WO2011092962A1 - Sizing agent for carbon fiber, carbon fiber, method for producing carbon fiber, and molding material and molded article each containing carbon fiber - Google Patents

Sizing agent for carbon fiber, carbon fiber, method for producing carbon fiber, and molding material and molded article each containing carbon fiber Download PDF

Info

Publication number
WO2011092962A1
WO2011092962A1 PCT/JP2010/072547 JP2010072547W WO2011092962A1 WO 2011092962 A1 WO2011092962 A1 WO 2011092962A1 JP 2010072547 W JP2010072547 W JP 2010072547W WO 2011092962 A1 WO2011092962 A1 WO 2011092962A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
sizing agent
moisture
mass
meth
Prior art date
Application number
PCT/JP2010/072547
Other languages
French (fr)
Japanese (ja)
Inventor
重明 大角
英彦 友國
Original Assignee
ディーエイチ・マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ディーエイチ・マテリアル株式会社 filed Critical ディーエイチ・マテリアル株式会社
Priority to JP2011523224A priority Critical patent/JP4856292B2/en
Publication of WO2011092962A1 publication Critical patent/WO2011092962A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • D06M15/568Reaction products of isocyanates with polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/01Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to unsaturated polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/061Polyesters; Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/067Polyurethanes; Polyureas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4829Polyethers containing at least three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/671Unsaturated compounds having only one group containing active hydrogen
    • C08G18/672Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C08L75/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/40Fibres of carbon
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/40Reduced friction resistance, lubricant properties; Sizing compositions

Definitions

  • the present invention relates to a carbon fiber sizing agent that can be used in various molding materials including carbon fiber reinforced plastic, a carbon fiber that has been surface-treated using the sizing agent, a method for producing the carbon fiber, and
  • the present invention also relates to a molding material containing the carbon fiber and a molded product obtained by molding the molding material.
  • FRP fiber reinforced plastics
  • thermosetting resins such as unsaturated polyester resins, vinyl ester resins, epoxy resins, phenol resins and glass fibers as fiber reinforcing materials
  • FRP fiber reinforced plastics
  • those containing thermosetting resins such as unsaturated polyester resins, vinyl ester resins, epoxy resins, phenol resins and glass fibers as fiber reinforcing materials are generally known.
  • FRP consisting of unsaturated polyester resin or vinyl ester resin and glass fiber makes it easy to control viscosity and curing characteristics by using a polymerizable unsaturated monomer such as styrene in combination. Therefore, it is most widely used in FRP.
  • Carbon fiber reinforced plastic using carbon fibers instead of conventional glass fibers as a fiber reinforcing material has been studied.
  • Carbon fiber is a fiber with a fine graphite crystal structure that is made by converting polyacrylonitrile resin, organic matter such as pitch from petroleum and coal into fibers, and then undergoing a special heat treatment process. Is light and high in strength.
  • the fiber reinforced plastic obtained by using the carbon fiber and the epoxy resin has remarkably superior strength as compared with the conventional product, and further achieves a weight reduction of about 25% or more of the conventional product.
  • the epoxy resin generally has a high viscosity, and it is difficult to adjust the viscosity by using a polymerizable unsaturated monomer such as the unsaturated polyester or vinyl ester. Since it takes time to cure, there are many restrictions in terms of molding method and molding conditions.
  • the carbon fiber is used in combination with the unsaturated polyester or vinyl ester other than the epoxy resin, sufficient interfacial adhesion cannot be maintained between the unsaturated polyester or the like and the carbon fiber. It was difficult to obtain a carbon fiber reinforced plastic having high strength.
  • Examples of the FRP containing the vinyl ester, unsaturated polyester and carbon fiber are impregnated with a specific epoxy group-containing vinyl ester resin, a radical polymerizable monomer, a curing agent, and 0.5 to 5% by mass of the vinyl ester resin.
  • a carbon fiber reinforced resin composite material obtained by curing a composition containing carbon fiber is known (see, for example, Patent Document 1).
  • the carbon fiber reinforced resin composite material has been sufficiently reduced in weight, it may not be practically sufficient in terms of strength.
  • the problem to be solved by the present invention is to provide a sizing agent for carbon fiber that can be applied to various molding methods and can be used for the production of a molded product having both excellent strength and light weight. . Further, the problem to be solved by the present invention is to provide a carbon fiber subjected to surface treatment using the sizing agent, a method for producing the carbon fiber, and a molding material and a molded product containing the carbon fiber. It is.
  • this invention relates to the sizing agent for carbon fiber characterized by containing moisture hardening type polyurethane (A). Further, the present invention is characterized in that the surface of the carbon fiber (c) has a film formed by the moisture curing reaction of the moisture curable polyurethane (A) contained in the carbon fiber sizing agent. It is related with the carbon fiber (C) to which surface treatment was performed.
  • the carbon fiber (c) is impregnated with the carbon fiber sizing agent, and when the organic solvent (B) is contained in the carbon fiber sizing agent, the organic solvent (B) is dried.
  • the present invention relates to a method for producing a surface-treated carbon fiber (C) characterized by forming a film. Moreover, this invention contains 1 or more types of resin (D) chosen from the group which consists of vinyl ester, vinyl urethane, and unsaturated polyester, a polymerizable unsaturated monomer (E), and the said carbon fiber (C).
  • the present invention relates to a molding material characterized by the above and a molded product obtained by molding the molding material.
  • carbon fiber is surface treated using the sizing agent for carbon fiber of the present invention, it can be used in combination with various curable resins such as unsaturated polyester, vinyl ester, and vinyl urethane.
  • curable resins such as unsaturated polyester, vinyl ester, and vinyl urethane.
  • a high-strength molded product that is lighter than that can be obtained.
  • Such molded products can be used in parts such as automobiles and aircraft, industrial members, industrial members, infrastructure members, and medical fields.
  • the sizing agent for carbon fiber of the present invention forms a film on the surface of carbon fiber used when producing a carbon fiber reinforced plastic, increases the affinity with the curable resin, and improves the strength of the resulting molded product. Can be used for. Moreover, the sizing agent for carbon fibers of the present invention can also be used for bundling carbon fibers.
  • the sizing agent for carbon fiber of the present invention contains moisture-curable polyurethane (A) and other additives as required.
  • the sizing agent for carbon fiber of the present invention may be a solventless type that does not contain a solvent such as an organic solvent.
  • the moisture curable polyurethane ( A) is preferably dissolved or dispersed in the organic solvent (B).
  • the carbon fiber sizing agent has a mass ratio [(A) / (B)] of the moisture-curable polyurethane (A) and the organic solvent (B) of 0.1 / 99.9 to 5.0 / 95. 0.0 is preferable from the viewpoint of improving the handleability and efficiency of the surface treatment of the carbon fiber, and more preferably 0.1 / 99.9 to 1.0 / 99.0.
  • the moisture curable polyurethane (A) used in the sizing agent for carbon fiber of the present invention has a functional group that reacts with moisture and moisture in the air to advance a crosslinking reaction.
  • a functional group include an isocyanate group and a hydrolyzable silyl group, but vinyl esters and unsaturated polyesters are generally used because a very polar urea bond can be formed and a film having excellent solvent resistance can be formed.
  • the isocyanate group is preferably present in the range of 5 to 25% by mass with respect to the total amount of the moisture-curable polyurethane (A) in order to prevent the strength from being deteriorated over time.
  • the moisture curable polyurethane (A) advances the crosslinking reaction of the isocyanate group or the like under the influence of moisture in the atmosphere while adhering to the surface of the carbon fiber (c), and moisture cures on the surface of the carbon fiber (c).
  • a cured film containing the resulting polyurethane is formed. Since such a cured film is difficult to dissolve in a polymerizable unsaturated monomer (E) such as styrene described later, carbon fiber (C) subjected to surface treatment with the cured film and a curable resin (such as vinyl ester) D) is improved in adhesion, and as a result, a carbon fiber reinforced plastic having excellent strength can be obtained.
  • the moisture-curing polyurethane (A) when a water-based sizing agent in which a high molecular weight thermoplastic urethane resin is emulsified and dispersed in water or a two-component sizing agent containing polyurethane and a curing agent is used.
  • the film formed on the surface of the carbon fiber (c) may dissolve in the polymerizable unsaturated monomer (E) such as styrene, and as a result, a molded article having excellent strength can be obtained. May not be possible.
  • polyisocyanate (a1) and polyol (a2) react can be used, for example.
  • polyisocyanate (a1) include aromatic polyisocyanates such as 4,4′-diphenylmethane diisocyanate, 2,4′-diphenylmethane diisocyanate, carbodiimide-modified diphenylmethane diisocyanate, crude diphenylmethane diisocyanate, phenylene diisocyanate, tolylene diisocyanate, and naphthalene diisocyanate.
  • aliphatic polyisocyanates such as hexamethylene diisocyanate, lysine diisocyanate, cyclohexane diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, or polyisocyanates having an alicyclic structure can be used.
  • 4,4′-diphenylmethane diisocyanate, 2,4′-diphenylmethane diisocyanate, crude diphenylmethane diisocyanate, phenylene diisocyanate are used from the viewpoint of increasing the crosslink density of the film formed by the sizing agent and forming a film excellent in solvent resistance. It is preferable to use aromatic polyisocyanates such as tolylene diisocyanate and naphthalene diisocyanate.
  • polyol (a2) that reacts with the polyisocyanate (a1) a polyol having two or more hydroxyl groups is used from the viewpoint of increasing the cross-linking density of the coating film to be formed, and further improving the solvent resistance with high strength. It is preferable to use those having 3 to 6 hydroxyl groups. Further, as the polyol (a2), those having a number average molecular weight of 200 to 5,000 are preferably used, and those having 300 to 2,000 are more preferably used. As said polyol (a2), polyether polyol, polycarbonate polyol, polyester polyol etc. can be used, for example. Among these, it is preferable to use a polyether polyol, more preferably an aliphatic polyether polyol, in order to obtain a molded article having a high strength.
  • polyether polyol for example, one obtained by addition polymerization of alkylene oxide to one or more compounds having two or more active hydrogen atoms can be used.
  • Examples of the compound having two or more active hydrogen atoms include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, trimethylene glycol, 1,3-butanediol, 1,4-butanediol, and 1,6-hexanediol.
  • Neopentyl glycol, glycerin, trimethylol ethane, trimethylol propane, and the like can be used.
  • alkylene oxide for example, ethylene oxide, propylene oxide, butylene oxide, styrene oxide, epichlorohydrin, tetrahydrofuran, or the like can be used.
  • polycarbonate polyol for example, those obtained by reacting a carbonic acid ester and a polyol, or those obtained by reacting phosgene with bisphenol A or the like can be used.
  • carbonate ester methyl carbonate, dimethyl carbonate, ethyl carbonate, diethyl carbonate, cyclocarbonate, diphenyl carbonate and the like can be used.
  • polyol capable of reacting with the carbonate ester examples include ethylene glycol, diethylene glycol, 1,2-propylene glycol, dipropylene glycol, 1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5- Relatively low molecular weight dihydroxy compounds such as pentanediol, neopentyl glycol and 1,4-cyclohexanediol, polyethylene glycol, polypropylene glycol, polyester polyols such as polyhexamethylene adipate, and the like can be used.
  • polyester polyol examples include those obtained by esterifying low molecular weight polyols and polycarboxylic acids, polyesters obtained by ring-opening polymerization reaction of cyclic ester compounds such as ⁇ -caprolactone, and the like. Copolyester of the above can be used.
  • the low molecular weight polyol for example, ethylene glycol, propylene glycol and the like can be used.
  • polycarboxylic acid for example, succinic acid, adipic acid, sebacic acid, dodecanedicarboxylic acid, terephthalic acid, isophthalic acid, phthalic acid, and anhydrides or ester-forming derivatives thereof can be used.
  • the moisture-curable polyurethane (A) can be produced by a known and usual method. For example, it can be produced by a method in which the polyol (a2) from which water has been removed is dropped to the polyisocyanate (a1) in the reaction vessel and then heated until the hydroxyl group of the polyol (a2) is substantially eliminated. it can.
  • the moisture-curable polyurethane (A) can be usually produced without a solvent, but may be produced by reacting in an organic solvent (B) as described later.
  • organic compounds such as toluene, xylene, ethyl acetate, methyl ethyl ketone, cellosolve acetate, normal hexane, vinyl group-containing styrene, vinyl toluene, ethyl acrylate, methyl methacrylate, etc. that do not inhibit the reaction.
  • Solvents can be used.
  • a urethanization catalyst can be used as necessary.
  • the urethanization catalyst can be appropriately added at any stage of the reaction.
  • urethanization catalyst examples include nitrogen-containing compounds such as triethylamine, triethylenediamine and N-methylmorpholine; metal salts such as potassium acetate, zinc stearate and tin octylate; and organometallic compounds such as dibutyltin dilaurate. Can do.
  • nitrogen-containing compounds such as triethylamine, triethylenediamine and N-methylmorpholine
  • metal salts such as potassium acetate, zinc stearate and tin octylate
  • organometallic compounds such as dibutyltin dilaurate. Can do.
  • the equivalent ratio of the isocyanate group of the polyisocyanate (a1) to the hydroxyl group of the polyol (a2) [isocyanate group / hydroxyl group] is 1.1 to 10.
  • the reaction is preferably performed in the range of 1.5 to 10, and the reaction is preferably performed in the range of 1.5 to 10.
  • the moisture curable polyurethane (A) obtained by the above method preferably has a number average molecular weight of 300 to 5,000.
  • said moisture hardening type polyurethane (A) it is preferable to use what has a polymerizable unsaturated double bond other than the said isocyanate group as said moisture hardening type polyurethane (A).
  • the moisture curable polyurethane (A) having a polymerizable unsaturated double bond when the curable resin (D) described later is radically polymerized and cured, the moisture curable polyurethane (A) is moisture cured. Since the polymerizable unsaturated double bond derived from the moisture curable polyurethane (A) in the coated film is radically polymerized together, the curable resin (D) and the moisture curable polyurethane (A) are contained.
  • Interfacial adhesion with the carbon fiber (C) surface-treated with the sizing agent for carbon fiber can be further improved.
  • the polymerizable unsaturated double bond preferably has a double bond titer of 200 to 5,000, preferably 400 to 1,600, based on the total amount of the moisture-curable polyurethane (A). It is more preferable to improve the interfacial adhesion between the curable resin (D) and the carbon fiber (C), which will be described later, and to ensure the solvent resistance of the film made of the sizing agent of the present invention.
  • the double bond titer is a value obtained by dividing the mass of the moisture curable polyurethane (A) by the number of double bonds present in the moisture curable polyurethane (A) of the mass.
  • a polyol (a2) from which water has been removed is added to the polyisocyanate (a1) in the absence of a solvent or an organic solvent.
  • the mixture is heated and reacted until the hydroxyl group of the polyol (a2) substantially disappears to produce a polyurethane having an isocyanate group in the molecule, and then a part of the isocyanate group of the polyurethane and the hydroxyl group And a method of reacting with a compound having a polymerizable unsaturated double bond.
  • the hydroxyl group and polymerizable unsaturated double bond-containing compound include hydroxyalkyl (meth) such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 3-hydroxybutyl (meth) acrylate.
  • Acrylates mono (meth) acrylates of alcohols having two hydroxyl groups such as polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, etc .; di (meth) acrylates of tris (hydroxyethyl) isocyanuric acid, Examples include partial (meth) acrylates of alcohols having three or more hydroxyl groups, such as pentaerythritol tri (meth) acrylate.
  • the carbon fiber sizing agent of the present invention can be produced, for example, by reacting the polyisocyanate (a1) and the polyol (a2) in the organic solvent (B).
  • the reaction between the polyisocyanate (a1) and the polyol (a2) is carried out in the absence of a solvent, the resulting moisture-curable polyurethane (A) and the organic solvent (B) are mixed,
  • the carbon fiber sizing agent of the present invention can be obtained by heating or the like as necessary.
  • the sizing agent for carbon fibers of the present invention may contain other additives as required in addition to the moisture-curable polyurethane (A).
  • said additive surfactant for ensuring the texture according to the use of carbon fiber other than a silane coupling agent, an antifoamer, an antistatic agent, etc. can be used, for example.
  • the said additive can be mixed with the sizing agent for carbon fibers previously manufactured by the above-mentioned method.
  • carbon fibers generally known as polyacrylonitrile-based, pitch-based, etc. can be used as the carbon fiber (c) used in the present invention.
  • Commercially available products of the polyacrylonitrile-based carbon fiber include, for example, trade names manufactured by Toray Industries, Inc .; “Torayca” series, product names manufactured by Toho Tenax Co., Ltd .; “Tenax” series, manufactured by Mitsubishi Rayon Co., Ltd. Product name; "Pyrofil” series can be used.
  • pitch-based carbon fibers include, for example, trade names manufactured by Mitsubishi Plastics Chemical Co., Ltd .; “DIALEAD” series, trade names manufactured by Kureha Co., Ltd .; “Kureka” series, Osaka Gas Chemical ( “Donna Carbo” series, product name manufactured by Nippon Graphite Fiber Co., Ltd .; “Granock” series can be used.
  • the carbon fiber (c) it is preferable to use a polyacrylonitrile-based carbon fiber from the viewpoint of imparting more excellent strength to the molded product.
  • the carbon fiber (c) it is preferable to use one having a fineness from the viewpoint of obtaining a molded product having further excellent strength and the like, and one having a single yarn diameter of 1 ⁇ m to 20 ⁇ m is used. It is preferable to use one having a thickness of 4 ⁇ m or more and 10 ⁇ m or less.
  • the carbon fiber (c) preferably has a strand strength of 3,500 MPa or more, more preferably 4,000 MPa or more.
  • the carbon fiber (c) used in the present invention may be, for example, a twisted yarn, a spun yarn, a spun yarn, or a non-woven fabric. Specifically, the filament, yarn, roving, strand, chopped strand, felt, needle punch , Cloth, roving cloth, milled fiber and the like.
  • the surface of the carbon fiber (c) is surface-treated using the sizing agent for carbon fiber, so that the moisture-curable polyurethane (A) is moisture-cured on the surface of the carbon fiber (c).
  • the carbon fiber (C) in which is formed will be described.
  • the carbon fiber (C) is impregnated with the carbon fiber sizing agent of the present invention into the carbon fiber (c) which has not been subjected to surface treatment (sizing treatment).
  • the moisture-curable polyurethane is removed by drying the carbon fiber (c) adhered and impregnated with B) to remove the organic solvent (B) and then leaving it at room temperature. It can be produced by advancing the moisture curing reaction of (A).
  • the surface of the carbon fiber (c) may be impregnated with the carbon fiber sizing agent in the carbon fiber (c), as described above. Moreover, you may apply
  • the carbon fiber sizing agent contains the organic solvent (B), for example, the organic solvent (B) is allowed to stand for a certain period of time in a temperature environment of about room temperature to 150 ° C, preferably 50 ° C to 100 ° C. Can be removed.
  • the moisture curing reaction can be allowed to proceed sufficiently, for example, by leaving it for a certain period of time under normal conditions of indoor humidity and room temperature.
  • the mass of the moisture-cured polyurethane (A) contained in the coating film is moisture-cured in a range of 0.1 to 5.0% by mass with respect to the total mass of the carbon fiber (c). Is preferred.
  • the surface-treated carbon fiber (C) obtained by the above method is lightened by using it in combination with a curable resin (D) and a polymerizable unsaturated monomer (E) described later. It can be used for the production of strong molded products.
  • curable resin (D) it is suitable to use unsaturated polyester resin, vinyl ester, vinyl urethane, polyester (meth) acrylate etc., for example, unsaturated polyester resin, vinyl ester, and vinyl urethane. More preferably, it is at least one selected from the group consisting of: As the curable resin (D), when the polymerizable unsaturated monomer (E) is used, a number average molecular weight of 300 or more is adjusted from the viewpoint of adjusting the viscosity so as not to impair the moldability and workability. It is preferable to use what has, and it is more preferable to use the thing of 450 or more.
  • the unsaturated polyester resin can be obtained, for example, by a condensation reaction of an ⁇ , ⁇ -unsaturated dibasic acid and a dibasic acid containing a saturated dibasic acid and a polyhydric alcohol, and if necessary, a dicyclopentadiene compound. Things can be used.
  • a polymerization inhibitor or the like may be used together. Examples of the polymerization inhibitor include the same polymerization inhibitors as described later.
  • Examples of the ⁇ , ⁇ -unsaturated dibasic acid include maleic acid, maleic anhydride, fumaric acid, itaconic acid, itaconic anhydride and the like.
  • the saturated dibasic acids include phthalic acid, phthalic anhydride, halogenated phthalic anhydride, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, tetrahydrophthalic anhydride, hexahydrophthalic acid, hexahydrophthalic anhydride, hexahydroterephthalic acid.
  • Acid hexahydroisophthalic acid, succinic acid, malonic acid, glutaric acid, adipic acid, sebacic acid, 1,12-dodecanedioic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 2,3- Examples thereof include naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid anhydride, 4,4′-biphenyldicarboxylic acid, and dialkyl esters thereof.
  • polyhydric alcohols examples include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, and 2-methyl.
  • epoxy (meth) acrylate is preferably used as the vinyl ester that can be used for the curable resin (D).
  • epoxy (meth) acrylate what is obtained by making an epoxy resin and unsaturated monobasic acid react in presence of an esterification catalyst can be used.
  • bisphenol type epoxy resin, novolac type epoxy resin, 1,6-naphthalene type epoxy resin di (meth) acrylate, and the like can be mentioned. Of these, those using an epoxy resin having an average epoxy equivalent of 150 to 450 are preferable.
  • Examples of the bisphenol type epoxy resin include di (meth) acrylate of bisphenol A type epoxy resin, di (meth) acrylate of hydrogenated bisphenol A type epoxy resin, and di (meth) of bisphenol A ethylene oxide addition type epoxy resin.
  • Examples include acrylate, di (meth) acrylate of bisphenol A propylene oxide addition type epoxy resin, di (meth) acrylate of bisphenol F type epoxy resin, di (meth) acrylate of 1,6-naphthalene type epoxy resin, and the like.
  • novolak type epoxy resin for example, an epoxy resin obtained by a reaction of phenol novolak or cresol novolak with epichlorohydrin or methyl epichlorohydrin can be mentioned.
  • examples of the unsaturated monobasic acid include acrylic acid, methacrylic acid, cinnamic acid, crotonic acid, sorbic acid, monomethyl malate, monopropyl malate, monobutyl malate, or mono (2-ethylhexyl) malate. Etc.
  • the reaction between the epoxy resin and the unsaturated monobasic acid is preferably carried out using an esterification catalyst at a temperature in the range of 60 to 140 ° C., particularly preferably in the range of 80 to 120 ° C.
  • a polymerization inhibitor etc. together for reaction of an epoxy resin and unsaturated monobasic acid.
  • the polymerization inhibitor include the same polymerization inhibitors as described later.
  • esterification catalyst known and commonly used compounds can be used as they are, but various tertiary amines such as triethylamine, N, N-dimethylbenzylamine, N, N-dimethylaniline or diazabicyclooctane; or Examples thereof include diethylamine hydrochloride.
  • the number average molecular weight of the epoxy (meth) acrylate is preferably in the range of 450 to 2,500, particularly preferably 500 to 2,200. If the number average molecular weight is 450 to 2,500, the obtained cured product will not be sticky, the strength physical properties will not decrease, the curing time will not be prolonged, and the productivity will not be inferior.
  • urethane (meth) acrylate can be used as the vinyl urethane used in the present invention.
  • the urethane (meth) acrylate can be obtained by reacting a polyol, a polyisocyanate, and a hydroxyl group-containing (meth) acrylic compound.
  • polyether polyols such as polypropylene oxide, polyethylene oxide, polytetramethylene glycol, bisphenol A ethylene oxide adduct, bisphenol A propylene oxide adduct, polybutadiene diol, polyisoprene diol, polyester ether polyol, polyester polyol and the like. Is mentioned.
  • polyisocyanates examples include 2,4-tolylene diisocyanate and its isomers or a mixture of isomers (hereinafter abbreviated as TDI), diphenylmethane diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, hydrogenated xylylene diisocyanate, dicyclohexylmethane.
  • examples thereof include diisocyanate, tolidine diisocyanate, naphthalene diisocyanate, and triphenylmethane triisocyanate. Of these polyisocyanates, diisocyanates are preferred, and TDI is particularly preferred.
  • polyisocyanates include Barnock D-750, Crisbon NX (DIC Corporation product), Death Module L (Sumitomo Bayer Co., Ltd. product), Coronate L (Nippon Polyurethane product), Takenate D102 (Takeda) Yakuhin Kogyo Co., Ltd. product), isonate 143L (manufactured by Mitsubishi Chemical Corporation), and the like.
  • hydroxyl group-containing (meth) acrylic compound a hydroxyl group-containing (meth) acrylic acid ester is preferable.
  • the hydroxyl group-containing (meth) acrylic acid ester include hydroxyalkyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 3-hydroxybutyl (meth) acrylate; polyethylene Mono (meth) acrylates of alcohols having two hydroxyl groups such as glycol mono (meth) acrylate and polypropylene glycol mono (meth) acrylate; adducts of ⁇ -olefin epoxide and (meth) acrylic acid, carboxylic acid glycidyl ester And (meth) acrylic acid adducts; a portion of an alcohol having three or more hydroxyl groups such as di (meth) acrylate of tris (hydroxyethyl) isocyanuric acid, pentaerythrito
  • a polyether polyol and a polyisocyanate are first reacted in an equivalent ratio [isocyanate group / hydroxyl group] in the range of 1.5 to 2 to contain a terminal isocyanate group.
  • a urethane prepolymer is produced, and then a hydroxyl group-containing (meth) acrylic compound is reacted with the isocyanate group of the prepolymer so that the hydroxyl group is approximately equivalent.
  • the molecular weight of the urethane (meth) acrylate used in the present invention is preferably 500 to 30,000 in terms of number average molecular weight, and more preferably 700 to 5,000.
  • polyester (meth) acrylate the thing obtained by making polyester polyol obtained by making polycarboxylic acid and polyol react, acrylic acid, etc. can be used, for example.
  • the polycarboxylic acid include phthalic anhydride, terephthalic acid, isophthalic acid, orthophthalic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, 1,2-hexahydrophthalic acid, 1,3-hexahydrophthalic acid Fumaric acid, maleic acid, itaconic acid and the like can be used.
  • polystyrene resin examples include ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, and 1,3-propanediol.
  • Diethylene glycol, dipropylene glycol and the like can be used.
  • Examples of the polymerizable unsaturated monomer (E) used in the present invention include styrene, ⁇ -methylstyrene, chlorostyrene, dichlorostyrene, divinylbenzene, t-butylstyrene, vinyltoluene, vinyl acetate, and diaryl.
  • the molding material of the present invention contains the curable resin (D), the polymerizable unsaturated monomer (E), and the carbon fiber (C).
  • a prepreg or a sheet molding compound (SMC) can be used as the molding material of the present invention.
  • the molding material can be produced, for example, by impregnating the carbon fiber (C) with a resin composition containing the curable resin (D) and the polymerizable unsaturated monomer (E). it can. If necessary, the molding material can be used in combination with a radical polymerization initiator, a radical polymerization accelerator or the like.
  • thermosetting agent for example, a thermosetting agent or a photocuring agent can be used.
  • thermosetting agent include diacyl peroxide-based, peroxyester-based, hydroperoxide-based, dialkyl peroxide-based, ketone peroxide-based, peroxyketal-based, alkylperester-based, and percarbonate-based organic peroxides. Oxides can be used.
  • the amount of the thermosetting agent used is not particularly limited as long as the object of the present invention can be achieved, but is 0.5 to 5 with respect to 100 parts by mass of the curable resin (D). It is preferable to use parts by mass.
  • benzoin alkyl ether benzophenone, benzyl, methyl orthobenzoyl benzoate, benzyl dimethyl ketal, 2,2-diethoxyacetophenone, 2-hydroxy-2-methylpropiophenone, etc.
  • benzoin alkyl ether benzophenone, benzyl, methyl orthobenzoyl benzoate, benzyl dimethyl ketal, 2,2-diethoxyacetophenone, 2-hydroxy-2-methylpropiophenone, etc.
  • radical polymerization accelerator examples include metal soaps such as cobalt naphthenate, cobalt octylate, zinc octylate, vanadium octylate, copper naphthenate, and barium naphthenate; vanadium acetyl acetate, cobalt acetyl acetate, iron acetylacetate
  • Metal chelates such as nate; aniline, N, N-dimethylaniline, N, N-diethylaniline, p-toluidine, N, N-dimethyl-p-toluidine, N, N-bis (2-hydroxyethyl) -p -Toluidine, 4- (N, N-dimethylamino) benzaldehyde, 4- [N, N-bis (2-hydroxyethyl) amino] benzaldehyde, 4- (N-methyl-N-hydroxyethylamino) benzaldehyde, N, N-bis (2
  • the radical polymerization accelerator may be mixed in advance with the curable resin (D) or the like, but the carbon fiber (C), the curable resin (D), the polymerizable unsaturated monomer ( You may use together, when mixing E).
  • the radical polymerization accelerator is preferably used in an amount of 0.1 to 5 parts by mass with respect to 100 parts by mass of the curable resin (D).
  • a polymerization inhibitor or the like can be used to adjust the curing rate.
  • the polymerization inhibitor include trihydrobenzene, toluhydroquinone, 1,4-naphthoquinone, parabenzoquinone, hydroquinone, benzoquinone, hydroquinone monomethyl ether, p-tert-butylcatechol, catechol, 2,6-di-tert-butyl- 4-methylphenol and the like can be mentioned.
  • the addition amount of the polymerization inhibitor is preferably 10 to 1000 ppm, more preferably 50 to 200 ppm, based on the resin used in the present invention.
  • the molding material of the present invention includes, for example, a hand lay-up method, a spray-up method, an FRP lining method, a resin transfer molding method (RTM method), a resin injection method (RI method), a vacuum assist resin transfer molding method (VARTM method),
  • RTM method resin transfer molding method
  • RI method resin injection method
  • VARTM method vacuum assist resin transfer molding method
  • a molded article having high hardness can be obtained by molding by various molding methods such as an infusion molding method, a press molding method, an autoclave molding method, a filament winding method, and a pultrusion molding method.
  • the molding material of this invention can adjust the viscosity of a molding material easily, without impairing sclerosis
  • a desired molded product can be easily produced by a molding method such as an infusion molding method that can be applied when the molding material has a relatively low viscosity.
  • a molding method such as an infusion molding method that can be applied when the molding material has a relatively low viscosity.
  • Curing of the molding material proceeds by radical polymerization by heating or light irradiation, for example, under pressure or normal pressure.
  • the radical polymerization proceeds between the polymerizable unsaturated double bond of the curable resin (D) and the polymerizable unsaturated double bond of the polymerizable unsaturated monomer (E).
  • the polymerizable unsaturated double bond of the polyurethane also contributes to the radical polymerization reaction.
  • the interface adhesive force of curable resin (D) and carbon fiber (C) improves, and it becomes possible to obtain a highly strong molded article.
  • the molded article of the present invention obtained by the above method is, for example, a blade for wind power generation, an automobile outer plate, a vehicle platform member, a boat, a water bike, a railway vehicle member, a pipe, an aircraft member, a building member for seismic reinforcement, an industry It can be used for industrial robots.
  • Example 1 ⁇ Preparation of carbon fiber sizing agent (S-1)> 282 parts by mass of Millionate MR-200 (manufactured by Nippon Polyurethane Industry Co., Ltd .: Crude MDI (crude diphenylmethane diisocyanate)) in a 2-liter four-necked flask equipped with a thermometer, stirrer, inert gas inlet, and reflux condenser , 91 parts by mass of propylene oxide adduct of glycerin (Sanix GP-400 manufactured by Sanyo Chemical Industries Co., Ltd.), 300 parts by mass of dried xylene and 350 parts by mass of dried ethyl acetate are charged and reacted at 50 to 70 ° C.
  • Synix GP-400 manufactured by Sanyo Chemical Industries Co., Ltd.
  • an organic solvent solution of moisture curable polyurethane was obtained (appearance: brown liquid, free NCO%: 5.9%, viscosity: 30 CPS (20 ° C.), nonvolatile content: 36% by mass).
  • 10 parts by mass of the moisture-curable polyurethane organic solvent solution and 990 parts by mass of dried acetone were mixed to obtain a sizing agent for carbon fiber (S-1) having a nonvolatile content of 0.36% by mass.
  • Example 2 ⁇ Preparation of carbon fiber sizing agent (S-2)> 352 parts by mass of Millionate MR-200 (manufactured by Nippon Polyurethane Industry Co., Ltd .: Crude MDI) in a 2 liter four-necked flask equipped with a thermometer, stirrer, inert gas inlet, and reflux condenser, propylene oxide of glycerin 122 parts by weight of an adduct (Exenol # 430 manufactured by Asahi Glass Co., Ltd.) and 197 parts by weight of dried xylene were charged and reacted at 50 to 70 ° C. to obtain a first stage reaction solution.
  • S-2 Carbon fiber sizing agent
  • a blocked isocyanate compound in which all isocyanate groups are blocked with methyl ethyl ketoxime by reacting for a period of time (nonvolatile content: 75% by mass; when the methyl ethyl ketoxime is dissociated to form an isocyanate group, the effective isocyanate group content is 8. 3% by mass) was obtained.
  • 113 parts by mass of the blocked isocyanate compound, 75 parts by mass of a polyester polyol (manufactured by DIC Corporation, Vernock D-161) and 0.8 part by mass of dibutyltin diacetate as a dissociation catalyst were mixed, and nonionic surface activity was further obtained.
  • a vinyl ester resin solution (VE-1) having a nonvolatile content of 65.0% by mass and an acid value of 4.6.
  • Example 3 ⁇ Production of carbon fiber reinforced plastic> A mixture of 100 parts by mass of the vinyl ester resin solution (VE-1) and 0.5 parts by mass of 6% by mass cobalt naphthenate and 1.0 part by mass of Permec N (methyl ethyl ketone peroxide manufactured by NOF Corporation). was laminated on the sizing-treated carbon fiber cloth obtained in Example 1 on a 350 mm ⁇ 350 mm glass plate subjected to a release treatment by a hand lay-up molding method (8 ply). After curing at room temperature (25 ° C.) for 12 hours and further curing at 60 ° C. for 3 hours, a carbon fiber reinforced plastic (carbon fiber content: 50% by volume) was obtained.
  • VE-1 vinyl ester resin solution
  • Permec N methyl ethyl ketone peroxide manufactured by NOF Corporation
  • Examples 4 to 6, Comparative Examples 3 to 7 A carbon fiber reinforced plastic was obtained in the same manner as in Example 3 except that the carbon fiber cloth or glass fiber cloth and resin composition described in Tables 1 to 3 below were used.
  • a polyethylene spiral tube SE-13 inner diameter 10 mm manufactured by Morimiya Electric Co., Ltd.
  • a polyethylene tube having an outer diameter of 10 mm was connected to one end of each spiral tube to form a resin injection line and a vacuum degassing line, respectively.
  • the entire surface of the glass was covered with a bagging film (IPPLON DP-1000 nylon 25 ⁇ m thickness manufactured by AIRTECH), and the peripheral edge of the glass was bonded to the bagging film with a sealant tape (A800-G3 manufactured by AIRTECH).
  • the gap between the resin injection line, the vacuum degassing line, the peripheral edge of the glass and the bagging film was also filled with a sealant tape to ensure the airtightness between the film and the glass plate.
  • a polyethylene pump hose used as a vacuum degassing line is connected to a vacuum pump via a resin trap equipped with a vacuum gauge.
  • a polyethylene hose used as a resin injection line is closed at the middle with a clamp. It installed in the bottom face of the resin compounding tank.
  • the vacuum pump was operated, and vacuum deaeration and airtightness were ensured in order to maintain the degree of vacuum in the path and between the bagging film glass plates at -700 to -760 mmHg.
  • the mixture (Z-1) a mixture (Z-) containing 90 parts by mass of Epiclone 850 (epoxy resin manufactured by DIC Corporation) and 10 parts by mass of TETA (triethyltetramine manufactured by Tosoh Corporation). 2; using the same composition as that used in Comparative Example 8 and using the commercially available Pyrofil TR3110M as the carbon fiber cloth, the molded product (R- 2) was obtained.
  • the molded product (R-1) was such that the mixture (Z-1) was spread over the entire surface of the carbon fiber cloth without causing defects such as residual bubbles after an injection time of 15 minutes.
  • the mixture (Z-2) which is the molding material used has a high viscosity, and it is difficult to adjust the viscosity using a polymerizable unsaturated monomer. For this reason, even if the injection time is 30 minutes, the resin does not reach the entire surface of the carbon fiber cloth, resulting in a molded product including air bubbles as a whole, and does not have a practically sufficient strength.
  • carbon fiber is surface treated using the sizing agent for carbon fiber of the present invention, it can be used in combination with various curable resins such as unsaturated polyester, vinyl ester, and vinyl urethane.
  • curable resins such as unsaturated polyester, vinyl ester, and vinyl urethane.
  • a high-strength molded product that is lighter than that can be obtained.
  • Such molded products can be used in parts such as automobiles and aircraft, industrial members, industrial members, infrastructure members, and medical fields.

Abstract

Disclosed are: a sizing agent for a carbon fiber, which is applicable to various molding methods and can be used for the production of a molded article that has a good balance between excellent strength and weight reduction; a carbon fiber which is surface-treated with the sizing agent; a method for producing the carbon fiber; and a molding material and a molded article, which contain the carbon fiber. Specifically disclosed are: a sizing agent for a carbon fiber, which contains a moisture curable polyurethane (A); a surface-treated carbon fiber (C) which has, on the surface of a carbon fiber (c), a coating film that is formed by moisture curing the moisture curable polyurethane (A) contained in the sizing agent for a carbon fiber; a method for producing a surface-treated carbon fiber (C); a molding material which is characterized by containing a curable resin (D), a polymerizable unsaturated monomer (E) and the carbon fiber (C); and a molded article which is obtained by molding the molding material.

Description

炭素繊維用サイジング剤、炭素繊維、及びその製造方法、ならびに、炭素繊維を含む成形材料及び成形品Sizing agent for carbon fiber, carbon fiber, method for producing the same, and molding material and molded article containing carbon fiber
 本発明は、炭素繊維強化プラスチックをはじめとする様々な成形材料に使用可能な炭素繊維のサイジング剤、該サイジング剤を用いて表面処理の施された炭素繊維、及び該炭素繊維の製造方法、ならびに、該炭素繊維を含む成形材料、及び該成形材料を成形して得られる成形品に関する。 The present invention relates to a carbon fiber sizing agent that can be used in various molding materials including carbon fiber reinforced plastic, a carbon fiber that has been surface-treated using the sizing agent, a method for producing the carbon fiber, and The present invention also relates to a molding material containing the carbon fiber and a molded product obtained by molding the molding material.
 繊維強化プラスチック(FRP)としては、例えば不飽和ポリエステル樹脂、ビニルエステル樹脂、エポキシ樹脂、フェノール樹脂等の熱硬化性樹脂と、繊維強化材としてガラス繊維とを含有するものが一般的に知られている。特に、不飽和ポリエステル樹脂やビニルエステル樹脂とガラス繊維とからなるFRPは、スチレン等の重合性不飽和単量体を併用することによって粘度や硬化特性をコントロールしやすく、その結果、様々な成形方法に適用できるため、FRPのなかで最も広範に使用されている。 As fiber reinforced plastics (FRP), for example, those containing thermosetting resins such as unsaturated polyester resins, vinyl ester resins, epoxy resins, phenol resins and glass fibers as fiber reinforcing materials are generally known. Yes. In particular, FRP consisting of unsaturated polyester resin or vinyl ester resin and glass fiber makes it easy to control viscosity and curing characteristics by using a polymerizable unsaturated monomer such as styrene in combination. Therefore, it is most widely used in FRP.
 一方、航空宇宙分野やスポーツ分野、自動車分野では、高強度化と軽量化とを両立した部材の開発が求められており、前記FRPにおいても高強度化と軽量化との両立を実現すべく様々な検討が進められている。
 例えば、繊維強化材として従来のガラス繊維の代わりに炭素繊維を使用した炭素繊維強化プラスチックが検討されている。炭素繊維は、ポリアクリロニトリル樹脂や、石油、石炭からとれるピッチ等の有機物を繊維化して、その後、特殊な熱処理工程を経て作られる微細な黒鉛結晶構造をもつ繊維であって、従来のガラス繊維よりも軽く高強度であるという特徴を有する。
 そのため、前記炭素繊維とエポキシ樹脂とを用いて得られた繊維強化プラスチックは、従来品と比較して格段に優れた強度を有し、更には従来品の約25%以上もの軽量化を達成したものであった。
 しかし、前記エポキシ樹脂は、一般的に粘度が高く、前記不飽和ポリエステルやビニルエステルのように重合性不飽和単量体を用いることで粘度を調整することが困難であり、また、常温下での硬化に時間を要することから、成形法や成形条件の点で多くの制約があった。
 一方、前記エポキシ樹脂以外の不飽和ポリエステルやビニルエステル等に、前記炭素繊維を組み合わせて使用しても、不飽和ポリエステル等と炭素繊維との間で十分な界面接着性を維持できず、その結果、高強度を備えた炭素繊維強化プラスチックを得ることは困難であった。
On the other hand, in the aerospace field, the sports field, and the automobile field, there is a demand for the development of a member that achieves both high strength and light weight. In the FRP, various measures are required to achieve both high strength and light weight. Studies are underway.
For example, a carbon fiber reinforced plastic using carbon fibers instead of conventional glass fibers as a fiber reinforcing material has been studied. Carbon fiber is a fiber with a fine graphite crystal structure that is made by converting polyacrylonitrile resin, organic matter such as pitch from petroleum and coal into fibers, and then undergoing a special heat treatment process. Is light and high in strength.
Therefore, the fiber reinforced plastic obtained by using the carbon fiber and the epoxy resin has remarkably superior strength as compared with the conventional product, and further achieves a weight reduction of about 25% or more of the conventional product. It was a thing.
However, the epoxy resin generally has a high viscosity, and it is difficult to adjust the viscosity by using a polymerizable unsaturated monomer such as the unsaturated polyester or vinyl ester. Since it takes time to cure, there are many restrictions in terms of molding method and molding conditions.
On the other hand, even if the carbon fiber is used in combination with the unsaturated polyester or vinyl ester other than the epoxy resin, sufficient interfacial adhesion cannot be maintained between the unsaturated polyester or the like and the carbon fiber. It was difficult to obtain a carbon fiber reinforced plastic having high strength.
 前記ビニルエステルや不飽和ポリエステルと炭素繊維とを含むFRPとしては、例えば特定のエポキシ基含有ビニルエステル樹脂とラジカル重合性モノマーと硬化剤と、ビニルエステル樹脂を0.5~5質量%含浸させた炭素繊維とを含有してなる組成物を硬化させて得えられた炭素繊維強化樹脂複合材料が知られている(例えば特許文献1参照。)。 Examples of the FRP containing the vinyl ester, unsaturated polyester and carbon fiber are impregnated with a specific epoxy group-containing vinyl ester resin, a radical polymerizable monomer, a curing agent, and 0.5 to 5% by mass of the vinyl ester resin. A carbon fiber reinforced resin composite material obtained by curing a composition containing carbon fiber is known (see, for example, Patent Document 1).
 しかし、前記炭素繊維強化樹脂複合材料は、十分に軽量化されたものであるものの、強度の点で実用上十分でない場合があった。 However, although the carbon fiber reinforced resin composite material has been sufficiently reduced in weight, it may not be practically sufficient in terms of strength.
国際公開WO2004/067612号パンフレットInternational Publication WO 2004/067612 Pamphlet
 本発明が解決しようとする課題は、様々な成形法に適用可能で、優れた強度と軽量化とを両立された成形品の製造に使用可能な炭素繊維用のサイジング剤を提供することである。
 また、本発明が解決しようとする課題は、前記サイジング剤を用いて表面処理の施された炭素繊維及び前記炭素繊維の製造方法、ならびに、前記炭素繊維を含む成形材料及び成形品を提供することである。
The problem to be solved by the present invention is to provide a sizing agent for carbon fiber that can be applied to various molding methods and can be used for the production of a molded product having both excellent strength and light weight. .
Further, the problem to be solved by the present invention is to provide a carbon fiber subjected to surface treatment using the sizing agent, a method for producing the carbon fiber, and a molding material and a molded product containing the carbon fiber. It is.
 本発明者等は、ビニルエステルや不飽和ポリエステル等の硬化性樹脂と組み合わせ使用可能な炭素繊維を得るべく検討を進めるなかで、前記炭素繊維のサイジング剤として湿気硬化型ポリウレタンを用い、炭素繊維の表面に前記湿気硬化型ポリウレタンからなる被膜が形成された炭素繊維であれば、ビニルエステルや不飽和ポリエステル等の硬化性樹脂と組み合わせ使用した場合に高強度の炭素繊維強化プラスチックを形成できることを見出した。 As the inventors proceeded to obtain carbon fibers that can be used in combination with curable resins such as vinyl esters and unsaturated polyesters, moisture curable polyurethane was used as a sizing agent for the carbon fibers. It was found that carbon fiber reinforced plastic formed on the surface can form high-strength carbon fiber reinforced plastic when used in combination with a curable resin such as vinyl ester or unsaturated polyester. .
 即ち、本発明は、湿気硬化型ポリウレタン(A)を含有することを特徴とする炭素繊維用サイジング剤に関するものである。
 また、本発明は、炭素繊維(c)の表面に、前記炭素繊維用サイジング剤中に含まれる前記湿気硬化型ポリウレタン(A)が湿気硬化反応することによって形成された被膜を有することを特徴とする表面処理の施された炭素繊維(C)に関するものである。
 また、本発明は、前記炭素繊維用サイジング剤を炭素繊維(c)に含浸させ、前記炭素繊維用サイジング剤中に有機溶剤(B)が含まれる場合には該有機溶剤(B)を乾燥し除去した後、前記炭素繊維用サイジング剤中に含まれる前記湿気硬化型ポリウレタン(A)を湿気硬化反応させることによって、前記炭素繊維(c)表面に前記湿気硬化型ポリウレタン(A)が湿気硬化した被膜を形成することを特徴とする表面処理の施された炭素繊維(C)の製造方法に関するものである。
 また、本発明は、ビニルエステル、ビニルウレタン及び不飽和ポリエステルからなる群より選ばれる1種以上の樹脂(D)と重合性不飽和単量体(E)と前記炭素繊維(C)とを含有することを特徴とする成形材料及びそれを成形して得られる成形品に関するものである。
That is, this invention relates to the sizing agent for carbon fiber characterized by containing moisture hardening type polyurethane (A).
Further, the present invention is characterized in that the surface of the carbon fiber (c) has a film formed by the moisture curing reaction of the moisture curable polyurethane (A) contained in the carbon fiber sizing agent. It is related with the carbon fiber (C) to which surface treatment was performed.
In the present invention, the carbon fiber (c) is impregnated with the carbon fiber sizing agent, and when the organic solvent (B) is contained in the carbon fiber sizing agent, the organic solvent (B) is dried. After the removal, the moisture curable polyurethane (A) contained in the sizing agent for carbon fiber was subjected to a moisture curing reaction, whereby the moisture curable polyurethane (A) was moisture cured on the surface of the carbon fiber (c). The present invention relates to a method for producing a surface-treated carbon fiber (C) characterized by forming a film.
Moreover, this invention contains 1 or more types of resin (D) chosen from the group which consists of vinyl ester, vinyl urethane, and unsaturated polyester, a polymerizable unsaturated monomer (E), and the said carbon fiber (C). The present invention relates to a molding material characterized by the above and a molded product obtained by molding the molding material.
 本発明の炭素繊維用サイジング剤を用いて表面処理の施された炭素繊維であれば、不飽和ポリエステルやビニルエステルやビニルウレタンをはじめとする様々な硬化性樹脂と組み合わせ使用することによって、従来品よりも軽量化された高強度の成形品を得ることができる。かかる成形品は、例えば自動車や航空機などの部品や工業用部材、産業用部材、インフラ部材、医療用分野で使用可能である。 If carbon fiber is surface treated using the sizing agent for carbon fiber of the present invention, it can be used in combination with various curable resins such as unsaturated polyester, vinyl ester, and vinyl urethane. Thus, a high-strength molded product that is lighter than that can be obtained. Such molded products can be used in parts such as automobiles and aircraft, industrial members, industrial members, infrastructure members, and medical fields.
実施例3の繊維強化プラスチックの破断面の、45倍の電子顕微鏡写真である。It is a 45-times electron micrograph of the fracture surface of the fiber reinforced plastic of Example 3. 実施例3の繊維強化プラスチックの破断面の、2,000倍の電子顕微鏡写真である。2 is an electron micrograph of a fracture surface of the fiber-reinforced plastic of Example 3 at a magnification of 2,000. 比較例6の繊維強化プラスチックの破断面の、45倍の電子顕微鏡写真である。It is a 45-times electron micrograph of the fracture surface of the fiber reinforced plastic of Comparative Example 6. 比較例6の繊維強化プラスチックの破断面の、2,000倍の電子顕微鏡写真である。4 is an electron micrograph of a fracture surface of a fiber reinforced plastic of Comparative Example 6 at a magnification of 2,000.
 本発明の炭素繊維用サイジング剤は、炭素繊維強化プラスチックを製造する際に使用する炭素繊維の表面に被膜を形成し、硬化性樹脂との親和性を高め、得られる成形品の強度を向上させるために使用することができる。また、本発明の炭素繊維用サイジング剤は、炭素繊維を集束するために使用することもできる。
 本発明の炭素繊維用サイジング剤は、湿気硬化型ポリウレタン(A)及び必要に応じてその他の添加剤を含有するものである。
 本発明の炭素繊維用サイジング剤は、有機溶剤等の溶媒を含まない無溶剤型であってもよいが、取り扱い性や炭素繊維の表面処理作業を効率化する観点から、前記湿気硬化型ポリウレタン(A)が有機溶剤(B)中に溶解または分散したものであることが好ましい。
 前記炭素繊維用サイジング剤は、前記湿気硬化型ポリウレタン(A)と前記有機溶剤(B)との質量割合[(A)/(B)]が0.1/99.9~5.0/95.0であることが、取り扱い性や炭素繊維の表面処理作業を効率化する観点から好ましく、0.1/99.9~1.0/99.0であることがより好ましい。
 本発明の炭素繊維用サイジング剤に使用する湿気硬化型ポリウレタン(A)は、大気中の湿気や水分と反応し架橋反応を進行させる官能基を有するものである。かかる官能基としては、例えばイソシアネート基や加水分解性シリル基等が挙げられるが、非常に極性が高い尿素結合を形成し耐溶剤性に優れた被膜を形成できることから、一般にビニルエステルや不飽和ポリエステル等の前記硬化性樹脂(D)に組み合わせ使用されるスチレン等の重合性不飽和単量体(E)に溶解しにくく、経時的な強度の低下を防止できるため、イソシアネート基であることが好ましい。
The sizing agent for carbon fiber of the present invention forms a film on the surface of carbon fiber used when producing a carbon fiber reinforced plastic, increases the affinity with the curable resin, and improves the strength of the resulting molded product. Can be used for. Moreover, the sizing agent for carbon fibers of the present invention can also be used for bundling carbon fibers.
The sizing agent for carbon fiber of the present invention contains moisture-curable polyurethane (A) and other additives as required.
The sizing agent for carbon fiber of the present invention may be a solventless type that does not contain a solvent such as an organic solvent. However, from the viewpoint of improving the handleability and the efficiency of the surface treatment of carbon fiber, the moisture curable polyurethane ( A) is preferably dissolved or dispersed in the organic solvent (B).
The carbon fiber sizing agent has a mass ratio [(A) / (B)] of the moisture-curable polyurethane (A) and the organic solvent (B) of 0.1 / 99.9 to 5.0 / 95. 0.0 is preferable from the viewpoint of improving the handleability and efficiency of the surface treatment of the carbon fiber, and more preferably 0.1 / 99.9 to 1.0 / 99.0.
The moisture curable polyurethane (A) used in the sizing agent for carbon fiber of the present invention has a functional group that reacts with moisture and moisture in the air to advance a crosslinking reaction. Examples of such a functional group include an isocyanate group and a hydrolyzable silyl group, but vinyl esters and unsaturated polyesters are generally used because a very polar urea bond can be formed and a film having excellent solvent resistance can be formed. It is preferably an isocyanate group because it is difficult to dissolve in a polymerizable unsaturated monomer (E) such as styrene used in combination with the curable resin (D) such as styrene, and can prevent a decrease in strength over time. .
 前記イソシアネート基は、前記湿気硬化型ポリウレタン(A)の全量に対して5~25質量%の範囲で存在することが、優れた強度の経時的な低下を防止するうえで好ましい。 The isocyanate group is preferably present in the range of 5 to 25% by mass with respect to the total amount of the moisture-curable polyurethane (A) in order to prevent the strength from being deteriorated over time.
 前記湿気硬化型ポリウレタン(A)は、炭素繊維(c)表面に付着した状態で大気中の湿気等の影響により前記イソシアネート基等の架橋反応を進行させ、炭素繊維(c)表面に、湿気硬化したポリウレタンを含む硬化被膜を形成する。かかる硬化被膜は、後述するスチレン等の重合性不飽和単量体(E)に溶解しにくいため、前記硬化被膜により表面処理の施された炭素繊維(C)とビニルエステル等の硬化性樹脂(D)との密着性を高め、その結果、優れた強度を備えた炭素繊維強化プラスチックを得ることができる。 The moisture curable polyurethane (A) advances the crosslinking reaction of the isocyanate group or the like under the influence of moisture in the atmosphere while adhering to the surface of the carbon fiber (c), and moisture cures on the surface of the carbon fiber (c). A cured film containing the resulting polyurethane is formed. Since such a cured film is difficult to dissolve in a polymerizable unsaturated monomer (E) such as styrene described later, carbon fiber (C) subjected to surface treatment with the cured film and a curable resin (such as vinyl ester) D) is improved in adhesion, and as a result, a carbon fiber reinforced plastic having excellent strength can be obtained.
 ここで、前記湿気硬化型ポリウレタン(A)の代わりに、水に高分子量熱可塑性ウレタン樹脂を乳化分散した水系サイジング剤や、ポリウレタンと硬化剤とを含有する2液型サイジング剤を用いた場合には、炭素繊維(c)の表面に形成される被膜が前記スチレン等の重合性不飽和単量体(E)に溶解する場合があり、その結果、優れた強度を備えた成形品を得ることができない場合がある。 Here, instead of the moisture-curing polyurethane (A), when a water-based sizing agent in which a high molecular weight thermoplastic urethane resin is emulsified and dispersed in water or a two-component sizing agent containing polyurethane and a curing agent is used. The film formed on the surface of the carbon fiber (c) may dissolve in the polymerizable unsaturated monomer (E) such as styrene, and as a result, a molded article having excellent strength can be obtained. May not be possible.
 前記湿気硬化型ポリウレタン(A)としては、例えばポリイソシアネート(a1)とポリオール(a2)とを反応させて得られるものを使用することができる。
 前記ポリイソシアネート(a1)としては、例えば4,4’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、カルボジイミド変性ジフェニルメタンジイソシアネート、クルードジフェニルメタンジイソシアネート、フェニレンジイソシアネート、トリレンジイソシアネート、ナフタレンジイソシアネートなどの芳香族ポリイソシアネートや、ヘキサメチレンジイソシアネート、リジンジイソシアネート、シクロヘキサンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネートなどの脂肪族ポリイソシアネートあるいは脂環式構造を有するポリイソシアネートを使用することができる。なかでも、サイジング剤によって形成される被膜の架橋密度を高め、耐溶剤性に優れた被膜を形成する観点から4,4’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、クルードジフェニルメタンジイソシアネート、フェニレンジイソシアネート、トリレンジイソシアネート、ナフタレンジイソシアネートなどの芳香族ポリイソシアネートを使用することが好ましい。
As said moisture hardening type polyurethane (A), what is obtained by making polyisocyanate (a1) and polyol (a2) react can be used, for example.
Examples of the polyisocyanate (a1) include aromatic polyisocyanates such as 4,4′-diphenylmethane diisocyanate, 2,4′-diphenylmethane diisocyanate, carbodiimide-modified diphenylmethane diisocyanate, crude diphenylmethane diisocyanate, phenylene diisocyanate, tolylene diisocyanate, and naphthalene diisocyanate. Alternatively, aliphatic polyisocyanates such as hexamethylene diisocyanate, lysine diisocyanate, cyclohexane diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, or polyisocyanates having an alicyclic structure can be used. Among these, 4,4′-diphenylmethane diisocyanate, 2,4′-diphenylmethane diisocyanate, crude diphenylmethane diisocyanate, phenylene diisocyanate are used from the viewpoint of increasing the crosslink density of the film formed by the sizing agent and forming a film excellent in solvent resistance. It is preferable to use aromatic polyisocyanates such as tolylene diisocyanate and naphthalene diisocyanate.
 また、前記ポリイソシアネート(a1)と反応するポリオール(a2)としては、形成する被膜の架橋密度を高め、高強度で耐溶剤性をより一層向上する観点から、水酸基を2個以上有するものを使用することが好ましく、3個以上6個以下の水酸基を有するものを使用することがより好ましい。また、前記ポリオール(a2)としては、200~5,000の数平均分子量を有するものを使用することが好ましく、300~2,000のものを使用することがより好ましい。
 前記ポリオール(a2)としては、例えばポリエーテルポリオール、ポリカーボネートポリオール、ポリエステルポリオール等を使用することができる。なかでもポリエーテルポリオール、より好ましくは脂肪族ポリエーテルポリオールを使用することが、高強度の成形品を得るうえで好ましい。
In addition, as the polyol (a2) that reacts with the polyisocyanate (a1), a polyol having two or more hydroxyl groups is used from the viewpoint of increasing the cross-linking density of the coating film to be formed, and further improving the solvent resistance with high strength. It is preferable to use those having 3 to 6 hydroxyl groups. Further, as the polyol (a2), those having a number average molecular weight of 200 to 5,000 are preferably used, and those having 300 to 2,000 are more preferably used.
As said polyol (a2), polyether polyol, polycarbonate polyol, polyester polyol etc. can be used, for example. Among these, it is preferable to use a polyether polyol, more preferably an aliphatic polyether polyol, in order to obtain a molded article having a high strength.
 前記ポリエーテルポリオールとしては、例えば活性水素原子を2個以上有する化合物の1種または2種以上に、アルキレンオキサイドを付加重合させたものを使用することができる。 As the polyether polyol, for example, one obtained by addition polymerization of alkylene oxide to one or more compounds having two or more active hydrogen atoms can be used.
 前記活性水素原子を2個以上有する化合物としては、例えばエチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、トリメチレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、グリセリン、トリメチロールエタン、トリメチロールプロパン、等を使用することができる。 Examples of the compound having two or more active hydrogen atoms include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, trimethylene glycol, 1,3-butanediol, 1,4-butanediol, and 1,6-hexanediol. Neopentyl glycol, glycerin, trimethylol ethane, trimethylol propane, and the like can be used.
 また、前記アルキレンオキサイドとしては、例えばエチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド、スチレンオキサイド、エピクロルヒドリン、テトラヒドロフラン等を使用することができる。 Further, as the alkylene oxide, for example, ethylene oxide, propylene oxide, butylene oxide, styrene oxide, epichlorohydrin, tetrahydrofuran, or the like can be used.
 また、前記ポリカーボネートポリオールとしては、例えば炭酸エステルとポリオールとを反応させて得られるものや、ホスゲンとビスフェノールA等とを反応させて得られるものを使用することができる。 Further, as the polycarbonate polyol, for example, those obtained by reacting a carbonic acid ester and a polyol, or those obtained by reacting phosgene with bisphenol A or the like can be used.
 前記炭酸エステルとしては、メチルカーボネート、ジメチルカーボネート、エチルカーボネート、ジエチルカーボネート、シクロカーボネート、ジフェニルカーボネート等を使用することできる。 As the carbonate ester, methyl carbonate, dimethyl carbonate, ethyl carbonate, diethyl carbonate, cyclocarbonate, diphenyl carbonate and the like can be used.
 前記炭酸エステルと反応しうるポリオールとしては、例えばエチレングリコール、ジエチレングリコール、1,2-プロピレングリコール、ジプロピレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、ネオペンチルグリコール、1,4-シクロヘキサンジオール等の比較的低分子量のジヒドロキシ化合物や、ポリエチレングリコール、ポリプロピレングリコールや、ポリヘキサメチレンアジペート等のポリエステルポリオール等を使用することができる。 Examples of the polyol capable of reacting with the carbonate ester include ethylene glycol, diethylene glycol, 1,2-propylene glycol, dipropylene glycol, 1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5- Relatively low molecular weight dihydroxy compounds such as pentanediol, neopentyl glycol and 1,4-cyclohexanediol, polyethylene glycol, polypropylene glycol, polyester polyols such as polyhexamethylene adipate, and the like can be used.
 また、前記ポリエステルポリオールとしては、例えば低分子量のポリオールとポリカルボン酸とをエステル化反応して得られるものや、ε-カプロラクトン等の環状エステル化合物を開環重合反応して得られるポリエステルや、これらの共重合ポリエステル等を使用することができる。 Examples of the polyester polyol include those obtained by esterifying low molecular weight polyols and polycarboxylic acids, polyesters obtained by ring-opening polymerization reaction of cyclic ester compounds such as ε-caprolactone, and the like. Copolyester of the above can be used.
 前記低分子量のポリオールとしては、例えばエチレングリコール、プロピレングリコ-ル等を使用することができる。 As the low molecular weight polyol, for example, ethylene glycol, propylene glycol and the like can be used.
 また、前記ポリカルボン酸としては、例えばコハク酸、アジピン酸、セバシン酸、ドデカンジカルボン酸、テレフタル酸、イソフタル酸、フタル酸、及びこれらの無水物またはエステル形成性誘導体などを使用することができる。 As the polycarboxylic acid, for example, succinic acid, adipic acid, sebacic acid, dodecanedicarboxylic acid, terephthalic acid, isophthalic acid, phthalic acid, and anhydrides or ester-forming derivatives thereof can be used.
 前記湿気硬化型ポリウレタン(A)は、公知慣用の方法で製造することができる。例えば、反応容器中の前記ポリイソシアネート(a1)に、水分を除去したポリオール(a2)を滴下した後に加熱し、ポリオール(a2)の有する水酸基が実質的に無くなるまで反応させる方法によって製造することができる。前記湿気硬化型ポリウレタン(A)の製造は、通常、無溶剤で行うことができるが、後述するように有機溶剤(B)中で反応させることによって製造してもよい。有機溶剤(B)中で反応させる場合には、反応を阻害しないトルエン、キシレン、酢酸エチル、メチルエチルケトン、セロソルブアセテート、ノルマルヘキサン、またビニル基を有するスチレン、ビニルトルエン、エチルアクリレート、メチルメタクリレート等の有機溶剤を使用することができる。 The moisture-curable polyurethane (A) can be produced by a known and usual method. For example, it can be produced by a method in which the polyol (a2) from which water has been removed is dropped to the polyisocyanate (a1) in the reaction vessel and then heated until the hydroxyl group of the polyol (a2) is substantially eliminated. it can. The moisture-curable polyurethane (A) can be usually produced without a solvent, but may be produced by reacting in an organic solvent (B) as described later. When reacting in the organic solvent (B), organic compounds such as toluene, xylene, ethyl acetate, methyl ethyl ketone, cellosolve acetate, normal hexane, vinyl group-containing styrene, vinyl toluene, ethyl acrylate, methyl methacrylate, etc. that do not inhibit the reaction. Solvents can be used.
 前記湿気硬化型ポリウレタン(A)を製造する際には、必要に応じてウレタン化触媒を使用することができる。ウレタン化触媒は、前記反応の任意の段階で、適宜加えることができる。 When producing the moisture curable polyurethane (A), a urethanization catalyst can be used as necessary. The urethanization catalyst can be appropriately added at any stage of the reaction.
 前記ウレタン化触媒としては、例えばトリエチルアミン、トリエチレンジアミン及びN-メチルモルホリンなどの含窒素化合物;酢酸カリウム、ステアリン酸亜鉛及びオクチル酸錫などの金属塩;ジブチル錫ジラウレートなどの有機金属化合物を使用することができる。 Examples of the urethanization catalyst include nitrogen-containing compounds such as triethylamine, triethylenediamine and N-methylmorpholine; metal salts such as potassium acetate, zinc stearate and tin octylate; and organometallic compounds such as dibutyltin dilaurate. Can do.
 前記ポリイソシアネート(a1)と前記ポリオール(a2)との反応は、前記ポリイソシアネート(a1)のイソシアネート基と前記ポリオール(a2)の水酸基との当量割合[イソシアネート基/水酸基]が1.1~10の範囲で反応させることが好ましく、1.5~10の範囲で反応させることが好ましい。 In the reaction of the polyisocyanate (a1) and the polyol (a2), the equivalent ratio of the isocyanate group of the polyisocyanate (a1) to the hydroxyl group of the polyol (a2) [isocyanate group / hydroxyl group] is 1.1 to 10. The reaction is preferably performed in the range of 1.5 to 10, and the reaction is preferably performed in the range of 1.5 to 10.
 前記方法で得られた湿気硬化型ポリウレタン(A)は、300~5,000の数平均分子量を有するものであることが好ましい。 The moisture curable polyurethane (A) obtained by the above method preferably has a number average molecular weight of 300 to 5,000.
 また、前記湿気硬化型ポリウレタン(A)としては、前記イソシアネート基のほかに重合性不飽和二重結合を有するものを使用することが好ましい。重合性不飽和二重結合を有する湿気硬化型ポリウレタン(A)を使用することによって、後述する硬化性樹脂(D)がラジカル重合し硬化する際に、前記湿気硬化型ポリウレタン(A)が湿気硬化した被膜中の、前記湿気硬化型ポリウレタン(A)由来の重合性不飽和二重結合もあわせてラジカル重合するため、前記硬化性樹脂(D)と、前記湿気硬化型ポリウレタン(A)を含有する炭素繊維用サイジング剤で表面処理された炭素繊維(C)との界面接着性を一層向上させることができる。
 前記重合性不飽和二重結合は、前記湿気硬化型ポリウレタン(A)の全量に対して、二重結合力価で200~5,000であることが好ましく、400~1,600であることが、後述する硬化性樹脂(D)と炭素繊維(C)との界面接着性の向上と、本発明のサイジング剤からなる被膜の耐溶剤性を確保するためより好ましい。
 なお、前記二重結合力価とは、湿気硬化型ポリウレタン(A)の質量を、該質量の湿気硬化型ポリウレタン(A)中に存在する二重結合数で除した値である。
 前記湿気硬化型ポリウレタン(A)に重合性不飽和二重結合を導入する方法としては、例えば、無溶剤または有機溶剤下で、前記ポリイソシアネート(a1)に、水分を除去したポリオール(a2)を滴下した後に加熱し、ポリオール(a2)の有する水酸基が実質的に無くなるまで反応させることによって、分子中にイソシアネート基を有するポリウレタンを製造し、次いで、該ポリウレタンの有するイソシアネート基の一部と、水酸基及び重合性不飽和二重結合を有する化合物とを反応させる方法が挙げられる。
 前記水酸基及び重合性不飽和二重結合含有化合物としては、例えば2-ヒドロキシエチル(メタ)アクリレートや、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート類;ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート等の様な水酸基を2個有するアルコールのモノ(メタ)アクリレート類;トリス(ヒドロキシエチル)イソシアヌル酸のジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート等の様な3個以上の水酸基を有するアルコールの部分(メタ)アクリレート類が挙げられる。
Moreover, it is preferable to use what has a polymerizable unsaturated double bond other than the said isocyanate group as said moisture hardening type polyurethane (A). By using the moisture curable polyurethane (A) having a polymerizable unsaturated double bond, when the curable resin (D) described later is radically polymerized and cured, the moisture curable polyurethane (A) is moisture cured. Since the polymerizable unsaturated double bond derived from the moisture curable polyurethane (A) in the coated film is radically polymerized together, the curable resin (D) and the moisture curable polyurethane (A) are contained. Interfacial adhesion with the carbon fiber (C) surface-treated with the sizing agent for carbon fiber can be further improved.
The polymerizable unsaturated double bond preferably has a double bond titer of 200 to 5,000, preferably 400 to 1,600, based on the total amount of the moisture-curable polyurethane (A). It is more preferable to improve the interfacial adhesion between the curable resin (D) and the carbon fiber (C), which will be described later, and to ensure the solvent resistance of the film made of the sizing agent of the present invention.
The double bond titer is a value obtained by dividing the mass of the moisture curable polyurethane (A) by the number of double bonds present in the moisture curable polyurethane (A) of the mass.
As a method for introducing a polymerizable unsaturated double bond into the moisture-curable polyurethane (A), for example, a polyol (a2) from which water has been removed is added to the polyisocyanate (a1) in the absence of a solvent or an organic solvent. After the dropping, the mixture is heated and reacted until the hydroxyl group of the polyol (a2) substantially disappears to produce a polyurethane having an isocyanate group in the molecule, and then a part of the isocyanate group of the polyurethane and the hydroxyl group And a method of reacting with a compound having a polymerizable unsaturated double bond.
Examples of the hydroxyl group and polymerizable unsaturated double bond-containing compound include hydroxyalkyl (meth) such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 3-hydroxybutyl (meth) acrylate. Acrylates; mono (meth) acrylates of alcohols having two hydroxyl groups such as polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, etc .; di (meth) acrylates of tris (hydroxyethyl) isocyanuric acid, Examples include partial (meth) acrylates of alcohols having three or more hydroxyl groups, such as pentaerythritol tri (meth) acrylate.
 本発明の炭素繊維用サイジング剤は、例えば前記有機溶剤(B)中で前記ポリイソシアネート(a1)と前記ポリオール(a2)とを反応させることによって製造することができる。また、前記ポリイソシアネート(a1)と前記ポリオール(a2)との反応を無溶剤下で行った場合には、得られた湿気硬化型ポリウレタン(A)と前記有機溶剤(B)とを混合し、必要に応じて加熱等することによって、本発明の炭素繊維用サイジング剤を得ることができる。 The carbon fiber sizing agent of the present invention can be produced, for example, by reacting the polyisocyanate (a1) and the polyol (a2) in the organic solvent (B). When the reaction between the polyisocyanate (a1) and the polyol (a2) is carried out in the absence of a solvent, the resulting moisture-curable polyurethane (A) and the organic solvent (B) are mixed, The carbon fiber sizing agent of the present invention can be obtained by heating or the like as necessary.
 本発明の炭素繊維用サイジング剤は、前記湿気硬化型ポリウレタン(A)のほかに、必要に応じてその他の添加剤を含むものであっても良い。
 前記添加剤としては、例えば、シランカップリング剤、消泡剤、耐電防止剤の他、炭素繊維の用途に応じた風合いを確保するための界面活性剤等を使用することができる。
 前記添加剤は、前記した方法により予め製造した炭素繊維用サイジング剤と混合することができる。
The sizing agent for carbon fibers of the present invention may contain other additives as required in addition to the moisture-curable polyurethane (A).
As said additive, surfactant for ensuring the texture according to the use of carbon fiber other than a silane coupling agent, an antifoamer, an antistatic agent, etc. can be used, for example.
The said additive can be mixed with the sizing agent for carbon fibers previously manufactured by the above-mentioned method.
 次に、本発明で使用可能な炭素繊維(c)について説明する。
 本発明で使用する炭素繊維(c)としては、一般にポリアクリロニトリル系、ピッチ系等として知られる炭素繊維を使用することができる。
 前記ポリアクリロニトリル系炭素繊維の市販品としては、例えば、東レ(株)製の商品名;「トレカ」シリーズ、東邦テナックス(株)製の商品名;「テナックス」シリーズ、三菱レイヨン(株)製の商品名;「パイロフィル」シリーズを使用することができる。
 また、前記ピッチ系の炭素繊維の市販品としては、例えば三菱樹脂化学(株)製の商品名;「ダイアリード」シリーズ、クレハ(株)製の商品名;「クレカ」シリーズ、大阪ガスケミカル(株)製の商品名;「ドナカーボ」シリーズ、日本グラファイトファイバー(株)製の商品名;「グラノック」シリーズを使用することができる。
 前記炭素繊維(c)としては、なかでも、成形品により一層優れた強度を付与する観点から、ポリアクリロニトリル系の炭素繊維を使用することが好ましい。
 また、前記炭素繊維(c)としては、より一層優れた強度等を備えた成形品を得る観点から、細繊度のものを使用することが好ましく、単糸径で1μm以上20μm以下のものを使用することが好ましく、4μm以上10μm以下のものを使用することがより好ましい。
 前記炭素繊維(c)としては、ストランド強度が好ましくは3,500MPa以上、より好ましくは4,000MPa以上のものを使用することが好ましい。
 また、前記炭素繊維(c)としては、弾性率が220GPa以上のものを使用することが好ましい。
 前記ストランド強度及び前記弾性率は、JIS R 7608記載の試験方法に則って測定することができる。
Next, the carbon fiber (c) that can be used in the present invention will be described.
As the carbon fiber (c) used in the present invention, carbon fibers generally known as polyacrylonitrile-based, pitch-based, etc. can be used.
Commercially available products of the polyacrylonitrile-based carbon fiber include, for example, trade names manufactured by Toray Industries, Inc .; “Torayca” series, product names manufactured by Toho Tenax Co., Ltd .; “Tenax” series, manufactured by Mitsubishi Rayon Co., Ltd. Product name; "Pyrofil" series can be used.
Commercially available pitch-based carbon fibers include, for example, trade names manufactured by Mitsubishi Plastics Chemical Co., Ltd .; “DIALEAD” series, trade names manufactured by Kureha Co., Ltd .; “Kureka” series, Osaka Gas Chemical ( “Donna Carbo” series, product name manufactured by Nippon Graphite Fiber Co., Ltd .; “Granock” series can be used.
As the carbon fiber (c), it is preferable to use a polyacrylonitrile-based carbon fiber from the viewpoint of imparting more excellent strength to the molded product.
In addition, as the carbon fiber (c), it is preferable to use one having a fineness from the viewpoint of obtaining a molded product having further excellent strength and the like, and one having a single yarn diameter of 1 μm to 20 μm is used. It is preferable to use one having a thickness of 4 μm or more and 10 μm or less.
The carbon fiber (c) preferably has a strand strength of 3,500 MPa or more, more preferably 4,000 MPa or more.
Moreover, as said carbon fiber (c), it is preferable to use a thing with an elasticity modulus of 220 GPa or more.
The strand strength and the elastic modulus can be measured according to the test method described in JIS R 7608.
 本発明で使用する炭素繊維(c)は、例えば撚糸、紡糸、紡績加工、不織加工したものであっても良く、具体的にはフィラメント、ヤーン、ロービング、ストランド、チョップドストランド、フェルト、ニードルパンチ、クロス、ロービングクロス、ミルドファイバー等が挙げられる。 The carbon fiber (c) used in the present invention may be, for example, a twisted yarn, a spun yarn, a spun yarn, or a non-woven fabric. Specifically, the filament, yarn, roving, strand, chopped strand, felt, needle punch , Cloth, roving cloth, milled fiber and the like.
 次に、前記炭素繊維(c)の表面に、前記炭素繊維用サイジング剤を用いて表面処理することで、前記炭素繊維(c)の表面に前記湿気硬化型ポリウレタン(A)が湿気硬化した被膜が形成された炭素繊維(C)について説明する。
 前記炭素繊維(C)は、例えば表面処理(サイジング処理)のなされていない前記炭素繊維(c)に、本発明の炭素繊維用サイジング剤を含浸し、次いで前記炭素繊維用サイジング剤が有機溶剤(B)を含む場合には、それを付着・含浸させた炭素繊維(c)を乾燥等することで有機溶剤(B)を除去し、次いで、常温下で放置することで、前記湿気硬化型ポリウレタン(A)の湿気硬化反応を進行させることによって製造することができる。
 前記炭素繊維(c)の表面に、前記炭素繊維用サイジング剤を用いて表面処理する方法としては、前記したとおり、前記炭素繊維(c)に炭素繊維用サイジング剤中を含浸させてもよく、また、スプレー塗布、刷毛など用いて、前記炭素繊維(c)の表面に塗布しても良い。
 前記炭素繊維用サイジング剤が有機溶剤(B)を含む場合には、例えば概ね常温~150℃、好ましくは、50℃~100℃の温度環境下に一定時間放置することによって、有機溶剤(B)を除去することができる。
 また、前記湿気硬化反応は、例えば、通常、屋内の湿度、常温条件下に一定期間放置することによって、十分に進行させることができる。
Next, the surface of the carbon fiber (c) is surface-treated using the sizing agent for carbon fiber, so that the moisture-curable polyurethane (A) is moisture-cured on the surface of the carbon fiber (c). The carbon fiber (C) in which is formed will be described.
For example, the carbon fiber (C) is impregnated with the carbon fiber sizing agent of the present invention into the carbon fiber (c) which has not been subjected to surface treatment (sizing treatment). In the case of containing B), the moisture-curable polyurethane is removed by drying the carbon fiber (c) adhered and impregnated with B) to remove the organic solvent (B) and then leaving it at room temperature. It can be produced by advancing the moisture curing reaction of (A).
As described above, the surface of the carbon fiber (c) may be impregnated with the carbon fiber sizing agent in the carbon fiber (c), as described above. Moreover, you may apply | coat to the surface of the said carbon fiber (c) using spray application | coating, a brush, etc.
When the carbon fiber sizing agent contains the organic solvent (B), for example, the organic solvent (B) is allowed to stand for a certain period of time in a temperature environment of about room temperature to 150 ° C, preferably 50 ° C to 100 ° C. Can be removed.
In addition, the moisture curing reaction can be allowed to proceed sufficiently, for example, by leaving it for a certain period of time under normal conditions of indoor humidity and room temperature.
 前記被膜中に含まれる、前記湿気硬化型ポリウレタン(A)が湿気硬化したポリウレタンの質量は、前記炭素繊維(c)の全質量に対して0.1~5.0質量%の範囲であることが好ましい。 The mass of the moisture-cured polyurethane (A) contained in the coating film is moisture-cured in a range of 0.1 to 5.0% by mass with respect to the total mass of the carbon fiber (c). Is preferred.
 前記方法で得られた表面処理の施された炭素繊維(C)は、後述する硬化性樹脂(D)や重合性不飽和単量体(E)と組み合わせ使用することによって、軽量化された高強度な成形品の製造に使用することができる。 The surface-treated carbon fiber (C) obtained by the above method is lightened by using it in combination with a curable resin (D) and a polymerizable unsaturated monomer (E) described later. It can be used for the production of strong molded products.
 前記硬化性樹脂(D)としては、例えば、不飽和ポリエステル樹脂や、ビニルエステル、ビニルウレタン、ポリエステル(メタ)アクリレート等を使用することが好適であり、不飽和ポリエステル樹脂、ビニルエステル、及びビニルウレタンからなる群より選ばれる1種以上であることがより好ましい。
 前記硬化性樹脂(D)としては、重合性不飽和単量体(E)を用いた際に、成形性や作業性を損なわない程度の粘度に調整する観点から、300以上の数平均分子量を有するものを使用することが好ましく、450以上のものを使用することがより好ましい。
As said curable resin (D), it is suitable to use unsaturated polyester resin, vinyl ester, vinyl urethane, polyester (meth) acrylate etc., for example, unsaturated polyester resin, vinyl ester, and vinyl urethane. More preferably, it is at least one selected from the group consisting of:
As the curable resin (D), when the polymerizable unsaturated monomer (E) is used, a number average molecular weight of 300 or more is adjusted from the viewpoint of adjusting the viscosity so as not to impair the moldability and workability. It is preferable to use what has, and it is more preferable to use the thing of 450 or more.
 前記不飽和ポリエステル樹脂としては、例えばα,β-不飽和二塩基酸及び飽和二塩基酸を含む二塩基酸類と多価アルコ-ル類、必要によりジシクロペンタジエン系化合物との縮合反応で得られるものを使用することができる。また、当該縮合反応には、重合禁止剤等を併せて用いてもよい。重合禁止剤としては後述する重合禁止剤と同様のものが挙げられる。 The unsaturated polyester resin can be obtained, for example, by a condensation reaction of an α, β-unsaturated dibasic acid and a dibasic acid containing a saturated dibasic acid and a polyhydric alcohol, and if necessary, a dicyclopentadiene compound. Things can be used. In the condensation reaction, a polymerization inhibitor or the like may be used together. Examples of the polymerization inhibitor include the same polymerization inhibitors as described later.
 前記α,β-不飽和二塩基酸としては、たとえばマレイン酸、無水マレイン酸、フマル酸、イタコン酸、無水イタコン酸等を挙げることができる。また、飽和二塩基酸としては、フタル酸、無水フタル酸、ハロゲン化無水フタル酸、イソフタル酸、テレフタル酸、テトラヒドロフタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロフタル酸、ヘキサヒドロ無水フタル酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸、コハク酸、マロン酸、グルタル酸、アジピン酸、セバシン酸、1,12-ドデカン二酸,2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸無水物、4,4’-ビフェニルジカルボン酸、またこれらのジアルキルエステル等を挙げることができる。 Examples of the α, β-unsaturated dibasic acid include maleic acid, maleic anhydride, fumaric acid, itaconic acid, itaconic anhydride and the like. The saturated dibasic acids include phthalic acid, phthalic anhydride, halogenated phthalic anhydride, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, tetrahydrophthalic anhydride, hexahydrophthalic acid, hexahydrophthalic anhydride, hexahydroterephthalic acid. Acid, hexahydroisophthalic acid, succinic acid, malonic acid, glutaric acid, adipic acid, sebacic acid, 1,12-dodecanedioic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 2,3- Examples thereof include naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid anhydride, 4,4′-biphenyldicarboxylic acid, and dialkyl esters thereof.
 前記多価アルコ-ル類としては、例えばエチレングリコ-ル、ジエチレングリコ-ル、トリエチレングリコ-ル、ポリエチレングリコ-ル、プロピレングリコ-ル、ジプロピレングリコ-ル、ポリプロピレングリコ-ル、2-メチル-1,3-プロパンジオ-ル、1,3-ブタンジオ-ル、ネオペンチルグリコ-ル、水素化ビスフェノ-ルA、1,4-ブタンジオ-ル、ビスフェノ-ルAとプロピレンオキサイド又はエチレンオキサイドの付加物、1,2,3,4-テトラヒドロキシブタン、グリセリン、トリメチロ-ルプロパン、1,3-プロパンジオ-ル、1,2-シクロヘキサングリコ-ル、1,3-シクロヘキサングリコ-ル、1,4-シクロヘキサングリコ-ル、1,4-シクロヘキサンジメタノ-ル、パラキシレングリコ-ル、ビシクロヘキシル-4,4’-ジオ-ル、2,6-デカリングリコ-ル、2,7-デカリングリコ-ル等を使用することができる。 Examples of the polyhydric alcohols include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, and 2-methyl. 1,3-propanediol, 1,3-butanediol, neopentyl glycol, hydrogenated bisphenol A, 1,4-butanediol, bisphenol A and propylene oxide or ethylene oxide Adduct, 1,2,3,4-tetrahydroxybutane, glycerin, trimethylolpropane, 1,3-propanediol, 1,2-cyclohexane glycol, 1,3-cyclohexane glycol, 1, 4-cyclohexane glycol, 1,4-cyclohexane dimethanol, para-xylene glycol Bicyclohexyl-4,4' Geo - le, 2,6-decalin glycolate - le, 2,7-decalin glyco - can be used Le like.
 また、前記硬化性樹脂(D)に使用可能なビニルエステルとしては、例えばエポキシ(メタ)アクリレートを使用することが好ましい。前記エポキシ(メタ)アクリレートとしては、エポキシ樹脂と不飽和一塩基酸とを、エステル化触媒の存在下で反応させることによって得られるものを使用することができる。例えば、ビスフェノールタイプのエポキシ樹脂、ノボラックタイプのエポキシ樹脂、1,6-ナフタレン型エポキシ樹脂のジ(メタ)アクリレート等が挙げられる。これらのうち、その平均エポキシ当量が150~450なる範囲のエポキシ樹脂を用いたものが好ましい。 Further, as the vinyl ester that can be used for the curable resin (D), for example, epoxy (meth) acrylate is preferably used. As said epoxy (meth) acrylate, what is obtained by making an epoxy resin and unsaturated monobasic acid react in presence of an esterification catalyst can be used. For example, bisphenol type epoxy resin, novolac type epoxy resin, 1,6-naphthalene type epoxy resin di (meth) acrylate, and the like can be mentioned. Of these, those using an epoxy resin having an average epoxy equivalent of 150 to 450 are preferable.
 前記したビスフェノールタイプのエポキシ樹脂としては、例えばビスフェノールA型エポキシ樹脂のジ(メタ)アクリレート、水添ビスフェノールA型エポキシ樹脂のジ(メタ)アクリレート、ビスフェノールAエチレンオキサイド付加型エポキシ樹脂のジ(メタ)アクリレート、ビスフェノールAプロピレンオキサイド付加型エポキシ樹脂のジ(メタ)アクリレート、ビスフェノールF型エポキシ樹脂のジ(メタ)アクリレート、1,6-ナフタレン型エポキシ樹脂のジ(メタ)アクリレート等を挙げることができる。 Examples of the bisphenol type epoxy resin include di (meth) acrylate of bisphenol A type epoxy resin, di (meth) acrylate of hydrogenated bisphenol A type epoxy resin, and di (meth) of bisphenol A ethylene oxide addition type epoxy resin. Examples include acrylate, di (meth) acrylate of bisphenol A propylene oxide addition type epoxy resin, di (meth) acrylate of bisphenol F type epoxy resin, di (meth) acrylate of 1,6-naphthalene type epoxy resin, and the like.
 また、前記したノボラックタイプのエポキシ樹脂としては、例えばフェノール・ノボラック又はクレゾール・ノボラックと、エピクロルヒドリン又はメチルエピクロルヒドリンとの反応によって得られるエポキシ樹脂などが挙げられる。 As the above-mentioned novolak type epoxy resin, for example, an epoxy resin obtained by a reaction of phenol novolak or cresol novolak with epichlorohydrin or methyl epichlorohydrin can be mentioned.
 さらに、前記した不飽和一塩基酸としては、例えばアクリル酸、メタクリル酸、桂皮酸、クロトン酸、ソルビン酸、モノメチルマレート、モノプロピルマレート、モノブチルマレート、又はモノ(2-エチルヘキシル)マレートなどが挙げられる。 Further, examples of the unsaturated monobasic acid include acrylic acid, methacrylic acid, cinnamic acid, crotonic acid, sorbic acid, monomethyl malate, monopropyl malate, monobutyl malate, or mono (2-ethylhexyl) malate. Etc.
 前記したエポキシ樹脂と不飽和一塩基酸との反応は、好ましくは、60~140℃、特に好ましくは、80~120℃なる範囲内の温度において、エステル化触媒を用いて行われる。
 また、エポキシ樹脂と不飽和一塩基酸との反応には、重合禁止剤等を併せて用いてもよい。重合禁止剤としては後述する重合禁止剤と同様のものが挙げられる。
The reaction between the epoxy resin and the unsaturated monobasic acid is preferably carried out using an esterification catalyst at a temperature in the range of 60 to 140 ° C., particularly preferably in the range of 80 to 120 ° C.
Moreover, you may use a polymerization inhibitor etc. together for reaction of an epoxy resin and unsaturated monobasic acid. Examples of the polymerization inhibitor include the same polymerization inhibitors as described later.
 かかるエステル化触媒としては、公知慣用の化合物をそのまま使用できるが、例えばトリエチルアミン、N,N-ジメチルベンジルアミン、N,N-ジメチルアニリンもしくはジアザビシクロオクタンの如き、各種の3級アミン類;又はジエチルアミン塩酸塩などが挙げられる。 As the esterification catalyst, known and commonly used compounds can be used as they are, but various tertiary amines such as triethylamine, N, N-dimethylbenzylamine, N, N-dimethylaniline or diazabicyclooctane; or Examples thereof include diethylamine hydrochloride.
 かかるエポキシ(メタ)アクリレートの数平均分子量としては、好ましくは、450~2,500、特に好ましくは500~2,200なる範囲内が適切である。数平均分子量が450~2,500であれば、得られる硬化物に粘着性が生じず、強度物性が低下することがなく、また硬化時間が長くならず、生産性が劣ることもない。 The number average molecular weight of the epoxy (meth) acrylate is preferably in the range of 450 to 2,500, particularly preferably 500 to 2,200. If the number average molecular weight is 450 to 2,500, the obtained cured product will not be sticky, the strength physical properties will not decrease, the curing time will not be prolonged, and the productivity will not be inferior.
 本発明で用いられるビニルウレタンとしては、例えばウレタン(メタ)アクリレートを使用することができる。前記ウレタン(メタ)アクリレートは、ポリオールとポリイソシアネートと水酸基含有(メタ)アクリル化合物とを反応させることにより得ることができる。 As the vinyl urethane used in the present invention, for example, urethane (meth) acrylate can be used. The urethane (meth) acrylate can be obtained by reacting a polyol, a polyisocyanate, and a hydroxyl group-containing (meth) acrylic compound.
 かかるポリオールとしては、例えばポリプロピレンオキサイド、ポリエチレンオキサイド、ポリテトラメチレングリコール、ビスフェノールAエチレンオキサイド付加物、ビスフェノールAプロピレンオキサイド付加物等のポリエーテルポリオール、ポリブタジエンジオール、ポリイソプレンジオール、ポリエステルエーテルポリオール、ポリエステルポリオール等が挙げられる。 Examples of such polyols include polyether polyols such as polypropylene oxide, polyethylene oxide, polytetramethylene glycol, bisphenol A ethylene oxide adduct, bisphenol A propylene oxide adduct, polybutadiene diol, polyisoprene diol, polyester ether polyol, polyester polyol and the like. Is mentioned.
 ポリイソシアネートとしては、2,4-トリレンジイソシアネート及びその異性体又は異性体の混合物(以下TDIと略す)、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、キシリレンジイソシアネート、水添キシリレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、トリジンジイソシアネート、ナフタリンジイソシアネート、トリフェニルメタントリイソシアネート等が挙げられる。これらのポリイソシアネートのうちジイソシアネートが好ましく、特にTDIが好ましい。これらの単独又は2 種以上で使用することができる。またポリイソシアネートの市販品としては、バーノックDー750、クリスボンNX(DIC(株)製品)、デスモジュールL(住友バイエル(株)社製品)、コロネートL(日本ポリウレタン社製品)、タケネートD102(武田薬品工業(株)社製品)、イソネート143L(三菱化学(株)社製)等を挙げることができる。 Examples of polyisocyanates include 2,4-tolylene diisocyanate and its isomers or a mixture of isomers (hereinafter abbreviated as TDI), diphenylmethane diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, hydrogenated xylylene diisocyanate, dicyclohexylmethane. Examples thereof include diisocyanate, tolidine diisocyanate, naphthalene diisocyanate, and triphenylmethane triisocyanate. Of these polyisocyanates, diisocyanates are preferred, and TDI is particularly preferred. These can be used alone or in combination of two or more. Commercially available polyisocyanates include Barnock D-750, Crisbon NX (DIC Corporation product), Death Module L (Sumitomo Bayer Co., Ltd. product), Coronate L (Nippon Polyurethane product), Takenate D102 (Takeda) Yakuhin Kogyo Co., Ltd. product), isonate 143L (manufactured by Mitsubishi Chemical Corporation), and the like.
 水酸基含有(メタ)アクリル化合物としては、水酸基含有(メタ)アクリル酸エステルが好ましい。かかる水酸基含有(メタ)アクリル酸エステルとしては、例えば2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート類;ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート等の様な水酸基を2個有するアルコールのモノ(メタ)アクリレート類;α-オレフィンエポキサイドと(メタ)アクリル酸の付加物、カルボン酸グリシジルエステルと(メタ)アクリル酸の付加物;トリス(ヒドロキシエチル)イソシアヌル酸のジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート等の様な3個以上の水酸基を有するアルコールの部分(メタ)アクリレート類が挙げられる。 As the hydroxyl group-containing (meth) acrylic compound, a hydroxyl group-containing (meth) acrylic acid ester is preferable. Examples of the hydroxyl group-containing (meth) acrylic acid ester include hydroxyalkyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 3-hydroxybutyl (meth) acrylate; polyethylene Mono (meth) acrylates of alcohols having two hydroxyl groups such as glycol mono (meth) acrylate and polypropylene glycol mono (meth) acrylate; adducts of α-olefin epoxide and (meth) acrylic acid, carboxylic acid glycidyl ester And (meth) acrylic acid adducts; a portion of an alcohol having three or more hydroxyl groups such as di (meth) acrylate of tris (hydroxyethyl) isocyanuric acid, pentaerythritol tri (meth) acrylate, etc. ( Data) acrylates and the like.
 また前記水酸基含有(メタ)アクリル化合物の一部を、本発明の効果を損なわない程度の範囲で、水酸基含有アリールエーテルや、高級アルコール等の化合物で置換したものも用いることができる。 Further, it is also possible to use those obtained by substituting a part of the hydroxyl group-containing (meth) acrylic compound with a compound such as a hydroxyl group-containing aryl ether or a higher alcohol as long as the effects of the present invention are not impaired.
 本発明に使用するウレタン(メタ)アクリレートの製造方法としては、先ずポリエーテルポリオールとポリイソシアネートとを、当量割合[イソシアネート基/水酸基]が1.5~2の範囲で反応させ、末端イソシアネート基含有ウレタンプレポリマーを生成し、次いでそれに水酸基含有(メタ)アクリル化合物を該プレポリマーのイソシアネート基に対して水酸基がほぼ当量となるように反応させる方法が挙げられる。 As a method for producing the urethane (meth) acrylate used in the present invention, a polyether polyol and a polyisocyanate are first reacted in an equivalent ratio [isocyanate group / hydroxyl group] in the range of 1.5 to 2 to contain a terminal isocyanate group. There is a method in which a urethane prepolymer is produced, and then a hydroxyl group-containing (meth) acrylic compound is reacted with the isocyanate group of the prepolymer so that the hydroxyl group is approximately equivalent.
 別の方法としては、まず水酸基含有(メタ)アクリル化合物とポリイソシアネートとを反応させ、次いで得られたイソシアネート基含有化合物とポリエーテルポリオールとを反応させる方法が挙げられる。 As another method, there may be mentioned a method in which a hydroxyl group-containing (meth) acrylic compound and a polyisocyanate are reacted first, and then the resulting isocyanate group-containing compound and a polyether polyol are reacted.
 本発明に使用するウレタン(メタ)アクリレートの分子量としては、数平均分子量で500~30,000が好ましく、このうち、700~5,000が特に好ましい。 The molecular weight of the urethane (meth) acrylate used in the present invention is preferably 500 to 30,000 in terms of number average molecular weight, and more preferably 700 to 5,000.
前記ポリエステル(メタ)アクリレートとしては、例えばポリカルボン酸とポリオールとを反応させて得られるポリエステルポリオールと、アクリル酸等とを反応させて得られる物を使用することができる。前記ポリカルボン酸としては、例えば無水フタル酸、テレフタル酸、イソフタル酸、オルソフタル酸、コハク酸、アジピン酸、アゼライン酸、セバシン酸、1,2-ヘキサヒドロフタル酸、1,3-ヘキサヒドロフタル酸、フマル酸、マレイン酸、イタコン酸等を使用することができる。前記ポリオールとしては、例えばエチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、1,3-プロパンジオール、ジエチレングリコール、ジプロピレングリコール等を使用することができる。 As said polyester (meth) acrylate, the thing obtained by making polyester polyol obtained by making polycarboxylic acid and polyol react, acrylic acid, etc. can be used, for example. Examples of the polycarboxylic acid include phthalic anhydride, terephthalic acid, isophthalic acid, orthophthalic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, 1,2-hexahydrophthalic acid, 1,3-hexahydrophthalic acid Fumaric acid, maleic acid, itaconic acid and the like can be used. Examples of the polyol include ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, and 1,3-propanediol. , Diethylene glycol, dipropylene glycol and the like can be used.
 また、本発明で使用する重合性不飽和単量体(E)としては、例えばスチレン、α-メチルスチレン、クロルスチレン、ジクロルスチレン、ジビニルベンゼン、t-ブチルスチレン、ビニルトルエン、酢酸ビニル、ジアリールフタレート、トリアリールシアヌレート、さらにアクリル酸エステル、メタクリル酸エステル等;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸i-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸トリデシル、ジシクロペンテニロキシエチル(メタ)アクリレート、エチレングリコールモノメチルエーテル(メタ)アクリレート、エチレングリコールモノエチルエーテル(メタ)アクリレート、エチレングリコールモノブチルエーテル(メタ)アクリレート、エチレングリコールモノヘキシルエーテル(メタ)アクリレート、エチレングリコールモノ2-エチルヘキシルエーテル(メタ)アクリレート、ジエチレングリコールモノメチルエーテル(メタ)アクリレート、ジエチレングリコールモノエチルエーテル(メタ)アクリレート、ジエチレングリコールモノブチルエーテル(メタ)アクリレート、ジエチレングリコールモノヘキシルエーテル(メタ)アクリレート、ジエチレングリコールモノ2-エチルヘキシルエーテル(メタ)アクリレート、ジプロピレングリコールモノメチルエーテル(メタ)アクリレート、ジプロピレングリコールモノエチルエーテル(メタ)アクリレート、ジプロピレングリコールモノブチルエーテル(メタ)アクリレート、ジプロピレングリコールモノヘキシルエーテル(メタ)アクリレート、ジプロピレングリコールモノ2-エチルヘキシルエーテル(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコ-ルジ(メタ)アクリレート、PTMGのジメタアクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、2-ヒドロキシ1,3ジメタクリロキシプロパン、2,2-ビス〔4-(メタクリロキシエトキシ)フェニル〕プロパン、2,2-ビス〔4-(メタクリロキシ・ジエトキシ)フェニル〕プロパン、2,2-ビス〔4-(メタクリロキシ・ポリエトキシ)フェニル〕プロパン、テトラエチレングリコールジアクリレート、ビスフェノールAEO変性(n=2)ジアクリレート、イソシアヌル酸EO変性(n=3)ジアクリレート、ペンタエリスリトールジアクリレートモノステアレート等が挙げられる。
 なかでも、本発明の重合性不飽和単量体(E)としては、スチレン及び2-ヒドロキシエチル(メタ)アクリレートからなる群より選ばれる1種以上であることが好ましい。
Examples of the polymerizable unsaturated monomer (E) used in the present invention include styrene, α-methylstyrene, chlorostyrene, dichlorostyrene, divinylbenzene, t-butylstyrene, vinyltoluene, vinyl acetate, and diaryl. Phthalates, triaryl cyanurates, acrylic esters, methacrylic esters, etc .; methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, ( T-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cyclohexyl (meth) acrylate, benzyl (meth) acrylate, stearyl (meth) acrylate, (meth) acrylic acid Tridecyl, dicyclopentenyloxyethyl (meth) acrylate , Ethylene glycol monomethyl ether (meth) acrylate, ethylene glycol monoethyl ether (meth) acrylate, ethylene glycol monobutyl ether (meth) acrylate, ethylene glycol monohexyl ether (meth) acrylate, ethylene glycol mono 2-ethylhexyl ether (meth) acrylate , Diethylene glycol monomethyl ether (meth) acrylate, diethylene glycol monoethyl ether (meth) acrylate, diethylene glycol monobutyl ether (meth) acrylate, diethylene glycol monohexyl ether (meth) acrylate, diethylene glycol mono 2-ethylhexyl ether (meth) acrylate, dipropylene glycol monomethyl Ether (meta ) Acrylate, dipropylene glycol monoethyl ether (meth) acrylate, dipropylene glycol monobutyl ether (meth) acrylate, dipropylene glycol monohexyl ether (meth) acrylate, dipropylene glycol mono 2-ethylhexyl ether (meth) acrylate, diethylene glycol di (Meth) acrylate, dipropylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, PTMG dimethacrylate, 1,3-butylene glycol di (meth) acrylate, 1,6-hexanediol di ( (Meth) acrylate, 2-hydroxy 1,3-dimethacryloxypropane, 2,2-bis [4- (methacryloxyethoxy) phenyl] propane, 2,2-bis [ -(Methacryloxy / diethoxy) phenyl] propane, 2,2-bis [4- (methacryloxy / polyethoxy) phenyl] propane, tetraethylene glycol diacrylate, bisphenol AEO modified (n = 2) diacrylate, isocyanuric acid EO modified (n = 3) Diacrylate, pentaerythritol diacrylate monostearate and the like.
Among these, the polymerizable unsaturated monomer (E) of the present invention is preferably at least one selected from the group consisting of styrene and 2-hydroxyethyl (meth) acrylate.
 本発明の成形材料は、前記硬化性樹脂(D)と、前記重合性不飽和単量体(E)と、前記炭素繊維(C)とを含有する。
 本発明の成形材料は、例えばプリプレグやシートモールディングコンパウンド(SMC)状のものを使用することができる。前記成形材料は、例えば前記硬化性樹脂(D)と前記重合性不飽和単量体(E)とを含有する樹脂組成物を、前記炭素繊維(C)に含浸すること等によって製造することができる。
 前記成形材料には、必要に応じて、ラジカル重合開始剤やラジカル重合促進剤等を併用することができる。
The molding material of the present invention contains the curable resin (D), the polymerizable unsaturated monomer (E), and the carbon fiber (C).
As the molding material of the present invention, for example, a prepreg or a sheet molding compound (SMC) can be used. The molding material can be produced, for example, by impregnating the carbon fiber (C) with a resin composition containing the curable resin (D) and the polymerizable unsaturated monomer (E). it can.
If necessary, the molding material can be used in combination with a radical polymerization initiator, a radical polymerization accelerator or the like.
 前記ラジカル重合開始剤としては、例えば熱硬化剤や光硬化剤を使用することができる。
前記熱硬化剤としては、例えばジアシルパーオキサイド系、パーオキシエステル系、ハイドロパーオキサイド系、ジアルキルパーオキサイド系、ケトンパーオキサイド系、パーオキシケタール系、アルキルパーエステル系、パーカーボネート系等の有機過酸化物を使用することができる。
 前記熱硬化剤の使用量は、本発明の目的を達成することのできる範囲であれば特に限定されるものではないが、前記硬化性樹脂(D)100質量部に対して0.5~5質量部使用することが好ましい。
前記光硬化剤としては、例えばベンゾインアルキルエーテル、ベンゾフェノン、ベンジル、メチルオルソベンゾイルベンゾエート、ベンジルジメチルケタール、2,2-ジエトキシアセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン等を使用することができる。
As the radical polymerization initiator, for example, a thermosetting agent or a photocuring agent can be used.
Examples of the thermosetting agent include diacyl peroxide-based, peroxyester-based, hydroperoxide-based, dialkyl peroxide-based, ketone peroxide-based, peroxyketal-based, alkylperester-based, and percarbonate-based organic peroxides. Oxides can be used.
The amount of the thermosetting agent used is not particularly limited as long as the object of the present invention can be achieved, but is 0.5 to 5 with respect to 100 parts by mass of the curable resin (D). It is preferable to use parts by mass.
As the photocuring agent, for example, benzoin alkyl ether, benzophenone, benzyl, methyl orthobenzoyl benzoate, benzyl dimethyl ketal, 2,2-diethoxyacetophenone, 2-hydroxy-2-methylpropiophenone, etc. can be used. .
 また、前記ラジカル重合促進剤としては、例えばナフテン酸コバルト、オクチル酸コバルト、オクチル酸亜鉛、オクチル酸バナジウム、ナフテン酸銅、ナフテン酸バリウム等金属石鹸類;バナジウムアセチルアセテート、コバルトアセチルアセテート、鉄アセチルアセトネート等の金属キレート類;アニリン、N,N-ジメチルアニリン、N,N-ジエチルアニリン、p-トルイジン、N,N-ジメチル-p-トルイジン、N,N-ビス(2-ヒドロキシエチル)-p-トルイジン、4-(N,N-ジメチルアミノ)ベンズアルデヒド、4-[N,N-ビス(2-ヒドロキシエチル)アミノ]ベンズアルデヒド、4-(N-メチル-N-ヒドロキシエチルアミノ)ベンズアルデヒド、N,N-ビス(2-ヒドロキシプロピル)-p-トルイジン、N-エチル-m-トルイジン、トリエタノールアミン、m-トルイジン、ジエチレントリアミン、ピリジン、フェニリモルホリン、ピペリジン、N,N-ビス(ヒドロキシエチル)アニリン、ジエタノールアニリン等のN,N-置換アニリン;N,N-置換-p-トルイジン、4-(N,N-置換アミノ)ベンズアルデヒド等のアミン類を使用することができ、前記アミン類や金属石鹸系類を使用することが好ましい。
 前記ラジカル重合促進剤は、前記硬化性樹脂(D)等に予め混合してあってもよいが、前記炭素繊維(C)や前記硬化性樹脂(D)や前記重合性不飽和単量体(E)を混合する際に併せて使用しても良い。
 前記ラジカル重合促進剤は、前記硬化性樹脂(D)100質量部に対して0.1~5質量部使用することが好ましい。
Examples of the radical polymerization accelerator include metal soaps such as cobalt naphthenate, cobalt octylate, zinc octylate, vanadium octylate, copper naphthenate, and barium naphthenate; vanadium acetyl acetate, cobalt acetyl acetate, iron acetylacetate Metal chelates such as nate; aniline, N, N-dimethylaniline, N, N-diethylaniline, p-toluidine, N, N-dimethyl-p-toluidine, N, N-bis (2-hydroxyethyl) -p -Toluidine, 4- (N, N-dimethylamino) benzaldehyde, 4- [N, N-bis (2-hydroxyethyl) amino] benzaldehyde, 4- (N-methyl-N-hydroxyethylamino) benzaldehyde, N, N-bis (2-hydroxypropyl) -p-toluigi N, N-substituted anilines such as N-ethyl-m-toluidine, triethanolamine, m-toluidine, diethylenetriamine, pyridine, phenylmorpholine, piperidine, N, N-bis (hydroxyethyl) aniline, diethanolaniline; , N-substituted-p-toluidine, 4- (N, N-substituted amino) benzaldehyde and other amines can be used, and the amines and metal soap systems are preferably used.
The radical polymerization accelerator may be mixed in advance with the curable resin (D) or the like, but the carbon fiber (C), the curable resin (D), the polymerizable unsaturated monomer ( You may use together, when mixing E).
The radical polymerization accelerator is preferably used in an amount of 0.1 to 5 parts by mass with respect to 100 parts by mass of the curable resin (D).
 また、本発明の成形材料には、硬化速度を調整するため、重合禁止剤などを使用することができる。
 重合禁止剤としては、例えばトリハイドロベンゼン、トルハイドロキノン、1,4-ナフトキノン、パラベンゾキノン、ハイドロキノン、ベンゾキノン、ハイドロキノンモノメチルエーテル、p-tert-ブチルカテコール、カテコール、2,6-ジ-tert-ブチル-4-メチルフェノール等を挙げることができる。重合禁止剤の添加量は、本発明に用いられる樹脂に対して10~1000ppmであるのが好ましく、50~200ppmであるのがさらに好ましい。
In the molding material of the present invention, a polymerization inhibitor or the like can be used to adjust the curing rate.
Examples of the polymerization inhibitor include trihydrobenzene, toluhydroquinone, 1,4-naphthoquinone, parabenzoquinone, hydroquinone, benzoquinone, hydroquinone monomethyl ether, p-tert-butylcatechol, catechol, 2,6-di-tert-butyl- 4-methylphenol and the like can be mentioned. The addition amount of the polymerization inhibitor is preferably 10 to 1000 ppm, more preferably 50 to 200 ppm, based on the resin used in the present invention.
 本発明の成形材料は、例えばハンドレイアップ法、スプレーアップ法、FRPライニング法等、レジントランスファーモールディング法(RTM法)、レジンインジェクション法(RI法)、バキュームアシストレジントランスファーモールディング法(VARTM法)、インフュージョン成形法、プレス成形法、オートクレーブ成形法、フィラメントワインディング法、引き抜き成形法等の、様々な成形方法により成形することで、高硬度な成形品を得ることができる。
 本発明の成形材料は、前記重合性不飽和単量体(E)を使用することによって、硬化性等を損なうことなく成形材料の粘度を容易に調整できる。そのため、本発明の成形材料であれば、成形材料が比較的低粘度である場合に適用可能なインフュージョン成形法等の成形方法によって、所望の成形品を容易に製造することが可能である。
 かかるインフュージョン成形法を採用することによって、得られる成形品中の炭素繊維の体積含有率を高め、より一層優れた強度を備えた成形品を得ることが可能となる。
 前記成形材料の硬化は、例えば加圧または常圧下、加熱または光照射によってラジカル重合させることによって進行する。
 前記ラジカル重合は、前記硬化性樹脂(D)が有する重合性不飽和二重結合や前記重合性不飽和単量体(E)が有する重合性不飽和二重結合の間で進行するが、本発明のサイジング剤として重合性不飽和二重結合含有湿気硬化型ポリウレタンを使用した場合には、該ポリウレタンが有する重合性不飽和二重結合も、前記ラジカル重合反応に寄与する。これにより、硬化性樹脂(D)と炭素繊維(C)との界面接着力が向上し、高強度な成形品を得ることが可能となる。
The molding material of the present invention includes, for example, a hand lay-up method, a spray-up method, an FRP lining method, a resin transfer molding method (RTM method), a resin injection method (RI method), a vacuum assist resin transfer molding method (VARTM method), A molded article having high hardness can be obtained by molding by various molding methods such as an infusion molding method, a press molding method, an autoclave molding method, a filament winding method, and a pultrusion molding method.
The molding material of this invention can adjust the viscosity of a molding material easily, without impairing sclerosis | hardenability etc. by using the said polymerizable unsaturated monomer (E). Therefore, with the molding material of the present invention, a desired molded product can be easily produced by a molding method such as an infusion molding method that can be applied when the molding material has a relatively low viscosity.
By adopting such an infusion molding method, it is possible to increase the volume content of carbon fibers in the obtained molded product and to obtain a molded product with even better strength.
Curing of the molding material proceeds by radical polymerization by heating or light irradiation, for example, under pressure or normal pressure.
The radical polymerization proceeds between the polymerizable unsaturated double bond of the curable resin (D) and the polymerizable unsaturated double bond of the polymerizable unsaturated monomer (E). When a polymerizable unsaturated double bond-containing moisture-curable polyurethane is used as the sizing agent of the invention, the polymerizable unsaturated double bond of the polyurethane also contributes to the radical polymerization reaction. Thereby, the interface adhesive force of curable resin (D) and carbon fiber (C) improves, and it becomes possible to obtain a highly strong molded article.
 前記方法等で得られた本発明の成形品は、例えば風力発電用ブレード、自動車外板、車輌用プラットフォーム部材、ボート、水上バイク、鉄道車両部材、パイプ、航空機部材、耐震補強用建築部材、産業用ロボットに用いることができる。 The molded article of the present invention obtained by the above method is, for example, a blade for wind power generation, an automobile outer plate, a vehicle platform member, a boat, a water bike, a railway vehicle member, a pipe, an aircraft member, a building member for seismic reinforcement, an industry It can be used for industrial robots.
 [実施例1]<炭素繊維用サイジング剤(S-1)の調製>
 温度計、攪拌機、不活性ガス導入口、及び還流冷却器を備えた2リットルの四つ口フラスコにミリオネートMR-200(日本ポリウレタン工業(株)製:クルードMDI(クルードジフェニルメタンジイソシアネート))282質量部、グリセリンのプロピレンオキサイド付加物(三洋化成工業(株)製サンニックスGP-400)91質量部、乾燥したキシレン300質量部、乾燥した酢酸エチル350質量部を仕込み、50~70℃で反応を行うことによって湿気硬化型ポリウレタンの有機溶剤溶液を得た(外観:褐色液体、遊離NCO%:5.9%、粘度:30CPS(20℃)、不揮発分:36質量%)。
 次いで、前記湿気硬化型ポリウレタンの有機溶剤溶液10質量部と乾燥したアセトン990質量部とを混合することによって、不揮発分0.36質量%の炭素繊維用サイジング剤(S-1)を得た。
[Example 1] <Preparation of carbon fiber sizing agent (S-1)>
282 parts by mass of Millionate MR-200 (manufactured by Nippon Polyurethane Industry Co., Ltd .: Crude MDI (crude diphenylmethane diisocyanate)) in a 2-liter four-necked flask equipped with a thermometer, stirrer, inert gas inlet, and reflux condenser , 91 parts by mass of propylene oxide adduct of glycerin (Sanix GP-400 manufactured by Sanyo Chemical Industries Co., Ltd.), 300 parts by mass of dried xylene and 350 parts by mass of dried ethyl acetate are charged and reacted at 50 to 70 ° C. Thus, an organic solvent solution of moisture curable polyurethane was obtained (appearance: brown liquid, free NCO%: 5.9%, viscosity: 30 CPS (20 ° C.), nonvolatile content: 36% by mass).
Next, 10 parts by mass of the moisture-curable polyurethane organic solvent solution and 990 parts by mass of dried acetone were mixed to obtain a sizing agent for carbon fiber (S-1) having a nonvolatile content of 0.36% by mass.
 <サイジング処理のされていない炭素繊維クロスの作製>
 室温下、パイロフィルTR3110M(三菱レイヨン(株)製、200g/m、単糸径7μm、ストランド強度4,400MPa、弾性率235GPa、サイジング処理(表面処理)の施されたポリアクリロニトリル系炭素繊維クロス)を裁断して得た約300mm×300mmの大きさの試験片を、前記試験片の質量部に対して約30倍の質量のアセトン中に浸漬し、12時間放置した。
 前記浸漬後、前記試験片を60℃の乾燥機を用いて2時間乾燥することで、炭素繊維の表面に付着した樹脂分等を除去し、サイジング処理(表面処理)のされていない状態の炭素繊維クロスからなる試験片を得た。
<Production of carbon fiber cloth not subjected to sizing treatment>
Pyrofil TR3110M (Mitsubishi Rayon Co., Ltd., 200 g / m 2 , single yarn diameter 7 μm, strand strength 4,400 MPa, elastic modulus 235 GPa, polyacrylonitrile carbon fiber cloth subjected to sizing treatment (surface treatment)) at room temperature A test piece having a size of about 300 mm × 300 mm obtained by cutting was dipped in acetone having a mass of about 30 times the mass part of the test piece and left for 12 hours.
After the immersion, the test piece is dried for 2 hours using a dryer at 60 ° C. to remove the resin and the like attached to the surface of the carbon fiber, and carbon in a state where sizing treatment (surface treatment) is not performed. A test piece made of fiber cloth was obtained.
 <本発明のサイジング剤によってサイジング処理の施された炭素繊維クロスの作製>
 前記方法で作製したサイジング処理の施されていない試験片を、実施例1で得た炭素繊維用サイジング剤(S-1)に十分浸漬した後、60℃に調整した乾燥機内で2時間乾燥し、湿気硬化を進行させることで、サイジング処理の施された炭素繊維クロス(CF-1)を作製した。このとき、炭素繊維用サイジング剤(S-1)により試験片の表面に形成された被膜中に含まれる湿気硬化したポリウレタンの質量は、試験片の全質量に対して、0.34質量%であった。
<Production of carbon fiber cloth that has been sized by the sizing agent of the present invention>
The test piece not subjected to sizing treatment prepared by the above method was sufficiently immersed in the sizing agent for carbon fiber (S-1) obtained in Example 1, and then dried in a dryer adjusted to 60 ° C. for 2 hours. By proceeding with moisture curing, carbon fiber cloth (CF-1) subjected to sizing treatment was produced. At this time, the mass of the moisture-cured polyurethane contained in the coating formed on the surface of the test piece by the carbon fiber sizing agent (S-1) was 0.34% by mass with respect to the total mass of the test piece. there were.
 [実施例2]<炭素繊維用サイジング剤(S-2)の調製>
 温度計、攪拌機、不活性ガス導入口、及び還流冷却器を備えた2リットルの四つ口フラスコにミリオネートMR-200(日本ポリウレタン工業(株)製:クルードMDI)352質量部、グリセリンのプロピレンオキサイド付加物(旭硝子(株)製エクセノール#430)122質量部、乾燥したキシレン197質量部を仕込み、50~70℃で反応を行い、第一段階反応溶液を得た。
 次いで、上記第一段階反応溶液中に、さらに、乾燥したキシレン197質量部と乾燥した酢酸エチル602質量部、2-ヒドロキシエチルメタクリレート49質量部、ミリオネートMR-200(日本ポリウレタン(株)製:クルードMDI)81質量部を仕込み、50~70℃で反応することによって湿気硬化型ポリウレタンの有機溶剤溶液を得た(外観:褐色液体、遊離NCO%:5.7、粘度:35CPS(20℃)、不揮発分:38質量%)。
 次いで、前記湿気硬化型ポリウレタンの有機溶剤溶液9.5質量部と乾燥したアセトン990質量部とを混合することによって、不揮発分0.36質量%の炭素繊維用サイジング剤(S-2)を得た。
 また、前記炭素繊維用サイジング剤(S-1)の代わりに、前記炭素繊維用サイジング剤(S-2)を使用すること以外は、前記と同様の方法によって、サイジング処理の施された炭素繊維クロス(CF-2)を作製した。
[Example 2] <Preparation of carbon fiber sizing agent (S-2)>
352 parts by mass of Millionate MR-200 (manufactured by Nippon Polyurethane Industry Co., Ltd .: Crude MDI) in a 2 liter four-necked flask equipped with a thermometer, stirrer, inert gas inlet, and reflux condenser, propylene oxide of glycerin 122 parts by weight of an adduct (Exenol # 430 manufactured by Asahi Glass Co., Ltd.) and 197 parts by weight of dried xylene were charged and reacted at 50 to 70 ° C. to obtain a first stage reaction solution.
Subsequently, 197 parts by weight of dried xylene, 602 parts by weight of dried ethyl acetate, 49 parts by weight of 2-hydroxyethyl methacrylate, Millionate MR-200 (manufactured by Nippon Polyurethane Co., Ltd .: Crude) MDI) 81 parts by weight were charged and reacted at 50 to 70 ° C. to obtain an organic solvent solution of moisture-curable polyurethane (appearance: brown liquid, free NCO%: 5.7, viscosity: 35 CPS (20 ° C.), Nonvolatile content: 38% by mass).
Next, 9.5 parts by mass of the moisture-curable polyurethane organic solvent solution and 990 parts by mass of dried acetone are mixed to obtain a carbon fiber sizing agent (S-2) having a nonvolatile content of 0.36% by mass. It was.
Further, carbon fiber subjected to sizing treatment by the same method as described above except that the sizing agent for carbon fiber (S-2) is used instead of the sizing agent for carbon fiber (S-1). A cloth (CF-2) was produced.
 [比較例1]<炭素繊維用サイジング剤(S-3)の調製>
 温度計、窒素ガス導入管、攪拌器を備えた窒素置換された容器中で、ネオペンチルグリコールと1,6-ヘキサンジオールとアジピン酸とを反応させて得られたポリエステルポリオール100質量部、2,2―ジメチロールプロピオン酸13質量部、1,4-シクロヘキサンジメタノール21質量部、及びジシクロヘキシルメタンジイソシアネート43質量部、イソホロンジイソシアネート36質量部を、メチルエチルケトン59質量部とメチルピロリドン119質量部の混合溶剤中で反応させることによって、分子末端にイソシアネート基を有するウレタンプレポリマーの有機溶剤溶液を得た。
 次いで、前記ウレタンプレポリマーの有機溶剤溶液中に、トリエチルアミンを10質量部加えることで前記ウレタンプレポリマーが有するカルボキシル基の一部または全部を中和し、さらに水300質量部を加え十分に攪拌することにより、ウレタン樹脂の水分散体を得た。
 次いで、前記水分散体に、25質量%のエチレンジアミン水溶液を8質量部加え、攪拌することによって、粒子状のウレタン樹脂を鎖伸長させ、次いでエージング・脱溶剤することによって、不揮発分35質量%のウレタン樹脂組成物を得た。
 次いで、前記ウレタン樹脂組成物10質量部と水90質量部とを混合することによって、不揮発分0.35質量%の炭素繊維用サイジング剤(S-3)を得た。
 また、前記炭素繊維用サイジング剤(S-1)の代わりに、前記炭素繊維用サイジング剤(S-3)を使用すること以外は、前記と同様の方法によって、サイジング処理の施された炭素繊維クロス(CF-3)を作製した。
[Comparative Example 1] <Preparation of carbon fiber sizing agent (S-3)>
100 parts by mass of a polyester polyol obtained by reacting neopentyl glycol, 1,6-hexanediol and adipic acid in a nitrogen-substituted container equipped with a thermometer, a nitrogen gas introduction tube, and a stirrer; 2-Methylolpropionic acid 13 parts by mass, 1,4-cyclohexanedimethanol 21 parts by mass, dicyclohexylmethane diisocyanate 43 parts by mass, isophorone diisocyanate 36 parts by mass in a mixed solvent of methyl ethyl ketone 59 parts by mass and methylpyrrolidone 119 parts by mass To obtain an organic solvent solution of a urethane prepolymer having an isocyanate group at the molecular end.
Next, 10 parts by mass of triethylamine is added to the organic solvent solution of the urethane prepolymer to neutralize part or all of the carboxyl groups of the urethane prepolymer, and 300 parts by mass of water is further added and sufficiently stirred. As a result, an aqueous dispersion of urethane resin was obtained.
Next, 8 parts by mass of a 25% by mass ethylenediamine aqueous solution is added to the aqueous dispersion, and the resulting urethane resin is chain-extended by stirring, followed by aging and desolvation, thereby having a non-volatile content of 35% by mass. A urethane resin composition was obtained.
Next, 10 parts by mass of the urethane resin composition and 90 parts by mass of water were mixed to obtain a carbon fiber sizing agent (S-3) having a nonvolatile content of 0.35% by mass.
Further, carbon fiber subjected to sizing treatment by the same method as described above except that the sizing agent for carbon fiber (S-3) is used instead of the sizing agent for carbon fiber (S-1). A cloth (CF-3) was produced.
 [比較例2]<炭素繊維用サイジング剤(S-4)の調製>
 温度計、窒素ガス導入管、攪拌器、滴下ロート、冷却管を備えた窒素置換された容器中で、タケネートD-140N(三井武田ケミカル(株)製、イソホロンジイシシアネートのトリメチロールプロパン付加物:不揮発分75質量%の酢酸エチル溶液)616質量部と3-メトキシ-n-ブチルアセテート39質量部とを混合し、次いで、該混合物中にメチルエチルケトオキシム145質量部を滴下し、70℃で4時間反応させることによって、全てのイソシアネート基がメチルエチルケトオキシムによってブロック化されたブロックイソシアネート化合物(不揮発分:75質量%、前記メチルエチルケトオキシムが解離しイソシアネート基を生成した場合の有効イソシアネート基含有量は8.3質量%)を得た。
 次いで、前記ブロックイソシアネート化合物113質量部とポリエステルポリオール(DIC(株)製、バーノックD-161)75質量部と解離触媒としてジブチル錫ジアセテート0.8質量部とを混合し、更にノニオン系界面活性剤としてポリオキシエチレンポリオキシプロピレングリコール(アデカ(株)製プルロニックF-108)8質量部を加えホモジナイザーにて強力に攪拌しながら132質量部のイオン交換水を徐々に加え混合することによって、不揮発分50質量%のポリウレタンエマルジョンを得た。
 次いで、前記ウレタンエマルジョン70質量部と水930質量部とを混合することによって、不揮発分0.35質量%の炭素繊維用サイジング剤(S-4)を得た。
 また、前記炭素繊維用サイジング剤(S-1)の代わりに、前記炭素繊維用サイジング剤(S-4)を使用すること以外は、前記と同様の方法によって、サイジング処理の施された炭素繊維クロス(CF-4)を作製した。
[Comparative Example 2] <Preparation of carbon fiber sizing agent (S-4)>
Takenate D-140N (manufactured by Mitsui Takeda Chemical Co., Ltd., trimethylolpropane adduct of isophorone diisocyanate) in a nitrogen purged vessel equipped with a thermometer, nitrogen gas inlet tube, stirrer, dropping funnel, and cooling tube : Ethyl acetate solution having a non-volatile content of 75% by mass) 616 parts by mass and 39 parts by mass of 3-methoxy-n-butyl acetate were mixed, and then 145 parts by mass of methyl ethyl ketoxime was added dropwise to the mixture. A blocked isocyanate compound in which all isocyanate groups are blocked with methyl ethyl ketoxime by reacting for a period of time (nonvolatile content: 75% by mass; when the methyl ethyl ketoxime is dissociated to form an isocyanate group, the effective isocyanate group content is 8. 3% by mass) was obtained.
Next, 113 parts by mass of the blocked isocyanate compound, 75 parts by mass of a polyester polyol (manufactured by DIC Corporation, Vernock D-161) and 0.8 part by mass of dibutyltin diacetate as a dissociation catalyst were mixed, and nonionic surface activity was further obtained. By adding 8 parts by mass of polyoxyethylene polyoxypropylene glycol (Pluronic F-108 manufactured by Adeka Co., Ltd.) as an agent and adding 132 parts by mass of ion-exchanged water gradually while mixing vigorously with a homogenizer, the mixture is non-volatile. A polyurethane emulsion having a content of 50% by weight was obtained.
Next, 70 parts by mass of the urethane emulsion and 930 parts by mass of water were mixed to obtain a carbon fiber sizing agent (S-4) having a nonvolatile content of 0.35% by mass.
Further, carbon fiber subjected to sizing treatment by the same method as described above except that the sizing agent for carbon fiber (S-4) is used instead of the sizing agent for carbon fiber (S-1). A cloth (CF-4) was produced.
 [樹脂組成物の調製]
 [調製例1]<ビニルエステル樹脂(VE-1)の調製>
 温度計、攪拌器、及び還流冷却器を備えた5Lの4つ口フラスコに、エピクロン850(DIC(株)製のビスフェノールA系エポキシ樹脂、エポキシ当量:187)を1460質量部、メタクリル酸644質量部、ハイドロキノン0.47質量部、及びトリエチルアミンの3.5質量部を仕込み100±10℃まで昇温し、同温度で8時間反応させることにより数平均分子量550のエポキシメタクリレートを得た。その後、さらに、スチレンモノマー1133質量部、ハイドロキノン0.18質量部を加え混合することによって、不揮発分65.0質量%で酸価4.6のビニルエステル樹脂溶液(VE-1)を得た。
[Preparation of resin composition]
[Preparation Example 1] <Preparation of vinyl ester resin (VE-1)>
Into a 5 L four-necked flask equipped with a thermometer, a stirrer, and a reflux condenser, Epicron 850 (DIC phenol bisphenol A epoxy resin, epoxy equivalent: 187) 1460 parts by mass, methacrylic acid 644 parts by mass Parts, hydroquinone 0.47 parts by mass and triethylamine 3.5 parts by mass were charged to 100 ± 10 ° C. and reacted at the same temperature for 8 hours to obtain epoxy methacrylate having a number average molecular weight of 550. Thereafter, 1133 parts by mass of styrene monomer and 0.18 parts by mass of hydroquinone were further added and mixed to obtain a vinyl ester resin solution (VE-1) having a nonvolatile content of 65.0% by mass and an acid value of 4.6.
 [調製例2]<不飽和ポリエステル樹脂(UP-1)調製>
 温度計、攪拌器、及び還流冷却器を備えた2Lの4つ口フラスコに、プロピレングリコール350質量部、イソフタル酸382質量部を仕込み、200℃まで昇温、引き続き210±10℃でソリッド酸価が2以下となるまで反応させた。
 次いで、前記反応混合物中に、プロピレングリコール221質量部、フマル酸534質量部、ハイドロキノン0.1質量部を仕込み、210℃まで昇温、同温度のまま、ソリッド酸価が18となるまで反応させ、数平均分子量2,500の不飽和ポリエステル樹脂を得た。
 前記反応終了後、180℃まで冷却し、カテコール0.12質量部を予め溶解したスチレンモノマー800質量部をさらに仕込み、25℃まで冷却することによって、不揮発分56質量%の不飽和ポリエステル樹脂(UP-1)を得た。
[Preparation Example 2] <Preparation of unsaturated polyester resin (UP-1)>
A 2 L 4-neck flask equipped with a thermometer, stirrer, and reflux condenser was charged with 350 parts by weight of propylene glycol and 382 parts by weight of isophthalic acid, heated to 200 ° C., and subsequently solid acid value at 210 ± 10 ° C. The reaction was continued until 2 or less.
Next, 221 parts by mass of propylene glycol, 534 parts by mass of fumaric acid, and 0.1 parts by mass of hydroquinone were charged into the reaction mixture, and the temperature was raised to 210 ° C. and reacted at the same temperature until the solid acid value reached 18. An unsaturated polyester resin having a number average molecular weight of 2,500 was obtained.
After completion of the reaction, the mixture was cooled to 180 ° C., and further charged with 800 parts by mass of a styrene monomer in which 0.12 parts by mass of catechol was previously dissolved, and then cooled to 25 ° C., thereby unsaturated polyester resin (UP -1) was obtained.
 [実施例3]<炭素繊維強化プラスチックの作製>
 前記ビニルエステル樹脂溶液(VE-1)100質量部に、6質量%ナフテン酸コバルト0.5質量部及びパーメックN(日本油脂(株)製のメチルエチルケトンパーオキサイド)1.0質量部を混合した混合物を、離型処理の施された350mm×350mmのガラス板上の前記実施例1で得られたサイジング処理の施された炭素繊維クロスの上に、ハンドレイアップ成形法(8プライ)によって積層し、常温(25℃)で12時間硬化させた後、更に60℃で3時間硬化させることによって、炭素繊維強化プラスチック(炭素繊維の含有率;50体積%)を得た。
[Example 3] <Production of carbon fiber reinforced plastic>
A mixture of 100 parts by mass of the vinyl ester resin solution (VE-1) and 0.5 parts by mass of 6% by mass cobalt naphthenate and 1.0 part by mass of Permec N (methyl ethyl ketone peroxide manufactured by NOF Corporation). Was laminated on the sizing-treated carbon fiber cloth obtained in Example 1 on a 350 mm × 350 mm glass plate subjected to a release treatment by a hand lay-up molding method (8 ply). After curing at room temperature (25 ° C.) for 12 hours and further curing at 60 ° C. for 3 hours, a carbon fiber reinforced plastic (carbon fiber content: 50% by volume) was obtained.
 [実施例4~6、比較例3~7]
 下記表1~3記載の炭素繊維クロスまたはガラス繊維クロス及び樹脂組成物を使用すること以外は、上記実施例3と同様の方法で、炭素繊維強化プラスチックを得た。
[Examples 4 to 6, Comparative Examples 3 to 7]
A carbon fiber reinforced plastic was obtained in the same manner as in Example 3 except that the carbon fiber cloth or glass fiber cloth and resin composition described in Tables 1 to 3 below were used.
 [比較例8]
 エピクロン850(DIC(株)製のエポキシ樹脂)90質量部と、TETA(東ソー社製のトリエチルテトラモン)10質量部との混合物を、離型処理の施された350mm×350mmのガラス板上のサイジング剤(「パイロフィルTR3110M」三菱レイヨン(株)製)によってサイジング処理の施された炭素繊維クロスの上に、ハンドレイアップ成形法(8プライ)によって積層し、常温(25℃)で12時間硬化させた後、更に60℃で3時間硬化させることによって、炭素繊維強化プラスチック(炭素繊維の含有率;50体積%)を得た。
[Comparative Example 8]
A mixture of 90 parts by mass of Epicron 850 (epoxy resin manufactured by DIC Corporation) and 10 parts by mass of TETA (triethyltetramon manufactured by Tosoh Corporation) on a 350 mm × 350 mm glass plate subjected to release treatment. Laminated by hand lay-up molding method (8 ply) on carbon fiber cloth that has been sized by “Pyrofil TR3110M” manufactured by Mitsubishi Rayon Co., Ltd., and cured at room temperature (25 ° C.) for 12 hours. Then, the mixture was further cured at 60 ° C. for 3 hours to obtain a carbon fiber reinforced plastic (carbon fiber content: 50% by volume).
 [強度の評価方法1]
 前記で得られた炭素繊維強化プラスチック及びガラス繊維強化プラスチックの強度は、後述する曲げ強度と、繊維強化プラスチックの断面の目視により評価した。
 [曲げ強度]
JIS K 7074「炭素繊維強化プラスチックの曲げ試験方法」に則り行った「曲げ強度」の測定結果に基づいて評価した。
[Strength Evaluation Method 1]
The strength of the carbon fiber reinforced plastic and glass fiber reinforced plastic obtained above was evaluated by bending strength described later and visual observation of the cross section of the fiber reinforced plastic.
[Bending strength]
The evaluation was based on the measurement result of “bending strength” performed according to JIS K 7074 “Bending test method of carbon fiber reinforced plastic”.
 [強度の評価方法2]
 <炭素繊維強化プラスチック破断面の観察>
 上記曲げ試験によって形成された繊維強化プラスチックの破断面を、電子顕微鏡(日本電子(株)製 JSM-5900LV)を用いて、45倍及び2,000倍で観察した。前記破断面の炭素繊維と硬化性樹脂とが一体となって破壊されているものを「良好」と評価し、繊維が破断面からささら状に露出し、繊維と硬化性樹脂との界面で破壊されているものを「不良」と評価した。実施例3の炭素繊維強化プラスチックの破断面を図1及び図2に示し、比較例6の炭素繊維強化プラスチックの破断面を図3及び図4に示す。
[Strength Evaluation Method 2]
<Observation of fracture surface of carbon fiber reinforced plastic>
The fracture surface of the fiber reinforced plastic formed by the bending test was observed at 45 times and 2,000 times using an electron microscope (JSM-5900LV, manufactured by JEOL Ltd.). Evaluated as “good” when the fractured carbon fiber and curable resin are broken together, and the fiber is exposed from the fractured surface in a sagittal manner, breaking at the interface between the fiber and the curable resin It was evaluated as “bad”. The fracture surface of the carbon fiber reinforced plastic of Example 3 is shown in FIGS. 1 and 2, and the fracture surface of the carbon fiber reinforced plastic of Comparative Example 6 is shown in FIGS.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表中の略称の説明
・「WF350」:日東紡(株)製の表面処理の施されたガラス繊維クロス(350g/m
・「パイロフィルTR3110M」:三菱レイヨン(株)製の表面処理の施された、エポキシ樹脂用のポリアクリロニトリル系炭素繊維クロス(200g/m)・「パイロフィルTR3110MS」:三菱レイヨン(株)製の表面処理の施された、ビニルエステル樹脂用のポリアクリロニトリル系炭素繊維クロス(200g/m
Explanation of abbreviations in the table: “WF350”: Nittobo Co., Ltd. surface-treated glass fiber cloth (350 g / m 2 )
"Pyrofil TR3110M": polyacrylonitrile-based carbon fiber cloth for epoxy resin (200 g / m 2 ) subjected to surface treatment manufactured by Mitsubishi Rayon Co., Ltd.- "Pyrofil TR3110MS": surface manufactured by Mitsubishi Rayon Co., Ltd. Treated polyacrylonitrile-based carbon fiber cloth (200 g / m 2 ) for vinyl ester resin
 [成形加工性の評価方法]
<インフュージョン成形法による成形品の作製>
 100cm×100cmのガラス板表面にケムリースPMR(CHEMREASE社製シリコン系離型剤)を塗布し、離型処理を行った。
 次いで、実施例3で使用したものと同一の炭素繊維クロスを500mm×700mmに裁断し、ガラス板中央に8プライ配置した。次いで、600mm×900mmに裁断したBLEEDER LEASE B(AIRTECH社製ピールプライ)を先の炭素繊維クロス上に長辺方向を揃え、ガラス板中央に配置した。
 次いで短辺側のピールプライの両端下に、ピールプライ短辺と同じ長さのポリエチレン製スパイラルチューブ(森宮電機(株)社製SE-13内径10mm)を配置した。それぞれのスパイラルチューブの片端に、外形10mmのポリエチレン製チューブを繋ぎ、各々、樹脂注入ライン、減圧脱気ラインとした。次いで、バッギングフィルム(AIRTECH社製IPPLON DP-1000ナイロン製25μm厚)でガラス全面を覆い、ガラス周縁部をシーラントテープ(AIRTECH社製A800-G3)にて、バッギングフィルムと貼り合わせた。その際、樹脂注入ライン、減圧脱気ラインとガラス周縁およびバッギングフィルムとの隙間もシーラントテープで埋め、フィルム、ガラス板間の気密を確保した。
 次いで、減圧脱気ラインとするポリエチレン製ホースには減圧ゲージを備えた樹脂トラップを介して真空ポンプを接続、一方、樹脂注入ラインとしたポリエチレン製ホースは、中間をクランプで閉塞させ、端部を樹脂配合槽の底面に設置した。
 次に、真空ポンプを運転し、経路内およびバッギングフィルムガラス板間の減圧度を-700~-760mmHgに保つべく、減圧脱気と気密の確保を行った。
 次いで、前記ビニルエステル樹脂溶液(VE-1)100質量部に、6質量%ナフテン酸コバルト0.5質量部及びパーメックN(日本油脂(株)製のメチルエチルケトンパーオキサイド)1.0質量部を混合した混合物(Z-1)を樹脂配合槽に仕込み、クランプを解除、樹脂の注入を開始した。樹脂が炭素繊維クロス全面に行きわたるのを確認し、樹脂注入ラインを再びクランプした。このときの注入時間は15分であった。注入後、常温下で十分に硬化させることによって成形品(R-1)を得た。
 一方、前記混合物(Z-1)の代わりに、エピクロン850(DIC(株)製のエポキシ樹脂)90質量部と、TETA(東ソー社製のトリエチルテトラミン)10質量部とを含有する混合物(Z-2;比較例8で使用したものと同一組成)を使用し、かつ炭素繊維クロスとして市販品パイロフィルTR3110Mを用いること以外は、上記と同一の方法でインフュージョン成形することによって、成形品(R-2)を得た。
 前記成形品(R-1)は、注入時間15分で残気泡等の不具合を引き起こさず、炭素繊維クロス全面に前記混合物(Z-1)が行きわたったものであった。一方、前記成形品(R-2)は、使用した成形材料である混合物(Z-2)が高粘度であり、また、重合性不飽和単量体を用いて粘度を調整することも困難であるため、注入時間30分を要しても炭素繊維クロス全面に樹脂が行きわたらず、全体的に気泡を巻き込んだ成形品となり、実用上十分な強度を有するものではなかった。
[Method for evaluating moldability]
<Production of molded product by infusion molding method>
Chemlyse PMR (silicon mold release agent manufactured by CHEMREASE) was applied to the surface of a 100 cm × 100 cm glass plate to perform a mold release treatment.
Next, the same carbon fiber cloth as used in Example 3 was cut into a size of 500 mm × 700 mm, and 8 plies were placed in the center of the glass plate. Next, BLEEDER LEASE B (peel ply manufactured by AIRTECH) cut to 600 mm × 900 mm was aligned on the previous carbon fiber cloth and placed in the center of the glass plate.
Next, a polyethylene spiral tube (SE-13 inner diameter 10 mm manufactured by Morimiya Electric Co., Ltd.) having the same length as the peel ply short side was placed under both ends of the peel ply on the short side. A polyethylene tube having an outer diameter of 10 mm was connected to one end of each spiral tube to form a resin injection line and a vacuum degassing line, respectively. Next, the entire surface of the glass was covered with a bagging film (IPPLON DP-1000 nylon 25 μm thickness manufactured by AIRTECH), and the peripheral edge of the glass was bonded to the bagging film with a sealant tape (A800-G3 manufactured by AIRTECH). At that time, the gap between the resin injection line, the vacuum degassing line, the peripheral edge of the glass and the bagging film was also filled with a sealant tape to ensure the airtightness between the film and the glass plate.
Next, a polyethylene pump hose used as a vacuum degassing line is connected to a vacuum pump via a resin trap equipped with a vacuum gauge. On the other hand, a polyethylene hose used as a resin injection line is closed at the middle with a clamp. It installed in the bottom face of the resin compounding tank.
Next, the vacuum pump was operated, and vacuum deaeration and airtightness were ensured in order to maintain the degree of vacuum in the path and between the bagging film glass plates at -700 to -760 mmHg.
Next, 100 parts by mass of the vinyl ester resin solution (VE-1) was mixed with 0.5 parts by mass of 6% by mass cobalt naphthenate and 1.0 part by mass of Permec N (methyl ethyl ketone peroxide manufactured by NOF Corporation). The mixture (Z-1) thus prepared was charged into a resin compounding tank, the clamp was released, and resin injection was started. After confirming that the resin reached the entire surface of the carbon fiber cloth, the resin injection line was clamped again. The injection time at this time was 15 minutes. After the injection, the molded product (R-1) was obtained by sufficiently curing at room temperature.
On the other hand, instead of the mixture (Z-1), a mixture (Z-) containing 90 parts by mass of Epiclone 850 (epoxy resin manufactured by DIC Corporation) and 10 parts by mass of TETA (triethyltetramine manufactured by Tosoh Corporation). 2; using the same composition as that used in Comparative Example 8 and using the commercially available Pyrofil TR3110M as the carbon fiber cloth, the molded product (R- 2) was obtained.
The molded product (R-1) was such that the mixture (Z-1) was spread over the entire surface of the carbon fiber cloth without causing defects such as residual bubbles after an injection time of 15 minutes. On the other hand, in the molded product (R-2), the mixture (Z-2) which is the molding material used has a high viscosity, and it is difficult to adjust the viscosity using a polymerizable unsaturated monomer. For this reason, even if the injection time is 30 minutes, the resin does not reach the entire surface of the carbon fiber cloth, resulting in a molded product including air bubbles as a whole, and does not have a practically sufficient strength.
 本発明の炭素繊維用サイジング剤を用いて表面処理の施された炭素繊維であれば、不飽和ポリエステルやビニルエステルやビニルウレタンをはじめとする様々な硬化性樹脂と組み合わせ使用することによって、従来品よりも軽量化された高強度の成形品を得ることができる。かかる成形品は、例えば自動車や航空機などの部品や工業用部材、産業用部材、インフラ部材、医療用分野で使用可能である。 If carbon fiber is surface treated using the sizing agent for carbon fiber of the present invention, it can be used in combination with various curable resins such as unsaturated polyester, vinyl ester, and vinyl urethane. Thus, a high-strength molded product that is lighter than that can be obtained. Such molded products can be used in parts such as automobiles and aircraft, industrial members, industrial members, infrastructure members, and medical fields.

Claims (14)

  1.  湿気硬化型ポリウレタン(A)を含有することを特徴とする炭素繊維用サイジング剤。 A carbon fiber sizing agent characterized by containing a moisture-curing polyurethane (A).
  2.  前記湿気硬化型ポリウレタン(A)が分子中にイソシアネート基を有するものである、請求項1に記載の炭素繊維用サイジング剤。 The carbon fiber sizing agent according to claim 1, wherein the moisture-curable polyurethane (A) has an isocyanate group in the molecule.
  3.  前記湿気硬化型ポリウレタン(A)が、ポリイソシアネート(a1)とポリオール(a2)とを反応させて得られるものであり、前記ポリイソシアネート(a1)は芳香族ポリイソシアネートを含み、前記ポリオール(a2)は脂肪族ポリエーテルポリオールを含む、請求項1に記載の炭素繊維用サイジング剤。 The moisture curable polyurethane (A) is obtained by reacting a polyisocyanate (a1) and a polyol (a2), the polyisocyanate (a1) contains an aromatic polyisocyanate, and the polyol (a2) The sizing agent for carbon fibers according to claim 1, comprising an aliphatic polyether polyol.
  4.  前記湿気硬化型ウレタン(A)が、分子中にイソシアネート基と重合性不飽和二重結合とを有するものである、請求項1~3のいずれかに記載の炭素繊維用サイジング剤。 The sizing agent for carbon fiber according to any one of claims 1 to 3, wherein the moisture-curable urethane (A) has an isocyanate group and a polymerizable unsaturated double bond in the molecule.
  5.  更に有機溶剤(B)を含有する、請求項1~4のいずれかに記載の炭素繊維用サイジング剤。 The carbon fiber sizing agent according to any one of claims 1 to 4, further comprising an organic solvent (B).
  6.  前記湿気硬化型ポリウレタン(A)と前記有機溶剤(B)との質量割合[(A)/(B)]が0.1/99.9~5.0/95.0である、請求項5に記載の炭素繊維用サイジング剤。 The mass ratio [(A) / (B)] of the moisture-curable polyurethane (A) and the organic solvent (B) is 0.1 / 99.9 to 5.0 / 95.0. The sizing agent for carbon fibers described in 1.
  7.  炭素繊維(c)の表面に、請求項1~6のいずれかに記載の炭素繊維用サイジング剤中に含まれる前記湿気硬化型ポリウレタン(A)が湿気硬化反応することによって形成された被膜を有することを特徴とする表面処理の施された炭素繊維(C)。 A coating formed on the surface of the carbon fiber (c) by the moisture curing reaction of the moisture curable polyurethane (A) contained in the sizing agent for carbon fiber according to any one of claims 1 to 6. A carbon fiber (C) subjected to a surface treatment.
  8.  請求項1~6のいずれかに記載の炭素繊維用サイジング剤を炭素繊維(c)に含浸させ、前記炭素繊維用サイジング剤中に有機溶剤(B)が含まれる場合には該有機溶剤(B)を乾燥し除去した後、前記炭素繊維用サイジング剤中に含まれる前記湿気硬化型ポリウレタン(A)を湿気硬化反応させることによって、前記炭素繊維(c)表面に前記湿気硬化型ポリウレタン(A)が湿気硬化した被膜を形成することを特徴とする表面処理の施された炭素繊維(C)の製造方法。 When the carbon fiber (c) is impregnated with the carbon fiber sizing agent according to any one of claims 1 to 6, and the organic solvent (B) is contained in the carbon fiber sizing agent, the organic solvent (B ) Is removed by drying, and then the moisture curable polyurethane (A) contained in the sizing agent for carbon fiber is subjected to a moisture curing reaction on the surface of the carbon fiber (c). A method for producing a surface-treated carbon fiber (C), wherein the film is moisture-cured.
  9.  前記被膜中に含まれる、前記湿気硬化型ポリウレタン(A)が湿気硬化したポリウレタンの質量は、前記炭素繊維(c)の全質量に対して0.1~5.0質量%の範囲である、請求項8に記載の製造方法。 The mass of the moisture-cured polyurethane (A) contained in the film is moisture-curing polyurethane is in the range of 0.1 to 5.0% by mass with respect to the total mass of the carbon fiber (c). The manufacturing method according to claim 8.
  10.  硬化性樹脂(D)と重合性不飽和単量体(E)と請求項7に記載の炭素繊維(C)とを含有することを特徴とする成形材料。 A molding material comprising a curable resin (D), a polymerizable unsaturated monomer (E), and the carbon fiber (C) according to claim 7.
  11.  前記硬化性樹脂(D)が、ビニルエステル、ビニルウレタン及び不飽和ポリエステル樹脂からなる群より選ばれる1種以上である、請求項10に記載の成形材料。 The molding material according to claim 10, wherein the curable resin (D) is at least one selected from the group consisting of vinyl esters, vinyl urethanes and unsaturated polyester resins.
  12.  前記重合性不飽和単量体(E)が、スチレン及び2-ヒドロキシエチル(メタ)アクリレートからなる群より選ばれる1種以上である、請求項10に記載の成形材料。 The molding material according to claim 10, wherein the polymerizable unsaturated monomer (E) is at least one selected from the group consisting of styrene and 2-hydroxyethyl (meth) acrylate.
  13.  前記硬化性樹脂(D)と前記重合性不飽和単量体(E)との質量割合[(D)/(E)]が20/80~80/20である、請求項10に記載の成形材料。 The molding according to claim 10, wherein a mass ratio [(D) / (E)] of the curable resin (D) and the polymerizable unsaturated monomer (E) is 20/80 to 80/20. material.
  14.  請求項10~13のいずれかに記載の成形材料を成形して得られる成形品。 A molded product obtained by molding the molding material according to any one of claims 10 to 13.
PCT/JP2010/072547 2010-01-28 2010-12-15 Sizing agent for carbon fiber, carbon fiber, method for producing carbon fiber, and molding material and molded article each containing carbon fiber WO2011092962A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011523224A JP4856292B2 (en) 2010-01-28 2010-12-15 Sizing agent for carbon fiber, carbon fiber, method for producing the same, and molding material and molded article containing carbon fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-017374 2010-01-28
JP2010017374 2010-01-28

Publications (1)

Publication Number Publication Date
WO2011092962A1 true WO2011092962A1 (en) 2011-08-04

Family

ID=44318960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072547 WO2011092962A1 (en) 2010-01-28 2010-12-15 Sizing agent for carbon fiber, carbon fiber, method for producing carbon fiber, and molding material and molded article each containing carbon fiber

Country Status (2)

Country Link
JP (1) JP4856292B2 (en)
WO (1) WO2011092962A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013027708A1 (en) * 2011-08-22 2013-02-28 三菱レイヨン株式会社 Carbon fiber sizing agent, aqueous dispersion thereof, carbon fiber bundle having adsorbed sizing agent, sheet-shaped article, and carbon fiber reinforced composite material
JP2013053266A (en) * 2011-09-06 2013-03-21 Dh Material Kk Molding material and molding
JP2013245268A (en) * 2012-05-24 2013-12-09 Dh Material Kk Resin composition for carbon fiber-reinforced plastic, and molding material and carbon fiber-reinforced plastic using the same
CN103628323A (en) * 2013-11-25 2014-03-12 宜兴市飞舟高新科技材料有限公司 Carbon fiber sizing agent
JP6260754B1 (en) * 2016-03-24 2018-01-17 Dic株式会社 Prepregs and molded products
CN110130109A (en) * 2019-04-17 2019-08-16 镇江市高等专科学校 A kind of novel carbon fiber sizing agent
CN111527134A (en) * 2017-12-26 2020-08-11 Dic株式会社 Resin composition for carbon fiber-reinforced plastic molding, molding material, molded article, and method for producing molded article
WO2020166441A1 (en) * 2019-02-12 2020-08-20 日本ユピカ株式会社 Liquid composition for fiber-reinforced plastic intermediate substrate, fiber-reinforced plastic intermediate substrate, and method for producing said fiber-reinforced plastic intermediate substrate
CN112760983A (en) * 2019-10-21 2021-05-07 中国石油化工股份有限公司 Method for preparing aqueous emulsion type carbon fiber sizing agent
CN112760987A (en) * 2019-10-21 2021-05-07 中国石油化工股份有限公司 Method for preparing aqueous emulsion type carbon fiber sizing agent
CN112760985A (en) * 2019-10-21 2021-05-07 中国石油化工股份有限公司 Preparation method of aqueous emulsion type carbon fiber sizing agent
CN112760984A (en) * 2019-10-21 2021-05-07 中国石油化工股份有限公司 Method for preparing carbon fiber for composite material
CN112760986A (en) * 2019-10-21 2021-05-07 中国石油化工股份有限公司 Preparation method of aqueous emulsion type carbon fiber sizing agent
JP2021113285A (en) * 2020-01-20 2021-08-05 日本ユピカ株式会社 Liquid composition for fiber-reinforced plastic intermediate base material, fiber-reinforced plastic intermediate base material, and method for producing the fiber-reinforced plastic intermediate base material
CN113957718A (en) * 2021-09-30 2022-01-21 青岛汇智领先新材料科技有限公司 Preparation method of environment-friendly modified polyurethane vinyl carbon fiber sizing agent
EP3519516B1 (en) * 2016-09-30 2024-02-07 Axalta Coating Systems Huthwaite Uk Limited Composition
CN117623795A (en) * 2024-01-26 2024-03-01 浙江星辉新材料科技有限公司 Carbon-carbon plate and preparation method thereof
JP7463123B2 (en) 2019-02-22 2024-04-08 三洋化成工業株式会社 Fiber sizing agent

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6278276A (en) * 1985-09-25 1987-04-10 帝國産業株式会社 Composite string like product
JPH07178728A (en) * 1993-12-22 1995-07-18 Sumitomo Chem Co Ltd Moist hardenable prepreg, use thereof and method for application thereof
JPH1053956A (en) * 1996-08-05 1998-02-24 Toray Ind Inc Prepreg, fiber-reinforced composite material and mending and reinforcing method of concrete structure
JP2009102534A (en) * 2007-10-24 2009-05-14 Dic Corp Primer composition, civil engineering and building structure and construction method of civil engineering and building structure
JP2009197359A (en) * 2008-02-21 2009-09-03 Toray Ind Inc Reinforcing fiber, and fiber-reinforced composite material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6278276A (en) * 1985-09-25 1987-04-10 帝國産業株式会社 Composite string like product
JPH07178728A (en) * 1993-12-22 1995-07-18 Sumitomo Chem Co Ltd Moist hardenable prepreg, use thereof and method for application thereof
JPH1053956A (en) * 1996-08-05 1998-02-24 Toray Ind Inc Prepreg, fiber-reinforced composite material and mending and reinforcing method of concrete structure
JP2009102534A (en) * 2007-10-24 2009-05-14 Dic Corp Primer composition, civil engineering and building structure and construction method of civil engineering and building structure
JP2009197359A (en) * 2008-02-21 2009-09-03 Toray Ind Inc Reinforcing fiber, and fiber-reinforced composite material

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013027708A1 (en) * 2011-08-22 2013-02-28 三菱レイヨン株式会社 Carbon fiber sizing agent, aqueous dispersion thereof, carbon fiber bundle having adsorbed sizing agent, sheet-shaped article, and carbon fiber reinforced composite material
CN103748281A (en) * 2011-08-22 2014-04-23 三菱丽阳株式会社 Carbon fiber sizing agent, aqueous dispersion thereof, carbon fiber bundle having adsorbed sizing agent, sheet-shaped article, and carbon fiber reinforced composite material
JP5497908B2 (en) * 2011-08-22 2014-05-21 三菱レイヨン株式会社 Carbon fiber sizing agent, aqueous dispersion thereof, carbon fiber bundle with attached sizing agent, sheet-like material, and carbon fiber reinforced composite material
US9862824B2 (en) 2011-08-22 2018-01-09 Mitsubishi Chemical Corporation Carbon fiber sizing agent, aqueous dispersion thereof, carbon fiber bundle applied with sizing agent, sheet-like article comprising carbon fiber bundle, and carbon fiber reinforced composite material
JP2013053266A (en) * 2011-09-06 2013-03-21 Dh Material Kk Molding material and molding
JP2013245268A (en) * 2012-05-24 2013-12-09 Dh Material Kk Resin composition for carbon fiber-reinforced plastic, and molding material and carbon fiber-reinforced plastic using the same
CN103628323A (en) * 2013-11-25 2014-03-12 宜兴市飞舟高新科技材料有限公司 Carbon fiber sizing agent
US10793690B2 (en) 2016-03-24 2020-10-06 Dic Corporation Prepreg and molded article
EP3434718A4 (en) * 2016-03-24 2019-11-06 DIC Corporation Prepreg and molded article
JP6260754B1 (en) * 2016-03-24 2018-01-17 Dic株式会社 Prepregs and molded products
EP3519516B1 (en) * 2016-09-30 2024-02-07 Axalta Coating Systems Huthwaite Uk Limited Composition
EP3733747A4 (en) * 2017-12-26 2021-09-01 DIC Corporation Resin composition for carbon fiber-reinforced plastic molding, molding material, molded article, and production method for molded article
CN111527134A (en) * 2017-12-26 2020-08-11 Dic株式会社 Resin composition for carbon fiber-reinforced plastic molding, molding material, molded article, and method for producing molded article
CN113454139A (en) * 2019-02-12 2021-09-28 日本优必佳株式会社 Liquid composition for fiber-reinforced plastic intermediate substrate, and method for producing the fiber-reinforced plastic intermediate substrate
WO2020166441A1 (en) * 2019-02-12 2020-08-20 日本ユピカ株式会社 Liquid composition for fiber-reinforced plastic intermediate substrate, fiber-reinforced plastic intermediate substrate, and method for producing said fiber-reinforced plastic intermediate substrate
JP7463123B2 (en) 2019-02-22 2024-04-08 三洋化成工業株式会社 Fiber sizing agent
CN110130109A (en) * 2019-04-17 2019-08-16 镇江市高等专科学校 A kind of novel carbon fiber sizing agent
CN112760986A (en) * 2019-10-21 2021-05-07 中国石油化工股份有限公司 Preparation method of aqueous emulsion type carbon fiber sizing agent
CN112760983A (en) * 2019-10-21 2021-05-07 中国石油化工股份有限公司 Method for preparing aqueous emulsion type carbon fiber sizing agent
CN112760987A (en) * 2019-10-21 2021-05-07 中国石油化工股份有限公司 Method for preparing aqueous emulsion type carbon fiber sizing agent
CN112760984B (en) * 2019-10-21 2024-01-23 中国石油化工股份有限公司 Method for preparing carbon fiber for composite material
CN112760984A (en) * 2019-10-21 2021-05-07 中国石油化工股份有限公司 Method for preparing carbon fiber for composite material
CN112760985A (en) * 2019-10-21 2021-05-07 中国石油化工股份有限公司 Preparation method of aqueous emulsion type carbon fiber sizing agent
JP2021113285A (en) * 2020-01-20 2021-08-05 日本ユピカ株式会社 Liquid composition for fiber-reinforced plastic intermediate base material, fiber-reinforced plastic intermediate base material, and method for producing the fiber-reinforced plastic intermediate base material
CN113957718A (en) * 2021-09-30 2022-01-21 青岛汇智领先新材料科技有限公司 Preparation method of environment-friendly modified polyurethane vinyl carbon fiber sizing agent
CN117623795A (en) * 2024-01-26 2024-03-01 浙江星辉新材料科技有限公司 Carbon-carbon plate and preparation method thereof
CN117623795B (en) * 2024-01-26 2024-04-12 浙江星辉新材料科技有限公司 Carbon-carbon plate and preparation method thereof

Also Published As

Publication number Publication date
JP4856292B2 (en) 2012-01-18
JPWO2011092962A1 (en) 2013-05-30

Similar Documents

Publication Publication Date Title
JP4856292B2 (en) Sizing agent for carbon fiber, carbon fiber, method for producing the same, and molding material and molded article containing carbon fiber
US10793690B2 (en) Prepreg and molded article
JP6282602B2 (en) Urethane (meth) acrylate compound
JPS6133864B2 (en)
WO2017208605A1 (en) Prepreg sheet, and process for producing fiber-reinforced composite material
JP6376878B2 (en) Fiber reinforced plastic molding material and fiber reinforced plastic molding
WO2020166441A1 (en) Liquid composition for fiber-reinforced plastic intermediate substrate, fiber-reinforced plastic intermediate substrate, and method for producing said fiber-reinforced plastic intermediate substrate
AU2019225884B2 (en) Polyurethane-based polymer material having excellent resistance to heat distortion and elongation at tear
JP5791077B2 (en) Molding materials and molded products
JP5743043B1 (en) Concrete repair material
US11840598B2 (en) Urethane resin
KR101632127B1 (en) Resin composition for pressure vessels, and pressure vessel
JP2017214482A (en) Curable resin, curable resin composition, sizing agent for fiber, fiber for reinforcement, resin composition for fiber-reinforced composite material, and fiber-reinforced composite material
JP6966026B2 (en) Fiber reinforced molding material and molded products using it
JP4314838B2 (en) Curable adhesive and bonding method using the same
JP6626663B2 (en) Radical polymerizable resin composition and curing method thereof
JP2005146105A (en) Radical-polymerizable resin composition
JP2020128510A (en) Liquid composition for intermediate substrate of fiber-reinforced plastics, intermediate substrate of fiber-reinforced plastics, and production method of the intermediate substrate of fiber-reinforced plastics
JP7298800B1 (en) Radical-curable resin composition, fiber-reinforced molding material, and molded article using the same
JPS6026133B2 (en) Urethane modified acrylate resin composition
JP5045978B2 (en) Composite covering structure
JP2023158535A (en) Liquid composition for fiber-reinforced plastic intermediate base material, fiber-reinforced plastic intermediate base material, and production method of fiber-reinforced plastic intermediate base material

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011523224

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10844716

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10844716

Country of ref document: EP

Kind code of ref document: A1