에는 구동 시 기등형 적층물의 파손을 일으카는 문제가 발생할 수 있다. 이때 덕트는 동맥류 폐색 치료용으로 사용되는 경우에는 백금 코일의 삽입이 가능하도록 0.2 mm 이상의 장축을 확보하고, 혈전용해 약물 주입용으로 사용하는 경우에는 0.2 mm 이하의 장축을 확보하는 것이 바람직하다 .  The polymer driving body of the present invention may further include (iii) an internal duct existing in the longitudinal direction of the latticed stack, and the cross section of the duct may be selected in shape according to the intended use, and is not particularly limited. Do not. The duct has a cross section with a long axis of 0.2-0.5 mm 3, and it is preferable that the ratio (D: d) of the long axis D of the cross section of the elongated laminate and the long axis d of the duct is 1: 0.2-0.5. If the long axis of the duct is less than 0.2 mm it may be difficult to administer the drug, if it exceeds 0.5 隱, the thickness of the structure around the duct is reduced, there is a problem that can be cracked or broken when driving the polymer drive, and also If the ratio (D: d) of the long axis (D) of the cross section of the mold stack to the long axis (d) of the duct is less than 1: 0.2, it may be difficult to inject the instrument and drugs, and if it exceeds 1: 0.5, Problems can occur that cause breakage of the etc. stack. In this case, when the duct is used for the treatment of an aneurysm, it is desirable to secure a long axis of 0.2 mm or more so that the platinum coil can be inserted and a long axis of 0.2 mm or less when the duct is used for thrombolytic drug injection.
본 발명에서 '장축 '이란 도형 상 ,임의의 2지점 간의 거리 중 가장 긴 거리를 의미하는 것으로서, 예를 들어 도형이 원이라면 직경, 4각형이라면 가장 긴 대각선 , 타원이라면 장축이 이에 해당한다 . In the present invention, 'long axis' means the longest distance between two arbitrary points on the figure. For example, if the shape is a circle, the long axis is the diameter, the longest diagonal line, and the long axis corresponds to the ellipse.
본 발명의 고분자 구동체는 (iv) 상기 기등형 적층물과 상기 전극 코팅층 사이에 전도성 고분자, 탄소 나노튜브 및 전이금속 산화물 중에서 선택된 단일층 또는 2종 이상의 흔합층을 추가로 포함할 수 있다. 상기 전도성 고분자, 탄소나노류브, 전이금속 산화물 및 무기입자는 당 분야에서 일반적으로 사용되는 것을 특별히 한정하지는 않으나, 구체적으로 전도성 고분자는 폴리아닐린, 폴리피를, 폴리설폰 및 폴리아세틸렌 중에서 선택된 단일 또는 2종 이상의 흔합물을 사용할 수 있고, 상기 전이금속 산화물은 바나듐 등의 전이금속의 산화물을 사용할 수 있다. 이러한 추가로 포함된 층은 당 분야에서 일반적으로 사용되는 딥 코팅, 레이어 바이 레이어 자기조립법, 스핀 코팅 : 원자층 증착 스퍼터링 , 전기 중합 및 화학 중합 등을 이용하여 형성되며 , 구동 성능에 미치는 영향을 고려하여 10-200 IM 두께 범위를 유지한다. The polymer driving body of the present invention may further include (iv) a single layer or two or more mixed layers selected from conductive polymers, carbon nanotubes, and transition metal oxides between the lamp stack and the electrode coating layer. The conductive polymer, carbon nano-lube, transition metal oxide and inorganic particles in the art Although generally used is not particularly limited, specifically, the conductive polymer may be a polyaniline, polypyri, polysulfone or polyacetylene selected from the group consisting of one or two or more, and the transition metal oxide is a transition metal such as vanadium Oxides may be used. These additionally included layers are formed using dip coating, layer by layer self-assembly, spin coating: atomic layer deposition sputtering, electropolymerization and chemical polymerization, which are commonly used in the art, and consider the effect on driving performance. Maintain a 10-200 IM thickness range.
또한 생체 및 혈액적합성을 확보하기 위하여 (V) 상기 전극 코팅층 상에 존재하는 실리콘계, 폴리우레탄계, 과릴렌 (Parylene)계 및 에폭시계 코팅층 증에서 선택된 하나 이상의 층을 추가로 포함할 수 있다. 이 층은 전극층 위 뿐만 아니라 절연층 역할을 하는 전극층 사이의 름 위에도 존재한다. 상기 실리콘계, 폴리우레탄계, 파릴렌겨 ί [Smart Mater. In addition, in order to ensure biocompatibility and blood compatibility, (V) may further include at least one layer selected from silicon-based, polyurethane-based, parylene-based and epoxy-based coating layers present on the electrode coating layer. This layer is present not only on the electrode layer but also on the name between the electrode layers serving as the insulating layer. The silicone-based, polyurethane-based, parylene bran [Smart Mater.
Struct. , 2006, 15, 1540] , 큐어링된 에폭시계 수지 [대한기관식도과학회지 2006년, 12권 2호 42] 등으로 형성된 코팅층은 내부의 고분자 구동체와 외부 조직 간의 차단력을 향상시켜 생체 및 혈액적합성의 확보가 가능하다. 이러한 코팅층 또한 당 분야에서 일반적 로 사용되는 딥코팅, 열증착법 , 열경화법을 이용하여 코팅층을 형성하며, 구동 성능에 미치는 영향을 고려하여 1-3 ΙΜ 두께 범위를 유지한다.  Struct. , 2006, 15, 1540], The coating layer formed of the cured epoxy resin [Korean Journal of Organ Esophageal Journal, 2006, 12, 42], etc. improves the blocking force between the polymer driving body and the external tissues to improve the biocompatibility and blood compatibility. It is possible to secure. The coating layer is also formed in the coating layer using the dip coating, thermal evaporation method, thermosetting method commonly used in the art, and maintains the thickness range of 1-3 ΙΜ in consideration of the effect on the driving performance.
본 발명에 따른 고분자 구동체는 구동력이 0.1 gf 이상 바람직하기로는 0.1- 0.2 gf이고, 구동변위가 40° 이상 바람직하기로는 4으90° 이고, 강도가 8 X 10"7 Nm2 이상 바람직하기로는 1 X 10— 6-5.2 χ 10"6 Nm2 이고, 응답속도가 2.0 mm/s 미만 바람직하기로는 1.0-2.0 羅 /s 이며 , 밀도가 0.3 g/cm3미만 바람직하기로는 0.20-0.25 g/cm3범위를 유지하는 것이 좋다. The polymer driving body according to the present invention preferably has a driving force of 0.1 g f or more, preferably 0.1-0.2 g f , a driving displacement of 40 ° or more, preferably 4 ° 90 ° , and an intensity of 8 X 10 "7 Nm 2 or more. For example, 1 X 10— 6 -5.2 χ 10 "6 Nm 2 , the response speed is less than 2.0 mm / s, preferably 1.0-2.0 羅 / s, and the density is less than 0.3 g / cm 3, preferably 0.20-0.25. It is advisable to maintain the g / cm 3 range.
이러한 본 발명의 고분자 구동체의 구동특성을 나타내는 인자에서 제시하는 범위는 구동체로서의 역할을 수행할 수 있는 정도를 의미하는 것인 바, 구체적으로 구동특성을 '이상', '이하', '미만 '으로 기재하고 있으나, 이 범위의 하한 또는 상한은 당 분야에서 구동체로서의 역할 수행이 가능한 정도의 범위로 한정된다. The range suggested by the factor representing the driving characteristics of the polymer driving body of the present invention means a degree capable of performing a role as the driving body, specifically, the driving characteristics are 'above', 'less',' less than ", But this The lower limit or the upper limit of the range is limited to the extent to which the role of the driving body in the art can be performed.
본 발명은 (i) 이온성 고분자, 전도성 고분자, 탄소 나노류브, 유전성 고분자, 전기변형 (electrostrictive) 고분자, 나노 클레이, 실리카 화합물 및 이들의 조합물 중에서 선택된 전기활성 고분자의 기등형 적층물, 및  The present invention relates to (i) an isotropic stack of electroactive polymers selected from ionic polymers, conductive polymers, carbon nanolevers, dielectric polymers, electrostrictive polymers, nanoclays, silica compounds and combinations thereof, and
(ii) 상기 기등형 적층물 표면의 일부에 존재하는 백금, 금, 은, 구리, 니켈, 납, 카드뮴 및 이들의 합금 중에서 선택된 복수 개의 전극 코팅층을 포함하는 고분자 구동체에 대해서 , 상기 전기활성 고분자 내에 존재하는 이온기의 이온교환능, 이은기의 개수, 이온기의 분포, 상대 양이은의 종류, 이온교환막의 두께, 표면 전극 두께 중에서 선택된 하나 이상의 인자를 조절함으로써 , 구동력 , 구동변위 , 웅답속도 중에서 선택된 고분자 구동체의 구동특성을 조절하는 방법에 그 특징이 있다. (ii) the electroactive polymer for a polymer driving body comprising a plurality of electrode coating layers selected from platinum, gold, silver, copper, nickel, lead, cadmium, and alloys thereof present on a portion of the surface of the lamp body; By adjusting one or more factors selected from the ion exchange capacity of the ion groups, the number of silver groups, the distribution of ion groups, the type of relative silver, the thickness of the ion exchange membrane, and the surface electrode thickness, There is a feature in the method of controlling the driving characteristics of the polymer driving body.
이러한 인자 조절에 따른 구 특성을 보다 구체적으로 살펴보면 다음과 같다. 전기활성 고분자 이온교환막의 두께가 증가할수록 고분자 구동체 자체의 강성이 증가하여 구동 변위는 감소하고 구동력은 증가하며, 이온기량이 증가하면 이동하는 이온의 양이 증가하여 구동 변위는 증가하고 함수율이 증가하여 고분자 구동체의 강성 및 구동력은 감소하게 된다. Looking at the characteristics of the sphere by the adjustment of these factors in more detail as follows. As the thickness of the electroactive polymer ion exchange membrane increases, the stiffness of the polymer actuator itself increases, driving displacement decreases, driving force increases, and as the amount of ions increases, the amount of moving ions increases, driving displacement increases, and water content increases. Therefore, the rigidity and driving force of the polymer driving body is reduced.
또한, 전극의 두께가 증가하면 표면 저항은 계속 감소하여 구동 성능에 긍정적인 역할을 하나, 전극의 두께가 너무 두까워지면 전극 자체의 강성 증가로 인하여 구동력의 저하를 가져온다. 이외에도 내부에 이동할 수 있는 양이온의 종류에 따라 구동 성능이 차이를 보이는데, 수화된 양이온의 크기가 클수록、구동 변위 및 구동력이 증가한다. In addition, as the thickness of the electrode increases, the surface resistance continues to decrease, which plays a positive role in driving performance. However, when the thickness of the electrode becomes too thick, the driving force decreases due to an increase in the rigidity of the electrode itself. In addition, the driving performance is different depending on the type of cation that can move inside, the larger the size of the hydrated cation, the driving displacement and driving force increases.
본 발명은 막의 적층법, 특히 열압착에 의한 적층법을 사용하여 고분자 구동체를 제조한다. 상기 열압착에 의한 적층법은 목적으로 하는 물성확보뿐만 아니라 균일한 두께 형성아 가능하고, 간단한 방법으로 다양한 형상 특히 액상의 캐스팅법으로 구현이 어려운 정사각형 형상의 재현이 용이하다 . 통상적으로 막을 적층하는 방법은 열압착 이외에도 액상의 캐스팅 , 기존 상용화 이온교환막간 접착법 등이 널리 알려져 있으나, 이 중 액상 The present invention manufactures a polymer drive by using a lamination method of a film, in particular a lamination method by thermocompression bonding. The lamination method by thermocompression is possible to form a uniform thickness as well as to secure the desired physical properties, it is easy to reproduce the square shape difficult to implement in various shapes, especially liquid casting method in a simple method. In general, a method of laminating membranes is widely known in addition to thermocompression bonding, such as casting of a liquid phase and adhesion between commercially available ion exchange membranes.
캐스팅을 사용하는 경우 내부에 덕트가 형성된 기등형 적층물을 형성하기 위해 3 차원 정률 캐스팅법을 적용해야 한다. 그러나, 상기 3 차원 정를 캐스팅법은 덕트 삽입의 문제와 대면적 제작이 용이하지 않으며 , 두께 조절이 용이하지 않은 문제가 있다. 또한 , 이온교환막 사이를 접착하는 방법으로 적층을 수행하는 경우에는 덕트 형성 자체가 어려운 문제가 있다. 이러한 복수 개의 전기활성 고분자 이온교환막을 적층이 아니라 목적으로 하는 두께를 갖는 '단일의 전기활성 고분자 이온교환막을 사용하여 제조된 고분자 구동체의 경우 높은 구동변위를 보이나 구동력 자체가 현저히 떨어져 강도 유지가 어려운 문제가 있으며, 실제 이러한 두께를 갖는 이온교환막 및 이의 제조도 용이하지 않은 실정이다. In the case of casting, three-dimensional constant casting should be applied to form a ducted shaped laminate. However, the three-dimensional cast casting method has a problem in that the duct insertion and the large area is not easy to manufacture, and the thickness control is not easy. In addition, when lamination is performed by bonding between ion exchange membranes, duct formation itself is difficult. For such a plurality of electroactive polymer ion exchange membrane as a laminate having a thickness for the purpose, prepared by using a film single electrical activity of the high molecular weight ion exchange polymer actuator look for high driving displacement force itself significantly away strength maintained the difficult There is a problem, and in reality, the ion exchange membrane having such a thickness and its preparation are not easy.
본 발명에 따른 고분자 구동체를 제조하는 방법은, (b) 복수 개의 전기활성 고분자 이온교환막을 적층하는 단계 , (c) 상기 적층된 이온교환막을 170- 190 °C에서 10-20 분 동안 가열하는 단계, (d) 상기 가열된 이온교환막을 6,500-7,000 psi 및 170-190 1C'에서 10-20 분 동안 열압착하는 단계, (e) 상기 열압착된 이온교환막을 절단하여 기등형 적층물을 수득하는 단계, (h) 상기 기등형 적층물의 표면에 전극을 코팅하는 단계, 및 (i) 상기 전극 코팅층을 일부분 제거함으로써 절연층을 형성시키는 단계를 포함하는 방법이 있다. Method for producing a polymer driving body according to the invention, (b) laminating a plurality of electroactive polymer ion exchange membrane, (c) heating the laminated ion exchange membrane at 170-190 ° C for 10-20 minutes Step, (d) thermocompressing the heated ion exchange membrane at 6,500-7,000 psi and 170-190 1C ' for 10-20 minutes; (e) cutting the thermocompressed ion exchange membrane to obtain an etc. laminate And (h) coating an electrode on the surface of the lamp stack, and (i) forming an insulating layer by partially removing the electrode coating layer.
또한, (b') 복수 개의 전기활성 고분자 이온교환막 사이에 덕트 형성용 기등이 상기 복수 개의 이온교환막 사이에 존재하도록 이온교환막을 적층하는 단계, (c) 상기 적층된 이온교환막을 170-190 °C에서 10-20 분 동안 가열하는 단계, (d) 상기 가열된 이온교환막을 6,500-7,000 psi 및 170-190 °C에서 10-20 분 동안 열압착하는 단계, (e') 기등형 적층물의 길이 방향으로 내부 덕트가 존재하도록 상기 열압착된 이온교환막을 (B ') laminating an ion exchange membrane such that a duct forming lamp is present between the plurality of ion exchange membranes between the plurality of electroactive polymer ion exchange membranes, and (c) the stacked ion exchange membranes at 170-190 ° C. Heating for 10-20 minutes at (d) thermocompressing the heated ion exchange membrane for 10-20 minutes at 6,500-7,000 psi and 170-190 ° C., (e ') longitudinal direction of the etc. The thermally compressed ion exchange membrane so that an inner duct exists
절단하고 상기 덕트 형성용 기등을 제거하여 기등형 적층물을 수득하는 단계, (h) 상기 기등형 적충물의 표면에 전극을 코팅하는 단계, 및 (i) 상기 전극 코팅층을 일부분 제거함으로써 절연층을 형성시키는 단계를 포함하는 방법이 있다. Cutting and removing the duct-forming lamp to obtain a lamp-shaped laminate And (h) coating an electrode on the surface of the lamppost, and (i) forming an insulating layer by partially removing the electrode coating layer.
먼저 (b) 복수 개의 전기활성 고분자 이온교환막을 적층한다. 이때 기등형 적층물의 길이 방향으로 존재하는 내부 덕트를 형성하기 위해서는 (b' ) 복수 개의 전기활성 고분자 이온교환막 사이에 덕트 형성용 기등이 상기 복수 개의 이온교환막 사이에 존재하도록 이은교환막을 적층한다. 덕트 형성용 기등은 덕트 형성이 가능한 것이면 특별히 한정하지는 않으며, 구체적으로 6500—7000 psi 압력, 170-190 의 고온 고압의 조건에서 변형이 적어 형상이 유지되고 이온교환막과의 비반웅성이 유지되며 , 일정한 직경 유지 및 다양한 단면형상을 가질 수 있는 와이어 구조체가 가능한 것을 사용하는 바, 예를 들면 철사, 구리선, 납선 등의 금속선을 사용할 수 있다: 본 발명은 직경 조절이 용이하고 경제성을 고려하여 철사를 사용하여 수행하고 있으나, 이에 한정되는 것은 아니다. 이러한 적층은 가이드 기등 표면에 동일한 수의 이온교환막을 형성하는 것이 바람직한 바, 이는 덕트로 부터 동일한 두께를 갖도록 하기 위함이다.  First, (b) a plurality of electroactive polymer ion exchange membranes are laminated. At this time, in order to form the inner duct existing in the longitudinal direction of the light-emitting laminate (b ') is laminated with a silver exchange membrane so that the duct forming lamp is present between the plurality of electroactive polymer ion exchange membrane. The duct forming lamp is not particularly limited as long as it is capable of forming a duct. Specifically, the shape of the duct is small and the deformation is maintained under the conditions of high pressure and high pressure of 6500-7000 psi and 170-190. It is possible to use a wire structure capable of maintaining the diameter and having various cross-sectional shapes. For example, metal wires such as wires, copper wires, and lead wires can be used. It is performed by, but is not limited thereto. This stacking preferably forms the same number of ion exchange membranes on the surface of the guide lamp, so as to have the same thickness from the duct.
상기 전기활성 고분자 이온교환막을 적층하기 전에 세척하는 단계가 포함될 수 있는 바, 세척은 먼지를 제거하기 위한 것으로 표면에 미세한 먼지가 잔류하는 경우 균일하고 우수한 전극형성을 저해하여 제조된 카테터 성능에 문제를 일으킬 소지가 있다. '이러한 세척은 당 분야에서 일반적으로 사용되는 n-핵산 등의 비극성 유기용매를 사용하여 1 회 이상, 구체적으로 1-5 회 정도 수행할 수 있다. The laminating may be performed before laminating the electroactive polymer ion exchange membrane. The washing is performed to remove dust, and when fine dust remains on the surface, it inhibits the formation of uniform and excellent electrodes, thereby preventing problems in catheter performance. There is a possibility to cause it. "This cleaning may be generally used for non-polar organic solvent such as n- nucleic acid used to perform the degree specifically 1-5 times or more times, in the related art.
다음으로, (c) 상기 적층된 이온교환막을 170-190 1C에서 10-20 분 동안 가열한다. Next, (c) the laminated ion exchange membrane is heated at 170-190 1 C for 10-20 minutes.
이때 적층된 이온교환막과 열압착 틀과의 접착을 방지하기 위하여, 열압착이 수행되는 고온에서 변형이 없으며 동시에 이온교환막과의 반웅이 수행되지 않은 필름을 적층한 후 열압착 를에 넣고 열압착기에 넣는다. 열압착 를은 당 분야에서 일반적으로 스테인레스 를을 이용하는 바, 이 를의 두께 조절에 의해 본 발명의 기등형 적층물의 두께 제어가 가능하다. 즉, 틀의 두께는 적층된 전기활성 고분자 이온교환막의 두께에 대하여 75- 85%를 유지하는 것이 바람직하다 . At this time, in order to prevent adhesion between the laminated ion exchange membrane and the thermocompression mold, there is no deformation at a high temperature at which the thermocompression bonding is performed, and at the same time, after laminating the film which is not subjected to reaction with the ion exchange membrane, the thermocompression sheet is put into Put it in. Thermocompression furnace is generally used in the art of the stainless steel bar, by controlling the thickness of the bar it is possible to control the thickness of the lamp laminate of the present invention. In other words, the thickness of the mold is preferably maintained to 75-85% with respect to the thickness of the laminated electroactive polymer ion exchange membrane.
이러한 가열하는 전처리 과정에 의해 막 계면의 유동성이 향상되는 바, 이의 조건은 이온교환막의 열적특성 실험을 통해 내부구조의 유동성이 보장되고 기능기는 파괴되지 않는 적절한 조건임을 열중량  The fluidity of the membrane interface is improved by the heating pretreatment process, and the conditions thereof are appropriate conditions under which the fluidity of the internal structure is ensured through the experiment of the thermal properties of the ion exchange membrane and the functional groups are not destroyed.
분석법 (Thermogr vimetry Analyzer , TGA)과 시차주사 Method (Thermogr vimetry Analyzer, TGA) and differential scanning
열량계법 (Differential Scanning Calorimeter, DSC)으로 확인할 수 있었다. 상기 은도가 170 °C 미만이면 적충된 막 사이의 압착력이 현저히 낮아 이로 인하여 균일한 적층막 형성이 불가할 수 있으며 190 1C를 초과하는 It was confirmed by calorimetry (Differential Scanning Calorimeter, DSC). When the silver is less than 170 ° C, the compressive force between the stacked films is significantly low, which may make it impossible to form a uniform laminated film, which exceeds 190 1 C.
경우에는 이온교환막이 녹거나 표면과 막간 계면이 탈 수 있는 문제가 있다. 또한, 시간이 10 분 미만이면 이온교환막이 붙지 않을 수 있고 20 분을 초과하는 경우에는 표면과 막간 계면이 탈 수 있으므로 상기 범위를 In this case, there is a problem that the ion exchange membrane is melted or the interface between the surface and the membrane may burn. In addition, if the time is less than 10 minutes, the ion exchange membrane may not adhere, and if it exceeds 20 minutes, the surface-membrane interface may burn out.
유지하는 것이 바람직하다 . It is desirable to maintain.
다음으로, 상기 가열된 이온교환막을 6,500-7,000 psi 및 170-190 °C에서 10-20 분 동안 열압착을 수행한다 . Next, the heated ion exchange membrane is thermocompressed at 6,500-7,000 psi and 170-190 ° C. for 10-20 minutes.
상기 온도가 170 °C 미만이거나 압력이 6500 psi 미만이면 적층된 막 Laminated membranes if the temperature is below 170 ° C or the pressure is below 6500 psi
사이의 압착력이 현저히 낮아 이온 교환막이 붙지 않을 수 있으며, The compressive force between the remarkably low may not adhere to the ion exchange membrane,
190 °C를 초과하거나 7000 psi를 초과하는 경우에는 이온교환막의 두께가 불균일해지거나 타는 문제가 발생할 수 있다. 또한, 상기 시간이 10 분 미만이면 이온교환막이 붙지 않을 수 있으며 20 분을 초과하는 경우에는 타는 문제가 발생할 수 있으므로 상기 범위를 유지하는 것아 바람직하다. 다음으로, (e) 상기 열압착된 이온교환막을 절단하여 기등형 적충물을 수득한다 이때 복수 개와 전기활성 고분자 이은교환막 사이에 덕트 형성용 기등이 존재하도록 적층을 수행한 경우에는, (e') 내부 덕트가 존재하도록 상기 열압착된 이은교환막을 설단하고 상기 덕트 령성용 기등을 제거하여 기등형 적충물을 수득한다. If it exceeds 190 ° C or exceeds 7000 psi, the thickness of the ion exchange membrane may be uneven or burned. In addition, if the time is less than 10 minutes, the ion-exchange membrane may not adhere, and if it exceeds 20 minutes, burning may occur, so it is preferable to maintain the above range. Next, (e) cutting the thermocompression-bonded ion exchange membrane to obtain an ectopic red worm. In this case, when lamination is performed such that a duct forming lamp is present between the plurality and the electroactive polymer silver exchange membrane, (e ') The thermo-compressed silver exchange membrane is pulled out so that an inner duct is present and the Removal to give the deformed red pest.
이후에 열압착 과정에서 형성된 불순물을 제거하는 단계가 추가로 포함될 수 있는 바, 상기 불순물 제거는 구체적으로 60-100 °C에서 5-6 시간 동안 과산화수소 세척하정, 90-120 °C에서 3-4 시간 동안 수용액 세척과정, 60- 100 C에서 3-4 시간 동안 염산수용액 세척과정, 및 90-120 °C에서 3-4 시간 동안 수용액에 세척과정 등을 포함하는 일련의 과정으로 수행한다. 이때, 과산화수소 및 염산수용액은 5-15 중량 % 농도를 유지하는 것이 바람직하다. In that the step of after the removal of impurities formed in the process of thermo-compression bonding to be included as additional bar, the removal of impurities is specifically from 60-100 ° C for 5-6 hours the hydrogen peroxide cleaning hajeong, 90-120 ° C 3-4 It is carried out in a series of processes including washing the aqueous solution for 3 hours, washing the aqueous hydrochloric acid solution for 3-4 hours at 60-100 C, and washing the aqueous solution for 3-4 hours at 90-120 ° C. At this time, the hydrogen peroxide and hydrochloric acid solution is preferably maintained at a concentration of 5-15% by weight.
다음으로, (h) 상기 기등형 적층물의 표면에 전극을 코팅한다. Next, (h) the electrode is coated on the surface of the lamp stack.
전극의 코팅은 당 분야에서 일반적으로 사용되는 무전해도금법을 사용하여 기등형 적층물 표면에 전극 코팅층을 형성한다. 이때, 무전해도금은 물과 알코올이 100:8-30 중량비 범위를 유지하는 혼합용매하에서 수.행하는 바, 상기 흔합용매계의 경우 당 분야에서 통상적으로 사용되는 물, 알코올 등의 각각의 단일용매계에 비해 이온교환막의 부피 증가율이 커 형성되는 전극의 양, 전극과 이온교환막간의 계면 상태가 향상되어 제조된 고분자 구동체의 구동속도, 구동변위 및 응답속도 등의 구동특성 향상에 기여하게 된다. 상기 흔합용매에 사용되는 알코올이 8 중량비 미만이면 물의 단일용매를 사용한 경우보다는 구동 성능이 증가하나 본 발명이 목적으로 하는 구동 성능을 만족할 수 없을 수 있고, 알코올의 사용량이 30 중량비를 초과하는 경우에는 열적층한 막이 분리되는 문제가 발생할 수 있으므로 상기 범위를 유지하는 것이 바람직하다. 알코올은 당 분야에서 Coating of the electrode forms an electrode coating layer on the surface of the etc. laminate using the electroless plating method commonly used in the art. In this case, the electroless plating may be performed under a mixed solvent in which water and alcohol maintain a weight ratio of 100: 8-30. In the case of the mixed solvent system, each single solvent such as water and alcohol commonly used in the art is used. Compared to the system, the volume increase rate of the ion exchange membrane is increased and the interface state between the electrode and the ion exchange membrane is improved, which contributes to the improvement of driving characteristics such as driving speed, driving displacement and response speed of the manufactured polymer driving body. . When the alcohol used in the mixed solvent is less than 8 weight ratio, the driving performance is increased than when using a single solvent of water, but the driving performance of the present invention may not be satisfied, and when the amount of alcohol used exceeds 30 weight ratio It is preferable to maintain the above range because a problem of separation of the thermally laminated film may occur. Alcohol is in the field of sugar
일반적으로 사용되는 탄소수 1—6의 알코올, 구체적으로 메탄올, 에탄올, 이소프로판올, 부탄올, 펜탄올 및 핵산올, 바람직하기로는 에탄올, 메탄을, 보다 바람직하기로는 에탄을을 사용하는 것이 좋다. Generally used alcohols having 1 to 6 carbon atoms, specifically methanol, ethanol, isopropanol, butanol, pentanol and nucleic acidol, preferably ethanol and methane, and more preferably ethane.
상기 방법으로 코팅된 전극의 두께는 10-30 / 범위, 바람직하기로는 20-30 fM 범위를 유지하는 바, 상기 두께 범위가 10 미만이면 전극 형성이 불층분하여 구동 성능이 저하되거나 구동하지 않을 수 있고 30 를 초과하는 경우에는 전극의 강성에 의해 구동 성능이 저하될 수 있는 문제가 발생하므로 상기 범위를 유지하는 것이 바람직하다. The thickness of the electrode coated by the above method is in the range of 10-30 /, preferably in the range of 20-30 fM. If the thickness range is less than 10, the electrode may be unevenly formed so that the driving performance may be degraded or may not be driven. And 30 When exceeding, it is preferable to maintain the above range because a problem that driving performance may be degraded due to the rigidity of the electrode occurs.
다음으로, (i) 상기 전극 코팅층을 일부분 제거함으로써 절연층을  Next, (i) the insulating layer is removed by partially removing the electrode coating layer.
형성시킨다. 절연층 형성 방법은 당 분야에서 일반적으로 사용되는 절단, 스크래칭 , 테이핑 및 마스킹 등을 사용하여 수행할 수 있으며 , 이때 절연층은 길이 반대방향으로 5-15 urn 두께 바람직하기로는 7-12 im 두께를 형성하고, 2-8 개, 바람직하기로는 4 개를 형성할 수 있다.  To form. The insulating layer forming method may be performed using cutting, scratching, taping, and masking, which are generally used in the art, wherein the insulating layer has a thickness of 5-15 urn in a direction opposite to the length thereof, preferably 7-12 im. Two to eight, preferably four.
본 발명은 상기와 같은 고분자 구동체를 포함하는 카테터로서 , 0.1 gf 이상 바람직하기로는 0, 1-0.2 gf의 구동력 , 40° 이상 바람직하기로는 40-90° 의 구동변위, 8 10"7 Nm2 이상 바람직하기로는 1 X 10_6-5.2 χ 10"6 Nm2 범위의 강도 및 2.0 mm/s 미만 바람직하기로는 1.0-2.0 mm/s 범위의 The present invention is a catheter comprising the polymer drive as described above, preferably 0.1 g f or more, preferably 0, 1-0.2 gf drive force, 40 ° or more drive displacement of 40-90 °, 8 10 "7 Nm 2 or more preferably 1 x 10 _6 -5.2 x 10 "6 Nm 2 strength and less than 2.0 mm / s preferably 1.0-2.0 mm / s
웅답속도를 가지고, 직경이 1.5 薩 이하 바람직하기로는 1.5-1 隱 범위이며, 상기 카테터는 카테터 삽입을 위한 가미드와이어로서의 용도로 또는 기구 또는 약물 주입용 능동형 카테터로서의 흥도로 사용되는 카테터에 특징이 있다. 특히 상기 약물은 혈전용해제를 사용한 혈전용해용으로 사용하는 것이 보다 적합하다. 구체적으로, 본 발명에 따른 고분자 구동체를 포함하는 카테터를 혈전 표면이나 내부로 카테터 말단부를 위치시키고, 국소적으로 혈전용해제 등 약물을 주입하거나, 카테터 말단부를 혈전 It is characterized by a catheter having a stepping speed and a diameter of 1.5 kPa or less, preferably in the range of 1.5-1 kPa, wherein the catheter is used as a gimwire for catheter insertion or as an active catheter for instrument or drug injection. have. In particular, the drug is more suitable for use for thrombolysis using thrombolytics. Specifically, the catheter including the polymer drive device according to the present invention is located on the surface or inside the catheter distal end, locally injected drugs such as thrombolytics, or the catheter distal end
내부로 삽입한 후 전압을 인가하여 구동부에서 발생하는 물리적 힘을 Insert it into the inside and apply a voltage to the physical force
이용하여 혈전을 붕괴할 수 있다. 이때, 구동체에 교류 전압을 Can be used to disrupt blood clots. At this time, alternating voltage
인가하여 진동을 발생시키고, 혈전용해제를 동시에 주입하면 약물의 혈전 내 투과를 촉진하여 혈전 용해 효율을 향상시키게 된다. When applied to generate vibrations and inject thrombolytics at the same time to promote the blood permeation of the drug to improve the efficiency of thrombolytic dissolution.
이러한 카테터는 당 분야에서 일반적으로 사용되는 구조 및 설계를 갖는 것으로 특별히 한정하지는 않으나, 구체적으로 내부에 약물 투여용 덕트를 가진 기등형 구조물 형태의 고분자 구동체에 전극을 접합시킨 후 튜브 끝에 연결한 능동형 카테터 구조, 혹은 튜브 내의 또 다른 전달 카테터를 밀어 주며 관의 방향을 제어하는 가이드 와이어 구조이다 [IEEE International Conference on Robotics and Automat ion, 79, 1995] . 이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연하다. 실시예 1 : 고분자 구동체 제조 Such a catheter is not particularly limited to one having a structure and a design generally used in the art, but specifically, an active type connected to an end of a tube after bonding an electrode to a polymer driving body having an luminescent structure having a duct for drug administration therein. Catheter structure, or guide wire structure that controls the direction of the tube by pushing another delivery catheter in the tube [IEEE International Conference on Robotics and Automat ion, 79, 1995]. Hereinafter, preferred examples are provided to help understanding of the present invention, but the following examples are merely to illustrate the present invention, and various changes and modifications within the scope and spirit of the present invention are apparent to those skilled in the art. It is natural that such variations and modifications fall within the scope of the appended claims. Example 1 Manufacture of Polymer Driving Body
실시예 1-1 Example 1-1
두께가 180 m인 나피온 (미 DuPonT 사)을 24 mm 49 mm 크기로 자른 후, 나피온 표면에 묻은 먼지를 제거하기 위하여 n-핵산으로 표면을 깨끗이 닦았다. 표면이 처리된 나피온 막 6장을 적층하고, 상기 적층 중 Nafion (180 mm thick) was cut to a size of 24 mm 49 mm, and then the surface was cleaned with n-nucleic acid to remove dust on the surface of Nafion. Laminating six sheets of Nafion membranes whose surface was treated, and during the lamination
3번째와 4번째 사이에 직경이 0.5隱인 철사를 넣어서 적층을 하였다. Lamination was carried out by inserting a wire 0.5 mm in diameter between the third and fourth.
이후에 내피온막을 50 (M 두께, 내열성 등의 특성을 갖는 폴리이미드 필름으로 위아래에서 덮은 후 스테인리스 틀 (25 mm .가로 X 50 mm 세로 X 0.93 mm 높이 안에 넣었다. 이때, 스테인레스 를의 두께 조절에 의해 나피온 막의 크기 조절이 가능하다. 이후에 틀을 핫-프레스 (hot- press)에 올려놓은 후 압력을 가하지 않은 상태로 약 180 C에서 약 12 분 동안 두어 나피은 막 내부구조의 기능기는 파괴되지 않는 조건에서 After that, the membrane was covered with a polyimide film having a characteristic of 50 (M thickness, heat resistance, etc. from above and below, and then placed in a stainless steel frame (25 mm .width X 50 mm length X 0.93 mm height. The size of the Nafion membrane can be adjusted by placing the mold on a hot-press and leaving it under pressure for about 12 minutes at about 180 ° C to destroy the functionalities of the membrane's internal structure. Under conditions
유동성을 향상시켰다. 이러한 조건은 나피온막의 열적 특성 실험을 통하여 TGA 및 DSC로 확인하였다. 이후에 약 180 °C에서 10 분 동안 약 6700 psi의 압력을 가하고, 압력을 제거한 후 를을 핫-프레스 (hot- , press)에서 분리하였다. 를은 상온에서 넁각시켜 스테인리스 틀의 온도가 상온까지 떨어지면 틀에서 적충된 나피온 막을 분리하였다. Improved fluidity These conditions were confirmed by TGA and DSC through the thermal properties of the Nafion membrane. Was isolated from the press (hot-, press) - added after approximately 6700 psi pressure for 10 minutes at about 180 ° C, to remove the pressure on the hot. When the temperature of the stainless steel mold drops to room temperature, the red Nafion membrane was separated from the mold.
다음으로, 상기 적층된 나피은 막의 불순물을 제거하기 위하여 먼저 막을 수용액상에서 1시간 정도 보관하였다. 이후에 4면의 지저분한 것들을 제거하기 위하여 칼로 4면을 잘라내서 직사각형의 모양을 만든 후, 나피은막 내부에 포함된 철사를 제거하고 약 60 X:에서 10 중량 %의 Next, the laminated napi was first stored in an aqueous solution for about 1 hour to remove impurities from the membrane. Afterwards, to get rid of the messy things on the four sides, cut the four sides with a knife to make a rectangular shape. Remove the wire contained inside the napi silver film and 10% by weight of about 60 x:
과산화수소에 약 5 시간 동안 끓였다. 이후에, 상기 막을 100 °C의 수용액 상에서 약 3 시간 동인: 끓이고, 70 °C에서 10 중량 %의 염산수용액에 약 3 시간 동안 끓였다. 이후에 100 1C의 수용액 상에서 약 3 시간 동안 끓이는 과정을 거쳐 투명하게 적층된 1 mm X 1 mm X 30 mm 크기를 갖는 나피온 막의 기둥형 적층물을 제조하였다.  Boil in hydrogen peroxide for about 5 hours. Subsequently, the membrane was boiled for about 3 hours on an aqueous solution at 100 ° C .: boiled, and boiled at 70 ° C. in 10% by weight aqueous hydrochloric acid solution for about 3 hours. Thereafter, a column stack of Nafion membranes having a size of 1 mm × 1 mm × 30 mm, which was transparently stacked, was boiled for about 3 hours in an aqueous solution of 100 1 C.
상기 기등형 적층물의 표면에 백금을 전극 코팅층을 형성하기 위하여 , 먼저 [Pt(NH3)4]2Cl2 백금염이 2 mg/ral 농도로 녹아있는 물과 에탄올의 100:30 중량비의 흔합용매에 이온교환막을 함침시켰다. 24시간 함침 후, 이온교환막을 40 °C 의 온도 하에서 100 rpm으로 교반 (stirring) 해주면서, NaBH4 5 중량 %의 혼합용매 5 ml를 30 분마다 10 회 넣어주는 조건하에서 무전해 도금을 수행하였다. 이때 상기 전극 코팅층은 연속적으로 위치하고, 기등형 적층물의 마주보는 평면에 6 개가 존재하도록 하였다. 이후에 백금 전극 코팅층의 위 , 아래를 잘라내고, 옆의 4면 모서리를 각각 10 im 두께의 름을 면도칼을 이용하여 긁어서 제거함으로서 절연층을 형성시켜 고분자 구동체를 제조하였다. 실시예 1-2 : 전기활성 고분자 종류 변화 In order to form an electrode coating layer of platinum on the surface of the lampshade laminate, first, a solvent mixture of 100: 30 weight ratio of water and ethanol in which [Pt (NH 3 ) 4 ] 2 Cl 2 platinum salt is dissolved at a concentration of 2 mg / ral Was impregnated with an ion exchange membrane. After 24 hours of impregnation, the ion exchange membrane was stirred at 100 rpm under a temperature of 40 ° C, and electroless plating was performed under the condition that 5 ml of NaBH 4 5 wt% mixed solvent was added 10 times every 30 minutes. In this case, the electrode coating layers are continuously positioned, and six are present in the opposite plane of the lamp stack. Thereafter, the upper and lower portions of the platinum electrode coating layer were cut out, and the four side edges of the platinum electrode were each scraped off using a razor to form an insulating layer to prepare a polymer driving body. Example 1-2: Change of Electroactive Polymer Type
상기 실시예 1에 적용시키기 위하여 이온성 고분자 막을 나피은 용액과 탄소나노튜브를 섞여 복합체를 제조하여 사용하였다. 나피온 수용액과 탄소나노튜브를 100:15 중량비 범위로 흔합하여 62 시간 동안 교반시켰다. 이후 3차원 정률 캐스팅법을. 이용하되 , 두께 균일도가 유지되는 180 이내의 두께에서 막을 제조하였다. 이때, 3차원 정률 캐스팅은 60 °C 은도범위에서 5 시간 내에 용매를 증발시키면서 진행하였으며 , 이 과정에서 탄소나노튜브와 나피온 용액이 균일한 막을 이루는 복합체를 형성하게 되었다. 이후 적층 및 전극 코팅 과정은 상기 실시예 1과 동일한 과정으로 진행하였다. 실시예 1-3 : 전기활성 고분자 종류 변화 In order to apply to Example 1, a composite was prepared using a mixture of carbon nanotubes and a solution in which an ionic polymer membrane was peeled off. Nafion aqueous solution and carbon nanotubes were mixed in a 100: 15 weight ratio and stirred for 62 hours. After the 3D constant casting method. Membranes were prepared at a thickness within 180 where the thickness uniformity was maintained. At this time, the three-dimensional constant casting was carried out while evaporating the solvent within 5 hours in the 60 ° C silver range, in the process, the carbon nanotubes and Nafion solution was formed a complex film forming a uniform film. Since the lamination and electrode coating process was performed in the same process as in Example 1. Example 1-3: Change of Electroactive Polymer Type
상기 실시예 1과 동일하게 진행하되 , 전도성고분자의 도입을 위하여 기등형 구조물 제조 이후 얻어진 나피온 기등을 0.07 M 농도의 피를 수용액에 5 분 동안 함침시켰다. 이후에, 20 중량 % 과산화수소에 함침시켜 표면 근처에 폴리피롤을 중합시켰다. 이 과정을 통하여 얻어진 전도성 고분자 복합체는 0.7 M 농도의 황산과 질산, 물에 반복적으로 상온과 고온 (60 °C)에서 1 시간 간격으로 세척과정을 수행하였다. 이후 제조된 복합체는 상기 실시예 1과 동일한 전극 코팅 과정을 거쳐 전극을 Proceed in the same manner as in Example 1, in order to introduce the conductive polymer, Nafion lamp obtained after the manufacture of the lamp-shaped structure was impregnated with 0.07 M of blood in an aqueous solution for 5 minutes. Thereafter, the polypyrrole was polymerized near the surface by impregnation with 20 wt% hydrogen peroxide. The conductive polymer composite obtained through this process was repeatedly washed with 0.7 M sulfuric acid, nitric acid, and water at room temperature and high temperature (60 ° C) for 1 hour interval. Since the prepared composite is subjected to the electrode coating process the same as in Example 1
형성하였다. 실시예 1-4 : 전기활성 고분자 종류 변화 Formed. Example 1-4 : Type change of electroactive polymer
상가 실시예 1-1과 동일하게 실시하되, 나피은 대신에 180 im 두께의 폴리아크릴레이트를 사용하여 고분자 구동체를 제조하였다. 실시예 1-5 : 전기활성 고분자 종류 변화 The same process as in Example 1-1, but instead of napi was used to prepare a polymer drive body using a 180 im thick polyacrylate. Example 1-5 : Type change of electroactive polymer
상기 실시예 1-1과 동일하게 실시하되, 나피온 대신에 180 im 두께의 폴리우레탄을 사용하여 고분자 구동체를 제조하였다. 실시예 1-6 : 전기활성 고분자 종류 변화 In the same manner as in Example 1-1, but instead of Nafion, 180 im thick polyurethane was used to prepare a polymer driving body. Example 1-6 : Type change of electroactive polymer
상기 실시예 1-1과 동일하게 실시하되 , 나피온 대신에 180 urn 두께의 술폰화기를 갖는 나노클레이를 사용하여 고분자 구동체를 제조하였다. 실시예 1-7 : 전기 활성 고분자 종류 변화 A polymer driving body was prepared in the same manner as in Example 1-1, using nanoclay having a sulfonation group having a thickness of 180 urn instead of Nafion. Example 1-7 : Type change of electroactive polymer
상기 실시예 1-1과 동일하게 실시하되, 나피온 대신에 180 im 두께의 술폰화기를 갖는 실리카 화합물을 사'용하여 고분자 구동체를 제조하였다. 실시예 1-8 : 고분자 구동체 표면에 층 추가 But the same manner as in Example 1-1, instead of Nafion 180 was prepared im use a silica compound having a sulfone firearm having a thickness of 'using a polymer actuator on. Example 1-8 : Adding a Layer to the Surface of the Polymer Actuator
상기 실시예 1-1과 동일하게 실시하되 , 실시예 1—1에서 제조된 고분자 구동체를 폴리우레탄 용액에 딥코팅하여 전극 코팅층과 절연층 표면에 폴리우레탄 코팅층이 형성된 고분자 구동체를 제조하였다. . 실시예 1-9 : 전기활성 고분자의 적충조건 변화 In the same manner as in Example 1-1, the polymer driving body prepared in Example 1-1 to the polyurethane solution was dip-coated to prepare a polymer driving body in which the polyurethane coating layer was formed on the electrode coating layer and the insulating layer surface. . Example 1-9 : Change of loading conditions of the electroactive polymer
상기 실시예 1-1과 동일하게 실시하되, 전기활성 고분자인 나피온의 적층온도를 130 C, 200 C 및 적층압력을 3000 psi , 8000 psi로 각각 달리하여 고분자 구동체를 제조하였다. In the same manner as in Example 1-1, the polymer drive body was prepared by varying the lamination temperature of the electroactive polymer Nafion at 130 C, 200 C and the lamination pressure at 3000 psi and 8000 psi, respectively.
적층온도를 130 TC로 진행하였을 경우에는 나피온 막이 제대로 붙지 않아 막이 쉽게 분리되었으며, 200 X에서 진행하였을 경우에는 막의 표면 및 적층한 막 사이의 계면이 검게 타는 것을 확인할 수 있었다. 또한 적층압력을 3000 psi로 진행하였을 경우에는 막이 제대로 붙지 않아 쉽게 분리되었으며 , 8000 psi로 진행하였을 경우에는 목적으로 하는 두께보다 훨씬 얇게 막 (800 im 이하)이 생성되어 목적으로 하는 구동특성을 얻을 수 없다는 것을 확인할 수 있었다. 실시예 1-10 : 무전해 도금시 흔합용매의 종류 변화 When the stacking temperature was increased to 130 TC, the Nafion membrane did not adhere properly, and thus the membrane was easily separated. When the stack was carried out at 200 X, the interface between the surface of the membrane and the laminated layer burned black. In addition, when the stacking pressure was increased to 3000 psi, the membrane did not stick properly and was easily separated. When the stacking pressure was increased to 8000 psi, the film (800 im or less) was formed much thinner than the desired thickness to obtain the desired driving characteristics. I could confirm that there is no. Example 1-10 : Change in the type of mixed solvent in electroless plating
상기 실시예 i과 동일하게 실시하되, 전극층 형성을 위한 무전해 도금 에탄올 대신에 물과 메탄올 (100:20 중량비), 물과 이소프로판올 (10():20 중량비)의 흔합용매하에서 각각 전극 코팅을 수빵하여 고분자 구동체를 제조하였다. In the same manner as in Example i, instead of the electroless plating ethanol for forming the electrode layer, the electrode coating under the mixed solvent of water and methanol (100: 20 weight ratio), water and isopropanol (10 (): 20 weight ratio), respectively. To prepare a polymer driving body.
이러한 물과 메탄올, 물과 이소프로판올의 흔합용매를 사용한 경우에도 실시예 1-1과 유사한 구동력, 구동변위 및 구동속도 등의 구동특성을 유지함을 확인할 수 있었다. 다만, 이소프로판을을 사용하는 경우에는 이온교환막의 팽윤정도가 급격히 증가되어 적충된 막이 분리되는 바, 물과 이소프로판올의 흔합비를 제어가 요구되었다. 실시예 1-11 : 무전해 도금시 단일용매계 사용 Even when such a mixed solvent of water, methanol, water and isopropanol was used, driving characteristics such as driving force, driving displacement, and driving speed, similar to those of Example 1-1, were maintained. However, in the case of using isopropane, the degree of swelling of the ion exchange membrane rapidly increased and the loaded membrane was separated, so that the mixing ratio of water and isopropanol was required to be controlled. Example 1-11: Use of a Single Solvent System in Electroless Plating
상기 실시예 1-1과 동일하게 실시하되, 전극층 형성을 위한 무전해 도금 시 물과 에탄올의 흔합용매 대신에 물의 단일용매하에서 전극 코팅을 수행하여 고분자 구동체를 제조하였다.  In the same manner as in Example 1-1, in the electroless plating for forming an electrode layer, a polymer driving body was prepared by performing electrode coating under a single solvent of water instead of a mixed solvent of water and ethanol.
제조된 고분자 구동체의 표면저항과 구동변위를 측정하여 실시예 1-1의 흔합용매를 사용한 경우와 비교한 결과, 표면저항은 3-7 Ω (실시예 1- 1)에서 15-20 Ω으로 증가하였으며 이에 따라 구동변위는 38-45° (쉴시예 1-1)에서 13-17° 로 감소하였다. 또한 속도는 실시예 1-1에 비해 1.5-2 배 느려지고, 45° 굽힘에 필요한 시간이 7-9 초 (실시예 1-1)에서 15-17 초로 증가 (DC 4V)함을 확인할 수 있었다. 실시예 1-12 : 무전해 도금시 흔합용매의 함량 변화 As a result of measuring the surface resistance and the driving displacement of the manufactured polymer driving body and comparing it with the case of using the mixed solvent of Example 1-1, the surface resistance was from 3-7 Ω (Example 1-1) to 15-20 Ω. As a result, the driving displacement decreased from 38-45 ° (Shichei Example 1-1) to 13-17 °. In addition, the speed was 1.5-2 times slower than in Example 1-1, and the time required for the 45 ° bending was increased from 7-9 seconds (Example 1-1) to 15-17 seconds (DC 4V). Example 1-12 : Change in the content of the mixed solvent in the electroless plating
상기 실시예 1과 동일하게 실시하되, 전극층 형성을 위한 무전해 도금 시 물과 에탄을의 흔합용매의 조성비를 각각 100:5 중량비, 100:60 중량비에서 전극 코팅을 수행하여 고분자 구동체를 제조하였다. In the same manner as in Example 1, when the electroless plating for forming the electrode layer, the polymer was prepared by electrode coating at a composition ratio of 100: 5 weight ratio and 100: 60 weight ratio of water and ethane, respectively. .
물과 에탄을의 조성바가 100:5 중량비에서는 실시예 1-1에 비하여 전극 코팅층이 더 얇、게 형성되어 구동성능이 저하되며, 100:60 중량비 When the composition bar of water and ethane is 100: 5 weight ratio, the electrode coating layer is thinner and thinner than the embodiment 1-1, and the driving performance is lowered.
범위에서는 적층된 이온교환막이 떨어져 적층성이 저하되었다. In the range, the laminated ion exchange membrane fell, and lamination property fell.
즉, 무전해 도금시 혼합용매로 사용되는 물과 알콜은 100:8-30 중량비 범위에서 최적의 전극 코팅충을 형성할 수 있음을 확인할 수 있었다. 실시예 1-13 : 무전해 도금의 회수 변화 That is, it was confirmed that water and alcohol used as a mixed solvent in electroless plating could form an optimal electrode coating worm in the range of 100: 8-30 weight ratio. Example 1-13: Recovery change of electroless plating
상기 실시예 1-1과 동일하게 실시하되, 무전해 도금을 각각 2, 3 및 4회로 반복 宁행하여 고분자 구동체를 제조하였다. In the same manner as in Example 1-1, the electroless plating was repeated 2, 3 and 4 times to prepare a polymer driving body.
그 결과, 무전해 도금을 2회 수행하여 형성된 전극 코팅충은 고분자 구동체의 구동성능은 증가하였으나 3회 및 4회로 도금 회수가 증가할수록 구동성능이 저하된다는 것을 확인할 수 있었다. 비교예 1 As a result, the electrode coating worm formed by performing the electroless plating twice increased the driving performance of the polymer driving body, but as the number of platings increased three times and four times. It was confirmed that the driving performance is reduced. Comparative Example 1
상기 실시예 1-1과 동일하게 실시하되, 적층을 거치지 않은 시판되는 나피온 막을 적층없이 이용하고, 전극을 코팅하여 카테터를 제조하였다. 시판되는 나피온 117(미 DuPont 사)은 180 皿의 두께를 가지고 이를 이용한 가이드와이어나 카테터를 제작하는 경우 정사각형의 단면을 가지기 어려우며 카테터의 방향을 제어할 수 있을 정도의 구동력이 부족하며 구동 안정성이 미흡하여 카테터로 적용하기가 어려웠다. 비교예 2  In the same manner as in Example 1-1, using a commercially available Nafion membrane without lamination without lamination, the electrode was coated to prepare a catheter. Commercially available Nafion 117 (US DuPont) has a thickness of 180 가지고 and it is difficult to have a square cross section when making guide wires or catheters using them. Inadequately difficult to apply as a catheter. Comparative Example 2
一상기 실시예 1-1과 동.일하게 실시하되, 막의 제조를 적층이 아닌 3차원 정률캐스팅을 이용하여 나피온막을 제조하 ^다. 이때 3차원 정률 캐스팅은 15 중량 % 농도의 나피온 용액을 60 °C 온도에서 5 시간 내에 용매를 증발시키면서 180 (M 두께로 제조하였다. First, the same procedure as in Example 1-1 was carried out, and the Nafion membrane was manufactured by using three-dimensional constant casting instead of lamination. At this time, the three-dimensional constant casting was made of 15 wt% Nafion solution at a temperature of 60 ° C. while evaporating the solvent within 5 hours at 180 ° (M thickness).
상기어 Ϊ서 제조된 나피온막 또는 상용화된 막 (Dupont 사ᅳ 175-185 두께의 나피온 막)을 나피온 용액으로 접착하여 제작하^ 전극 코팅 작업을 통해 카테터를 제조하였다. 이때 나피온 용액은 15 중량 % 농도로 붓으로 바르거나 ¾코팅으로 나피온 용액을 바른 후 접착하여 60 °C 온도에서 5 시간 내에 용매를 증발시키면서 제조하였다. A catheter was prepared by adhering the prepared Nafion membrane or a commercially available membrane (Dupont Corporation 175-185 thick Nafion membrane) with Nafion solution ^ electrode coating. At this time, the Nafion solution was applied by applying a brush at a concentration of 15% by weight or by applying a Nafion solution with ¾ coating and then adhesive was prepared by evaporating the solvent within 5 hours at 60 ° C temperature.
캐스팅과 접착 방법의 한계 상 구동체 내부에 덕트를 제작하는 것은 불가능하였으며, 균일한 막의 제작 (캐스팅법)과 접착된 막 간의  Due to the limitations of the casting and bonding method, it was not possible to fabricate the duct inside the driving body.
분리 (접착법 )의 한계로 카테터용으로 적합한 구동특성을 보이지 못하였다. 실시예 2 : 가이드와이어용 카테터  The limitation of separation (adhesion) did not show suitable driving characteristics for catheter. Example 2 Catheter for Guide Wire
상기 실시예 1-1과 동일하게 실시하되, 적층 과정에서 철사를 제외하고 나피온 막을 적층하여 이온교환막을 제조하였다. 제조된 막을 2 방향성과 4 방향성을 가지는 고분자 구동체로 만들기 위하여 다음 과정을 수행하였다. 먼저 4 방향성 고분자 구동체 제작을 위하여, 적층 후 처리된 막을 1 mm X 1 ram X 30 mm 크기로 자른 후 상기 실시예 1-1과 동일한 전극 코팅과정과 절연 과정을 거쳐 , 마주보는 2 쌍의 전극을 가지는, 4 방향의 구동이 가능한 가이드와이어용 구동체를 제작하였다. 2 방향성 고분자 구동체 제작을 위하여, 적층된 막을 자르지 않은 상태에서 상기 실시예 1-1과 동일한 전극 코팅과정을 수행하였다. 이후, 전극이 코팅된 이온성고분자 막을 1 mm X 1 mm X 30 mm 크기로 잘라 마주보는 두 면에 전극이 1쌍 위치한 , 2 방향의 구동이 가능한 가이드와이어용 카테터를 계조하였다. 이와 같은 방법으로 상기 실시예 1-2 내지 1-12 및 비교예 1 내지 2에서 계조된 고분자 구동체를 이용하여 각각의 가이드와이어용 카테터를 The ion exchange membrane was manufactured in the same manner as in Example 1-1 except that the Nafion membrane was laminated except for the wire in the lamination process. The following procedure was performed to make the prepared membrane into a polymer driver having bidirectional and tetradirectional properties. First, in order to fabricate the 4-way polymer driving body, the laminated film is cut to a size of 1 mm X 1 ram X 30 mm, and then subjected to the same electrode coating process and insulation process as in Example 1-1. The driving body for the guide wire which can drive in 4 directions was produced. In order to fabricate the bidirectional polymer driver, the same electrode coating process as in Example 1-1 was performed without cutting the laminated film. Thereafter, the electrode-coated ionic polymer membrane was cut into a size of 1 mm X 1 mm X 30 mm, and a catheter for guide wires capable of driving in two directions, in which two pairs of electrodes were positioned on two opposite surfaces, was grayed out. In this manner, each of the guide wire catheter was used by using the polymer driver grayed out in Examples 1-2 to 1-12 and Comparative Examples 1 to 2.
제조하였다. 실시예 3 : 능동형 카테터 Prepared. Example 3 Active Catheter
상기 실시예 1-1에서 제조된 고분자 구동체를 이용하여 내부에 약물 투여용 덕트를 가진 기등형 구조물 형태의 고분자 구동체에 전선으로 사용되는 지름 0.08 讓의 에나멜 동선을 고전압에서 용접을 한 후, 용접한 부분을 전도성 접착제로 실링을 시켰다. 그런 다음 전체를 실리콘과 같은 열수축 고½:자로 전체를 코팅 시킨 후 능동형 팁을 튜브 끝에 삽입한 후 연결을 시켜서 능동형 카테터를 제작하였다 [IEEE International Conference on Robᄋ tics and Automat ion, 79, 1995] . 이와 같은 방법으로 상기 실시예 1-2 내지 1-12 및 비교예 1 내지 2에서 제조된 고분자 구동체를 이용하여 각각의 능동형 카테터를 제조하였다. 비교예 3 After welding the enameled copper wire having a diameter of 0.08 讓, which is used as an electric wire, to the polymer drive body of the shaped structure having a drug administration duct therein using the polymer drive body manufactured in Example 1-1 at high voltage, The welded portion was sealed with a conductive adhesive. Then, the whole was coated with a heat shrinkable high-gauge such as silicon, and the active tip was inserted at the end of the tube and then connected to produce an active catheter [IEEE International Conference on Robtics and Automat ion, 79, 1995]. In this manner, each active catheter was manufactured using the polymer driving bodies prepared in Examples 1-2 to 1-12 and Comparative Examples 1 to 2. Comparative Example 3
종래에 파릴렌 코팅이 된 스테인리스 스틸 코일로 구성된 내부 류브와 그 내부 류브의 외벽을 스테인레스 스틸 코일로 감싸고 있고, 내부 튜브 외벽 앞쪽에는 스테인레스 스틸 코일과 형성기억합금 코일 (TiNiK선경 : 30 /m, 코일경 : 150 //m)으로 감싸져, 있다. 그리고 이 전체를 파릴렌 코팅이 된 폴리우레탄으로 외부를 감싸주므로 능동형 카테터 (두께 1.4 mm)를 The inner ribs made of a conventionally coated stainless steel coil and the outer wall of the inner ribs are covered with a stainless steel coil, and the stainless steel coil and the formed memory alloy coil (TiNiK wire diameter: 30 / m, coil are located in front of the inner tube outer wall). Background: becomes wrapped in the 150 // m) may,. And the whole is covered with a parylene-coated polyurethane, so the active catheter (thickness 1.4 mm)
제조하였다 [기계와 재료, 2005, 17권 1호 33/ Proceedings of the IEEE, 2004, 92, 98] . 실험예 1  [Proceedings of the IEEE, 2004, 92, 98]. Experimental Example 1
상기 실시예 2 및 3에서 제조된 카테터는 하기와 같은 방법으로 물성을 측정하여 그 결과를 다음 표에 나타내었다. The catheter prepared in Examples 2 and 3 was measured in the physical properties as described below and the results are shown in the following table.
[물성측정 방법] [Measurement method]
1) 구동력 : 레이저 구동 측정기를 이용, DC 6V에서 10초간 측정 .  1) Driving force : Measure 10 seconds at DC 6V using a laser drive meter.
2) 구동변위 : 레이저 구동 측정기를 이용, DC 6V에서 10초간 측정 .  2) Drive Displacement: Measure by using laser drive meter at DC 6V for 10 seconds.
3) 밀도 : 전체 중량과 용적의 비로 계산.  3) Density : Calculated by the ratio of total weight and volume.
4) 강도 : 레이저 구동 측정기를 이용, 굽힘 강성을 측정하여 계산.  4) Strength: Calculated by measuring bending stiffness using a laser drive meter.
5) 응답속도 : 전기 신호에 대한 변위의 응답 속도 축정 .  5) Response speed: Calculate the response speed of the displacement to the electrical signal.
이때 웅답속도는 기계적인 웅답속도 (mechanical response)를 의미한다. '전기 신호를 주었을 때 얼마 만에 움직이기 시작하느냐'를 측정하는 전기적인 웅답속도 (electrical response)는 수 s 범위에서 발생하게 되므로 이를 실질작으로 측정하기에는 어려움이 따른다 . 구동체에서는 수화된 이은이 외부에서 전기적인 자극을 걸어 주면 구동을 하게 되는 데 이온의 이동 속도가 /s 이하이기 때문에 구동체에서의 전기적인 이동 속도도 빠르게 된다 . 이에 착안하여 특정 변위의 범위까지 움직이는 것을 기본으로 정하고, 그 지점까지 도달하는 시간이 얼마나 걸리느냐로 기계적인 응답속도 (mechanical response)로 설정하여 구동의 반웅속도를 설정하였다. 현재 보유한 구동 변위 축정기의 최대 측정 한계인 15 mm의 범위를 한계로 두고 여기까지 도달하는데 걸리는 시간을 측정, 'mm/s'의 단위로 반응속도를 측정하였다. At this time, the chord speed means a mechanical response. The electrical response, which measures how long it starts to move when an electrical signal is given, occurs in the range of several seconds, making it difficult to measure it in practice. In the driving body, the hydrated ear is driven by an electrical stimulus from the outside, and the driving speed is increased because the movement speed of ions is less than / s. Based on this, it is based on moving to a range of specific displacement, and it takes how long it takes to reach the point, and sets the mechanical response to the mechanical response speed. Set. With the limit of 15 mm, which is the maximum measurement limit of the current drive displacement accumulator, the time taken to reach the limit was measured, and the reaction rate was measured in units of 'mm / s'.
【표 1】  Table 1
Figure imgf000027_0001
0.25
Figure imgf000027_0001
0.25
0.23- rod 실시예 1-11 2.245 44.0 1-5.2 1.88 - 0.25 0.23- rod Example 1-11 2.245 44.0 1-5.2 1.88-0.25
0.23- rod 실시예 1-12 2.688 42.4 1-5.2 1.81 - 0.25 0.23- rod Example 1-12 2.688 42.4 1-5.2 1.81-0.25
0.23- tube3) 실시예 1-1 2.030 33.3 1-5.2 1.43 - 0.25 0.23-tube 3) Example 1-1 2.030 33.3 1-5.2 1.43-0.25
0.23- tube 실시예 1-2 2.061 39.0 1-5.2 1.67 - 0.25 0.23-tube Examples 1-2 2.061 39.0 1-5.2 1.67-0.25
0.23- tube 실시예 1-3 2.694 35.9 1-5.2 1.54 - 0.25 0.23-tube Examples 1-3 2.694 35.9 1-5.2 1.54-0.25
0.23- tube 실시예 1-4 2.673 45.2 1-5.2 1.92 - 0.25 실 0.23- tube 실시예 1-5 2.635 39.9 1-5.2 1.71 - 시 0.25 예 0.23- tube 실시예 1-6 2.793 40.8 1-5.2 1.74 - 0.25 0.23-tube Examples 1-4 2.673 45.2 1-5.2 1.92-0.25 Seal 0.23- Tube Examples 1-5 2.635 39.9 1-5.2 1.71-Hours 0.25 Examples 0.23- Tube Examples 1-6 2.793 40.8 1-5.2 1.74- 0.25
3 0.23- tube 실시예 1-7 2.263 44.0 1-5.2 1.87 - 0.25  3 0.23-tube Examples 1-7 2.263 44.0 1-5.2 1.87-0.25
0.23- tube 실시예 1-8 2.012 35.9 1-5.2 1.54 - 0.25 0.23-tube Examples 1-8 2.012 35.9 1-5.2 1.54-0.25
0.23- tube 실시예 1-9 2.086 43.1 1-5.2 1.84 - 0.25 0.23-tube Examples 1-9 2.086 43.1 1-5.2 1.84-0.25
0.23- tube 실시예 1-10 2.681 40.0 1-5.2 1.71 - 0.25 tube 실시예 1-11 2.128 36.1 0.23- 1-5.2 1.55 - 0.25 0.23-tube Examples 1-10 2.681 40.0 1-5.2 1.71-0.25 tube Examples 1-11 2.128 36.1 0.23- 1-5.2 1.55- 0.25
0.23- tube 실시예 1-12 2.651 40.1 1-5.2 1.71 - 0.25 다양한 단면 제작 비교예 적층없이 180 0.23-tube Examples 1-12 2.651 40.1 1-5.2 1.71-0.25 Various cross section fabrication Comparative example 180 without lamination
beam 0.15 40 - - - 불가능, beam 0.15 40---impossible ,
1 μα 나피온 막 1 μα Nafion membrane
덕트 제작 불가 균일한 비교예 3차원 정률 nV  No Duct Fabrication Uniform Comparative Example 3D Constant nV
ᄀ, 어ᄐ tube - - - - - 2 캐스팅법 제작 불가능 비교예 형상기억합금  ,, tube-----2 casting method not manufactured Comparative example Shape memory alloy
tube 200 Μ <8% 5-6 - - 3 이용  tube 200 Μ <8% 5-6--3
1) rod : 기둥형 적층물의 4면에 전극이 코팅된 고분자 구동체. 1) rod: A polymer drive body in which electrodes are coated on four sides of a columnar laminate.
2) beam: 기등형 적층물의 마주보는 2면에 전극이 코팅된 고분자 구동체 . 2) beam: A polymer drive body coated with electrodes on two opposite surfaces of a light-emitting laminate.
3) tube : 기등형 적층물의 길이 방향으로 내부에 덕트가 존재하고, 기 Ό등형 적층물의 4면에 전극이 코팅된 고분자 구동체. b 3) tube: Polymer driving body in which the duct exists in the longitudinal direction of the lamppost stack and the electrode is coated on the four sides of the lamppost stack. b
상기 표 1에 나타낸 바와 같이, 본 발명에 따른 고분자 구동체를 사용하여 제조된 카테터는 구동력이 0.2 gf 이상이고, 구동변위가 40° 이상이고, 응답속도가 2.0 mm/s 미만이며, 강도가 8 X 10— 7 Nm2 이상이며, 밀도가 ᅳ 0.25 g/cm3미만을 유지한다는 것을 확인할 수 있었다. 반면에, 적층법을 적용하지 않고 제조된 카테터 (비교예 1)는 이온교환막 자체의 강성의 감소로 인하여 구동 시 반웅속도 및 구동변위는 매우 우수하나, 이와 상층되는 물성인 구동력의 현저한 감소로 인하여 실제 능동형 As shown in Table 1, the catheter manufactured using the polymer driving body according to the present invention has a driving force of 0.2 g f or more, a driving displacement of 40 ° or more, a response speed of less than 2.0 mm / s, and an intensity of X 8 is at least 10- 7 Nm 2, it was confirmed that the density of maintaining eu 0.25 g / cm under 3. On the other hand, the catheter manufactured without applying the lamination method (Comparative Example 1) has a very good reaction speed and driving displacement due to the reduction of the rigidity of the ion exchange membrane itself, but due to the significant reduction of the driving force, which is the upper layer of the physical properties. Real active
카테터로의 적용은 불가능하였다 (~ 0.1 gf 이하). 또한, 시판되는 막을 이용하여 구동체를 만드는 예이기 때문에 내부의 덕트 형성은 강제로 뚫지 않으면 안되나 두께 상의 한계 (175-185 )로 인하여 강제로 뚫는 방법은 불가능하였다. Application to catheter was not possible (~ 0.1 gf or less). Also, the commercial curtain Because it is an example of making a driving body by using the internal duct formation must be forced, but due to the thickness limit (175-185) it was impossible to force the drilling.
3차원 정률캐스팅법으로 제조된 카테터 (비교예 2)는 내부 덕트 형성을 위한 금속선 조형물의 삽입이 어려우며 , 이로 인한 덕트 형성이 매우 어렵다는 문제점이 존재하며, 설사 금속선을 삽입하여 덕트를 만든다 하여도 외벽의 두께를 균일하게 만들기가 힘든 문제가 있었다. 또한, 900-1100 im 두깨의 카테터 웅용 가능한 두께를 형성하기 위한 캐스팅은 빠른 막의 제조를 위한 고온 (60-100 °C)에서의 막 형성 과정 시 내부 용매의 증발과 표면의 막 형성과정이 동시에 발생하여 막 표면에 균열이 생겨 The catheter manufactured by 3D constant casting method (Comparative Example 2) has a problem that it is difficult to insert the metal wire sculpture for forming the internal duct, and therefore, the duct formation is very difficult. It was difficult to make the thickness uniform. In addition, the casting to form a catheter sizeable thickness of 900-1100 im thickness occurs simultaneously with the evaporation of the internal solvent and the film formation on the surface during the film formation at high temperature (60-100 ° C) for rapid film production. Cracks on the surface of the membrane
불균일해지는 현상이 발생하며, 저은에서의 막 형성 시에는 균일한 막의' 생성은 가능하나 막 형성에 필요한 시간이 매우 오래 걸린다는 단점이 있었다 (~ 72 hr 이상). 또한, 막형성에 필요한 열처리 과정 없이And this becomes non-uniformity phenomenon occurs, has created a uniform film, when the film formed on the stirring was the disadvantage of the time required to be a film forming takes much longer (~ 72 or more hr). Also, without the heat treatment necessary for film formation
3차원 정률캐스팅법으로 막을 두껍게 만들 경우, 적층된 막의 강성이 너무 크게 증가하게 되어 구동체로 형성되었을 경우에는 변위가 현저하게 떨어졌다. 이는 본 발명과 같이 어느 정도 이상의 구동력을 필요로 하는 균일한 막을 적용하기 위한 것과는 거리가 먼 물성이라 할 수 있다. 형상기억합금을 이용한 카테터 (비교예 3)는 크게 은도 변화에 따른 금속의 내부 결정 구조 변화를 이용한 부피 변화를 바탕으로 움직이는데, 이를 위해서는 금속의 내부까지 원활하고 층분한 열의 전달이 필요하다. 즉, 충분한 열과 시간이 주어진 상태에서 구조의 변화가 유발되어야 충분한 구동이 이루.어지게 때문에, 전기적 신호에 따라 구동하는 구동체의 When the film is thickened by the three-dimensional constant casting method, the rigidity of the laminated film is increased too much, and when it is formed as a driving body, the displacement is significantly decreased. This is a physical property far from that of applying a uniform film that requires a certain level of driving force as in the present invention. The catheter using the shape memory alloy (Comparative Example 3) is largely moved based on the volume change using the change of the internal crystal structure of the metal according to the change of silver, which requires smooth and even heat transfer to the inside of the metal. That is, a sufficient drive is made only when a change of the structure is induced in a state in which sufficient heat and time are given.
전기적인 응답속도에 비하여 충분한 시간이 필요한 열적 웅답속도는 상대적으로 매우 느릴 수 밖에 없다 (msec ~ min). 또한 The thermal response rate, which requires sufficient time compared to the electrical response rate, is relatively slow (msec ~ min). Also
형상기억합금의 구동을 위한 온도 범위가 체내 적용을 위한 온도 범위보다 높은 범위에서 일어나므로, 실제 인체 내 적용에는 상당한 무리가 따른다. Since the temperature range for driving the shape memory alloy occurs in a higher range than the temperature range for the application in the body, there is a great deal of practical application in the human body.

Claims

【청구의 범위】 [Range of request]
【청구항 1】  [Claim 1]
(i) 기등형 전기활성 고분자 적층물, 및  (i) the electrically conductive polymer laminates, and
(ii) 상기 기등형 적층물 표면의 일부에 존재하는 복수 개의 전극 코팅층을 포함하는 고분자 구동체로서 ;  (ii) a polymer drive comprising a plurality of electrode coating layers present on a portion of the surface of the lampshade stack;
상기 전기활성 고분자는 이은성 고분자, 전도성 고분자, 탄소 나노튜브, 유전성 고분자, 전기변형 (electrostrictive) 고분자, 나노 클레이, 실리카 화합물 및 이들의 조합물 중에서 선택되고; The electroactive polymer is selected from silver polymer, conductive polymer, carbon nanotube, dielectric polymer, electrostrictive polymer, nano clay, silica compound and combinations thereof;
상기 이온성 고분자는 술폰산기 및 카르보닐기 중에서 선택된 1종 이상의 이온기가 도입된 불소계 고분자로서 , 상기 불소계 고분자는 다음 중에서 선택된 1종 또는 2종 이상의 조합물이고: The ionic polymer is a fluorine-based polymer having at least one ion group selected from a sulfonic acid group and a carbonyl group, and the fluorine-based polymer is one or a combination of two or more selected from the following:
-CCFjCFHCFjCFa)-CCF j CFHCF j CFa)
0-CF2CF(CF3)-0-CF2CF2 0-CF 2 CF (CF 3 ) -0-CF2CF2
-(CH2CF2)- -(CH2CH2)-(CF2CF2)- -(CH2CF2HCF2CF)- CF3 -(CH 2 CF 2 )--(CH2CH2)-(CF 2 CF2)--(CH 2 CF 2 HCF 2 CF)-CF 3
-(CF2CF2)-(CF2CF)- CF3 . 상기 전도성 고분자는 폴리아닐린, 폴리피를, 폴리설폰, 폴리아세틸렌 및 이들의 조합물 중에서 선택된 것이고; -(CF 2 CF 2 )-(CF 2 CF)-CF 3 . The conductive polymer is selected from polyaniline, polypy, polysulfone, polyacetylene, and combinations thereof;
상기 유전성 고분자는 폴리아크릴레이트, 실리콘, The dielectric polymer is polyacrylate, silicon,
폴리비닐리덴플루오라이드 및 이들의 조합물 중에서 선택된 것이고; Polyvinylidene fluoride and combinations thereof;
상기 전기변형 고분자는 폴리아크릴레이트, 실리콘, 폴리우레탄 및 이들의 조합물 중에서 선택된 것이고; The electrostrain polymer is selected from polyacrylates, silicones, polyurethanes, and combinations thereof;
상기 나노 클레이는 술폰화기 및 카르보닐기 중에서 선택된 1종 이상의 이온기가 도입된 것이고; The nanoclay is one or more ionic groups selected from sulfonated and carbonyl groups are introduced;
상기 실리카 화합물은 술폰화 또는 카르보닐화를 통해 개질된 실리카 단량체 및 이들의 조합물 중에서 선택된 것이며 ; The silica compound is a silica modified through sulfonation or carbonylation Selected from monomers and combinations thereof;
상기 전극은 백금, 금, 구리, 은, 니켈, 납, 카드뮴 및 이들의 합금 중에서 선택되는 것임을 특징으로 하는 카테터용 고분자 구동체.  The electrode is a polymer driving device for a catheter, characterized in that selected from platinum, gold, copper, silver, nickel, lead, cadmium and alloys thereof.
【청구항 2】  [Claim 2]
게 1항에 있어서 , 상기 고분자 구동체는  The method of claim 1, wherein the polymer driving body
(iii) 상기 기등형 적층물의 길이 방향으로 존재하는 내부 덕트 (duct)를 추가로 포함하는 것을 특징으로 하는 고분자 구동체.  (iii) a polymer drive further comprising an inner duct present in the longitudinal direction of the laminar stack.
【청구항 3】  [Claim 3]
계 1항 또는 2항에 있어서, 상기 기등형 적층물은 4각형 , 6각형 , 8각형 및 원형 중에서 선택된 단면을 가지고; 3. The system of claim 1 or 2, wherein the shaped stack has a cross section selected from quadrilateral, hexagonal, octagonal and circular;
상기 복수 개의 전극 코팅층은 상기 기등형 적층물의 길이 방향으로 연속적 또는 간헐적으로 위치하며 , 상기 기등형 적층물의 마주보는 평면 또는 곡면의 표면에 대웅되도록 짝수개로 존재하고, 상기 복수 개의 전극 코팅층 간에서는 틈이 존재하여 절연되어 있으며 ; The plurality of electrode coating layers are continuously or intermittently positioned in the longitudinal direction of the light emitting stack, and are present in even numbers so as to be opposite to the surface of the planar or curved surface of the light emitting stack, and a gap is formed between the plurality of electrode coating layers. Exists and insulated;
상기 덕트는 장축이 0.2-0.5匪인 단면을 가지고, 상기 기등형 적층물 단면의 장축 (D)과 상기 덕트의 장축 (d)의 비율 (D:d)은 1:0.2-0.5인 것임을 특징으로 하는 고분자 구동체. The duct has a cross section with a long axis of 0.2-0.5 mm, and the ratio (D: d) of the long axis (D) of the cross section of the ridged laminate is 1: 0.2-0.5 Polymer driving body.
【청구항 4】  [Claim 4]
제 3항에 있어서, 상기 구동체는 The method of claim 3, wherein the drive body
(iv) 상기 기등형 적층물과 상기 전극 코팅층 사이에 전도성 고분자, 탄소 나노튜브 및 전이'금속 산화물 중에서 선택된 단일층 또는 2종 이상의 흔합층, 및 (iv) the gideung type stack and the electrode coating layer between the conductive polymer, carbon nanotubes, and transition, a single layer or two or more kinds of metal oxide selected from common hapcheung, and
(V) 상기 전극 코팅층 및 절연층 상에 존재하는 실리콘계, 에폭시계, 파릴렌계 및 폴리우레탄계 코팅층 중에서 선택된 하나 이상의 층을 추가로 포함하는 것을 특징으로 하는 고분자 구동체.  (V) The polymer drive body further comprises at least one layer selected from silicon-based, epoxy-based, parylene-based and polyurethane-based coating layers present on the electrode coating layer and the insulating layer.
【청구항 5】  [Claim 5]
제 3항에 있어서 , 상기 고분자 구동체는 구동력이 0.2 gf 이상이고, 구동변위가 40° 이상이고, 강도가 8 X 10"7 Nm2 이상이고, 웅답속도가 2.0 mm/s 미만이며, 밀도가 0.25 g/cm3미만인 것임을 특징으로 하는 고분자 구동체. ' The method of claim 3, wherein the polymer drive body has a driving force of at least 0.2 g f , A polymer drive, characterized in that the drive displacement is 40 ° or more, the strength is 8 X 10 "7 Nm 2 or more, the stepping speed is less than 2.0 mm / s, the density is less than 0.25 g / cm 3 '.
【청구항 6】  [Claim 6]
제 5항에 있어서, 상기 기등형 적층물은  The method of claim 5, wherein the light emitting stack
복수 개의 불소계 고분자 이온교환막을 적층하여 170-190 C에서 10-20 분 동안 가열하고 나서, After stacking a plurality of fluorine-based polymer ion exchange membrane and heated at 170-190 C for 10-20 minutes,
상기 가열된 이온교환막을 6,500-7,000 psi 및 170-190 :에서 10-20 분 동안 열압착함으로써 조되는 것임을 특징으로 하는 고분자 구동체. Wherein the heated ion exchange membrane is compressed by thermocompression at 6,500-7,000 psi and 170-190 for 10-20 minutes.
【청구항 7】  [Claim 7]
제 1항에 있어서, 상기 기등형 적층.물은 두께 175-185 의 전기활성 고분자를 열압착하여 최종 두께 900-1100 皿가 되도록 제조된 것임을 특징으로 하는 고분자 구동체. The method of claim 1, wherein the lamp-shaped laminate. The water is a polymer driving body, characterized in that it is manufactured so that the final thickness of 900-1100 kPa by thermocompression bonding the electroactive polymer having a thickness of 175-185.
【청구항 8】  [Claim 8]
(b) 복수 개의 전기활성 고분자 이은교환막을 적층하는 단계,  (b) stacking a plurality of electroactive polymer silver exchange membranes;
(c) 상기 적층된 이온교환막을 170-190 °C에서 10-20 분 동안 가열하는 단계; (c) heating the laminated ion exchange membrane at 170-190 ° C. for 10-20 minutes;
(d) 상기 가열된 이온교환막을 6,500-7,000 psi 및 170-190 °C에서 10-20 분 동안 열압착하는 단계, (d) thermocompressing the heated ion exchange membrane at 6,500-7,000 psi and 170-190 ° C. for 10-20 minutes;
(e) 상기 열압착된 이온교환막을 절단하여 기등형 적층물을 수득하는 단계, e.
(h) 상기 ;기등형 적층물의 표면에 전극을 코팅하는 단계, 및 ᅳ (h) coating an electrode on the surface of the shaped laminate; and iii.
(i) 상기 전극 코팅층을 일부분 제거함으로써 절연층을 형성시키는 단계를 포함하는 고분자 구동체의 제조방법으로서,  (i) forming a dielectric layer by partially removing the electrode coating layer;
상기 전기활성 고분자는 이온성 고분자, 전도성 고분자, 탄소 나노튜브, 유전성 고분자, 전기변형 (electrostrictive) 고분자, 나노 클레이 , 실리카 화합물 및 이들의 조합물 중에시 선택되고; The electroactive polymer is selected from ionic polymers, conductive polymers, carbon nanotubes, dielectric polymers, electrostrictive polymers, nanoclays, silica compounds, and combinations thereof;
상기 이온성 고분자는 술폰산기 및 카르보닐기 중에서 선택된 I총 이상의 이은기가 도입된 불소계 고분자로서, 상기 불소계 고분자는 다음 중에서 선택된 1종 또는 2종 이상의 조합물이고: The ionic polymer is a total of at least I selected from a sulfonic acid group and a carbonyl group A fluorine-based polymer having a silver group introduced therein, wherein the fluorine-based polymer is one or a combination of two or more selected from the following:
-(CF2CFHCF2CF2 -(CF 2 CFHCF2CF 2
OCF2CF(CF3 >CF2CF2 OCF 2 CF (CF 3 > CF 2 CF 2
-(CH2CF2)- -(CHaCH^fCFzCFj):
Figure imgf000034_0001
-(CH 2 CF 2 )--(CHaCH ^ fCFzCF j ):
Figure imgf000034_0001
-(CF2CF2)-(CF2CF)- CF3 ; 상기 전도성 고분자는 폴리아닐린, 폴리피롤, 폴리설폰, 폴리아세틸렌 및 이들의 조합물 중에서 선택된 것이고 ; -(CF 2 CF 2 )-(CF 2 CF)-CF 3 ; The conductive polymer is selected from polyaniline, polypyrrole, polysulfone, polyacetylene and combinations thereof;
상기 유전성 고분자는 폴리아크릴레이트, 실리콘, The dielectric polymer is polyacrylate, silicone,
폴리비닐리덴플루오라이드 및 이들의 조합물 중에서 선택된 '것이고; Polyvinylidene fluoride and will thereof in combination selected ';
상기 전기변형 고분자는 폴리아크릴레이트, 실리콘, 폴리우레탄 및 이들의 조합물 중에서 선택된 것이고; The electrostrain polymer is selected from polyacrylates, silicones, polyurethanes, and combinations thereof;
상기 나노 클레이는 술폰화기 및 키:르보닐기 중에서 선택된 1종 이상의 이온기가 도입된 것이고; The nanoclay is one or more ionic groups selected from a sulfonated group and a key: carbonyl group;
상기 실리카 화합물은 술폰화 또는 카르보닐화를 통해 개질된 실리카 The silica compound is a silica modified through sulfonation or carbonylation
단량체 및 이들의 조합물 중에서 선택된 것이며 ; Selected from monomers and combinations thereof;
상기 전극은 백금, 금, 구리, 은, 니켈, 납, 카드뮴 및 이들의 합금 중에서 선택되는 것임을 특징으로 하는 고분자 구동체의 제조방법 . , The electrode is a method of manufacturing a polymer driving body, characterized in that selected from platinum, gold, copper, silver, nickel, lead, cadmium and alloys thereof. ,
【청구항 9】  [Claim 9]
(b*) 복수 개의 전기활성 고분자 이온교환막 사이에 덕트 형성용 기둥이 상기 복수 개의 이온교환막 사이에 존재하도록 이온교환막을 적층하는 단계 ,(b * ) stacking an ion exchange membrane such that a duct forming pillar exists between the plurality of electroactive polymer ion exchange membranes between the plurality of ion exchange membranes,
(c) 상기 적층된 이온교환막을 170-190 °C에서 10-2Q 분 동안 가열하는 단계, (c) heating the laminated ion exchange membrane at 170-190 ° C. for 10-2Q minutes,
(d) 상기 가열된 이온교환막을 6,500-7,000 psi 및 170-190 °C에서 丄 0-20 분 동안 열압착하는 단계, (d) the heated ion exchange membrane at 0,500-7,000 psi and 170-190 ° C. Thermocompression step for minutes ,
(e') 기등형 적충물의 길이 방향으로 내부 덕트가 존재하도록 상기 열압착된 이온교환막을 절단하고 상기 덕트 형성용 기등을 제거하여 기등형 적층물을 수득하는 단계, - (e ') cutting the thermo-compressed ion exchange membrane such that an inner duct is present in the longitudinal direction of the lamppost-loaded remnant, and removing the lamp for forming the duct to obtain a lamp-shaped laminate.
(h) 상기 기등형 적층물의 표면에 전극을 코팅하는 단계, 및 (h) coating an electrode on the surface of the lamp stack; and
(i) 상기 전극 코팅층을 일부분 제거함으로써 절연층을 형성시키는 단계를 포함하는 고분자 구동체의 제조방법으로서,  (i) forming a dielectric layer by partially removing the electrode coating layer;
상기 전기활성 고분자는 이온성 고분자, 전도성 고분자, 탄소 나노튜브, 유전성 고분자, 전기변형 (electrostrictive) 고분자, 나노 클레이, 실리카 화합물 및 이들의 조합물 중에서 선택되고; The electroactive polymer is selected from ionic polymers, conductive polymers, carbon nanotubes, dielectric polymers, electrostrictive polymers, nanoclays, silica compounds, and combinations thereof;
상기 이온성 고분자는 술폰산기 및 카르보닐기 중에서 선택된 1종 이상의 이온기가 도입된 불소계 고분자로서, 상기 불소계 고분자는 다음 중에서 선택된 1종 또는 2종 이상의 조합물이고:
Figure imgf000035_0001
The ionic polymer is a fluorine-based polymer in which at least one ionic group is selected from a sulfonic acid group and a carbonyl group, and the fluorine-based polymer is one or a combination of two or more selected from the following:
Figure imgf000035_0001
-(CH2CF -(CH2CH2)-(CF2CF2 -(CH 2 CF-(CH2CH2)-(CF 2 CF 2
-(CH2CF2HCF2CF)- CF3 -(CH 2 CF 2 HCF 2 CF)-CF 3
-(CF2CF2)-(CF2CF)- CF3 . -(CF 2 CF 2 )-(CF 2 CF)-CF 3 .
상기 전도성 고분자는 폴리아닐린, 플리피를, 폴리설폰, 폴리아세틸렌 및 이들의 조합물 중에서 선택된 것이고; The conductive polymer is selected from polyaniline, flippy, polysulfone, polyacetylene and combinations thereof;
상기 유전성 고분자는 폴리아크릴레이트, 실리콘, The dielectric polymer is polyacrylate, silicon,
폴리비닐리덴플루오라이드 및 이들의 조합물 중에서 선택된 것이고; Polyvinylidene fluoride and combinations thereof;
상기 전기변형 고분자는 폴리아크릴레이트, 실리콘, 폴리우레탄 및 이들의 조합물 중에서 선택된 것이고; The electrostrain polymer is selected from polyacrylates, silicones, polyurethanes, and combinations thereof;
상기 나노 클레이는 술폰화기 및 카르보닐기 중에서 선택된 1종 이상의 이온기가 도입된 것이고; The nanoclay is at least one selected from a sulfonated group and a carbonyl group Ionic groups are introduced;
상기 실리카 화합물은 술폰화 또는 카르보닐화를 통해 개질된 실리카 단량체 및 이들의 조합물 중에서 선택된 것이며 ;  The silica compound is selected from silica monomers modified through sulfonation or carbonylation and combinations thereof;
상기 전극은 백금, 금, 구리, 은, 니켈, 납, 카드뮴 및 이들의 합금 중에서 선택되는 것임을 특징으로 하는 고분자 구동체의 제조방법 . The electrode is a method of manufacturing a polymer driving body, characterized in that selected from platinum, gold, copper, silver, nickel, lead, cadmium and alloys thereof.
【청구항 10】  [Claim 10]
계 8항 또는 제 9항에 있어서, The method according to claim 8 or 9,
상기 (h) 전극 코팅 단계는 물과 알코올 중량비가 100:8-30인 혼합 용매 하에서 수행되고, The electrode coating step (h) is carried out under a mixed solvent of water and alcohol weight ratio of 100: 8-30,
상기 (i) 절연층 형성 단계는 복수 개의 전극 코팅층이 상기 기둥형 적층물의 길이 방향으로 연속적 또는 간헐적 ^로 위치하고 상기 기등형 적층물의 마주보는 평면 또는 곡면의 표면에 대웅되도록 짝수개로 The step (i) of forming an insulating layer may be performed in an even number such that a plurality of electrode coating layers are continuously or intermittently ^ in the longitudinal direction of the columnar stack and stand on an opposing plane or curved surface of the lamp stack.
존재하도록 수행하는 것임을 특징으로 하는 고분자 구동체 제조방법 . Method for producing a polymer drive body, characterized in that to carry out.
【청구항 11】  [Claim 11]
제 10항에 있어서, 상기 고분자 구동체 제조 방법은 The method of claim 10, wherein the polymer driving body manufacturing method
(a) 상기 전기활성 고분자 이온교환막을 세척하는 단계,  (a) washing the electroactive polymer ion exchange membrane;
(f) 상기 기등형 적층물의 불순물을 제거하는 단계,  (f) removing impurities in the shaped stack;
(g) 상기 기등형 적층물의 표면에 전도성 고분자, 탄소 나노튜브 및 전이금속 산화물 중에서 선택된 단일충 또는 2종 이상의 흔합층을  (g) a single layer or two or more mixed layers selected from conductive polymers, carbon nanotubes, and transition metal oxides on the surface of the lamp stack
형성시키는 단계, 및 Forming; and
(j) 상기 전극 코팅층 및 상기 절연층 상에 실리콘 또는 폴리우레탄을 코팅하는 단계 중에서 선택된 하나 이상의 단계를 추가로 포함하는 것임을 특징으로 하는 고분자 구동체 제조방법 .  (j) The method of claim 1, further comprising at least one step selected from the steps of coating silicon or polyurethane on the electrode coating layer and the insulating layer.
【청구항 12】  [Claim 12]
제 10항에 있어서 , 상기 기등형 적층물은.4각형, 6각형, 8각형 및 원형 중에서 선택된 단면을 가지고; 11. The system of claim 10, wherein the shaped stack has a cross section selected from octagons, hexagons, octagons, and circles;
상기 덕트는 장축이 0.2-0.5隱인 단면을 가지고, 상기 기등형 적층물 단면의 장축 (D)과 상기 덕트의 장축 (d)의 비율 (D:d)은 1:0.2-0.5이고; The duct has a cross section with a major axis of 0.2-0.5 mm 3, and the lamp stack The ratio (D: d) of the major axis (D) of the cross section to the major axis (d) of the duct is 1: 0.2-0.5;
상기ᅳ 고분자 구동체는 구동력이 0.2 gf 이상이고, 구동변위가 40° 이상이고 강도가 8 X 10"7 Nm2 이상이며 웅답속도가 2.0 mra/s 미만이며, 밀도가 0.25 g/cm3미만인 것임을 특징으로 하는 고분자 구동체의 제조방법 . The polymer driving body has a driving force of 0.2 g f or more, a driving displacement of 40 ° or more, a strength of 8 X 10 "7 Nm 2 or more, a stepping speed of less than 2.0 mra / s, and a density of less than 0.25 g / cm 3. Method for producing a polymer drive body, characterized in that.
[청구항 13】  [Claim 13]
제 3항에 따른 고분자 구동체를 포함하는 카테터로서, 0.2 gf 이상의 구동력 , 40° 이상의 구동변위, 8 X 10— 7 Nm2 이상의 강도, 0.25 g/cm3미만의 밀도 및 2.0 mm/s 미만의 웅답속도를 가지고 직경이 1.5 誦 이하이며 , As the catheter comprising a polymer actuator according to 3, 0.2 g f or more force, more than 40 ° displacement drive, 8 X 10- 7 Nm 2 or more strength, 0.25 g / cm 3 and a density of less than 2.0 mm / s under It has a step speed of less than 1.5 직경 in diameter,
상기 카테터는 카테터 삽입을 위한 가이드와이어로서의 용도로 또는 기구 또는 약물 주입용 능동형 카테터로서의 용도로 사용되는 것임을 특징으로 하는 카테터 . The catheter may be used as a guidewire for catheter insertion or as an active catheter for device or drug injection.
【청구항 14】  [Claim 14]
제 13항에 있어서, 상기 약물은 혈전용해제인 것임을 특징으로 하는 카테터 .The catheter of claim 13, wherein the drug is thrombolytic.
【청구항 15】 [Claim 15]
(i) 이온성 고분자, 전도성 고분자, 탄소 나노튜브, 유전성 고분자, 전기변형 (electrostrictive) 고분자, 나노 클레이, 실리카 화합물 및 이들의 조합물 중에서 선택된 기등형 전기활성 고분자 적충물, 및  (i) an isotropic electroactive polymer antagonist selected from ionic polymers, conductive polymers, carbon nanotubes, dielectric polymers, electrostrictive polymers, nanoclays, silica compounds and combinations thereof, and
(ii) 상기 기등형 적층물 표면의 일부에 존재하는 백금, 금, 구리 , 은, 니켈, 납, 카드뮴 및 이들의. 합금 중에서 선택된 복수 개의 전극 코팅층을 포함하는 고분자 구동체에 대해서,  (ii) platinum, gold, copper, silver, nickel, lead, cadmium and the like present on a portion of the surface of the shaped laminate. For a polymer driving body comprising a plurality of electrode coating layer selected from the alloy,
상기 전기활성 고분자 내에 존 하는 이온기의 이온교환능, 이온기의 개수, 이은기의 분포, 상대 양이온의 종류, 이온교환막의 두께 , 표면 전극 두께 증에서 선택된 하나 이상의 인자를 조절함으로써, 구동력, 구동변위 및 웅답속도 중에서 선택된 고분자 구동체의 구동특성을 조절하는 방법 . The driving force, driving displacement and the Method to control the driving characteristics of polymer actuator selected from
PCT/KR2010/000534 2010-01-29 2010-01-29 Polymer actuator, catheter containing same, and preparation method thereof WO2011093542A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2010/000534 WO2011093542A1 (en) 2010-01-29 2010-01-29 Polymer actuator, catheter containing same, and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2010/000534 WO2011093542A1 (en) 2010-01-29 2010-01-29 Polymer actuator, catheter containing same, and preparation method thereof

Publications (1)

Publication Number Publication Date
WO2011093542A1 true WO2011093542A1 (en) 2011-08-04

Family

ID=44319511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/000534 WO2011093542A1 (en) 2010-01-29 2010-01-29 Polymer actuator, catheter containing same, and preparation method thereof

Country Status (1)

Country Link
WO (1) WO2011093542A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5954654A (en) * 1997-01-31 1999-09-21 Acuson Corporation Steering mechanism and steering line for a catheter-mounted ultrasonic transducer
US20030055446A1 (en) * 2001-09-20 2003-03-20 Seward Kirk Patrick Microfabricated surgical device for interventional procedures
US20070021685A1 (en) * 2005-05-04 2007-01-25 Abbott Laboratories Abbott Vascular Devices Guidewire apparatus with an expandable portion and methods of use
US7300438B2 (en) * 2001-04-27 2007-11-27 C.R. Bard, Inc. Electrophysiology catheter for mapping and/or ablation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5954654A (en) * 1997-01-31 1999-09-21 Acuson Corporation Steering mechanism and steering line for a catheter-mounted ultrasonic transducer
US7300438B2 (en) * 2001-04-27 2007-11-27 C.R. Bard, Inc. Electrophysiology catheter for mapping and/or ablation
US20030055446A1 (en) * 2001-09-20 2003-03-20 Seward Kirk Patrick Microfabricated surgical device for interventional procedures
US20070021685A1 (en) * 2005-05-04 2007-01-25 Abbott Laboratories Abbott Vascular Devices Guidewire apparatus with an expandable portion and methods of use

Similar Documents

Publication Publication Date Title
KR101015180B1 (en) Polymer actuator, catheter comprising the same and its preparation method
US11083881B2 (en) Method for increasing permeability of a cellular layer of epithelial cells
JP5868953B2 (en) Injection mold microneedle array and manufacturing method thereof
JP5860032B2 (en) Device for the delivery of rheumatoid arthritis drugs
US20020099356A1 (en) Transmembrane transport apparatus and method
JP2014530732A (en) Transdermal delivery of highly viscous bioactive agents
US20140249526A1 (en) Stretchable composite conductors for flexible electronics, stretchable plasmonic devices, optical filters, and implantable devices and methods for manufacture thereof
JP2004237077A (en) Flexible nerve probe, its manufacturing method and its using method
Pan et al. Magnetization-induced self-assembly method: Micro-needle array fabrication
WO2011093542A1 (en) Polymer actuator, catheter containing same, and preparation method thereof
CN209645649U (en) A kind of functionalization wide cut implantation micro-electrode array
KR101771340B1 (en) Manufacturing method of invasive bio device for diagnosis and therapy, and thereof bio device
KR20120100261A (en) Electroactive polymer vibrating actuator tip, its preparation method and the method for dissolving thrombus using the same
Zhao et al. A square tubular conducting polymer actuator for smart catheter application
WO2012102415A1 (en) Electroactive polymer oscillator, method for manufacturing same, and method for dissolving blood clots using same
Chen et al. High-performance sono-piezoelectric nanocomposites enhanced by interfacial coupling effects for implantable nanogenerators and actuators
Bernasconi et al. Layer-by-layer fabrication of hydrogel microsystems for controlled drug delivery from untethered microrobots
Kwon et al. Microfluidic‐Release Insertion Shuttle Designed for Implanting Flexible Biomedical Electronic Devices into Live Bodies
CN205948185U (en) Metal micropin
Wang et al. Microneedle Patches‐Integrated Transdermal Bioelectronics for Minimally Invasive Disease Theranostics
Gao et al. Stimuli-responsive Ti 3 C 2 T x MXene-based hydrogels: preparation and applications
Robinsons et al. Bipolar electrochemical growth of conductive microwires for cancer spheroid integration: A step forward in conductive biological circuitry
RU2574137C2 (en) Method for improving epithelial barrier penetration
RU2560646C9 (en) Array of microneedles manufactured by injection-compression moulding and method of moulding array of microneedles
CN114059348A (en) Flexible transparent heating film, flexible transparent thermotherapy sheet and preparation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10844766

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10844766

Country of ref document: EP

Kind code of ref document: A1