WO2011093183A1 - Procédé de mesure de distribution bidimensionnelle de dose radiologique en utilisant un fantôme 3d - Google Patents

Procédé de mesure de distribution bidimensionnelle de dose radiologique en utilisant un fantôme 3d Download PDF

Info

Publication number
WO2011093183A1
WO2011093183A1 PCT/JP2011/050841 JP2011050841W WO2011093183A1 WO 2011093183 A1 WO2011093183 A1 WO 2011093183A1 JP 2011050841 W JP2011050841 W JP 2011050841W WO 2011093183 A1 WO2011093183 A1 WO 2011093183A1
Authority
WO
WIPO (PCT)
Prior art keywords
phantom
dose
measuring
radiation
distribution
Prior art date
Application number
PCT/JP2011/050841
Other languages
English (en)
Japanese (ja)
Inventor
修一 小澤
智久 古谷
基敬 川嶋
千恵 黒河
久美子 唐澤
啓資 笹井
宏 大西
Original Assignee
学校法人順天堂
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人順天堂 filed Critical 学校法人順天堂
Priority to JP2011551814A priority Critical patent/JP5504509B2/ja
Publication of WO2011093183A1 publication Critical patent/WO2011093183A1/fr

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/169Exploration, location of contaminated surface areas

Definitions

  • the present invention relates to a method for measuring a two-dimensional distribution of radiation absorbed dose using a 3D phantom implemented in the field of radiotherapy.
  • the absorbed dose using a 3D phantom (three-dimensional model) is used to verify whether the results obtained in the treatment plan are correct. Compare the measured and calculated two-dimensional distributions.
  • the coronal plane and the sagittal plane are measured and compared with the calculation results.
  • a radiation dose measuring body 20 such as an X-ray film is sandwiched between the stacked 3D phantoms 50 and irradiated, and then FIG. As shown in 2), the 3D phantom 50 sandwiching the radiation dose measuring body 20 is rotated by 90 ° to perform irradiation, and the dose distribution on the sagittal surface is measured (for example, see Non-Patent Document 1).
  • the close contact between the 3D phantom 50 and the radiation dose measuring body 20 is increased by the dead weight of the 3D phantom 50, and it takes less time for installation, so that the measurement accuracy is high and the reproducibility of the measurement is also high.
  • the degree of adhesion cannot be increased due to the weight of the 3D phantom 50, which causes a problem that the measurement accuracy is lowered and the reproducibility is deteriorated.
  • the 3D phantom 50 is sandwiched with a clamp 60 or the like to increase the degree of adhesion.
  • the present invention has been made in view of the above-described conventional problems and actual situations, and can perform two-dimensional distribution measurement of a radiation absorbed dose using a 3D phantom efficiently and accurately with high reproducibility.
  • the challenge is to provide a method that can do this.
  • the present inventor conducted a 3D phantom having a 90 ° rotationally symmetric sectional shape instead of rotating the 3D phantom by 90 ° for dose distribution measurement on the sagittal surface. If the gantry of the radiation therapy device is rotated 90 ° and irradiated with radiation, the measurement accuracy on the sagittal surface will be as high as that on the coronal surface, and results with good reproducibility will be obtained. As a result, the present invention has been completed.
  • the present invention includes a step of holding a radiation dose measuring body in a horizontal state between a 3D phantom composed of two upper and lower divided bodies having a 90 ° rotationally symmetric sectional shape; and holding the radiation dose measuring body in a horizontal state.
  • the radiation dose measuring body in measuring not only the coronal plane but also the sagittal plane, the radiation dose measuring body is held horizontally between the 3D phantoms. Therefore, the degree of adhesion with the radiation dose measuring body by the weight of the 3D phantom. Therefore, the two-dimensional distribution of radiation dose can be measured with high accuracy.
  • the rotation of the gantry can be easily operated by the controller of the radiotherapy device (linac), it is possible to perform measurement more efficiently and with higher reproducibility than the conventional rotation operation of the 3D phantom by a clamp or the like.
  • 10 is a 3D phantom, which is composed of two divided parts of an upper phantom part 10a and a lower phantom part 10b, and becomes symmetric when rotated by 90 °, such as a square or an octagon. It has a cross-sectional shape.
  • the radiation dose measuring body 20 is set up between the upper phantom portion 10a and the lower phantom portion 10b of the 3D phantom 10, and the radiation dose measuring body 20 is held in a horizontal state.
  • the radiation dose measuring body 20 may be any type as long as it can measure the radiation dose.
  • an X-ray film, an imaging plate, a two-dimensional diode detector, a two-dimensional ionization chamber. A detector or the like is used.
  • the dose distribution on the coronal surface is measured by irradiating the 3D phantom 10 holding the radiation dose measuring body 20 in a horizontal state with the gantry 30a, 30b, 30c, 30d, 30e of the radiotherapy device (linac). (See FIG. 1 (1)).
  • the controller (not shown) rotates the gantry 30a, 30b, 30c, 30d, 30e by 90 °, and in that state, the 3D phantom 10 is irradiated with radiation to irradiate the sagittal surface.
  • the dose distribution is measured (see FIG. 1 (2)). Note that the 90 ° rotation direction may be clockwise or counterclockwise, and the position where the film is sandwiched may not be the center of the phantom.
  • the actual measurement value obtained is verified by comparing with the calculated value on the coronal surface and sagittal surface obtained by the same procedure as the normal method, whether the result obtained in the treatment plan is correct. .
  • 3D phantom 10a Upper phantom part 10b: Lower phantom part 20: Radiation dose measuring body 30a, 30b, 30c, 30d, 30e: Gantry 50: Conventional 3D phantom 60: Clamp

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)
  • Measurement Of Radiation (AREA)

Abstract

L'invention concerne un procédé permettant de mesurer efficacement et avec précision la distribution bidimensionnelle d'une dose radiologique en utilisant un fantôme 3D et selon une reproductibilité élevée. Le procédé comprend : une étape consistant à maintenir un corps de mesure de dose de radiation de sorte que le corps de mesure est dans une position horizontale entre les fantômes 3D qui sont formés par des corps séparables supérieur et inférieur et dont les formes des sections transversales sont symétriques selon un angle à 90° ; une étape consistant à mesurer une distribution de dose dans un plan coronal en émettant des rayons radiaux sur le fantôme 3D qui maintient le corps de mesure de dose de radiation en position horizontale en utilisant les portiques d'un dispositif de radiothérapie ; et une étape consistant à mesurer une distribution de dose dans le plan sagittal en émettant des rayons radiaux sur le fantôme 3D après rotation des portiques sur 90° sans modifier la position du fantôme 3D.
PCT/JP2011/050841 2010-01-28 2011-01-19 Procédé de mesure de distribution bidimensionnelle de dose radiologique en utilisant un fantôme 3d WO2011093183A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011551814A JP5504509B2 (ja) 2010-01-28 2011-01-19 3dファントムを用いた放射線吸収線量の2次元分布測定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010016205 2010-01-28
JP2010-016205 2010-01-28

Publications (1)

Publication Number Publication Date
WO2011093183A1 true WO2011093183A1 (fr) 2011-08-04

Family

ID=44319173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050841 WO2011093183A1 (fr) 2010-01-28 2011-01-19 Procédé de mesure de distribution bidimensionnelle de dose radiologique en utilisant un fantôme 3d

Country Status (2)

Country Link
JP (1) JP5504509B2 (fr)
WO (1) WO2011093183A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102997992A (zh) * 2012-11-26 2013-03-27 复旦大学 一种光剂量计

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008087952A1 (fr) * 2007-01-16 2008-07-24 National University Corporation Okayama University Procédé de mesure de dose et fantôme, et dispositif de collecte d'images par rayons x utilisé pour le procédé de mesure de dose

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008087952A1 (fr) * 2007-01-16 2008-07-24 National University Corporation Okayama University Procédé de mesure de dose et fantôme, et dispositif de collecte d'images par rayons x utilisé pour le procédé de mesure de dose

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TORU KOJIMA: "3. Senryo Kensho no Jissai", JAPANESE SOCIETY OF RADIOLOGICAL TECHNOLOGY HOSHASEN CHIRYO BUNKAKAISHI, vol. 23, no. 1, April 2009 (2009-04-01) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102997992A (zh) * 2012-11-26 2013-03-27 复旦大学 一种光剂量计

Also Published As

Publication number Publication date
JP5504509B2 (ja) 2014-05-28
JPWO2011093183A1 (ja) 2013-06-06

Similar Documents

Publication Publication Date Title
Feygelman et al. Evaluation of a new VMAT QA device, or the “X” and “O” array geometries
US8039790B2 (en) Phantoms and methods for verification in radiotherapy systems
Arjomandy et al. EBT2 film as a depth‐dose measurement tool for radiotherapy beams over a wide range of energies and modalities
US9550076B2 (en) EPID dosimetry method and system for radiation therapy
Du et al. Quantifying the gantry sag on linear accelerators and introducing an MLC‐based compensation strategy
Szpala et al. On using the dosimetric leaf gap to model the rounded leaf ends in VMAT/RapidArc plans
Yan et al. Calibration of a novel four‐dimensional diode array
Wong et al. The use of a silicon strip detector dose magnifying glass in stereotactic radiotherapy QA and dosimetry
Sharma et al. Physical and dosimetric characteristic of high‐definition multileaf collimator (HDMLC) for SRS and IMRT
WO2008087952A1 (fr) Procédé de mesure de dose et fantôme, et dispositif de collecte d'images par rayons x utilisé pour le procédé de mesure de dose
Lárraga‐Gutiérrez et al. Evaluation of the Gafchromic® EBT2 film for the dosimetry of radiosurgical beams
Harms et al. Nuclear halo measurements for accurate prediction of field size factor in a Varian ProBeam proton PBS system
Alhujaili et al. Quality assurance of Cyberknife robotic stereotactic radiosurgery using an angularly independent silicon detector
Nakaguchi et al. Validation of a method for in vivo 3D dose reconstruction in SBRT using a new transmission detector
Kuenzler et al. Experimental verification of a commercial Monte Carlo-based dose calculation module for high-energy photon beams
JP5504509B2 (ja) 3dファントムを用いた放射線吸収線量の2次元分布測定方法
Mege et al. Evaluation of MVCT imaging dose levels during helical IGRT: comparison between ion chamber, TLD, and EBT3 films
García‐Garduño et al. Effect of dosimeter type for commissioning small photon beams on calculated dose distribution in stereotactic radiosurgery
Létourneau et al. Integral test phantom for dosimetric quality assurance of image guided and intensity modulated stereotactic radiotherapy
Shahedi et al. Evaluation of the portal imaging system performance for an Elekta precise linac in radiotherapy
Mastella et al. Validation of a pretreatment delivery quality assurance method for the CyberKnife Synchrony system
Martišíková et al. Study of the capabilities of the Timepix detector for Ion Beam radiotherapy applications
Senthilkumar et al. Fabrication of low cost in-house slab homogeneous and heterogeneous phantoms for lung radiation treatment
Iftimia et al. Commissioning and quality assurance for the treatment delivery components of the AccuBoost system
Palacios et al. QA of MR-linac

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11736897

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011551814

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11736897

Country of ref document: EP

Kind code of ref document: A1