WO2011090313A2 - 이전 블록의 움직임 벡터를 현재 블록의 움직임 벡터로 이용하는 영상 부호화, 복호화 방법 및 장치 - Google Patents

이전 블록의 움직임 벡터를 현재 블록의 움직임 벡터로 이용하는 영상 부호화, 복호화 방법 및 장치 Download PDF

Info

Publication number
WO2011090313A2
WO2011090313A2 PCT/KR2011/000387 KR2011000387W WO2011090313A2 WO 2011090313 A2 WO2011090313 A2 WO 2011090313A2 KR 2011000387 W KR2011000387 W KR 2011000387W WO 2011090313 A2 WO2011090313 A2 WO 2011090313A2
Authority
WO
WIPO (PCT)
Prior art keywords
motion vector
prediction
current block
block
determined
Prior art date
Application number
PCT/KR2011/000387
Other languages
English (en)
French (fr)
Other versions
WO2011090313A3 (ko
Inventor
이태미
한우진
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US13/574,110 priority Critical patent/US9351017B2/en
Priority to EP21181658.2A priority patent/EP3913923A1/en
Priority to JP2012549942A priority patent/JP2013517733A/ja
Priority to EP11734862.3A priority patent/EP2528332A4/en
Priority to MYPI2012003278A priority patent/MY184904A/en
Priority to CN201180014824.9A priority patent/CN102835111B/zh
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority claimed from KR1020110005377A external-priority patent/KR101607308B1/ko
Publication of WO2011090313A2 publication Critical patent/WO2011090313A2/ko
Publication of WO2011090313A3 publication Critical patent/WO2011090313A3/ko
Priority to US15/133,918 priority patent/US9491484B2/en
Priority to PH12016501593A priority patent/PH12016501593A1/en
Priority to PH12016501595A priority patent/PH12016501595A1/en
Priority to PH12016501594A priority patent/PH12016501594B1/en
Priority to PH12016501592A priority patent/PH12016501592B1/en
Priority to US15/293,375 priority patent/US9743102B2/en
Priority to US15/656,442 priority patent/US9924192B2/en
Priority to US15/892,052 priority patent/US10218998B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • H04N19/159Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/56Motion estimation with initialisation of the vector search, e.g. estimating a good candidate to initiate a search
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/577Motion compensation with bidirectional frame interpolation, i.e. using B-pictures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
    • H04N19/96Tree coding, e.g. quad-tree coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/172Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a picture, frame or field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/182Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a pixel

Definitions

  • the present invention relates to a method and apparatus for encoding and decoding an image, and more particularly, to a method and apparatus for encoding and decoding an image based on inter prediction.
  • the video is divided into blocks having a predetermined size to encode an image. Then, each block is predictively encoded using inter prediction or intra prediction.
  • a block identical or similar to the current block is searched in at least one reference frame to estimate a motion, and a motion vector generated as a result of the motion estimation is encoded with a pixel value and inserted into a bitstream.
  • the present invention provides a method and apparatus for determining a motion vector of a current block based on a motion vector of at least one previous block, and encoding and decoding an image based on the determined motion vector.
  • a computer readable recording medium having recorded thereon a program for executing the method is provided.
  • the probability of occurrence of an encoding mode for encoding the motion vector of at least one previous block as a motion vector of the current block is increased, and the accuracy of prediction is increased, so that an image can be encoded and decoded at a higher compression rate.
  • FIG. 1 illustrates an image encoding apparatus according to an embodiment of the present invention.
  • FIG 2 illustrates an image decoding apparatus according to an embodiment of the present invention.
  • FIG. 3 illustrates a hierarchical coding unit according to an embodiment of the present invention.
  • FIG. 4 illustrates an image encoder based on coding units according to an embodiment of the present invention.
  • FIG. 5 illustrates an image decoder based on coding units, according to an embodiment of the present invention.
  • FIG. 6 illustrates a maximum coding unit, a sub coding unit, and a prediction unit according to an embodiment of the present invention.
  • FIG. 7 illustrates coding units and transformation units, according to an embodiment of the present invention.
  • 8A and 8B illustrate division forms of a coding unit, a prediction unit, and a frequency transformation unit, according to an embodiment of the present invention.
  • FIG. 9 illustrates a video encoding apparatus according to another embodiment of the present invention.
  • FIG. 10 illustrates a method of predicting a block included in a bidirectional predictive picture, according to an embodiment of the present invention.
  • 11A and 11B illustrate a method of determining a motion vector of a current block based on a motion vector of a previously coded block according to an embodiment of the present invention.
  • 12A and 12B illustrate a method of determining a motion vector of a current block based on a motion vector of a previously encoded block according to another embodiment of the present invention.
  • FIGS. 13A and 13B illustrate a method of determining a motion vector of a current block based on a motion vector of a previously coded block according to another embodiment of the present invention.
  • FIG 14 illustrates an image decoding apparatus according to another embodiment of the present invention.
  • 15 is a flowchart illustrating a video encoding method according to an embodiment of the present invention.
  • 16 is a flowchart illustrating an image decoding method according to an embodiment of the present invention.
  • the motion vector of the current block is determined based on a motion vector of at least one block decoded before the current block according to an embodiment of the present invention for solving the above technical problem, and the current block is decoded using the determined motion vector.
  • the method may further include decoding information on a prediction direction used for decoding the current block and information on pixel values of the current block among a first direction, a second direction, and a bidirectional direction; Determining a prediction direction of the current block based on the information on the decoded prediction direction, and determining at least one motion vector for performing prediction of the determined prediction direction; And reconstructing the current block based on at least one motion vector for prediction of the determined prediction direction and information on the decoded pixel values, wherein the first direction is from the current picture to a preceding picture.
  • Direction, and the second direction is a direction from the current picture to a trailing picture.
  • a motion vector of a current block is determined based on a motion vector of at least one block encoded before the current block, and the current block is encoded using the determined motion vector.
  • the method may further include determining a motion vector in a first direction and a motion vector in a second direction of the current block based on the motion vectors of at least one block encoded before the current block; Determining a prediction used for encoding the current block among the prediction in the first direction, the prediction in the second direction, and the prediction in both directions based on the motion vector in the first direction and the motion vector in the second direction; And encoding information on pixel values of the current block generated based on the prediction direction and the determined prediction, wherein the first direction is a direction from the current picture to a preceding picture, The second direction is a direction from the current picture to the following picture.
  • the motion vector of the current block is determined based on a motion vector of at least one block decoded before the current block according to an embodiment of the present invention for solving the above technical problem, and the current block is decoded using the determined motion vector.
  • the apparatus may further include: a decoder configured to decode information about a prediction direction used for decoding the current block among first, second and bidirectional directions, and information on pixel values of the current block; A motion vector determiner configured to determine a prediction direction of the current block based on the decoded prediction direction information and to determine at least one motion vector for performing prediction of the determined prediction direction; And a reconstruction unit for reconstructing the current block based on at least one motion vector for prediction of the determined prediction direction and information on the decoded pixel values, wherein the first direction is from the current picture to a preceding picture.
  • Direction, and the second direction is a direction from the current picture to a trailing picture.
  • a motion vector of a current block is determined based on a motion vector of at least one block encoded before the current block, and the current block is encoded using the determined motion vector.
  • the apparatus may further include a motion vector determiner configured to determine a motion vector in a first direction and a motion vector in a second direction of the current block based on the motion vectors of at least one block encoded before the current block; Determine a prediction used for encoding the current block among the prediction in the first direction, the prediction in the second direction, and the prediction in both directions based on the motion vector in the first direction and the motion vector in the second direction, and the prediction direction And an encoder for encoding information about pixel values of the current block generated based on the determined prediction, wherein the first direction is a direction from the current picture to a preceding picture, and the second direction is And a direction from the current picture to the trailing picture.
  • the present invention provides a computer-readable recording medium for executing the video encoding method and / or video decoding method.
  • FIG. 1 illustrates an image encoding apparatus according to an embodiment of the present invention.
  • an image encoding apparatus 100 may include a maximum coding unit splitter 110, a coded depth determiner 120, an image data encoder 130, and an encoding information encoder. 140.
  • the maximum coding unit splitter 110 may divide the current frame or the current slice based on the maximum coding unit that is the largest coding unit.
  • the current frame or the current slice may be split into at least one maximum coding unit.
  • a coding unit may be expressed using a maximum coding unit and a depth.
  • the maximum coding unit indicates a coding unit having the largest size among the coding units of the current frame, and the depth indicates the degree to which the coding unit is hierarchically reduced.
  • the coding unit may be reduced from the maximum coding unit to the minimum coding unit, the depth of the maximum coding unit may be defined as the minimum depth, and the depth of the minimum coding unit may be defined as the maximum depth.
  • the sub-coding unit having a depth of k may include a plurality of sub-coding units having a depth greater than k.
  • encoding the image in larger units may encode the image at a higher image compression rate.
  • the coding unit is enlarged and its size is fixed, the video cannot be efficiently encoded by reflecting the characteristics of the continuously changing video.
  • the compression rate when encoding a flat area of the sea or sky, the compression rate may be improved by increasing the coding unit. However, when the complex area of the people or building is encoded, the compression rate is improved by decreasing the coding unit.
  • an embodiment of the present invention sets a maximum image coding unit having a different size for each frame or slice and sets a maximum depth. Since the maximum depth means the maximum number of times the coding unit can be reduced, the size of the minimum coding unit included in the maximum image coding unit can be variably set according to the maximum depth.
  • the coding depth determiner 120 determines the maximum depth.
  • the maximum depth may be determined based on the rate-distortion cost calculation.
  • the maximum depth may be determined differently for each frame or slice, or differently for each maximum coding unit.
  • the determined maximum depth is output to the encoding information encoder 140, and the image data for each maximum coding unit is output to the image data encoder 130.
  • the maximum depth means a coding unit having the smallest size that can be included in the maximum coding unit, that is, the minimum coding unit.
  • the maximum coding unit may be divided into sub-coding units having different sizes according to different depths. It will be described later in detail with reference to Figures 8a and 8b.
  • sub-coding units of different sizes included in the largest coding unit may be predicted or transformed based on processing units of different sizes.
  • the transform can be a discrete cosine transform (Karhunen Loever Transform) or KLT as transforming pixel values in the spatial domain into coefficients in the frequency domain.
  • the image encoding apparatus 100 may perform a plurality of processing steps for image encoding based on various sizes and various types of processing units.
  • processing steps such as prediction, transformation, and entropy encoding are performed, and processing units having the same size may be used in all stages, and processing units having different sizes may be used in stages.
  • the image encoding apparatus 100 may select a processing unit different from the coding unit to predict a predetermined coding unit.
  • the processing unit for prediction may be 2Nx2N, 2NxN, Nx2N, NxN, or the like.
  • motion prediction may be performed based on a processing unit of half of at least one of a height or a width of a coding unit.
  • the processing unit on which the prediction is based is called a "prediction unit”.
  • the prediction mode may be at least one of an intra mode, an inter mode, and a skip mode, and the specific prediction mode may be performed only for a prediction unit of a specific size or shape.
  • the intra mode may be performed only for a prediction unit having a square size of 2N ⁇ 2N or N ⁇ N.
  • the skip mode may be performed only for a prediction unit having a size of 2N ⁇ 2N. If there are a plurality of prediction units in the coding unit, a prediction mode having the smallest encoding error may be selected by performing prediction for each prediction unit.
  • the image encoding apparatus 100 may convert image data based on a processing unit having a size different from that of the coding unit.
  • the transformation may be performed based on a data unit having a size smaller or equal to the coding unit.
  • the processing unit which is the basis of conversion is called a "conversion unit.”
  • the coding depth determiner 120 may determine the sub-coding units included in the maximum coding unit by using a Lagrangian Multiplier-based rate-distortion optimization technique. In other words, it may be determined in which form a plurality of sub coding units are split, where the plurality of sub coding units vary in size according to depth. Then, the image data encoder 130 encodes the maximum coding unit based on the partitioning form determined by the coded depth determiner 120 to output the bitstream.
  • the encoding information encoder 140 encodes information about an encoding mode of the largest coding unit determined by the encoding depth determiner 120.
  • the bitstream is output by encoding information on a split form of a maximum coding unit, information on a maximum depth, and information about an encoding mode of a sub coding unit according to depths.
  • the information about the encoding mode of the sub coding unit may include information about a prediction unit of the sub coding unit, prediction mode information for each prediction unit, information about a transformation unit of the sub coding unit, and the like.
  • the information about the split type of the largest coding unit may be information indicating whether to split the coding unit. For example, when dividing and encoding the largest coding unit, the information indicating whether to split the maximum coding unit is encoded, and even when the sub-coding unit generated by dividing the maximum coding unit is divided and encoded, Information indicating whether to split is encoded in the sub coding unit.
  • the information indicating whether to split may be flag information indicating whether to split.
  • information about a coding mode may be determined for one maximum coding unit.
  • the image encoding apparatus 100 may generate a sub coding unit by dividing the maximum coding unit by half the height and width. That is, when the size of the coding unit of the k depth is 2Nx2N, the size of the coding unit of the k + 1 depth is NxN.
  • the image encoding apparatus 100 may determine an optimal splitting form for each maximum coding unit based on the size and the maximum depth of the maximum coding unit considering the characteristics of the image.
  • the size of the maximum coding unit variably in consideration of the image characteristics and encoding the image by dividing the maximum coding unit into sub-coding units having different depths, it is possible to encode images of various resolutions more efficiently.
  • FIG 2 illustrates an image decoding apparatus according to an embodiment of the present invention.
  • the image decoding apparatus 200 includes an image data acquisition unit 210, an encoding information extractor 220, and an image data decoder 230.
  • the image-related data acquisition unit 210 parses the bitstream received by the image decoding apparatus 200, obtains image data for each maximum coding unit, and outputs the image data to the image data decoder 230.
  • the image data acquisition unit 210 may extract information on the maximum coding unit of the current frame or slice from the header for the current frame or slice. In other words, the bitstream is divided into maximum coding units so that the image data decoder 230 decodes the image data for each maximum coding unit.
  • the encoding information extracting unit 220 parses the bit string received by the image decoding apparatus 200 and extracts the encoding sequence of the maximum coding unit, the maximum depth, the split form of the maximum coding unit, and the encoding mode of the sub-coding unit from the header for the current frame. Extract information about Information about the division type and the encoding mode is output to the image data decoder 230.
  • the information about the split form of the largest coding unit may include information about sub-coding units having different sizes according to the depth included in the maximum coding unit. As described above, the information about the split form may be information (eg, flag information) indicating whether the split is encoded for each coding unit.
  • the information about the encoding mode may include information about a prediction unit for each sub coding unit, information about a prediction mode, information about a transformation unit, and the like.
  • the image data decoder 230 reconstructs the current frame by decoding image data of each maximum coding unit based on the information extracted by the encoding information extractor.
  • the image data decoder 230 may decode the sub coding unit included in the maximum coding unit based on the information about the split form of the maximum coding unit.
  • the decoding process may include an inter prediction process and an inverse transform process including intra prediction and motion compensation.
  • the image data decoder 230 may perform intra prediction or inter prediction based on the information about the prediction unit for each sub coding unit and the information about the prediction mode, for the prediction of the sub coding unit. In addition, the image data decoder 230 may perform inverse transformation for each sub coding unit based on the information about the transformation unit of the sub coding unit.
  • FIG. 3 illustrates hierarchical coding units according to an embodiment of the present invention.
  • the hierarchical coding unit may include 32x32, 16x16, 8x8, and 4x4 starting from a coding unit having a width x height of 64x64.
  • the maximum coding unit has a size of 64x64 and a maximum depth of 2 for image data 310 having a resolution of 1920x1080.
  • the maximum coding unit has a size of 64x64 and a maximum depth of 4 for the image data 320 having another resolution of 1920x1080.
  • the maximum coding unit has a size of 16x16 and a maximum depth of 2.
  • the maximum size of the coding size be relatively large in order to not only improve the compression ratio but also accurately reflect the image characteristics. Therefore, compared to the image data 330, the image data 310 and 320 having higher resolution may be selected to have a maximum coding unit size of 64 ⁇ 64.
  • the maximum depth represents the total number of layers in the hierarchical coding unit. Since the maximum depth of the image data 310 is 2, the coding unit 315 of the image data 310 is a sub-coding unit having a long axis size of 32 or 16 from a maximum coding unit having a long axis size of 64 as the depth increases. Can include up to.
  • the coding unit 335 of the image data 330 has encoding lengths of 8 and 4 from the maximum coding units having a major axis size of 16 as the depth increases. It can include up to units.
  • the coding unit 325 of the video data 320 has a major axis size of 32, 16, 8, or 4 as the depth increases from the largest coding unit having a major axis size of 64. It may include up to sub coding units. As the depth increases, the image is encoded based on a smaller sub-coding unit, thereby making it suitable for encoding an image including a finer scene.
  • FIG. 4 is a diagram of an image encoder based on coding units, according to an embodiment of the present invention.
  • the intra predictor 410 performs intra prediction on the prediction unit of the intra mode among the current frame 405, and the motion estimator 420 and the motion compensator 425 perform the current frame on the prediction unit of the inter mode. 405 and the reference frame 495 to perform inter prediction and motion compensation.
  • Residual values are generated based on the prediction unit output from the intra predictor 410, the motion estimator 420, and the motion compensator 425, and the generated residual values are converted to the transform unit 430 and the quantizer ( 440 is output as a quantized transform coefficient.
  • the quantized transform coefficients are reconstructed back to the residual values through the inverse quantizer 460 and the inverse transform unit 470, and the reconstructed residual values are post-processed through the deblocking unit 480 and the loop filtering unit 490. And output to the reference frame 495.
  • the quantized transform coefficients may be output to the bitstream 455 via the entropy encoder 450.
  • An intra predictor 410, a motion estimator 420, a motion compensator 425, and a transform unit, which are components of the image encoder 400, may be encoded according to an image encoding method according to an embodiment of the present invention.
  • the quantizer 440, the entropy encoder 450, the inverse quantizer 460, the inverse transformer 470, the deblocking unit 480, and the loop filtering unit 490 are all the maximum coding units and depths.
  • Image encoding processes are processed based on a sub coding unit, a prediction unit, and a transformation unit.
  • FIG. 5 illustrates an image decoder based on coding units, according to an embodiment of the present invention.
  • the bitstream 505 is parsed through the parser 510 to encode encoded image data and encoding information necessary for decoding.
  • the encoded image data is output as inverse quantized data through an entropy decoding unit 520 and an inverse quantization unit 530, and reconstructed into residual values via an inverse transformation unit 540.
  • the residual values are added to the result of the intra prediction of the intra predictor 550 or the result of the motion compensation of the motion compensator 560 and reconstructed for each coding unit.
  • the reconstructed coding unit is used for prediction of the next coding unit or the next frame through the deblocking unit 570 and the loop filtering unit 580.
  • Parsing unit 510, entropy decoding unit 520, inverse quantization unit 530, inverse transform unit 540 which are components of the image decoding unit 400 to decode according to the image decoding method according to an embodiment of the present invention
  • the intra prediction unit 550, the motion compensator 560, the deblocking unit 570, and the loop filtering unit 580 are all based on a maximum coding unit, a sub coding unit according to depth, a prediction unit, and a transformation unit. Process video decoding processes.
  • the intra predictor 550 and the motion compensator 560 determine the prediction unit and the prediction mode in the sub coding unit in consideration of the maximum coding unit and the depth, and the inverse transformer 540 considers the size of the transform unit. Perform inverse transformation.
  • FIG. 6 illustrates a maximum coding unit, a sub coding unit, and a prediction unit according to an embodiment of the present invention.
  • the image encoding apparatus 100 and the image decoding apparatus 200 use hierarchical coding units to perform encoding and decoding in consideration of image characteristics.
  • the maximum coding unit and the maximum depth may be adaptively set according to the characteristics of the image or may be variously set according to a user's request.
  • the hierarchical structure 600 of a coding unit shows a case in which the maximum coding unit 610 has a height and a width of 64 and a maximum depth of four.
  • the depth increases along the vertical axis of the hierarchical structure 600 of the coding unit, and the width and the height of the sub coding units 620 through 650 decrease as the depth increases.
  • a prediction unit of the maximum coding unit 610 and the sub coding units 620 to 650 is illustrated along the horizontal axis of the hierarchical structure 600 of the coding unit.
  • the maximum coding unit 610 has a depth of 0, and the size, ie, width and height, of the coding unit is 64x64.
  • the depth increases along the vertical axis and includes a sub coding unit 620 of depth 1 having a size of 32x32, a sub coding unit 630 of depth 2 having a size of 16x16, a sub coding unit 640 of depth 3 having a size of 8x8, and a size of 4x4.
  • the sub coding unit 650 having a depth of 4 having a size of 4 ⁇ 4 is a minimum coding unit.
  • the prediction unit of the maximum coding unit 610 having a depth of 0 is the prediction unit 610 of the size 64x64, the prediction unit 612 of the size 64x32, or the size 32x64 that is the same size or smaller than the size of the coding unit 610 of the size 64x64.
  • the prediction unit of the coding unit 620 having a size of 32x32 having a depth of 1 is a prediction unit 620 having a size of 32x32, a prediction unit 622 having a size of 32x16, and a size of 16x32 having a size equal to or smaller than that of the coding unit 620 having a size of 32x32. May be a prediction unit 624 of, a prediction unit 626 of size 16x16.
  • the prediction unit of the coding unit 630 having a size of 16x16 having a depth of 2 is a prediction unit 630 having a size of 16x16, a prediction unit 632 having a size of 16x8, and a size of 8x16 having a size equal to or smaller than that of the coding unit 630 having a size of 16x16. May be a prediction unit 634 of, and a prediction unit 636 of size 8x8.
  • the prediction unit of the coding unit 640 of size 8x8 having a depth of 3 is the prediction unit 640 of size 8x8, the prediction unit 642 of size 8x4, and the size 4x8 of the same size or smaller than the coding unit 640 of the size 8x8. May be a prediction unit 644 of, a prediction unit 646 of size 4x4.
  • the coding unit 650 of the size 4x4 having a depth of 4 is the coding unit of the maximum depth
  • the prediction unit is the prediction unit 650 of the size of 4x4.
  • a coding unit having a maximum depth does not necessarily have the same size of a coding unit and a prediction unit.
  • prediction may be performed by dividing a prediction unit having a smaller size than a coding unit. have.
  • FIG. 7 illustrates coding units and transformation units, according to an embodiment of the present invention.
  • the image encoding apparatus 100 and the image decoding apparatus 200 encode the AS as the maximum coding unit or split and encode the maximum coding unit into sub-coding units smaller than or equal to the maximum coding unit.
  • the size of a transform unit for transformation in the encoding process may also be selected as the size for the highest compression rate regardless of the coding unit and the prediction unit. For example, when the current coding unit 710 is 64x64 size, the transformation may be performed using the 32x32 size transformation unit 720.
  • 8A and 8B illustrate division forms of a coding unit, a prediction unit, and a transformation unit, according to an embodiment of the present invention.
  • FIG. 8A illustrates coding units and prediction units according to an embodiment of the present invention.
  • FIG. 8A illustrates a segmentation form selected by the image encoding apparatus 100 according to an embodiment of the present invention to encode the maximum coding unit 810.
  • the image encoding apparatus 100 divides the maximum coding unit 810 into various forms, encodes, and compares encoding results of various divided forms based on an R-D cost to select an optimal divided form. If it is optimal to encode the maximum coding unit 810 as it is, the maximum coding unit 800 may be encoded without splitting the maximum coding unit 810 as shown in FIGS. 8A and 8B.
  • a maximum coding unit 810 having a depth of zero is divided and encoded into sub coding units having a depth of 1 or more.
  • the maximum coding unit 810 is divided into four sub coding units of depth 1, and then all or part of the sub coding units of depth 1 are further divided into sub coding units of depth 2.
  • sub coding units having a depth of 1 a sub coding unit shouted at the upper right and a sub coding unit located at the lower left are divided into sub coding units having a depth of 2 or more. Some of the sub coding units having a depth of 2 or more may be divided into sub coding units having a depth of 3 or more.
  • FIG. 8B illustrates a division form of the prediction unit with respect to the maximum coding unit 810.
  • the prediction unit 860 for the maximum coding unit may be divided differently from the maximum coding unit 810. In other words, the prediction unit for each of the sub coding units may be smaller than the sub coding unit.
  • the prediction unit for the sub coding unit 854 which is shouted at the lower right of the sub coding units of depth 1, may be smaller than the sub coding unit 854.
  • a prediction unit for some of the sub coding units 815, 816, 850, and 852 among the sub coding units 814, 816, 818, 828, 850, and 852 of depth 2 may be smaller than the sub coding unit.
  • the prediction unit for the sub coding units 822, 832, and 848 of depth 3 may be smaller than the sub coding units.
  • the prediction unit may be in the form of dividing each sub coding unit into the height or the width direction, or may be in the form of being divided into the height and the width direction.
  • FIG. 8B illustrates a prediction unit and a transformation unit according to an embodiment of the present invention.
  • FIG. 8B illustrates a split form of a prediction unit for the maximum coding unit 810 illustrated on the right side of FIG. 8A, and the right side of FIG. 8B illustrates a split form of a transform unit of the maximum coding unit 810.
  • the split form of the transform unit 870 may be set differently from the prediction unit 860.
  • the transformation unit may be selected to have the same size as the size of the coding unit 854 of the depth 1.
  • the transformation unit may be set to the coding units 814 and 850 of the depth 2. It can be chosen to be the same size as the original size.
  • the transform unit may be selected with a smaller size than the prediction unit. For example, when the prediction unit for the coding unit 852 of depth 2 is selected in the form of half the width, the transform unit may be selected in the form of half the height and the width, which are smaller than the prediction unit.
  • FIG. 9 illustrates a video encoding apparatus according to another embodiment of the present invention.
  • the image encoding apparatus 900 of FIG. 9 may be included in the image encoding apparatus 100 of FIG. 1 and the image encoding apparatus 400 of FIG. 4 to encode a current block based on inter prediction.
  • the image encoding apparatus 900 includes a motion vector determiner 910 and an encoder 920.
  • Some encoding modes determine a motion vector of the current block based on the motion vectors of at least one block encoded before the current block, and encode the current block based on the determined motion vector.
  • Direct prediction mode and skip mode are examples of such modes. Both the direct prediction mode and the skip mode are encoding modes that do not separately encode a motion vector as information on the current block because the motion vector of the current block is determined based on previously encoded information.
  • the direct prediction mode encodes the residual block generated by subtracting the prediction block generated according to the motion vector from the current block as information on the pixel value
  • the skip mode considers that the prediction block is the same as the current block and skips it. It is different that only the flag information indicating that the mode is encoded is encoded as the information on the pixel value.
  • the image encoding apparatus 900 predicts and encodes a current block included in a bidirectional predictive picture in various prediction directions when encoding the current block included in the bidirectional predictive picture. It demonstrates in detail with reference.
  • FIG. 10 illustrates a method of predicting a block included in a bidirectional predictive picture, according to an embodiment of the present invention.
  • the current block when encoding the current block 1010 included in the current picture 1000, which is a bidirectional predictive picture, the current block includes a picture 1020 at a time before the current picture and a picture 1030 at a time after the current picture. Prediction coding is performed with reference to at least one. Search for at least one block 1022 and 1032 corresponding to the current block 1010 in at least one of a picture 1020 at a previous time and a picture 1030 at a later time, and predictively encode the current block based on the retrieved block. do.
  • the current block 1010 is based on the corresponding block 1022 retrieved from the picture in the first direction. Solution can be predicted.
  • the direction from the current picture 1000 to the next picture 1030 is referred to as a second direction (ie, L1 direction)
  • the current block 1010 is in a second direction. It can be predicted based on the corresponding block 1032 retrieved from the picture of.
  • the current block 1010 may be predicted based on both the first direction prediction and the second direction prediction, that is, the bidirectional prediction.
  • the direct prediction mode according to the related art may be applied only when bidirectional prediction is performed on the current block 1010.
  • the current block when the current block is predictively encoded by performing only the first direction prediction, the current block cannot be encoded according to the direct prediction mode.
  • the current block Even when the current block is predictively encoded by performing only the second direction prediction, the current block may be encoded according to the direct prediction mode. Can't.
  • the skip mode according to the prior art.
  • the motion vector of the current block 1010 determined by the motion vector of the previously encoded block adjacent to the current block 1010 should be the motion vector mv_L0 in the first direction.
  • the prediction block generated based on the direction prediction is regarded as the same as the current block 1010, and flag information indicating that the prediction block is encoded in the skip mode is encoded.
  • the prediction that can be performed on the blocks included in the bidirectional predictive picture are the first direction prediction, the second direction prediction, and the bidirectional prediction
  • the direct prediction mode and the skip mode perform prediction in a specific direction. Since it can be applied only when performing, there is a disadvantage in that the direct prediction mode and the skip mode which have a large influence on the compression ratio are limited.
  • the image encoding apparatus 900 determines the motion vector of the current block 1010 based on previously encoded information, so that the prediction is performed in all directions without encoding the motion vector.
  • the encoding is performed according to an image encoding method that may be performed with respect to.
  • the motion vector determiner 910 determines the first direction motion vector and the second direction motion vector of the current block 1010 to perform the first direction prediction, the second direction prediction, and the bidirectional prediction.
  • the first direction motion vector and the second direction motion vector are determined based on the motion vectors of at least one block encoded before the current block.
  • the first direction motion vector and the second direction motion vector may be determined according to a motion vector determining method according to the prior art.
  • the H.264 / AVC direct prediction mode is used.
  • the motion vector may be determined according to a method of determining the motion vector. If the current block 1010 is encoded according to a skip mode, that is, a mode in which neither information about the motion vector nor the information about the residual block is encoded, the motion vector of the H.264 / AVC skip mode is determined according to the method of determining the motion vector.
  • the motion vector can be determined.
  • H.264 / AVC direct prediction modes include temporal direct prediction mode and spatial direct prediction mode. Therefore, the motion vector determiner 910 moves the first direction in the method of determining the motion vector of the current block in the H.264 / AVC temporal prediction mode and the method of determining the motion vector of the current block in the spatial direct prediction mode. It can be used to determine the vector and the second direction motion vector. This will be described in detail with reference to FIGS. 11A and 11B.
  • 11A illustrates a method of determining a motion vector of a current block based on a motion vector of a previously coded block according to an embodiment of the present invention.
  • the motion vector of the current block 1010 of the current picture 1110 is colocated with a temporally trailing picture 1114. It may be generated using the motion vector of the block 1120 of.
  • the first directional motion of the current block based on the motion vector of the block 1120 at the same position of the current block in the anchor picture 1114.
  • the vector and the second directional motion vector can be determined.
  • the motion vector of the block 1120 at the same location is based on the temporal distance between the current picture 1110 and the preceding picture 1112 and the time distance between the anchor picture 1114 and the preceding picture 1112.
  • the first motion vector and the second motion vector of the current block 1010 may be determined by scaling the motion vector of 1120.
  • the motion vector mv_colA of the block 1120 at the same position as the current block 1010 is generated for the retrieved block 1122 of the picture 1112 at a time before the current picture 1010, then the current block 1110
  • the first direction motion vector and the second direction motion vectors of mv_L0A and mv_L1A can be generated as follows.
  • mv_L0A (t1 / t2) * mv_colA
  • mv_L1A mv_L0A-mv_colA
  • mv_L0A means the first directional motion vector of the current block 1010
  • mv_L1A means the second directional motion vector of the current block 1010.
  • 11B illustrates a method of determining a motion vector of a current block based on a motion vector of a previously encoded block according to an embodiment of the present invention.
  • the first direction motion vector and the second direction motion vector of the current block 1010 are based on mv_A, mv_B, and mv_C, which are motion vectors of the blocks 1130-1134 adjacent to the current block 1100. Can be determined.
  • the first direction motion vector and the second direction motion vector are determined based on the motion vectors of the blocks located on the left, upper, and right upper sides of the current block 1010.
  • the median of the motion vectors in the first direction among mv_A, mv_B, and mv_C is determined as the first direction motion vector of the current block 1010, and the second of mv_A, mv_B, and mv_C.
  • the median of the motion vectors in the direction is determined as the second direction motion vector of the current block 1010.
  • the motion vector in the second direction among mv_A, mv_B and mv_C is set to '0' to calculate a median value
  • the first of mv_A, mv_B and mv_C is set to '0' and the median is calculated.
  • the picture corresponding to the smallest number among the first direction reference numbers according to mv_A, mv_B and mv_C is determined as the first direction reference picture, and the picture corresponding to the smallest number among the second direction reference numbers according to mv_A, mv_B and mv_C. Is determined as the second direction reference picture.
  • the median value of the first directional motion vectors among the motion vectors mv_A, mv_B, and mv_C of the blocks 1130 to 1134 adjacent to the current block 1010 is shown. May be determined as the motion vector of the current block.
  • the decoding side may determine and reconstruct the motion vector of the current block using the same method as in FIGS. 11A and 11B. .
  • the video encoding side and the decoding side may implicitly share the same motion vector determination method and determine the motion vector of the current block according to the shared motion vector determination method.
  • the encoding side generates a plurality of motion vector candidates based on the motion vectors of the plurality of blocks encoded before the current block, and the current block is generated from the generated plurality of motion vector candidates.
  • the information for specifying the motion vector of the explicit block may be explicitly encoded and inserted into the beast stream, and the decoding side may determine the motion vector of the current block based on the explicitly encoded and inserted information.
  • 12A and 12B illustrate a method of determining a motion vector of a current block based on a motion vector of a previously encoded block according to another embodiment of the present invention.
  • the motion vector determiner 910 may generate a plurality of motion vector candidates based on motion vectors of previously encoded blocks adjacent to the current block.
  • the motion vector of the leftmost a0 block, the uppermost b0 block adjacent to the left, the c block adjacent to the upper right, the d block adjacent to the upper left and the e block adjacent to the lower right are plural It may be a motion vector candidate.
  • One of the motion vectors in the first direction among the motion vectors of the a0 block, the b0 block, the c block, and the d block is determined as the motion vector in the first direction of the current block, and the blocks of the a0 block, the b0 block, the c block, and the d block are determined.
  • One of the motion vectors in the second direction among the motion vectors may be determined as the motion vector in the second direction of the current block.
  • the motion vectors of the a0 block and the b0 block among the motion vectors of the a0 block, the b0 block, the c block, and the d block are the motion vectors in the first direction
  • one of the motion vector of the a0 block and the motion vector of the b0 block is selected.
  • the first directional motion vector of the current block may be determined, and one of the motion vectors of the remaining c and d blocks may be determined as the second directional motion vector of the current block.
  • a motion vector capable of predicting the current block more accurately may be selected.
  • the vector may be determined as the first directional motion vector of the current block.
  • the sum of absolute difference (SAD) of the residual block generated by subtracting the prediction block generated as a result of the prediction according to each motion vector from the current block is calculated, and a small motion vector of the SAD can be determined as the motion vector of the current block.
  • motion vectors of all adjacent blocks of the current block may be used as motion vector candidates.
  • the motion vector of all blocks adjacent to the top as well as the left a0 block among the blocks adjacent to the top may be used as the motion vector candidate, and the left adjacent to the left as well as the top b0 block among the blocks adjacent to the left.
  • the motion vector of all blocks can be used as a motion vector candidate.
  • one of the motion vectors in the first direction is determined as the first direction motion vector of the current block in the motion vector candidates of all the blocks, and one of the motion vectors in the second direction is the current block. It can be determined as a second direction motion vector of.
  • the motion vector determiner 910 may determine one of the following motion vector candidates as the motion vector of the current block as follows.
  • mv_L0A and mv_L1A may be motion vectors according to FIG. 11A
  • median (mv_a0, mv_b0, mv_c) may be motion vectors according to FIG. 11B. The remaining motion vectors have been described above with reference to FIGS. 12A and 12B.
  • a first directional motion vector of the current block may be determined among the motion vectors of the first direction included in the C set, and a second directional motion vector of the current block may be determined among the motion vectors of the second direction included in the C set.
  • the number of candidates may be reduced, and among them, the motion vector of the current block may be determined.
  • mv_x means the motion vector of the x block
  • median () means the median value
  • mv_a0 which is a motion vector of a0
  • mv_a ' mv_a1.
  • mv_b means the first valid motion vector among mv_b0, mv_b1, ..., mv_bN
  • mv_c' means the first valid motion vector among mv_c, mv_d and mv_e.
  • mv_L0A and mv_L1A may be motion vectors according to FIG. 11A.
  • another motion vector generated using the time distance between adjacent pictures instead of mv_L0A and mvL1A may be included in the candidate. This will be described in detail with reference to FIGS. 13A and 13B.
  • FIGS. 13A and 13B illustrate a method of determining a motion vector of a current block based on a motion vector of a previously coded block according to another embodiment of the present invention.
  • a motion vector candidate determined based on a time distance may be determined in a different manner from the time direct prediction mode according to the prior art.
  • the motion vector candidate of the current block 1010 of the current picture 1110 may be generated using the motion vector of the block 1320 of the same location (colocated) of the preceding picture 1112. For example, if the motion vector mv_colB of the block 1320 at the same position as the current block 1010 is generated for the retrieved block 1322 of the trailing picture 1114, mv_L0B and the motion vector candidates of the current block 1010 and mv_L1B may be generated as follows.
  • mv_L0B mv_L1B-mv_colB
  • mv_L0B refers to the first direction motion vector candidate of the current block 1010
  • mv_L1B refers to the second direction motion vector candidate of the current block 1010.
  • the motion vector candidate of the current block 1010 of the current picture 1110 may be determined using the motion vector of the block 1330 at the same location of the preceding picture 1112. For example, if the motion vector mv_colC of the block 1330 at the same position as the current block 1010 is generated for the retrieved block 1332 of another preceding picture 1116, the motion vector candidate of the current block 1010 is mv_L0C may be generated as follows.
  • mv_L0C (t6 / t5) x mv_colC
  • 13A and 13B described above with reference to mv_L0B, mv_L1B, and mv_L0B may be included in the C set that is candidates of the motion vector of the current block 1010 described above. It may be included in a C set instead of mv_L0A and mv_L1A, or may be included in a C set in addition.
  • the encoder 920 encodes information about the current block. do.
  • the encoder 920 predicts the first direction and the second direction based on the determined first direction motion vector and the second direction motion vector. And bidirectional prediction. Then, the prediction direction that most accurately predicts the current block is determined.
  • a prediction direction having the smallest SAD of the residual block may be determined by comparing the prediction result in the first direction, the prediction result in the second direction, and the bidirectional prediction result with the current block.
  • the prediction direction may be determined by performing the prediction of the first direction, the prediction of the second direction, and the bidirectional prediction, and comparing the encoded result based on the rate distortion cost.
  • Information about the prediction direction may be encoded as a sequence parameter, slice parameter or block parameter.
  • a predetermined binary number may be allocated to the first direction, the second direction, and the bidirectional direction, and the binary number corresponding to the prediction direction used for encoding the current block may be entropy encoded and inserted into the bitstream.
  • information about the residual block may be separately encoded as in the direct prediction mode.
  • a residual block may be generated by subtracting a prediction block generated as a result of the prediction according to the determined prediction direction from the current block, transforming the residual block, generating coefficients in a frequency domain, and quantizing and entropy encoding the generated coefficients.
  • the transform can be a discrete cosine transform or a KLT transform.
  • the flag information indicating that the skip mode according to the prior art and the prediction block and the current block are the same as information on pixel values may be encoded.
  • the prediction block generated as a result of the prediction according to the determined prediction direction may be regarded as the same as the current block, and only flag information indicating that the current block and the prediction block are the same may be encoded.
  • the picture referenced for prediction may be inferred based on the reference index of previously coded blocks.
  • a reference number of the current block may be determined based on reference numbers of previously encoded blocks, and a reference picture corresponding thereto may be determined.
  • a reference picture corresponding to the motion vector determined by the motion vector determiner 910 may be determined as a reference picture of the current block. For example, if mv_L0A is determined as the first directional motion vector of the current block as described above with reference to FIG. 11A, the preceding picture 1112 according to mv_L0A may be automatically determined as a reference picture of the current block.
  • the encoder 920 may include a plurality of motion vectors.
  • Information indicating at least one of the first direction motion vector and the second direction motion vector of the current block may be encoded in the appointment vector candidate.
  • the prediction direction is performed only in the first direction as a result of determining the prediction direction
  • only information indicating the first direction motion vector is encoded in the plurality of motion vector candidates.
  • Even when prediction is performed only in the second direction only information indicating the second direction motion vector may be encoded.
  • information indicating the first direction motion vector and the second direction motion vector may be encoded in the plurality of motion vector candidates.
  • Binary numbers may be allocated to each of the motion vectors included in the above-described C set, and among them, the binary numbers allocated to the first direction motion vector and / or the second direction motion vector determined as the motion vectors of the current block may be encoded.
  • the first directional motion vector of the current block is determined as one of the motion vectors of the first direction included in the C set, and is sequentially assigned to the motion vectors of the first direction included in the C set.
  • the binary number assigned to the motion vector determined as the first direction motion vector of the current block among the binary numbers may be encoded as information indicating the first direction motion vector.
  • a binary number assigned to the motion vector determined as the second direction motion vector of the current block among binary numbers sequentially allocated to the motion vectors of the second direction included in the C set is converted into the second direction motion vector. It can encode as indicated information.
  • FIG. 14 illustrates an image decoding apparatus according to another embodiment of the present invention.
  • the image decoding apparatus 1400 of FIG. 14 may be included in the image decoding apparatus 200 of FIG. 2 and the image encoding apparatus 500 of FIG. 5 to perform inter prediction to decode the current block.
  • an image decoding apparatus 1400 includes a decoder 1410, a motion vector determiner 1420, and a reconstructor 1430.
  • the decoder 1410 receives a bitstream including data about a current block, and decodes information on a prediction direction.
  • the image decoding apparatus 1400 determines a motion vector of the current block based on the motion vectors of at least one block decoded before the current block, and performs decoding according to a decoding mode of reconstructing the current block based on the determined motion vector.
  • information about the prediction direction of the current block is decoded. Decodes information about a prediction direction included in the bitstream as a sequence parameter, slice parameter, or block parameter.
  • the encoding / decoding mode which determines the motion vector of the current block based on the motion vector of the previously encoded block, such as the direct prediction mode or the skip mode, encodes / decodes the current block using only prediction in a specific direction.
  • the current block may be encoded / decoded in the direct prediction mode or the skip mode based on both the prediction in the first direction, the prediction in the second direction, and the bidirectional prediction.
  • the above-described image encoding apparatus 900 encodes information about a prediction direction and inserts the information about the prediction direction into a bitstream.
  • the decoder 1410 decodes information on the prediction direction inserted into the biststream by the image encoding apparatus 900.
  • the decoder 1410 may decode the information indicating the motion vector of the current block in the plurality of motion vector candidates together with the information about the prediction direction.
  • the motion vector of the current block is implicitly determined according to the motion vector determination method shared between the encoding side and the decoding side as described above, the motion vector of the current block is determined as one according to a predetermined method. There is no need to decode the indicated information.
  • the motion vectors of the current blocks from the plurality of motion vector candidates.
  • the information for specifying the can be decoded.
  • the decoder 1410 decodes information about pixel values of the current block. Decode information on the residual block of the current block or flag information indicating that the current block is the same as the prediction block.
  • the decoder 1410 may reconstruct the residual block by entropy decoding, inverse quantization, and inverse transform on information about the residual block.
  • the motion vector determiner 1420 determines a motion vector of the current block for performing prediction in a predetermined direction based on the information about the prediction direction decoded by the decoder 1410. If it is determined that the prediction of the first direction is performed as a result of referring to the information on the decoded prediction direction, the first direction motion vector is determined, and if it is determined that the prediction of the second direction is performed, the second direction motion vector is determined. Decide If it is determined to perform the bidirectional prediction, the first direction motion vector and the second direction motion vector are determined.
  • the motion vector of the current block is implicitly determined according to the shared motion vector determination method between the encoding side and the decoding side
  • the motion vector of the current block is determined according to the shared motion vector determination method.
  • the method of implicitly determining the motion vector of the current block has been described above with reference to FIGS. 11A and 11B.
  • the motion vector of the current block is determined based on information indicating the current block from the plurality of motion vector candidates decoded by the decoder 1410.
  • a plurality of motion vector candidates are generated using the motion vectors of at least one block decoded before the current block, and the motion vectors of the current blocks are determined from the generated plurality of motion vector candidates.
  • the decoder 1410 determines the first direction motion vector among the plurality of motion vector candidates by referring to the information indicating the first direction motion vector decoded by the decoder 1410.
  • the decoder 1410 determines the second direction motion vector among the plurality of motion vector candidates by referring to the information indicating the second direction motion vector decoded by the decoder 1410.
  • the first block moves among the plurality of motion vector candidates by referring to the information indicating the first direction motion vector and the information indicating the second direction motion vector decoded by the decoder 1410. The vector and the second directional motion vector can be determined.
  • the reconstructor 1430 reconstructs the current block based on the information about the pixel values decoded by the decoder 1410 and the motion vector of the current block determined by the motion vector determiner 1420.
  • the prediction block of the current block is generated by performing prediction in the first direction, prediction in the second direction, or bidirectional prediction.
  • the reconstructed residual block and the prediction block are added to reconstruct the current block.
  • the prediction block is used as the restored current block.
  • the picture referenced for prediction may be inferred based on the reference index of previously decoded blocks.
  • a reference number of the current block may be determined based on reference numbers of previously decoded blocks, and a reference picture corresponding thereto may be determined.
  • a reference picture corresponding to the motion vector determined by the motion vector determiner 1410 may be determined as the reference picture of the current block. For example, if mv_L0A is determined as the first directional motion vector of the current block as described above with reference to FIG. 11A, the preceding picture 1112 according to mv_L0A may be automatically determined as a reference picture of the current block.
  • 15 is a flowchart illustrating a video encoding method according to an embodiment of the present invention.
  • the image encoding apparatus determines a motion vector of a current block.
  • a first directional motion vector and a second directional motion vector of the current block included in the current picture which is the bidirectional predictive picture are determined.
  • the motion vector of the current block may be implicitly determined according to the motion vector determination method shared between the encoding side and the decoding side, see FIGS. 12A, 12B, 13A, and 13B.
  • a plurality of motion vector candidates may be generated, and a first direction motion vector and a second direction motion vector may be determined from the generated plurality of motion vector candidates.
  • the image encoding apparatus determines a prediction used for encoding the current block among the first direction prediction, the second direction prediction, and the bidirectional prediction. Determines the prediction used for encoding the current block among the first direction prediction according to the first direction motion vector, the second direction prediction according to the second direction motion vector, and the bidirectional prediction according to the first direction motion vector and the second direction motion vector. do.
  • the prediction that can most accurately predict the current block among the first direction prediction, the second direction prediction, and the bidirectional prediction may be determined as the prediction used to encode the current block.
  • the prediction having the longest SAD of the prediction block and the current block may be determined as the prediction used to encode the current block.
  • the apparatus for encoding an image encodes information about a prediction direction of prediction determined in operation 1530.
  • Binary numbers may be allocated to the first direction, the second direction, and the bidirectional directions, respectively, and the binary numbers corresponding to the prediction directions used for encoding the current block may be encoded.
  • the encoded binary number may be entropy encoded by a predetermined entropy encoding method.
  • Information about the prediction direction may be encoded as a sequence parameter, slice parameter or block parameter.
  • Information about pixel values of the current block is also encoded.
  • Information about residual values of the residual block generated by subtracting the prediction block from the current block may be encoded.
  • the residual block may be transformed, quantized, and entropy encoded.
  • only flag information indicating that the prediction block is the same as the current block may be encoded.
  • Information for specifying a motion vector used for encoding a current block in a plurality of motion vector candidates may also be encoded.
  • a plurality of motion vector candidates are generated based on the motion vectors of at least one block encoded before the current block, and one of the motion vectors of the current block is selected and used as the motion vector of the current block.
  • Information indicating a motion vector selected from the candidate may be encoded. If the first direction is determined as the prediction direction of the current block in operation 1520, only information on the first direction motion vector is encoded. If the second direction is determined as the prediction direction of the current block in operation 1520, the second direction motion vector is determined. Only information about the data can be encoded. If bidirectional prediction is determined in the prediction direction of the current block in operation 1520, both the information about the first direction motion vector and the information about the second direction motion vector are encoded.
  • 16 is a flowchart illustrating an image decoding method according to an embodiment of the present invention.
  • the image decoding apparatus decodes information on a prediction direction used for decoding a current block among a first direction, a second direction, and a bidirectional direction. Decodes information about a prediction direction included in the bitstream. Binary numbers assigned to each of the first, second and bidirectional directions decode a binary number corresponding to a prediction direction used for decoding a current block. Decodes information about a prediction direction included in the bitstream as a sequence parameter, slice parameter, or block parameter.
  • the image decoding apparatus decodes information about pixel values of the current block.
  • Information about residual values included in the residual block of the current block may be decoded.
  • the residual block is restored by entropy decoding, inverse quantization, and inverse transformation of the data for the residual block.
  • Information indicating that the current block is the same as the prediction block may be decoded.
  • information for specifying the motion vector used for decoding the current block may be decoded from the plurality of motion vector candidates.
  • the prediction direction of the current block is the first direction
  • information indicating the first direction motion vector of the current block may be decoded from the plurality of motion vector candidates, and the prediction direction of the current block may be decoded.
  • the prediction direction of the current block is bidirectional, information indicating the first direction motion vector and the second direction motion vector in the plurality of motion vector candidates may be decoded.
  • the image decoding apparatus determines the prediction direction of the current block based on the information about the prediction direction decoded in operation 1610.
  • the prediction direction of the current block is determined based on the binary number corresponding to the prediction direction decoded in step 1610. If determined in the prediction direction, at least one motion vector for performing prediction of the determined prediction direction is determined.
  • the motion vector of the current block may be implicitly determined according to the motion vector determination method shared between the encoding side and the decoding side.
  • a plurality of motion vector candidates are generated based on the motion vectors of at least one block decoded before the current block, and the generated plurality of motions
  • the motion vector of the current block may be determined from the vector candidate.
  • the motion vector of the current block may be determined based on information indicating the motion vector of the current block. At least one of the first direction motion vector and the second direction motion vector may be determined based on the information decoded in operation 1610.
  • the image decoding apparatus restores the current block.
  • a prediction block is generated based on the motion vector of the current block determined in operation 1620, and the current block is reconstructed based on the generated prediction block.
  • a prediction block of the current block is generated by performing one of the first direction prediction, the second direction prediction, and the bidirectional prediction based on the first direction motion vector and / or the second direction motion vector of the current block determined in operation 1620.
  • the generated prediction block and the reconstructed residual block are added to reconstruct the current block.
  • the prediction block becomes the current block.
  • the image encoding apparatus, the image decoding apparatus, the motion vector encoding apparatus, and the motion vector decoding apparatus are shown in FIGS. 1, 2, 4, 5, 9, and 14. It may include a bus coupled to each of the units, and at least one processor coupled to the bus. It may also include a memory coupled to the bus for storing instructions, received messages or generated messages and coupled to at least one processor for performing instructions as described above.
  • the computer-readable recording medium also includes all kinds of recording devices in which data that can be read by a computer system is stored. Examples of the recording medium include ROM, RAM, CD-ROM, magnetic tape, floppy disk, optical data storage device and the like.
  • the computer readable recording medium can also be distributed over network coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

현재 블록 이전에 부호화/복호화된 적어도 하나의 블록의 움직임 벡터에 기초해 현재 블록의 움직임 벡터를 결정하고, 결정된 움직임 벡터에 따른 제1 방향, 제2 방향 및 양방향의 예측 중 하나에 기초해 현재 블록을 예측 부호화/복호화하는 방법 및 장치가 개시된다.

Description

이전 블록의 움직임 벡터를 현재 블록의 움직임 벡터로 이용하는 영상 부호화, 복호화 방법 및 장치
본 발명은 영상을 부호화, 복호화하는 방법 및 장치에 관한 것으로 보다 상세히는 인터 예측에 기초해 영상을 부호화, 복호화하는 방법 및 장치에 관한 것이다.
MPEG-1, MPEG-2, MPEG-4 H.264/MPEG-4 AVC(Advanced Video coding)와 같은 영상 압축 방식에서는 영상을 부호화하기 위해서 소정 크기의 블록으로 나눈다. 그런 다음, 인터 예측(inter prediction) 또는 인트라 예측(intra prediction)을 이용해 각각의 블록을 예측 부호화한다.
인터 예측을 위해 현재 블록과 동일 또는 유사한 블록을 적어도 하나의 참조 프레임에서 검색하여, 움직임을 추정하고, 움직임 추정 결과 생성된 움직임 벡터도 픽셀값과 함께 부호화하여 비트스트림에 삽입한다.
본 발명이 해결하고자 하는 기술적 과제는 적어도 하나의 이전 블록의 움직임 벡터에 기초해 현재 블록의 움직임 벡터를 결정하고, 결정된 움직임 벡터에 기초해 영상을 부호화, 복호화하는 방법 및 장치를 제공하는데 있고, 상기 방법을 실행하기 위한 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록 매체를 제공하는데 있다.
본 발명에 따르면, 적어도 하나의 이전 블록의 움직임 벡터를 현재 블록의 움직임 벡터로 이용해 부호화하는 부호화 모드의 발생 확률이 높아지고, 예측의 정확도도 높아져 보다 높은 압축율로 영상을 부호화, 복호화할 수 있다.
도 1은 본 발명의 일 실시예에 따른 영상 부호화 장치를 도시한다.
도 2는 본 발명의 일 실시예에 따른 영상 복호화 장치를 도시한다.
도 3은 본 발명의 일 실시예에 따른 계층적 부호화 단위를 도시한다.
도 4는 본 발명의 일 실시예에 따른 부호화 단위에 기초한 영상 부호화부를 도시한다.
도 5는 본 발명의 일 실시예에 따른 부호화 단위에 기초한 영상 복호화부를 도시한다.
도 6은 본 발명의 일 실시예에 따른 최대 부호화 단위, 서브 부호화 단위 및 예측 단위를 도시한다.
도 7은 본 발명의 일 실시예에 따른, 부호화 단위 및 변환 단위를 도시한다.
도 8a 및 8b는 본 발명의 일 실시예에 따른, 부호화 단위, 예측 단위 및 주파수 변환 단위의 분할 형태를 도시한다.
도 9는 본 발명의 또 다른 실시예에 따른 영상 부호화 장치를 도시한다.
도 10은 본 발명의 일 실시예에 따른 양방향 예측 픽처에 포함된 블록을 예측하는 방법을 도시한다.
도 11a 및 11b는 본 발명의 일 실시예에 따른 현재 블록의 움직임 벡터를 이전에 부호화된 블록의 움직임 벡터에 기초해 결정하는 방법을 도시한다.
도 12a 및 12b는 본 발명의 또 다른 실시예에 따른 현재 블록의 움직임 벡터를 이전에 부호화된 블록의 움직임 벡터에 기초해 결정하는 방법을 도시한다.
도 13a 및 13b는 본 발명의 또 다른 실시예에 따른 현재 블록의 움직임 벡터를 이전에 부호화된 블록의 움직임 벡터에 기초해 결정하는 방법을 도시한다.
도 14는 본 발명의 또 다른 실시예에 따른 영상 복호화 장치를 도시한다.
도 15는 본 발명의 일 실시예에 따른 영상 부호화 방법을 설명하기 위한 흐름도이다.
도 16은 본 발명의 일 실시예에 따른 영상 복호화 방법을 설명하기 위한 흐름도이다.
상기 기술적 과제를 해결하기 위한 본 발명의 일 실시예에 따른 현재 블록 이전에 복호화된 적어도 하나의 블록의 움직임 벡터에 기초해 현재 블록의 움직임 벡터를 결정하고, 상기 결정된 움직임 벡터를 이용해 현재 블록을 복호화하는 방법은 제1 방향, 제2 방향 및 양방향 중 상기 현재 블록의 복호화에 이용되는 예측 방향에 대한 정보 및 상기 현재 블록의 픽셀 값들에 대한 정보를 복호화하는 단계; 상기 복호화된 예측 방향에 대한 정보에 기초해 상기 현재 블록의 예측 방향을 결정하고, 상기 결정된 예측 방향의 예측을 수행하기 위한 적어도 하나의 움직임 벡터를 결정하는 단계; 및 상기 결정된 예측 방향의 예측을 위한 적어도 하나의 움직임 벡터 및 상기 복호화된 픽셀 값들에 대한 정보에 기초해 상기 현재 블록을 복원하는 단계를 포함하고, 상기 제1 방향은 상기 현재 픽처로부터 선행 픽처로의 방향이고, 상기 제2 방향은 상기 현재 픽처로부터 후행 픽처로의 방향인 것을 특징으로 한다.
상기 기술적 과제를 해결하기 위한 본 발명의 일 실시예에 따른 현재 블록 이전에 부호화된 적어도 하나의 블록의 움직임 벡터에 기초해 현재 블록의 움직임 벡터를 결정하고, 상기 결정된 움직임 벡터를 이용해 현재 블록을 부호화하는 방법은 상기 현재 블록 이전에 부호화된 적어도 하나의 블록의 움직임 벡터에 기초해 현재 블록의 제1 방향의 움직임 벡터 및 제2 방향의 움직임 벡터를 결정하는 단계; 상기 제1 방향의 움직임 벡터 및 제2 방향의 움직임 벡터에 기초한 상기 제1 방향의 예측, 상기 제2 방향의 예측 및 양방향의 예측 중 상기 현재 블록의 부호화에 이용되는 예측을 결정하는 단계; 및 상기 예측 방향에 대한 정보 및 상기 결정된 예측에 기초해 생성된 상기 현재 블록의 픽셀 값들에 대한 정보를 부호화하는 단계를 포함하고, 상기 제1 방향은 상기 현재 픽처로부터 선행 픽처로의 방향이고, 상기 제2 방향은 상기 현재 픽처로부터 후행 픽처로의 방향인 것을 특징으로 한다.
상기 기술적 과제를 해결하기 위한 본 발명의 일 실시예에 따른 현재 블록 이전에 복호화된 적어도 하나의 블록의 움직임 벡터에 기초해 현재 블록의 움직임 벡터를 결정하고, 상기 결정된 움직임 벡터를 이용해 현재 블록을 복호화하는 장치는 제1 방향, 제2 방향 및 양방향 중 상기 현재 블록의 복호화에 이용되는 예측 방향에 대한 정보 및 상기 현재 블록의 픽셀 값들에 대한 정보를 복호화하는 복호화부; 상기 복호화된 예측 방향에 대한 정보에 기초해 상기 현재 블록의 예측 방향을 결정하고, 상기 결정된 예측 방향의 예측을 수행하기 위한 적어도 하나의 움직임 벡터를 결정하는 움직임벡터결정부; 및 상기 결정된 예측 방향의 예측을 위한 적어도 하나의 움직임 벡터 및 상기 복호화된 픽셀 값들에 대한 정보에 기초해 상기 현재 블록을 복원하는 복원부를 포함하고, 상기 제1 방향은 상기 현재 픽처로부터 선행 픽처로의 방향이고, 상기 제2 방향은 상기 현재 픽처로부터 후행 픽처로의 방향인 것을 특징으로 한다.
상기 기술적 과제를 해결하기 위한 본 발명의 일 실시예에 따른 현재 블록 이전에 부호화된 적어도 하나의 블록의 움직임 벡터에 기초해 현재 블록의 움직임 벡터를 결정하고, 상기 결정된 움직임 벡터를 이용해 현재 블록을 부호화하는 장치는 상기 현재 블록 이전에 부호화된 적어도 하나의 블록의 움직임 벡터에 기초해 현재 블록의 제1 방향의 움직임 벡터 및 제2 방향의 움직임 벡터를 결정하는 움직임벡터결정부; 상기 제1 방향의 움직임 벡터 및 제2 방향의 움직임 벡터에 기초한 상기 제1 방향의 예측, 상기 제2 방향의 예측 및 양방향의 예측 중 상기 현재 블록의 부호화에 이용되는 예측을 결정하고, 상기 예측 방향에 대한 정보 및 상기 결정된 예측에 기초해 생성된 상기 현재 블록의 픽셀 값들에 대한 정보를 부호화하는 부호화부를 포함하고, 상기 제1 방향은 상기 현재 픽처로부터 선행 픽처로의 방향이고, 상기 제2 방향은 상기 현재 픽처로부터 상기 후행 픽처로의 방향인 것을 특징으로 한다.
상기 기술적 과제를 해결하기 위해 본 발명은 상기 영상 부호화 방법 및/또는 영상 복호화 방법을 실행하기 위한 컴퓨터로 읽을 수 있는 기록 매체를 제공한다.
이하에서는 도면을 참조하여 본 발명의 실시예들을 상세히 설명한다.
도 1 은 본 발명의 일 실시예에 따른 영상 부호화 장치를 도시한다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 영상 부호화 장치(100)는 최대 부호화 단위 분할부(110), 부호화 심도 결정부(120), 영상 데이터 부호화부(130) 및 부호화 정보 부호화부(140)를 포함한다.
최대 부호화 단위 분할부(110)는 최대 크기의 부호화 단위인 최대 부호화 단위에 기반하여 현재 프레임 또는 현재 슬라이스를 분할할 수 있다. 현재 프레임 또는 현재 슬라이스를 적어도 하나의 최대 부호화 단위로 분할할 수 있다.
본 발명의 일 실시예에 따르면, 최대 부호화 단위 및 심도를 이용해 부호화 단위가 표현될 수 있다. 전술한 바와 같이 최대 부호화 단위는 현재 프레임의 부호화 단위 중 크기가 가장 큰 부호화 단위를 나타내며, 심도는 부호화 단위가 계층적으로 축소된 정도를 나타낸다. 심도가 커지면서, 부호화 단위는 최대 부호화 단위로부터 최소 부호화 단위까지 축소될 수 있으며, 최대 부호화 단위의 심도는 최소 심도로 정의되고, 최소 부호화 단위의 심도는 최대 심도로 정의될 수 있다. 최대 부호화 단위는 심도가 커짐에 따라 심도별 부호화 단위의 크기는 감소하므로, k 심도의 서브 부호화 단위는 k보다 큰 심도의 복수 개의 서브 부호화 단위를 포함할 수 있다.
부호화되는 프레임의 크기가 커짐에 따라, 더 큰 단위로 영상을 부호화하면 더 높은 영상 압축률로 영상을 부호화할 수 있다. 그러나, 부호화 단위를 크게 하고, 그 크기를 고정시켜버리면, 계속해서 변하는 영상의 특성을 반영하여 효율적으로 영상을 부호화할 수 없다.
예를 들어, 바다 또는 하늘에 대한 평탄한 영역을 부호화할 때에는 부호화 단위를 크게 할수록 압축률이 향상될 수 있으나, 사람들 또는 빌딩에 대한 복잡한 영역을 부호화할 때에는 부호화 단위를 작게 할수록 압축률이 향상된다.
이를 위해 본 발명의 일 실시예는 프레임 또는 슬라이스마다 상이한 크기의 최대 영상 부호화 단위를 설정하고, 최대 심도를 설정한다. 최대 심도는 부호화 단위가 축소될 수 있는 최대 횟수를 의미하므로, 최대 심도에 따라 최대 영상 부호화 단위에 포함된 최소 부호화 단위 크기를 가변적으로 설정할 수 있게 된다.
부호화 심도 결정부(120)는 최대 심도를 결정한다. 최대 심도는 R-D 코스트(Rate-Distortion Cost) 계산에 기초해 결정될 수 있다. 최대 심도는 프레임 또는 슬라이스마다 상이하게 결정되거나, 각각의 최대 부호화 단위마다 상이하게 결정될 수도 있다. 결정된 최대 심도는 부호화 정보 부호화부(140)로 출력되고, 최대 부호화 단위별 영상 데이터는 영상 데이터 부호화부(130)로 출력된다.
최대 심도는 최대 부호화 단위에 포함될 수 있는 가장 작은 크기의 부호화 단위 즉, 최소 부호화 단위를 의미한다. 다시 말해, 최대 부호화 단위는 상이한 심도에 따라 상이한 크기의 서브 부호화 단위로 분할될 수 있다. 도 8a 및 8b를 참조하여 상세히 후술한다. 또한, 최대 부호화 단위에 포함된 상이한 크기의 서브 부호화 단위들은 상이한 크기의 처리 단위에 기초해 예측 또는 변환될 수 있다. 변환은 공간 도메인의 픽셀 값들을 주파수 도메인의 계수들로 변환으로서 이산 코사인 변환(discrete cosine transform) 또는 KLT(Karhunen Loever Transform)일 수 있다.
다시 말해, 영상 부호화 장치(100)는 영상 부호화를 위한 복수의 처리 단계들을 다양한 크기 및 다양한 형태의 처리 단위에 기초해 수행할 수 있다. 영상 데이터의 부호화를 위해서는 예측, 변환, 엔트로피 부호화 등의 처리 단계를 거치는데, 모든 단계에 걸쳐서 동일한 크기의 처리 단위가 이용될 수도 있으며, 단계별로 상이한 크기의 처리 단위를 이용할 수 있다.
예를 들어 영상 부호화 장치(100)는 소정의 부호화 단위를 예측하기 위해, 부호화 단위와 다른 처리 단위를 선택할 수 있다.
부호화 단위의 크기가 2Nx2N(단, N은 양의 정수)인 경우, 예측을 위한 처리 단위는 2Nx2N, 2NxN, Nx2N, NxN 등일 수 있다. 다시 말해, 부호화 단위의 높이 또는 너비 중 적어도 하나를 반분하는 형태의 처리 단위를 기반으로 움직임 예측이 수행될 수도 있다. 이하, 예측의 기초가 되는 처리 단위는 '예측 단위'라 한다.
예측 모드는 인트라 모드, 인터 모드 및 스킵 모드 중 적어도 하나일 수 있으며, 특정 예측 모드는 특정 크기 또는 형태의 예측 단위에 대해서만 수행될 수 있다. 예를 들어, 인트라 모드는 정방형인 2Nx2N, NxN 크기의 예측 단위에 대해서만 수행될 수 있다. 또한, 스킵 모드는 2Nx2N 크기의 예측 단위에 대해서만 수행될 수 있다. 부호화 단위 내부에 복수의 예측 단위가 있다면, 각각의 예측 단위에 대해 예측을 수행하여 부호화 오차가 가장 작은 예측 모드가 선택될 수 있다.
또한, 영상 부호화 장치(100)는 부호화 단위와 다른 크기의 처리 단위에 기초해 영상 데이터를 변환할 수 있다. 부호화 단위의 변환을 위해서 부호화 단위보다 작거나 같은 크기의 데이터 단위를 기반으로 변환이 수행될 수 있다. 이하, 변환의 기초가 되는 처리 단위를 '변환 단위'라 한다.
부호화 심도 결정부(120)는 라그랑지 곱(Lagrangian Multiplier) 기반의 율-왜곡 최적화 기법(Rate-Distortion Optimization)을 이용해 최대 부호화 단위에 포함된 서브 부호화 단위들을 결정할 수 있다. 다시 말해, 최대 부호화 단위가 어떠한 형태의 복수의 서브 부호화 단위로 분할되는지 결정할 수 있는데, 여기서 복수의 서브 부호화 단위는 심도에 따라 크기가 상이하다. 그런 다음, 영상 데이터 부호화부(130)는 부호화 심도 결정부(120)에서 결정된 분할 형태에 기초해 최대 부호화 단위를 부호화하여 비트스트림을 출력한다.
부호화 정보 부호화부(140)는 부호화 심도 결정부(120)에서 결정된 최대 부호화 단위의 부호화 모드에 대한 정보를 부호화한다. 최대 부호화 단위의 분할 형태에 대한 정보, 최대 심도에 대한 정보 및 심도별 서브 부호화 단위의 부호화 모드에 대한 정보를 부호화하여 비트스트림을 출력한다. 서브 부호화 단위의 부호화 모드에 대한 정보는 서브 부호화 단위의 예측 단위에 대한 정보, 예측 단위별 예측 모드 정보, 서브 부호화 단위의 변환 단위에 대한 정보 등을 포함할 수 있다.
최대 부호화 단위의 분할 형태에 대한 정보는 각각의 부호화 단위에 대해 분할 여부를 나타내는 정보일 수 있다. 예를 들어, 최대 부호화 단위를 분할하여 부호화하는 경우, 최대 부호화 단위에 대해 분할 여부를 나타내는 정보를 부호화하고, 최대 부호화 단위를 분할하여 생성된 서브 부호화 단위를 다시 분할하여 부호화하는 경우에도, 각각의 서브 부호화 단위에 대해서 분할 여부를 나타내는 정보를 부호화한다. 분할 여부를 나타내는 정보는 분할 여부를 나타내는 플래그 정보일 수 있다.
최대 부호화 단위마다 상이한 크기의 서브 부호화 단위가 존재하고, 각각의 서브 부호화 단위마다 부호화 모드에 관한 정보가 결정되어야 하므로, 하나의 최대 부호화 단위에 대해서는 적어도 하나의 부호화 모드에 관한 정보가 결정될 수 있다.
영상 부호화 장치(100)는 심도가 커짐에 따라 최대 부호화 단위를 높이 및 너비를 반분하여 서브 부호화 단위를 생성할 수 있다. 즉, k 심도의 부호화 단위의 크기가 2Nx2N이라면, k+1 심도의 부호화 단위의 크기는 NxN 이다.
따라서, 일 실시예에 따른 영상 부호화 장치(100)는 영상의 특성을 고려한 최대 부호화 단위의 크기 및 최대 심도를 기반으로, 각각의 최대 부호화 단위마다 최적의 분할 형태를 결정할 수 있다. 영상 특성을 고려하여 가변적으로 최대 부호화 단위의 크기를 조절하고, 상이한 심도의 서브 부호화 단위로 최대 부호화 단위를 분할하여 영상을 부호화함으로써, 다양한 해상도의 영상을 보다 효율적으로 부호화할 수 있다.
도 2 는 본 발명의 일 실시예에 따른 영상 복호화 장치를 도시한다.
도 2를 참조하면, 본 발명의 일 실시예에 따른 영상 복호화 장치(200)는 영상 데이터 획득부(210), 부호화 정보 추출부(220) 및 영상 데이터 복호화부(230)를 포함한다.
영상 관련 데이터 획득부(210)는 영상 복호화 장치(200)가 수신한 비트스트림을 파싱하여, 최대 부호화 단위별로 영상 데이터를 획득하여 영상 데이터 복호화부(230)로 출력한다. 영상 데이터 획득부(210)는 현재 프레임 또는 슬라이스에 대한 헤더로부터 현재 프레임 또는 슬라이스의 최대 부호화 단위에 대한 정보를 추출할 수 있다. 다시 말해, 비트스트림을 최대 부호화 단위로 분할하여, 영상 데이터 복호화부(230)가 최대 부호화 단위마다 영상 데이터를 복호화하게 한다.
부호화 정보 추출부(220)는 영상 복호화 장치(200)가 수신한 비트열을 파싱하여, 현재 프레임에 대한 헤더로부터 최대 부호화 단위, 최대 심도, 최대 부호화 단위의 분할 형태, 서브 부호화 단위의 부호화 모드에 관한 정보를 추출한다. 분할 형태 및 부호화 모드에 관한 정보는 영상 데이터 복호화부(230)로 출력된다.
최대 부호화 단위의 분할 형태에 대한 정보는 최대 부호화 단위에 포함된 심도에 따라 상이한 크기의 서브 부호화 단위에 대한 정보를 포함할 수 있다. 전술한 바와 같이 분할 형태에 대한 정보는 각각의 부호화 단위에 대해 부호화된 분할 여부를 나타내는 정보(예를 들어, 플래그 정보)일 수 있다. 부호화 모드에 관한 정보는 서브 부호화 단위별 예측 단위에 대한 정보, 예측 모드에 대한 정보 및 변환 단위에 대한 정보 등을 포함할 수 있다.
영상 데이터 복호화부(230)는 부호화 정보 추출부에서 추출된 정보에 기초하여 각각의 최대 부호화 단위의 영상 데이터를 복호화하여 현재 프레임을 복원한다.
최대 부호화 단위의 분할 형태에 대한 정보에 기초하여, 영상 데이터 복호화부(230)는 최대 부호화 단위에 포함된 서브 부호화 단위를 복호화할 수 있다. 복호화 과정은 인트라 예측 및 움직임 보상을 포함하는 인터 예측 과정 및 역변환 과정을 포함할 수 있다.
영상 데이터 복호화부(230)는 서브 부호화 단위의 예측을 위해, 서브 부호화 단위별 예측 단위에 대한 정보 및 예측 모드에 대한 정보에 기초해 인트라 예측 또는 인터 예측을 수행할 수 있다. 또한, 영상 데이터 복호화부(230)는 서브 부호화 단위의 변환 단위에 대한 정보에 기초해 서브 부호화 단위마다 역변환을 수행할 수 있다.
도 3 은 본 발명의 일 실시예에 따른 계층적 부호화 단위를 도시한다.
도 3을 참조하면, 본 발명에 따른 계층적 부호화 단위는 너비x높이가 64x64인 부호화 단위부터, 32x32, 16x16, 8x8, 및 4x4를 포함할 수 있다. 정사각형 형태의 부호화 단위 이외에도, 너비x높이가 64x32, 32x64, 32x16, 16x32, 16x8, 8x16, 8x4, 4x8인 부호화 단위들이 존재할 수 있다.
도 3을 참조하면, 해상도가 1920x1080인 영상 데이터(310)에 대해서, 최대 부호화 단위의 크기는 64x64, 최대 심도가 2로 설정되어 있다.
또 다른 해상도가 1920x1080인 영상 데이터(320)에 대해서 최대 부호화 단위의 크기는 64x64, 최대 심도가 4로 설정되어 있다. 해상도가 352x288인 비디오 데이터(330)에 대해서 최대 부호화 단위의 크기는 16x16, 최대 심도가 2로 설정되어 있다.
해상도가 높거나 데이터량이 많은 경우 압축률 향상뿐만 아니라 영상 특성을 정확히 반영하기 위해 부호화 사이즈의 최대 크기가 상대적으로 큰 것이 바람직하다. 따라서, 영상 데이터(330)에 비해, 해상도가 높은 영상 데이터(310 및 320)는 최대 부호화 단위의 크기가 64x64로 선택될 수 있다.
최대 심도는 계층적 부호화 단위에서 총 계층수를 나타낸다. 영상 데이터(310)의 최대 심도는 2이므로, 영상 데이터(310)의 부호화 단위(315)는 장축 크기가 64인 최대 부호화 단위로부터, 심도가 증가함에 따라 장축 크기가 32, 16인 서브 부호화 단위들까지 포함할 수 있다.
반면, 영상 데이터(330)의 최대 심도는 2이므로, 영상 데이터(330)의 부호화 단위(335)는 장축 크기가 16인 최대 부호화 단위들로부터, 심도가 증가함에 따라 장축 크기가 8, 4인 부호화 단위들까지 포함할 수 있다.
영상 데이터(320)의 최대 심도는 4이므로, 비디오 데이터(320)의 부호화 단위(325)는 장축 크기가 64인 최대 부호화 단위로부터, 심도가 증가함에 따라 장축 크기가 32, 16, 8, 4인 서브 부호화 단위들까지 포함할 수 있다. 심도가 증가할수록 더 작은 서브 부호화 단위에 기초해 영상을 부호화하므로 보다 세밀한 장면을 포함하고 있는 영상을 부호화하는데 적합해진다.
도 4 는 본 발명의 일 실시예에 따른 부호화 단위에 기초한 영상 부호화부를 도시한다.
인트라 예측부(410)는 현재 프레임(405) 중 인트라 모드의 예측 단위에 대해 인트라 예측을 수행하고, 움직임 추정부(420) 및 움직임 보상부(425)는 인터 모드의 예측 단위에 대해 현재 프레임(405) 및 참조 프레임(495)을 이용해 인터 예측 및 움직임 보상을 수행한다.
인트라 예측부(410), 움직임 추정부(420) 및 움직임 보상부(425)로부터 출력된 예측 단위에 기초해 레지듀얼 값들이 생성되고, 생성된 레지듀얼 값들은 변환부(430) 및 양자화부(440)를 거쳐 양자화된 변환 계수로 출력된다.
양자화된 변환 계수는 역양자화부(460), 역변환부(470)를 통해 다시 레지듀얼 값으로 복원되고, 복원된 레지듀얼 값들은 디블로킹부(480) 및 루프 필터링부(490)를 거쳐 후처리되어 참조 프레임(495)으로 출력된다. 양자화된 변환 계수는 엔트로피 부호화부(450)를 거쳐 비트스트림(455)으로 출력될 수 있다.
본 발명의 일 실시예에 따른 영상 부호화 방법에 따라 부호화하기 위해, 영상 부호화부(400)의 구성 요소들인 인트라 예측부(410), 움직임 추정부(420), 움직임 보상부(425), 변환부(430), 양자화부(440), 엔트로피 부호화부(450), 역양자화부(460), 역변환부(470), 디블로킹부(480) 및 루프 필터링부(490)는 모두 최대 부호화 단위, 심도에 따른 서브 부호화 단위, 예측 단위 및 변환 단위에 기초해 영상 부호화 과정들을 처리한다.
도 5는 본 발명의 일 실시예에 따른 부호화 단위에 기초한 영상 복호화부를 도시한다.
비트스트림(505)이 파싱부(510)를 거쳐 복호화 대상인 부호화된 영상 데이터 및 복호화를 위해 필요한 부호화 정보가 파싱된다. 부호화된 영상 데이터는 엔트로피 복호화부(520) 및 역양자화부(530)를 거쳐 역양자화된 데이터로 출력되고, 역변환부(540)를 거쳐 레지듀얼 값들로 복원된다. 레지듀얼 값들은 인트라 예측부(550)의 인트라 예측의 결과 또는 움직임 보상부(560)의 움직임 보상 결과와 가산되어 부호화 단위 별로 복원된다. 복원된 부호화 단위는 디블로킹부(570) 및 루프 필터링부(580)를 거쳐 다음 부호화 단위 또는 다음 프레임의 예측에 이용된다.
본 발명의 일 실시예에 따른 영상 복호화 방법에 따라 복호화하기 위해 영상 복호화부(400)의 구성 요소들인 파싱부(510), 엔트로피 복호화부(520), 역양자화부(530), 역변환부(540), 인트라 예측부(550), 움직임 보상부(560), 디블로킹부(570) 및 루프 필터링부(580)가 모두 최대 부호화 단위, 심도에 따른 서브 부호화 단위, 예측 단위 및 변환 단위에 기초해 영상 복호화 과정들을 처리한다.
특히, 인트라 예측부(550), 움직임 보상부(560)는 최대 부호화 단위 및 심도를 고려하여 서브 부호화 단위 내의 예측 단위 및 예측 모드를 결정하며, 역변환부(540)는 변환 단위의 크기를 고려하여 역변환을 수행한다.
도 6은 본 발명의 일 실시예에 따른 최대 부호화 단위, 서브 부호화 단위 및 예측 단위를 도시한다.
본 발명의 일 실시예에 따른 영상 부호화 장치(100) 및 영상 복호화 장치(200)는 영상 특성을 고려하여 부호화, 복호화를 수행하기 위해 계층적인 부호화 단위를 이용한다. 최대 부호화 단위 및 최대 심도는 영상의 특성에 따라 적응적으로 설정되거나, 사용자의 요구에 따라 다양하게 설정될 수 있다.
본 발명의 일 실시예에 따른 부호화 단위의 계층 구조(600)는 최대 부호화 단위(610)의 높이 및 너비가 64이며, 최대 심도가 4인 경우를 도시한다. 부호화 단위의 계층 구조(600)의 세로축을 따라서 심도가 증가하고, 심도의 증가에 따라 서브 부호화 단위(620 내지 650)의 너비 및 높이가 축소된다. 또한, 부호화 단위의 계층 구조(600)의 가로축을 따라, 최대 부호화 단위(610) 및 서브 부호화 단위(620 내지 650)의 예측 단위가 도시되어 있다.
최대 부호화 단위(610)는 심도가 0이며, 부호화 단위의 크기, 즉 너비 및 높이가 64x64이다. 세로축을 따라 심도가 증가하며, 크기 32x32인 심도 1의 서브 부호화 단위(620), 크기 16x16인 심도 2의 서브 부호화 단위(630), 크기 8x8인 심도 3의 서브 부호화 단위(640), 크기 4x4인 심도 4의 서브 부호화 단위(650)가 존재한다. 크기 4x4인 심도 4의 서브 부호화 단위(650)는 최소 부호화 단위이다.
도 6을 참조하면, 각각의 심도별로 가로축을 따라 예측 단위의 예시들이 도시되어 있다. 즉, 심도 0의 최대 부호화 단위(610)의 예측 단위는, 크기 64x64의 부호화 단위(610)와 동일하거나 작은 크기인 크기 64x64의 예측 단위(610), 크기 64x32의 예측 단위(612), 크기 32x64의 예측 단위(614), 크기 32x32의 예측 단위(616)일 수 있다.
심도 1의 크기 32x32의 부호화 단위(620)의 예측 단위는, 크기 32x32의 부호화 단위(620)와 동일하거나 작은 크기인 크기 32x32의 예측 단위(620), 크기 32x16의 예측 단위(622), 크기 16x32의 예측 단위(624), 크기 16x16의 예측 단위(626)일 수 있다.
심도 2의 크기 16x16의 부호화 단위(630)의 예측 단위는, 크기 16x16의 부호화 단위(630)와 동일하거나 작은 크기인 크기 16x16의 예측 단위(630), 크기 16x8의 예측 단위(632), 크기 8x16의 예측 단위(634), 크기 8x8의 예측 단위(636)일 수 있다.
심도 3의 크기 8x8의 부호화 단위(640)의 예측 단위는, 크기 8x8의 부호화 단위(640)와 동일하거나 작은 크기인 크기 8x8의 예측 단위(640), 크기 8x4의 예측 단위(642), 크기 4x8의 예측 단위(644), 크기 4x4의 예측 단위(646)일 수 있다.
마지막으로, 심도 4의 크기 4x4의 부호화 단위(650)는 최대 심도의 부호화 단위이고, 예측 단위는 크기 4x4의 예측 단위(650)이다. 그러나, 최대 심도의 부호화 단위라고 하여 반드시 부호화 단위와 예측 단위의 크기가 동일할 필요는 없으며, 다른 부호화 단위(610 내지 650)와 마찬가지로 부호화 단위보다 작은 크기의 예측 단위로 분할하여 예측을 수행할 수도 있다.
도 7은 본 발명의 일 실시예에 따른, 부호화 단위 및 변환 단위를 도시한다.
본 발명의 일 실시예에 따른 영상 부호화 장치(100) 및 영상 복호화 장치(200)는, 최대 부호화 단위 그대로 부호화하거나, 최대 부호화 단위 보다 작거나 같은 서브 부호화 단위로 최대 부호화 단위를 분할하여 부호화한다. 부호화 과정 중 변환을 위한 변환 단위의 크기도 부호화 단위 및 예측 단위와 무관하게 가장 높은 압축률을 위한 크기로 선택될 수 있다. 예를 들어, 현재 부호화 단위(710)가 64x64 크기일 때, 32x32 크기의 변환 단위(720)를 이용하여 변환이 수행될 수 도 있다.
도 8a 및 8b는 본 발명의 일 실시예에 따른, 부호화 단위, 예측 단위 및 변환 단위의 분할 형태를 도시한다.
도 8a는 본 발명의 일 실시예에 따른 부호화 단위 및 예측 단위를 도시한다.
도 8a의 좌측은 최대 부호화 단위(810)를 부호화하기 위해 본 발명의 일 실시예에 따른 영상 부호화 장치(100)가 선택한 분할 형태를 도시한다. 영상 부호화 장치(100)는 다양한 형태로 최대 부호화 단위(810)를 분할하고, 부호화한 다음 다양한 분할 형태의 부호화 결과를 R-D 코스트에 기초해 비교하여 최적의 분할 형태를 선택한다. 최대 부호화 단위(810)를 그대로 부호화하는 것이 최적일 경우에는 도 8a 및 8b와 같이 최대 부호화 단위(810)를 분할하지 않고 최대 부호화 단위(800)를 부호화할 수도 있다.
도 8a의 좌측을 참조하면, 심도 0인 최대 부호화 단위(810)를 심도 1 이상의 서브 부호화 단위로 분할하여 부호화한다. 최대 부호화 단위(810)를 네 개의 심도 1의 서브 부호화 단위로 분할한 다음, 전부 또는 일부의 심도 1의 서브 부호화 단위를 다시 심도 2의 서브 부호화 단위로 분할한다.
심도 1의 서브 부호화 단위 중 우측 상부에 외치한 서브 부호화 단위 및 좌측 하부에 위치한 서브 부호화 단위가 심도 2 이상의 서브 부호화 단위로 분할되었다. 심도 2 이상의 서브 부호화 단위 중 일부는 다시 심도 3 이상의 서브 부호화 단위로 분할될 수 있다.
도 8b의 우측은 최대 부호화 단위(810)에 대한 예측 단위의 분할 형태를 도시한다.
도 8a의 우측을 참조하면, 최대 부호화 단위에 대한 예측 단위(860)는 최대 부호화 단위(810)와 상이하게 분할될 수 있다. 다시 말해, 서브 부호화 단위들 각각에 대한 예측 단위는 서브 부호화 단위보다 작을 수 있다.
예를 들어, 심도 1의 서브 부호화 단위 중 우측 하부에 외치한 서브 부호화 단위(854)에 대한 예측 단위는 서브 부호화 단위(854)보다 작을 수 있다. 심도 2의 서브 부호화 단위들(814, 816, 818, 828, 850, 852) 중 일부 서브 부호화 단위(815, 816, 850, 852)에 대한 예측 단위는 서브 부호화 단위보다 작을 수 있다.
또한, 심도 3의 서브 부호화 단위(822, 832, 848)에 대한 예측 단위는 서브 부호화 단위보다 작을 수 있다. 예측 단위는 각각의 서브 부호화 단위를 높이 또는 너비 방향으로 반분한 형태일 수도 있고, 높이 및 너비 방향으로 4분한 형태일 수도 있다.
도 8b는 본 발명의 일 실시예에 따른 예측 단위 및 변환 단위를 도시한다.
도 8b의 좌측은 도 8a의 우측에 도시된 최대 부호화 단위(810)에 대한 예측 단위의 분할 형태를 도시하고, 도 8b의 우측은 최대 부호화 단위(810)의 변환 단위의 분할 형태를 도시한다.
도 8b의 우측을 참조하면, 변환 단위(870)의 분할 형태는 예측 단위(860)와 상이하게 설정될 수 있다.
예를 들어, 심도 1의 부호화 단위(854)에 대한 예측 단위가 높이를 반분한 형태로 선택되더라도, 변환 단위는 심도 1의 부호화 단위(854)의 크기와 동일한 크기로 선택될 수 있다. 마찬가지로, 심도 2의 부호화 단위(814, 850)에 대한 예측 단위가 심도 2의 부호화 단위(814, 850)의 높이를 반분한 형태로 선택되더라도 변환 단위는 심도 2의 부호화 단위(814, 850)의 원래 크기와 동일한 크기로 선택될 수 있다.
예측 단위보다 더 작은 크기로 변환 단위가 선택될 수도 있다. 예를 들어, 심도 2의 부호화 단위(852)에 대한 예측 단위가 너비를 반분한 형태로 선택된 경우에 변환 단위는 예측 단위보다 더 작은 크기인 높이 및 너비를 반분한 형태로 선택될 수 있다.
도 9는 본 발명의 또 다른 실시예에 따른 영상 부호화 장치를 도시한다. 도 9의 영상 부호화 장치(900)는 도 1의 영상 부호화 장치(100) 및 도 4의 영상 부호화 장치(400)에 포함되어 인터 예측에 기초해 현재 블록을 부호화하는 장치일 수 있다.
도 9를 참조하면, 영상 부호화 장치(900)는 움직임벡터결정부(910) 및 부호화부(920)를 포함한다.
일부 부호화 모드는 현재 블록 이전에 부호화된 적어도 하나의 블록의 움직임 벡터에 기초해 현재 블록의 움직임 벡터를 결정하고, 결정된 움직임 벡터에 기초해 현재 블록을 부호화한다. 직접예측 모드(direct prediction mode)와 스킵 모드(skip mode)가 이러한 모드들의 예시들이다. 직접예측 모드와 스킵 모드는 모두 현재 블록의 움직임 벡터가 이전에 부호화된 정보에 기초해 결정되기 때문에 현재 블록에 대한 정보로서 움직임 벡터를 별도로 부호화하지 않는 부호화 모드들이다.
다만, 직접예측 모드는 현재 블록에서 움직임 벡터에 따라 생성된 예측 블록을 감산하여 생성된 레지듀얼 블록을 픽셀 값에 대한 정보로서 부호화함에 반해, 스킵 모드는 예측 블록이 현재 블록과 동일한 것으로 간주하여 스킵 모드로 부호화되었음을 나타내는 플래그 정보만 픽셀 값에 대한 정보로서 부호화하는 것이 상이하다.
직접예측 모드와 스킵 모드는 모두 인터 예측에 기초한 부호화임에도 불구하고, 움직임 벡터를 별도로 부호화하지 않으므로, 압축률 향상에 크게 영향을 미친다. 그런데, 이러한 직접예측 모드 및 스킵 모드는 특정 예측 방향의 예측만 수행하여 현재 블록을 부호화하기 때문에 발생 확률이 낮고, 예측이 부정확할 가능성이 높다는 단점이 있다. 따라서, 본 발명의 일 실시예에 따른 영상 부호화 장치(900)는 양방향 예측 픽처에 포함된 현재 블록을 직접예측 모드 또는 스킵 모드로 부호화할 때, 다양한 예측 방향으로 예측하여 부호화하는 바, 이하 도면들을 참조하여 상세히 설명한다.
도 10은 본 발명의 일 실시예에 따른 양방향 예측 픽처에 포함된 블록을 예측하는 방법을 도시한다.
도 10을 참조하면, 양방향 예측 픽처인 현재 픽처(1000)에 포함된 현재 블록(1010)을 부호화할 때에 현재 블록은 현재 픽처 이전 시간의 픽처(1020) 및 현재 픽처 이후 시간의 픽처(1030) 중 적어도 하나를 참조하여 예측 부호화된다. 이전 시간의 픽처(1020) 및 이후 시간의 픽처(1030) 중 적어도 하나에서 현재 블록(1010)에 대응되는 적어도 하나의 블록(1022 및 1032)을 검색하고, 검색된 블록에 기초해 현재 블록을 예측 부호화한다.
다시 말해, 현재 픽처(1000)로부터 이전 픽처(1020)로의 방향을 제1 방향(즉, L0 방향)이라할 때, 현재 블록(1010)은 제1 방향의 픽처에서 검색된 대응 블록(1022)에 기초해 예측될 수 있다. (이하 '제1 방향 예측'이라 한다.) 마찬가지로, 현재 픽처(1000)로부터 이후 픽처(1030)로의 방향을 제2 방향(즉, L1 방향)이라할 때, 현재 블록(1010)은 제2 방향의 픽처에서 검색된 대응 블록(1032)에 기초해 예측될 수 있다. (이하, '제2 방향 예측'이라 한다.) 또한, 현재 블록(1010)은 제1 방향 예측 및 제2 방향 예측 모두 즉, 양방향 예측에 기초해 예측될 수도 있다.
그런데, 종래 기술에 따른 직접예측 모드는 현재 블록(1010)에 대해 양방향 예측을 수행하는 경우에만 적용될 수 있다. 다시 말해, 제1 방향 예측만을 수행하여 현재 블록이 예측 부호화되는 경우에는 직접예측 모드에 따라 부호화할 수 없으며, 제2 방향 예측만을 수행하여 현재 블록이 예측 부호화되는 경우에도 직접예측 모드에 따라 부호화할 수 없다. 종래 기술에 따른 스킵 모드도 마찬가지이다. 종래 기술에 따른 스킵 모드에 따르면, 현재 블록(1010)에 인접한 이전에 부호화된 블록의 움직임 벡터에 의해 결정된 현재 블록(1010)의 움직임 벡터는 제1 방향의 움직임 벡터(mv_L0)이어야 하며, 제1 방향 예측에 기초해 생성된 예측 블록을 현재 블록(1010)과 동일한 것으로 간주하여 스킵 모드로 부호화되었음을 나타내는 플래그 정보를 부호화한다.
요컨대, 종래 기술에 따르면, 양방향 예측 픽처에 포함된 블록에 대해 수행될 수 있는 예측은 제1 방향 예측, 제2 방향 예측 및 양방향 예측임에도 불구하고, 직접예측 모드 및 스킵 모드는 특정 방향으로 예측을 수행하는 경우에만 적용될 수 있으므로, 압축률에 큰 영향을 미치는 직접예측 모드 및 스킵 모드가 제한적으로 적용되는 단점이 있다.
이러한 단점을 해결하기 위해, 본 발명에 따른 영상 부호화 장치(900)는 현재 블록(1010)의 움직임 벡터를 이전에 부호화된 정보에 기초해 결정하여, 움직임 벡터는 부호화하지 않으면서, 예측은 모든 방향에 대해 수행할 수 있는 영상 부호화 방법에 따라 부호화를 수행한다.
움직임벡터결정부(910)는 제1 방향 예측, 제2 방향 예측 및 양방향 예측을 수행하기 위해 현재 블록(1010)의 제1 방향 움직임 벡터 및 제2 방향 움직임 벡터를 결정한다. 제1 방향 움직임 벡터 및 제2 방향 움직임 벡터는 현재 블록 이전에 부호화된 적어도 하나의 블록의 움직임 벡터에 기초해 결정한다.
제1 방향 움직임 벡터 및 제2 방향 움직임 벡터는 종래 기술에 따른 움직임 벡터 결정 방법에 따라 결정할 수 있다. 예를 들어, 현재 블록(1010)을 직접예측 모드 즉, 움직임 벡터에 대한 정보를 부호화하지 않고, 레지듀얼 블록에 대한 정보만 부호화하는 모드에 따라 부호화하는 경우에는 H.264/AVC 직접예측 모드의 움직임 벡터를 결정하는 방법에 따라 움직임 벡터를 결정할 수 있다. 현재 블록(1010)을 스킵 모드 즉, 움직임 벡터에 대한 정보 및 레지듀얼 블록에 대한 정보를 모두 부호화하지 않는 모드에 따라 부호화하는 경우에는 H.264/AVC 스킵 모드의 움직임 벡터를 결정하는 방법에 따라 움직임 벡터를 결정할 수 있다.
H.264/AVC 직접예측 모드에는 시간 직접예측 모드와 공간 직접예측 모드가 있다. 따라서, H.264/AVC의 시간 직접예측 모드에서 현재 블록의 움직임 벡터를 결정하는 방법 및 공간 직접 예측 모드에서 현재 블록의 움직임 벡터를 결정하는 방법이 움직임벡터결정부(910)가 제1 방향 움직임 벡터 및 제2 방향 움직임 벡터를 결정하는데 이용될 수 있다. 도 11a 및 11b를 참조하여 상세히 설명한다.
도 11a는 본 발명의 일 실시예에 따른 현재 블록의 움직임 벡터를 이전에 부호화된 블록의 움직임 벡터에 기초해 결정하는 방법을 도시한다.
도 11a를 참조하면, 현재 블록(1010)을 시간 직접예측 모드로 부호화하는 경우에는 현재 픽처(1110)의 현재 블록(1010)의 움직임 벡터는 시간적으로 후행하는 픽처(1114)의 동일한 위치(colocated)의 블록(1120)의 움직임 벡터를 이용해 생성될 수 있다.
다시 말해, 시간적으로 후행하는 픽처(1114)를 앵커(anchor) 픽처라 할 때, 앵커 픽처(1114)에서 현재 블록의 동일한 위치의 블록(1120)의 움직임 벡터에 기초해 현재 블록의 제1 방향 움직임 벡터 및 제2 방향 움직임 벡터를 결정할 수 있다. 동일한 위치의 블록(1120)의 움직임 벡터를 현재 픽처(1110)와 선행 픽처(1112) 사이의 시간 거리(temporal distance) 및 앵커 픽처(1114)와 선행 픽처(1112) 사이의 시간 거리에 기초해 블록(1120)의 움직임 벡터를 스케일링(scaling)하여 현재 블록(1010)의 제1 방향 움직임 벡터 및 제2 방향 움직임 벡터를 결정할 수 있다.
예를 들어, 현재 블록(1010)과 동일한 위치의 블록(1120)의 움직임 벡터 mv_colA가 현재 픽처(1010) 이전 시간의 픽처(1112)의 검색된 블록(1122)에 대해 생성되면, 현재 블록(1110)의 제1 방향 움직임 벡터 및 제2 방향 움직임 벡터인 mv_L0A 및 mv_L1A는 다음과 같이 생성될 수 있다.
mv_L0A = (t1/t2) * mv_colA
mv_L1A = mv_L0A - mv_colA
여기서, mv_L0A는 현재 블록(1010)의 제1 방향 움직임 벡터를 의미하고, mv_L1A는 현재 블록(1010)의 제2 방향 움직임 벡터를 의미한다.
도 11b는 본 발명의 일 실시예에 따른 현재 블록의 움직임 벡터를 이전에 부호화된 블록의 움직임 벡터에 기초해 결정하는 방법을 도시한다.
도 11b를 참조하면, 현재 블록(1010)의 제1 방향 움직임 벡터 및 제2 방향 움직임 벡터는 현재 블록(1100)에 인접한 블록들(1130 내지 1134)의 움직임 벡터인 mv_A, mv_B 및 mv_C에 기초해 결정될 수 있다. 현재 블록(1010)의 좌측, 상부 및 우측 상부에 위치한 블록들의 움직임 벡터에 기초해 제1 방향 움직임 벡터 및 제2 방향 움직임 벡터를 결정한다.
현재 블록을 공간 직접예측 모드로 부호화하는 경우에는 mv_A, mv_B 및 mv_C 중 제1 방향의 움직임 벡터들의 중앙값을 현재 블록(1010)의 제1 방향 움직임 벡터로 결정하고, mv_A, mv_B 및 mv_C 중 제2 방향의 움직임 벡터들의 중앙값(median)을 현재 블록(1010)의 제2 방향 움직임 벡터로 결정한다. 제1 방향 움직임 벡터를 결정할 때, mv_A, mv_B 및 mv_C 중 제2 방향인 움직임 벡터는 '0'으로 설정하여 중앙값을 계산하고, 제2 방향 움직임 벡터를 결정할 때, mv_A, mv_B 및 mv_C 중 제1 방향인 움직임 벡터는 '0'으로 설정하고, 중앙값을 계산한다.
mv_A, mv_B 및 mv_C에 따른 제1 방향 참조 번호 중 제일 작은 번호에 대응되는 픽처를 제1 방향 참조 픽처로 결정하고, mv_A, mv_B 및 mv_C에 따른 제2 방향 참조 번호 중 제일 작은 번호에 대응되는 픽처를 제2 방향 참조 픽처로 결정한다.
현재 블록(1010)을 스킵 모드로 부호화하는 경우에는 도 11b에 도시된 바와 같이 현재 블록(1010)에 인접한 블록들(1130 내지 1134)의 움직임 벡터 mv_A, mv_B 및 mv_C 중에서 제1 방향 움직임 벡터들의 중앙값을 현재 블록의 움직임 벡터로 결정할 수 있다.
도 11a 및 11b에 따라 영상 부호화 장치(900)가 움직임 벡터를 결정하고, 현재 블록을 부호화하면, 복호화하는 측에서는 도 11a 및 11b와 동일한 방법을 이용해 현재 블록의 움직임 벡터를 결정하고, 복원할 수 있다. 다시 말해, 영상을 부호화하는 측과 복호화하는 측은 동일한 움직임 벡터 결정 방법을 암묵적(implicit)으로 공유하고, 공유된 움직임 벡터 결정 방법에 따라 현재 블록의 움직임 벡터를 결정할 수 있다.
그러나, 본 발명의 또 다른 실시예에 따르면, 부호화하는 측이 현재 블록 이전에 부호화된 복수의 블록의 움직임 벡터에 기초해 복수의 움직임 벡터 후보를 생성하고, 생성된 복수의 움직임 벡터 후보에서 현재 블록의 움직임 벡터를 특정하기 위한 정보를 명시적(explicit)으로 부호화하여 비스트스트림에 삽입하고, 복호화하는 측은 명시적으로 부호화되어 삽입된 정보에 기초해 현재 블록의 움직임 벡터를 결정할 수 있다. 이하 도 12a 및 12d를 참조하여 상세히 설명한다.
도 12a 및 12b는 본 발명의 또 다른 실시예에 따른 현재 블록의 움직임 벡터를 이전에 부호화된 블록의 움직임 벡터에 기초해 결정하는 방법을 도시한다.
도 12a를 참조하면, 움직임벡터결정부(910)는 현재 블록에 인접한 이전에 부호화된 블록들의 움직임 벡터에 기초해 복수의 움직임 벡터 후보를 생성할 수 있다. 현재 블록의 상부에 인접한 블록들 중 가장 좌측의 a0 블록, 좌측에 인접한 가장 상부의 b0 블록, 우측상부에 인접한 c 블록, 좌측상부에 인접한 d 블록 및 우측하부에 인접한 e 블록의 움직임 벡터가 복수의 움직임 벡터 후보일 수 있다.
a0 블록, b0 블록, c 블록 및 d 블록의 움직임 벡터 중 제1 방향의 움직임 벡터들 중 하나가 현재 블록의 제1 방향의 움직임 벡터로 결정되고, a0 블록, b0 블록, c 블록 및 d 블록의 움직임 벡터 중 제2 방향의 움직임 벡터들 중 하나가 현재 블록의 제2 방향의 움직임 벡터로 결정될 수 있다. 예를 들어, a0 블록, b0 블록, c 블록 및 d 블록의 움직임 벡터 중 a0 블록 및 b0 블록의 움직임 벡터가 제1 방향의 움직임 벡터들이라면, a0 블록의 움직임 벡터 및 b0 블록의 움직임 벡터 중 하나를 현재 블록의 제1 방향 움직임 벡터로 결정할 수 있고, 나머지 c 블록 및 d 블록의 움직임 벡터 중 하나를 현재 블록의 제2 방향 움직임 벡터로 결정할 수 있다.
복수의 움직임 벡터 후보 중 하나를 현재 블록의 움직임 벡터로 결정하는 방법에는 제한이 없으나, 일반적으로 현재 블록을 보다 정확하게 예측할 수 있는 움직임 벡터를 선택할 수 있다. 전술한 예에서, 제1 방향의 움직임 벡터인 a0 블록의 움직임 벡터 및 b0 블록의 움직임 벡터 중 a0 블록의 움직임 벡터에 따라 예측을 수행하였을 때, 현재 블록이 보다 더 정확하게 예측된다면, a0 블록의 움직임 벡터를 현재 블록의 제1 방향 움직임 벡터로 결정할 수 있다. 각각의 움직임 벡터에 따라 예측한 결과 생성된 예측 블록을 현재 블록에서 감산하여 생성된 레지듀얼 블록의 SAD(sum of absolute difference)를 계산하고, SAD가 작은 움직임 벡터를 현재 블록의 움직임 벡터로 결정할 수 있다.
도 12b를 참조하면, 현재 블록의 인접한 모든 블록의 움직임 벡터를 움직임 벡터 후보로서 이용할 수 있다. 다시 말해, 상부에 인접한 블록들 중 가장 좌측의 a0 블록뿐만 아니라 상부에 인접한 모든 블록들의 움직임 벡터가 움직임 벡터 후보로서 이용될 수 있고, 좌측에 인접한 불록들 중 가장 상부의 b0 블록뿐만 아니라 좌측에 인접한 모든 블록들의 움직임 벡터가 움직임 벡터 후보로서 이용될 수 있다.
도 12a와 관련하여 전술한 바와 같이 모든 블록의 움직임 벡터 후보에서 제1 방향의 움직임 벡터들 중 하나가 현재 블록의 제1 방향 움직임 벡터로서 결정되고, 제2 방향의 움직임 벡터들 중 하나가 현재 블록의 제2 방향 움직임 벡터로서 결정될 수 있다.
종합하면, 도 11a, 11b, 12a 및 12b에 따라 움직임벡터결정부(910)는 다음과 같이 다음과 같은 복수의 움직임 벡터 후보 중에서 하나를 현재 블록의 움직임 벡터로 결정할 수 있다.
C = {median(mv_a0, mv_b0, mv_c), mv_a0, mv_a1 ..., mv_aN, mv_b0, mv_b1, ... , mv_bN, mv_c, mv_d, mv_e, mv_L0A, mv_L1A}
mv_L0A 및 mv_L1A는 도 11a에 따른 움직임 벡터일 수 있으며, median(mv_a0, mv_b0, mv_c)은 도 11b에 따른 움직임 벡터일 수 있다. 나머지 움직임 벡터들은 도 12a 및 12b와 관련하여 전술하였다.
C 집합에 포함된 제1 방향의 움직임 벡터들 중에서 현재 블록의 제1 방향 움직임 벡터가 결정되고, C 집합에 포함된 제2 방향의 움직임 벡터들 중에서 현재 블록의 제2 방향 움직임 벡터가 결정될 수 있다.
또한, 본 발명의 또 다른 실시예에 따르면, 후보들의 개수를 줄이고, 그 중에서 현재 블록의 움직임 벡터를 결정할 수도 있다.
C = {median(mv_a', mv_b', mv_c'), mv_a', mv_b', mv_c', mv_L0A, mv_L1A}
여기서, mv_x는 x 블록의 움직임 벡터를 의미하고, median()은 중앙값을 의미하며, mv_a'은 mv_a0, mv_a1 ..., mv_aN 중 유효한 최초의 움직임 벡터를 의미한다. 예를 들어, a0 블록이 인트라 예측을 이용해 부호화된 경우 a0의 움직임 벡터인 mv_a0은 유효하지 않으므로, mv_a'=mv_a1이 되며, a1 블록의 움직임 벡터도 유효하지 않은 경우에는 mv_a'=mv_a2이다.
마찬가지로, mv_b'은 mv_b0, mv_b1, ... , mv_bN 중 유효한 최초의 움직임 벡터를 의미하고, mv_c'은 mv_c, mv_d, mv_e 중 유효한 최초의 움직임 벡터를 의미한다.
mv_L0A 및 mv_L1A는 도 11a에 따른 움직임 벡터일 수 있다. 또한, 본 발명의 또 다른 실시예에 따르면, mv_L0A 및 mvL1A 대신 인접한 픽처들 사이의 시간 거리를 이용해 생성된 다른 움직임 벡터가 후보에 포함될 수 있다. 도 13a 및 13b를 참조하여 상세히 설명한다.
도 13a 및 13b는 본 발명의 또 다른 실시예에 따른 현재 블록의 움직임 벡터를 이전에 부호화된 블록의 움직임 벡터에 기초해 결정하는 방법을 도시한다.
도 13a를 참조하면, 시간 거리에 기초해 결정된 움직임 벡터 후보는 종래 기술에 따른 시간 직접예측 모드와 다른 방법으로 다른 방법으로 결정될 수 있다.
현재 픽처(1110)의 현재 블록(1010)의 움직임 벡터 후보는 선행 픽처(1112)의 동일한 위치(colocated)의 블록(1320)의 움직임 벡터를 이용해 생성될 수 있다. 예를 들어, 현재 블록(1010)과 동일한 위치의 블록(1320)의 움직임 벡터 mv_colB가 후행 픽처(1114)의 검색된 블록(1322)에 대해 생성되면, 현재 블록(1010)의 움직임 벡터 후보들인 mv_L0B 및 mv_L1B 는 다음과 같이 생성될 수 있다.
mv_L1B = (t3/t4) * mv_colB
mv_L0B = mv_L1B - mv_colB
여기서, mv_L0B는 현재 블록(1010)의 제1 방향 움직임 벡터 후보를 의미하고, mv_L1B는 현재 블록(1010)의 제2 방향 움직임 벡터 후보를 의미한다.
도 13b를 참조하면, 현재 픽처(1110)의 현재 블록(1010)의 움직임 벡터 후보는 선행 픽처(1112)의 동일한 위치(colocated)의 블록(1330)의 움직임 벡터를 이용해 결정할 수 있다. 예를 들어, 현재 블록(1010)과 동일한 위치의 블록(1330)의 움직임 벡터 mv_colC가 또 다른 선행 픽처(1116)의 검색된 블록(1332)에 대해 생성되면, 현재 블록(1010)의 움직임 벡터 후보인 mv_L0C는 다음과 같이 생성될 수 있다.
mv_L0C = (t6/t5) x mv_colC
도 13a 및 13b와 관련하여 전술한 mv_L0B, mv_L1B 및 mv_L0B는 전술한 현재 블록(1010)의 움직임 벡터의 후보들인 C 집합에 포함될 수 있다. mv_L0A, mv_L1A를 대신해 C 집합에 포함될 수도 있고, 추가로 C 집합에 포함될 수도 있다.
다시 도 9를 참조하면, 움직임벡터결정부(910)가 현재 블록 이전에 부호화된 블록들의 움직임 벡터에 기초해 현재 블록의 움직임 벡터를 결정하면, 부호화부(920)는 현재 블록에 대한 정보를 부호화한다.
현재 블록의 제1 방향 움직임 벡터 및 제2 방향 움직임 벡터가 결정되면, 부호화부(920)는 결정된 제1 방향 움직임 벡터 및 제2 방향 움직임 벡터에 기초해 제1 방향의 예측, 제2 방향의 예측 및 양방향 예측을 수행한다. 그런 다음, 현재 블록을 가장 정확하게 예측하는 예측 방향을 결정한다. 제1 방향의 예측 결과, 제2 방향의 예측 결과 및 양방향 예측 결과를 현재 블록과 비교하여 레지듀얼 블록의 SAD가 가장 적은 예측 방향을 결정할 수 있다. 제1 방향의 예측, 제2 방향의 예측 및 양방향 예측을 모두 수행하여, 부호화한 결과를 RD 코스트(rate distortion cost)에 기초해 비교하여 예측 방향을 결정할 수도 있다.
예측 방향이 결정되면, 결정된 예측 방향에 대한 정보 및 픽셀 값들에 대한 정보를 부호화한다. 예측 방향에 대한 정보가 시퀀스 파라미터, 슬라이스 파라미터 또는 블록 파라미터로서 부호화될 수 있다. 제1 방향, 제2 방향 및 양방향에 소정의 이진수를 할당하고, 현재 블록의 부호화에 이용되는 예측 방향에 대응되는 이진수를 엔트로피 부호화하여 비트스트림에 삽입할 수 있다.
픽셀 값들에 대한 정보로서 직접예측 모드와 같이 레지듀얼 블록에 대한 정보를 별도로 부호화할 수 있다. 결정된 예측 방향에 따른 예측 결과 생성된 예측 블록을 현재 블록에서 감산하여 레지듀얼 블록을 생성하고, 레지듀얼 블록을 변환하여, 주파수 영역의 계수들을 생성하고, 생성된 계수들을 양자화, 엔트로피 부호화할 수 있다. 변환은 이산 코사인 변환 또는 KLT 변환일 수 있다.
또한, 픽셀 값들에 대한 정보로서 종래 기술에 따른 스킵 모드와 예측 블록과 현재 블록이 동일함을 나타내는 플래그 정보만 부호화할 수도 있다. 결정된 예측 방향에 따른 예측 결과 생성된 예측 블록을 현재 블록과 동일한 것으로 간주하여 현재 블록과 예측 블록이 동일함을 나타내는 플래그 정보만 부호화할 수 있다.
예측을 위해 참조하는 픽처는 이전에 부호화된 블록들의 참조 번호(reference index)에 기초해 유추될 수 있다. 도 11b와 관련하여 전술한 바와 같이 이전에 부호화된 블록들의 참조 번호에 기초해 현재 블록의 참조 번호를 결정하고, 이에 대응되는 참조 픽처가 결정될 수도 있다. 또한, 움직임벡터결정부(910)에서 결정된 움직임 벡터에 대응되는 참조 픽처가 현재 블록의 참조 픽처로 결정될 수 있다. 예를 들어, 도 11a와 관련하여 전술한 바와 같이 mv_L0A가 현재 블록의 제1 방향 움직임 벡터로 결정되면, mv_L0A에 따른 선행 픽처(1112)가 현재 블록의 참조 픽처로서 자동적으로 결정될 수 있다.
움직임벡터결정부(910)가 도 12a, 12b, 13a 및 13b와 같이 복수의 움직임 벡터 후보들 중에서 제1 방향 움직임 벡터 및 제2 방향 움직임 벡터를 명시적으로 결정한 경우에 부호화부(920)는 복수의 임직임 벡터 후보에서 현재 블록의 제1 방향 움직임 벡터 및 제2 방향 움직임 벡터 중 적어도 하나를 지시(signalling)하는 정보를 부호화할 수도 있다.
예측 방향을 결정한 결과 제1 방향으로만 예측을 수행하는 것으로 결정된 경우에는 복수의 움직임 벡터 후보들에서 제1 방향 움직임 벡터를 지시하는 정보만 부호화한다. 제2 방향으로만 예측을 수행하는 경우에도 제2 방향 움직임 벡터를 지시하는 정보만 부호화할 수 있다. 그러나, 양방향 예측을 수행하는 경우에는 복수의 움직임 벡터 후보들에서 제1 방향 움직임 벡터 및 제2 방향 움직임 벡터를 지시하는 정보를 부호화할 수 있다.
전술한 C 집합에 포함된 모든 움직임 벡터 각각에 이진수를 할당하고, 그 중 현재 블록의 움직임 벡터로서 결정된 제1 방향 움직임 벡터 및/또는 제2 방향 움직임 벡터에 할당된 이진수를 부호화할 수 있다. 그러나, 전술한 바와 같이 현재 블록의 제1 방향 움직임 벡터는 C 집합에 포함된 제1 방향의 움직임 벡터들 중에서 하나로 결정되는 바, C 집합에 포함된 제1 방향의 움직임 벡터들에 순서대로 할당된 이진수 중에서 현재 블록의 제1 방향 움직임 벡터로 결정된 움직임 벡터에 할당된 이진수를 제1 방향 움직임 벡터를 지시하는 정보로서 부호화할 수 있다. 제2 방향 움직임 벡터도 마찬가지로, C 집합에 포함된 제2 방향의 움직임 벡터들에 순서대로 할당된 이진수 중에서 현재 블록의 제2 방향 움직임 벡터로 결정된 움직임 벡터에 할당된 이진수를 제2 방향 움직임 벡터를 지시하는 정보로서 부호화할 수 있다.
도 14는 본 발명의 또 다른 실시예에 따른 영상 복호화 장치를 도시한다. 도 14의 영상 복호화 장치(1400)는 도 2의 영상 복호화 장치(200) 및 도 5의 영상 부호화 장치(500)에 포함되어 인터 예측을 수행하여, 현재 블록을 복호화하는 장치일 수 있다.
도 14를 참조하면, 본 발명의 일 실시예에 따른 영상 복호화 장치(1400)는 복호화부(1410), 움직임벡터결정부(1420) 및 복원부(1430)를 포함한다.
복호화부(1410)는 현재 블록에 대한 데이터를 포함하는 비트스트림을 수신하고, 예측 방향에 대한 정보를 복호화한다. 영상 복호화 장치(1400)는 현재 블록 이전에 복호화된 적어도 하나의 블록의 움직임 벡터에 기초해 현재 블록의 움직임 벡터를 결정하고, 결정된 움직임 벡터에 기초해 현재 블록을 복원하는 복호화 모드에 따라 복호화를 수행하는 바, 현재 블록의 움직임 벡터를 결정하기에 앞서, 현재 블록의 예측 방향에 대한 정보를 복호화한다. 시퀀스 파라미터, 슬라이스 파라미터 또는 블록 파라미터로서 비트스트림에 포함되어 있는 예측 방향에 대한 정보를 복호화한다.
직접예측 모드나 스킵 모드와 같이 이전에 부호화된 블록의 움직임 벡터에 기초해 현재 블록의 움직임 벡터를 결정하는 부호화/복호화 모드는 특정 방향의 예측만을 이용하여 현재 블록을 부호화/복호화하였으나, 본 발명에 따른 부호화/복호화 방법은 제1 방향의 예측, 제2 방향의 예측 및 양방향 예측 모두에 기초해 직접예측 모드나 스킵 모드로 현재 블록을 부호화/복호화할 수 있다. 이를 위해 전술한 영상 부호화 장치(900)는 예측 방향에 대한 정보를 부호화하여 비트스트림에 삽입한다. 복호화부(1410)는 영상 부호화 장치(900)에서 비스트스트림에 삽입한 예측 방향에 대한 정보를 복호화한다.
복호화부(1410)는 예측 방향에 대한 정보와 함께 복수의 움직임 벡터 후보에서 현재 블록의 움직임 벡터를 지시하는 정보를 복호화할 수도 있다. 현재 블록의 움직임 벡터가 전술한 바와 같이 부호화 측과 복호화 측 사이에 공유된 움직임 벡터 결정 방법에 따라 암시적으로 결정되는 경우에는 현재 블록의 움직임 벡터는 이미 정해진 방법에 따라 하나로 결정되므로, 움직임 벡터를 지시하는 정보를 복호화할 필요가 없다. 그러나, 전술한 바와 같이 이전에 부호화된 복수의 블록의 움직임 벡터에 기초해 복수의 움직임 벡터 후보를 생성하고, 그 중에서 현재 블록의 움직임 벡터가 결정된 경우에는 복수의 움직임 벡터 후보에서 현재 블록의 움직임 벡터를 특정하기 위한 정보를 복호화할 수 있다.
또한, 복호화부(1410)는 현재 블록의 픽셀 값에 대한 정보를 복호화한다. 현재 블록의 레지듀얼 블록에 대한 정보를 복호화하거나, 현재 블록이 예측 블록과 동일함을 나타내는 플래그 정보를 복호화한다. 복호화부(1410)는 레지듀얼 블록에 대한 정보를 엔트로피 복호화, 역양자화, 역변환하여 레지듀얼 블록을 복원할 수 있다.
움직임벡터결정부(1420)는 복호화부(1410)에서 복호화된 예측 방향에 대한 정보에 기초해 소정 방향의 예측을 수행하기 위한 현재 블록의 움직임 벡터를 결정한다. 복호화된 예측 방향에 대한 정보를 참조한 결과, 제1 방향의 예측을 수행하는 것으로 판단되면, 제1 방향 움직임 벡터를 결정하고, 제2 방향의 예측을 수행하는 것으로 판단되면, 제2 방향 움직임 벡터를 결정한다. 양방향 예측을 수행하는 것으로 판단되면, 제1 방향 움직임 벡터 및 제2 방향 움직임 벡터를 결정한다.
부호화 측과 복호화 측 사이의 공유된 움직임 벡터 결정 방법에 따라 암묵적으로 현재 블록의 움직임 벡터가 결정되는 경우에는 공유된 움직임 벡터 결정 방법에 따라 현재 블록의 움직임 벡터를 결정한다. 암묵적으로 현재 블록의 움직임 벡터를 결정하는 방법은 도 11a 및 11b와 관련하여 전술하였다.
그러나, 복수의 움직임 벡터 후보 중에서 현재 블록의 움직임 벡터를 결정하는 경우에는 복호화부(1410)에서 복호화된 복수의 움직임 벡터 후보에서 현재 블록을 지시하는 정보에 기초해 현재 블록의 움직임 벡터를 결정한다. 현재 블록 이전에 복호화된 적어도 하나의 블록의 움직임 벡터를 이용해 복수의 움직임 벡터 후보를 생성하고, 생성된 복수의 움직임 벡터 후보에서 현재 블록의 움직임 벡터를 결정한다.
현재 블록이 제1 방향의 예측만 이용하는 경우에는 복호화부(1410)에서 복호화된 제1 방향 움직임 벡터를 지시하는 정보를 참조해 복수의 움직임 벡터 후보들 중에서 제1 방향 움직임 벡터를 결정하고, 현재 블록이 제2 방향의 예측만 이용하는 경우에는 복호화부(1410)에서 복호화된 제2 방향 움직임 벡터를 지시하는 정보를 참조해 복수의 움직임 벡터 후보들 중에서 제2 방향 움직임 벡터를 결정한다. 현재 블록이 양방향 예측을 이용하는 경우에는 복호화부(1410)에서 복호화된 제1 방향 움직임 벡터를 지시하는 정보 및 제2 방향 움직임 벡터를 지시하는 정보를 참조해, 복수의 움직임 벡터 후보들 중에서 제1 방향 움직임 벡터 및 제2 방향 움직임 벡터를 결정할 수 있다.
복원부(1430)는 복호화부(1410)에서 복호화된 픽셀 값들에 대한 정보 및 움직임벡터결정부(1420)에서 결정된 현재 블록의 움직임 벡터에 기초해 현재 블록을 복원한다.
움직임벡터결정부(1410)에서 결정된 움직임 벡터에 따라 제1 방향의 예측, 제2 방향의 예측 또는 양방향의 예측을 수행하여 현재 블록의 예측 블록을 생성한다. 복호화부(1410)에서 픽셀 값들에 대한 정보를 복호화한 결과, 레지듀얼 블록이 복원된 경우에는 복원된 레지듀얼 블록과 예측 블록을 가산하여 현재 블록을 복원한다. 복호화부(1410)에서 예측 블록이 현재 블록과 동일함을 나타내는 플래그 정보가 복호화된 경우에는 예측 블록을 그대로 복원된 현재 블록으로 이용한다.
예측을 위해 참조하는 픽처는 이전에 복호화된 블록들의 참조 번호(reference index)에 기초해 유추될 수 있다. 도 11b와 관련하여 전술한 바와 같이 이전에 복호화된 블록들의 참조 번호에 기초해 현재 블록의 참조 번호를 결정하고, 이에 대응되는 참조 픽처가 결정될 수도 있다. 또한, 움직임벡터결정부(1410)에서 결정된 움직임 벡터에 대응되는 참조 픽처가 현재 블록의 참조 픽처로 결정될 수 있다. 예를 들어, 도 11a와 관련하여 전술한 바와 같이 mv_L0A가 현재 블록의 제1 방향 움직임 벡터로 결정되면, mv_L0A에 따른 선행 픽처(1112)가 현재 블록의 참조 픽처로서 자동적으로 결정될 수 있다.
도 15는 본 발명의 일 실시예에 따른 영상 부호화 방법을 설명하기 위한 흐름도이다.
도 15를 참조하면, 단계 1510에서 영상 부호화 장치는 현재 블록의 움직임 벡터를 결정한다. 양방향 예측 픽처인 현재 픽처에 포함된 현재 블록의 제1 방향 움직임 벡터 및 제2 방향 움직임 벡터를 결정한다. 현재 블록의 움직임 벡터는 도 11a 및 11b를 참조하여 전술한 바와 같이 부호화하는 측과 복호화하는 측 사이에 공유된 움직임 벡터 결정 방법에 따라 암묵적으로 결정될 수도 있고, 도 12a, 12b, 13a 및 13b를 참조하여 전술한 바와 같이 복수의 움직임 벡터 후보를 생성하고, 생성된 복수의 움직임 벡터 후보 중에서 제1 방향 움직임 벡터 및 제2 방향 움직임 벡터를 결정할 수도 있다.
단계 1520에서 영상 부호화 장치는 제1 방향 예측, 제2 방향 예측 및 양방향 예측 중 현재 블록의 부호화에 이용되는 예측을 결정한다. 제1 방향 움직임 벡터에 따른 제1 방향 예측, 제2 방향 움직임 벡터에 따른 제2 방향 예측, 제1 방향 움직임 벡터 및 제2 방향 움직임 벡터에 따른 양방향 예측 중 현재 블록의 부호화에 이용되는 예측을 결정한다.
제1 방향 예측, 제2 방향 예측 및 양방향 예측 중 현재 블록을 가장 정확하게 예측할 수 있는 예측을 현재 블록을 부호화하는데 이용되는 예측으로 결정할 수 있다. 전술한 바와 같이 예측 블록과 현재 블록의 SAD가 가장 장은 예측이 현재 블록을 부호화하는데 이용되는 예측으로 결정될 수 있다.
단계 1530에서 영상 부호화 장치는 단계 1530에서 결정된 예측의 예측 방향에 대한 정보를 부호화한다. 제1 방향, 제2 방향 및 양방향에 각각 이진수를 할당하고, 현재 블록의 부호화에 이용되는 예측 방향에 대응되는 이진수를 부호화할 수 있다. 부호화된 이진수를 소정의 엔트로피 부호화 방법에 의해 엔트로피 부호화될 수 있다. 예측 방향에 대한 정보가 시퀀스 파라미터, 슬라이스 파라미터 또는 블록 파라미터로서 부호화될 수 있다.
현재 블록의 픽셀 값들에 대한 정보도 부호화되는데, 현재 블록에서 예측 블록을 감산하여 생성된 레지듀얼 블록의 레지듀얼 값들에 대한 정보를 부호화할 수 있다. 레지듀얼 블록을 변환, 양자화 및 엔트로피 부호화할 수 있다. 또한, 전술한 바와 같이 예측 블록이 현재 블록과 동일함을 나타내는 플래그 정보만 부호화할 수도 있다.
복수의 움직임 벡터 후보들에서 현재 블록의 부호화에 이용된 움직임 벡터를 특정하기 위한 정보도 부호화할 수 있다. 현재 블록 이전에 부호화된 적어도 하나의 블록의 움직임 벡터에 기초해 복수의 움직임 벡터 후보를 생성하고, 그 중 하나를 현재 블록의 움직임 벡터를 선택하여 현재 블록의 움직임 벡터로서 이용한 경우에 복수의 움직임 벡터 후보에서 선택된 움직임 벡터를 지시하는 정보를 부호화할 수 있다. 단계 1520에서 현재 블록의 예측 방향으로 제1 방향이 결정되었으면, 제1 방향 움직임 벡터에 대한 정보만 부호화되고, 단계 1520에서 현재 블록의 예측 방향으로 제2 방향이 결정되었으면, 제2 방향 움직임 벡터에 대한 정보만 부호화될 수 있다. 단계 1520에서 현재 블록의 예측 방향으로 양방향 예측이 결정되었으면, 제1 방향 움직임 벡터에 대한 정보 및 제2 방향 움직임 벡터에 대한 정보가 모두 부호화된다.
도 16은 본 발명의 일 실시예에 따른 영상 복호화 방법을 설명하기 위한 흐름도이다.
도 16을 참조하면, 단계 1610에서 영상 복호화 장치는 제1 방향, 제2 방향 및 양방향 중 현재 블록의 복호화에 이용되는 예측 방향에 대한 정보를 복호화한다. 비트스트림에 포함되어 있는 예측 방향에 대한 정보를 복호화한다. 제1 방향, 제2 방향 및 양방향 각각에 할당되어 있는 이진수는 현재 블록의 복호화에 이용되는 예측 방향에 대응되는 이진수를 복호화한다. 시퀀스 파라미터, 슬라이스 파라미터 또는 블록 파라미터로서 비트스트림에 포함되어 있는 예측 방향에 대한 정보를 복호화한다.
또한, 영상 복호화 장치는 단계 1610에서 현재 블록의 픽셀 값들에 대한 정보를 복호화한다. 현재 블록의 레지듀얼 블록에 포함된 레지듀얼 값들에 대한 정보를 복호화할 수 있다. 레지듀얼 블록에 대한 데이터를 엔트로피 복호화, 역양자화, 역변환하여 레지듀얼 블록을 복원한다. 현재 블록이 예측 블록과 동일함을 나타내는 정보를 복호화할 수도 있다.
현재 블록의 움직임 벡터가 전술한 복수의 움직임 벡터 후보 중에서 결정되는 경우에는 복수의 움직임 벡터 후보에서 현재 블록의 복호화에 이용되는 움직임 벡터를 특정하기 위한 정보가 복호화될 수 있다. 예측 방향에 대한 정보를 복호화한 결과, 현재 블록의 예측 방향이 제1 방향이면, 복수의 움직임 벡터 후보에서 현재 블록의 제1 방향 움직임 벡터를 지시하는 정보가 복호화될 수 있고, 현재 블록의 예측 방향이 제2 방향이면, 복수의 움직임 벡터 후보에서 현재 블록의 제2 방향 움직임 벡터를 지시하는 정보가 복호화될 수 있다. 현재 블록의 예측 방향이 양방향이면, 복수의 움직임 벡터 후보에서 제1 방향 움직임 벡터 및 제2 방향 움직임 벡터를 지시하는 정보가 복호화될 수 있다.
단계 1620에서 영상 복호화 장치는 단계 1610에서 복호화된 예측 방향에 대한 정보에 기초해 현재 블록의 예측 방향을 결정한다. 단계 1610에서 복호화된 예측 방향에 대응되는 이진수에 기초해 현재 블록의 예측 방향을 결정한다. 예측 방향에 결정되면, 결정된 예측 방향의 예측을 수행하기 위한 적어도 하나의 움직임 벡터를 결정한다.
전술한 바와 같이 부호화하는 측과 복호화하는 측 사이에 공유된 움직임 벡터 결정 방법에 따라 암시적으로 현재 블록의 움직임 벡터가 결정될 수 있다. 또한, 복수의 움직임 벡터 후보에서 현재 블록의 움직임 벡터를 명시적으로 선택한 경우에는 현재 블록 이전에 복호화된 적어도 하나의 블록의 움직임 벡터에 기초해 복수의 움직임 벡터 후보를 생성하고, 생성된 복수의 움직임 벡터 후보에서 현재 블록의 움직임 벡터를 결정할 수 있다. 단계 1610에서 복호화된 복수의 움직임 벡터 후보에서 현재 블록의 움직임 벡터를 지시하는 정보에 기초해 현재 블록의 움직임 벡터를 결정할 수 있다. 단계 1610에서 복호화된 정보에 기초해 제1 방향 움직임 벡터, 제2 방향 움직임 벡터 중 적어도 하나가 결정될 수 있다.
단계 1630에서 영상 복호화 장치는 현재 블록을 복원한다. 단계 1620에서 결정된 현재 블록의 움직임 벡터에 기초해 예측 블록을 생성하고, 생성된 예측 블록에 기초해 현재 블록을 복원한다.
단계 1620에서 결정된 현재 블록의 제1 방향 움직임 벡터 및/또는 제2 방향 움직임 벡터에 기초해 제1 방향 예측, 제2 방향 예측 및 양방향 예측 중 하나를 수행하여, 현재 블록의 예측 블록을 생성한다.
단계 1610에서 레지듀얼 블록이 복원된 경우에는 생성된 예측 블록과 복원된 레지듀얼 블록을 가산하여 현재 블록을 복원한다. 단계 1610에서 예측 블록과 현재 블록과 현재 블록이 동일함을 나타내는 정보가 복호화된 경우에는 예측 블록이 현재 블록이 된다.
이상과 같이 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명이 상기의 실시예에 한정되는 것은 아니며, 이는 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 따라서, 본 발명의 사상은 아래에 기재된 특허청구범위에 의해서만 파악되어야 하고, 이와 균등하거나 또는 등가적인 변형 모두는 본 발명 사상의 범주에 속한다 할 것이다. 또한, 본 발명에 따른 시스템은 컴퓨터로 읽을 수 있는 기록매체에 컴퓨터가 읽을 수 있는 코드로서 구현하는 것이 가능하다.
예를 들어, 본 발명의 예시적인 실시예에 따른 영상 부호화 장치, 영상 복호화 장치, 움직임 벡터 부호화 장치 및 움직임 벡터 복호화 장치는 도 1, 2, 4, 5, 9 및 14에 도시된 바와 같은 장치의 각각의 유닛들에 커플링된 버스, 상기 버스에 결합된 적어도 하나의 프로세서를 포함할 수 있다. 또한, 명령, 수신된 메시지 또는 생성된 메시지를 저장하기 위해 상기 버스에 결합되어, 전술한 바와 같은 명령들을 수행하기 위한 적어도 하나의 프로세서에 커플링된 메모리를 포함할 수 있다.
또한, 컴퓨터가 읽을 수 있는 기록매체는 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 기록매체의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광데이터 저장장치 등을 포함한다. 또한 컴퓨터가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어 분산방식으로 컴퓨터가 읽을 수 있는 코드가 저장되고 실행될 수 있다.

Claims (15)

  1. 현재 블록 이전에 복호화된 적어도 하나의 블록의 움직임 벡터에 기초해 현재 블록의 움직임 벡터를 결정하고, 상기 결정된 움직임 벡터를 이용해 현재 블록을 복호화하는 방법에 있어서,
    제1 방향, 제2 방향 및 양방향 중 상기 현재 블록의 복호화에 이용되는 예측 방향에 대한 정보 및 상기 현재 블록의 픽셀 값들에 대한 정보를 복호화하는 단계;
    상기 복호화된 예측 방향에 대한 정보에 기초해 상기 현재 블록의 예측 방향을 결정하고, 상기 결정된 예측 방향의 예측을 수행하기 위한 적어도 하나의 움직임 벡터를 결정하는 단계; 및
    상기 결정된 예측 방향의 예측을 위한 적어도 하나의 움직임 벡터 및 상기 복호화된 픽셀 값들에 대한 정보에 기초해 상기 현재 블록을 복원하는 단계를 포함하고,
    상기 제1 방향은 상기 현재 픽처로부터 선행 픽처로의 방향이고, 상기 제2 방향은 상기 현재 픽처로부터 후행 픽처로의 방향인 것을 특징으로 하는 영상 복호화 방법.
  2. 제 1 항에 있어서,
    상기 현재 블록의 픽셀 값들에 대한 정보를 복호화하는 단계는 상기 현재 블록의 레지듀얼 블록에 대한 데이터를 복호화하는 단계를 포함하고,
    상기 복원하는 단계는 상기 결정된 예측 방향의 예측을 위한 적어도 하나의 움직임 벡터에 기초해 예측을 수행하여 상기 현재 블록의 예측 블록을 생성하는 단계; 및 상기 복호화된 레지듀얼 블록 및 상기 생성된 예측 블록에 기초해 상기 현재 블록을 복원하는 단계를 포함하는 것을 특징으로 하는 영상 복호화 방법.
  3. 제 1 항에 있어서,
    상기 현재 블록의 픽셀 값들에 대한 정보를 복호화하는 단계는 상기 소정 방향의 예측에 따라 생성된 예측 블록이 현재 블록과 동일함을 나타내는 플래그 정보를 복호화하는 단계를 포함하고,
    상기 복원하는 단계는 상기 결정된 예측 방향의 예측을 위한 적어도 하나의 움직임 벡터에 기초해 예측을 수행하여 상기 현재 블록을 복원하는 단계를 포함하는 것을 특징으로 하는 영상 복호화 방법.
  4. 제 1 항에 있어서, 상기 결정된 예측 방향의 예측을 위한 적어도 하나의 움직임 벡터를 결정하는 단계는
    상기 현재 블록에 이전에 복호화된 적어도 하나의 블록의 움직임 벡터에 기초해 생성된 복수의 후보들 중에서 상기 제1 방향의 움직임 벡터 및 제2 방향의 움직임 벡터 중 적어도 하나를 결정하는 단계를 포함하는 것을 특징으로 하는 영상 복호화 방법.
  5. 제 4 항에 있어서, 상기 복호화하는 단계는
    상기 복수의 후보들 중 상기 결정된 예측 방향의 예측을 위한 적어도 하나의 움직임 벡터를 지시하는 정보를 복호화하는 단계를 더 포함하는 것을 특징으로 하는 영상 복호화 방법.
  6. 제 1 항에 있어서, 상기 현재 블록 이전에 복호화된 적어도 하나의 블록의 움직임 벡터는
    상기 현재 픽처 이전에 복호화된 앵커 픽처(anchor)에서 상기 현재 블록과 동일한 위치의 블록의 움직임 벡터를 포함하는 것을 특징으로 하는 영상 복호화 방법.
  7. 제 6 항에 있어서, 상기 결정된 예측 방향의 예측을 위한 적어도 하나의 움직임 벡터는
    상기 현재 픽처와 상기 선행 픽처 사이의 시간 거리 및 상기 선행 픽처와 상기 후행 픽처 사이의 시간 거리에 기초해 결정된 제1 방향의 움직임 벡터 및 제2 방향의 움직임 벡터 중 적어도 하나를 포함하는 것을 특징으로 하는 영상 복호화 방법.
  8. 현재 블록 이전에 부호화된 적어도 하나의 블록의 움직임 벡터에 기초해 현재 블록의 움직임 벡터를 결정하고, 상기 결정된 움직임 벡터를 이용해 현재 블록을 부호화하는 방법에 있어서,
    상기 현재 블록 이전에 부호화된 적어도 하나의 블록의 움직임 벡터에 기초해 현재 블록의 제1 방향의 움직임 벡터 및 제2 방향의 움직임 벡터를 결정하는 단계;
    상기 제1 방향의 움직임 벡터 및 제2 방향의 움직임 벡터에 기초한 상기 제1 방향의 예측, 상기 제2 방향의 예측 및 양방향의 예측 중 상기 현재 블록의 부호화에 이용되는 예측을 결정하는 단계; 및
    상기 예측 방향에 대한 정보 및 상기 결정된 예측에 기초해 생성된 상기 현재 블록의 픽셀 값들에 대한 정보를 부호화하는 단계를 포함하고,
    상기 제1 방향은 상기 현재 픽처로부터 선행 픽처로의 방향이고, 상기 제2 방향은 상기 현재 픽처로부터 후행 픽처로의 방향인 것을 특징으로 하는 영상 부호화 방법.
  9. 제 8 항에 있어서, 상기 부호화하는 단계는
    상기 예측 방향에 대한 정보 및 상기 결정된 예측에 기초해 생성된 레지듀얼 블록을 부호화하는 단계를 포함하는 것을 특징으로 하는 영상 부호화 방법.
  10. 제 8 항에 있어서, 상기 부호화하는 단계는
    상기 예측 방향에 대한 정보 및 상기 결정된 예측에 기초해 생성된 예측 블록이 현재 블록과 동일함을 나타내는 플래그 정보를 부호화하는 단계를 포함하는 것을 특징으로 하는 영상 부호화 방법.
  11. 제 8 항에 있어서, 상기 제1 방향의 움직임 벡터 및 제2 방향의 움직임 벡터를 결정하는 단계는
    상기 현재 블록 이전에 부호화된 적어도 하나의 블록의 움직임 벡터에 기초해 생성된 복수의 후보들 중에서 제1 방향의 움직임 벡터 및 제2 방향의 움직임 벡터를 결정하는 단계를 포함하는 것을 특징으로 하는 영상 부호화 방법.
  12. 제 11 항에 있어서, 상기 부호화하는 단계는
    상기 복수의 후보들 중 상기 결정된 예측을 위한 적어도 하나의 움직임 벡터를 지시하는 정보를 부호화하는 단계를 더 포함하는 것을 특징으로 하는 영상 부호화 방법.
  13. 현재 블록 이전에 복호화된 적어도 하나의 블록의 움직임 벡터에 기초해 현재 블록의 움직임 벡터를 결정하고, 상기 결정된 움직임 벡터를 이용해 현재 블록을 복호화하는 장치에 있어서,
    제1 방향, 제2 방향 및 양방향 중 상기 현재 블록의 복호화에 이용되는 예측 방향에 대한 정보 및 상기 현재 블록의 픽셀 값들에 대한 정보를 복호화하는 복호화부;
    상기 복호화된 예측 방향에 대한 정보에 기초해 상기 현재 블록의 예측 방향을 결정하고, 상기 결정된 예측 방향의 예측을 수행하기 위한 적어도 하나의 움직임 벡터를 결정하는 움직임벡터결정부; 및
    상기 결정된 예측 방향의 예측을 위한 적어도 하나의 움직임 벡터 및 상기 복호화된 픽셀 값들에 대한 정보에 기초해 상기 현재 블록을 복원하는 복원부를 포함하고,
    상기 제1 방향은 상기 현재 픽처로부터 선행 픽처로의 방향이고, 상기 제2 방향은 상기 현재 픽처로부터 후행 픽처로의 방향인 것을 특징으로 하는 영상 복호화 장치.
  14. 현재 블록 이전에 부호화된 적어도 하나의 블록의 움직임 벡터에 기초해 현재 블록의 움직임 벡터를 결정하고, 상기 결정된 움직임 벡터를 이용해 현재 블록을 부호화하는 장치에 있어서,
    상기 현재 블록 이전에 부호화된 적어도 하나의 블록의 움직임 벡터에 기초해 현재 블록의 제1 방향의 움직임 벡터 및 제2 방향의 움직임 벡터를 결정하는 움직임벡터결정부;
    상기 제1 방향의 움직임 벡터 및 제2 방향의 움직임 벡터에 기초한 상기 제1 방향의 예측, 상기 제2 방향의 예측 및 양방향의 예측 중 상기 현재 블록의 부호화에 이용되는 예측을 결정하고, 상기 예측 방향에 대한 정보 및 상기 결정된 예측에 기초해 생성된 상기 현재 블록의 픽셀 값들에 대한 정보를 부호화하는 부호화부를 포함하고,
    상기 제1 방향은 상기 현재 픽처로부터 선행 픽처로의 방향이고, 상기 제2 방향은 상기 현재 픽처로부터 상기 후행 픽처로의 방향인 것을 특징으로 하는 영상 부호화 장치.
  15. 제 1 항 내지 제 12 항 중 어느 한 항의 방법을 실행하기 위한 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록 매체.
PCT/KR2011/000387 2010-01-19 2011-01-19 이전 블록의 움직임 벡터를 현재 블록의 움직임 벡터로 이용하는 영상 부호화, 복호화 방법 및 장치 WO2011090313A2 (ko)

Priority Applications (14)

Application Number Priority Date Filing Date Title
US13/574,110 US9351017B2 (en) 2010-01-19 2011-01-19 Method and apparatus for encoding/decoding images using a motion vector of a previous block as a motion vector for the current block
EP21181658.2A EP3913923A1 (en) 2010-01-19 2011-01-19 Method and apparatus for encoding/decoding images using a motion vector of a previous block as a motion vector for the current block
JP2012549942A JP2013517733A (ja) 2010-01-19 2011-01-19 以前ブロックの動きベクトルを現在ブロックの動きベクトルとして用いる映像符号化/復号化方法及び装置
EP11734862.3A EP2528332A4 (en) 2010-01-19 2011-01-19 METHOD AND DEVICE FOR CODING / DECODING PICTURES USING A MOTION VECTOR OF A PREVIOUS BLOCK AS A MOTION VECTOR OF THE PRESENT BLOCK
MYPI2012003278A MY184904A (en) 2010-01-19 2011-01-19 Method and apparatus for encoding/decoding images using a motion vector of a previous block as a motion vector for the current block
CN201180014824.9A CN102835111B (zh) 2010-01-19 2011-01-19 使用先前块的运动矢量作为当前块的运动矢量来对图像进行编码/解码的方法和设备
US15/133,918 US9491484B2 (en) 2010-01-19 2016-04-20 Method and apparatus for encoding/decoding images using a motion vector of a previous block as a motion vector for the current block
PH12016501593A PH12016501593A1 (en) 2010-01-19 2016-08-11 Method and apparatus for encoding/decoding images using a motion vector of a previous block as a motion vector for the current block
PH12016501592A PH12016501592B1 (en) 2010-01-19 2016-08-11 Method and apparatus for encoding/decoding images using a motion vector of a previous block as a motion vector for the current block
PH12016501594A PH12016501594B1 (en) 2010-01-19 2016-08-11 Method and apparatus for encoding/decoding images using a motion vector of a previous block as a motion vector for the current block
PH12016501595A PH12016501595A1 (en) 2010-01-19 2016-08-11 Method and apparatus for encoding/decoding images using a motion vector of a previous block as a motion vector for the current block
US15/293,375 US9743102B2 (en) 2010-01-19 2016-10-14 Method and apparatus for encoding/decoding images using a motion vector of a previous block as a motion vector for the current block
US15/656,442 US9924192B2 (en) 2010-01-19 2017-07-21 Method and apparatus for encoding/decoding images using a motion vector of a previous block as a motion vector for the current block
US15/892,052 US10218998B2 (en) 2010-01-19 2018-02-08 Method and apparatus for encoding/decoding images using a motion vector of a previous block as a motion vector for the current block

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US29614110P 2010-01-19 2010-01-19
US61/296,141 2010-01-19
KR10-2011-0005377 2011-01-19
KR1020110005377A KR101607308B1 (ko) 2010-01-19 2011-01-19 이전 블록의 움직임 벡터를 현재 블록의 움직임 벡터로 이용하는 영상 부호화, 복호화 방법 및 장치

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/574,110 A-371-Of-International US9351017B2 (en) 2010-01-19 2011-01-19 Method and apparatus for encoding/decoding images using a motion vector of a previous block as a motion vector for the current block
US15/133,918 Continuation US9491484B2 (en) 2010-01-19 2016-04-20 Method and apparatus for encoding/decoding images using a motion vector of a previous block as a motion vector for the current block

Publications (2)

Publication Number Publication Date
WO2011090313A2 true WO2011090313A2 (ko) 2011-07-28
WO2011090313A3 WO2011090313A3 (ko) 2011-11-10

Family

ID=44307389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/000387 WO2011090313A2 (ko) 2010-01-19 2011-01-19 이전 블록의 움직임 벡터를 현재 블록의 움직임 벡터로 이용하는 영상 부호화, 복호화 방법 및 장치

Country Status (4)

Country Link
US (5) US9351017B2 (ko)
EP (2) EP2528332A4 (ko)
CN (2) CN104967857B (ko)
WO (1) WO2011090313A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015505189A (ja) * 2011-12-12 2015-02-16 クゥアルコム・インコーポレイテッドQualcomm Incorporated メディア出力の選択的ミラーリング
US9277230B2 (en) 2011-11-23 2016-03-01 Qualcomm Incorporated Display mode-based video encoding in wireless display devices

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110017719A (ko) 2009-08-14 2011-02-22 삼성전자주식회사 비디오 부호화 방법 및 장치, 비디오 복호화 방법 및 장치
US9483836B2 (en) * 2011-02-28 2016-11-01 Sony Corporation Method and apparatus for real-time conversion of 2-dimensional content to 3-dimensional content
US9094689B2 (en) * 2011-07-01 2015-07-28 Google Technology Holdings LLC Motion vector prediction design simplification
BR112014010539A2 (pt) 2011-11-04 2017-04-18 Motorola Mobility Llc escalonamento de vetor de movimento para rede de vetor de movimento não uniforme
US9172970B1 (en) 2012-05-29 2015-10-27 Google Inc. Inter frame candidate selection for a video encoder
US11317101B2 (en) 2012-06-12 2022-04-26 Google Inc. Inter frame candidate selection for a video encoder
KR102167095B1 (ko) 2012-07-02 2020-10-16 엘지전자 주식회사 영상 정보 코딩 방법 및 이를 이용하는 장치
US9503746B2 (en) 2012-10-08 2016-11-22 Google Inc. Determine reference motion vectors
US9485515B2 (en) 2013-08-23 2016-11-01 Google Inc. Video coding using reference motion vectors
US10271062B2 (en) 2016-03-18 2019-04-23 Google Llc Motion vector prediction through scaling
US10341650B2 (en) * 2016-04-15 2019-07-02 Ati Technologies Ulc Efficient streaming of virtual reality content
CN115348444A (zh) * 2017-07-06 2022-11-15 三星电子株式会社 图像编码方法和设备以及图像解码方法和设备
CN117560506A (zh) 2018-03-29 2024-02-13 华为技术有限公司 一种双向帧间预测方法及装置
US11032541B2 (en) * 2018-10-22 2021-06-08 Tencent America LLC Method and apparatus for video coding
CN110505486B (zh) * 2019-08-23 2022-09-02 绍兴文理学院 一种对高概率运动矢量映射的编码及解码方法
CN110602502B (zh) * 2019-08-23 2022-08-16 绍兴文理学院 一种运动矢量编码和解码的方法
USD959447S1 (en) 2019-12-20 2022-08-02 Sap Se Display system or portion thereof with a virtual three-dimensional animated graphical user interface
USD959476S1 (en) 2019-12-20 2022-08-02 Sap Se Display system or portion thereof with a virtual three-dimensional animated graphical user interface
US11205296B2 (en) * 2019-12-20 2021-12-21 Sap Se 3D data exploration using interactive cuboids
USD959477S1 (en) 2019-12-20 2022-08-02 Sap Se Display system or portion thereof with a virtual three-dimensional animated graphical user interface
US11875516B2 (en) 2020-12-28 2024-01-16 Waymo Llc Systems, apparatus, and methods for retrieving image data of image frames

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1085466C (zh) * 1993-09-14 2002-05-22 株式会社金星社 图象解码器中包括半象素单元运动补偿装置的b帧处理装置
CN1182726C (zh) 1999-10-29 2004-12-29 皇家菲利浦电子有限公司 视频编码方法
CN100505878C (zh) 2001-11-06 2009-06-24 松下电器产业株式会社 运动画面编码方法及运动画面解码方法
JP2003153279A (ja) * 2001-11-15 2003-05-23 Mitsubishi Electric Corp 動き探索装置、その方法およびそのコンピュータ・プログラム
JP4114859B2 (ja) 2002-01-09 2008-07-09 松下電器産業株式会社 動きベクトル符号化方法および動きベクトル復号化方法
CN101031082B (zh) 2002-01-09 2011-08-17 松下电器产业株式会社 移动向量解码方法和移动向量解码装置
JP2004088722A (ja) 2002-03-04 2004-03-18 Matsushita Electric Ind Co Ltd 動画像符号化方法および動画像復号化方法
JP2004208258A (ja) 2002-04-19 2004-07-22 Matsushita Electric Ind Co Ltd 動きベクトル計算方法
WO2003098939A1 (en) * 2002-05-22 2003-11-27 Matsushita Electric Industrial Co., Ltd. Moving image encoding method, moving image decoding method, and data recording medium
US20040001546A1 (en) 2002-06-03 2004-01-01 Alexandros Tourapis Spatiotemporal prediction for bidirectionally predictive (B) pictures and motion vector prediction for multi-picture reference motion compensation
US7471725B2 (en) * 2003-03-26 2008-12-30 Lsi Corporation Segmented motion estimation with no search for small block sizes
US8064520B2 (en) 2003-09-07 2011-11-22 Microsoft Corporation Advanced bi-directional predictive coding of interlaced video
US8625680B2 (en) * 2003-09-07 2014-01-07 Microsoft Corporation Bitstream-controlled post-processing filtering
US8014450B2 (en) 2003-09-07 2011-09-06 Microsoft Corporation Flexible range reduction
KR100584603B1 (ko) * 2004-08-03 2006-05-30 학교법인 대양학원 다시점 영상의 다이렉트 모드 움직임 예측 방법 및 장치
KR101042623B1 (ko) * 2004-11-17 2011-06-20 삼성전자주식회사 필드 가변분할방식을 이용한 디인터레이싱방법 및 장치
KR100746006B1 (ko) * 2005-07-19 2007-08-06 삼성전자주식회사 계층적 구조에 적합하게 시간적 다이렉트 모드로인코딩하며, 디코딩하는 방법 및 장치
KR101330630B1 (ko) 2006-03-13 2013-11-22 삼성전자주식회사 최적인 예측 모드를 적응적으로 적용하여 동영상을부호화하는 방법 및 장치, 동영상을 복호화하는 방법 및장치
TWI344792B (en) * 2006-07-12 2011-07-01 Lg Electronics Inc A method and apparatus for processing a signal
WO2008056934A1 (en) 2006-11-07 2008-05-15 Samsung Electronics Co., Ltd. Method of and apparatus for video encoding and decoding based on motion estimation
KR101383540B1 (ko) 2007-01-03 2014-04-09 삼성전자주식회사 복수의 움직임 벡터 프리딕터들을 사용하여 움직임 벡터를추정하는 방법, 장치, 인코더, 디코더 및 복호화 방법
KR101505195B1 (ko) 2008-02-20 2015-03-24 삼성전자주식회사 직접 모드 부호화 및 복호화 방법
KR101431545B1 (ko) * 2008-03-17 2014-08-20 삼성전자주식회사 영상의 부호화, 복호화 방법 및 장치
KR101517768B1 (ko) 2008-07-02 2015-05-06 삼성전자주식회사 영상의 부호화 방법 및 장치, 그 복호화 방법 및 장치
JP5325638B2 (ja) * 2008-11-26 2013-10-23 日立コンシューマエレクトロニクス株式会社 画像復号化方法
KR101452859B1 (ko) 2009-08-13 2014-10-23 삼성전자주식회사 움직임 벡터를 부호화 및 복호화하는 방법 및 장치
KR101390194B1 (ko) 2013-07-08 2014-04-30 삼성전자주식회사 움직임 추정을 이용한 영상의 부호화, 복호화 방법 및 장치

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2528332A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9277230B2 (en) 2011-11-23 2016-03-01 Qualcomm Incorporated Display mode-based video encoding in wireless display devices
JP2015505189A (ja) * 2011-12-12 2015-02-16 クゥアルコム・インコーポレイテッドQualcomm Incorporated メディア出力の選択的ミラーリング

Also Published As

Publication number Publication date
EP3913923A1 (en) 2021-11-24
CN102835111B (zh) 2015-08-12
US20120294363A1 (en) 2012-11-22
CN102835111A (zh) 2012-12-19
WO2011090313A3 (ko) 2011-11-10
US10218998B2 (en) 2019-02-26
US20170324975A1 (en) 2017-11-09
EP2528332A9 (en) 2013-01-02
CN104967857B (zh) 2019-08-23
EP2528332A4 (en) 2015-08-05
EP2528332A2 (en) 2012-11-28
US9924192B2 (en) 2018-03-20
US20180167632A1 (en) 2018-06-14
US9743102B2 (en) 2017-08-22
US9491484B2 (en) 2016-11-08
US20170034527A1 (en) 2017-02-02
US20160241874A1 (en) 2016-08-18
CN104967857A (zh) 2015-10-07
US9351017B2 (en) 2016-05-24

Similar Documents

Publication Publication Date Title
WO2011090313A2 (ko) 이전 블록의 움직임 벡터를 현재 블록의 움직임 벡터로 이용하는 영상 부호화, 복호화 방법 및 장치
WO2011019247A2 (en) Method and apparatus for encoding/decoding motion vector
WO2020036417A1 (ko) 히스토리 기반 움직임 벡터에 기반한 인터 예측 방법 및 그 장치
WO2011126285A2 (ko) 부호화 모드에 대한 정보를 부호화, 복호화하는 방법 및 장치
WO2012023763A2 (ko) 인터 예측 부호화 방법
WO2012081879A1 (ko) 인터 예측 부호화된 동영상 복호화 방법
WO2017057953A1 (ko) 비디오 코딩 시스템에서 레지듀얼 신호 코딩 방법 및 장치
WO2011155758A2 (ko) 고해상도 영상의 부호화/복호화 방법 및 이를 수행하는 장치
WO2011010900A2 (ko) 영상의 부호화 방법 및 장치, 영상 복호화 방법 및 장치
WO2011053022A2 (en) Method and apparatus for encoding/decoding image with reference to a plurality of frames
WO2013109039A1 (ko) 가중치예측을 이용한 영상 부호화/복호화 방법 및 장치
WO2017069590A1 (ko) 영상 코딩 시스템에서 모델링 기반 영상 디코딩 방법 및 장치
WO2019147079A1 (ko) 서브블록 기반의 모션 보상을 이용한 비디오 신호 처리 방법 및 장치
WO2011087323A2 (en) Method and apparatus for encoding and decoding image by using large transform unit
WO2012173415A2 (ko) 움직임 정보의 부호화 방법 및 장치, 그 복호화 방법 및 장치
WO2011087321A2 (en) Method and apparatus for encoding and decoding motion vector
WO2013002557A2 (ko) 움직임 정보의 부호화 방법 및 장치, 그 복호화 방법 및 장치
WO2013109124A1 (ko) 쌍방향 예측 및 블록 병합을 제한하는 비디오 부호화 방법 및 장치, 비디오 복호화 방법 및 장치
WO2012005549A2 (en) Methods and apparatuses for encoding and decoding motion vector
WO2013077659A1 (ko) 모션 벡터의 예측 부호화/복호화 방법 및 장치
WO2013109122A1 (ko) 계층적 부호화 단위에 따라 스캔 순서를 변경하는 비디오 부호화 방법 및 장치, 비디오 복호화 방법 및 장치
WO2017048008A1 (ko) 영상 코딩 시스템에서 인터 예측 방법 및 장치
WO2016085229A1 (ko) 비디오 신호 처리 방법 및 장치
WO2015020504A1 (ko) 병합 모드 결정 방법 및 장치
WO2014178563A1 (ko) 인트라 예측 방법 및 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180014824.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11734862

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12012501455

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 2012549942

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201003611

Country of ref document: TH

Ref document number: 13574110

Country of ref document: US

Ref document number: 2011734862

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12016501594

Country of ref document: PH

Ref document number: 12016501593

Country of ref document: PH

Ref document number: 12016501595

Country of ref document: PH

Ref document number: 12016501592

Country of ref document: PH