WO2011093470A1 - Pharmaceutical composition for treatment of bone diseases, which contains protein comprising bone morphogenetic protein receptor 1b (bmpr1b) extracellular domain or mutant thereof - Google Patents

Pharmaceutical composition for treatment of bone diseases, which contains protein comprising bone morphogenetic protein receptor 1b (bmpr1b) extracellular domain or mutant thereof Download PDF

Info

Publication number
WO2011093470A1
WO2011093470A1 PCT/JP2011/051816 JP2011051816W WO2011093470A1 WO 2011093470 A1 WO2011093470 A1 WO 2011093470A1 JP 2011051816 W JP2011051816 W JP 2011051816W WO 2011093470 A1 WO2011093470 A1 WO 2011093470A1
Authority
WO
WIPO (PCT)
Prior art keywords
bone
protein
bmpr1b
extracellular domain
seq
Prior art date
Application number
PCT/JP2011/051816
Other languages
French (fr)
Japanese (ja)
Inventor
誠 柿谷
一磨 富塚
Original Assignee
協和発酵キリン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 協和発酵キリン株式会社 filed Critical 協和発酵キリン株式会社
Publication of WO2011093470A1 publication Critical patent/WO2011093470A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/177Receptors; Cell surface antigens; Cell surface determinants
    • A61K38/179Receptors; Cell surface antigens; Cell surface determinants for growth factors; for growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy

Definitions

  • the present invention is a novel therapeutic agent for bone diseases containing a protein containing the extracellular domain of bone morphogenetic protein receptor 1B (hereinafter referred to as BMPR1B) known as a TGF- ⁇ superfamily molecular receptor protein or a variant thereof. Regarding usage. This finding was found from characterization of BMPR1B extracellular domain-expressing knock-in mice and mice administered with a protein containing BMPR1B extracellular domain.
  • BMPR1B bone morphogenetic protein receptor 1B
  • Non-Patent Documents 1 and 2 The osteoporotic population has increased in the face of a super-aging society, and fractures resulting from it have become a major social problem.
  • femoral neck fractures and vertebral body fractures lead to bedridden conditions, thereby significantly lowering the quality of life (QOL), leading to an increase in social and medical economic burden due to care and hospitalization treatment.
  • QOL quality of life
  • Non-Patent Documents 1 and 2 it has been revealed that osteoporosis is greatly related to mortality in the elderly (Non-patent Documents 3 and 4). against this background, prevention and treatment of osteoporosis is an important issue to be overcome.
  • Osteoporosis in which the bone mass is reduced while maintaining the ratio between bone mass and calcification
  • primary osteoporosis and secondary (secondary) osteoporosis the former being traditionally postmenopausal osteoporosis and the elderly
  • second osteoporosis refers to the pathological condition referred to as osteoporosis, the latter refers to the pathology of osteoporosis caused by changes in bone metabolism due to other diseases, endocrine, nutritional / metabolic, inflammatory, immobility, drug, Classified into blood disorders, congenital and other diseases.
  • endocrine includes hyperparathyroidism, hyperthyroidism, hypogonadism, Cushing syndrome, growth hormone deficiency, diabetes, Addison's disease, calcitonin deficiency, etc. , Chronic debilitating disease, illness, severe liver disease (especially primary biliary cirrhosis), gastrectomy, scurvy, malabsorption syndrome (including celiac disease), hypophosphatemia, chronic kidney disease, idiopathic high Ca urine disease, hemochromatosis, amyloidosis, mastocytoma, sodium overdose, calcium intake deficiency, vitamin D, A excess, etc.
  • are inflammatory, rheumatoid arthritis, paraarticular (prolonged bone resorption by inflammatory cytokines ) ⁇ Sarcoidosis is immobility, systemic, bed rest, paralysis, locality, after fracture, etc., and pharmacology is steroid (as an immunosuppressant, widely used for inflammatory diseases) Diseases treated with steroids include collagen disease, asthma, inflammatory bowel disease, organ transplantation, etc. Bone loss is a serious side effect of this therapy.), Methotrexate, heparin, warfarin, anti-keiren drugs ⁇ Lithium, tamoxifen, etc.
  • Non-patent Document 5 Non-patent Document 5
  • osteoarthritis Among the above-mentioned diseases, osteoarthritis, rheumatoid arthritis, malignant tumor, bone disease associated with renal disease, and the like are listed as bone diseases having a great social impact in addition to primary osteoporosis. Osteoarthritis is the most common disease in the musculoskeletal region, and it is said that there are 10 million affected people in Japan. The number of patients is expected to continue to increase as the population ages. Severe joint disorders are treated by artificial joint replacement surgery, but there is currently no report of a fundamental treatment method for symptoms with a moderate or lower disease level (Non-patent Document 6).
  • Rheumatoid arthritis is a chronic and progressive inflammatory disease mainly composed of polyarthritis, and it often involves destruction of the joints and deformation due to the involvement of surrounding cartilage and bones from the proliferation of the synovial membrane. . It has been reported that treatment with anti-rheumatic drugs (methotrexate) cannot sufficiently suppress the progression of joint destruction, and biological preparations targeting tumor necrosis factor (TNF) ⁇ have a significant effect on joint destruction inhibition It is considered a revolutionary drug. However, there is a concern as an adverse effect that the incidence of opportunistic infection, tuberculosis (extrapulmonary tuberculosis), pneumocystis pneumonia, etc. increases during its use (Non-patent Document 7).
  • Examples of bone diseases associated with malignant tumors include hypercalcemia associated with malignant tumors and bone metastases. Hypercalcemia causes anorexia and diuresis, with dehydration and associated renal dysfunction. Bone metastasis is particularly common in patients with breast cancer, prostate cancer, and lung cancer. Although bone metastasis itself is rarely fatal, it can cause bone pain, pathologic fractures, nerve paralysis, etc., so it often reduces the patient's quality of life. Control of bone metastasis is clinically important. This is a problem (Non-Patent Document 8). Bisphosphonate preparations are used to treat bone diseases associated with these malignant tumors, but problems due to side effects have been pointed out.
  • renal osteodystrophy a pathological condition in which bone is damaged due to renal tissue damage.
  • Bone disease in renal dialysis patients is mainly due to secondary hyperparathyroidism. Renal osteodystrophy progresses due to increased parathyroid hormone (PTH) concentration caused by hyperparathyroidism and insufficient production of, for example, bone morphogenetic protein (BMP) 7.
  • PTH parathyroid hormone
  • BMP bone morphogenetic protein
  • fibrotic osteoarthritis When fibrotic osteoarthritis becomes severe, collagen fibers are irregularly formed and calcified as non-crystalline calcium phosphate to form woven bone, which promotes bone formation but easily breaks the bone.
  • the basic treatment for fibrotic osteoarthritis is suppression of parathyroid hormone secretion, with the focus on calcium intake and active vitamin D administration.
  • CKD chronic kidney disease
  • various controls such as food and water restriction are necessary, and when secondary hyperparathyroidism progresses, hypercalcemia is also a problem. Become.
  • active vitamin D it is necessary to pay close attention to monitoring renal function (serum creatinine level) and serum calcium level.
  • Aplastic osteopathy also develops with long-term continuous use and overdose of active vitamin D preparations, or suppression of parathyroid hormone after parathyroidectomy (PTX).
  • PTX parathyroid hormone after parathyroidectomy
  • Aplastic osteopathy has a higher fracture rate than fibrotic osteoarthritis and induces hypercalcemia and calcification of blood vessels and other soft tissues.
  • the pathological condition is a state of low rotation bone in which both bone resorption and bone formation are suppressed, and there is no established treatment method (Non-patent Document 9).
  • Hyperphosphatemia and hypercalcemia caused by reduced bone phosphorus and calcium uptake (low turnover bone) and storage ability (high turnover bone) are ectopic (vascular) calcifications. It is considered as one of the causes.
  • patients with chronic renal failure especially dialysis patients, more than 40% of deaths are due to cardiovascular complications, and arteriosclerosis with vascular calcification has attracted attention as an important disease state.
  • Treatment of highly advanced calcified lesions in patients with chronic renal failure is still difficult and has a poor prognosis (Non-patent Document 10).
  • osteoarthritis in addition to primary osteoporosis, osteoarthritis, rheumatoid arthritis, malignant tumors, bone diseases associated with renal diseases, vascular calcification associated with bone diseases, and development of drugs with fewer side effects are desired. ing.
  • Non-patent Document 11 Bone metabolism is thought to be controlled by the balance between the action of osteoblasts and osteoclasts, and osteoporosis occurs when the action of breaking bone exceeds that of making bone.
  • Non-patent Document 11 postmenopausal women have decreased secretion of female hormones that play a role in protecting bones, resulting in decreased osteogenic bone formation and increased osteoclastic bone resorption activity. The possibility of presenting the symptoms is high (Non-patent Documents 12 and 13). For this reason, estrogen preparations have been used, but their use has been shown to increase the risk of thrombosis and breast cancer, and indications are being limited. Further, the use of a selective estrogen receptor modulator has been reported to increase the risk of deep vein thrombosis (Non-patent Document 14).
  • calcitonin bisphosphonate, and the like are used as drugs that suppress the bone resorption activity of osteoclasts.
  • Calcitonin is known to induce inactivation of osteoclasts by binding to the calcitonin receptor expressed on the surface of osteoclasts. It is clinically used not only for osteoporosis but also for hypercalcemia and bone Paget disease. Applied. However, the effectiveness against the fracture-suppressing effect is not clear, and it has been reported that the receptor expression is down-regulated by administration of calcitonin (Non-patent Documents 14 and 15).
  • Bisphosphonates have a strong bone resorption inhibitory effect, and amino group-containing bisphosphonates such as andronate and risedronate are the mainstream therapeutic agents for osteoporosis in Japan. These bisphosphonate preparations inhibit the prenylation of lipid proteins by inhibiting farnesyl diphosphate synthase, thereby suppressing bone resorption function and inducing osteoclast apoptosis (Non-patent Document 16).
  • the 2008 FDA issued a warning about severe skeletal, joint, and muscle pain.
  • side effects such as jaw osteonecrosis have been reported when used for a long period of time (2 to 3 years or more) after dental treatment (Non-patent Document 17).
  • Anti-RANKL antibodies are expected as new bone resorption inhibitors other than the above. Anti-RANKL antibodies are also expected to be used as inhibitors for bone metastasis in prostate cancer, joint destruction inhibitors for rheumatoid arthritis, and therapeutic agents for multiple myeloma, and clinical development is underway.
  • the report that the RANKL / RANK pathway is important for the survival and maintenance of dendritic cells (Non-Patent Document 18) and that RANK and RANKL-deficient mice cause lymph node dysplasia (Non-Patent Document 19, 20), there is concern about the effect of anti-RANKL antibody preparations on the immune system.
  • AMGEN reported an increase in the incidence of some infectious diseases in a clinical trial of an anti-RANKL antibody preparation (denosumab).
  • recent clinical trial results reported the occurrence of osteonecrosis of the jaw as a side effect at almost the same rate as the bisphosphonate formulation.
  • Intermittent administration treatment using PTH is the only osteogenesis-promoting agent that activates osteoblasts (Eli Lilly, Teriparatide, not approved in Japan), but cortical bone compared to cancellous bone mass promoting activity Since the thickness-accelerating activity is not so high, it is not different from other therapeutic agents such as bisphosphonate preparations, so it is considered that the effect of preventing fracture is not so high.
  • Asahi Kasei Pharma reported on side effects such as palpitations, tachycardia, and blood pressure reduction, as well as problems such as bone and meat species observed in long-term administration studies in rats, and continued in Europe and the United States for more than 1.5 to 2 years. Because it is not approved for use in cancer patients, hypercalcemia caused by cancer bone metastasis and cancer [parathyroid hormone-related peptide (PTHrP) produced by tumor cells is It is impossible to use PTH for the treatment of the causative tumor associated humoral hypercalcemia or local osteolytic hypercalcemia].
  • PTHrP parthyroid hormone-related peptide
  • osteoporosis hypercalcemia, bone Paget's disease, bone metastasis suppression, rheumatoid arthritis caused by decreased osteogenic ability of osteoblasts including postmenopausal women and increased bone resorption activity of osteoclasts Development of a drug that acts more effectively on destruction suppression and multiple myeloma and has fewer side effects is desired.
  • osteomalacia and Kuru disease are known as bone diseases caused by inhibiting only the calcification process. Bone is formed when a matrix layer made of collagen or the like is calcified by the deposition of hydroxyapatite, but this calcification is impaired, and the state of increased osteoids is osteomalacia.
  • Kur disease When it develops, it is called Kur disease. Symptoms include bone and joint pain such as limb pain, joint pain, back pain, back pain, etc., leading to gait disturbance and easy fracture. In the case of children, developmental disorders, deformed limbs such as O-legs, and pigeon breasts are observed. As a general treatment method, vitamin D, calcium, and phosphorus preparations are used in addition to dietary therapy, but surgery is the only coping therapy if there is a strong dysfunction due to deformation. Therefore, the development of a drug that is more effective against Kur disease and osteomalacia is desired.
  • osteogenesis such as marble bone disease (Non-patent document 21), Paget's disease of bone (Non-patent document 22), Kamrati-Engelmann disease (CED) (Non-patent documents 23, 24), etc. It is known that the balance of bone resorption becomes abnormal, and bone strength is decreased while an increase in bone mass is observed.
  • factors that determine bone strength mechanically include cancellous bone connectivity, cortical bone thickness and porosity, shape factors such as cross-sectional moment, calcification and bone Examples include qualitative factors such as fatigue (Non-patent Document 25). Therefore, development of an effective drug that not only increases bone mass but also helps improve bone strength is desired in the treatment of primary osteoporosis and secondary (secondary) osteoporosis.
  • Bone morphogenetic protein (Non-patent document 26).
  • GDF growth differentiation factor
  • BMP is a growth factor with various functions belonging to the TGF ⁇ superfamily, and the TGF ⁇ superfamily includes TGF ⁇ , activins / inhibins, Nodal, myostatin, and anti-Mullerian hormone.
  • BMP family molecules bind to two different serine / threonine kinase receptors, and their signals are transmitted by Smad-dependent and independent pathways.
  • BMP2 / 4 subgroup belongs to BMP2, BMP4 and Drosophila decapentaplegic
  • BMP7 subgroup belongs to BMP5, BMP6, BMP7, BMP8 and Drosophila gbb-60A
  • GDF5 subgroup belongs to GDF5
  • GDF6 and GDF7 4 BMP9 and BMP10 belong to the second subgroup. All BMPs contain 7 cysteine residues, 6 of which form SS bridges in the molecule, and the remaining 1 is dimerized and used for intermolecular SS bridge formation.
  • BMP family molecules are secreted in an active form, and BMP signals in vivo are regulated by secretory antagonists such as noggin, chordin, and DAN.
  • BMPs exert their actions by binding to and activating receptors, which are composed of two types of receptors called type I serine / threonine kinase receptors and type II serine / threonine kinase receptors. ing. Seven types of receptors classified as Type I receptors [Activin receptor-like kinase (ALK) 1-7] have been reported, and five types of receptors classified as type II receptors (ActR2A, ActR2B, BMPR2, TGF ⁇ R2 and AMHR2) have been reported.
  • ALK Activin receptor-like kinase
  • BMP shows binding affinity for both type I and type II receptors, and in particular BMP2 as BMP showing high affinity for type I, 9 and 10 have been reported.
  • type III receptors (betaglycan, endoglin, RMG-a, b, c) called co-receptor further bind to the ligand / receptor complex composed of Type I receptor and type II receptor, It is known to regulate the binding affinity of.
  • BMP receptors (ALK1, ALK2, ALK3, ALK6) phosphorylate and activate Smad1 / Smad5 / Smad8.
  • Smad molecules that are phosphorylated by activin or TGF ⁇ receptor are also known as Smad2, Smad3, Smad4 called common mediator Smad (co-Smad) or Smad6, Smad7 called inhibitor Smad (I-Smad) .
  • Activated Smad moves into the nucleus together with Smad4, forms a further complex with the nuclear transcription factor, and regulates the expression of the target gene by binding to the promoter region of the target gene.
  • Smad pathway is mainly considered as a signal transduction pathway of BMP, the presence of a non-Smad pathway (MAPK signal pathway such as p38MAPK, ERK or JNK) has been reported (Non-patent Documents 27 to 30).
  • BMPR1B (ALK6), one of the BMP receptors, is a single transmembrane receptor belonging to BMP receptor type I.
  • CDw293 is known as another name of BMPR1B.
  • BMPR1B has a serine / threonine kinase domain in the cell, and 10 highly conserved cysteine residues are found in the extracellular region.
  • the amino acid homology between human-derived BMPR1A and BMPR1B is 42.1%, and all of them bind to BMP2, 4 and 7, but the binding affinity of BMPR2 and heterodimer is at least that of these three ligands. It is different.
  • the most highly expressed tissue is prostate
  • the most highly expressed tissue is heart, brain, skeletal muscle, pancreas, thymus, prostate, testis, uterus, small intestine, low expression Is placenta, kidney, spleen, large intestine.
  • expression is observed in the brain and expression is observed in the lung although it is lower, but the prostate is unanalyzed and is unknown (Non-patent Document 31).
  • Non-Patent Document 36 analysis of BMPR1B knockout mice revealed that axonal guidance abnormalities and hyperapoptosis in the retinal retina (Non-Patent Document 36), proliferation of phalangeal bone regions, especially prechondral cells, and chondrocyte differentiation inhibition (non- Patent Document 37) was observed.
  • Non-Patent Document 37 analysis of BMPR1B knockout mice revealed that axonal guidance abnormalities and hyperapoptosis in the retinal retina.
  • deficit A2 type represents a state where the finger joint is attached to the cartilage or bone and there is no movement of the joint.
  • This region is considered to be an important region in TGF ⁇ type I receptor for regulation of activation by endocytosis and phosphorylation between TGF ⁇ receptors.
  • BMPR1B gene expression vector was introduced into C2C12 strain and GDF5 was added, Smad signaling increased and non-Smad signaling increased alkaline phosphatase (ALP) activity in a dose-dependent manner, but R486Q to R486W mutations.
  • ALP alkaline phosphatase
  • the inventors of the present invention contrary to the conventional prediction, when a protein containing an extracellular domain derived from BMPR1B is highly expressed in vivo, or a protein containing an extracellular domain derived from BMPR1B in vivo. It has been found for the first time that all of these proteins have an effect on bone mass increase when administered.
  • the present inventors produced a mouse that overexpresses a fusion between a protein containing BMPR1B extracellular domain and Fc, and whitened the femur by overexpression of a fusion between the protein containing BMPR1B extracellular domain and Fc.
  • bone disease therapeutic agents containing proteins containing the BMPR1B extracellular domain or a variant thereof as active ingredients are provided as new osteoporosis therapeutic agents, arthritis therapeutic agents, and bone disease associated with malignant tumors. It was shown that it can be done. That is, the present invention includes the following features.
  • BMPR1B bone morphogenetic protein receptor 1B
  • a pharmaceutical composition for treating a bone disease comprising, as an active ingredient, a protein containing a mutant of the extracellular domain of BMPR1B having an action of increasing bone strength, or a vector containing a nucleic acid encoding the protein.
  • the protein is a fusion protein of the extracellular domain or a variant thereof and a mammal-derived immunoglobulin Fc protein or a variant thereof, and the nucleic acid encoding the protein is a nucleic acid encoding the fusion protein.
  • the composition according to any one of (1) to (6), wherein the extracellular domain comprises the amino acid sequence of SEQ ID NO: 1 or 3.
  • the composition according to any one of (1) to (6), wherein the nucleic acid encoding the protein containing the extracellular domain comprises the nucleotide sequence of SEQ ID NO: 2 or 4.
  • composition according to any one of (2) to (8), wherein the Fc protein comprises the amino acid sequence of SEQ ID NO: 8.
  • the nucleic acid encoding the Fc protein comprises the nucleotide sequence of SEQ ID NO: 7.
  • the composition according to any one of (2) to (10), wherein the fusion protein comprises the amino acid sequence of SEQ ID NO: 10 or 18.
  • composition according to any one of (2) to (10), wherein the nucleic acid encoding the fusion protein comprises the nucleotide sequence of SEQ ID NO: 9 or 17.
  • a method for treating a bone disease comprising administering the composition of any one of (1) to (14) to a mammal.
  • the mammal is a human.
  • the bone disease is a disease accompanied by a decrease in bone mass, bone density and / or bone strength.
  • bone mass, bone density and / or bone strength can be increased. Therefore, diseases associated with a decrease in bone mass, bone density and / or bone strength, such as bone diseases caused by osteoporosis, osteoarthritis, rheumatoid arthritis, malignant tumors, and various bone diseases or disorders related thereto It becomes possible to treat.
  • This figure shows H & E stained images of femoral pathological sections of 16-week-old USmBMPR1B-hFcm KI chimeric mice (right diagram) and control mice (left diagram).
  • This figure shows the mBMPR1B-hFcm recombinant expression vector.
  • the SDS-PAGE image of mBMPR1B-hFcm recombinant purified preparation is shown. From the left, molecular weight markers, recombinant purified preparations (reducing conditions, 3 ⁇ g), and recombinant purified preparations (non-reducing conditions, 6 ⁇ g) are shown, and the numerical values on the vertical axis show the molecular weight (kDa).
  • This figure shows the hBMPR1B-hFcm recombinant expression vector.
  • This figure shows that mBMPR1B-hFcm recombinant has activity to increase bone density, especially cancellous bone density.
  • the vertical axis represents bone density (g / cm 3 ).
  • the horizontal axis represents the administration group.
  • This figure shows that mBMPR1B-hFcm recombinant has activity to increase bone mass, especially cortical bone mass.
  • the vertical axis represents bone mass (mm 3 ).
  • the horizontal axis represents the administration group.
  • This figure shows that mBMPR1B-hFcm recombinant suppresses bone diseases caused by malignant tumors, particularly bone metastases.
  • the vertical axis represents the bone fracture area (mm 2 / mouse).
  • the horizontal axis represents the administration group.
  • the present invention provides a pharmaceutical composition for treating a bone disease, which comprises, as an active ingredient, a protein comprising a mutant of the extracellular domain of the above, or a vector comprising a nucleic acid encoding the protein.
  • the present invention is based on the finding that the above fragment containing the extracellular domain of BMPR1B has a function of increasing bone mass, bone density and / or bone strength in mammals. That is, the present inventors produced a mouse that expresses the extracellular domain of BMPR1B from mouse ES cells using a knock-in method, or a fusion recombinant of a protein containing the extracellular domain of BMPR1B and Fc to the mouse. When administered, it was found for the first time that the bone mass, bone density, and / or bone strength of the bone site were increased to such an extent that they could be discriminated visually and sensorially compared to the wild type. According to the conventional knowledge, as described in the background art above, although signal transduction via BMPR1B is important for bone formation, it is considered that inhibition of signal transduction has a suppressive effect on bone formation. It was not even imagined to be involved in bone growth.
  • BMPR1B extracellular domain BMPR1B has a new useful function of increasing bone mass, bone density and / or bone strength.
  • the pharmaceutical composition of the present invention can be used for the treatment of bone diseases that increase bone mass, bone density and / or bone strength at bone sites.
  • the pharmaceutical composition of the present invention will be described more specifically.
  • BMPR1B extracellular domain> BMPR1B related to the present invention is a mammal-derived BMPR1B.
  • BMPR1B amino acid and nucleotide sequence information is available by accessing the US NCBI.
  • BMPR1B has been isolated from humans, mice, chimpanzees, dogs, cows, Japanese zelkova, zebrafish, etc., and sequence information has been published.
  • the BMPR1B protein or the nucleic acid encoding the same is not limited to its origin, but is preferably derived from mammals such as primates including humans and rodents including mice. .
  • human BMPR1B has accession number NM_001203.2 or NP_001194.1, etc.
  • mouse BMPR1B has accession number NM_007560.3 or NP_031586.1, etc. to GenBank (US NCBI). It is registered.
  • amino acid sequences of the extracellular region proteins of human and mouse BMPR1B are as follows.
  • Amino acid sequence of the extracellular region protein of human BMPR1B (SEQ ID NO: 1): KKEDGESTAPTPRPKVLRCKCHHHCPEDSVNNICSTDGYCFTMIEEDDSGLPVVTSGCLGLEGSDFQCRDTPIPHQRRSIECCTERNECNKDLHPTLPPLKNRDFVDGPIHHR
  • Amino acid sequence of the extracellular region protein of mouse BMPR1B (SEQ ID NO: 3): LLRSSGKLNVGTKKEDGESTAPTPRPKILRCKCHHHCPEDSVNNICSTDGYCFTMIEEDDSGMPVVTSGCLGLEGSDFQCRDTPIPHQRRSIECCTERNECNKDLHPTLPPLKDRDFVDGPIHHK
  • mammals include, but are not limited to, primates, livestock animals, rodents, ungulates, pet animals and the like. Preferred mammals are humans and mice.
  • Mutants of the extracellular domain of the present invention include both natural mutants and artificial mutants, and are 85% or more, preferably 90% or more, such as 93% or more, 95% or more in the amino acid sequence of the extracellular domain. %, 97% or more, 98% or more, or 99% or more of an amino acid sequence having the ability to increase bone mass, bone density and / or bone strength.
  • the mutant is 85% or more, preferably 90% or more, such as 93% or more, 95% or more, 97% or more, 98% or more, in the amino acid sequence of SEQ ID NO: 1 or 3, or It contains an amino acid sequence having an identity of 99% or more and has the ability to increase bone mass, bone density and / or bone strength.
  • identity refers to the degree of agreement between sequences when aligning two amino acid sequences so that the number of identical amino acid residues is maximized. Specifically, it is expressed as a percentage (%) of the number of identical amino acid residues to the total number of amino acid residues. When gaps are introduced as in FASTA, the number of gaps is also added to the total number of amino acid residues.
  • Proteins having 85% or more sequence identity can be searched using sequence homology search programs such as BLAST and FASTA by accessing sequence databases such as US NCBI and European EMBL [Altschul] , S. F. et al., J. Mol. Biol. 15, 403-410 (1990), Karlin, S. et al., Proc. Natl. Acad. Sci. USA, 87, 2264-2268 (1990) etc].
  • BLAST divides the sequence into fixed-length words, searches for similar fragments in word units, stretches them in both directions until the degree of similarity is maximized, performs local alignment, and finally combines these to make the final It is a method of performing a general alignment.
  • FASTA also searches for fragments of sequences that match consecutively at high speed, performs local alignment by focusing on those fragments that have high similarity, and finally considers these gaps. Is an alignment method.
  • a mutation comprising substitution, deletion or addition may be performed, and the natural disulfide bond may not be broken and the natural conformation may be substantially retained. desirable. This can result in loss of the ability of the domain protein to increase bone mass, bone density and / or bone strength if it breaks natural disulfide bonds in the extracellular domain and alters its native conformation. This is because the ability may be greatly reduced.
  • mutagenesis method if the sequence of the extracellular domain is known, a site-directed mutagenesis method using a PCR method using a primer synthesized based on that sequence (including a complementary mutant sequence) is preferable.
  • a site-directed mutagenesis method using a PCR method using a primer synthesized based on that sequence (including a complementary mutant sequence) is preferable.
  • Mutation introduction kits for example, Takara Shuzo
  • mutations can be introduced according to the instructions.
  • Kunkel's method uses a plasmid containing DNA encoding an extracellular domain as a template, and a primer (including a complementary mutant sequence) phosphorylated at the 5 ′ end with T4 DNA polynucleotide kinase. And then synthesizing the DNA, and then ligating the ends with T4 DNA ligase to purify the DNA containing the desired mutation.
  • the mutation includes substitution, deletion, addition, insertion, or a combination thereof.
  • substitution may be either conservative substitution or non-conservative substitution, but conservative substitution is preferable so as not to substantially change the conformation of the extracellular domain protein.
  • Conservative substitutions can be made between amino acids with similar chemical and physical properties such as structural (e.g., branched, aromatic, etc.), electrical (e.g., acidic, basic, etc.), polar or hydrophobic, etc. Refers to replacement.
  • Branched amino acids include valine, leucine and isoleucine.
  • Aromatic amino acids include tyrosine, tryptophan, phenylalanine, histidine.
  • Acidic amino acids include glutamic acid and aspartic acid.
  • Basic amino acids include lysine, arginine, and histidine.
  • Polar amino acids include serine, threonine, glutamine, asparagine, tyrosine, cysteine, glycine, proline and the like.
  • Hydrophobic amino acids include alanine, valine, leucine, isoleucine, methionine and the like.
  • Deletion is the loss of one or more amino acid residues.
  • Addition is the attachment of one or more amino acid residues to the N-terminus or C-terminus of the protein.
  • Insertion is the joining of one or more amino acid residues inside a protein.
  • deletion and insertion can be performed on the assumption that the conformation of the extracellular domain protein is not substantially changed. Therefore, deletion or insertion of about 1 to 10, preferably about 1 to 5 amino acid residues can be performed.
  • an increase in “bone mass, bone density and / or bone strength and bone strength” is accompanied by at least an increase in cancellous bone, thickening and proliferation of diaphysis, an increase in maximum load, and the like.
  • one of the active ingredients of the pharmaceutical composition of the present invention is an extracellular domain of BMPR1B derived from a mammal, or has an amino acid sequence of 85% or more of the amino acid sequence of the domain, and bone mass , A variant thereof having an action of increasing bone density and / or bone strength.
  • the expression “comprising” means that the heterologous peptide, polypeptide or protein is added to the extracellular domain or a variant thereof, as appropriate, if necessary, at the N-terminal or C-terminal side of the domain or the variant thereof. It means that they may be bonded or fused via a peptide linker (for example, 1 to 20 amino acids).
  • a preferred example of such a heterologous protein is a mammal-derived immunoglobulin Fc protein or a variant thereof.
  • the protein originally possessed by the administered mammal is used as the heterologous protein. It may be desirable to do.
  • a preferable Fc protein is a human immunoglobulin Fc protein in consideration of use in humans.
  • the immunoglobulin class and subclass are not limited to the following, but any of IgG, IgD, IgE, IgM, IgA, IgG1, IgG2, IgG2a, IgG2b, IgG2c, IgG3, IgG4, IgA1, IgA2, etc.
  • the Fc protein can improve the stability of an extracellular domain or a variant thereof in vivo.
  • the Fc protein has a biological activity such as antibody-dependent cytotoxicity (ADCC) activity and / or complement-dependent cytotoxicity (CDC) activity, in order to avoid in vivo effects due to its biological activity. Therefore, it is desirable to introduce a mutation for suppressing, reducing or losing the biological activity as described above.
  • a mutation is an amino acid substitution of, for example, 1 to 10, preferably 1 to 5, more preferably 1 to 3 amino acid residues in the amino acid sequence of an Fc protein derived from a mammal, and includes ADCC and Any amino acid substitution that decreases CDC activity, and specifically, can include substitution as exemplified in Example 1 described later.
  • a preferred example of the Fc protein is a human IgG1 Fc variant comprising the amino acid sequence of SEQ ID NO: 8.
  • the binding position of the Fc protein may be either the N-terminal side or the C-terminal side of the extracellular domain or a variant thereof, but the C-terminal side is preferred.
  • a specific example of the Fc fusion protein is a protein comprising any one of the amino acid sequences of SEQ ID NO: 10 and SEQ ID NO: 18, for example.
  • the extracellular domain in the amino acid sequence of SEQ ID NO: 1 or SEQ ID NO: 3 is derived from the extracellular region protein of BMPR1B.
  • the amino acid sequence of this domain has the ability to increase bone mass, bone density and / or bone strength. As long as it has, it may contain a mutation as described in the section ⁇ Variant of extracellular domain> above.
  • the protein containing the extracellular domain or a variant thereof does not necessarily need to be bound or fused with a heterologous peptide, polypeptide or protein. That is, the protein in the present invention may be a fragment of the extracellular region protein of the BMPR1B. Such fragments may contain mutations as described in the section ⁇ Variants of extracellular domain> above, as long as they have the ability to increase bone mass, bone density and / or bone strength.
  • the protein containing the extracellular domain of the present invention or a mutant thereof can be prepared by a conventional gene recombination technique. Briefly, the protein is prepared by preparing a DNA encoding the protein of the present invention, constructing an expression vector containing this DNA, transforming or transfecting prokaryotic or eukaryotic cells with the vector, Recovering the desired recombinant protein from the cultured cells. Protein purification is performed by appropriately combining conventional protein purification methods such as ammonium sulfate precipitation, organic solvent precipitation, dialysis, electrophoresis, chromatofocusing, gel filtration chromatography, ion exchange chromatography, affinity chromatography, and HPLC. Is possible.
  • conventional protein purification methods such as ammonium sulfate precipitation, organic solvent precipitation, dialysis, electrophoresis, chromatofocusing, gel filtration chromatography, ion exchange chromatography, affinity chromatography, and HPLC. Is possible.
  • the protein containing the extracellular domain or a variant thereof in the present invention may be chemically modified.
  • Chemical modifications include, but are not limited to, for example, glycosylation, polyethylene glycol (PEG), acetylation, amidation, phosphorylation and the like.
  • Particularly preferred chemical modifications that can be utilized are glycosylation and pegylation.
  • PEGylation is the binding of one or more polyethylene glycol (PEG) molecules to amino acid residues such as the N-terminal amino group of proteins and the ⁇ -amino group of lysine. Generally, a PEG molecule is attached to the free amino group of an amino acid.
  • PEG polyethylene glycol
  • the average molecular weight of PEG is not limited to the following, but can be used in the range of about 3000 to about 50000.
  • active groups such as carboxyl group, formyl (aldehyde) group, N-hydroxysuccinimide ester group, amino group, thiol group, and maleimide group are introduced into the terminal part of PEG to It can be reacted with a group such as an amino group, a carboxyl group, a thiol group, or a hydroxyl group.
  • Glycosylation is the attachment of a carbohydrate chain (ie, sugar chain) to an asparagine, serine or threonine residue of a protein.
  • sugar chain binding occurs by recognizing the sequence of Asn-X-Thr / Ser (where X is any amino acid residue other than Pro).
  • a sugar chain can be introduced at a position different from the natural type.
  • a recombinant protein can be glycosylated by expressing a nucleic acid encoding the recombinant protein in eukaryotic cells (yeast cells, animal cells, plant cells, etc.) by genetic recombination techniques.
  • the sugar chain structure is not particularly limited, and it is considered that the sugar chain structure varies depending on the cell type selected for expression.
  • human-derived cells yeast cells capable of synthesizing human sugar chains, Chinese hamster ovary (CHO) cells, and the like can be used.
  • yeast cells capable of synthesizing human sugar chains
  • Chinese hamster ovary (CHO) cells and the like can be used.
  • Acetylation and amidation are preferably performed mainly at the N-terminus or C-terminus of the protein. These reactions can be performed using, for example, alcohols such as aliphatic alcohols and fatty acids, and carboxylic acids. The number of carbon atoms in the alkyl moiety is, for example, about 1 to 20, but it is necessary to satisfy the conditions such as not impairing water solubility and nontoxicity.
  • Nucleic acids and vectors The active ingredient of the composition of the present invention also includes a vector containing a nucleic acid encoding a protein containing the extracellular domain or a variant thereof.
  • nucleic acid as used herein includes both DNA and RNA, DNA includes genomic DNA and cDNA, and RNA includes mRNA.
  • DNA includes genomic DNA and cDNA
  • RNA includes mRNA.
  • mutants thereof, and proteins containing them including ⁇ Fc protein fusion protein> ⁇ BMPR1B extracellular domain>, ⁇ extracellular domain mutant> and ⁇ extracellular domain or mutation thereof
  • the nucleic acids in the present invention include nucleic acids encoding proteins containing the extracellular domain or a variant thereof described and specifically exemplified above.
  • the nucleic acid is an extracellular region protein of human BMPR1B (SEQ ID NO: 1) and a nucleic acid encoding the amino acid sequence of the extracellular region protein of mouse BMPR1B (SEQ ID NO: 3) (SEQ ID NO: 2 and SEQ ID NO: Includes 4).
  • the nucleic acid may further include a nucleotide sequence encoding a signal sequence.
  • the signal sequence include a signal sequence derived from BMPR1B, a signal sequence derived from human CD33, a signal sequence derived from human serum albumin, a signal sequence derived from human preprotrypsin, and the like.
  • the nucleic acid in the present invention includes a nucleic acid encoding a fusion protein of a protein containing the extracellular domain of BMPR1B or a variant thereof and the heterologous protein defined above.
  • a preferable example of the heterologous protein is an immunoglobulin Fc protein derived from a mammal, and a human Fc protein is particularly preferable, but it is desirable to introduce a mutation so as to reduce or lose its biological activity (particularly ADCC and CDC).
  • SEQ ID NO: 7 shows a nucleotide sequence encoding a mutant human IgG1-derived Fc protein.
  • SEQ ID NOs: 9 and 17 show nucleotide sequences encoding a fusion protein of the mutant human IgG1-derived Fc protein and a protein containing the extracellular domain of mouse or human-derived BMPR1B, respectively.
  • the nucleotide sequence encoding the fusion protein can further include a nucleotide sequence encoding a signal sequence.
  • the signal sequence are a signal sequence derived from a human protein, such as a signal sequence derived from human BMPR1B, a signal sequence derived from human CD33, a signal sequence derived from human serum albumin, a signal sequence derived from human preprotrypsin, and the like.
  • Nucleic acid homologues encoding the above proteins can be obtained by using known techniques using primers and probes prepared from cDNA synthesized from mRNA encoding the human or mouse-derived BMPR1B gene. It can be obtained from a cDNA library prepared from a cell or tissue known to express the gene. Such techniques include PCR methods, hybridization methods (Southern method, Northern method, etc.) and the like.
  • the PCR method is a polymerase chain reaction, which involves a denaturation step (about 94 to 96 ° C, about 30 seconds to 1 minute) to dissociate double-stranded DNA into single strands, and a primer that is a single strand of a template.
  • a denaturation step about 94 to 96 ° C, about 30 seconds to 1 minute
  • One cycle consisting of an annealing step (about 55 to 68 ° C, about 30 seconds to 1 minute) for binding to DNA and an extension step (about 72 ° C, about 30 seconds to 1 minute) to extend the DNA strand About 25 to 40 cycles.
  • preheating treatment at about 94 to 95 ° C. for about 5 to 12 minutes can be performed, and after the final cycle of the extension step, an extension reaction can be further performed at 72 ° C.
  • PCR is performed with a commercially available thermal cycler in a PCR buffer containing a heat-resistant DNA polymerase [for example, AmpliTaq Gold (registered trademark) (Applied Biosystems), etc.], MgCl2, dNTP (dATP, dGTP, dCTP, dTTP), etc.
  • a heat-resistant DNA polymerase for example, AmpliTaq Gold (registered trademark) (Applied Biosystems), etc.
  • MgCl2 MgCl2, dNTP (dATP, dGTP, dCTP, dTTP), etc.
  • sense and antisense primers size: about 17-30b, preferably 20-25b
  • Hybridization is a technique for detecting a target nucleic acid by forming a double strand with a labeled probe having a length of about 20 to 100 b or more.
  • hybridization can generally be performed under stringent conditions.
  • Stringent conditions consist of, for example, about 1-5 ⁇ SSC, hybridization at room temperature to about 40 ° C., and subsequent washing at about 0.1-1 ⁇ SSC, 0.1% SDS, about 45-65 ° C.
  • 1 ⁇ SSC refers to a solution of 150 mmol / L NaCl, 15 mmol / L Na-citric acid, pH 7.0.
  • Such conditions will make it possible to detect nucleic acids with a sequence identity of about 80% or more, preferably 85% or more.
  • the nucleic acid is inserted into a vector and used for production of a protein which is an active ingredient of the pharmaceutical composition of the present invention, or the vector itself is formulated and used as a pharmaceutical composition.
  • Vectors include, for example, plasmids, phages, viruses and the like. Examples of plasmids include, but are not limited to, E.
  • coli-derived plasmids e.g., pRSET, pTZ19R, pBR322, pBR325, pUC118, pUC119, etc.
  • Bacillus subtilis-derived plasmids e.g., pUB110, pTP5, etc.
  • yeast-derived plasmids e.g., YEp13, YEp24, YCp50 etc.
  • Ti plasmids etc.
  • examples of phages include lambda phages
  • viral vectors include animal virus vectors such as retroviruses, vaccinia viruses, lentiviruses, adenoviruses, adeno-associated viruses, etc.
  • insect virus vectors such as baculovirus.
  • the vector may contain a polylinker or multicloning site for integrating the DNA of interest, and may contain several control elements to express the DNA.
  • the control element includes, for example, a promoter, an enhancer, a poly A addition signal, a replication origin, a selection marker, a ribosome binding sequence, a terminator and the like.
  • selectable markers include drug resistance genes (e.g. neomycin resistance gene, ampicillin resistance gene, kanamycin resistance gene, puromycin resistance gene, etc.), auxotrophic complementary genes (e.g. dihydrofolate reductase (DHFR) gene, HIS3 gene, LEU2 gene) , URA3 gene, etc.].
  • DHFR dihydrofolate reductase
  • the promoter may vary depending on the host cell.
  • host cells include, but are not limited to, bacteria such as Escherichia such as E. coli, Bacillus such as Bacillus subtilis, Pseudomonas such as Pseudomonas putida, Saccharomyces cerevisiae, Saccharomyces such as Schizosaccharomyces pombe And yeasts such as Candida and Pichia, animal cells such as CHO, COS, HEK293, NIH3T3 and NS0, insect cells such as Sf9 and Sf21, and plant cells.
  • examples of the promoter include trp promoter, lac promoter, PL or PR promoter.
  • examples of the promoter include gal1 promoter, gal10 promoter, heat shock protein promoter, MF ⁇ 1 promoter, PHO5 promoter, PGK promoter, GAP promoter, ADH promoter, AOX1 promoter and the like.
  • promoters When animal cells are used as hosts, examples of promoters include SR ⁇ promoter, SV40 promoter, LTR promoter, CMV promoter, human CMV early gene promoter, adenovirus late promoter, vaccinia virus 7.5K promoter, metallothionein promoter, polyhedron promoter, etc.
  • promoters include CaMV promoter and TMV promoter.
  • transformation or transfection examples include electroporation method, spheroplast method, lithium acetate method, calcium phosphate method, Agrobacterium method, virus infection method, liposome method, microinjection method, gene gun method, lipofection method, etc. Can be mentioned.
  • the transformed host is cultured under culture conditions according to the types of bacteria, yeast, animal cells, and plant cells, and the target protein is recovered from the cells or from the culture solution.
  • a medium containing a carbon source, a nitrogen source, inorganic salts and the like that can be assimilated by the microorganism is used.
  • carbon sources carbohydrates such as glucose, fructose, sucrose and starch, organic acids such as acetic acid and propionic acid, alcohols such as ethanol and propanol, as nitrogen sources, ammonia, ammonium chloride, ammonium sulfate, ammonium acetate, ammonium phosphate, etc.
  • Inorganic acids ammonium salts of organic acids, peptone, meat extract, corn steep liquor, etc.
  • inorganic substances such as monopotassium phosphate, dipotassium phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, Manganese sulfate, copper sulfate, calcium carbonate and the like are used.
  • a DMEM medium, RPMI1640 medium or the like is used as a basic medium, and a medium to which fetal calf serum (FCS) or the like is added is used.
  • FCS fetal calf serum
  • the target protein can be recovered by conventional methods for protein purification, such as ammonium sulfate precipitation, organic solvent precipitation, dialysis, electrophoresis, chromatofocusing, gel filtration chromatography, ion exchange chromatography, affinity chromatography, It can be carried out by HPLC or the like.
  • the vector When the vector is used for therapy, it is preferably a vector that is not integrated into the subject's genome and that infects cells but is unable to replicate, such as a non-viral vector.
  • vectors include, for example, adeno-associated virus vectors, adenovirus vectors and the like. These vectors can include promoters, enhancers, polyadenylation sites, selectable markers, reporter genes, and the like. Examples of viral vectors are J. Virol. 67, 5911-5921 (1993), Human Gene Therapy, 5, 717-729 (1994), Gene Therapy, 1, 51-58 (1994), Human Gene Therapy, 5, 793-801 (1994), Gene Therapy, 1, 165-169 (1994) etc., or those improved vectors.
  • an example of a non-viral vector is a human artificial chromosome vector, which is a vector composed of chromosome fragments containing human chromosome-derived centromeres and telomeres.
  • the human chromosome fragment is not particularly limited, but includes, for example, human chromosome 14 fragment, human chromosome 21 fragment (International Publication No. WO2004 / 031385, JP 2007-295860, etc.).
  • the vector can be administered to the subject.
  • the present invention further provides a composition for treating a bone disease comprising as an active ingredient a protein containing the extracellular domain of BMPR1B described above or a variant thereof, or a vector containing a nucleic acid encoding the protein.
  • the present invention also provides a method of treating a bone disease comprising administering the composition to a mammal.
  • the bone disease is a disease accompanied by a decrease in bone mass, bone density and / or bone strength.
  • osteoporosis osteoarthritis, rheumatoid arthritis, malignant tumor ⁇ osteoclastoma, osteosarcoma, multiple occurrences Myeloma
  • Myeloma multiple occurrences
  • Myeloma multiple occurrences Myeloma
  • IL-6 is released by the expanded tumor cells.
  • IL-6 also known as osteoclast activating factor (OAF)
  • OAF osteoclast activating factor
  • IL-6 absorb and destroy bone.
  • X-rays of the bones appear to have holes in the bones ("punched-out" resorptive lesions).
  • bone destruction increases blood calcium concentration, resulting in hypercalcemia and various symptoms resulting therefrom.
  • Osteoporosis includes primary osteoporosis and secondary (secondary) osteoporosis.
  • primary osteoporosis include postmenopausal osteoporosis and senile osteoporosis, and secondary (secondary) osteoporosis causes include E.g.
  • endocrine hyperparathyroidism, hyperthyroidism, hypogonadism, Cushing syndrome, growth hormone deficiency, diabetes, Addison's disease, calcitonin deficiency, etc.
  • nutritional / metabolic nutritional / metabolic [chronic debilitating disease, Ruizosis, severe liver disease (especially primary biliary cirrhosis), gastrectomy, scurvy, malabsorption syndrome (including celiac disease), hypophosphatemia, chronic kidney disease, idiopathic hypercalciuria, hemochroma Tosis, amyloidosis, mastocytoma, sodium overdose, calcium intake deficiency, vitamin D, A excess, etc.], inflammatory [rheumatoid arthritis, paraarticularity (increase bone resorption by inflammatory cytokines), Coidosis, etc.], immobility (systemic, bed rest, paralysis, locality, after fracture, etc.), drug-related [steroids (used widely in inflammatory diseases as immuno
  • the bone disease includes a bone disease caused by inhibition of only the calcification process, and examples thereof include Kur disease.
  • a mammal having a bone disease preferably a mammal having a disease accompanied by a decrease in bone mass, bone density and / or bone strength
  • the bone strength acts on the bone part. Increases quantity, bone density and / or bone strength, thereby enabling at least cancellous bone growth, diaphyseal thickening and proliferation, and the like.
  • the form (namely, preparation) of the composition of the present invention is not limited and includes both oral preparations and parenteral preparations.
  • the preparation may contain other therapeutic agents for bone diseases in addition to the active ingredient of the present invention.
  • therapeutic agents include, but are not limited to, calcium preparations (calcium L-aspartate, calcium gluconate, calcium lactate, etc.), active vitamin D3 preparations (alpha-calcidol, calcitriol, etc.), Female hormone drugs (estriol, conjugated estrogens, etc.), calcitonin preparations (salmon calcitonin, elcatonin, etc.), vitamin K preparations (menatetrenone, etc.), bisphosphonate preparations (etidronate disodium, alendronate sodium hydrate, risedronate sodium) Hydrates, etc.), selective estrogen receptor modulators (such as raloxifene hydrochloride), ipriflavones, or anti-RANKL antibodies.
  • calcium preparations calcium preparations (calcium L-
  • the other therapeutic agents described above can be administered to a mammal in combination with the composition of the present invention at the same time or sequentially in accordance with a treatment plan.
  • “continuously” means that another therapeutic agent may be administered after the composition of the present invention is administered, or the composition of the present invention is administered after the other therapeutic agent is administered. This means that the product may be administered, and that there is a time lag in the administration timing of both drugs.
  • the term “simultaneously” means that the composition of the present invention and another therapeutic agent are administered at the same time, and in this case, the composition of the present invention contains another therapeutic agent to form one preparation. It may be configured.
  • parenteral preparations including but not limited to intravenous preparations, intramuscular preparations, intraperitoneal preparations, subcutaneous preparations, topical preparations and the like.
  • Topical administration includes direct administration to the affected area such as skull, femur, sternum, vertebra, rib, etc., including active ingredients in artificial bone components such as hydroxyapatite. You may administer as a transplanted preparation made into the form. Examples of the preparation for parenteral administration include injections, drops, suppositories, transdermal absorption agents, liposomes, nanoparticle-encapsulated preparations, and the like.
  • oral preparations include tablets, pills, granules, capsules, powders, solutions, suspensions, delayed release preparations, enteric preparations and the like.
  • the composition can contain a pharmaceutically acceptable excipient, a carrier such as a diluent, and an additive.
  • Carriers include, for example, saline, glycerol, ethanol, almond oil, vegetable oil, sucrose, starch, lactose and the like.
  • Additives include, for example, binders (for example, pregelatinized corn starch, hydroxypropylmethylcellulose, polyvinylpyrrolidone, etc.), lubricants (for example, magnesium stearate, talc, silica, etc.), dispersants (for example, polyvinylpyrrolidone, cornstarch, etc.) ), Suspension (e.g. talc, gum arabic etc.), emulsifier (e.g. lecithin, gum arabic etc.), disintegrant (potato starch, sodium starch glycolate, crospovidone etc.), buffer (e.g.
  • antioxidants e.g., ascorbic acid, tocopherol, etc.
  • preservatives e.g., sorbic acid, methyl p-hydroxybenzoate, propyl p-hydroxybenzoate, etc.
  • isotonic agents e.g. For example, sodium chloride etc.
  • stabilizers e.g glycerol etc.
  • enteric preparations for example, polymers such as hydroxypropyl methylcellulose phthalate, methacrylic acid-methyl methacrylate copolymer, methacrylic acid-ethyl acrylate copolymer, hydroxypropyl acetate succinate are used.
  • the dosage of the pharmaceutical preparation should be appropriately determined according to the age, sex, weight, symptom, route of administration, etc. of the patient, and is not limited to the following, but for example, about 0.1 ⁇ g / kg to 100 mg / day for an adult. in the range of kg, preferably in the range of about 1 ⁇ g / kg to 10 mg / kg.
  • the preparation may be administered every day during the treatment, or at intervals such as several days, two weeks, or one month.
  • Another active ingredient of the present invention is a vector comprising a nucleic acid encoding the extracellular domain protein of BMPR1B or a variant thereof.
  • Administration of this vector can be carried out in the same manner as the technique or technique used in gene therapy.
  • the vector may be administered directly to the subject (in vivo method), or introduced into a cell collected from the subject, and the transformed cell expressing the desired BMPR1B extracellular domain is selected before the cell is used. It may be administered to a subject (ex vivo method).
  • Gene delivery methods that can be used to administer the vector to the tissue or cell of interest include colloidal dispersion systems, liposome-derived systems, artificial virus envelopes, and the like.
  • the delivery system can use macromolecular complexes, nanocapsules, microspheres, beads, oil-in-water emulsions, micelles, mixed micelles, liposomes, and the like.
  • Direct administration of the vector can be performed, for example, by intravenous injection (including infusion), intramuscular injection, intraperitoneal injection, subcutaneous injection, or the like.
  • vector introduction (transformation) of a vector can be performed using a general gene introduction method such as a calcium phosphate method, a DEAE dextran method, an electroporation method, a lipofection method, or the like.
  • the amount of the vector or transformant to be used varies depending on the administration route, the number of administrations, and the type of the subject, but can be appropriately determined using a method conventional in the art.
  • a fusion expression knock-in chimeric mouse of BMPR1B extracellular domain and Fc can be prepared, for example, according to an established method (International Publication No. WO2006 / 78072) it can.
  • the secretory signal sequence of BMPR1B is replaced with the secretory signal sequence of the mouse Ig ⁇ gene.
  • Fc variant hFcm
  • ADCC ADCC and CDC activity-reduced type.
  • BMPR1B extracellular domain or a fusion of BMPR1B extracellular domain and hFcm is expressed is determined by RT-PCR using RNA derived from the cells Detection can be performed using Northern blotting and the like, and further, enzyme immunoassay (ELISA) using antibodies against the extracellular domain of BMPPR1B or hFcm, and Western blotting.
  • ELISA enzyme immunoassay
  • Control chimera mice produced using the inserted ES cells are subjected to pathological analysis, immunohistochemical analysis, serum biochemical examination, blood cell component measurement, etc. of each tissue, resulting from the expression of the BMPR1B extracellular domain Identify changes.
  • Example 3 which will be described later, as compared with the control chimeric mouse, the mouse BMPR1B extracellular domain knock-in chimeric mouse has a phenotype that is whitening of the femur and whitening of the sternum from Example 3-1.
  • Example 3-3 increased thickness of femoral diaphyseal wall, increased cancellous bone, and increased cancellous bone of sternum, increased unit bone mass of tibia, number of osteoblasts, osteoblast surface, osteoids than Example 3-3 Increase in amount, increase in calcification rate / calcification surface / bone formation rate, and decrease in osteoclast number / osteoclast surface, increase of cortical bone cross-sectional area of femur from Example 3-4 From Example 3-5, an increase in the maximum load on the femur was observed.
  • mouse BMPR1B-cDNA (1509 bp including stop codon from start codon, SEQ ID NO: 4) and human IgG1Fc variant-cDNA
  • a pUSmBMPR1B-hFcm KI vector was prepared from a linker sequence inserted for binding to the extracellular domain of BMPR1B from 702 bp including a stop codon, SEQ ID NO: 7).
  • mice BMPR1B extracellular domain in SEQ ID NO: 5 and the downstream region from the extracellular domain including the transmembrane region are indicated by a boxed line and a double underline based on the information of GenBank accession numbers NM_007560.3 and NP_031586.1, respectively. Show. SEQ ID NO: 5
  • SEQ ID NO: 5 The amino acid sequence encoded by SEQ ID NO: 5 (502 amino acids, SEQ ID NO: 6) is shown below. SEQ ID NO: 6
  • the cDNA sequence and amino acid sequence of human IgG1-derived Fc variant (hFcm) are shown in SEQ ID NOs: 7 and 8, respectively.
  • Known information [Tawara, T., et al., J. Immunology, 180, 2294-2298 (2008), Gross, JA, et al., Immunity, 15, 289-302 (2001), WO02 / 094852 pamphlet], the original cDNA sequence derived from human IgG1-derived Fc region, and the amino acid sequence portion mutated in order to change to ADCC activity-reduced type (the amino acid before and after the mutation is described from the N-terminal side. 20th from the N-terminus of the sequence described in No.
  • SEQ ID NO: 7 The amino acid sequence encoded by SEQ ID NO: 7 (233 amino acids, SEQ ID NO: 8) is shown below.
  • SEQ ID NO: 8 The amino acid sequence encoded by SEQ ID NO: 7 (233 amino acids, SEQ ID NO: 8) is shown below.
  • the polynucleotide sequence from the start codon to the stop codon of the pUSmBMPR1B-hFcm KI vector expression unit [SEQ ID NO: 9: mouse Ig ⁇ signal sequence including intron region (underlined) downstream from 1378 bp including mouse BMPR1B-hFcm sequence Composed.
  • the boxed portion indicates the mouse BMPR1B extracellular domain, the double-line portion indicates hFcm], and the amino acid sequence encoded by the cDNA (SEQ ID NO: 10: 378 amino acids.
  • the underlined portion is the mouse Ig ⁇ signal sequence, the boxed portion. Indicates mouse BMPR1B extracellular domain, double underlined portion indicates hFcm).
  • Mouse Ig ⁇ signal sequence information including the intron region was obtained from the UCSC mouse genome database based on MUSIGKVR1 (accession number K02159) obtained from GenBank.
  • the washing operation was performed three times with (-), and the peroxidase-labeled antibody Anti-Human IgG (Fc fragment) Peroxidase conjugate developed in Goat (SIGMA, product number: A0170) was added and incubated at room temperature for 30 minutes. Then, after washing operation 4 times with T-PBS (-), color was developed using Sumilon peroxidase coloring kit (Sumitomo Bakelite Co., Ltd., product number: ML-1120T), and absorbance at 450 nm was measured.
  • SIGMA peroxidase-labeled antibody Anti-Human IgG (Fc fragment) Peroxidase conjugate developed in Goat
  • the average concentration of 6 females is 297 ⁇ g / ml
  • the average concentration of 4 males is 321 ⁇ g / ml
  • the results of measurement using serum derived from control individuals are all below the detection limit for 10 females and 10 males. Met.
  • the tibia was collected and a non-decalcified slice of the tibia was prepared, and then toluidine blue staining (TB staining), alkaline phosphatase staining (ALP staining), and tartrate-resistant acid phosphatase (TRAP staining) were performed.
  • TB staining toluidine blue staining
  • ALP staining alkaline phosphatase staining
  • TRIP staining tartrate-resistant acid phosphatase
  • the tibial sample was previously embedded with GMA (Glycolmethacrylate) resin.
  • GMA Glycolmethacrylate
  • Unit bone mass (BV / TV) which is a parameter related to bone structure, and the number of osteoblasts (Ob.
  • osteoblast surface Ob.S / BS
  • osteoid mass OV / BV
  • mineralization rate MAR
  • mineralization surface MS / BS
  • bone formation rate BFR / BS
  • the number of osteoclasts Oc.N / B.Pm
  • osteoclast surface Oc.S / BS
  • Unit bone mass As a result of measuring unit bone mass using tibial samples derived from 6 control mice and 6 USmBMPR1B-hFcm KI chimeric mice that were necropsied at 16 weeks of age (female individuals), control individuals As the unit bone mass (mean value) of USmBMPR1B-hFcm KI chimeric mice increased compared to the group, the increase in unit bone mass of the secondary cancellous bone of the tibia metaphysis was caused by mouse BMPR1B extracellular domain-human Fc It was suggested that it was caused by overexpression of the mutant (Table 2). 3-3-3.
  • Osteoclast number / osteoclast surface The number of osteoclasts using the tibia derived from 6 control mice and 6 USmBMPR1B-hFcm KI chimeric mice that were necropsied at 16 weeks of age (female individuals) As a result of measuring the osteoclast surface, all of them decreased (average value) compared to the control population, so the number of osteoclasts and osteoclast surface of the secondary cancellous part of the tibial metaphysis were the mouse BMPR1B extracellular domain- The possibility that it was decreased by overexpression of human Fc mutant was shown (Table 3).
  • femoral bone strength At autopsy, femurs were collected and subjected to a three-point bending test. In the test, the distance between fulcrums was 6 mm, and the maximum load (N) was measured by applying a load to the midpoint.
  • mBMPR1B-hFcm recombinant 4-1 Expression and preparation of mBMPR1B-hFcm recombinant 4-1. Construction of mBMPR1B-hFcm recombinant expression vector 4-1-1. Construction of pLN1V5 vector BamHI / NheI / SalI site at 5 'end and XhoI site at 3' end (V5 tag + Stop codon) A sense oligo DNA (V5S) and an antisense oligo DNA (V5AS) against it were synthesized.
  • V5S sense oligo DNA
  • V5AS antisense oligo DNA
  • V5S GATCCGCTAGCGTCGACGGTAAGCCTATCCCTAACCCTCTCCTCGGTCTCGATTCTACGTGAC (SEQ ID NO: 11)
  • V5AS TCGAGTCACGTAGAATCGAGACCGAGGAGAGGGTTAGGGATAGGCTTACCGTCGACGCTAGCG (SEQ ID NO: 12)
  • the synthetic oligo DNA was introduced into the BamHI-XhoI site on the pLN1 vector described in the report of Kakeda et al. [Gene Ther., 12, 852-856 (2005)] to construct a pLN1V5 vector.
  • SEQ ID NO: 9 SEQ ID NO: 10 METDTLLLWVLLLWVPGSTGLLRSSGKLNVGTKKEDGESTAPTPRPKILRCKCHHHCPEDSVNNICSTDGYCFTMIEEDDSGMPVVTSGCLGLEGSDFQCRDTPIPHQRRSIECCTERNECNKDLHPTLPPLKDRDFVDGPIHHKAEPRSSDKTHTCPPCPAPEAEGAPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCAVSNKALPASIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSPGK Prepare a reaction solution using Prime STAR HS DNA Polymerase (Takara Bio Inc.) according to
  • mBMPR1B-hFcm recombinant expression vector The PCR-amplified fragment recovered in Example 4-1-2 was enzymatically digested with BamHI and NotI (Roche Diagnostics), and separated and recovered on a 0.8% agarose gel. . The enzyme-treated fragment was recovered from the recovered gel using a QIAquick Gel Extraction Extraction Kit (Qiagen) according to the package insert. A vector in which NotI site was added to the pLN1V5 vector prepared in Example 4-1-1 was prepared, the enzyme-treated fragment obtained above was introduced into the BamHI / NotI site, and the mBMPR1B-hFcm recombinant expression vector ( Fig. 2) was constructed. 4-2.
  • Preparation of expression vector for gene introduction The mBMPR1B-hFcm recombinant expression vector obtained in Example 4-1-3 is introduced into Escherichia coli DH5 ⁇ , and DNA is purified from the resulting transformant using a plasmid purification kit. (Qiagen plasmid Maxi kit, Qiagen). 4-2-2.
  • Free style 293F cells (Invitrogen) were used with Freestyle 293 Expression Medium (Invitrogen) at 37 ° C, 5% CO 2 , 125 rpm, cell density was cultured in the range of 2 ⁇ 10 5 to 3 ⁇ 10 6 cells / mL.
  • Opti-MEM I Reduced Serum Medium (Invitrogen) and 1.3 mL of 293 fectin Transfection Reagent 33.7 mL of Opti-MEM I Reduced Serum Medium
  • Opti-MEM I Reduced Serum Medium 1.3 mL of 293 fectin Transfection Reagent 33.7 mL of Opti-MEM I Reduced Serum Medium
  • the composition of the acidic buffer (pH 2.7) used was 1.24 g of boric acid (Nacalai Tesque), disodium hydrogen phosphate / 12 water (Wako Pure Chemical Industries) 7.16 g, citric acid Dissolve monohydrate (Nacalai Tesque) 4.20g and sodium chloride (Pure Chemical Co., Ltd.) 8.77g in Milli-Q water and dilute 1mol / L hydrochloric acid [12mol / L Hydrochloric acid (Pure Chemical Co., Ltd.) 12 times with Milli-Q water Solution] was added to 15.55 mL and made up to 1 L with milli-Q water.
  • the composition of the neutral buffer (pH 7.3) used was 1.24 g of boric acid (Nacalai Tesque), 7.16 g of disodium hydrogen phosphate and 12 water (Wako Pure Chemical Industries), citric acid monohydrate (Nacalai Tesque) ) 4.20g, 8.77g of sodium chloride (Pure Chemical Co., Ltd.) dissolved in Milli-Q water, 5mol / L sodium hydroxide solution [Sodium hydroxide (Pure Chemical Co., Ltd.) 10g dissolved in Milli-Q water to make 50mL] 11.7 Add mL and make up to 1 L with Milli-Q water.
  • the composition of the neutralization buffer used was 13.1 g of sodium dihydrogen phosphate dihydrate (Kanto Chemical Co., Ltd.) and 41.5 g of disodium hydrogen phosphate / 12 water (Wako Pure Chemical Industries, Ltd.) dissolved in milli-Q water. 1L.
  • the pretreated culture supernatant was applied to a Protein A column (Hi Trap Protein A HP 1 mL, GE Healthcare Bioscience) equilibrated with a neutral buffer (pH 7.3).
  • the column is washed with 10 mL or more of neutral buffer (pH 7.3), then washed with 10 mL or more of the buffer prepared by adding sodium chloride to PBS to adjust the sodium chloride concentration to 1.85 mol / L, and again in 15 mL.
  • the column was washed with a neutral buffer (pH 7.3). Thereafter, 5 mL of the column was washed with 20% acidic buffer (pH 2.7). After completion of the washing operation, 40 mL of acidic buffer (pH 2.7) was added to the column with a gradient of 20% to 100% to recover the target protein.
  • AKTAexplorer10s (GE Healthcare Bioscience) was used for the separation and purification operation. Endotoxin removal treatment was performed before use. 4-3-3.
  • Example 4-3-2 Preparation of purified sample The purified sample obtained in Example 4-3-2 was concentrated using an ultrafiltration membrane VIVASPIN20 10,000 MWCO PES (Sartorius Stedim Japan). Then, it replaced with PBS using NAP-25Columns (GE Healthcare Bioscience). After completion of the concentration and replacement operation, filtration was performed with a 0.22 ⁇ m filter (Millex GV, Nihon Millipore). Concentration operation was performed in a clean bench as much as possible. All steps performed in Example 4-3 were performed in a cold room (4 ° C.) or on ice, except for work on a clean bench.
  • SEQ ID NO: 15 the human BMPR1B extracellular domain in SEQ ID NO: 15 and the downstream region from the extracellular domain including the transmembrane region are indicated by a boxed line and a double underline based on the information of GenBank accession numbers NM_001203.2 and NP_001194.1, respectively. Show. SEQ ID NO: 15
  • SEQ ID NO: 15 The amino acid sequence encoded by SEQ ID NO: 15 (502 amino acids, SEQ ID NO: 16) is shown below. SEQ ID NO: 16
  • the cDNA sequence and amino acid sequence of human IgG1-derived Fc variant (hFcm) are shown in SEQ ID NOs: 7 and 8, respectively.
  • Known information [Tawara, T., et al., J. Immunology, 180, 2294-2298 (2008), Gross, JA, et al., Immunity, 15, 289-302 (2001), WO02 / 094852 pamphlet] of the original human IgG1-derived Fc region sequence, which was mutated to change to ADCC activity-reduced type and the amino acid sequence portion (the amino acid before and after mutation from the N-terminal side is described. 20th from the N-terminus of the sequence described in No.
  • SEQ ID NO: 7 The amino acid sequence encoded by SEQ ID NO: 7 (233 amino acids, SEQ ID NO: 8) is shown below.
  • SEQ ID NO: 8 The amino acid sequence encoded by SEQ ID NO: 7 (233 amino acids, SEQ ID NO: 8) is shown below.
  • the polynucleotide sequence from the start codon to the stop codon of the pUShBMPR1B-hFcm KI vector expression unit (SEQ ID NO: 17: mouse Ig ⁇ signal sequence including the intron region (underlined part) downstream from 1342 bp including the human BMPR1B-hFcm sequence Composed.
  • the boxed line part is the human BMPR1B extracellular domain, the double line part is hFcm], and the amino acid sequence encoded by the cDNA (SEQ ID NO: 18: 366 amino acids.
  • the underlined part is the mouse Ig ⁇ signal sequence, the part of the boxed line Indicates the human BMPR1B extracellular domain, and the double underlined portion indicates hFcm).
  • Mouse Ig ⁇ signal sequence information including the intron region is obtained from the UCSC mouse genome database based on MUSIGKVR1 (accession number K02159) obtained from GenBank.
  • V5S GATCCGCTAGCGTCGACGGTAAGCCTATCCCTAACCCTCTCCTCGGTCTCGATTCTACGTGAC (SEQ ID NO: 11)
  • V5AS TCGAGTCACGTAGAATCGAGACCGAGGAGAGGGTTAGGGATAGGCTTACCGTCGACGCTAGCG (SEQ ID NO: 12)
  • the synthetic oligo DNA is introduced into the BamHI-XhoI site on the pLN1 vector described in the report by Kakeda et al. [Gene Ther., 12, 852-856 (2005)] to construct the pLN1V5 vector.
  • an amplified fragment (BamHI hBMPR1B hFcm NotI) is recovered using the QIAquick Gel Extraction Kit (Qiagen) according to the package insert. 6-1-3.
  • hBMPR1B-hFcm recombinant expression vector The PCR-amplified fragment recovered in Example 6-1-2 was enzymatically digested with BamHI and NotI (Roche Diagnostics), 0.8% Separate and collect on an agarose gel. Using the QIAquick Gel Extraction Extraction Kit (Qiagen), collect the enzyme-treated fragments from the collected gel according to the package insert. A vector in which NotI site was added to the pLN1V5 vector prepared in Example 6-1-1 was prepared, the enzyme-treated fragment obtained above was introduced into the BamHI / NotI site, and the hBMPR1B-hFcm recombinant expression vector ( Fig. 4) is constructed. 6-2.
  • Transient expression of hBMPR1B-hFcm recombinant using hBMPR1B-hFcm recombinant expression vector 6-2-1 Preparation of expression vector for gene introduction
  • the hBMPR1B-hFcm recombinant expression vector obtained in Example 6-1-3 was introduced into Escherichia coli DH5 ⁇ , and the plasmid was purified from the resulting transformant using a plasmid purification kit. (Qiagen plasmid Maxi kit, Qiagen). 6-2-2.
  • the composition of the acidic buffer (pH 2.7) used was 1.24 g of boric acid (Nacalai Tesque), disodium hydrogen phosphate and 12 water (Wako Pure Chemical Industries, Ltd.) 7.16 g, citric acid Hydrate (Nacalai Tesque) 4.20 g, Sodium chloride (Junsei) 8.77 g dissolved in Milli-Q water, 1 mol / L hydrochloric acid [12 mol / L (Junsei)) diluted 12 times with Milli-Q water ] Add 15.55mL and make up to 1L with Milli-Q water.
  • the composition of the neutral buffer (pH 7.3) used was 1.24 g of boric acid (Nacalai Tesque), 7.16 g of disodium hydrogen phosphate and 12 water (Wako Pure Chemical Industries, Ltd.), citric acid monohydrate (Nacalai Tesque) 4.20g, 8.77g of sodium chloride (Pure Chemical Co., Ltd.) dissolved in Milli-Q water, 5mol / L sodium hydroxide solution [Sodium hydroxide (Wako Pure Chemical Industries) 10g dissolved in Milli-Q water to make 50mL] Add 11.7mL and make 1L with Milli-Q water.
  • the composition of the neutralization buffer used is sodium dihydrogen phosphate dihydrate (Kanto Chemical Co., Ltd.) 13.1 g and disodium hydrogen phosphate-12 water (Wako Pure Chemical Industries, Ltd.) 41.5 g dissolved in Milli-Q water, 1 L It is what.
  • the pretreated culture supernatant is applied to a Protein A column (Hi Trap Protein A HP 1 mL, GE Healthcare Bioscience) equilibrated with neutral buffer (pH 7.3). After that, wash the column with 10 mL or more of neutral buffer (pH 7.3), then wash with 10 mL or more of the buffer prepared by adding sodium chloride to PBS to adjust the sodium chloride concentration to 1.85 mol / L, and again 15 mL neutral.
  • Example 6-3 After completion of the concentration and replacement operation, filtration is performed with a 0.22 ⁇ m filter (Millex GV, Nihon Millipore). Concentrate as much as possible in a clean bench. All steps performed in Example 6-3 are performed in a cold room (4 ° C.) or on ice, except for work on a clean bench.
  • mice 7-1 Analysis of mBMPR1B-hFcm recombinant mice 7-1.
  • Administration to normal mice In order to evaluate the physiological effect on the bone tissue by the recombinant mouse BMPR1B-hFcm (mBMPR1B-hFcm), a mouse administration experiment was conducted. Mice were introduced with C57BL / 6 (Charles River Japan) at 7 weeks of age, and after habituation, tests were conducted from the age of 8 weeks. The mBMPR1B-hFcm recombinant prepared by the method described in Example 4 was used as a test substance.
  • the group composition consists of three groups: vehicle administration group (PBS group), mBMPR1B-hFcm 3 mg / kg administration group, mBMPR1B-hFcm 30 mg / kg administration group, each of the administration substances three times at a frequency of once every 10 days, It was administered via the tail vein.
  • the first administration day was Day 0, and the mice were subjected to necropsy on Day 30, 10 days after the third administration. 7-2.
  • Bone structure analysis The tissue of the femur was collected at autopsy and fixed with 70% ethanol to prepare a sample for bone structure analysis.
  • Breast cancer bone metastasis model mouse preparation mouse Breast cancer bone metastasis model mouse was prepared for the purpose of evaluating the efficacy of recombinant BMPR1B-hFcm (mBMPR1B-hFcm) as a treatment for cancerous bone lesions (bone metastasis).
  • the breast cancer bone metastasis model is a female SCID mouse (6 weeks old, CB17 / Icr-Prkdc ⁇ scid> / CrlCrlJ Japan Charles River) according to a known method (Clin Cancer Res 2009; 15 (11) June 1 3751-3759).
  • the day of cancer cell inoculation was defined as day 0, and evaluation was performed on day 35.
  • the mBMPR1B-hFcm recombinant was administered into the tail vein four times at a frequency of once every 10 days at doses of 3 mg / kg and 30 mg / kg.
  • Non-cancer cell inoculation group (Normal group), cancer cell inoculation / non-test substance administration group (Vehicle administration group), cancer cell inoculation / mBMPR1B-hFcm 3 mg / kg administration group (mBMPR1B-hFcm 3 mg / kg) Administration group) and cancer cell transplantation / mBMPR1B-hFcm 30 mg / kg administration group (mBMPR1B-hFcm 30 mg / kg administration group) were set and administered.
  • bone mass, bone density and / or bone strength can be increased. Therefore, it is possible to treat osteoporosis, osteoarthritis, rheumatoid arthritis, bone diseases associated with malignant tumors, and various diseases or disorders related thereto without causing side effects.
  • SEQ ID NO: 9--Description of artificial sequence DNA encoding fusion protein
  • SEQ ID NO: 10-description of artificial sequence fusion protein
  • SEQ ID NO: 11-description of artificial sequence sense oligo DNA
  • SEQ ID NO: 12--Description of Artificial Sequence Sense Oligo DNA
  • SEQ ID NO: 13-description of artificial sequence primer
  • SEQ ID NO: 14-description of artificial sequence primer
  • SEQ ID NO: 17-description of artificial sequence DNA encoding the fusion protein

Abstract

Disclosed is a pharmaceutical composition for the treatment of bone diseases, which contains, as an active ingredient: a protein that comprises a bone morphogenetic protein receptor 1B (BMPR1B) extracellular domain derived from a mammal or a mutant of the BMPR1B extracellular domain, said mutant having 85% or higher sequence identity with the amino acid sequence of the domain and having an effect of increasing the bone mass, bone density and/or bone strength; or a vector comprising a nucleic acid encoding the protein. Examples of the bone diseases may include osteoporosis, osteoarthritis, rheumatoid arthritis, bone diseases associated with malignant tumors or the like, and various bone diseases or disorders associated with the aforementioned diseases.

Description

Bone morphogenetic protein receptor 1B(BMPR1B)細胞外ドメイン又はその変異体を含む蛋白質を含有する骨疾患治療用医薬組成物Bone morphogenetic protein receptor 1B (BMPR1B) A pharmaceutical composition for treating bone disease containing a protein containing an extracellular domain or a variant thereof
 本発明は、TGF-βスーパーファミリー分子受容体蛋白質として知られるbone morphogenetic protein receptor 1B(以下、BMPR1Bと表記する)の細胞外ドメイン又はその変異体を含む蛋白質を含有する骨疾患治療剤としての新規用途に関する。
 この知見は、BMPR1B細胞外ドメイン発現ノックインマウス及びBMPR1B細胞外ドメインを含む蛋白質を投与したマウスの特性解析から見出された。
The present invention is a novel therapeutic agent for bone diseases containing a protein containing the extracellular domain of bone morphogenetic protein receptor 1B (hereinafter referred to as BMPR1B) known as a TGF-β superfamily molecular receptor protein or a variant thereof. Regarding usage.
This finding was found from characterization of BMPR1B extracellular domain-expressing knock-in mice and mice administered with a protein containing BMPR1B extracellular domain.
 超高齢化社会を迎え骨粗鬆症人口は増加し、それに起因する骨折が社会的に大きな問題となっている。特に大腿骨頚部骨折及び椎体骨折は、寝たきり状態を招くことにより、クオリティーオブライフ(QOL)を大幅に低下させ、介護や入院治療等による社会的及び医療経済的負担の増加を招いている(非特許文献1、2)。また骨粗鬆症は、高齢期における死亡率に大きな関連性のあることが近年明らかにされてきた(非特許文献3、4)。このような背景から骨粗鬆症の予防及び治療は克服すべき重要な課題となっている。骨粗鬆症(骨基質量と石灰化量との比率が保たれたままで骨量が減少した状態)には原発性骨粗鬆症と続発性(二次性)骨粗鬆症があり、前者は従来、閉経後骨粗鬆症、老人性骨粗鬆症といわれた病態を指し、後者は他の疾患によって骨代謝に変化を来し骨粗鬆症の病態を呈したものを指し、内分泌性、栄養性/代謝性、炎症性、不動性、薬物性、血液疾患、先天性、その他の疾患によるものに分類される。上記分類において、内分泌性には、副甲状腺機能亢進症・甲状腺機能亢進症・性腺機能低下症・クッシング症候群・成長ホルモン欠乏症・糖尿病・アジソン病・カルシトニン欠損症等が、栄養性/代謝性には、慢性消耗性疾患・るいそう・重症肝疾患(特に原発性胆汁性肝硬変)・胃切除・壊血病・吸収不良症候群(セリアック病を含む)・低リン血症・慢性腎疾患・特発性高Ca尿症・ヘモクロマトーシス・アミロイドーシス・肥胖細胞腫・ナトリウム過剰摂取・カルシウム摂取不足・ビタミンD, A過剰症等が、炎症性には、関節リウマチ・傍関節性(炎症性サイトカインによる骨吸収亢進)・サルコイドーシス等が、不動性には、全身性・臥床安静・麻痺・局所性・骨折後等が、薬物性には、ステロイド(免疫抑制薬として炎症性疾患に広く用いられている。ステロイドで治療する疾患には、膠原病、喘息、炎症性腸疾患、臓器移植等がある。骨喪失はこの療法の重篤な副作用である。)・メトトレキセート・ヘパリン・ワーファリン・抗ケイレン薬・リチウム・タモキシフェン等が、血液疾患には、多発性骨髄腫・リンパ腫・白血病・血友病・慢性溶血性疾患等が、先天性には、骨形成不全症・マルファン症候群・クラインフェルター症候群・先天性骨髄性ポルフィリア・嚢胞性線維症等が、その他の疾患によるものには、慢性閉塞性肺疾患・肝疾患・腎疾患・関節リウマチ・妊娠・高酸素血症・HIV感染症等が続発性骨粗鬆症の原因疾患として挙げられている(非特許文献5)。 The osteoporotic population has increased in the face of a super-aging society, and fractures resulting from it have become a major social problem. In particular, femoral neck fractures and vertebral body fractures lead to bedridden conditions, thereby significantly lowering the quality of life (QOL), leading to an increase in social and medical economic burden due to care and hospitalization treatment ( Non-Patent Documents 1 and 2). In recent years, it has been revealed that osteoporosis is greatly related to mortality in the elderly (Non-patent Documents 3 and 4). Against this background, prevention and treatment of osteoporosis is an important issue to be overcome. Osteoporosis (in which the bone mass is reduced while maintaining the ratio between bone mass and calcification) includes primary osteoporosis and secondary (secondary) osteoporosis, the former being traditionally postmenopausal osteoporosis and the elderly Refers to the pathological condition referred to as osteoporosis, the latter refers to the pathology of osteoporosis caused by changes in bone metabolism due to other diseases, endocrine, nutritional / metabolic, inflammatory, immobility, drug, Classified into blood disorders, congenital and other diseases. In the above classification, endocrine includes hyperparathyroidism, hyperthyroidism, hypogonadism, Cushing syndrome, growth hormone deficiency, diabetes, Addison's disease, calcitonin deficiency, etc. , Chronic debilitating disease, illness, severe liver disease (especially primary biliary cirrhosis), gastrectomy, scurvy, malabsorption syndrome (including celiac disease), hypophosphatemia, chronic kidney disease, idiopathic high Ca urine disease, hemochromatosis, amyloidosis, mastocytoma, sodium overdose, calcium intake deficiency, vitamin D, A excess, etc. are inflammatory, rheumatoid arthritis, paraarticular (prolonged bone resorption by inflammatory cytokines ) ・ Sarcoidosis is immobility, systemic, bed rest, paralysis, locality, after fracture, etc., and pharmacology is steroid (as an immunosuppressant, widely used for inflammatory diseases) Diseases treated with steroids include collagen disease, asthma, inflammatory bowel disease, organ transplantation, etc. Bone loss is a serious side effect of this therapy.), Methotrexate, heparin, warfarin, anti-keiren drugs・ Lithium, tamoxifen, etc. include multiple myeloma, lymphoma, leukemia, hemophilia, chronic hemolytic disease for blood diseases, congenital bone dysplasia, Marfan syndrome, Kleinfelter syndrome, Congenital myelogenous porphyria, cystic fibrosis, etc. due to other diseases are secondary to chronic obstructive pulmonary disease, liver disease, kidney disease, rheumatoid arthritis, pregnancy, hyperoxia, HIV infection, etc. It is listed as a causative disease of osteoporosis (Non-patent Document 5).
 上記疾患の中でも原発性骨粗鬆症に加え社会的に大きな影響のある骨疾患として、変形性関節症、関節リウマチ、悪性腫瘍、腎疾患に伴う骨疾患等が挙げられている。
 変形性関節症は運動器領域で最も多い疾患であり、わが国の罹患者は1000万人ともいわれ、高齢化に伴い患者数は増加し続けることが予想されている。重度の関節障害は人工関節置換手術による治療が行われているが、疾病レベルが中等度以下の症状に対する根本的な治療方法は報告されていないのが現状である(非特許文献6)。
Among the above-mentioned diseases, osteoarthritis, rheumatoid arthritis, malignant tumor, bone disease associated with renal disease, and the like are listed as bone diseases having a great social impact in addition to primary osteoporosis.
Osteoarthritis is the most common disease in the musculoskeletal region, and it is said that there are 10 million affected people in Japan. The number of patients is expected to continue to increase as the population ages. Severe joint disorders are treated by artificial joint replacement surgery, but there is currently no report of a fundamental treatment method for symptoms with a moderate or lower disease level (Non-patent Document 6).
 関節リウマチは多発性関節炎を主体とする慢性かつ進行性の炎症性疾患であり、関節滑膜の増殖から次第に周囲の軟骨や骨が侵され、関節の破壊と変形に至ることの多い疾患である。抗リウマチ薬(メトトレキサート)による治療では関節破壊の進行を十分に抑制できないことが報告されており、腫瘍壊死因子(TNF)αを標的とした生物学的製剤は関節破壊抑制効果が有意に表れることから画期的な薬剤と考えられている。しかしながらその使用にあたって日和見感染、結核(肺外結核)、ニューモシスチス肺炎等の発症率が増加することが副作用として懸念されている(非特許文献7)。 Rheumatoid arthritis is a chronic and progressive inflammatory disease mainly composed of polyarthritis, and it often involves destruction of the joints and deformation due to the involvement of surrounding cartilage and bones from the proliferation of the synovial membrane. . It has been reported that treatment with anti-rheumatic drugs (methotrexate) cannot sufficiently suppress the progression of joint destruction, and biological preparations targeting tumor necrosis factor (TNF) α have a significant effect on joint destruction inhibition It is considered a revolutionary drug. However, there is a concern as an adverse effect that the incidence of opportunistic infection, tuberculosis (extrapulmonary tuberculosis), pneumocystis pneumonia, etc. increases during its use (Non-patent Document 7).
 悪性腫瘍に伴う骨疾患として、主に悪性腫瘍に伴う高カルシウム血症と骨転移が挙げられる。高カルシウム血症は食欲不振と利尿をきたし、脱水症状とそれによる腎機能不全を伴う。骨転移は特に乳がん、前立腺がん、肺がん患者に多く認められる。骨転移自体が致命的となることは少ないが、骨痛、病的骨折、神経麻痺等を引きおこす原因となるため患者のQOLを著しく低下させることが多く、骨転移のコントロールは臨床上の重要な課題となっている(非特許文献8)。これら悪性腫瘍に伴う骨疾患の治療にはビスフォスフォネート製剤が用いられているが副作用による問題点が指摘されている。 Examples of bone diseases associated with malignant tumors include hypercalcemia associated with malignant tumors and bone metastases. Hypercalcemia causes anorexia and diuresis, with dehydration and associated renal dysfunction. Bone metastasis is particularly common in patients with breast cancer, prostate cancer, and lung cancer. Although bone metastasis itself is rarely fatal, it can cause bone pain, pathologic fractures, nerve paralysis, etc., so it often reduces the patient's quality of life. Control of bone metastasis is clinically important. This is a problem (Non-Patent Document 8). Bisphosphonate preparations are used to treat bone diseases associated with these malignant tumors, but problems due to side effects have been pointed out.
 腎疾患に伴う骨疾患のうち、腎臓組織障害が原因となって骨が障害される病態を腎性骨異栄養症と呼ぶ。腎透析患者における骨疾患は、主に二次性副甲状腺機能亢進症に起因する。副甲状腺機能亢進を原因とする副甲状腺ホルモン(PTH)濃度増加と例えばbone morphogenetic protein(BMP)7の不十分な産生により、腎性骨異栄養症が進行する。透析患者において骨のPTHに対する反応性が低下する場合が多く、PTH濃度が慢性的かつ顕著に増加すると、線維性骨炎(高い骨回転)が発症するが、PTH濃度が基準範囲に維持されると無形成骨症(低い骨回転)となる。 Among the bone diseases associated with kidney disease, a pathological condition in which bone is damaged due to renal tissue damage is called renal osteodystrophy. Bone disease in renal dialysis patients is mainly due to secondary hyperparathyroidism. Renal osteodystrophy progresses due to increased parathyroid hormone (PTH) concentration caused by hyperparathyroidism and insufficient production of, for example, bone morphogenetic protein (BMP) 7. Bone responsiveness to bone PTH is often reduced in dialysis patients, and chronic and significant increases in PTH levels cause fibrotic osteoarthritis (high bone rotation), but PTH levels remain in the reference range And aplastic osteopathy (low bone rotation).
 線維性骨炎が重症化するとコラーゲン線維が不規則に形成され非結晶性燐酸カルシウムとして石灰化し粗線維骨(woven bone)が形成されることにより、骨形成は亢進するものの骨は折れやすくなる。線維性骨炎治療の基本は副甲状腺ホルモンの分泌抑制であり、カルシウム摂取と活性型ビタミンDの投与が中心となる。但し慢性腎臓病(CKD)、特に透析患者の場合には食物や水分の制限等様々なコントロールが必要であり、また二次性副甲状腺機能亢進症が進行すると逆に高カルシウム血症も問題となる。また活性型ビタミンDもその処方にあたっては、常に腎機能(血清クレアチニン値)と血清カルシウム値をモニターする等細心の注意が必要とされている。 When fibrotic osteoarthritis becomes severe, collagen fibers are irregularly formed and calcified as non-crystalline calcium phosphate to form woven bone, which promotes bone formation but easily breaks the bone. The basic treatment for fibrotic osteoarthritis is suppression of parathyroid hormone secretion, with the focus on calcium intake and active vitamin D administration. However, in the case of chronic kidney disease (CKD), especially dialysis patients, various controls such as food and water restriction are necessary, and when secondary hyperparathyroidism progresses, hypercalcemia is also a problem. Become. In addition, when prescribing active vitamin D, it is necessary to pay close attention to monitoring renal function (serum creatinine level) and serum calcium level.
 活性型ビタミンD製剤の長期連用と過剰投与に伴うもの、あるいは副甲状腺摘出術(PTX)後の副甲状腺ホルモンの抑制によっても無形成骨症は発症する。
 無形成骨症は線維性骨炎よりも骨折率が高く、高カルシウム血症、血管や他の軟部組織の石灰化を誘導することから適切な治療法が求められているが、無形成骨の病態として、骨吸収も骨形成も抑制された低回転骨の状態であり、確立された治療法がないのが現状である(非特許文献9)。
Aplastic osteopathy also develops with long-term continuous use and overdose of active vitamin D preparations, or suppression of parathyroid hormone after parathyroidectomy (PTX).
Aplastic osteopathy has a higher fracture rate than fibrotic osteoarthritis and induces hypercalcemia and calcification of blood vessels and other soft tissues. The pathological condition is a state of low rotation bone in which both bone resorption and bone formation are suppressed, and there is no established treatment method (Non-patent Document 9).
 骨のリンやカルシウムの取り込み能の低下(低代謝回転骨)や貯蔵能力の低下(高代謝回転骨)によって引き起こされる高リン血症や高カルシウム血症は、異所性(血管)石灰化の原因の一つとして考えられている。慢性腎不全患者、特に透析患者では、死因の40%以上が心血管系合併症によるものであり、血管石灰化を伴う動脈硬化が重要な病態として注目されている。慢性腎不全患者における高度の進展した石灰化病変に対する治療はいまだ困難で予後不良である(非特許文献10)。よって、原発性骨粗鬆症に加え変形性関節症、関節リウマチ、悪性腫瘍、腎疾患に伴う骨疾患、骨疾患に伴う血管石灰化に対してさらに有効に作用し、副作用の少ない薬剤の開発が望まれている。 Hyperphosphatemia and hypercalcemia caused by reduced bone phosphorus and calcium uptake (low turnover bone) and storage ability (high turnover bone) are ectopic (vascular) calcifications. It is considered as one of the causes. In patients with chronic renal failure, especially dialysis patients, more than 40% of deaths are due to cardiovascular complications, and arteriosclerosis with vascular calcification has attracted attention as an important disease state. Treatment of highly advanced calcified lesions in patients with chronic renal failure is still difficult and has a poor prognosis (Non-patent Document 10). Therefore, in addition to primary osteoporosis, osteoarthritis, rheumatoid arthritis, malignant tumors, bone diseases associated with renal diseases, vascular calcification associated with bone diseases, and development of drugs with fewer side effects are desired. ing.
 骨代謝は骨芽細胞と破骨細胞の働きのバランスによってコントロールされていると考えられており、骨を壊す作用が骨を作る作用を上回った時に、骨粗鬆症が生じる(非特許文献11)。特に閉経後の女性は、骨を保護する役割を担う女性ホルモンの分泌が低下し、その結果として、骨芽細胞の骨形成能の低下と破骨細胞の骨吸収活性の亢進が認められ、骨粗鬆症の症状を呈する可能性が高い(非特許文献12、13)。そのためエストロゲン製剤が用いられているが、その使用によって血栓症及び乳がんの危険性が増すことが明らかとなり適応は制限されつつある。また、選択的エストロゲン受容体モジュレーターの使用においては深部静脈血栓症の危険性増大が報告されている(非特許文献14)。 Bone metabolism is thought to be controlled by the balance between the action of osteoblasts and osteoclasts, and osteoporosis occurs when the action of breaking bone exceeds that of making bone (Non-patent Document 11). In particular, postmenopausal women have decreased secretion of female hormones that play a role in protecting bones, resulting in decreased osteogenic bone formation and increased osteoclastic bone resorption activity. The possibility of presenting the symptoms is high (Non-patent Documents 12 and 13). For this reason, estrogen preparations have been used, but their use has been shown to increase the risk of thrombosis and breast cancer, and indications are being limited. Further, the use of a selective estrogen receptor modulator has been reported to increase the risk of deep vein thrombosis (Non-patent Document 14).
 現在、破骨細胞の骨吸収活性を抑制する薬剤としてカルシトニンやビスフォスフォネート等が使用されている。カルシトニンは破骨細胞表面に発現するカルシトニン受容体と結合することによって破骨細胞の不活性化を誘導することが知られており、骨粗鬆症のみではなく高カルシウム血症、骨Paget病等にも臨床応用されている。しかしながら骨折抑制効果に対する有効性は明らかではなく、カルシトニン投与によってその受容体発現がダウンレギュレーションされることが報告されている(非特許文献14、15)。ビスフォスフォネートは強力な骨吸収抑制作用を示し、日本においてもアンドロネート、リセドロネート等のアミノ基含有ビスフォスフォネートは骨粗鬆症治療薬の主流である。これらビスフォスファネート製剤はファルネシル二燐酸合成酵素を阻害することによって脂質蛋白質のプレニル化を阻害し、骨吸収機能の抑制と破骨細胞のアポトーシスを誘導する(非特許文献16)。しかしながらビスフォネート製剤の問題点として、2008年FDAから重度の骨格・関節・筋肉の疼痛発生の警告が発令された。また、歯科治療後に長期間(2~3年以上)使用したとき顎骨壊死が発生する等の副作用が報告されている(非特許文献17)。上記以外の新しい骨吸収抑制剤として抗RANKL抗体が期待されている。抗RANKL抗体は更に前立腺がんにおける骨転移抑制剤、関節リュウマチの関節破壊抑制剤や多発性骨髄腫治療剤としての適応も期待され臨床開発が進められている。しかしながら、RANKL/RANK経路は、樹状細胞の生存と維持に重要との報告(非特許文献18)やRANK及びRANKL欠損マウスではリンパ節の形成不全が引き起こされるとの報告(非特許文献19、20)から、抗RANKL抗体製剤の免疫系への影響が懸念される。2008年AMGEN社より抗RANKL抗体製剤(デノスマブ)の臨床試験において一部感染症発症率の増加が報告された。また近年の臨床試験結果から、ビスフォスフォネート製剤と同様、ほぼ同じ割合で顎骨壊死の発生が副作用として報告された。骨芽細胞を活性化する骨形成促進剤として唯一PTHを用いた間歇投与治療が行われているが(Eli Lilly社、テリパラチド。日本では未承認)、海綿骨骨量促進活性に比べ皮質骨骨厚促進活性が余り高くない点ではビスフォスフォネート製剤等他の治療剤と変わらないため、骨折予防効果はあまり高くないと考えられる。更にPTHに関して、旭化成ファーマ社より、動悸、頻脈、血圧降下等の副作用やラット長期投与試験で骨肉種が認められた等の問題点が報告され、欧米においても1.5~2年以上の継続的使用は認められておらず、癌患者への適応は禁止されているため、がん骨転移抑制やがんによって引き起こされる高カルシウム血症[腫瘍細胞が産生する副甲状腺ホルモン関連ペプチド(PTHrP)が原因となる腫瘍随伴体液性高カルシウム血症や局所性骨溶解性高カルシウム血症]の治療等にPTHを用いることは不可能である。 Currently, calcitonin, bisphosphonate, and the like are used as drugs that suppress the bone resorption activity of osteoclasts. Calcitonin is known to induce inactivation of osteoclasts by binding to the calcitonin receptor expressed on the surface of osteoclasts. It is clinically used not only for osteoporosis but also for hypercalcemia and bone Paget disease. Applied. However, the effectiveness against the fracture-suppressing effect is not clear, and it has been reported that the receptor expression is down-regulated by administration of calcitonin (Non-patent Documents 14 and 15). Bisphosphonates have a strong bone resorption inhibitory effect, and amino group-containing bisphosphonates such as andronate and risedronate are the mainstream therapeutic agents for osteoporosis in Japan. These bisphosphonate preparations inhibit the prenylation of lipid proteins by inhibiting farnesyl diphosphate synthase, thereby suppressing bone resorption function and inducing osteoclast apoptosis (Non-patent Document 16). However, as a problem with bisphonate preparations, the 2008 FDA issued a warning about severe skeletal, joint, and muscle pain. Further, side effects such as jaw osteonecrosis have been reported when used for a long period of time (2 to 3 years or more) after dental treatment (Non-patent Document 17). Anti-RANKL antibodies are expected as new bone resorption inhibitors other than the above. Anti-RANKL antibodies are also expected to be used as inhibitors for bone metastasis in prostate cancer, joint destruction inhibitors for rheumatoid arthritis, and therapeutic agents for multiple myeloma, and clinical development is underway. However, the report that the RANKL / RANK pathway is important for the survival and maintenance of dendritic cells (Non-Patent Document 18) and that RANK and RANKL-deficient mice cause lymph node dysplasia (Non-Patent Document 19, 20), there is concern about the effect of anti-RANKL antibody preparations on the immune system. In 2008, AMGEN reported an increase in the incidence of some infectious diseases in a clinical trial of an anti-RANKL antibody preparation (denosumab). In addition, recent clinical trial results reported the occurrence of osteonecrosis of the jaw as a side effect at almost the same rate as the bisphosphonate formulation. Intermittent administration treatment using PTH is the only osteogenesis-promoting agent that activates osteoblasts (Eli Lilly, Teriparatide, not approved in Japan), but cortical bone compared to cancellous bone mass promoting activity Since the thickness-accelerating activity is not so high, it is not different from other therapeutic agents such as bisphosphonate preparations, so it is considered that the effect of preventing fracture is not so high. In addition, Asahi Kasei Pharma reported on side effects such as palpitations, tachycardia, and blood pressure reduction, as well as problems such as bone and meat species observed in long-term administration studies in rats, and continued in Europe and the United States for more than 1.5 to 2 years. Because it is not approved for use in cancer patients, hypercalcemia caused by cancer bone metastasis and cancer [parathyroid hormone-related peptide (PTHrP) produced by tumor cells is It is impossible to use PTH for the treatment of the causative tumor associated humoral hypercalcemia or local osteolytic hypercalcemia].
 よって、閉経後の女性を含む骨芽細胞の骨形成能の低下や破骨細胞の骨吸収活性の亢進が原因によって生じる骨粗鬆症、高カルシウム血症、骨Paget病、骨転移抑制、関節リュウマチの関節破壊抑制や多発性骨髄腫に対してさらに有効に作用し、副作用の少ない薬剤の開発が望まれている。
 この他、骨粗鬆症とは異なり石灰化のプロセスのみが阻害されることによって引き起こされる骨疾患として骨軟化症やクル病が知られている。骨は、コラーゲン等よりなる基質層が、ハイドロキシアパタイトの沈着により石灰化されることによって形成されるが、この石灰化が障害され、類骨が増加した状態が骨軟化症であり、小児期に発症した場合は、クル病と呼ばれる。症状としては、手足の痛み、関節痛、腰痛、背中の痛みなど、骨や関節の痛みが起き、歩行障害に至り、骨折しやすい状態に陥る。小児の場合、発育障害、O脚など手足の変形や鳩胸などが認められる。一般的な治療方法として、食事療法に加え、ビタミンD、カルシウム剤、リン製剤が用いられるが変形による機能障害が強い場合、手術が唯一の対処療法である。よって、クル病や骨軟化症に対して更に有効な薬剤の開発が望まれている。
Therefore, osteoporosis, hypercalcemia, bone Paget's disease, bone metastasis suppression, rheumatoid arthritis caused by decreased osteogenic ability of osteoblasts including postmenopausal women and increased bone resorption activity of osteoclasts Development of a drug that acts more effectively on destruction suppression and multiple myeloma and has fewer side effects is desired.
In addition, unlike osteoporosis, osteomalacia and Kuru disease are known as bone diseases caused by inhibiting only the calcification process. Bone is formed when a matrix layer made of collagen or the like is calcified by the deposition of hydroxyapatite, but this calcification is impaired, and the state of increased osteoids is osteomalacia. When it develops, it is called Kur disease. Symptoms include bone and joint pain such as limb pain, joint pain, back pain, back pain, etc., leading to gait disturbance and easy fracture. In the case of children, developmental disorders, deformed limbs such as O-legs, and pigeon breasts are observed. As a general treatment method, vitamin D, calcium, and phosphorus preparations are used in addition to dietary therapy, but surgery is the only coping therapy if there is a strong dysfunction due to deformation. Therefore, the development of a drug that is more effective against Kur disease and osteomalacia is desired.
 先に述べたように骨は常に骨芽細胞と破骨細胞の働きのバランスによってコントロールされリモデリングが行われている組織であるため、折れにくい丈夫な骨を作るには単に骨量が増加すればよいとは限らない。例えば大理石骨病(非特許文献21)、骨ページェット病(非特許文献22)、カムラチ・エンゲルマン病(CED)(非特許文献23、24)等の遺伝性疾患ではそれぞれ異なる原因から骨形成と骨吸収のバランスが異常となり、骨量の増加が観察されながらも骨強度は却って低下することが知られている。材料力学的に骨強度を決める因子には更に骨密度に代表される量的因子の他に、海綿骨の連結性や皮質骨の厚みや多孔率、断面モーメント等の形状因子、石灰化や骨疲労等の質的因子が挙げられる(非特許文献25)。それ故、骨量を増加させるばかりではなく、骨強度向上に役立つ有効な薬剤の開発が原発性骨粗鬆症や続発性(二次性)骨粗鬆症の治療において望まれている。 As mentioned earlier, bone is always remodeled and controlled by the balance between osteoblast and osteoclast function, so to make a strong bone that is hard to break, simply increase the bone mass. Not necessarily. For example, osteogenesis such as marble bone disease (Non-patent document 21), Paget's disease of bone (Non-patent document 22), Kamrati-Engelmann disease (CED) (Non-patent documents 23, 24), etc. It is known that the balance of bone resorption becomes abnormal, and bone strength is decreased while an increase in bone mass is observed. In addition to quantitative factors typified by bone density, factors that determine bone strength mechanically include cancellous bone connectivity, cortical bone thickness and porosity, shape factors such as cross-sectional moment, calcification and bone Examples include qualitative factors such as fatigue (Non-patent Document 25). Therefore, development of an effective drug that not only increases bone mass but also helps improve bone strength is desired in the treatment of primary osteoporosis and secondary (secondary) osteoporosis.
 Uristは1965年、牛骨の0.6M脱灰後の不溶性画分をラット皮下に注入すると異所性骨形成が誘導されることを見出し、骨形成能を持つ蛋白質をBone morphogenetic protein(BMP)と命名した(非特許文献26)。
 GDF(growth differentiation factor)/BMPはTGFβスーパーファミリーに属する機能が多岐に亘る成長因子であり、TGFβスーパーファミリーにはTGFβ、activins/inhibins、Nodal、myostatin、anti-Mullerian hormoneが含まれている。BMPファミリー分子は二種類の異なるセリン/スレオニンキナーゼ受容体に結合し、Smad依存性及び非依存性経路によってそのシグナルは伝達される。これまでに15種類以上のBMP関連蛋白質が同定され、構造や機能に基づきいくつかのサブグループに分類されている。BMP2/4サブグループにはBMP2、BMP4及びDrosophila decapentaplegicが属し、BMP7サブグループにはBMP5、BMP6、BMP7、BMP8及びDrosophila gbb-60Aが属し、GDF5サブグループにはGDF5、GDF6及びGDF7が属し、4番目のサブグループにはBMP9及びBMP10が属している。BMPは全てシステイン残基を7箇所含み、そのうち6箇所は分子内でS-S架橋を形成し、残りの1箇所は二量体化するため分子間S-S架橋形成に用いられる。TGF-βファミリー分子と異なり、BMPファミリー分子は活性型で分泌され生体内におけるBMPシグナルはnoggin、chordin、DAN等の分泌性アンタゴニストによって調節が行われている。BMPは受容体と結合し活性化することによってその作用を発揮するが、その受容体はtype Iセリン/スレオニンキナーゼ受容体とtype IIセリン/スレオニンキナーゼ受容体と呼ばれる2種類の受容体で構成されている。Type I受容体に分類される受容体は7種類[Activin receptor-like kinase(ALK)1~7]が報告されており、type II受容体に分類される受容体は5種類(ActR2A、ActR2B、BMPR2、TGFβR2及びAMHR2)が報告されている。BMPはtype II受容体に高い親和性を選択的に示すTGFβやアクチビンと異なり、type I受容体及びtype II受容体共に結合親和性を示し、特にtype Iに高い親和性を示すBMPとしてBMP2、9及び10が報告されている。更にType I受容体とtype II受容体で構成されたリガンド・受容体複合体にco-receptorと呼ばれるtype III受容体(betaglycan、endoglin、RMG-a, b, c)が更に結合し、リガンドとの結合親和性を調節する場合が知られている。リガンド・受容体複合体が形成された後、BMP受容体(ALK1、ALK2、ALK3、ALK6)はSmad1/Smad5/Smad8をリン酸化し活性化する。Smad分子にはこの他、activinやTGFβ受容体によってリン酸化を受けるSmad2、Smad3、common mediator Smad(co-Smad)と呼ばれるSmad4またはinhibitory Smad(I-Smad)と呼ばれるSmad6、Smad7が知られている。活性化されたSmadはSmad4と共に核内に移行し、核内転写因子と更に複合体を形成し、標的遺伝子のプロモーター領域に結合することで標的遺伝子の発現を調節する。BMPのシグナル伝達経路としてSmad経路が主と考えられているが、non-Smad経路(p38MAPK、ERKまたはJNK等のMAPKシグナル経路)の存在も報告されている(非特許文献27~30)。
In 1965, Urist found that ectopic bone formation was induced by injecting the insoluble fraction of bovine bone after 0.6M decalcification into rats subcutaneously, and the protein with bone forming ability was called Bone morphogenetic protein (BMP). (Non-patent document 26).
GDF (growth differentiation factor) / BMP is a growth factor with various functions belonging to the TGFβ superfamily, and the TGFβ superfamily includes TGFβ, activins / inhibins, Nodal, myostatin, and anti-Mullerian hormone. BMP family molecules bind to two different serine / threonine kinase receptors, and their signals are transmitted by Smad-dependent and independent pathways. So far, more than 15 types of BMP-related proteins have been identified and classified into several subgroups based on structure and function. BMP2 / 4 subgroup belongs to BMP2, BMP4 and Drosophila decapentaplegic, BMP7 subgroup belongs to BMP5, BMP6, BMP7, BMP8 and Drosophila gbb-60A, GDF5 subgroup belongs to GDF5, GDF6 and GDF7, 4 BMP9 and BMP10 belong to the second subgroup. All BMPs contain 7 cysteine residues, 6 of which form SS bridges in the molecule, and the remaining 1 is dimerized and used for intermolecular SS bridge formation. Unlike TGF-β family molecules, BMP family molecules are secreted in an active form, and BMP signals in vivo are regulated by secretory antagonists such as noggin, chordin, and DAN. BMPs exert their actions by binding to and activating receptors, which are composed of two types of receptors called type I serine / threonine kinase receptors and type II serine / threonine kinase receptors. ing. Seven types of receptors classified as Type I receptors [Activin receptor-like kinase (ALK) 1-7] have been reported, and five types of receptors classified as type II receptors (ActR2A, ActR2B, BMPR2, TGFβR2 and AMHR2) have been reported. Unlike TGFβ and activin, which selectively show high affinity for type II receptor, BMP shows binding affinity for both type I and type II receptors, and in particular BMP2 as BMP showing high affinity for type I, 9 and 10 have been reported. Furthermore, type III receptors (betaglycan, endoglin, RMG-a, b, c) called co-receptor further bind to the ligand / receptor complex composed of Type I receptor and type II receptor, It is known to regulate the binding affinity of. After the ligand-receptor complex is formed, BMP receptors (ALK1, ALK2, ALK3, ALK6) phosphorylate and activate Smad1 / Smad5 / Smad8. Smad molecules that are phosphorylated by activin or TGFβ receptor are also known as Smad2, Smad3, Smad4 called common mediator Smad (co-Smad) or Smad6, Smad7 called inhibitor Smad (I-Smad) . Activated Smad moves into the nucleus together with Smad4, forms a further complex with the nuclear transcription factor, and regulates the expression of the target gene by binding to the promoter region of the target gene. Although the Smad pathway is mainly considered as a signal transduction pathway of BMP, the presence of a non-Smad pathway (MAPK signal pathway such as p38MAPK, ERK or JNK) has been reported (Non-patent Documents 27 to 30).
 BMP受容体の1つであるBMPR1B(ALK6)はBMP受容体type Iに属する1回膜貫通タイプの受容体である。BMPR1Bの別の名称としては、CDw293が知られている。BMPR1Bは細胞内にセリン/スレオニンキナーゼドメインを持ち、細胞外領域には保存性の高い10箇所のシステイン残基が認められる。ヒト由来BMPR1AとBMPR1Bのアミノ酸相同性は42.1%であり、いずれもBMP2、4及び7との結合は共に認められるが、BMPR2とヘテロダイマーを組んでの結合親和性は、少なくともこれら三種のリガンドに対し異なっている。ヒト成体サンプルのmRNAを用いた組織発現解析の結果、最も発現の高い組織は前立腺、発現の高い組織は心臓・脳・骨格筋・膵臓・胸腺・前立腺・精巣・子宮・小腸、発現の低い組織は胎盤・腎臓・脾臓・大腸である。マウスサンプルでは、脳に発現が認められ、更に低いながらも肺に発現が認められるが前立腺は未解析のため不明である(非特許文献31)。 BMPR1B (ALK6), one of the BMP receptors, is a single transmembrane receptor belonging to BMP receptor type I. CDw293 is known as another name of BMPR1B. BMPR1B has a serine / threonine kinase domain in the cell, and 10 highly conserved cysteine residues are found in the extracellular region. The amino acid homology between human-derived BMPR1A and BMPR1B is 42.1%, and all of them bind to BMP2, 4 and 7, but the binding affinity of BMPR2 and heterodimer is at least that of these three ligands. It is different. As a result of tissue expression analysis using mRNA of adult human samples, the most highly expressed tissue is prostate, the most highly expressed tissue is heart, brain, skeletal muscle, pancreas, thymus, prostate, testis, uterus, small intestine, low expression Is placenta, kidney, spleen, large intestine. In the mouse sample, expression is observed in the brain and expression is observed in the lung although it is lower, but the prostate is unanalyzed and is unknown (Non-patent Document 31).
 BMPR1Bと同じファミリーに属するBMPR1Aのコンディショナルノックアウトマウス(非特許文献32、33)やActR2A(ACVRIIA)の細胞外ドメインとFc体との融合蛋白質(ACVRIIA-Fc)をマウスに投与した試験(非特許文献34)においては共に骨形成促進が観察されることが報告されており、がんの骨転移抑制剤開発を目的としてACVRIIA-Fc体を用いた臨床試験がACCELERON PHARMA社で開始されている(非特許文献35、特許文献1)。 BMPR1B belonging to the same family as BMPR1B, knockout mice (Non-Patent Documents 32, 33) and ActR2A (ACVRIIA) extracellular domain and Fc fusion protein (ACVRIIA-Fc) administered to mice (Non-patented) 34) both reported that bone formation was promoted, and a clinical trial using ACVRIIA-Fc was started at ACCELERON PHARMA for the purpose of developing a bone metastasis inhibitor for cancer. Non-patent document 35, Patent document 1).
 これに対しBMPR1Bノックアウトマウスの解析から、発生期の網膜における軸索誘導の異常とアポトーシス亢進(非特許文献36)や、指節骨領域、特に前軟骨性細胞の増殖と軟骨細胞分化阻害(非特許文献37)が観察された。上記のように、BMPR1Bノックアウトマウスの解析では、眼、生殖、軟骨異常が報告されているのみで、骨量増加を具体的に示すものはなんら報告されていない。 In contrast, analysis of BMPR1B knockout mice revealed that axonal guidance abnormalities and hyperapoptosis in the retinal retina (Non-Patent Document 36), proliferation of phalangeal bone regions, especially prechondral cells, and chondrocyte differentiation inhibition (non- Patent Document 37) was observed. As described above, in the analysis of BMPR1B knockout mice, only eye, reproductive, and cartilage abnormalities have been reported, and nothing specifically indicating bone mass increase has been reported.
 また、タイプIコラーゲンプロモーターの下流にBMPR1Bのキナーゼドメイン欠失体を連結したベクターが挿入されたトランスジェニックマウスの4週齢由来長骨サンプルのRunx2/Cbfa1とオステオカルシン遺伝子はコントロールに比べ発現低下が観察され、体長でも明らかな低下が観察された。また同じく4週齢のトランスジェニックマウス由来脛骨二次海綿骨の骨形態計測結果から、骨量低下・骨形成速度低下・類骨厚低下が認められた。更に12週齢までの生育期間中において頸骨と大腿骨の骨密度低下が観察された。以上の結果は、BMPR1Bを介したシグナル伝達が骨形成に重要な役割を果たしていることを示唆している(非特許文献38)。 In addition, the expression of Runx2 / Cbfa1 and osteocalcin genes in 4 weeks old long bone samples of transgenic mice in which a vector ligated with the kinase domain deletion of BMPR1B was inserted downstream of the type I collagen promoter was observed compared to controls. A clear decrease in body length was also observed. Similarly, bone morphology, bone formation rate, and osteoid thickness were reduced from the results of bone morphometry of secondary tibial cancellous bone derived from 4-week-old transgenic mice. In addition, a decrease in bone density of the tibia and femur was observed during the growth period up to 12 weeks of age. The above results suggest that signal transduction via BMPR1B plays an important role in bone formation (Non-patent Document 38).
 また、短指症A2型、短指症C型または指節癒合症様症状(指の関節が軟骨性あるいは骨性に着いていて関節の動きがない状態を表す。白人に比較的多く、手の先天異常の約0.6%を占める。指の表面には本来あるべきしわがなく低形成)を示す患者のBMPR1Bアミノ酸配列の解析を行うと、486番目アミノ酸のRからQへの変異が見出された。このアミノ酸が位置する領域はC末端の保存性の高い領域にあたり、nonactivating-non-downregulating boxとも呼ばれている。本領域はTGFβtype I 受容体において、そのエンドサイトーシスとTGFβ受容体相互のリン酸化による活性化調節に重要な領域と考えられている。更にBMPR1B遺伝子発現ベクターをC2C12株に導入し、GDF5を添加すると、用量依存的にSmadシグナル伝達の亢進と非-Smadシグナル伝達によるアルカリフォスファターゼ(ALP)活性の亢進が認められるが、R486QないしR486W変異を挿入した受容体を導入することによってGDF5によって誘導される上記両反応が観察されなくなることもBMPR1Bを介したシグナル伝達が骨形成に重要であることを示している(非特許文献39)。 Also, deficit A2 type, deficit C type, or phalanxia-like symptom (represents a state where the finger joint is attached to the cartilage or bone and there is no movement of the joint. Analysis of the BMPR1B amino acid sequence of a patient who shows about 0.6% of congenital anomalies in the patient's surface, which is hypomorphic with no wrinkles that should be present on the surface of the finger), found an R to Q mutation at the 486th amino acid. It was done. The region where this amino acid is located is a highly conserved region at the C-terminus and is also called a nonactivating-non-downregulating box. This region is considered to be an important region in TGFβ type I receptor for regulation of activation by endocytosis and phosphorylation between TGFβ receptors. Furthermore, when BMPR1B gene expression vector was introduced into C2C12 strain and GDF5 was added, Smad signaling increased and non-Smad signaling increased alkaline phosphatase (ALP) activity in a dose-dependent manner, but R486Q to R486W mutations. The fact that both of the above-mentioned reactions induced by GDF5 are not observed by introducing a receptor into which is inserted can also indicate that signal transduction via BMPR1B is important for bone formation (Non-patent Document 39).
 しかしながら、以上の報告はいずれも、BMPR1Bを介したシグナル伝達が骨形成に重要であるものの、そのシグナル伝達阻害が骨形成に抑制的な作用を示唆するものであり、促進的に作用することを示唆するものではなかった。従って、BMPR1B細胞外ドメインとFc体を融合させた融合蛋白質(BMPR1B-Fc)が生体内において骨形成活性を示すことを予想することは極めて困難であった。 However, in all of the above reports, although signal transduction via BMPR1B is important for bone formation, its inhibition of signal transduction suggests a suppressive effect on bone formation, suggesting that it acts positively. There was no suggestion. Therefore, it was extremely difficult to predict that a fusion protein (BMPR1B-Fc) obtained by fusing the BMPR1B extracellular domain and the Fc body exhibits osteogenic activity in vivo.
WO2008/094708WO2008 / 094708
 超高齢化社会を迎え、骨粗鬆症、変形性関節症、関節リウマチ、悪性腫瘍に伴う骨疾患及びそれらに関連する骨疾患の治療が社会的にも益々重要な課題となり、骨疾患治療剤の開発研究が広く精力的に行われている。現在最も一般的に使用される薬剤の一つはビスフォスフォネートであり、有効性の高い薬剤であるが、最近その副作用が問題となっている。その他の薬剤においてもそれぞれ克服すべき問題点が指摘されている。そのため、骨疾患治療に対してさらに有効に作用し、副作用の少ない薬剤の開発が強く望まれている。 With the aging of society, osteoporosis, osteoarthritis, rheumatoid arthritis, bone diseases associated with malignant tumors and related bone diseases are becoming increasingly important social issues, and research and development of bone disease treatments Has been widely and vigorously done. One of the most commonly used drugs at present is bisphosphonate, which is a highly effective drug, but recently its side effects have become a problem. Problems that should be overcome in other drugs have also been pointed out. Therefore, there is a strong demand for the development of a drug that acts more effectively on bone disease treatment and has fewer side effects.
 驚くべきことに、本発明者らは、従来の予測に反して、BMPR1B由来の細胞外ドメインを含む蛋白質を生体内において高発現させた場合、或いはBMPR1B由来の細胞外ドメインを含む蛋白質を生体内に投与した場合、該蛋白質はいずれも骨量増加に作用することを初めて見出した。
 本発明者らは、BMPR1B細胞外ドメインを含む蛋白質とFcとの融合体を過剰発現するマウスを作製し、BMPR1B細胞外ドメインを含む蛋白質とFcとの融合体の過剰発現より大腿骨の白色化、胸骨の白色化、大腿骨の皮質骨厚の肥厚と海綿骨増加及び胸骨の海綿骨増加、脛骨の単位骨量の増加、骨芽細胞数・骨芽細胞面・類骨量の増加、石灰化速度・石灰化面・骨形成速度の増加、及び破骨細胞数・破骨細胞面の低下、大腿骨の皮質骨断面積の増加、大腿骨の最大荷重の増加を見出した。
Surprisingly, the inventors of the present invention, contrary to the conventional prediction, when a protein containing an extracellular domain derived from BMPR1B is highly expressed in vivo, or a protein containing an extracellular domain derived from BMPR1B in vivo. It has been found for the first time that all of these proteins have an effect on bone mass increase when administered.
The present inventors produced a mouse that overexpresses a fusion between a protein containing BMPR1B extracellular domain and Fc, and whitened the femur by overexpression of a fusion between the protein containing BMPR1B extracellular domain and Fc. Whitening of sternum, thickening of cortical bone thickness of femur and increase of cancellous bone and increase of cancellous bone of sternum, increase of unit bone mass of tibia, increase of osteoblast number, osteoblast surface and osteoid mass, lime We found an increase in calcification rate, calcification surface, and bone formation rate, a decrease in the number of osteoclasts and osteoclast surface, an increase in the cortical bone cross-sectional area of the femur, and an increase in the maximum load on the femur.
 このような知見に基づいて、BMPR1B細胞外ドメイン又はその変異体を含む蛋白質を有効成分とする骨疾患治療剤が、新たな骨粗鬆症治療薬、関節炎治療薬や悪性腫瘍に伴う骨疾患治療薬として提供できることが示された。
 すなわち、本発明は、以下の特徴を含む。
 (1) 哺乳動物由来のbone morphogenetic protein receptor 1B(以下、BMPR1Bと表記する)の細胞外ドメイン、又は該ドメインのアミノ酸配列と85%以上の配列同一性を有しかつ骨量、骨密度及び/又は骨強度増加作用をもつBMPR1Bの細胞外ドメインの変異体、を含む蛋白質、或いは、該蛋白質をコードする核酸を含むベクター、を有効成分として含有する骨疾患治療用医薬組成物。
Based on these findings, bone disease therapeutic agents containing proteins containing the BMPR1B extracellular domain or a variant thereof as active ingredients are provided as new osteoporosis therapeutic agents, arthritis therapeutic agents, and bone disease associated with malignant tumors. It was shown that it can be done.
That is, the present invention includes the following features.
(1) It has an extracellular domain of bone morphogenetic protein receptor 1B (hereinafter referred to as BMPR1B) derived from a mammal, or a sequence identity of 85% or more with the amino acid sequence of the domain, and bone mass, bone density and / or Alternatively, a pharmaceutical composition for treating a bone disease comprising, as an active ingredient, a protein containing a mutant of the extracellular domain of BMPR1B having an action of increasing bone strength, or a vector containing a nucleic acid encoding the protein.
 (2) 上記蛋白質が、上記細胞外ドメイン又はその変異体と哺乳動物由来免疫グロブリンFc蛋白質又はその変異体との融合蛋白質であり、及び、上記蛋白質をコードする核酸が該融合蛋白質をコードする核酸である、(1)の組成物。
 (3) 上記蛋白質が化学修飾されている、(1)又は(2)の組成物。
 (4) 上記化学修飾が、1又は複数のポリエチレングリコール分子の結合である、(3)の組成物。
(2) The protein is a fusion protein of the extracellular domain or a variant thereof and a mammal-derived immunoglobulin Fc protein or a variant thereof, and the nucleic acid encoding the protein is a nucleic acid encoding the fusion protein. The composition according to (1).
(3) The composition according to (1) or (2), wherein the protein is chemically modified.
(4) The composition according to (3), wherein the chemical modification is a bond of one or more polyethylene glycol molecules.
 (5) 上記化学修飾が、糖鎖の結合である、(3)の組成物。
 (6) 上記蛋白質が、組換え蛋白質である、(1)~(5)のいずれかの組成物。
 (7) 上記細胞外ドメインが、配列番号1又は3のアミノ酸配列を含む、(1)~(6)のいずれかの組成物。
 (8) 上記細胞外ドメインを含む蛋白質をコードする核酸が、配列番号2又は4のヌクレオチド配列を含む、(1)~(6)のいずれかの組成物。
(5) The composition according to (3), wherein the chemical modification is a sugar chain bond.
(6) The composition according to any one of (1) to (5), wherein the protein is a recombinant protein.
(7) The composition according to any one of (1) to (6), wherein the extracellular domain comprises the amino acid sequence of SEQ ID NO: 1 or 3.
(8) The composition according to any one of (1) to (6), wherein the nucleic acid encoding the protein containing the extracellular domain comprises the nucleotide sequence of SEQ ID NO: 2 or 4.
 (9) 上記Fc蛋白質が、配列番号8のアミノ酸配列を含む、(2)~(8)のいずれかの組成物。
 (10) 上記Fc蛋白質をコードする核酸が、配列番号7のヌクレオチド配列を含む、(2)~(8)のいずれかの組成物。
 (11) 上記融合蛋白質が、配列番号10又は18のアミノ酸配列を含む、(2)~(10)のいずれか1項記載の組成物。
(9) The composition according to any one of (2) to (8), wherein the Fc protein comprises the amino acid sequence of SEQ ID NO: 8.
(10) The composition according to any one of (2) to (8), wherein the nucleic acid encoding the Fc protein comprises the nucleotide sequence of SEQ ID NO: 7.
(11) The composition according to any one of (2) to (10), wherein the fusion protein comprises the amino acid sequence of SEQ ID NO: 10 or 18.
 (12) 上記融合蛋白質をコードする核酸が、配列番号9又は17のヌクレオチド配列を含む、(2)~(10)のいずれかの組成物。
 (13) 上記哺乳動物がヒトである、(1)~(12)のいずれかの組成物。
 (14) 上記骨疾患が、骨量、骨密度及び/又は骨強度の低下を伴う疾患である、(1)~(13)のいずれかの組成物。
(12) The composition according to any one of (2) to (10), wherein the nucleic acid encoding the fusion protein comprises the nucleotide sequence of SEQ ID NO: 9 or 17.
(13) The composition according to any one of (1) to (12), wherein the mammal is a human.
(14) The composition according to any one of (1) to (13), wherein the bone disease is a disease accompanied by a decrease in bone mass, bone density and / or bone strength.
 (15) (1)~(14)のいずれかの組成物を哺乳動物に投与することを含む、骨疾患を治療する方法。
 (16) 上記哺乳動物がヒトである、(15)の方法。
 (17) 上記骨疾患が、骨量、骨密度及び/又は骨強度の低下を伴う疾患である、(15)又は(16)の方法。
(15) A method for treating a bone disease, comprising administering the composition of any one of (1) to (14) to a mammal.
(16) The method according to (15), wherein the mammal is a human.
(17) The method according to (15) or (16), wherein the bone disease is a disease accompanied by a decrease in bone mass, bone density and / or bone strength.
 (18) 上記組成物が、他の骨疾患治療剤と組み合わせて同時に又は連続的に投与される、(15)~(17)のいずれかの方法。 (18) The method according to any one of (15) to (17), wherein the composition is administered simultaneously or sequentially in combination with another bone disease therapeutic agent.
 本発明により、骨量、骨密度及び/又は骨強度を増加させることができる。従って、骨量、骨密度及び/又は骨強度の低下を伴う疾患、例えば骨粗鬆症、変形性関節症、関節リウマチ、悪性腫瘍等に起因する骨疾患、及びそれらに関連する様々な骨疾患又は障害を治療することが可能となる。 According to the present invention, bone mass, bone density and / or bone strength can be increased. Therefore, diseases associated with a decrease in bone mass, bone density and / or bone strength, such as bone diseases caused by osteoporosis, osteoarthritis, rheumatoid arthritis, malignant tumors, and various bone diseases or disorders related thereto It becomes possible to treat.
この図は、16週齢のUSmBMPR1B-hFcm KIキメラマウス(右図)及びコントロールマウス(左図)の大腿骨病理切片のH&E染色画像を示す。This figure shows H & E stained images of femoral pathological sections of 16-week-old USmBMPR1B-hFcm KI chimeric mice (right diagram) and control mice (left diagram). この図は、mBMPR1B-hFcm組換え体発現ベクターを示す。This figure shows the mBMPR1B-hFcm recombinant expression vector. mBMPR1B-hFcm組換え体精製標品のSDS-PAGE画像を示す。左から分子量マーカー、組換え体精製標品(還元条件、3μg)、組換え体精製標品(非還元条件、6μg)を示し、縦軸の数値は分子量(kDa)を示す。The SDS-PAGE image of mBMPR1B-hFcm recombinant purified preparation is shown. From the left, molecular weight markers, recombinant purified preparations (reducing conditions, 3 μg), and recombinant purified preparations (non-reducing conditions, 6 μg) are shown, and the numerical values on the vertical axis show the molecular weight (kDa). この図は、hBMPR1B-hFcm組換え体発現ベクターを示す。This figure shows the hBMPR1B-hFcm recombinant expression vector. この図は、mBMPR1B-hFcm組換え体が骨密度、特に海綿骨の骨密度を増加させる活性を持つことを示す。縦軸は骨密度(g/cm)を示す。横軸は投与群を示す。This figure shows that mBMPR1B-hFcm recombinant has activity to increase bone density, especially cancellous bone density. The vertical axis represents bone density (g / cm 3 ). The horizontal axis represents the administration group. この図は、mBMPR1B-hFcm組換え体が骨量、特に皮質骨の骨量を増加させる活性を持つことを示す。縦軸は骨量(mm)を示す。横軸は投与群を示す。This figure shows that mBMPR1B-hFcm recombinant has activity to increase bone mass, especially cortical bone mass. The vertical axis represents bone mass (mm 3 ). The horizontal axis represents the administration group. この図は、mBMPR1B-hFcm組換え体が悪性腫瘍に起因する骨疾患、特に骨転移を抑制することを示す。縦軸は骨破壊面積(mm/mouse)を示す。横軸は投与群を示す。This figure shows that mBMPR1B-hFcm recombinant suppresses bone diseases caused by malignant tumors, particularly bone metastases. The vertical axis represents the bone fracture area (mm 2 / mouse). The horizontal axis represents the administration group.
 以下、本発明を詳細に説明する。
 本発明は、上記のとおり、哺乳動物由来のBMPR1B細胞外ドメイン、又は該ドメインのアミノ酸配列と85%以上の配列同一性を有しかつ骨量、骨密度及び/又は骨強度増加作用をもつBMPR1Bの細胞外ドメインの変異体、を含む蛋白質、或いは、該蛋白質をコードする核酸を含むベクター、を有効成分として含有する骨疾患治療用医薬組成物を提供する。
Hereinafter, the present invention will be described in detail.
The present invention, as described above, the BMPR1B extracellular domain derived from mammals, or BMPR1B having an action of increasing bone mass, bone density and / or bone strength, having 85% or more sequence identity with the amino acid sequence of the domain The present invention provides a pharmaceutical composition for treating a bone disease, which comprises, as an active ingredient, a protein comprising a mutant of the extracellular domain of the above, or a vector comprising a nucleic acid encoding the protein.
 本発明は、上記BMPR1Bの細胞外ドメインを含む断片が哺乳動物において骨量、骨密度及び/又は骨強度を増加する働きがあるという知見に基づいている。すなわち、本発明者らは、ノックイン法を利用してマウスES細胞からBMPR1Bの細胞外ドメインを発現するマウスを作製、又はBMPR1Bの細胞外ドメインを含む蛋白質とFcとの融合組換え体をマウスに投与したところ、野生型と比べて視覚的、感覚的に判別できるほどに骨部位の骨量、骨密度及び/又は骨強度を増加させることを初めて見出した。従来の知見によれば、前述の背景技術に記載したように、BMPR1Bを介したシグナル伝達が骨形成に重要であるものの、そのシグナル伝達阻害が骨形成に抑制的な作用を示すものと考えられていたことから、骨の増殖に関与するとは想像さえされていなかった。 The present invention is based on the finding that the above fragment containing the extracellular domain of BMPR1B has a function of increasing bone mass, bone density and / or bone strength in mammals. That is, the present inventors produced a mouse that expresses the extracellular domain of BMPR1B from mouse ES cells using a knock-in method, or a fusion recombinant of a protein containing the extracellular domain of BMPR1B and Fc to the mouse. When administered, it was found for the first time that the bone mass, bone density, and / or bone strength of the bone site were increased to such an extent that they could be discriminated visually and sensorially compared to the wild type. According to the conventional knowledge, as described in the background art above, although signal transduction via BMPR1B is important for bone formation, it is considered that inhibition of signal transduction has a suppressive effect on bone formation. It was not even imagined to be involved in bone growth.
 このように、本発明者らは、BMPR1Bの細胞外ドメインに、骨量、骨密度及び/又は骨強度増加という新たな有用な機能が存することを見出した。本発明の医薬組成物は、骨部位の骨量、骨密度及び/又は骨強度を増加させる骨疾患治療のために使用することができる。
 以下において、本発明の医薬組成物について、さらに具体的に説明する。
<BMPR1Bの細胞外ドメイン>
 本発明に関わるBMPR1Bは、哺乳動物由来のBMPR1Bである。
Thus, the present inventors have found that the extracellular domain of BMPR1B has a new useful function of increasing bone mass, bone density and / or bone strength. The pharmaceutical composition of the present invention can be used for the treatment of bone diseases that increase bone mass, bone density and / or bone strength at bone sites.
Hereinafter, the pharmaceutical composition of the present invention will be described more specifically.
<BMPR1B extracellular domain>
BMPR1B related to the present invention is a mammal-derived BMPR1B.
 BMPR1Bのアミノ酸及びヌクレオチド配列の情報は、米国NCBIにアクセスすることによって入手可能である。
 BMPR1Bは、ヒト、マウス、チンパンジー、イヌ、ウシ、セキショクヤケイ、ゼブラフィッシュ等から単離され、配列情報が公開されている。本発明においては、BMPR1B蛋白質又はこれをコードする核酸は、その由来に限定されるものではないが、哺乳動物、例えばヒトを含む霊長類、マウスを含むげっ歯類等の由来であることが好ましい。ヒト又はマウス由来BMPR1Bの配列情報は、例えばヒトBMPR1Bはアクセッション番号NM_001203.2またはNP_001194.1等として、マウスBMPR1Bはアクセッション番号NM_007560.3またはNP_031586.1,等として、GenBank(米国NCBI)に登録されている。
BMPR1B amino acid and nucleotide sequence information is available by accessing the US NCBI.
BMPR1B has been isolated from humans, mice, chimpanzees, dogs, cows, Japanese zelkova, zebrafish, etc., and sequence information has been published. In the present invention, the BMPR1B protein or the nucleic acid encoding the same is not limited to its origin, but is preferably derived from mammals such as primates including humans and rodents including mice. . For example, human BMPR1B has accession number NM_001203.2 or NP_001194.1, etc., and mouse BMPR1B has accession number NM_007560.3 or NP_031586.1, etc. to GenBank (US NCBI). It is registered.
 ヒト及びマウスBMPR1Bの細胞外領域蛋白質のアミノ酸配列は、以下のとおりである。
ヒトBMPR1Bの細胞外領域蛋白質のアミノ酸配列(配列番号1):
KKEDGESTAPTPRPKVLRCKCHHHCPEDSVNNICSTDGYCFTMIEEDDSGLPVVTSGCLGLEGSDFQCRDTPIPHQRRSIECCTERNECNKDLHPTLPPLKNRDFVDGPIHHR
マウスBMPR1Bの細胞外領域蛋白質のアミノ酸配列(配列番号3):
LLRSSGKLNVGTKKEDGESTAPTPRPKILRCKCHHHCPEDSVNNICSTDGYCFTMIEEDDSGMPVVTSGCLGLEGSDFQCRDTPIPHQRRSIECCTERNECNKDLHPTLPPLKDRDFVDGPIHHK
 本発明において、哺乳動物は、以下のものに限定されないが、霊長類、家畜動物、げっ歯類、有蹄類、ペット動物等を含む。好ましい哺乳動物は、ヒト及びマウスである。
The amino acid sequences of the extracellular region proteins of human and mouse BMPR1B are as follows.
Amino acid sequence of the extracellular region protein of human BMPR1B (SEQ ID NO: 1):
KKEDGESTAPTPRPKVLRCKCHHHCPEDSVNNICSTDGYCFTMIEEDDSGLPVVTSGCLGLEGSDFQCRDTPIPHQRRSIECCTERNECNKDLHPTLPPLKNRDFVDGPIHHR
Amino acid sequence of the extracellular region protein of mouse BMPR1B (SEQ ID NO: 3):
LLRSSGKLNVGTKKEDGESTAPTPRPKILRCKCHHHCPEDSVNNICSTDGYCFTMIEEDDSGMPVVTSGCLGLEGSDFQCRDTPIPHQRRSIECCTERNECNKDLHPTLPPLKDRDFVDGPIHHK
In the present invention, mammals include, but are not limited to, primates, livestock animals, rodents, ungulates, pet animals and the like. Preferred mammals are humans and mice.
 <細胞外ドメインの変異体>
 本発明の細胞外ドメインの変異体は、天然の突然変異体及び人工変異体のいずれも含まれ、上記細胞外ドメインのアミノ酸配列において85%以上、好ましくは90%以上、例えば93%以上、95%以上、97%以上、98%以上又は99%以上の同一性を有するアミノ酸配列を含み、かつ、骨量、骨密度及び/又は骨強度を増加する能力を有するものである。
<Variant of extracellular domain>
Mutants of the extracellular domain of the present invention include both natural mutants and artificial mutants, and are 85% or more, preferably 90% or more, such as 93% or more, 95% or more in the amino acid sequence of the extracellular domain. %, 97% or more, 98% or more, or 99% or more of an amino acid sequence having the ability to increase bone mass, bone density and / or bone strength.
 例示的に、上記変異体は、配列番号1又は3のアミノ酸配列において、該アミノ酸配列と85%以上、好ましくは90%以上、例えば93%以上、95%以上、97%以上、98%以上又は99%以上の同一性を有するアミノ酸配列を含み、かつ、骨量、骨密度及び/又は骨強度を増加する能力を有するものである。
 本明細書で使用される「同一性」なる用語は、2つのアミノ酸配列のアラインメントにおいて、同一のアミノ酸残基数が最大となるように該2つの配列を整列させたときの配列間の一致度を意味し、具体的には、総アミノ酸残基数に対する同一アミノ酸残基数のパーセンテージ(%)で表わされる。FASTAのようにギャップを導入する場合、ギャップの数も総アミノ酸残基数に加算する。
Illustratively, the mutant is 85% or more, preferably 90% or more, such as 93% or more, 95% or more, 97% or more, 98% or more, in the amino acid sequence of SEQ ID NO: 1 or 3, or It contains an amino acid sequence having an identity of 99% or more and has the ability to increase bone mass, bone density and / or bone strength.
As used herein, the term “identity” refers to the degree of agreement between sequences when aligning two amino acid sequences so that the number of identical amino acid residues is maximized. Specifically, it is expressed as a percentage (%) of the number of identical amino acid residues to the total number of amino acid residues. When gaps are introduced as in FASTA, the number of gaps is also added to the total number of amino acid residues.
 85%以上の配列同一性を有する蛋白質は、例えば米国NCBI、欧州EMBL等の配列データベースにアクセスし、例えばBLAST、FASTA等の配列相同性検索プログラムを利用して検索することが可能である[Altschul, S. F. et al., J. Mol. Biol. 15, 403-410 (1990)、Karlin, S. et al., Proc. Natl. Acad. Sci. USA, 87, 2264-2268 (1990)等]。BLASTは、配列を固定長のワードに区切り、ワード単位で類似する断片を検索し、これらを類似度が最大になるまで両方向に伸ばして局所的なアラインメントを行い、 最後にこれらを結合して最終的なアラインメントを行う方法である。また、FASTAは、連続して一致する配列の断片を高速に検索し、それらの断片の中で類似度の高いものに着目して局所的なアラインメントを行い、最後にギャップを考慮した上でこれらを結合しアラインメントを行う方法である。 Proteins having 85% or more sequence identity can be searched using sequence homology search programs such as BLAST and FASTA by accessing sequence databases such as US NCBI and European EMBL [Altschul] , S. F. et al., J. Mol. Biol. 15, 403-410 (1990), Karlin, S. et al., Proc. Natl. Acad. Sci. USA, 87, 2264-2268 (1990) etc]. BLAST divides the sequence into fixed-length words, searches for similar fragments in word units, stretches them in both directions until the degree of similarity is maximized, performs local alignment, and finally combines these to make the final It is a method of performing a general alignment. FASTA also searches for fragments of sequences that match consecutively at high speed, performs local alignment by focusing on those fragments that have high similarity, and finally considers these gaps. Is an alignment method.
 本発明の細胞外ドメインに変異を導入する場合、置換、欠失又は付加からなる変異を行い、及び、天然のジスルフィド結合を破壊せず、かつ天然のコンホメーションを実質的に保持することが望ましい。これは、もし細胞外ドメイン内の天然のジスルフィド結合を破壊し本来のコンホメーションを変化させると、該ドメイン蛋白質が骨量、骨密度及び/又は骨強度を増加する能力を喪失するか又は該能力を大きく低減するおそれがあるからである。 When introducing a mutation into the extracellular domain of the present invention, a mutation comprising substitution, deletion or addition may be performed, and the natural disulfide bond may not be broken and the natural conformation may be substantially retained. desirable. This can result in loss of the ability of the domain protein to increase bone mass, bone density and / or bone strength if it breaks natural disulfide bonds in the extracellular domain and alters its native conformation. This is because the ability may be greatly reduced.
 変異導入法としては、細胞外ドメインの配列が公知であれば、その配列に基づいて合成した(相補的変異配列を含む)プライマーを使用するPCR法を利用した部位特異的突然変異誘発法が好ましい[Kunkel et al., Proc. Natl. Acad. Sci. USA, 82, 488-492 (1985)、F. M. Ausubel et al., Short Protocols in Molecular Biology, John Wiley & Sons (1995)、J. Sambrook et al., Molecular Cloning:A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press (1989)等]。変異導入用キット(例えば、宝酒造社)も市販されているので、指示書に従って変異を導入することもできる。 As the mutagenesis method, if the sequence of the extracellular domain is known, a site-directed mutagenesis method using a PCR method using a primer synthesized based on that sequence (including a complementary mutant sequence) is preferable. [Kunkel et al., Proc. Natl. Acad. Sci. USA, 82, 488-492 (1985), F. M. Ausubel et al., Short Protocols in Molecular Biology, John Wiley & Sons (1995), J. Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press (1989), etc.]. Mutation introduction kits (for example, Takara Shuzo) are also commercially available, and mutations can be introduced according to the instructions.
 簡単に説明すると、Kunkelの方法は、細胞外ドメインをコードするDNAを含むプラスミドを鋳型にし、T4 DNAポリヌクレオチドキナーゼで予め5’末端をリン酸化したプライマー(相補的変異配列を含む)を該鋳型にアニーリングし、DNA合成を行ったのち、T4 DNAリガーゼで末端同士を連結して、目的の変異を含むDNAを精製することを含む。
 本発明において、変異は、置換、欠失、付加、挿入、又はそれの組み合わせを含む。
Briefly, Kunkel's method uses a plasmid containing DNA encoding an extracellular domain as a template, and a primer (including a complementary mutant sequence) phosphorylated at the 5 ′ end with T4 DNA polynucleotide kinase. And then synthesizing the DNA, and then ligating the ends with T4 DNA ligase to purify the DNA containing the desired mutation.
In the present invention, the mutation includes substitution, deletion, addition, insertion, or a combination thereof.
 置換は、保存的置換又は非保存的置換のいずれでもよいが、細胞外ドメイン蛋白質のコンホメーションを実質的に変化させないためには保存的置換が好ましい。保存的置換は、構造的(例えば、分岐状、芳香族性等)、電気的(例えば、酸性、塩基性等)、極性又は疎水性、等の化学的・物理的性質の類似したアミノ酸間での置換をいう。分岐状アミノ酸には、バリン、ロイシン、イソロイシンが含まれる。芳香族アミノ酸には、チロシン、トリプトファン、フェニルアラニン、ヒスチジンが含まれる。酸性アミノ酸には、グルタミン酸、アスパラギン酸が含まれる。塩基性アミノ酸には、リシン、アルギニン、ヒスチジンが含まれる。極性アミノ酸には、セリン、トレオニン、グルタミン、アスパラギン、チロシン、システイン、グリシン、プロリン等が含まれる。疎水性アミノ酸には、アラニン、バリン、ロイシン、イソロイシン、メチオニン等が含まれる。 The substitution may be either conservative substitution or non-conservative substitution, but conservative substitution is preferable so as not to substantially change the conformation of the extracellular domain protein. Conservative substitutions can be made between amino acids with similar chemical and physical properties such as structural (e.g., branched, aromatic, etc.), electrical (e.g., acidic, basic, etc.), polar or hydrophobic, etc. Refers to replacement. Branched amino acids include valine, leucine and isoleucine. Aromatic amino acids include tyrosine, tryptophan, phenylalanine, histidine. Acidic amino acids include glutamic acid and aspartic acid. Basic amino acids include lysine, arginine, and histidine. Polar amino acids include serine, threonine, glutamine, asparagine, tyrosine, cysteine, glycine, proline and the like. Hydrophobic amino acids include alanine, valine, leucine, isoleucine, methionine and the like.
 欠失は、1もしくは複数のアミノ酸残基を失うことである。付加は、1もしくは複数のアミノ酸残基を蛋白質のN末端又はC末端に結合することである。挿入は、蛋白質の内部に1もしくは複数のアミノ酸残基を結合することである。このうち、欠失と挿入は、細胞外ドメイン蛋白質のコンホメーションを実質的に変化させないことを前提として行うことができる。そのために、約1~10個程度、好ましくは約1~5個程度のアミノ酸残基の欠失又は挿入を行うことができる。 Deletion is the loss of one or more amino acid residues. Addition is the attachment of one or more amino acid residues to the N-terminus or C-terminus of the protein. Insertion is the joining of one or more amino acid residues inside a protein. Among these, deletion and insertion can be performed on the assumption that the conformation of the extracellular domain protein is not substantially changed. Therefore, deletion or insertion of about 1 to 10, preferably about 1 to 5 amino acid residues can be performed.
 本発明において、「骨量、骨密度及び/又は骨強度骨強度」の増加は、少なくとも海綿骨の増加、骨幹の肥厚と増殖、最大荷重の増加等を伴う。
<細胞外ドメイン又はその変異体を含む蛋白質>
 上で説明したように、本発明の医薬組成物の有効成分のひとつは、哺乳動物由来のBMPR1Bの細胞外ドメイン、又は該ドメインのアミノ酸配列と85%以上の配列同一性を有しかつ骨量、骨密度及び/又は骨強度増加作用をもつその変異体、を含む蛋白質である。
In the present invention, an increase in “bone mass, bone density and / or bone strength and bone strength” is accompanied by at least an increase in cancellous bone, thickening and proliferation of diaphysis, an increase in maximum load, and the like.
<Protein containing extracellular domain or its variant>
As explained above, one of the active ingredients of the pharmaceutical composition of the present invention is an extracellular domain of BMPR1B derived from a mammal, or has an amino acid sequence of 85% or more of the amino acid sequence of the domain, and bone mass , A variant thereof having an action of increasing bone density and / or bone strength.
 ここで、「含む」なる表現は、上記細胞外ドメイン又はその変異体に、異種ペプチド、ポリペプチド又は蛋白質を、該ドメイン又はその変異体のN末端又はC末端側に、必要であれば適当なペプチドリンカー(例えば、アミノ酸数1~20)を介して、結合又は融合してもよいことを意味する。例えば、そのような異種蛋白質として好ましい例は、哺乳動物由来免疫グロブリンFc蛋白質又はその変異体等が挙げられる。しかし、このような異種蛋白質が生体内に投与されると、拒絶反応を引き起こす可能性があるため、それをできる限り回避するためにも、投与する哺乳動物が本来もつ蛋白質を該異種蛋白質として使用することが望ましいかもしれない。 Here, the expression “comprising” means that the heterologous peptide, polypeptide or protein is added to the extracellular domain or a variant thereof, as appropriate, if necessary, at the N-terminal or C-terminal side of the domain or the variant thereof. It means that they may be bonded or fused via a peptide linker (for example, 1 to 20 amino acids). For example, a preferred example of such a heterologous protein is a mammal-derived immunoglobulin Fc protein or a variant thereof. However, if such a heterologous protein is administered in vivo, it may cause a rejection reaction. Therefore, in order to avoid it as much as possible, the protein originally possessed by the administered mammal is used as the heterologous protein. It may be desirable to do.
 好ましいFc蛋白質は、ヒトへの使用を考慮すると、ヒト免疫グロブリンのFc蛋白質である。また、免疫グロブリンのクラス及びサブクラスは、以下のものに制限されないが、例えばIgG、IgD、IgE、IgM、IgA、IgG1、IgG2、IgG2a、IgG2b、IgG2c、IgG3、IgG4、IgA1、IgA2等のいずれでもよいが、ヒトに使用するのであれば、ヒト免疫グロブリンのクラス及びサブクラスを使用することが望ましい。Fc蛋白質は、細胞外ドメイン又はその変異体の生体内(in vivo)での安定性を向上させることができる。ただし、この場合、Fc蛋白質は、その生物活性による生体内に及ぼす影響を避けるために、例えば抗体依存性細胞障害(ADCC)活性及び/又は補体依存性細胞障害(CDC)活性等の生物活性を予め低下させることが望ましく、そのために、前記のような生物活性を抑制、低下又は喪失させるための変異を導入することが好ましい。そのような変異は、哺乳動物由来のFc蛋白質のアミノ酸配列において、例えば1~10個、好ましくは1~5個、より好ましくは1~3個のアミノ酸残基のアミノ酸置換であって、ADCC及び/又はCDC活性を低下させるような任意のアミノ酸置換であり、具体的には、後述の実施例1に例示されるような置換を含むことができる。Fc蛋白質の好適例は、配列番号8のアミノ酸配列を含むヒトIgG1 Fc変異体である。Fc蛋白質の結合位置は、細胞外ドメイン又はその変異体のN末端側、C末端側のいずれでもよいが、C末端側が好ましい。 A preferable Fc protein is a human immunoglobulin Fc protein in consideration of use in humans. The immunoglobulin class and subclass are not limited to the following, but any of IgG, IgD, IgE, IgM, IgA, IgG1, IgG2, IgG2a, IgG2b, IgG2c, IgG3, IgG4, IgA1, IgA2, etc. Although preferred for human use, it is desirable to use human immunoglobulin classes and subclasses. The Fc protein can improve the stability of an extracellular domain or a variant thereof in vivo. However, in this case, the Fc protein has a biological activity such as antibody-dependent cytotoxicity (ADCC) activity and / or complement-dependent cytotoxicity (CDC) activity, in order to avoid in vivo effects due to its biological activity. Therefore, it is desirable to introduce a mutation for suppressing, reducing or losing the biological activity as described above. Such a mutation is an amino acid substitution of, for example, 1 to 10, preferably 1 to 5, more preferably 1 to 3 amino acid residues in the amino acid sequence of an Fc protein derived from a mammal, and includes ADCC and Any amino acid substitution that decreases CDC activity, and specifically, can include substitution as exemplified in Example 1 described later. A preferred example of the Fc protein is a human IgG1 Fc variant comprising the amino acid sequence of SEQ ID NO: 8. The binding position of the Fc protein may be either the N-terminal side or the C-terminal side of the extracellular domain or a variant thereof, but the C-terminal side is preferred.
 上記Fc融合蛋白質の具体例は、例えば配列番号10又は配列番号18のいずれかのアミノ酸配列を含む蛋白質である。
 上記配列番号1又は配列番号3のアミノ酸配列中の細胞外ドメインは、BMPR1Bの細胞外領域蛋白質に由来するが、このドメインのアミノ酸配列は、骨量、骨密度及び/又は骨強度を増加する能力を有する限り、上記<細胞外ドメインの変異体>の節に記載したような変異を含んでもよい。
A specific example of the Fc fusion protein is a protein comprising any one of the amino acid sequences of SEQ ID NO: 10 and SEQ ID NO: 18, for example.
The extracellular domain in the amino acid sequence of SEQ ID NO: 1 or SEQ ID NO: 3 is derived from the extracellular region protein of BMPR1B. The amino acid sequence of this domain has the ability to increase bone mass, bone density and / or bone strength. As long as it has, it may contain a mutation as described in the section <Variant of extracellular domain> above.
 本発明においては、上記細胞外ドメイン又はその変異体を含む蛋白質は、必ずしも異種ペプチド、ポリペプチド又は蛋白質と結合又は融合する必要はない。即ち、本発明における上記蛋白質は、上記BMPR1Bの細胞外領域蛋白質の断片であってもよい。このような断片は、骨量、骨密度及び/又は骨強度を増加する能力を有するかぎり、上記<細胞外ドメインの変異体>の節に記載したような変異を含んでもよい。 In the present invention, the protein containing the extracellular domain or a variant thereof does not necessarily need to be bound or fused with a heterologous peptide, polypeptide or protein. That is, the protein in the present invention may be a fragment of the extracellular region protein of the BMPR1B. Such fragments may contain mutations as described in the section <Variants of extracellular domain> above, as long as they have the ability to increase bone mass, bone density and / or bone strength.
 本発明の上記細胞外ドメイン又はその変異体を含む蛋白質は、慣用の遺伝子組換え技術によって作製しうる。簡単に説明すると、該蛋白質の作製は、本発明の蛋白質をコードするDNAを用意し、このDNAを含む発現ベクターを構築し、該ベクターで原核又は真核細胞を形質転換又はトランスフェクションし、得られた細胞の培養から目的の組換え蛋白質を回収することを含む。蛋白質の精製は、蛋白質の慣用の精製法、例えば硫酸アンモニウム沈殿、有機溶媒沈殿、透析、電気泳動、クロマトフォーカシング、ゲルろ過クロマトグラフィー、イオン交換クロマトグラフィー、アフィニティークロマトグラフィー、HPLC等を適宜組み合わせることによって実施可能である。 The protein containing the extracellular domain of the present invention or a mutant thereof can be prepared by a conventional gene recombination technique. Briefly, the protein is prepared by preparing a DNA encoding the protein of the present invention, constructing an expression vector containing this DNA, transforming or transfecting prokaryotic or eukaryotic cells with the vector, Recovering the desired recombinant protein from the cultured cells. Protein purification is performed by appropriately combining conventional protein purification methods such as ammonium sulfate precipitation, organic solvent precipitation, dialysis, electrophoresis, chromatofocusing, gel filtration chromatography, ion exchange chromatography, affinity chromatography, and HPLC. Is possible.
 上記DNAやベクターに関しては、後述の<核酸及びベクター>の節、実施例等に記載しているので、それらを参照することができる。また、遺伝子組換え技術は、F. M. Ausube et al., Short Protocols in Molecular Biology, John Wiley & Sons (1995)、J. Sambrook et al., Molecular Cloning:A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press (1989)等に記載されており、本発明のために利用できる。 The above DNAs and vectors are described in the following <Nucleic acids and vectors> section, Examples, etc., and can be referred to. In addition, the gene recombination technology is F. M. Ausube et al., Short Protocols in Molecular Biology, John Wiley & Sons (1995), J. Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd ed., Cold. It is described in Spring Harbor Laboratory Press (1989) and can be used for the present invention.
 本発明における上記細胞外ドメイン又はその変異体を含む蛋白質は、化学修飾されていてもよい。
 化学修飾には、非限定的に、例えばグリコシル化、ポリエチレングリコール(ペグ)化、アセチル化、アミド化、リン酸化等が含まれる。特に好ましく利用できる化学修飾は、グリコシル化及びペグ化である。
The protein containing the extracellular domain or a variant thereof in the present invention may be chemically modified.
Chemical modifications include, but are not limited to, for example, glycosylation, polyethylene glycol (PEG), acetylation, amidation, phosphorylation and the like. Particularly preferred chemical modifications that can be utilized are glycosylation and pegylation.
 ペグ化は、例えば蛋白質のN末端アミノ基、リジンのεアミノ基等のアミノ酸残基に1又は複数のポリエチレングリコール(PEG)分子を結合させることである。一般的には、アミノ酸の遊離アミノ基にPEG分子が結合される。PEGの平均分子量は、以下に限定されないが、約3000~約50000の範囲で使用可能である。PEGを蛋白質に結合させるには、PEGの末端部分に、例えばカルボキシル基、ホルミル(アルデヒド)基、N-ヒドロキシスクシンイミドエステル基、アミノ基、チオール基、マレイイミド基等の活性基を導入し、蛋白質のアミノ基、カルボキシル基、チオール基、ヒドロキシル基等の基と反応させることができる。 PEGylation is the binding of one or more polyethylene glycol (PEG) molecules to amino acid residues such as the N-terminal amino group of proteins and the ε-amino group of lysine. Generally, a PEG molecule is attached to the free amino group of an amino acid. The average molecular weight of PEG is not limited to the following, but can be used in the range of about 3000 to about 50000. In order to bind PEG to protein, active groups such as carboxyl group, formyl (aldehyde) group, N-hydroxysuccinimide ester group, amino group, thiol group, and maleimide group are introduced into the terminal part of PEG to It can be reacted with a group such as an amino group, a carboxyl group, a thiol group, or a hydroxyl group.
 グリコシル化は、蛋白質のアスパラギン、セリン又はトレオニン残基に炭水化物鎖(即ち、糖鎖)が結合することである。一般に、Asn-X-Thr/Ser(ここで、XはPro以外の任意のアミノ酸残基である。)の配列を認識して糖鎖の結合が起こる。このような配列をもつように該蛋白質のアミノ酸配列を改変するときは、天然型と異なる位置に糖鎖を導入することもできる。通常、遺伝子組換え技術によって、組換え蛋白質をコードする核酸を、真核細胞(酵母細胞、動物細胞、植物細胞等)中で発現することによって、組換え蛋白質のグリコシル化を起こすことができる。本発明では、糖鎖の構造は特に制限されないものとし、発現のために選択された細胞の種類によって糖鎖構造が異なると考えられる。ヒトにおける使用の場合、ヒト由来細胞、ヒト糖鎖を合成可能な酵母細胞、チャイニーズハムスター卵巣(CHO)細胞等を利用しうる。 Glycosylation is the attachment of a carbohydrate chain (ie, sugar chain) to an asparagine, serine or threonine residue of a protein. In general, sugar chain binding occurs by recognizing the sequence of Asn-X-Thr / Ser (where X is any amino acid residue other than Pro). When the amino acid sequence of the protein is modified so as to have such a sequence, a sugar chain can be introduced at a position different from the natural type. Usually, a recombinant protein can be glycosylated by expressing a nucleic acid encoding the recombinant protein in eukaryotic cells (yeast cells, animal cells, plant cells, etc.) by genetic recombination techniques. In the present invention, the sugar chain structure is not particularly limited, and it is considered that the sugar chain structure varies depending on the cell type selected for expression. For human use, human-derived cells, yeast cells capable of synthesizing human sugar chains, Chinese hamster ovary (CHO) cells, and the like can be used.
 アセチル化やアミド化は、主に、蛋白質のN末端又はC末端で行うことが望ましい。これらの反応は、例えば脂肪族アルコールや脂肪酸等のアルコール類やカルボン酸類を用いて行うことができる。アルキル部分の炭素数は、例えば約1~20程度であるが、水溶性を損なわない、無毒性である等の条件を満たす必要がある。
<核酸及びベクター>
 本発明の組成物の有効成分として、上記細胞外ドメイン又はその変異体を含む蛋白質をコードする核酸を含むベクターも含まれる。
Acetylation and amidation are preferably performed mainly at the N-terminus or C-terminus of the protein. These reactions can be performed using, for example, alcohols such as aliphatic alcohols and fatty acids, and carboxylic acids. The number of carbon atoms in the alkyl moiety is, for example, about 1 to 20, but it is necessary to satisfy the conditions such as not impairing water solubility and nontoxicity.
<Nucleic acids and vectors>
The active ingredient of the composition of the present invention also includes a vector containing a nucleic acid encoding a protein containing the extracellular domain or a variant thereof.
 本明細書で使用する「核酸」なる用語には、DNA及びRNAの両方を含むものとし、DNAにはゲノムDNAやcDNAを含み、RNAにはmRNAを含む。
 細胞外ドメイン、その変異体及びそれらを含む蛋白質については、Fc蛋白質との融合蛋白質を含めて、上記<BMPR1Bの細胞外ドメイン>、<細胞外ドメインの変異体>及び<細胞外ドメイン又はその変異体を含む蛋白質>の各節で説明したとおりであり、それらの節で説明した全ての記載をここでも引用する。したがって、本発明における核酸は、上で説明し具体的に例示した、細胞外ドメイン又はその変異体を含む蛋白質をコードする核酸を包含する。
The term “nucleic acid” as used herein includes both DNA and RNA, DNA includes genomic DNA and cDNA, and RNA includes mRNA.
For extracellular domains, mutants thereof, and proteins containing them, including <Fc protein fusion protein><BMPR1B extracellular domain>, <extracellular domain mutant> and <extracellular domain or mutation thereof As described in each section of Proteins Containing Body>, all the descriptions described in those sections are cited here. Accordingly, the nucleic acids in the present invention include nucleic acids encoding proteins containing the extracellular domain or a variant thereof described and specifically exemplified above.
 具体的には、該核酸は、ヒトBMPR1Bの細胞外領域蛋白質(配列番号1)、並びに、マウスBMPR1Bの細胞外領域蛋白質(配列番号3)のアミノ酸配列をコードする核酸(配列番号2並びに配列番号4)を包含する。
 真核細胞での該核酸の発現及び発現産物の細胞外への分泌を考慮するならば、シグナル配列をコードするヌクレオチド配列をさらに含むとよい。シグナル配列の例は、BMPR1B由来のシグナル配列、ヒトCD33由来のシグナル配列、ヒト血清アルブミン由来のシグナル配列、ヒトプレプロトリプシン由来のシグナル配列等である。
Specifically, the nucleic acid is an extracellular region protein of human BMPR1B (SEQ ID NO: 1) and a nucleic acid encoding the amino acid sequence of the extracellular region protein of mouse BMPR1B (SEQ ID NO: 3) (SEQ ID NO: 2 and SEQ ID NO: Includes 4).
In consideration of expression of the nucleic acid in a eukaryotic cell and secretion of the expression product outside the cell, it may further include a nucleotide sequence encoding a signal sequence. Examples of the signal sequence include a signal sequence derived from BMPR1B, a signal sequence derived from human CD33, a signal sequence derived from human serum albumin, a signal sequence derived from human preprotrypsin, and the like.
 本発明における核酸は、BMPR1Bの細胞外ドメインを含む蛋白質又はその変異体と、上記定義の異種蛋白質との融合蛋白質をコードする核酸も含まれる。異種蛋白質として好ましい例は、哺乳動物由来の免疫グロブリンFc蛋白質であり、特にヒトFc蛋白質が好ましいが、その生物活性(特にADCC及びCDC)を低下又は喪失させるように変異を導入することが望ましい。例えば、変異型ヒトIgG1由来Fc蛋白質をコードするヌクレオチド配列を配列番号7に示す。さらにまた、この変異型ヒトIgG1由来Fc蛋白質と、マウス又はヒト由来BMPR1Bの細胞外ドメインを含む蛋白質との融合蛋白質をコードするヌクレオチド配列をそれぞれ配列番号9及び17に示す。 The nucleic acid in the present invention includes a nucleic acid encoding a fusion protein of a protein containing the extracellular domain of BMPR1B or a variant thereof and the heterologous protein defined above. A preferable example of the heterologous protein is an immunoglobulin Fc protein derived from a mammal, and a human Fc protein is particularly preferable, but it is desirable to introduce a mutation so as to reduce or lose its biological activity (particularly ADCC and CDC). For example, SEQ ID NO: 7 shows a nucleotide sequence encoding a mutant human IgG1-derived Fc protein. Furthermore, SEQ ID NOs: 9 and 17 show nucleotide sequences encoding a fusion protein of the mutant human IgG1-derived Fc protein and a protein containing the extracellular domain of mouse or human-derived BMPR1B, respectively.
 上記融合蛋白質をコードするヌクレオチド配列には、シグナル配列をコードするヌクレオチド配列をさらに含むことができる。シグナル配列の例は、ヒト蛋白質由来のシグナル配列、例えばヒトBMPR1B由来のシグナル配列、ヒトCD33由来のシグナル配列、ヒト血清アルブミン由来のシグナル配列、ヒトプレプロトリプシン由来のシグナル配列等である。
 上記蛋白質類をコードする核酸ホモログは、ヒト又はマウス由来のBMPR1B遺伝子をコードするmRNAから合成したcDNAに基づいて作製したプライマーやプローブを使用する周知の技術によって、ヒト及びマウス以外の他の哺乳動物由来の、該遺伝子を発現することが公知の細胞や組織から調製したcDNAライブラリーから取得することができる。そのような技術には、PCR法、ハイブリダイゼーション法(サザン法、ノーザン法等)等が含まれる。
The nucleotide sequence encoding the fusion protein can further include a nucleotide sequence encoding a signal sequence. Examples of the signal sequence are a signal sequence derived from a human protein, such as a signal sequence derived from human BMPR1B, a signal sequence derived from human CD33, a signal sequence derived from human serum albumin, a signal sequence derived from human preprotrypsin, and the like.
Nucleic acid homologues encoding the above proteins can be obtained by using known techniques using primers and probes prepared from cDNA synthesized from mRNA encoding the human or mouse-derived BMPR1B gene. It can be obtained from a cDNA library prepared from a cell or tissue known to express the gene. Such techniques include PCR methods, hybridization methods (Southern method, Northern method, etc.) and the like.
 PCR法は、ポリメラーゼ連鎖反応であり、これは、二本鎖DNAを一本鎖に解離するための変性工程(約94~96℃、約30秒~1分)、プライマーを鋳型の一本鎖DNAに結合するためのアニーリング工程(約55~68℃、約30秒~1分)、DNA鎖を伸長するための伸長工程(約72℃、約30秒~1分)からなるサイクルを1サイクルとして約25~40サイクルを実施する。また、変性工程の前に、約94~95℃で約5~12分の前加熱処理を行い、伸長工程の最終サイクル後に、さらに72℃で約7~15分の伸長反応を実施することができる。PCRは、市販のサーマルサイクラーにて、耐熱性DNAポリメラーゼ[例えば、AmpliTaq Gold(登録商標)(Applied Biosystems社)等]、MgCl2、dNTP(dATP、dGTP、dCTP、dTTP)等を含有するPCRバッファー中で、センス及びアンチセンスプライマー(サイズ:約17~30b、好ましくは20~25b)と鋳型DNAの存在下で行う。増幅されたDNAは、アガロースゲル電気泳動で分離・精製(臭化エチジウム染色)することができる。 The PCR method is a polymerase chain reaction, which involves a denaturation step (about 94 to 96 ° C, about 30 seconds to 1 minute) to dissociate double-stranded DNA into single strands, and a primer that is a single strand of a template. One cycle consisting of an annealing step (about 55 to 68 ° C, about 30 seconds to 1 minute) for binding to DNA and an extension step (about 72 ° C, about 30 seconds to 1 minute) to extend the DNA strand About 25 to 40 cycles. Also, before the denaturation step, preheating treatment at about 94 to 95 ° C. for about 5 to 12 minutes can be performed, and after the final cycle of the extension step, an extension reaction can be further performed at 72 ° C. for about 7 to 15 minutes. it can. PCR is performed with a commercially available thermal cycler in a PCR buffer containing a heat-resistant DNA polymerase [for example, AmpliTaq Gold (registered trademark) (Applied Biosystems), etc.], MgCl2, dNTP (dATP, dGTP, dCTP, dTTP), etc. In the presence of sense and antisense primers (size: about 17-30b, preferably 20-25b) and template DNA. The amplified DNA can be separated and purified (ethidium bromide staining) by agarose gel electrophoresis.
 ハイブリダイゼーションは、約20~100b又はそれ以上の長さの標識プローブと二本鎖を形成して目的核酸を検出する技法である。選択性を高めるために、一般にストリンジェントな条件でハイブリダイゼーションを行うことができる。ストリンジェントな条件は、例えば約1~5×SSC、室温~約40℃でのハイブリダイゼーション、及びその後の、約0.1~1×SSC、0.1% SDS、約45~65℃での洗浄からなる。ここで、1×SSCは、150mmol/L NaCl、15mmol/L Na-クエン酸、pH7.0の溶液を指す。このような条件は、配列同一性が約80%以上、好ましくは85%以上の核酸を検出することを可能にするであろう。 Hybridization is a technique for detecting a target nucleic acid by forming a double strand with a labeled probe having a length of about 20 to 100 b or more. In order to enhance selectivity, hybridization can generally be performed under stringent conditions. Stringent conditions consist of, for example, about 1-5 × SSC, hybridization at room temperature to about 40 ° C., and subsequent washing at about 0.1-1 × SSC, 0.1% SDS, about 45-65 ° C. Here, 1 × SSC refers to a solution of 150 mmol / L NaCl, 15 mmol / L Na-citric acid, pH 7.0. Such conditions will make it possible to detect nucleic acids with a sequence identity of about 80% or more, preferably 85% or more.
 上記核酸はベクターに挿入され、本発明の医薬組成物の有効成分である蛋白質の製造のために使用されるか、或いは、ベクター自体を製剤化して医薬組成物として使用される。
 ベクターは、例えばプラスミド、ファージ、ウイルス等を含む。プラスミドの例は、非限定的に、大腸菌由来プラスミド(例えばpRSET、pTZ19R、pBR322、pBR325、pUC118、pUC119等)、枯草菌由来プラスミド(例えばpUB110、pTP5等)、酵母由来プラスミド(例えばYEp13、YEp24、YCp50等)、Tiプラスミド等が挙げられ、ファージの例はλファージ等が挙げられ、さらに、ウイルスベクターの例は、レトロウイルス、ワクシニアウイルス、レンチウイルス、アデノウイルス、アデノ随伴ウイルス等の動物ウイルスベクター、バキュロウイルス等の昆虫ウイルスベクター等が挙げられる。
The nucleic acid is inserted into a vector and used for production of a protein which is an active ingredient of the pharmaceutical composition of the present invention, or the vector itself is formulated and used as a pharmaceutical composition.
Vectors include, for example, plasmids, phages, viruses and the like. Examples of plasmids include, but are not limited to, E. coli-derived plasmids (e.g., pRSET, pTZ19R, pBR322, pBR325, pUC118, pUC119, etc.), Bacillus subtilis-derived plasmids (e.g., pUB110, pTP5, etc.), yeast-derived plasmids (e.g., YEp13, YEp24, YCp50 etc.), Ti plasmids, etc., examples of phages include lambda phages, and examples of viral vectors include animal virus vectors such as retroviruses, vaccinia viruses, lentiviruses, adenoviruses, adeno-associated viruses, etc. And insect virus vectors such as baculovirus.
 ベクターは、目的DNAを組み込むためのポリリンカーもしくはマルチクローニングサイトを含んでもよく、また、該DNAを発現するためにいくつかの制御エレメントを含むことができる。制御エレメントには、例えばプロモーター、エンハンサー、ポリA付加シグナル、複製開始点、選択マーカー、リボソーム結合配列、ターミネーター等が含まれる。
 選択マーカーの例は、薬剤耐性遺伝子(例えばネオマイシン耐性遺伝子、アンピシリン耐性遺伝子、カナマイシン耐性遺伝子、ピューロマイシン耐性遺伝子等)、栄養要求性相補遺伝子[例えばジヒドロ葉酸レダクターゼ(DHFR)遺伝子、HIS3遺伝子、LEU2遺伝子、URA3遺伝子等]等である。
The vector may contain a polylinker or multicloning site for integrating the DNA of interest, and may contain several control elements to express the DNA. The control element includes, for example, a promoter, an enhancer, a poly A addition signal, a replication origin, a selection marker, a ribosome binding sequence, a terminator and the like.
Examples of selectable markers include drug resistance genes (e.g. neomycin resistance gene, ampicillin resistance gene, kanamycin resistance gene, puromycin resistance gene, etc.), auxotrophic complementary genes (e.g. dihydrofolate reductase (DHFR) gene, HIS3 gene, LEU2 gene) , URA3 gene, etc.].
 プロモーターは、宿主細胞に応じて異なる場合がある。
 宿主細胞の例としては、非限定的に、大腸菌等のエシェリヒア属、バチルス・ズブチリス等のバチルス属、シュードモナス・プチダ等のシュードモナス属等の細菌、サッカロミセス・セレビシエ、シゾサッカロミセス・ポンベ等のサッカロミセス属、カンジダ属、ピキア属等の酵母、CHO、COS、HEK293、NIH3T3、NS0等の動物細胞、Sf9、Sf21等の昆虫細胞、植物細胞等が挙げられる。
The promoter may vary depending on the host cell.
Examples of host cells include, but are not limited to, bacteria such as Escherichia such as E. coli, Bacillus such as Bacillus subtilis, Pseudomonas such as Pseudomonas putida, Saccharomyces cerevisiae, Saccharomyces such as Schizosaccharomyces pombe And yeasts such as Candida and Pichia, animal cells such as CHO, COS, HEK293, NIH3T3 and NS0, insect cells such as Sf9 and Sf21, and plant cells.
 大腸菌等の細菌を宿主とする場合、プロモーターとして、例えばtrpプロモーター、lacプロモーター、PL又はPRプロモーター等が例示される。
 酵母を宿主とする場合、プロモーターとして、例えばgal1プロモーター、gal10プロモーター、ヒートショックタンパク質プロモーター、MFα1プロモーター、PHO5プロモーター、PGKプロモーター、GAPプロモーター、ADHプロモーター、AOX1プロモーター等が例示される。
When a bacterium such as E. coli is used as a host, examples of the promoter include trp promoter, lac promoter, PL or PR promoter.
When yeast is used as a host, examples of the promoter include gal1 promoter, gal10 promoter, heat shock protein promoter, MFα1 promoter, PHO5 promoter, PGK promoter, GAP promoter, ADH promoter, AOX1 promoter and the like.
 動物細胞を宿主とする場合、プロモーターとして、SRαプロモーター、SV40プロモーター、LTRプロモーター、CMVプロモーター、ヒトCMV初期遺伝子プロモーター、アデノウイルス後期プロモーター、ワクシニアウイルス7.5Kプロモーター、メタロチオネインプロモーター、多角体プロモーター等が例示される。
 植物細胞を宿主とする場合、プロモーターとして、例えばCaMVプロモーター、TMVプロモーター等が例示される。
When animal cells are used as hosts, examples of promoters include SRα promoter, SV40 promoter, LTR promoter, CMV promoter, human CMV early gene promoter, adenovirus late promoter, vaccinia virus 7.5K promoter, metallothionein promoter, polyhedron promoter, etc. The
When plant cells are used as hosts, examples of promoters include CaMV promoter and TMV promoter.
 形質転換又はトランスフェクションとしては、例えばエレクトロポレーション法、スフェロプラスト法、酢酸リチウム法、リン酸カルシウム法、アグロバクテリウム法、ウイルス感染法、リポソーム法、マイクロインジェクション法、遺伝子銃法、リポフェクション法等が挙げられる。
 形質転換宿主は、細菌、酵母、動物細胞、植物細胞の種類に応じた培養条件で培養され、細胞内又は培養液から目的蛋白質を回収する。
Examples of transformation or transfection include electroporation method, spheroplast method, lithium acetate method, calcium phosphate method, Agrobacterium method, virus infection method, liposome method, microinjection method, gene gun method, lipofection method, etc. Can be mentioned.
The transformed host is cultured under culture conditions according to the types of bacteria, yeast, animal cells, and plant cells, and the target protein is recovered from the cells or from the culture solution.
 微生物の培養では、微生物が資化しうる炭素源、窒素源、無機塩類等を含有する培地を使用する。炭素源として、グルコース、フラクトース、スクロース、デンプン等の炭水化物、酢酸、プロピオン酸等の有機酸、エタノール、プロパノール等のアルコール類、窒素源として、アンモニア、塩化アンモニウム、硫酸アンモニウム、酢酸アンモニウム、リン酸アンモニウム等の無機酸や有機酸のアンモニウム塩、ペプトン、肉エキス、コーンスティープリカー等、無機物として、リン酸第一カリウム、リン酸第二カリウム、リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウム、硫酸 第一鉄、硫酸マンガン、硫酸銅、炭酸カルシウム等が用いられる。 In culture of microorganisms, a medium containing a carbon source, a nitrogen source, inorganic salts and the like that can be assimilated by the microorganism is used. As carbon sources, carbohydrates such as glucose, fructose, sucrose and starch, organic acids such as acetic acid and propionic acid, alcohols such as ethanol and propanol, as nitrogen sources, ammonia, ammonium chloride, ammonium sulfate, ammonium acetate, ammonium phosphate, etc. Inorganic acids, ammonium salts of organic acids, peptone, meat extract, corn steep liquor, etc., inorganic substances such as monopotassium phosphate, dipotassium phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, Manganese sulfate, copper sulfate, calcium carbonate and the like are used.
 動物細胞の培養では、例えばDMEM培地、RPMI1640培地等を基本培地とし、これに牛胎児血清(FCS)等を添加した培地が用いられる。
 目的蛋白質の回収は、上で説明したとおり、蛋白質精製のための慣用手法、例えば硫酸アンモニウム沈殿、有機溶媒沈殿、透析、電気泳動、クロマトフォーカシング、ゲルろ過クロマトグラフィー、イオン交換クロマトグラフィー、アフィニティークロマトグラフィー、HPLC等にて実施しうる。
In culturing animal cells, for example, a DMEM medium, RPMI1640 medium or the like is used as a basic medium, and a medium to which fetal calf serum (FCS) or the like is added is used.
As described above, the target protein can be recovered by conventional methods for protein purification, such as ammonium sulfate precipitation, organic solvent precipitation, dialysis, electrophoresis, chromatofocusing, gel filtration chromatography, ion exchange chromatography, affinity chromatography, It can be carried out by HPLC or the like.
 ベクターを治療用に使用する場合には、被験体のゲノムに組み込まれないベクターであって、細胞に感染するが複製が不能にされたウイルスベクター、非ウイルスベクター等が望ましい。このようなベクターには、例えばアデノ随伴ウイルスベクター、アデノウイルスベクター等が含まれる。これらのベクターは、プロモーター、エンハンサー、ポリアデニル化部位、選択マーカー、レポーター遺伝子等を含みうる。ウイルスベクターの例は、J. Virol. 67, 5911-5921 (1993)、Human Gene Therapy, 5, 717-729 (1994)、Gene Therapy, 1, 51-58 (1994)、Human Gene Therapy, 5, 793-801 (1994)、Gene Therapy, 1, 165-169 (1994)等に記載されているベクター、或いは、それらの改良ベクターである。更に、非ウイルスベクターの例は、ヒト人工染色体ベクターであり、これは、ヒト染色体由来のセントロメア及びテロメアを含む染色体断片から構成されるベクターである。ヒト染色体断片は特に制限されないが、例えばヒト14番染色体断片、ヒト21番染色体断片等が含まれる(国際公開第WO2004/031385号、特開2007-295860等)。上記ベクターに、上記定義の核酸を挿入し、被験体の骨部に投与するか、或いは、被験体から採取した骨部組織若しくは細胞にベクターを導入したのち該被験体の骨部に戻す方法等により、ベクターを被験体に投与することができる。
<医薬組成物>
 本発明は更に、上で説明したBMPR1Bの細胞外ドメイン又はその変異体を含む蛋白質、或いは、該蛋白質をコードする核酸を含むベクターを有効成分とする骨疾患治療用組成物を提供する。
When the vector is used for therapy, it is preferably a vector that is not integrated into the subject's genome and that infects cells but is unable to replicate, such as a non-viral vector. Such vectors include, for example, adeno-associated virus vectors, adenovirus vectors and the like. These vectors can include promoters, enhancers, polyadenylation sites, selectable markers, reporter genes, and the like. Examples of viral vectors are J. Virol. 67, 5911-5921 (1993), Human Gene Therapy, 5, 717-729 (1994), Gene Therapy, 1, 51-58 (1994), Human Gene Therapy, 5, 793-801 (1994), Gene Therapy, 1, 165-169 (1994) etc., or those improved vectors. Furthermore, an example of a non-viral vector is a human artificial chromosome vector, which is a vector composed of chromosome fragments containing human chromosome-derived centromeres and telomeres. The human chromosome fragment is not particularly limited, but includes, for example, human chromosome 14 fragment, human chromosome 21 fragment (International Publication No. WO2004 / 031385, JP 2007-295860, etc.). A method of inserting the nucleic acid as defined above into the vector and administering it to the bone part of the subject, or introducing the vector into a bone tissue or cell collected from the subject and returning it to the bone part of the subject, etc. The vector can be administered to the subject.
<Pharmaceutical composition>
The present invention further provides a composition for treating a bone disease comprising as an active ingredient a protein containing the extracellular domain of BMPR1B described above or a variant thereof, or a vector containing a nucleic acid encoding the protein.
 本発明はまた、該組成物を哺乳動物に投与することを含む、骨疾患を治療する方法を提供する。
 本発明において、骨疾患は、骨量、骨密度及び/又は骨強度の低下を伴う疾患であり、例えば、骨粗鬆症、変形性関節症、関節リウマチ、悪性腫瘍{破骨細胞腫、骨肉腫、多発性骨髄腫[多発性骨髄腫による骨の痛みは脊髄と肋骨にみられることが多く、運動することにより悪化することがある。同じ部分が持続的に痛む場合は、病的骨折を来している可能性がある。脊椎に病変がある場合は、脊髄圧迫を引き起こす場合がある。多発性骨髄腫では、増殖した腫瘍細胞によってIL-6が放出される。IL-6は破骨細胞を活性化する因子(OAF:osteoclast activating factor)としても知られ、IL-6によって活性化された破骨細胞が骨を吸収・破壊するため、多発性骨髄腫に侵された骨をレントゲン撮影すると、骨に穴が開いているように見える(打ち抜き像:"punched-out" resorptive lesions)。また、骨の破壊によって血中カルシウム濃度が高まり、高カルシウム血症や、それに起因する様々な症状が発生する。]}、高カルシウム血症、骨ページェット病、大理石骨病、カムラチ・エンゲルマン病、関節症、原発性甲状腺機能亢進症、骨減少症、骨多孔症、骨軟化症、クル病、外傷性骨折、疲労骨折等に起因する骨疾患、及びそれらに関連する様々な骨疾患又は障害を含む。骨粗鬆症には原発性骨粗鬆症と続発性(二次性)骨粗鬆症が含まれ、原発性骨粗鬆症としては、例えば閉経後骨粗鬆症、老人性骨粗鬆症が挙げられ、続発性(二次性)骨粗鬆症の原因疾患としては、例えば内分泌性(副甲状腺機能亢進症・甲状腺機能亢進症・性腺機能低下症・クッシング症候群・成長ホルモン欠乏症・糖尿病・アジソン病・カルシトニン欠損症等)、栄養性/代謝性[慢性消耗性疾患・るいそう・重症肝疾患(特に原発性胆汁性肝硬変)・胃切除・壊血病・吸収不良症候群(セリアック病を含む)・低リン血症・慢性腎疾患・特発性高Ca尿症・ヘモクロマトーシス・アミロイドーシス・肥胖細胞腫・ナトリウム過剰摂取・カルシウム摂取不足・ビタミンD,A過剰症等]、炎症性[関節リウマチ・傍関節性(炎症性サイトカインによる骨吸収亢進)・サルコイドーシス等]、不動性(全身性・臥床安静・麻痺・局所性・骨折後等)、薬物性[ステロイド(免疫抑制薬として炎症性疾患に広く用いられている。ステロイドで治療する疾患には、膠原病、喘息、炎症性腸疾患、臓器移植等がある。骨喪失はこの療法の重篤な副作用である)・メトトレキセート・ヘパリン・ワーファリン・抗ケイレン薬・リチウム・タモキシフェン等]、血液疾患[多発性骨髄腫・リンパ腫・白血病・血友病・慢性溶血性疾患等]、先天性(骨形成不全症・マルファン症候群・クラインフェルター症候群・先天性骨髄性ポルフィリア・嚢胞性線維症等)、その他の疾患によるもの[慢性閉塞性肺疾患・肝疾患・腎疾患・関節リウマチ・妊娠・高酸素血症・HIV感染症等]が挙げられる。
The present invention also provides a method of treating a bone disease comprising administering the composition to a mammal.
In the present invention, the bone disease is a disease accompanied by a decrease in bone mass, bone density and / or bone strength. For example, osteoporosis, osteoarthritis, rheumatoid arthritis, malignant tumor {osteoclastoma, osteosarcoma, multiple occurrences Myeloma [Bone pain due to multiple myeloma is often found in the spinal cord and ribs and may be aggravated by exercise. If the same part hurts continuously, it may have caused a pathological fracture. If there is a lesion in the spine, it may cause spinal cord compression. In multiple myeloma, IL-6 is released by the expanded tumor cells. IL-6, also known as osteoclast activating factor (OAF), is involved in multiple myeloma because osteoclasts activated by IL-6 absorb and destroy bone. X-rays of the bones appear to have holes in the bones ("punched-out" resorptive lesions). In addition, bone destruction increases blood calcium concentration, resulting in hypercalcemia and various symptoms resulting therefrom. ]}, Hypercalcemia, Paget's disease of bone, Marble bone disease, Kamrachi-Engmann disease, Arthropathy, Primary hyperthyroidism, Osteopenia, Osteoporosis, Osteomalacia, Kur disease, Traumatic Includes bone diseases resulting from fractures, fatigue fractures, etc., and various bone diseases or disorders associated therewith. Osteoporosis includes primary osteoporosis and secondary (secondary) osteoporosis.Examples of primary osteoporosis include postmenopausal osteoporosis and senile osteoporosis, and secondary (secondary) osteoporosis causes include E.g. endocrine (hyperparathyroidism, hyperthyroidism, hypogonadism, Cushing syndrome, growth hormone deficiency, diabetes, Addison's disease, calcitonin deficiency, etc.), nutritional / metabolic [chronic debilitating disease, Ruizosis, severe liver disease (especially primary biliary cirrhosis), gastrectomy, scurvy, malabsorption syndrome (including celiac disease), hypophosphatemia, chronic kidney disease, idiopathic hypercalciuria, hemochroma Tosis, amyloidosis, mastocytoma, sodium overdose, calcium intake deficiency, vitamin D, A excess, etc.], inflammatory [rheumatoid arthritis, paraarticularity (increase bone resorption by inflammatory cytokines), Coidosis, etc.], immobility (systemic, bed rest, paralysis, locality, after fracture, etc.), drug-related [steroids (used widely in inflammatory diseases as immunosuppressive drugs. For diseases treated with steroids, Collagen disease, asthma, inflammatory bowel disease, organ transplantation, etc. Bone loss is a serious side effect of this therapy), methotrexate, heparin, warfarin, anti-keiren, lithium, tamoxifen, etc.], blood diseases [multiple occurrences Myeloma, lymphoma, leukemia, hemophilia, chronic hemolytic disease, etc.], congenital (such as osteogenesis imperfecta, Marfan syndrome, Kleinfelter syndrome, congenital myelogenous porphyria, cystic fibrosis), etc. Examples include diseases [chronic obstructive pulmonary disease, liver disease, kidney disease, rheumatoid arthritis, pregnancy, hyperoxia, HIV infection, etc.].
 また、本発明において、骨疾患には石灰化のプロセスのみが阻害されることによって引き起こされる骨疾患も含まれ、例えばクル病等が挙げられる。
 本発明の組成物は、骨疾患をもつ哺乳動物、好ましくは骨量、骨密度及び/又は骨強度骨強度の低下を伴う疾患をもつ哺乳動物、に投与するとき、骨部に作用して骨量、骨密度及び/又は骨強度を増加させ、これによって、少なくとも海綿骨の増加、骨幹の肥厚及び増殖等を可能にする。
Further, in the present invention, the bone disease includes a bone disease caused by inhibition of only the calcification process, and examples thereof include Kur disease.
When the composition of the present invention is administered to a mammal having a bone disease, preferably a mammal having a disease accompanied by a decrease in bone mass, bone density and / or bone strength, the bone strength acts on the bone part. Increases quantity, bone density and / or bone strength, thereby enabling at least cancellous bone growth, diaphyseal thickening and proliferation, and the like.
 本発明の組成物の形態(即ち、製剤)は、制限されないものとし、経口製剤、非経口製剤のいずれも包含する。また、製剤には、本発明の有効成分の他に、骨疾患用の他の治療剤を含有させてもよい。そのような治療剤には、以下のものに限定されないが、例えばカルシウム製剤(L-アスパラギン酸カルシウム、グルコン酸カルシウム、乳酸カルシウム等)、活性型ビタミンD3製剤(アルファカルシドール、カルシトリオール等)、女性ホルモン薬(エストリオール、結合型エストロゲン等)、カルシトニン製剤(サケカルシトニン、エルカトニン等)、ビタミンK製剤(メナテトレノン等)、ビスホスホネート製剤(エチドロン酸二ナトリウム、アレンドロン酸ナトリウム水和物、リセドロン酸ナトリウム水和物等)、選択的エストロゲン受容体モジュレーター(塩酸ラロキシフェン等)、イプリフラボン、又は抗RANKL抗体等が含まれる。 The form (namely, preparation) of the composition of the present invention is not limited and includes both oral preparations and parenteral preparations. The preparation may contain other therapeutic agents for bone diseases in addition to the active ingredient of the present invention. Examples of such therapeutic agents include, but are not limited to, calcium preparations (calcium L-aspartate, calcium gluconate, calcium lactate, etc.), active vitamin D3 preparations (alpha-calcidol, calcitriol, etc.), Female hormone drugs (estriol, conjugated estrogens, etc.), calcitonin preparations (salmon calcitonin, elcatonin, etc.), vitamin K preparations (menatetrenone, etc.), bisphosphonate preparations (etidronate disodium, alendronate sodium hydrate, risedronate sodium) Hydrates, etc.), selective estrogen receptor modulators (such as raloxifene hydrochloride), ipriflavones, or anti-RANKL antibodies.
 上記の他の治療剤は、本発明の組成物と組み合わせて、治療計画に合わせて、同時に又は連続的に哺乳動物に投与することができる。ここで、「連続的に」とは、本発明の組成物が投与された後に、他の治療剤が投与されてもよいし、或いは、他の治療剤が投与された後に、本発明の組成物が投与されてもよいことを意味し、両薬剤の投与時期に時間的ずれがあることを表す。また、「同時に」とは、本発明の組成物と他の治療剤とが同時に投与される場合を意味し、この場合、本発明の組成物に他の治療剤が含有されて1つの製剤を構成してもよい。 The other therapeutic agents described above can be administered to a mammal in combination with the composition of the present invention at the same time or sequentially in accordance with a treatment plan. Here, “continuously” means that another therapeutic agent may be administered after the composition of the present invention is administered, or the composition of the present invention is administered after the other therapeutic agent is administered. This means that the product may be administered, and that there is a time lag in the administration timing of both drugs. The term “simultaneously” means that the composition of the present invention and another therapeutic agent are administered at the same time, and in this case, the composition of the present invention contains another therapeutic agent to form one preparation. It may be configured.
 好ましい形態は、非経口製剤であり、非限定的に、静脈内投与製剤、筋肉内投与製剤、腹腔内投与製剤、皮下投与製剤、局所投与製剤等が含まれる。局所投与は、損傷、骨折、障害を受けた骨部、例えば頭蓋骨、大腿骨、胸骨、椎骨、肋骨等の患部への直接的投与を含み、例えばハイドロキシアパタイト等の人工骨成分に有効成分を含有させた形態の移植用製剤として投与してもよい。非経口投与製剤には、例えば、注射剤、点滴剤、坐剤、経皮吸収剤、リポソーム、ナノ粒子封入製剤等が含まれる。 Preferred forms are parenteral preparations, including but not limited to intravenous preparations, intramuscular preparations, intraperitoneal preparations, subcutaneous preparations, topical preparations and the like. Topical administration includes direct administration to the affected area such as skull, femur, sternum, vertebra, rib, etc., including active ingredients in artificial bone components such as hydroxyapatite. You may administer as a transplanted preparation made into the form. Examples of the preparation for parenteral administration include injections, drops, suppositories, transdermal absorption agents, liposomes, nanoparticle-encapsulated preparations, and the like.
 経口製剤には、例えば、錠剤、丸剤、顆粒剤、カプセル剤、散剤、溶液剤、懸濁剤、遅延放出製剤、腸溶性製剤等が含まれる。
 本発明の蛋白質を有効成分とする場合、組成物は、製薬上許容される賦形剤、希釈剤等の担体、及び添加剤を含むことができる。
 担体は、例えば生理食塩水、グリセロール、エタノール、アーモンド油、植物油、スクロース、デンプン、ラクトース等を含む。
Examples of oral preparations include tablets, pills, granules, capsules, powders, solutions, suspensions, delayed release preparations, enteric preparations and the like.
When the protein of the present invention is used as an active ingredient, the composition can contain a pharmaceutically acceptable excipient, a carrier such as a diluent, and an additive.
Carriers include, for example, saline, glycerol, ethanol, almond oil, vegetable oil, sucrose, starch, lactose and the like.
 添加剤は、例えば、結合剤(例えばα化トウモロコシデンプン、ヒドロキシプロピルメチルセルロース、ポリビニルピロリドン等)、滑沢剤(例えば、ステアリン酸マグネシウム、タルク、シリカ等)、分散剤(例えばポリビニルピロリドン、トウモロコシデンプン等)、懸濁剤(例えばタルク、アラビアゴム等)、乳化剤(例えばレシチン、アラビアゴム等)、崩壊剤(ジャガイモデンプン、グリコール酸ナトリウムデンプン、クロスポピドン等)、緩衝剤(例えばリン酸塩、酢酸塩、クエン酸塩、トリス塩等)、抗酸化剤(例えばアスコルビン酸、トコフェロール等)、保存剤(例えばソルビン酸、p-ヒドロキシ安息香酸メチル、p-ヒドロキシ安息香酸プロピル等)、等張化剤(例えば塩化ナトリウム等)、安定化剤(例えばグリセロール等)等を含むことができる。 Additives include, for example, binders (for example, pregelatinized corn starch, hydroxypropylmethylcellulose, polyvinylpyrrolidone, etc.), lubricants (for example, magnesium stearate, talc, silica, etc.), dispersants (for example, polyvinylpyrrolidone, cornstarch, etc.) ), Suspension (e.g. talc, gum arabic etc.), emulsifier (e.g. lecithin, gum arabic etc.), disintegrant (potato starch, sodium starch glycolate, crospovidone etc.), buffer (e.g. phosphate, acetate) Citrate, tris salt, etc.), antioxidants (e.g., ascorbic acid, tocopherol, etc.), preservatives (e.g., sorbic acid, methyl p-hydroxybenzoate, propyl p-hydroxybenzoate, etc.), isotonic agents (e.g. For example, sodium chloride etc.), stabilizers (eg glycerol etc.) and the like can be included.
 腸溶性製剤には、例えば、ヒドロキシプロピルメチルセルロースフタレート、メタクリル酸-メタクリル酸メチルコポリマー、メタクリル酸-アクリル酸エチルコポリマー、ヒドロキシプロピルアセテートサクシネート等のポリマーが使用される。
 医薬製剤の投与量は、患者の年齢、性別、体重、症状及び投与経路等に応じて適宜決定されるべきであり、以下に限定されないが、例えば成人一日あたり約0.1μg/kg~100mg/kgの範囲内であり、好ましくは約1μg/kg~10mg/kgの範囲内である。製剤の投与は、治療中毎日投与してもよいし、数日間隔、2週間間隔又は1ヶ月間隔等時間間隔をとって投与してもよい。
For enteric preparations, for example, polymers such as hydroxypropyl methylcellulose phthalate, methacrylic acid-methyl methacrylate copolymer, methacrylic acid-ethyl acrylate copolymer, hydroxypropyl acetate succinate are used.
The dosage of the pharmaceutical preparation should be appropriately determined according to the age, sex, weight, symptom, route of administration, etc. of the patient, and is not limited to the following, but for example, about 0.1 μg / kg to 100 mg / day for an adult. in the range of kg, preferably in the range of about 1 μg / kg to 10 mg / kg. The preparation may be administered every day during the treatment, or at intervals such as several days, two weeks, or one month.
 本発明の別の有効成分は、BMPR1Bの細胞外ドメイン蛋白質又はその変異体をコードする核酸を含むベクターである。
 このベクターの投与は、遺伝子治療で行われる技術又は手法と同様に実施できる。ベクターは、被験体に直接投与(in vivo法)してもよいし、又は被験体から採取した細胞に導入し、目的のBMPR1B細胞外ドメインを発現する形質転換細胞を選択してからその細胞を被験体に投与してもよい(ex vivo法)。目的の組織又は細胞にベクターを投与するために使用し得る遺伝子送達法には、コロイド分散系、リポソーム誘導系、人工ウイルスエンベロープ等が含まれる。例えば、送達系は巨大分子複合体、ナノカプセル、ミクロスフェア、ビーズ、水中油型乳剤、ミセル、混合ミセル、リポソーム等を使用することができる。ベクターの直接投与は、例えば静脈内注射(点滴を含む)、筋肉内注射、腹腔内注射、皮下注射等により行うことができる。また、ベクターの細胞導入(形質転換)は、例えば、リン酸カルシウム法、DEAEデキストラン法、エレクトロポレーション法、リポフェクション法等の一般的な遺伝子導入法を用いて行うことができる。ベクター又は形質転換体の使用量は、投与経路、投与回数、被験体の種類によって異なるが、当技術分野で慣例的な手法を用いて適宜決定することができる。
<BMPR1B細胞外ドメインノックインマウスの作製>
 本発明は、BMPR1Bの細胞外ドメインの生体内機能を解析するためのB細胞特異的発現ノックインキメラマウス及びその作製法を通して見出されたものである。
Another active ingredient of the present invention is a vector comprising a nucleic acid encoding the extracellular domain protein of BMPR1B or a variant thereof.
Administration of this vector can be carried out in the same manner as the technique or technique used in gene therapy. The vector may be administered directly to the subject (in vivo method), or introduced into a cell collected from the subject, and the transformed cell expressing the desired BMPR1B extracellular domain is selected before the cell is used. It may be administered to a subject (ex vivo method). Gene delivery methods that can be used to administer the vector to the tissue or cell of interest include colloidal dispersion systems, liposome-derived systems, artificial virus envelopes, and the like. For example, the delivery system can use macromolecular complexes, nanocapsules, microspheres, beads, oil-in-water emulsions, micelles, mixed micelles, liposomes, and the like. Direct administration of the vector can be performed, for example, by intravenous injection (including infusion), intramuscular injection, intraperitoneal injection, subcutaneous injection, or the like. In addition, vector introduction (transformation) of a vector can be performed using a general gene introduction method such as a calcium phosphate method, a DEAE dextran method, an electroporation method, a lipofection method, or the like. The amount of the vector or transformant to be used varies depending on the administration route, the number of administrations, and the type of the subject, but can be appropriately determined using a method conventional in the art.
<Preparation of BMPR1B extracellular domain knock-in mouse>
The present invention has been found through a B cell-specific expression knock-in chimeric mouse for analyzing the in vivo function of the extracellular domain of BMPR1B and a method for producing the same.
 本発明におけるBMPR1B細胞外ドメインノックインキメラマウス望ましくはBMPR1B細胞外ドメインとFcとの融合体発現ノックインキメラマウスの作製は、例えば確立されている方法(国際公開第WO2006/78072号)に従って作製することができる。例えば、マウスB細胞におけるより効率的な分泌発現を可能にするため、BMPR1Bの分泌シグナル配列をマウスIgκ遺伝子の分泌シグナル配列と置換する。ここで述べるFcとの融合体を発現させる場合には、ヒトIgG1由来Fcの一部をADCC及びCDC活性低下型に変異させたFc変異体(hFcm)を用いることが好ましい。また、ノックインES細胞由来の細胞において挿入した核酸(BMPR1B細胞外ドメイン、或いは、BMPR1B細胞外ドメインとhFcmとの融合体)が発現するかどうかは、当該細胞由来のRNAを用いたRT-PCR法、ノーザンブロット法等、更にはBMPR1B細胞外ドメイン或いはhFcmに対する抗体を用いた酵素免疫測定法(ELISA)及びウエスタンブロット法等を利用して検出できる。 BMPR1B extracellular domain knock-in chimeric mouse in the present invention Desirably, a fusion expression knock-in chimeric mouse of BMPR1B extracellular domain and Fc can be prepared, for example, according to an established method (International Publication No. WO2006 / 78072) it can. For example, in order to enable more efficient secretory expression in mouse B cells, the secretory signal sequence of BMPR1B is replaced with the secretory signal sequence of the mouse Igκ gene. When expressing a fusion with Fc described herein, it is preferable to use an Fc variant (hFcm) obtained by mutating a part of human IgG1-derived Fc to ADCC and CDC activity-reduced type. In addition, whether or not the nucleic acid (BMPR1B extracellular domain or a fusion of BMPR1B extracellular domain and hFcm) inserted in cells derived from knock-in ES cells is expressed is determined by RT-PCR using RNA derived from the cells Detection can be performed using Northern blotting and the like, and further, enzyme immunoassay (ELISA) using antibodies against the extracellular domain of BMPPR1B or hFcm, and Western blotting.
 ヒト又はマウスBMPR1B細胞外ドメインノックインキメラマウス、あるいは、ヒト又はマウスBMPR1B細胞外ドメインとhFcmとの融合体発現ノックインキメラマウス、及び、外来cDNA発現ユニットが挿入されていない、或いはhFcmのみの発現ユニットが挿入されたES細胞を用いて作製されたコントロールキメラマウスについて、各組織の病理解析、免疫組織化学解析、血清生化学検査、血球成分測定等を実施して、BMPR1B細胞外ドメインの発現に起因する変化を特定できる。後述の実施例3においては、コントロールキメラマウスに比較しマウスBMPR1B細胞外ドメインノックインキメラマウス特異的な表現型として、実施例3-1より大腿骨の白色化、胸骨の白色化が、実施例3-2より大腿骨の骨幹壁厚の肥厚と海綿骨増加及び胸骨の海綿骨の増加が、実施例3-3より脛骨の単位骨量の増加、骨芽細胞数・骨芽細胞面・類骨量の増加、石灰化速度・石灰化面・骨形成速度の増加、及び破骨細胞数・破骨細胞面の低下が、実施例3-4より大腿骨の皮質骨断面積の増加が、実施例3-5より大腿骨の最大荷重の増加が観察された。 Human or mouse BMPR1B extracellular domain knock-in chimeric mouse, human or mouse BMPR1B extracellular domain and hFcm fusion expression knock-in chimeric mouse, and foreign cDNA expression unit is not inserted or only hFcm expression unit Control chimera mice produced using the inserted ES cells are subjected to pathological analysis, immunohistochemical analysis, serum biochemical examination, blood cell component measurement, etc. of each tissue, resulting from the expression of the BMPR1B extracellular domain Identify changes. In Example 3, which will be described later, as compared with the control chimeric mouse, the mouse BMPR1B extracellular domain knock-in chimeric mouse has a phenotype that is whitening of the femur and whitening of the sternum from Example 3-1. -2 increased thickness of femoral diaphyseal wall, increased cancellous bone, and increased cancellous bone of sternum, increased unit bone mass of tibia, number of osteoblasts, osteoblast surface, osteoids than Example 3-3 Increase in amount, increase in calcification rate / calcification surface / bone formation rate, and decrease in osteoclast number / osteoclast surface, increase of cortical bone cross-sectional area of femur from Example 3-4 From Example 3-5, an increase in the maximum load on the femur was observed.
 以下に実施例を示して本発明を具体的に説明するが、本発明の範囲はこれらの実施例によって限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples. However, the scope of the present invention is not limited by these examples.
USmBMPR1B-hFcm KIキメラマウスの作製
 国際公開第WO2006/78072号パンフレットの実施例記載の方法に従い、マウスBMPR1B-cDNA(開始コドンから終止コドンを含む1509bp、配列番号4)及びヒトIgG1Fc変異体-cDNA(BMPR1Bの細胞外ドメインと結合させるため挿入したリンカー配列から終止コドンを含む702bp、配列番号7)より、pUSmBMPR1B-hFcm KIベクターを作製した。
Production of USmBMPR1B-hFcm KI chimeric mouse According to the method described in the Examples of International Publication No.WO2006 / 78072 pamphlet, mouse BMPR1B-cDNA (1509 bp including stop codon from start codon, SEQ ID NO: 4) and human IgG1Fc variant-cDNA ( A pUSmBMPR1B-hFcm KI vector was prepared from a linker sequence inserted for binding to the extracellular domain of BMPR1B from 702 bp including a stop codon, SEQ ID NO: 7).
 以下に、配列番号5におけるマウスBMPR1B細胞外ドメイン、膜貫通領域を含む細胞外ドメインより下流領域をそれぞれGenBankアクセッション番号NM_007560.3、NP_031586.1の情報を基に、囲み線、二重下線で示す。
配列番号5:
Below, the mouse BMPR1B extracellular domain in SEQ ID NO: 5 and the downstream region from the extracellular domain including the transmembrane region are indicated by a boxed line and a double underline based on the information of GenBank accession numbers NM_007560.3 and NP_031586.1, respectively. Show.
SEQ ID NO: 5
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 以下に、配列番号5がコードするアミノ酸配列(502アミノ酸、配列番号6)を示す。
配列番号6:
The amino acid sequence encoded by SEQ ID NO: 5 (502 amino acids, SEQ ID NO: 6) is shown below.
SEQ ID NO: 6
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 以下に、ヒトIgG1 由来Fc変異体(hFcm)のcDNA配列及びアミノ酸配列を配列番号7及び8に示す。公知の情報[Tawara, T., et al., J. Immunology, 180, 2294-2298 (2008)、Gross, J. A., et al., Immunity, 15, 289-302 (2001)、国際公開第WO02/094852号パンフレット]を基に本来のヒトIgG1 由来Fc領域配列の中で、ADCC活性低下型に変えるため変異させたcDNA及びアミノ酸配列部分(N末端側より変異前と変異後のアミノ酸を記す。配列番号8記載の配列のN末端から20番目:L→A、N末端から21番目:L→E、N末端から23番目:G→A)を二重下線で、CDC活性低下型に変えるため変異させたcDNA及びアミノ酸配列部分(変異前と変異後のアミノ酸配列を記す。配列番号8記載の配列のN末端から108番目:K→A、N末端から117番目:P→S)を囲み線で、BMPR1Bの細胞外ドメインのC末端アミノ酸と結合させるため本来のヒトIgG1由来Fc配列の5’末端に付加したリンカー配列(SfoI認識配列を含む)を下線で示す。公知の情報[Gross, J. A., et al., Immunity, 15, 289-302 (2001)]から、上記方法以外にCDC活性低下型に変えるため、配列番号8記載の配列のN末端より116番目のAをSに変異させることも可能である。
配列番号7:
The cDNA sequence and amino acid sequence of human IgG1-derived Fc variant (hFcm) are shown in SEQ ID NOs: 7 and 8, respectively. Known information [Tawara, T., et al., J. Immunology, 180, 2294-2298 (2008), Gross, JA, et al., Immunity, 15, 289-302 (2001), WO02 / 094852 pamphlet], the original cDNA sequence derived from human IgG1-derived Fc region, and the amino acid sequence portion mutated in order to change to ADCC activity-reduced type (the amino acid before and after the mutation is described from the N-terminal side. 20th from the N-terminus of the sequence described in No. 8: L → A, 21st from the N-terminus: L → E, 23rd from the N-terminus: G → A) is double underlined to change to a CDC activity-reduced type Enclosed cDNA and amino acid sequence portion (indicate the amino acid sequence before and after mutation. 108th from the N-terminal of the sequence shown in SEQ ID NO: 8: K → A, 117th from the N-terminal: P → S) with a box. The linker sequence (including the SfoI recognition sequence) added to the 5 ′ end of the original human IgG1-derived Fc sequence for binding to the C-terminal amino acid of the extracellular domain of BMPR1B is underlined. From known information [Gross, JA, et al., Immunity, 15, 289-302 (2001)], in order to change to a CDC activity-reduced type other than the above method, the 116th position from the N-terminal of the sequence described in SEQ ID NO: 8 It is also possible to mutate A to S.
SEQ ID NO: 7
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 以下に、配列番号7がコードするアミノ酸配列(233アミノ酸、配列番号8)を示す。
配列番号8:
The amino acid sequence encoded by SEQ ID NO: 7 (233 amino acids, SEQ ID NO: 8) is shown below.
SEQ ID NO: 8
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 以下に、pUSmBMPR1B-hFcm KIベクター発現ユニットの開始コドンから終止コドンまでのポリヌクレオチド配列[配列番号9:イントロン領域を含んだマウスIgκシグナル配列(下線部分)下流にマウスBMPR1B-hFcm配列を含む1378bpより構成される。囲み線の部分はマウスBMPR1B細胞外ドメイン、二重線の部分はhFcmを示す]、及び該cDNAがコードするアミノ酸配列(配列番号10:378アミノ酸。下線部分はマウスIgκシグナル配列、囲み線の部分はマウスBMPR1B細胞外ドメイン、二重下線の部分はhFcmを示す)を示す。イントロン領域を含んだマウスIgκシグナル配列情報はGenBankより取得したMUSIGKVR1(アクセッション番号K02159)を基に、その上流のゲノム配列をUCSCマウスゲノムデータベースより取得した。
配列番号9:
The polynucleotide sequence from the start codon to the stop codon of the pUSmBMPR1B-hFcm KI vector expression unit [SEQ ID NO: 9: mouse Igκ signal sequence including intron region (underlined) downstream from 1378 bp including mouse BMPR1B-hFcm sequence Composed. The boxed portion indicates the mouse BMPR1B extracellular domain, the double-line portion indicates hFcm], and the amino acid sequence encoded by the cDNA (SEQ ID NO: 10: 378 amino acids. The underlined portion is the mouse Igκ signal sequence, the boxed portion. Indicates mouse BMPR1B extracellular domain, double underlined portion indicates hFcm). Mouse Igκ signal sequence information including the intron region was obtained from the UCSC mouse genome database based on MUSIGKVR1 (accession number K02159) obtained from GenBank.
SEQ ID NO: 9
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
配列番号10: SEQ ID NO: 10
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 pUSmBMPR1B-hFcm KIベクターを用い、国際公開第WO2006/78072号のパンフレットの実施例記載の方法に従いB細胞特異的にマウスBMPR1B細胞外ドメインとヒトFcmとの融合体を発現するUSmBMPR1B-hFcm KIキメラマウスは作製された。 USmBMPR1B-hFcm KI chimeric mouse that expresses a fusion of mouse BMPR1B extracellular domain and human Fcm in a B cell-specific manner using the pUSmBMPR1B-hFcm KI vector according to the method described in the examples of the pamphlet of International Publication No. WO2006 / 78072 Was made.
USmBMPR1B-hFcm KIキメラマウスにおけるマウスBMPR1B細胞外ドメインとヒトFc変異体との融合体の発現確認
 実施例1で作製された16週齢USmBMPR1B-hFcm KIキメラマウス(雌6個体、雄4個体)血清中に存在するマウスBMPR1B細胞外ドメインとヒトFc変異体との融合体をELISA法によって検出した。
Confirmation of expression of fusion of mouse BMPR1B extracellular domain and human Fc mutant in USmBMPR1B-hFcm KI chimeric mouse 16-week-old USmBMPR1B-hFcm KI chimeric mouse (6 females, 4 males) serum prepared in Example 1 The fusion of the mouse BMPR1B extracellular domain present in human Fc variants was detected by ELISA.
 マウスBMPR1B細胞外ドメインとヒトFc変異体との融合体の血清中濃度をELISA法によって測定を行うため、Anti-Human IgG(γ-Chain Specific、SIGMA社、商品番号:I3382)を固定化した96wellプレート(Nunc社、Maxi Soap)に評価サンプルないしはコントロールサンプル(Recombinant Mouse Frizzled-7/Fc Chimera、R&D systems社、商品番号:198-FZ)を加え、室温30分間インキュベートを行った後に、T-PBS(-)で3回洗浄操作を行い、ペルオキシダーゼ標識抗体Anti-Human IgG(Fc fragment)Peroxidase conjugate developed in Goat(SIGMA社、商品番号:A0170)を添加し室温で30分間インキュベートを行った。その後、T-PBS(-)で4回洗浄操作を行った後、スミロン ペルオキシダーゼ発色キット(住友ベークライト株式会社、商品番号:ML-1120T)を用いて発色させ、450nmの吸光度を測定した。Recombinant Mouse Frizzled-7/Fcを標準として求められた値にRecombinant Mouse Frizzled-7/Fc(アミノ酸配列から算出された分子量:43.5kDa)とマウスBMPR1B-hFcm(アミノ酸配列から算出された分子量:39.9kDa)との分子量の比(0.92)を積算することでマウスBMPR1B細胞外ドメインとヒトFc変異体との融合体の血清中濃度測定を行った。 96-well immobilized Anti-Human IgG (γ-Chain Specific, SIGMA, product number: I3382) to measure the serum concentration of fusion of mouse BMPR1B extracellular domain and human Fc variant by ELISA Add the evaluation sample or control sample (Recombinant Mouse Frizzled-7 / Fc Chimera, R & D systems, product number: 198-FZ) to the plate (Nunc, Maxi Soap), and incubate for 30 minutes at room temperature. The washing operation was performed three times with (-), and the peroxidase-labeled antibody Anti-Human IgG (Fc fragment) Peroxidase conjugate developed in Goat (SIGMA, product number: A0170) was added and incubated at room temperature for 30 minutes. Then, after washing operation 4 times with T-PBS (-), color was developed using Sumilon peroxidase coloring kit (Sumitomo Bakelite Co., Ltd., product number: ML-1120T), and absorbance at 450 nm was measured. Recombinant Mouse Frizzled-7 / Fc (molecular weight calculated from amino acid sequence: 43.5 kDa) and mouse BMPR1B-hFcm (molecular weight calculated from amino acid sequence: 39.9 kDa) to values obtained using Recombinant Mouse Frizzled-7 / Fc as a standard ) And the molecular weight ratio (0.92) were integrated to measure the serum concentration of the fusion of mouse BMPR1B extracellular domain and human Fc variant.
 その結果、雌6個体の平均濃度は297μg/ml、雄4個体の平均濃度は321μg/mlであり、コントロール個体由来の血清を用いて測定した結果では雌10個体、雄10個体すべて検出限界以下であった。
 以上の結果より、マウスBMPR1B細胞外ドメインとヒトFc変異体が生体内で発現し血中を循環している事が示唆された。
As a result, the average concentration of 6 females is 297 μg / ml, the average concentration of 4 males is 321 μg / ml, and the results of measurement using serum derived from control individuals are all below the detection limit for 10 females and 10 males. Met.
These results suggest that the mouse BMPR1B extracellular domain and human Fc mutant are expressed in vivo and circulate in the blood.
USmBMPR1B-hFcm KIキメラマウスの解析
3-1.剖検所見
 上記実施例1で作製されたUSmBMPR1B-hFcm KIキメラマウスを用い、16週齢において剖検(雌6個体、雄4個体)を実施し、大腿骨、胸骨について観察を行った。その結果、特徴的な変化としてUSmBMPR1B-hFcm KIキメラマウスにおいてコントロールマウス(雌5個体、雄5個体)に比べ大腿骨の白色化、胸骨の白色化が認められた。それぞれ変化が観察された個体数を以下に記す。
3-1-1.大腿骨
 剖検を実施したUSmBMPR1B-hFcm KIキメラマウス10個体中、2個体で白色化が、4個体でやや白色化がコントロール群(10個体)に比べ観察された。
3-1-2.胸骨
 剖検を実施したUSmBMPR1B-hFcm KIキメラマウス10個体中、4個体で白色化が、1個体でやや白色化がコントロール群(10個体)に比べ観察された。
Analysis of USmBMPR1B-hFcm KI chimeric mice
3-1. Autopsy findings Using the USmBMPR1B-hFcm KI chimeric mouse prepared in Example 1 above, an autopsy (6 females, 4 males) was performed at 16 weeks of age, and the femur and sternum were observed. . As a result, as a characteristic change, whitening of the femur and whitening of the sternum were observed in the USmBMPR1B-hFcm KI chimeric mouse compared to the control mice (5 females, 5 males). The number of individuals in which changes were observed is described below.
3-1-1. Femur Of USmBMPR1B-hFcm KI chimeric mice subjected to necropsy, whitening was observed in 2 mice and slightly whitening was observed in 4 mice compared to the control group (10 individuals).
3-1-2. Sternum Among 10 USmBMPR1B-hFcm KI chimeric mice subjected to necropsy, whitening was observed in 4 mice and whitening was observed slightly in 1 individual compared to the control group (10 individuals).
 以上の結果より、大腿骨の白色化、胸骨の白色化はマウスBMPR1B細胞外ドメイン-ヒトFc変異体の過剰発現によって引き起こされた可能性が示された。
3-2.病理所見
 16週齢のコントロールキメラマウス10個体及びUSmBMPR1B-hFcm KIキメラマウス10個体から由来する大腿骨、胸骨のHematoxylin-Eosin(H&E)染色病理切片を用いた観察から、USmBMPR1B-hFcm KIキメラマウスにおいてコントロールマウスに比べ大腿骨の骨幹壁厚の肥厚(表1)と海綿骨の増加(図1)及び胸骨の海綿骨の増加が認められた。それぞれの変化が観察された個体数を以下に記す。
3-2-1.大腿骨
 剖検を実施したコントロール10個体に比べUSmBMPR1B-hFcm KIキメラマウス10個体中7個体において海綿骨の増加が観察された。更に、大腿骨の3地点(近位端より30%、50%及び80%)の横断切片について骨幹壁厚を計測した結果、近位端より30%地点の最小骨幹壁厚及び50%地点の最大・最小骨幹壁厚値で平均値はそれぞれコントロールよりも高値を示した(表1)。
These results indicate that femoral whitening and sternum whitening may be caused by overexpression of mouse BMPR1B extracellular domain-human Fc mutant.
3-2. Pathological Findings USmBMPR1B-hFcm from observation of 10-week-old control chimeric mice and USmBMPR1B-hFcm KI chimeric mice from 10 femurs and sternum using Hematoxylin-Eosin (H & E) stained pathological sections In KI chimeric mice, thickening of the diaphyseal wall thickness of the femur (Table 1), an increase in cancellous bone (FIG. 1), and an increase in cancellous bone in the sternum were observed compared to control mice. The number of individuals in which each change was observed is described below.
3-2-1. Femur An increase in cancellous bone was observed in 7 of 10 USmBMPR1B-hFcm KI chimeric mice compared to 10 control mice subjected to necropsy. Furthermore, as a result of measuring the diaphyseal wall thickness for the cross section at three points of the femur (30%, 50%, and 80% from the proximal end), the minimum diaphyseal wall thickness of 30% from the proximal end and the 50% point The maximum and minimum diaphyseal wall thickness values were higher than the controls (Table 1).
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
3-2-2.胸骨
 剖検を実施したコントロール10個体に比べUSmBMPR1B-hFcm KIキメラマウス10個体中5個体において海綿骨の増加が観察された。
 以上の結果より、大腿骨の骨幹壁厚の肥厚と海綿骨増加及び胸骨の海綿骨増加はマウスBMPR1B細胞外ドメイン-ヒトFc変異体の過剰発現によって引き起こされた可能性が示された。
3-3.16週齢USmBMPR1B-hFcm KIキメラマウスを用いた脛骨の骨形態計測
3-3-1.骨形態計測
 剖検を行う前に、石灰化速度・石灰化面・骨形成速度の各データーを得るため、炭酸水素ナトリウム(関東化学株式会社、商品番号:37116-00)の2%水溶液にカルセイン(同仁化学株式会社、商品番号:340-00433)を溶解させ調製したカルセイン溶液(カルシウムキレート剤)を16mg/kgの投与量で皮下投与した。カルセイン溶液は剖検6日前及び1日前に投与した。剖検において、脛骨を採取し、脛骨の非脱灰薄切標本を作製後、トルイジンブルー染色(TB染色)、アルカリフォスファターゼ染色(ALP染色)、酒石酸耐性酸性ホスファターゼ(TRAP染色)を行った。なお、薄切標本を作製するため、予め脛骨サンプルはGMA(Glycolmethacrylate)樹脂で包埋処理した。得られた非脱灰薄切標本の骨幹端部二次海綿骨部分について骨構造に関するパラメーターである単位骨量(BV/TV)、骨形成に関するパラメーターである骨芽細胞数(Ob.N/B.Pm)、骨芽細胞面(Ob.S/BS)、類骨量(OV/BV)、石灰化速度(MAR)、石灰化面(MS/BS)、骨形成速度(BFR/BS)、骨吸収に関するパラメーターである破骨細胞数(Oc.N/B.Pm)、破骨細胞面(Oc.S/BS)をそれぞれ測定した。
3-3-2.単位骨量
 16週齢(雌個体)において剖検を実施したコントロール6個体、USmBMPR1B-hFcm KIキメラマウス6個体由来の脛骨サンプルを用いて単位骨量を測定した結果、コントロール個体群に比べUSmBMPR1B-hFcm KIキメラマウス個体群の単位骨量(平均値)が増加していることから、脛骨骨幹端部二次海綿骨部分の単位骨量増加はマウスBMPR1B細胞外ドメイン-ヒトFc変異体の過剰発現によって引き起こされた可能性が示された(表2)。
3-3-3.骨芽細胞数・骨芽細胞面・類骨量
 16週齢(雌個体)において剖検を実施したコントロール6個体、USmBMPR1B-hFcm KIキメラマウス6個体由来の脛骨サンプルを用いて骨芽細胞数・骨芽細胞面・類骨量を測定した結果、すべての項目において、コントロール個体群に比べUSmBMPR1B-hFcm KIキメラマウス個体群の増加(平均値)が観察されたことから、脛骨骨幹端部二次海綿骨部分の骨芽細胞数・骨芽細胞面・類骨量増加はマウスBMPR1B細胞外ドメイン-ヒトFc変異体の過剰発現によって引き起こされた可能性が示された(表2)。
3-2-2. Sternum Increased cancellous bone was observed in 5 out of 10 USmBMPR1B-hFcm KI chimeric mice compared to 10 control mice subjected to necropsy.
From these results, it was suggested that thickening of the femoral diaphysis wall thickness and cancellous bone increase and cancellous bone increase in the sternum were caused by overexpression of the mouse BMPR1B extracellular domain-human Fc mutant.
3-3. Bone morphology measurement of tibia using 16-week-old USmBMPR1B-hFcm KI chimeric mice
3-3-1. Bone morphology measurement Before autopsy, in order to obtain each data of calcification rate, calcification surface, bone formation rate, sodium bicarbonate (Kanto Chemical Co., Ltd., product number: 37116-00) A calcein solution (calcium chelator) prepared by dissolving calcein (Donjin Chemical Co., Ltd., product number: 340-00433) in a 2% aqueous solution was subcutaneously administered at a dose of 16 mg / kg. The calcein solution was administered 6 days before and 1 day before necropsy. At necropsy, the tibia was collected and a non-decalcified slice of the tibia was prepared, and then toluidine blue staining (TB staining), alkaline phosphatase staining (ALP staining), and tartrate-resistant acid phosphatase (TRAP staining) were performed. In order to prepare a sliced specimen, the tibial sample was previously embedded with GMA (Glycolmethacrylate) resin. Unit bone mass (BV / TV), which is a parameter related to bone structure, and the number of osteoblasts (Ob. .Pm), osteoblast surface (Ob.S / BS), osteoid mass (OV / BV), mineralization rate (MAR), mineralization surface (MS / BS), bone formation rate (BFR / BS), The number of osteoclasts (Oc.N / B.Pm) and osteoclast surface (Oc.S / BS), which are parameters related to bone resorption, were measured.
3-3-2. Unit bone mass As a result of measuring unit bone mass using tibial samples derived from 6 control mice and 6 USmBMPR1B-hFcm KI chimeric mice that were necropsied at 16 weeks of age (female individuals), control individuals As the unit bone mass (mean value) of USmBMPR1B-hFcm KI chimeric mice increased compared to the group, the increase in unit bone mass of the secondary cancellous bone of the tibia metaphysis was caused by mouse BMPR1B extracellular domain-human Fc It was suggested that it was caused by overexpression of the mutant (Table 2).
3-3-3. Number of osteoblasts, osteoblast surface, and osteoid mass Using tibial samples from six control mice and six USmBMPR1B-hFcm KI chimeric mice that were necropsied at 16 weeks of age (female individuals) As a result of measuring the number of osteoblasts, osteoblast surface, and osteoid mass, an increase (average value) in the USmBMPR1B-hFcm KI chimeric mouse population was observed in all items compared to the control population. The increase in osteoblast number, osteoblast surface, and osteoid mass in the cancellous secondary cancellous bone was possibly caused by overexpression of mouse BMPR1B extracellular domain-human Fc mutant (Table 2). ).
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
3-3-4.石灰化速度・石灰化面・骨形成速度
 16週齢(雌個体)において剖検を実施したコントロール6個体、USmBMPR1B-hFcm KIキメラマウス6個体由来の脛骨を用いて石灰化速度・石灰化面・骨形成速度を測定した結果、コントロール個体群に比べUSmBMPR1B-hFcm KIキメラマウス個体群の石灰化速度・石灰化面・骨形成速度が増加(平均値)を示したことから、脛骨骨幹端部二次海綿骨部分の石灰化はマウスBMPR1B細胞外ドメイン-ヒトFc変異体過剰発現によって促進された可能性が示された(表3)。
3-3-5.破骨細胞数・破骨細胞面
 16週齢(雌個体)において剖検を実施したコントロール6個体、USmBMPR1B-hFcm KIキメラマウス6個体由来の脛骨を用いて破骨細胞数・破骨細胞面を測定した結果、コントロール個体群に比べ全て低下(平均値)したことから、脛骨骨幹端部二次海綿骨部分の破骨細胞数・破骨細胞面はマウスBMPR1B細胞外ドメイン-ヒトFc変異体過剰発現によって低下した可能性が示された(表3)。
3-3-4 Calcification rate, calcification surface, bone formation rate Calcification rate using tibia from 6 control mice, 6 USmBMPR1B-hFcm KI chimeric mice, autopsy performed at 16 weeks of age (female individuals) As a result of measuring the calcification surface and bone formation rate, the calcification rate, calcification surface and bone formation rate of the USmBMPR1B-hFcm KI chimeric mouse population increased (average value) compared to the control population, It was suggested that calcification of the secondary cancellous bone of the tibial metaphysis was promoted by overexpression of mouse BMPR1B extracellular domain-human Fc variant (Table 3).
3-3-5. Osteoclast number / osteoclast surface The number of osteoclasts using the tibia derived from 6 control mice and 6 USmBMPR1B-hFcm KI chimeric mice that were necropsied at 16 weeks of age (female individuals) As a result of measuring the osteoclast surface, all of them decreased (average value) compared to the control population, so the number of osteoclasts and osteoclast surface of the secondary cancellous part of the tibial metaphysis were the mouse BMPR1B extracellular domain- The possibility that it was decreased by overexpression of human Fc mutant was shown (Table 3).
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
3-4.大腿骨の皮質骨断面積測定
 剖検において、大腿骨を採取し、近位端より50%の地点の2DマイクロCT撮影を行い、近位端より50%地点の皮質骨断面積を測定した。
 16週齢(雌個体)において剖検を実施したコントロール6個体、USmBMPR1B-hFcm KIキメラマウス6個体由来の大腿骨を用いて皮質骨断面積を測定した結果、コントロール個体群の平均値に比べUSmBMPR1B-hFcm KIキメラマウス個体群の平均値が増加したことから、大腿骨の皮質骨断面積増加はマウスBMPR1B細胞外ドメイン-ヒトFc変異体の過剰発現によって引き起こされた可能性が示された(表4)。
3-4. Measurement of the cortical bone cross-sectional area of the femur At the autopsy, the femur was collected, 2D micro CT imaging was performed at a point 50% from the proximal end, and the cortical bone cross-sectional area at the 50% point was measured from the proximal end.
As a result of measuring the cortical bone cross-sectional area using 6 femurs derived from 6 control mice and 6 USmBMPR1B-hFcm KI chimeric mice subjected to necropsy at 16 weeks of age (female individuals), USmBMPR1B- The increase in the mean value of the hFcm KI chimeric mouse population indicated that femoral cortical cross-sectional area increase may be caused by overexpression of mouse BMPR1B extracellular domain-human Fc mutant (Table 4). ).
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
3-5.大腿骨の骨強度測定
 剖検において、大腿骨を採取し、3点曲げ試験を行った。試験実施において支点間距離は6mmとし、その中点に荷重し最大荷重(N)を測定した。
 16週齢(雌個体)において剖検を実施したコントロール6個体、USmBMPR1B-hFcm KIキメラマウス6個体由来の大腿骨を用いて最大荷重を測定した結果、コントロール個体群に比べUSmBMPR1B-hFcm KIキメラマウス個体群の値が増加したことから、大腿骨の最大荷重増加はマウスBMPR1B細胞外ドメイン-ヒトFc変異体の過剰発現によって引き起こされた可能性が示された(表5)。
3-5. Measurement of femoral bone strength At autopsy, femurs were collected and subjected to a three-point bending test. In the test, the distance between fulcrums was 6 mm, and the maximum load (N) was measured by applying a load to the midpoint.
As a result of measuring the maximum load using the femur from six control mice and six USmBMPR1B-hFcm KI chimeric mice that were necropsied at 16 weeks of age (female individuals), the USmBMPR1B-hFcm KI chimeric mouse individuals compared to the control population Increased group values indicated that the maximum femoral load increase could be caused by overexpression of the mouse BMPR1B extracellular domain-human Fc variant (Table 5).
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
mBMPR1B-hFcm組換え体の発現・調製
4-1.mBMPR1B-hFcm組換え体発現ベクターの構築
 4-1-1.pLN1V5ベクターの構築
 5’末端にBamHI・NheI・SalI サイトを3’末端にXhoIサイトを持つ(V5タグ+Stop codon)センスオリゴDNA(V5S)及びそれに対するアンチセンスオリゴDNA(V5AS)を合成した。
V5S:GATCCGCTAGCGTCGACGGTAAGCCTATCCCTAACCCTCTCCTCGGTCTCGATTCTACGTGAC
(配列番号11)
V5AS:TCGAGTCACGTAGAATCGAGACCGAGGAGAGGGTTAGGGATAGGCTTACCGTCGACGCTAGCG
(配列番号12)
 上記合成オリゴDNAを、掛田らの報告[Gene Ther., 12, 852-856 (2005)]に記載されたpLN1ベクター上のBamHI-XhoIサイトに導入し、pLN1V5ベクターを構築した。
4-1-2.mBMPR1B-hFcm DNA断片の合成
BamHI-kozak-kSP-Fw:CGGGATCCACCATGGAGACAGACAC
(配列番号13)
hFc-NotI-Rv:ATAGTTTAGCGGCCGCTCATTTACCCGGAGACAGG
(配列番号14)
 以下にmBMPR1B-hFcm組換え体のcDNAの開始コドンから終止コドンまでのポリヌクレオチド配列(1378bp、配列番号9)及び該cDNAがコードするmBMPR1B-hFcmのシグナル配列を含んだアミノ酸配列(378アミノ酸、配列番号10)を示す。
配列番号9:
ATGGAGACAGACACACTCCTGTTATGGGTACTGCTGCTCTGGGTTCCAGGTGAGAGTGCAGAGAAGTGTTGGATGCAACCTCTGTGGCCATTATGATACTCCATGCCTCTCTGTTCTTGATCACTATAATTAGGGCATTTGTCACTGGTTTTAAGTTTCCCCAGTCCCCTGAATTTTCCATTTTCTCAGAGTGATGTCCAAAATTATTCTTAAAAATTTAAATAAAAAGGTCCTCTGCTGTGAAGGCTTTTATACATATATAACAATAATCTTTGTGTTTATCATTCCAGGTTCCACTGGCCTCTTACGAAGCTCTGGAAAATTAAATGTGGGCACCAAGAAGGAGGATGGAGAGAGTACAGCCCCCACCCCTCGGCCCAAGATCCTACGTTGTAAATGCCACCACCACTGTCCGGAAGACTCAGTCAACAATATCTGCAGCACAGATGGGTACTGCTTCACGATGATAGAAGAAGATGACTCTGGAATGCCTGTTGTCACCTCTGGATGTCTAGGACTAGAAGGGTCAGATTTTCAATGTCGTGACACTCCCATTCCTCATCAAAGAAGATCAATTGAATGCTGCACAGAAAGGAATGAGTGTAATAAAGACCTCCACCCCACTCTGCCTCCTCTCAAGGACAGAGATTTTGTTGATGGGCCCATACACCACAAGGCCGAGCCTAGGTCTTCAGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAAGCCGAGGGGGCCCCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCGCCGTCTCCAACAAAGCCCTCCCAGCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGA
配列番号10:
METDTLLLWVLLLWVPGSTGLLRSSGKLNVGTKKEDGESTAPTPRPKILRCKCHHHCPEDSVNNICSTDGYCFTMIEEDDSGMPVVTSGCLGLEGSDFQCRDTPIPHQRRSIECCTERNECNKDLHPTLPPLKDRDFVDGPIHHKAEPRSSDKTHTCPPCPAPEAEGAPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCAVSNKALPASIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
 Prime STAR HS DNA Polymerase(タカラバイオ社)を用い添付文書にしたがって反応液を調製し、50μL反応液中に配列番号13及び14のプライマー各10pmol、鋳型としマウスBMPR1B-hFcm cDNA(配列番号9)を添加し、98℃1分保温した後、98℃10秒、62℃5秒、及び72℃1分30秒を1サイクルとして30サイクル増幅し、得られた1405bpの増幅断片を0.8%ゲルで分離回収した。回収されたゲルからQIAquick Gel Extraction Kit(キアゲン社)を用い添付文書にしたがって増幅断片(BamHI mBMPR1B hFcm NotI)を回収した。
4-1-3.mBMPR1B-hFcm組換え体発現ベクターの構築
 実施例4-1-2で回収されたPCR増幅断片をBamHI及びNotI(ロシュ・ダイアグノスティックス社)で酵素消化し、0.8%アガロースゲルで分離回収した。回収されたゲルからQIAquick Gel Extraction Extraction Kit(キアゲン社)を用い添付文書にしたがって酵素処理断片を回収した。実施例4-1-1で作製されたpLN1V5ベクターにNotI siteを付加したベクターを用意し、上で得られた酵素処理断片をBamHI・NotIサイトに導入し、mBMPR1B-hFcm組換え体発現ベクター(図2)を構築した。
4-2.mBMPR1B-hFcm組換え体発現ベクターを用いたmBMPR1B-hFcm組換え体の一過的発現
4-2-1.遺伝子導入用発現ベクター調製
 実施例4-1-3で取得されたmBMPR1B-hFcm組換え体発現ベクターを大腸菌DH5αに導入し、得られた形質転換体よりDNAをプラスミド精製キット(Qiagen plasmid Maxi kit、キアゲン社)を用い調製した。
4-2-2.培養細胞へのベクター導入と分泌発現
 Free style 293F細胞(インビトロジェン社)をFree style 293 Expression Medium (インビトロジェン社)を用い、37℃、5%CO2、125rpm条件下、細胞密度が2x105~3x106cells/mLの範囲内で培養した。培地1Lを用いて培養した場合、発現ベクター1mgに35mLのOpti-MEM I Reduced Serum Medium(インビトロジェン社)を加えた溶液、及び1.3mLの293 fectin Transfection Reagent に33.7mLのOpti-MEM I Reduced Serum Mediumを加えた溶液をそれぞれ調製し、5分間室温でインキュベートした。インキュベート後この2液を混合し、更に20~30分間室温でインキュベートした。その後、1x109cells/LのFree style 293F細胞を含む培地に前記方法で処理された発現ベクターを添加し、3日間培養した。
4-3.mBMPR1B-hFcm組換え体の精製・調製
4-3-1.培養上清前処理
 実施例4-2-2で得られた培養液の上清を回収し、0.22μmフィルター(Fast PES Filter Unit, 1000mL、ナルジェ ヌンク インターナショナル社)で濾過処理を行った後4℃で冷却した。凍結保存した場合には、融解後、再度0.22μmフィルターで濾過した。
4-3-2.アフィニティークロマトグラフィー
 用いた酸性buffer(pH2.7)の組成はほう酸(ナカライテスク社)1.24g、りん酸水素二ナトリウム・12水(和光純薬工業社)7.16g、くえん酸一水和物(ナカライテスク社)4.20g、塩化ナトリウム(純正化学社)8.77gをミリQ水に溶かし、1mol/L塩酸[12mol/L塩酸(純正化学社)をミリQ水で12倍希釈した溶液]15.55mLを添加し、ミリQ水で1Lとしたものである。
Expression and preparation of mBMPR1B-hFcm recombinant
4-1. Construction of mBMPR1B-hFcm recombinant expression vector 4-1-1. Construction of pLN1V5 vector BamHI / NheI / SalI site at 5 'end and XhoI site at 3' end (V5 tag + Stop codon) A sense oligo DNA (V5S) and an antisense oligo DNA (V5AS) against it were synthesized.
V5S: GATCCGCTAGCGTCGACGGTAAGCCTATCCCTAACCCTCTCCTCGGTCTCGATTCTACGTGAC
(SEQ ID NO: 11)
V5AS: TCGAGTCACGTAGAATCGAGACCGAGGAGAGGGTTAGGGATAGGCTTACCGTCGACGCTAGCG
(SEQ ID NO: 12)
The synthetic oligo DNA was introduced into the BamHI-XhoI site on the pLN1 vector described in the report of Kakeda et al. [Gene Ther., 12, 852-856 (2005)] to construct a pLN1V5 vector.
4-1-2.mBMPR1B-hFcm DNA fragment synthesis
BamHI-kozak-kSP-Fw: CGGGATCCACCATGGAGACAGACAC
(SEQ ID NO: 13)
hFc-NotI-Rv: ATAGTTTAGCGGCCGCTCATTTACCCGGAGACAGG
(SEQ ID NO: 14)
The following is a polynucleotide sequence (1378 bp, SEQ ID NO: 9) from the start codon to the stop codon of cDNA of mBMPR1B-hFcm recombinant, and an amino acid sequence (378 amino acids, sequence) including the signal sequence of mBMPR1B-hFcm encoded by the cDNA The number 10) is shown.
SEQ ID NO: 9

SEQ ID NO: 10
METDTLLLWVLLLWVPGSTGLLRSSGKLNVGTKKEDGESTAPTPRPKILRCKCHHHCPEDSVNNICSTDGYCFTMIEEDDSGMPVVTSGCLGLEGSDFQCRDTPIPHQRRSIECCTERNECNKDLHPTLPPLKDRDFVDGPIHHKAEPRSSDKTHTCPPCPAPEAEGAPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCAVSNKALPASIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
Prepare a reaction solution using Prime STAR HS DNA Polymerase (Takara Bio Inc.) according to the package insert, and add 10 pmol of each of the primers of SEQ ID NOs: 13 and 14 in a 50 μL reaction solution and mouse BMPR1B-hFcm cDNA (SEQ ID NO: 9) as a template. Add and incubate at 98 ° C for 1 minute, then amplify for 30 cycles with 98 ° C for 10 seconds, 62 ° C for 5 seconds, and 72 ° C for 1 minute and 30 seconds, and separate the resulting 1405 bp amplified fragment on a 0.8% gel It was collected. The amplified fragment (BamHI mBMPR1B hFcm NotI) was recovered from the recovered gel using QIAquick Gel Extraction Kit (Qiagen) according to the package insert.
4-1-3. Construction of mBMPR1B-hFcm recombinant expression vector The PCR-amplified fragment recovered in Example 4-1-2 was enzymatically digested with BamHI and NotI (Roche Diagnostics), and separated and recovered on a 0.8% agarose gel. . The enzyme-treated fragment was recovered from the recovered gel using a QIAquick Gel Extraction Extraction Kit (Qiagen) according to the package insert. A vector in which NotI site was added to the pLN1V5 vector prepared in Example 4-1-1 was prepared, the enzyme-treated fragment obtained above was introduced into the BamHI / NotI site, and the mBMPR1B-hFcm recombinant expression vector ( Fig. 2) was constructed.
4-2. Transient expression of mBMPR1B-hFcm recombinant using mBMPR1B-hFcm recombinant expression vector
4-2-1. Preparation of expression vector for gene introduction The mBMPR1B-hFcm recombinant expression vector obtained in Example 4-1-3 is introduced into Escherichia coli DH5α, and DNA is purified from the resulting transformant using a plasmid purification kit. (Qiagen plasmid Maxi kit, Qiagen).
4-2-2. Vector introduction and secretory expression into cultured cells Free style 293F cells (Invitrogen) were used with Freestyle 293 Expression Medium (Invitrogen) at 37 ° C, 5% CO 2 , 125 rpm, cell density Was cultured in the range of 2 × 10 5 to 3 × 10 6 cells / mL. When cultured in 1 L of medium, 13.7 mg of expression vector and 35 mL of Opti-MEM I Reduced Serum Medium (Invitrogen) and 1.3 mL of 293 fectin Transfection Reagent 33.7 mL of Opti-MEM I Reduced Serum Medium Each solution was prepared and incubated at room temperature for 5 minutes. After incubation, the two solutions were mixed and incubated for another 20-30 minutes at room temperature. Thereafter, the expression vector treated by the above method was added to a medium containing 1 × 10 9 cells / L of Free style 293F cells and cultured for 3 days.
4-3 Purification and preparation of recombinant mBMPR1B-hFcm
4-3-1. Pretreatment of culture supernatant The supernatant of the culture solution obtained in Example 4-2-2 is collected and filtered with a 0.22 μm filter (Fast PES Filter Unit, 1000 mL, Nalgen Nunk International). And then cooled at 4 ° C. When stored frozen, it was again filtered through a 0.22 μm filter after thawing.
4-3-2. Affinity Chromatography The composition of the acidic buffer (pH 2.7) used was 1.24 g of boric acid (Nacalai Tesque), disodium hydrogen phosphate / 12 water (Wako Pure Chemical Industries) 7.16 g, citric acid Dissolve monohydrate (Nacalai Tesque) 4.20g and sodium chloride (Pure Chemical Co., Ltd.) 8.77g in Milli-Q water and dilute 1mol / L hydrochloric acid [12mol / L Hydrochloric acid (Pure Chemical Co., Ltd.) 12 times with Milli-Q water Solution] was added to 15.55 mL and made up to 1 L with milli-Q water.
 用いた中性buffer(pH7.3)の組成はほう酸(ナカライテスク社)1.24g、りん酸水素二ナトリウム・12水(和光純薬工業社)7.16g、くえん酸一水和物(ナカライテスク社)4.20g、塩化ナトリウム(純正化学社)8.77gをミリQ水に溶かし、5mol/L水酸化ナトリウム溶液[水酸化ナトリウム(純正化学社)10gをミリQ水で溶かし、50mLにした溶液]11.7mLを添加し、ミリQ水で1Lとしたものである。 The composition of the neutral buffer (pH 7.3) used was 1.24 g of boric acid (Nacalai Tesque), 7.16 g of disodium hydrogen phosphate and 12 water (Wako Pure Chemical Industries), citric acid monohydrate (Nacalai Tesque) ) 4.20g, 8.77g of sodium chloride (Pure Chemical Co., Ltd.) dissolved in Milli-Q water, 5mol / L sodium hydroxide solution [Sodium hydroxide (Pure Chemical Co., Ltd.) 10g dissolved in Milli-Q water to make 50mL] 11.7 Add mL and make up to 1 L with Milli-Q water.
 用いた中和bufferの組成はりん酸二水素ナトリウム・二水和物(関東化学社)13.1gとりん酸水素二ナトリウム・12水(和光純薬工業社)41.5gをミリQ水に溶かし、1Lとしたものである。
 前処理された培養上清を中性buffer(pH7.3)で平衡化されたProteinAカラム(Hi Trap ProteinA HP 1mL、GEヘルスケア バイオサイエンス社)にアプライした。その後、中性buffer(pH7.3)10mL以上でカラムを洗浄し、次にPBSに塩化ナトリウムを添加し塩化ナトリウム濃度を1.85mol/Lに調製した緩衝液で10mL以上洗浄し、再度15mLの中性buffer(pH7.3)でカラムを洗浄した。その後、20%酸性buffer(pH2.7)でカラムを5mL洗浄した。洗浄操作終了後、カラムに酸性buffer(pH2.7)を20%から100%のグラジエントで40 mL添加し目的蛋白質を回収した。上記分離精製操作にはAKTAexplorer10s(GEヘルスケア バイオサイエンス社)を用いた。使用前にエンドトキシン除去処理を行った。
4-3-3.精製標品調製
 実施例4-3-2で得られた精製標品を限外濾過膜VIVASPIN20 10,000 MWCO PES(ザルトリウス・ステディム・ジャパン社)を用いて濃縮した。その後、NAP-25Columns(GEヘルスケア バイオサイエンス社)を用いてPBSに置換した。濃縮置換操作終了後0.22μmフィルター(Millex GV、日本ミリポア社)により濾過処理を行った。濃縮操作は可能な限りクリーンベンチ内で行った。実施例4-3で行われた全ての工程はクリーンベンチでの作業以外、低温室(4℃)または氷上で実施した。
The composition of the neutralization buffer used was 13.1 g of sodium dihydrogen phosphate dihydrate (Kanto Chemical Co., Ltd.) and 41.5 g of disodium hydrogen phosphate / 12 water (Wako Pure Chemical Industries, Ltd.) dissolved in milli-Q water. 1L.
The pretreated culture supernatant was applied to a Protein A column (Hi Trap Protein A HP 1 mL, GE Healthcare Bioscience) equilibrated with a neutral buffer (pH 7.3). Then, the column is washed with 10 mL or more of neutral buffer (pH 7.3), then washed with 10 mL or more of the buffer prepared by adding sodium chloride to PBS to adjust the sodium chloride concentration to 1.85 mol / L, and again in 15 mL. The column was washed with a neutral buffer (pH 7.3). Thereafter, 5 mL of the column was washed with 20% acidic buffer (pH 2.7). After completion of the washing operation, 40 mL of acidic buffer (pH 2.7) was added to the column with a gradient of 20% to 100% to recover the target protein. AKTAexplorer10s (GE Healthcare Bioscience) was used for the separation and purification operation. Endotoxin removal treatment was performed before use.
4-3-3. Preparation of purified sample The purified sample obtained in Example 4-3-2 was concentrated using an ultrafiltration membrane VIVASPIN20 10,000 MWCO PES (Sartorius Stedim Japan). Then, it replaced with PBS using NAP-25Columns (GE Healthcare Bioscience). After completion of the concentration and replacement operation, filtration was performed with a 0.22 μm filter (Millex GV, Nihon Millipore). Concentration operation was performed in a clean bench as much as possible. All steps performed in Example 4-3 were performed in a cold room (4 ° C.) or on ice, except for work on a clean bench.
 最終精製品のSDS-PAGE(CBB染色)より還元条件下では単量体、非還元条件下では二量体が検出された(図3)。
 蛋白質濃度はA280nmを測定し、比吸光係数(E1%, 1cm=8.2)より算出した。
From the final purified product, SDS-PAGE (CBB staining), a monomer was detected under reducing conditions, and a dimer was detected under non-reducing conditions (FIG. 3).
The protein concentration was measured from A280 nm and calculated from the specific extinction coefficient (E1%, 1 cm = 8.2).
UShBMPR1B-hFcm KIキメラマウスの作製
 国際公開第WO2006/78072号パンフレットの実施例記載の方法に従い、ヒトBMPR1B-cDNA(開始コドンから終止コドンを含む1509bp、配列番号15)及びヒトIgG1Fc変異体-cDNA(BMPR1Bの細胞外ドメインと結合させるため挿入したリンカー配列から終止コドンを含む702bp、配列番号7)より、pUShBMPR1B-hFcm KIベクターを作製する。
Production of UShBMPR1B-hFcm KI chimeric mouse According to the method described in the examples of International Publication No.WO2006 / 78072 pamphlet, human BMPR1B-cDNA (1509 bp including the stop codon from start codon, SEQ ID NO: 15) and human IgG1Fc variant-cDNA ( A pUShBMPR1B-hFcm KI vector is prepared from a linker sequence inserted for binding to the extracellular domain of BMPR1B from 702 bp including a stop codon and SEQ ID NO: 7).
 以下に、配列番号15におけるヒトBMPR1B細胞外ドメイン、膜貫通領域を含む細胞外ドメインより下流領域をそれぞれGenBankアクセッション番号NM_001203.2、NP_001194.1の情報を基に、囲み線、二重下線で示す。
 配列番号15:
Below, the human BMPR1B extracellular domain in SEQ ID NO: 15 and the downstream region from the extracellular domain including the transmembrane region are indicated by a boxed line and a double underline based on the information of GenBank accession numbers NM_001203.2 and NP_001194.1, respectively. Show.
SEQ ID NO: 15
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 以下に、配列番号15がコードするアミノ酸配列(502アミノ酸、配列番号16)を示す。
配列番号16:
The amino acid sequence encoded by SEQ ID NO: 15 (502 amino acids, SEQ ID NO: 16) is shown below.
SEQ ID NO: 16
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 以下に、ヒトIgG1 由来Fc変異体(hFcm)のcDNA配列及びアミノ酸配列を配列番号7及び8に示す。公知の情報[Tawara, T., et al., J. Immunology, 180, 2294-2298 (2008)、Gross, J. A., et al., Immunity, 15, 289-302(2001)、国際公開第WO02/094852号パンフレット]を基に本来のヒトIgG1由来Fc領域配列の中で、ADCC活性低下型に変えるため変異させたcDNA及びアミノ酸配列部分(N末端側より変異前と変異後のアミノ酸を記す。配列番号8記載の配列のN末端から20番目:L→A、N末端から21番目:L→E、N末端から23番目:G→A)を二重下線で、CDC活性低下型に変えるため変異させたcDNA及びアミノ酸配列部分(変異前と変異後のアミノ酸配列を記す。配列番号8記載の配列のN末端から108番目:K→A、N末端から117番目:P→S)を囲み線で、BMPR1Bの細胞外ドメインのC末端アミノ酸と結合させるため本来のヒトIgG1由来Fc配列の5’末端に付加したリンカー配列(SfoI認識配列を含む)を下線で示す。公知の情報[Gross, J. A., et al., Immunity, 15, 289-302 (2001)]から、上記方法以外にCDC活性低下型に変えるため、配列番号8記載の配列のN末端より116番目のAをSに変異させることも可能である。
配列番号7:
The cDNA sequence and amino acid sequence of human IgG1-derived Fc variant (hFcm) are shown in SEQ ID NOs: 7 and 8, respectively. Known information [Tawara, T., et al., J. Immunology, 180, 2294-2298 (2008), Gross, JA, et al., Immunity, 15, 289-302 (2001), WO02 / 094852 pamphlet] of the original human IgG1-derived Fc region sequence, which was mutated to change to ADCC activity-reduced type and the amino acid sequence portion (the amino acid before and after mutation from the N-terminal side is described. 20th from the N-terminus of the sequence described in No. 8: L → A, 21st from the N-terminus: L → E, 23rd from the N-terminus: G → A) is double underlined to change to a CDC activity-reduced type Enclosed cDNA and amino acid sequence portion (indicate the amino acid sequence before and after mutation. 108th from the N-terminal of the sequence shown in SEQ ID NO: 8: K → A, 117th from the N-terminal: P → S) with a box. The linker sequence (including the SfoI recognition sequence) added to the 5 ′ end of the original human IgG1-derived Fc sequence for binding to the C-terminal amino acid of the extracellular domain of BMPR1B is underlined. From known information [Gross, JA, et al., Immunity, 15, 289-302 (2001)], in order to change to a CDC activity-reduced type other than the above method, the 116th position from the N-terminal of the sequence described in SEQ ID NO: 8 It is also possible to mutate A to S.
SEQ ID NO: 7
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 以下に、配列番号7がコードするアミノ酸配列(233アミノ酸、配列番号8)を示す。
配列番号8:
The amino acid sequence encoded by SEQ ID NO: 7 (233 amino acids, SEQ ID NO: 8) is shown below.
SEQ ID NO: 8
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 以下に、pUShBMPR1B-hFcm KIベクター発現ユニットの開始コドンから終止コドンまでのポリヌクレオチド配列[配列番号17:イントロン領域を含んだマウスIgκシグナル配列(下線部分)下流にヒトBMPR1B-hFcm配列を含む1342bpより構成される。囲み線の部分はヒトBMPR1B細胞外ドメイン、二重線の部分はhFcmを示す]、及び該cDNAがコードするアミノ酸配列(配列番号18:366アミノ酸。下線部分はマウスIgκシグナル配列、囲み線の部分はヒトBMPR1B細胞外ドメイン、二重下線の部分はhFcmを示す)を示す。イントロン領域を含んだマウスIgκシグナル配列情報はGenBankより取得したMUSIGKVR1(アクセッション番号K02159)を基に、その上流のゲノム配列をUCSCマウスゲノムデータベースより取得する。
配列番号17:
The polynucleotide sequence from the start codon to the stop codon of the pUShBMPR1B-hFcm KI vector expression unit (SEQ ID NO: 17: mouse Igκ signal sequence including the intron region (underlined part) downstream from 1342 bp including the human BMPR1B-hFcm sequence Composed. The boxed line part is the human BMPR1B extracellular domain, the double line part is hFcm], and the amino acid sequence encoded by the cDNA (SEQ ID NO: 18: 366 amino acids. The underlined part is the mouse Igκ signal sequence, the part of the boxed line Indicates the human BMPR1B extracellular domain, and the double underlined portion indicates hFcm). Mouse Igκ signal sequence information including the intron region is obtained from the UCSC mouse genome database based on MUSIGKVR1 (accession number K02159) obtained from GenBank.
SEQ ID NO: 17
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
配列番号18: SEQ ID NO: 18
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 pUShBMPR1B-hFcm KIベクターを用い、国際公開第WO2006/78072号のパンフレットの実施例記載の方法に従いB細胞特異的にヒトBMPR1B細胞外ドメインとヒトFcmとの融合体を発現するUShBMPR1B-hFcm KIキメラマウスを作製される。 UShBMPR1B-hFcm KI chimeric mouse that expresses a fusion of human BMPR1B extracellular domain and human Fcm in a B cell-specific manner using the pUShBMPR1B-hFcm KI vector according to the method described in the examples of the pamphlet of International Publication No. WO2006 / 78072 Is made.
hBMPR1B-hFcm組換え体発現ベクターの構築
6-1-1.pLN1V5ベクターの構築
 5’末端にBamHI・NheI・SalIサイトを3’末端にXhoIサイトを持つ(V5タグ+Stop codon)センスオリゴDNA(V5S)及びそれに対するアンチセンスオリゴDNA(V5AS)を合成する。
V5S:GATCCGCTAGCGTCGACGGTAAGCCTATCCCTAACCCTCTCCTCGGTCTCGATTCTACGTGAC
(配列番号11)
V5AS:TCGAGTCACGTAGAATCGAGACCGAGGAGAGGGTTAGGGATAGGCTTACCGTCGACGCTAGCG
(配列番号12)
 上記合成オリゴDNAを、掛田らの報告[Gene Ther., 12, 852-856 (2005)]に記載されたpLN1ベクター上のBamHI-XhoIサイトに導入し、pLN1V5ベクターを構築する。
6-1-2.hBMPR1B-hFcm DNA断片の合成
BamHI-kozak-kSP-Fw:CGGGATCCACCATGGAGACAGACAC
(配列番号13)
hFc-NotI-Rv:ATAGTTTAGCGGCCGCTCATTTACCCGGAGACAGG
(配列番号14)
 以下にhBMPR1B-hFcm組換え体のcDNAの開始コドンから終止コドンまでのポリヌクレオチド配列(1342bp、配列番号17)及び該cDNAがコードするhBMPR1B-hFcmのアミノ酸配列(366アミノ酸、配列番号18)を示す。
配列番号17:
ATGGAGACAGACACACTCCTGTTATGGGTACTGCTGCTCTGGGTTCCAGGTGAGAGTGCAGAGAAGTGTTGGATGCAACCTCTGTGGCCATTATGATACTCCATGCCTCTCTGTTCTTGATCACTATAATTAGGGCATTTGTCACTGGTTTTAAGTTTCCCCAGTCCCCTGAATTTTCCATTTTCTCAGAGTGATGTCCAAAATTATTCTTAAAAATTTAAATAAAAAGGTCCTCTGCTGTGAAGGCTTTTATACATATATAACAATAATCTTTGTGTTTATCATTCCAGGTTCCACTGGCAAGAAAGAGGATGGTGAGAGTACAGCCCCCACCCCCCGTCCAAAGGTCTTGCGTTGTAAATGCCACCACCATTGTCCAGAAGACTCAGTCAACAATATTTGCAGCACAGACGGATATTGTTTCACGATGATAGAAGAGGATGACTCTGGGTTGCCTGTGGTCACTTCTGGTTGCCTAGGACTAGAAGGCTCAGATTTTCAGTGTCGGGACACTCCCATTCCTCATCAAAGAAGATCAATTGAATGCTGCACAGAAAGGAACGAATGTAATAAAGACCTACACCCTACACTGCCTCCATTGAAAAACAGAGATTTTGTTGATGGACCTATACACCACAGGGCCGAGCCTAGGTCTTCAGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAAGCCGAGGGGGCCCCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCGCCGTCTCCAACAAAGCCCTCCCAGCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGA
配列番号18:
METDTLLLWVLLLWVPGSTGKKEDGESTAPTPRPKVLRCKCHHHCPEDSVNNICSTDGYCFTMIEEDDSGLPVVTSGCLGLEGSDFQCRDTPIPHQRRSIECCTERNECNKDLHPTLPPLKNRDFVDGPIHHRAEPRSSDKTHTCPPCPAPEAEGAPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCAVSNKALPASIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
 Prime STAR HS DNA Polymerase(タカラバイオ社)を用い添付文書にしたがって反応液を調製し、50μL反応液中に配列番号13及び14のプライマー各10pmol、鋳型としヒトBMPR1B-hFcm cDNA(配列番号17)を添加し、98℃1分保温した後、98℃10秒、62℃5秒、及び72℃1分30秒を1サイクルとして30サイクル増幅し、得られた1369bpの増幅断片を0.8%ゲルで分離回収する。回収されたゲルからQIAquick Gel Extraction Kit(キアゲン社)を用い添付文書にしたがって増幅断片(BamHI hBMPR1B hFcm NotI)を回収する。
6-1-3.hBMPR1B-hFcm組換え体発現ベクターの構築
 実施例6-1-2で回収されたPCR増幅断片をBamHI及びNotI(ロシュ・ダイアグノスティックス社)で酵素消化し、0.8%アガロースゲルで分離回収する。回収されたゲルからQIAquick Gel Extraction Extraction Kit(キアゲン社)を用い添付文書にしたがって酵素処理断片を回収する。実施例6-1-1で作製されたpLN1V5ベクターにNotI siteを付加したベクターを用意し、上で得られた酵素処理断片をBamHI・NotIサイトに導入し、hBMPR1B-hFcm組換え体発現ベクター(図4)を構築する。
6-2.hBMPR1B-hFcm組換え体発現ベクターを用いたhBMPR1B-hFcm組換え体の一過的発現
6-2-1.遺伝子導入用発現ベクター調製
 実施例6-1-3で取得されたhBMPR1B-hFcm組換え体発現ベクターを大腸菌DH5αに導入し、得られた形質転換体よりDNAをプラスミド精製キット(Qiagen plasmid Maxi kit、キアゲン社)を用い調製する。
6-2-2.培養細胞へのベクター導入と分泌発現
 Free style 293F細胞(インビトロジェン社)をFree style 293 Expression Medium (インビトロジェン社)を用い、37℃、5%CO2、125rpm条件下、細胞密度が2x105~3x106cells/mLの範囲内で培養する。培地1Lを用いて培養した場合、発現ベクター1mgに35mLのOpti-MEM I Reduced Serum Medium(インビトロジェン社)を加えた溶液、及び1.3mLの293 fectin Transfection Reagent に33.7mLのOpti-MEM I Reduced Serum Mediumを加えた溶液をそれぞれ調製し、5分間室温でインキュベートする。インキュベート後この2液を混合し、更に20~30分間室温でインキュベートする。その後、1x109cells/LのFree style 293F細胞を含む培地に前記方法で処理された発現ベクターを添加し、3日間培養する。
6-3.hBMPR1B-hFcm組換え体の精製・調製
6-3-1.培養上清前処理
 実施例6-2-2で得られた培養液の上清を回収し、0.22μmフィルター(Fast PES Filter Unit, 1000mL、ナルジェ ヌンク インターナショナル社)で濾過処理を行った後4℃で冷却する。凍結保存した場合には、融解後、再度0.22μmフィルターで濾過する。
6-3-2.アフィニティクロマトグラフィー
 用いる酸性buffer(pH2.7)の組成はほう酸(ナカライテスク社)1.24g、りん酸水素二ナトリウム・12水(和光純薬工業社)7.16g、くえん酸一水和物(ナカライテスク社)4.20g、塩化ナトリウム(純正化学社)8.77gをミリQ水に溶かし、1mol/L塩酸[12mol/L(純正化学社)をミリQ水で12倍希釈した溶液]15.55mLを添加し、ミリQ水で1Lとしたものである。
Construction of hBMPR1B-hFcm recombinant expression vector
6-1-1.Construction of pLN1V5 vector Sense oligo DNA (V5S) with BamHI / NheI / SalI site at the 5 ′ end and XhoI site at the 3 ′ end (V5 tag + Stop codon) and its antisense oligo DNA ( Synthesize V5AS).
V5S: GATCCGCTAGCGTCGACGGTAAGCCTATCCCTAACCCTCTCCTCGGTCTCGATTCTACGTGAC
(SEQ ID NO: 11)
V5AS: TCGAGTCACGTAGAATCGAGACCGAGGAGAGGGTTAGGGATAGGCTTACCGTCGACGCTAGCG
(SEQ ID NO: 12)
The synthetic oligo DNA is introduced into the BamHI-XhoI site on the pLN1 vector described in the report by Kakeda et al. [Gene Ther., 12, 852-856 (2005)] to construct the pLN1V5 vector.
6-1-2.Synthesis of hBMPR1B-hFcm DNA fragment
BamHI-kozak-kSP-Fw: CGGGATCCACCATGGAGACAGACAC
(SEQ ID NO: 13)
hFc-NotI-Rv: ATAGTTTAGCGGCCGCTCATTTACCCGGAGACAGG
(SEQ ID NO: 14)
The polynucleotide sequence from the start codon to the stop codon of the cDNA of hBMPR1B-hFcm recombinant (1342 bp, SEQ ID NO: 17) and the amino acid sequence of hBMPR1B-hFcm encoded by the cDNA (366 amino acids, SEQ ID NO: 18) are shown below. .
SEQ ID NO: 17

SEQ ID NO: 18
METDTLLLWVLLLWVPGSTGKKEDGESTAPTPRPKVLRCKCHHHCPEDSVNNICSTDGYCFTMIEEDDSGLPVVTSGCLGLEGSDFQCRDTPIPHQRRSIECCTERNECNKDLHPTLPPLKNRDFVDGPIHHRAEPRSSDKTHTCPPCPAPEAEGAPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCAVSNKALPASIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
Prepare a reaction solution using Prime STAR HS DNA Polymerase (Takara Bio Inc.) according to the package insert, and add 10 pmol each of the primers of SEQ ID NOs: 13 and 14 in a 50 μL reaction solution, and human BMPR1B-hFcm cDNA (SEQ ID NO: 17) as a template. Add and incubate at 98 ° C for 1 minute, then amplify for 30 cycles with 98 ° C for 10 seconds, 62 ° C for 5 seconds, and 72 ° C for 1 minute and 30 seconds, and separate the resulting 1369 bp amplified fragment on a 0.8% gel to recover. From the recovered gel, an amplified fragment (BamHI hBMPR1B hFcm NotI) is recovered using the QIAquick Gel Extraction Kit (Qiagen) according to the package insert.
6-1-3. Construction of hBMPR1B-hFcm recombinant expression vector The PCR-amplified fragment recovered in Example 6-1-2 was enzymatically digested with BamHI and NotI (Roche Diagnostics), 0.8% Separate and collect on an agarose gel. Using the QIAquick Gel Extraction Extraction Kit (Qiagen), collect the enzyme-treated fragments from the collected gel according to the package insert. A vector in which NotI site was added to the pLN1V5 vector prepared in Example 6-1-1 was prepared, the enzyme-treated fragment obtained above was introduced into the BamHI / NotI site, and the hBMPR1B-hFcm recombinant expression vector ( Fig. 4) is constructed.
6-2. Transient expression of hBMPR1B-hFcm recombinant using hBMPR1B-hFcm recombinant expression vector
6-2-1. Preparation of expression vector for gene introduction The hBMPR1B-hFcm recombinant expression vector obtained in Example 6-1-3 was introduced into Escherichia coli DH5α, and the plasmid was purified from the resulting transformant using a plasmid purification kit. (Qiagen plasmid Maxi kit, Qiagen).
6-2-2. Vector introduction and secretory expression into cultured cells Using Freestyle 293F cells (Invitrogen) with Freestyle 293 Expression Medium (Invitrogen), cell density under conditions of 37 ° C, 5% CO 2 , 125 rpm Incubate in the range of 2x10 5 to 3x10 6 cells / mL. When cultured in 1 L of medium, 13.7 mg of expression vector and 35 mL of Opti-MEM I Reduced Serum Medium (Invitrogen) and 1.3 mL of 293 fectin Transfection Reagent 33.7 mL of Opti-MEM I Reduced Serum Medium Prepare each solution with, and incubate for 5 minutes at room temperature. After incubation, mix the two solutions and incubate for an additional 20-30 minutes at room temperature. Thereafter, the expression vector treated by the above method is added to a medium containing 1 × 10 9 cells / L of Free style 293F cells and cultured for 3 days.
6-3.Purification and preparation of recombinant hBMPR1B-hFcm
6-3-1. Pretreatment of culture supernatant The supernatant of the culture solution obtained in Example 6-2-2 was collected and filtered with a 0.22 μm filter (Fast PES Filter Unit, 1000 mL, Nargen Nunk International). And cool at 4 ° C. If frozen, thaw and then filter again through a 0.22 μm filter.
6-3-2. Affinity Chromatography The composition of the acidic buffer (pH 2.7) used was 1.24 g of boric acid (Nacalai Tesque), disodium hydrogen phosphate and 12 water (Wako Pure Chemical Industries, Ltd.) 7.16 g, citric acid Hydrate (Nacalai Tesque) 4.20 g, Sodium chloride (Junsei) 8.77 g dissolved in Milli-Q water, 1 mol / L hydrochloric acid [12 mol / L (Junsei)) diluted 12 times with Milli-Q water ] Add 15.55mL and make up to 1L with Milli-Q water.
 用いる中性buffer(pH7.3)の組成はほう酸(ナカライテスク社)1.24g、りん酸水素二ナトリウム・12水(和光純薬工業社)7.16g、くえん酸一水和物(ナカライテスク社)4.20g、塩化ナトリウム(純正化学社)8.77gをミリQ水に溶かし、5mol/L水酸化ナトリウム溶液[水酸化ナトリウム(和光純薬工業社)10gをミリQ水で溶かし、50mLにした溶液]11.7mL添加し、ミリQ水で1Lとしたものである。 The composition of the neutral buffer (pH 7.3) used was 1.24 g of boric acid (Nacalai Tesque), 7.16 g of disodium hydrogen phosphate and 12 water (Wako Pure Chemical Industries, Ltd.), citric acid monohydrate (Nacalai Tesque) 4.20g, 8.77g of sodium chloride (Pure Chemical Co., Ltd.) dissolved in Milli-Q water, 5mol / L sodium hydroxide solution [Sodium hydroxide (Wako Pure Chemical Industries) 10g dissolved in Milli-Q water to make 50mL] Add 11.7mL and make 1L with Milli-Q water.
 用いる中和bufferの組成はりん酸二水素ナトリウム・二水和物(関東化学社)13.1gとりん酸水素二ナトリウム・12水(和光純薬工業社)41.5gをミリQ水に溶かし、1Lとしたものである。
 前処理された培養上清を中性buffer(pH7.3)で平衡化されたProteinAカラム(Hi Trap ProteinA HP 1mL、GEヘルスケア バイオサイエンス社)にアプライする。その後、中性buffer(pH7.3)10mL以上でカラムを洗浄し、次にPBSに塩化ナトリウムを添加し塩化ナトリウム濃度を1.85mol/Lに調製した緩衝液で10mL以上洗浄し、再度15mL中性buffer(pH7.3)でカラムを洗浄する。その後、20%酸性buffer(pH2.7)でカラムを5mL洗浄する。洗浄操作終了後、カラムに酸性buffer(pH2.7)を20%から100%のグラジエントで40 mL添加し目的蛋白質を回収する。上記分離精製操作にはAKTAexplorer10s(GEヘルスケア バイオサイエンス株式会社)を用いる。使用前にエンドトキシン除去処理を行う。
6-3-3.精製標品調製
 実施例6-3-2で得られる精製標品を限外濾過膜VIVASPIN20 10,000 MWCO PES(ザルトリウス・ステディム・ジャパン社)を用いて濃縮する。その後、NAP-25Columns(GEヘルスケア バイオサイエンス社)を用いてPBSに置換する。濃縮置換操作終了後0.22μmフィルター(Millex GV、日本ミリポア社)により濾過処理を行う。濃縮操作は可能な限りクリーンベンチ内で行う。実施例6-3で行われた全ての工程はクリーンベンチでの作業以外、低温室(4℃)ないしは氷上で実施する。
The composition of the neutralization buffer used is sodium dihydrogen phosphate dihydrate (Kanto Chemical Co., Ltd.) 13.1 g and disodium hydrogen phosphate-12 water (Wako Pure Chemical Industries, Ltd.) 41.5 g dissolved in Milli-Q water, 1 L It is what.
The pretreated culture supernatant is applied to a Protein A column (Hi Trap Protein A HP 1 mL, GE Healthcare Bioscience) equilibrated with neutral buffer (pH 7.3). After that, wash the column with 10 mL or more of neutral buffer (pH 7.3), then wash with 10 mL or more of the buffer prepared by adding sodium chloride to PBS to adjust the sodium chloride concentration to 1.85 mol / L, and again 15 mL neutral. Wash the column with buffer (pH 7.3). Thereafter, the column is washed with 5 mL with 20% acidic buffer (pH 2.7). After the washing operation is completed, 40 mL of acidic buffer (pH 2.7) is added to the column in a gradient of 20% to 100% to recover the target protein. For the separation and purification operation, AKTAexplorer10s (GE Healthcare Bioscience Co., Ltd.) is used. Perform endotoxin removal treatment before use.
6-3-3. Preparation of purified sample The purified sample obtained in Example 6-3-2 is concentrated using an ultrafiltration membrane VIVASPIN20 10,000 MWCO PES (Sartorius Stedim Japan). After that, it is replaced with PBS using NAP-25Columns (GE Healthcare Bioscience). After completion of the concentration and replacement operation, filtration is performed with a 0.22 μm filter (Millex GV, Nihon Millipore). Concentrate as much as possible in a clean bench. All steps performed in Example 6-3 are performed in a cold room (4 ° C.) or on ice, except for work on a clean bench.
 最終精製品のSDS-PAGE(CBB染色)より還元条件下では単量体、非還元条件下では二量体が検出される。
 蛋白質濃度はA280nmを測定し、比吸光係数(E1%, 1cm=8.5)より算出される。
 
From the final purified product, SDS-PAGE (CBB staining), a monomer is detected under reducing conditions and a dimer is detected under non-reducing conditions.
The protein concentration is calculated from the specific extinction coefficient (E1%, 1 cm = 8.5) by measuring A280 nm.
mBMPR1B-hFcm組換え体投与マウスの解析 
7-1.正常マウスへの投与  
マウスBMPR1B-hFcm(mBMPR1B-hFcm)組換え体による骨組織に対する生理作用を評価する目的で、マウスへの投与実験を行った。マウスはC57BL/6(日本チャールズリバー)を7週齢にて導入、馴化の後に8週齢時点より試験を実施した。被験物質として実施例4に記載の方法にて作成したmBMPR1B-hFcm組換え体を用いた。群構成は、媒体投与群(PBS群)、mBMPR1B-hFcm 3mg/kg 投与群、mBMPR1B-hFcm 30mg/kg 投与群の3群とし、それぞれ投与物質を10日に1回の頻度で計3回、尾静脈内投与した。初回投与日をDay0とし、投与3回目より10日後のDay30にマウスを剖検に供した。
7-2.骨構造解析
剖検において大腿骨の組織を採取し、70%エタノールにて固定後骨構造解析用標本とした。  
剖検を実施したPBS群5個体、mBMPR1B-hFcm 3mg/kg投与群8個体、mBMPR1B-hFcm 30mg/kg投与群5個体由来の標本について、SKYSCAN 1174(SkyScan社製 卓上型マイクロCTスキャナ)を用いて海綿骨における骨密度(BMD)及び皮質骨における骨量(BV)を測定した。その結果、PBS群に比べmBMPR1B-hFcm組換え体投与群ではいずれも用量依存的に増加していることが示された(図5、6)。これにより、mBMPR1B-hFcmは骨量増加によって骨密度を増加させる活性を有する事が示された。
Analysis of mBMPR1B-hFcm recombinant mice
7-1. Administration to normal mice
In order to evaluate the physiological effect on the bone tissue by the recombinant mouse BMPR1B-hFcm (mBMPR1B-hFcm), a mouse administration experiment was conducted. Mice were introduced with C57BL / 6 (Charles River Japan) at 7 weeks of age, and after habituation, tests were conducted from the age of 8 weeks. The mBMPR1B-hFcm recombinant prepared by the method described in Example 4 was used as a test substance. The group composition consists of three groups: vehicle administration group (PBS group), mBMPR1B-hFcm 3 mg / kg administration group, mBMPR1B-hFcm 30 mg / kg administration group, each of the administration substances three times at a frequency of once every 10 days, It was administered via the tail vein. The first administration day was Day 0, and the mice were subjected to necropsy on Day 30, 10 days after the third administration.
7-2. Bone structure analysis The tissue of the femur was collected at autopsy and fixed with 70% ethanol to prepare a sample for bone structure analysis.
For specimens from 5 individuals in the PBS group, 8 individuals in the mBMPR1B-hFcm 3 mg / kg administration group, and 5 individuals in the mBMPR1B-hFcm 30 mg / kg administration group that were necropsied, using the SKYSCAN 1174 (SkyScan desktop micro CT scanner) Bone density (BMD) in cancellous bone and bone mass (BV) in cortical bone were measured. As a result, it was shown that the mBMPR1B-hFcm recombinant administration group increased in a dose-dependent manner compared with the PBS group (FIGS. 5 and 6). Thus, mBMPR1B-hFcm was shown to have an activity to increase bone density by increasing bone mass.
8-1. 乳癌骨転移モデルマウス作製
マウスBMPR1B-hFcm(mBMPR1B-hFcm)組換え体の癌性骨病変(骨転移)治療薬としての薬効評価を行う目的で、乳癌骨転移モデルマウスを作製した。乳癌骨転移モデルは公知の方法(Clin Cancer Res 2009 ; 15(11) June 1 3751-3759)に準じ、雌性SCIDマウス(6週齢、CB17/Icr-Prkdc<scid>/CrlCrlJ 日本チャールズリバー)の左心室にヒト乳癌細胞株MDA-MB-231細胞(5 x 106cells/mL)を0.1 mL接種することにより作製した。
8-2. mBMPR1B-hFcm組換え体投与乳癌骨転移モデルマウスの解析
8-2-1 乳癌骨転移モデルマウスへの投与
上記実施例で作製された骨転移モデルマウスに対し、癌細胞移植後翌日から、mBMPR1B-hFcm組換え体の骨転移による骨破壊への薬効を評価する目的で投与を行った。被験物質として実施例4に記載の方法で作成した mBMPR1B-hFcm組換え体を用いた。癌細胞接種当日をday0とし、評価はday35に実施した。この間、mBMPR1B-hFcm組換え体を3 mg/kgおよび30 mg/kgの用量で10日に1回の頻度で計4回、尾静脈内投与した。群構成は、非癌細胞接種群(Normal群)、癌細胞接種/非被験物質投与群(Vehicle投与群)、癌細胞接種/mBMPR1B-hFcm 3 mg/kg投与群(mBMPR1B-hFcm 3 mg/kg投与群)、および癌細胞移植/mBMPR1B-hFcm 30mg/kg投与群(mBMPR1B-hFcm 30 mg/kg投与群)を設定し投与を行った。
8-2-2 mBMPR1B-hFcm組換え体投与骨転移モデルマウスの骨転移による骨破壊の評価
上記実施例2-1で記載されたマウスをday35において軟X線写真撮影を行い、大腿骨遠位端、脛骨近位端、上腕骨近位端の観察および画像解析による定量的な評価を行った。その結果、Normal群に比べ、Vehicle投与群において、大腿骨遠位端、脛骨近位端、上腕骨近位端での骨転移による骨破壊が認められた。一方、mBMPR1B-hFcm 3mg/kg投与群、mBMPR1B-hFcm 30 mg/kg投与群はVehicle群に比べ、その骨転移による骨破壊の抑制が認められた。骨破壊面積(Lesion area)を算出し、定量化を行った結果、mBMPR1B-hFcm 3 mg/kg投与群、およびmBMPR1B-hFcm 30 mg/kg投与群においてはVehicle群に比べ、骨破壊面積の抑制が認められた(図7)。
以上の結果から、mBMPR1B-hFcmは乳癌骨転移による骨破壊を抑制することが示された。また、mBMPR1b-hFcmは悪性腫瘍に起因する骨疾患、特に骨転移を抑制することが示された。
8-1. Breast cancer bone metastasis model mouse preparation mouse Breast cancer bone metastasis model mouse was prepared for the purpose of evaluating the efficacy of recombinant BMPR1B-hFcm (mBMPR1B-hFcm) as a treatment for cancerous bone lesions (bone metastasis). . The breast cancer bone metastasis model is a female SCID mouse (6 weeks old, CB17 / Icr-Prkdc <scid> / CrlCrlJ Japan Charles River) according to a known method (Clin Cancer Res 2009; 15 (11) June 1 3751-3759). It was prepared by inoculating the left ventricle with 0.1 mL of human breast cancer cell line MDA-MB-231 cells (5 × 10 6 cells / mL).
8-2. Analysis of bone marrow model mice with mBMPR1B-hFcm recombinant breast cancer
8-2-1 Administration to breast cancer bone metastasis model mice From the next day after cancer cell transplantation, mBMPR1B-hFcm recombinants have a medicinal effect on bone destruction caused by bone metastasis. Administration was performed for the purpose of evaluation. The mBMPR1B-hFcm recombinant prepared by the method described in Example 4 was used as a test substance. The day of cancer cell inoculation was defined as day 0, and evaluation was performed on day 35. During this time, the mBMPR1B-hFcm recombinant was administered into the tail vein four times at a frequency of once every 10 days at doses of 3 mg / kg and 30 mg / kg. Non-cancer cell inoculation group (Normal group), cancer cell inoculation / non-test substance administration group (Vehicle administration group), cancer cell inoculation / mBMPR1B-hFcm 3 mg / kg administration group (mBMPR1B-hFcm 3 mg / kg) Administration group) and cancer cell transplantation / mBMPR1B-hFcm 30 mg / kg administration group (mBMPR1B-hFcm 30 mg / kg administration group) were set and administered.
8-2-2 Evaluation of bone destruction due to bone metastasis of mBMPR1B-hFcm recombinant-administered bone metastasis model mice The mice described in Example 2-1 above were subjected to soft X-ray photography on day 35, and the femur distal Quantitative evaluation was performed by observation and image analysis of the edge, proximal tibia, and proximal humerus. As a result, in the Vehicle administration group, bone destruction due to bone metastasis at the distal end of the femur, the proximal end of the tibia, and the proximal end of the humerus was observed as compared with the Normal group. On the other hand, in the mBMPR1B-hFcm 3 mg / kg administration group and the mBMPR1B-hFcm 30 mg / kg administration group, suppression of bone destruction due to bone metastasis was observed as compared to the Vehicle group. As a result of calculating and quantifying the bone destruction area (Lesion area), the mBMPR1B-hFcm 3 mg / kg administration group and mBMPR1B-hFcm 30 mg / kg administration group suppressed the bone destruction area compared to the Vehicle group. Was observed (FIG. 7).
From the above results, it was shown that mBMPR1B-hFcm suppresses bone destruction caused by breast cancer bone metastasis. Moreover, mBMPR1b-hFcm was shown to suppress bone diseases caused by malignant tumors, especially bone metastasis.
 
 本明細書中で引用した全ての刊行物、特許及び特許出願は、その全文を参考として本明細書中にとり入れるものとする。
 

All publications, patents and patent applications cited herein are hereby incorporated by reference in their entirety.
 本発明により、骨量、骨密度及び/又は骨強度を増加させることができる。従って、骨粗鬆症、変形性関節症、関節リウマチ、悪性腫瘍に伴う骨疾患及びそれに関連する様々な疾患又は障害を、副作用を引き起こすことなく、治療することが可能となる。
 
According to the present invention, bone mass, bone density and / or bone strength can be increased. Therefore, it is possible to treat osteoporosis, osteoarthritis, rheumatoid arthritis, bone diseases associated with malignant tumors, and various diseases or disorders related thereto without causing side effects.
配列番号9-人工配列の説明:融合蛋白質をコードするDNA
配列番号10-人工配列の説明:融合蛋白質
配列番号11-人工配列の説明:センスオリゴDNA
配列番号12-人工配列の説明:センスオリゴDNA
配列番号13-人工配列の説明:プライマー
配列番号14-人工配列の説明:プライマー
配列番号17-人工配列の説明:融合蛋白質をコードするDNA
配列番号18-人工配列の説明:融合蛋白質
SEQ ID NO: 9--Description of artificial sequence: DNA encoding fusion protein
SEQ ID NO: 10-description of artificial sequence: fusion protein SEQ ID NO: 11-description of artificial sequence: sense oligo DNA
SEQ ID NO: 12--Description of Artificial Sequence: Sense Oligo DNA
SEQ ID NO: 13-description of artificial sequence: primer SEQ ID NO: 14-description of artificial sequence: primer SEQ ID NO: 17-description of artificial sequence: DNA encoding the fusion protein
SEQ ID NO: 18--Description of Artificial Sequence: Fusion Protein

Claims (18)

  1.  哺乳動物由来のbone morphogenetic protein receptor 1B(以下、BMPR1Bと表記する)の細胞外ドメイン、又は該ドメインのアミノ酸配列と85%以上の配列同一性を有しかつ骨量、骨密度及び/又は骨強度増加作用をもつBMPR1Bの細胞外ドメインの変異体、を含む蛋白質、或いは、該蛋白質をコードする核酸を含むベクター、を有効成分として含有する骨疾患治療用医薬組成物。 It has an extracellular domain of bone-morphogenetic-protein-receptor--1B (hereinafter referred to as BMPR1B) derived from a mammal, or a sequence identity of 85% or more with the amino acid sequence of the domain, and bone mass, bone density and / or bone strength A pharmaceutical composition for treating a bone disease, comprising as an active ingredient a protein comprising a mutant of the extracellular domain of BMPR1B having an increasing action, or a vector comprising a nucleic acid encoding the protein.
  2.  上記蛋白質が、上記細胞外ドメイン又はその変異体と哺乳動物由来免疫グロブリンFc蛋白質又はその変異体との融合蛋白質であり、及び、上記蛋白質をコードする核酸が該融合蛋白質をコードする核酸である、請求項1記載の組成物。 The protein is a fusion protein of the extracellular domain or a variant thereof and a mammal-derived immunoglobulin Fc protein or a variant thereof, and the nucleic acid encoding the protein is a nucleic acid encoding the fusion protein; The composition of claim 1.
  3.  上記蛋白質が化学修飾されている、請求項1又は2記載の組成物。 3. The composition according to claim 1 or 2, wherein the protein is chemically modified.
  4.  上記化学修飾が、1又は複数のポリエチレングリコール分子の結合である、請求項3記載の組成物。 4. The composition according to claim 3, wherein the chemical modification is a bond of one or more polyethylene glycol molecules.
  5.  上記化学修飾が、糖鎖の結合である、請求項3記載の組成物。 4. The composition according to claim 3, wherein the chemical modification is a sugar chain bond.
  6.  上記蛋白質が、組換え蛋白質である、請求項1~5のいずれか1項記載の組成物。 The composition according to any one of claims 1 to 5, wherein the protein is a recombinant protein.
  7.  上記細胞外ドメインが、配列番号1又は3のアミノ酸配列を含む、請求項1~6のいずれか1項記載の組成物。 The composition according to any one of claims 1 to 6, wherein the extracellular domain comprises the amino acid sequence of SEQ ID NO: 1 or 3.
  8.  上記細胞外ドメインを含む蛋白質をコードする核酸が、配列番号2又は4のヌクレオチド配列を含む、請求項1~6のいずれか1項記載の組成物。 The composition according to any one of claims 1 to 6, wherein the nucleic acid encoding the protein containing the extracellular domain comprises the nucleotide sequence of SEQ ID NO: 2 or 4.
  9.  上記Fc蛋白質が、配列番号8のアミノ酸配列を含む、請求項2~8のいずれか1項記載の組成物。 The composition according to any one of claims 2 to 8, wherein the Fc protein comprises the amino acid sequence of SEQ ID NO: 8.
  10.  上記Fc蛋白質をコードする核酸が、配列番号7のヌクレオチド配列を含む、請求項2~8のいずれか1項記載の組成物。 The composition according to any one of claims 2 to 8, wherein the nucleic acid encoding the Fc protein comprises the nucleotide sequence of SEQ ID NO: 7.
  11.  上記融合蛋白質が、配列番号10又は18のアミノ酸配列を含む、請求項2~10のいずれか1項記載の組成物。 The composition according to any one of claims 2 to 10, wherein the fusion protein comprises the amino acid sequence of SEQ ID NO: 10 or 18.
  12.  上記融合蛋白質をコードする核酸が、配列番号9又は17のヌクレオチド配列を含む、請求項2~10のいずれか1項記載の組成物。 The composition according to any one of claims 2 to 10, wherein the nucleic acid encoding the fusion protein comprises the nucleotide sequence of SEQ ID NO: 9 or 17.
  13.  上記哺乳動物がヒトである、請求項1~12のいずれか1項記載の組成物。 The composition according to any one of claims 1 to 12, wherein the mammal is a human.
  14.  上記骨疾患が、骨量、骨密度及び/又は骨強度の低下を伴う疾患である、請求項1~13のいずれか1項記載の組成物。 The composition according to any one of claims 1 to 13, wherein the bone disease is a disease accompanied by a decrease in bone mass, bone density and / or bone strength.
  15.  請求項1~14のいずれか1項記載の組成物を哺乳動物に投与することを含む、骨疾患を治療する方法。 A method for treating a bone disease, comprising administering the composition according to any one of claims 1 to 14 to a mammal.
  16.  上記哺乳動物がヒトである、請求項15記載の方法。 The method according to claim 15, wherein the mammal is a human.
  17.  上記骨疾患が、骨量、骨密度及び/又は骨強度の低下を伴う疾患である、請求項15又は16記載の方法。 17. The method according to claim 15 or 16, wherein the bone disease is a disease accompanied by a decrease in bone mass, bone density and / or bone strength.
  18.  上記組成物が、他の骨疾患治療剤と組み合わせて同時に又は連続的に投与される、請求項15~17のいずれか1項記載の方法。 The method according to any one of claims 15 to 17, wherein the composition is administered simultaneously or sequentially in combination with another bone disease therapeutic agent.
PCT/JP2011/051816 2010-01-28 2011-01-28 Pharmaceutical composition for treatment of bone diseases, which contains protein comprising bone morphogenetic protein receptor 1b (bmpr1b) extracellular domain or mutant thereof WO2011093470A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010017444 2010-01-28
JP2010-017444 2010-01-28

Publications (1)

Publication Number Publication Date
WO2011093470A1 true WO2011093470A1 (en) 2011-08-04

Family

ID=44319448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051816 WO2011093470A1 (en) 2010-01-28 2011-01-28 Pharmaceutical composition for treatment of bone diseases, which contains protein comprising bone morphogenetic protein receptor 1b (bmpr1b) extracellular domain or mutant thereof

Country Status (1)

Country Link
WO (1) WO2011093470A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007537992A (en) * 2003-11-13 2007-12-27 ハンミ ファーム.インダストリー カンパニー リミテッド Pharmaceutical composition comprising immunoglobulin Fc region as carrier

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007537992A (en) * 2003-11-13 2007-12-27 ハンミ ファーム.インダストリー カンパニー リミテッド Pharmaceutical composition comprising immunoglobulin Fc region as carrier

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
AKIYOSHI T ET AL.: "Expression of bone morphogenetic protein-6 and bone morphogenetic protein receptors in myoepithelial cells of canine mammary gland tumors.", VETERINARY PATHOLOGY, vol. 41, no. 2, March 2004 (2004-03-01), pages 154 - 163 *
DAI J ET AL.: "Bone morphogenetic protein-6 promotes osteoblastic prostate cancer bone metastases through a dual mechanism.", CANCER RESEARCH, vol. 65, no. 18, 15 September 2005 (2005-09-15), pages 8274 - 8285 *
DATABASE GENBANK [online] 15 July 2006 (2006-07-15), "Mus musculus bone morphogenetic protein receptor, type IB, mRNA(cDNA clone MGC:86106 IMAGE:30629345)", retrieved from GI:40781671 Database accession no. BC065143 *
DATABASE GENBANK [online] 27 January 2004 (2004-01-27), "Bmprlb protein [Mus musculus]", retrieved from http: //www.ncbi.nlm.nih.gov/protein/AAH65106.1 Database accession no. AAH65106 *
DATABASE GENBANK [online] 7 October 2003 (2003-10-07), "BMPR1B protein [Homo sapiens]", retrieved from http: //www.ncbi.nlm.nih.gov/protein/AAH47773.1 Database accession no. AAH47773 *
DATABASE GENBANK [online] 7 October 2003 (2003-10-07), "Homo sapiens bone morphogenetic protein receptor, type IB, mRNA(cDNA clone MGC:54267 IMAGE:6202951)", retrieved from http:// www.ncbi.nlm.nih.gov/nuccore/BC047773.1 Database accession no. BC047773 *
DATABASE GENBANK retrieved from http: //www.ncbi.nlm.nih.gov/protein/AAH47773.1 Database accession no. GI:28838626 *
DATABASE GENBANK retrieved from http: //www.ncbi.nlm.nih.gov/protein/AAH65106.1 Database accession no. GI:40675447 *
DATABASE GENBANK retrieved from http:// www.ncbi.nlm.nih.gov/nuccore/40781671 Database accession no. GI:40781671 *
DATABASE GENBANK retrieved from http:// www.ncbi.nlm.nih.gov/nuccore/BC047773.1 Database accession no. GI:28838625 *
EBISAWA T ET AL.: "Characterization of bone morphogenetic protein-6 signaling pathways in osteoblast differentiation.", J CELL SCIENCE, vol. 112, no. 20, October 1999 (1999-10-01), pages 3519 - 3527 *
HIDETOSHI YAMASHITA: "TGF-beta Super Family Receptor to Saibonai Signal Dentatsu no Mechanism", IGAKU NO AYUMI, vol. 186, no. 13, 26 September 1998 (1998-09-26), pages 905 - 909 *
LEE YC ET AL.: "Glycobiology in Medicine", JOURNAL OF BIOCHEMICAL SCIENCE, vol. 3, 1996, pages 221 - 237 *
PEARSALL RS ET AL.: "A soluble activin type IIA receptor induces bone formation and improves skeletal integrity.", PROC NATL ACAD SCI U S A., vol. 105, no. 19, 13 May 2008 (2008-05-13), pages 7082 - 7087 *
SOTILLO RODRIGUEZ JE ET AL.: "Enhanced osteoclastogenesis causes osteopenia in twisted gastrulation-deficient mice through increased BMP signaling.", JOURNAL OF BONE AND MINERAL RESEARCH, vol. 24, no. 11, November 2009 (2009-11-01), pages 1917 - 1926 *
YASUHIRO ISHIDO ET AL.: "BMP Receptor to Kotsu Keisei", EXPERIMENTAL MEDICINE, vol. 15, no. 9, 1997, pages 176 - 181 *

Similar Documents

Publication Publication Date Title
JP5727226B2 (en) Pharmaceutical composition for treating bone disease containing a protein containing Frizzled1, Frizzled2 or Frizzled7 extracellular cysteine-rich domain
US20220296708A1 (en) Alk1 receptor and ligand antagonists and uses thereof
US20210388104A1 (en) Methods and compositions for modulating angiogenesis and pericyte composition
JP2022048160A (en) Bmp-alk3 antagonist and use for promoting bone growth
US9452197B2 (en) Antagonists of BMP9, BMP10, ALK1 and other ALK1 ligands, and uses thereof
CA2724525A1 (en) Antagonists of bmp9, bmp10, alk1 and other alk1 ligands, and uses thereof
US20220017600A1 (en) Methods and compositions for modulating angiogenesis and pericyte composition
WO2011093470A1 (en) Pharmaceutical composition for treatment of bone diseases, which contains protein comprising bone morphogenetic protein receptor 1b (bmpr1b) extracellular domain or mutant thereof
JP6121902B2 (en) Protein containing truncated form of Frizzled2 extracellular region protein, and pharmaceutical composition for treatment of bone disease containing the protein
AU2016202691B2 (en) Activin-ActRIIa antagonists and uses for promoting bone growth in cancer patients

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11737180

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11737180

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP