WO2011090046A1 - Curable resin composition - Google Patents

Curable resin composition Download PDF

Info

Publication number
WO2011090046A1
WO2011090046A1 PCT/JP2011/050814 JP2011050814W WO2011090046A1 WO 2011090046 A1 WO2011090046 A1 WO 2011090046A1 JP 2011050814 W JP2011050814 W JP 2011050814W WO 2011090046 A1 WO2011090046 A1 WO 2011090046A1
Authority
WO
WIPO (PCT)
Prior art keywords
curable resin
group
compound
resin composition
mass
Prior art date
Application number
PCT/JP2011/050814
Other languages
French (fr)
Japanese (ja)
Inventor
野村 幸弘
佐藤 慎一
Original Assignee
コニシ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニシ株式会社 filed Critical コニシ株式会社
Priority to JP2011550916A priority Critical patent/JPWO2011090046A1/en
Publication of WO2011090046A1 publication Critical patent/WO2011090046A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J171/00Adhesives based on polyethers obtained by reactions forming an ether link in the main chain; Adhesives based on derivatives of such polymers
    • C09J171/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/336Polymers modified by chemical after-treatment with organic compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/5403Silicon-containing compounds containing no other elements than carbon or hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2483/00Presence of polysiloxane
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2003/1034Materials or components characterised by specific properties
    • C09K2003/1068Crosslinkable materials

Definitions

  • the present invention relates to a curable resin composition that can be cured at room temperature in the atmosphere, which is composed of a moisture curable resin whose main chain is a vinyl polymer. More specifically, the present invention is capable of reducing environmental burden and is safe.
  • the present invention relates to a curable resin composition having extremely high low-temperature curability while ensuring properties. Furthermore, the present invention relates to a curable resin composition having low temperature dependency of curability.
  • the main chain is an organic polymer
  • the curable resin having a crosslinkable silicon group that can be cross-linked between molecules in the molecule crosslinks a crosslinkable silicon group such as an alkoxysilyl group by hydrolysis with moisture in the atmosphere.
  • It is a so-called moisture curable polymer and is widely used as a base polymer for sealing materials, adhesives, pressure-sensitive adhesives, paints and the like (Patent Documents 1 to 4).
  • an adhesive, a paint, or the like generally an organic tin compound is blended in order to promote the curing of the moisture curable polymer (Patent Document 5). 6).
  • organotin compounds have a very high curing accelerating activity, but in recent years their toxicity has become a problem, and therefore a curing accelerator that can replace the organic tin compounds has been demanded.
  • a curing accelerator that can replace the organic tin compounds has been demanded.
  • an amine compound or the like is used as an alternative curing accelerator, for example, there is a problem that the curability is insufficient because the curing accelerating activity is lower than that of the organic tin compound.
  • an acidic compound such as carboxylic acid
  • adhesiveness may be insufficient when applied to a sealing material or an adhesive.
  • halogenated compounds such as boron trifluoride and halogen compounds such as fluorosilane compounds can be used as curing accelerators for the moisture-curable polymer.
  • Patent Documents 7 to 9 halogenated compounds such as boron trifluoride and halogen compounds such as fluorosilane compounds
  • organotin compounds have become problematic in recent years, and it is desired that the amount used be less than 1000 ppm based on the composition.
  • organic tin compounds containing relatively toxic tributyltin derivatives for example, dibutyltin compounds may contain tributyltin compounds as by-products, especially for their use. Attention is required.
  • the content of the organotin compound which is very useful as a curing accelerator, is suppressed to less than 1000 ppm with respect to the total mass part of the curable resin composition, sufficient curability is exhibited, and various performances are balanced.
  • moisture curable resins generally used as base polymers for sealants, adhesives, pressure-sensitive adhesives, paints, etc. are mainly used for improving various properties such as adhesion, heat resistance, oil resistance, and water resistance.
  • a moisture curable resin whose chain is a vinyl polymer may be used in combination.
  • the above function is improved by using a moisture curable resin whose main chain is a vinyl polymer, but on the other hand, due to the high hydrophobicity of the moisture curable resin whose main chain is a vinyl polymer.
  • curability at low temperature was low. Therefore, development of a curable resin composition having high low-temperature curability has been demanded after reducing environmental burden and ensuring safety. In addition, development of a curable resin composition having low temperature dependency of curability has been demanded.
  • the problem to be solved by the present invention is to cure a moisture curable resin whose main chain is a vinyl polymer in order to improve various properties such as adhesion, heat resistance, oil resistance, and water resistance.
  • the curable resin composition it is possible to provide a curable resin composition that is capable of reducing the environmental burden and that has extremely low-temperature curability while ensuring safety. Is to provide a low curable resin composition.
  • 1st invention is hardening which has a crosslinkable silicon group in a molecule
  • the curability is increased by containing at a certain ratio.
  • the curable resin (A) is a curable resin having a crosslinkable silicon group represented by the following general formula (1) in the molecule
  • the curable resin (B) is a molecule.
  • the present invention relates to a curable resin composition according to the first invention, which is a curable resin having a crosslinkable silicon group represented by the following general formula (2).
  • A is a bonding functional group in which a hetero atom having an unshared electron pair is bonded to a methylene group bonded to a silicon atom contained in the crosslinkable silicon group
  • R 1 is a hydrocarbon group having 1 to 20 carbon atoms.
  • R 2 represents an organic group having a molecular weight of 300 or less, and a represents 1, 2 or 3) -X-SiR 3 3-b (OR 4 ) b
  • Formula (2) (Wherein X is a hydrocarbon group having 2 to 20 carbon atoms, R 3 is a hydrocarbon group having 1 to 20 carbon atoms, R 4 is an organic group having a molecular weight of 300 or less, b is 1, 2 or 3; Each)
  • the curable resin (A) and the curable resin (B) have a crosslinkable silicon group having a specific structure, a curable resin composition having extremely high low-temperature curability and low temperature dependency of curability is obtained. Can do.
  • the third invention relates to a curable resin composition according to any one of the first and second inventions, wherein the main chain of the curable resin (A) is polyoxyalkylene.
  • the main chain of the curable resin (A) is polyoxyalkylene, it is easy to obtain a curable resin composition having high flexibility of the cured product.
  • the fourth invention is the curing according to any one of the first to third inventions, wherein the curable resin (A) has a crosslinkable silicon group linked to the main chain via a nitrogen-containing characteristic group.
  • the present invention relates to a conductive resin composition.
  • the curable resin (A) is a curable resin in which a crosslinkable silicon group is linked to the main chain via a nitrogen-containing characteristic group, sufficient curability is easily obtained.
  • the curable resin (B) is derived from a polymerizable vinyl compound in which the glass transition temperature of the homopolymer (hereinafter sometimes referred to as “Tg”) is ⁇ 20 ° C. or less.
  • Tg glass transition temperature of the homopolymer
  • the present invention relates to a curable resin composition according to any one of the first to fourth inventions, characterized in that the polymer is a vinyl polymer containing a structural unit. Since the curable resin (B) is a vinyl polymer containing a structural unit derived from a polymerizable vinyl compound having a homopolymer Tg of ⁇ 20 ° C. or lower, the low temperature curability is extremely high, and the curing is performed. It is possible to obtain a curable resin composition having low temperature dependency of properties.
  • a sixth invention provides the curable resin composition according to any one of the first to fifth inventions, wherein the basic compound (C) is an aminosilane compound represented by the following general formula (3): It is about. R 5 R 6 N—R 7 —SiR 8 3-c (OR 9 ) c Formula (3) (However, R 5 and R 6 are organic groups or hydrogen atoms having a molecular weight of 500 or less, R 7 is an organic group having a molecular weight of 500 or less, R 8 is a hydrocarbon group having 1 to 20 carbon atoms, and R 9 is a molecular weight of 300. The following organic groups, c represents 1, 2 or 3, respectively) Since the aminosilane compound (C) is a compound having a specific structure, sufficient adhesiveness is likely to be exhibited when applied to a sealing material, an adhesive, or a pressure sensitive adhesive precursor.
  • the aminosilane compound (C) is a compound having a specific structure, sufficient adhesiveness is likely to be exhibited when applied to a sealing material, an adhesive, or
  • the curable resin composition according to any one of the first to sixth inventions, wherein the basic compound (C) is an aminosilane compound represented by the following general formula (4): It is about. H 2 N—R 10 —NH—R 11 —SiR 12 3-d (OR 13 ) d Formula (4) (However, R 10 is an organic group having a molecular weight of 200 or less, R 11 is a hydrocarbon group having 1 to 20 carbon atoms, R 12 is a hydrocarbon group having 1 to 20 carbon atoms, and R 13 is an organic group having a molecular weight of 300 or less. A group, d is 1, 2 or 3, respectively) Since the aminosilane compound (C) is a compound having a specific structure, sufficient adhesiveness is more easily exhibited when applied to a sealing material, an adhesive, or a pressure sensitive adhesive precursor.
  • the aminosilane compound (C) is a compound having a specific structure, sufficient adhesiveness is more easily exhibited when applied to a sealing material, an adhesive, or a pressure sensitive
  • the eighth aspect of the present invention is the curability according to any one of the first to seventh aspects, wherein the content of the organic tin compound is 0 to less than 1000 ppm relative to the total mass part of the curable resin composition.
  • the present invention relates to a resin composition. If the organotin-based catalyst is in the above range, it is preferable because it is possible to reduce environmental burden and to ensure safety.
  • a mixture of the curable resin (A) and the curable resin (B) is obtained by performing a vinyl polymerization reaction for forming the curable resin (B) in the curable resin (A).
  • the present invention relates to a curable resin composition according to any one of the first to eighth inventions.
  • a tenth invention relates to a sealing material composition, an adhesive composition or a pressure sensitive adhesive precursor composition mainly comprising the curable resin composition according to any one of the first to ninth inventions as a curable component.
  • the curable resin composition according to the present invention is capable of reducing the environmental burden, has a very high low temperature curability while ensuring safety, and further has a low curable temperature dependency. Since it is a thing, it can use especially suitably as a sealing material composition, an adhesive composition, or an adhesive precursor composition.
  • the curable resin composition of the present invention is a curable resin composition in which a moisture curable resin having a specific structure whose main chain is a vinyl polymer is blended, and is capable of reducing environmental burden and is safe.
  • the low-temperature curability is extremely high and the temperature dependency of curability is low.
  • the curable resin (A) in the present invention has a crosslinkable silicon group having a chemical structure in which a carbon atom is bonded to a silicon atom of a crosslinkable silicon group, and a heteroatom having a lone pair is bonded to the carbon atom. It is a curable resin in the molecule. Since the crosslinkable silicon group in which a carbon atom is bonded to a silicon atom and a heteroatom having a lone pair is bonded to the carbon atom has a high crosslinking activity, the curable resin (A) has a curing accelerating activity.
  • curable resin which has a crosslinkable silicon group containing functional group represented by the said General formula (1) in a molecule
  • numerator is also used suitably for curable resin (A).
  • a chemical structure represented by the general formula (1) is expressed as “ ⁇ -silane structure”. By selecting an ⁇ -silane structure, the moisture reactivity is much higher than that of a normal cross-linkable silicon group. Therefore, no organotin compound is used, or a much smaller amount than usual (curable resin composition) Even if it is less than 1000 ppm with respect to the total mass part, a sufficient curing rate can be obtained.
  • the heteroatom is not particularly limited as long as it has an unshared electron pair, but an atom with high nucleophilicity or an atom with high electronegativity is particularly preferable.
  • nitrogen (N) atoms, oxygen (O) atoms, sulfur (S) atoms, and halogen (I, Br, Cl, F) atoms are preferred because of the availability of raw materials and the ease of synthesis. From the balance of various performances, a nitrogen (N) atom, an oxygen (O) atom, and a sulfur (S) atom are more preferable, and a nitrogen (N) atom is particularly preferable from the viewpoint of high curability.
  • the reason why it shows a moisture reactivity much higher than that of a normal crosslinkable silicon group is not clear, but a highly nucleophilic atom
  • the reactivity of the silicon atom is increased by the interaction of the highly nucleophilic atom with the adjacent silicon atom.
  • the reason is that the reactivity of silicon atoms is increased by the flow of electrons from silicon atoms through adjacent carbon atoms.
  • the curable resin (A) may be appropriately selected in order to obtain desired performance, and may be used alone or in combination of two or more.
  • the curable resin (A) will be described in detail with a curable resin having a crosslinkable silicon group represented by the general formula (1) in the molecule as a representative example.
  • the crosslinkable silicon group has a chemical structure in which a carbon atom is bonded to a silicon atom, and a hetero atom having an unshared electron pair is bonded to the carbon atom.
  • the crosslinkable silicon group represented by the general formula (1) has a structure in which a silicon atom is bonded to a bonding functional group containing a hetero atom having an unshared electron pair via a methylene group, A heteroatom having a bond with a methylene group.
  • this bonding functional group is a site having a function of connecting the crosslinkable silicon group and the main chain. That is, the crosslinkable silicon group is linked to a main chain such as polyoxyalkylene described later at the site of the bonding functional group.
  • the bonding functional group has a structure in which a heteroatom having an unshared electron pair is bonded to a methylene group having a heteroatom having an unshared electron pair and bonded to a silicon atom contained in a crosslinkable silicon group.
  • (thio) urethane groups, allophanate groups, other N-substituted urethane groups and N-substituted allophanate groups such as (thio) urethane group-derived linking groups, (thio) urea groups, biuret groups, Other N-substituted urea groups, N, N'-substituted urea groups, N-substituted biuret groups, N, N'-substituted biuret groups and other (thio) urea-derived linking groups, amide groups, and N-substituted Examples include amide group-derived linking groups derived from amide groups, nitrogen-containing characteristic groups typified by linking groups derived from imino groups, (thio) ester groups, (thio) ether groups, etc.
  • a nitrogen-containing characteristic group is preferable because of its high curability, and a bonding group derived from a (thio) urethane group and a bonding group derived from (thio) urea are more preferable from the viewpoint of ease of synthesis.
  • the above-mentioned “(thio)” means a group in which one or more oxygen atoms in each linking group are sulfur atoms.
  • N-substitution means a group in which a hydrogen atom bonded to a nitrogen atom in each linking group is replaced with another organic group.
  • N-substituted urethane group means a linking group having the chemical formula —NR—C ( ⁇ O) O— (where R represents an organic group).
  • the silicon atom has 1 to 3 alkoxy groups (OR 2 ) as hydrolyzable groups and a hydrocarbon group (R 1 ) as the remaining bonds. 2 to 0 are bonded.
  • R 1 includes, for example, an aryl group such as a phenyl group and an alkyl group having 1 to 20 carbon atoms, preferably an alkyl group having 1 to 20 carbon atoms.
  • a methyl group, an ethyl group, a propyl group, a butyl group, and a phenyl group are preferable, a methyl group, an ethyl group, a propyl group, and a butyl group are more preferable, and a methyl group and an ethyl group are preferable. It is particularly preferred.
  • the alkoxy group (OR 2 ) is a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a 2- (butoxy) ethoxy group (—O—CH 2 CH 2 —O—C 4 H 9 ), or a phenoxy group.
  • R 2 is preferably an organic group having a molecular weight of 300 or less from the viewpoint of hydrolyzability.
  • the main chain skeleton of the curable resin (A) a conventionally known main chain skeleton of an organic polymer can be used.
  • One or more skeletons selected from commonly used main chain skeletons can be employed.
  • a polyoxyalkylene or a vinyl polymer is more preferable from the viewpoint of easy availability and ease of synthesis, and a polyoxyalkylene is preferable from the viewpoint of balance of film properties of a cured product.
  • “essentially” means that the structure is a main element of a repeating unit which is the main chain skeleton of the curable resin (A).
  • this structure may be contained independently, and 2 or more types may be contained.
  • the molecular weight of the curable resin (A) is not particularly limited, but the number average molecular weight is preferably 1,000 to 200,000, more preferably 1,500 to 100,000, and particularly preferably 2,000 to 40,000. If the molecular weight is less than 1,000, the cured product obtained may have brittle physical properties because the crosslinking density becomes too high. If the molecular weight exceeds 200,000, the viscosity increases and the workability deteriorates. In some cases, blending may be limited, such as requiring a large amount of plasticizer.
  • synthesis may be performed by a conventionally known method. For example, (1) a method in which an isocyanate methylalkoxysilane compound is reacted with a polyol compound, (2) an isocyanate group-terminated polymer is synthesized by reacting a polyol compound with a polyisocyanate compound, and then the mercaptomethylalkoxysilane compound is added to the isocyanate group-terminated polymer.
  • a method of adding an organic group having a structure in which a hetero atom having an electron pair is bonded and a silane compound having at least a hydrogen atom bonded thereto by a hydrosilylation reaction is known.
  • trialkoxysilane, alkyl dialkoxy silane, and dialkyl alkoxy silane are collectively referred to as “alkoxy silane”.
  • the amino group of the aminomethylalkoxysilane compound may be a primary amino group or a secondary amino group, but the viscosity of the curable resin (A) is higher when it is a secondary amino group. It is preferable because it can be adjusted to a relatively low viscosity.
  • the aminomethylalkoxysilane compound having a secondary amino group can also be derived from an aminomethylalkoxysilane compound having a primary amino group.
  • the isocyanate group-terminated polymer can be synthesized by reacting a polyol compound and a polyisocyanate compound.
  • a polyol compound having the above main chain skeleton may be selected as the polyol compound, and a conventionally known polyisocyanate compound may be used as the polyisocyanate compound.
  • the polyol compound and polyisocyanate compound as raw materials may be appropriately selected in order to obtain desired performance, and may be used alone or in combination of two or more. Good.
  • polyol compound examples include one or more conventionally known main chain structures such as a polyether skeleton, a polyester skeleton, a polycarbonate skeleton, a polyolefin skeleton, a polyvinyl skeleton, a polyacryl skeleton, a polybutadiene skeleton, and a polyisoprene skeleton.
  • the polyol compound which has is illustrated.
  • Other examples include polyols having a polysiloxane skeleton and polyol compounds containing an organic group having a fluorine atom, a silicon atom, a sulfur atom, or a rosin skeleton. Alternatively, a mixture of a plurality may be used.
  • the average number of hydroxyl groups per molecule is preferably 1.1 or more, more preferably 1.3 or more, and particularly preferably 1.5 or more. Less than can be used as needed.
  • polyol having a polyether skeleton examples include homopolymers such as polyoxyethylene, polyoxypropylene, polyoxybutylene, polyoxyhexylene, and polyoxytetramethylene, and ethylene oxide, propylene oxide, butylene oxide, hexylene oxide, and the like.
  • polyols having a polyether skeleton include ADEKA P-2000, P-3000, PR-3007, PR-5007, etc., Asahi Glass Co., Ltd. Exenol 2020, Exenol 510, PMLS4012, PMLS4015, PMLS3011, etc. Mitsui Chemicals D-1000, D-2000, D-4000, T-5000, etc., Sumika Bayer Urethane Co., Ltd. Sumifen 3600, Sumifene 3700, Hodogaya Chemical Co., Ltd. PTG-2000, PTG-L2000 Etc. (all are trade names).
  • the polyol having a polyester skeleton is obtained by polycondensation of one or more dicarboxylic acids such as maleic acid, adipic acid, sebacic acid and phthalic acid and one or more diols.
  • dicarboxylic acids such as maleic acid, adipic acid, sebacic acid and phthalic acid
  • diols examples include polymers, ring-opening polymers obtained by ring-opening polymerization of one or more cyclic esters such as ⁇ -caprolactone and valerolactone, and castor oil derivative compounds such as castor oil having two or more active hydrogens. .
  • polyol having a polycarbonate skeleton examples include polyols having a polycarbonate skeleton derived from 1,6-hexanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, and the like.
  • examples of the commercially available products include Nippon Run 971, Nippon Run 965, Nippon Run 965, Nippon Run 963, Asahi Kasei Chemicals Co., Ltd.
  • Duranol T5652, Duranol T5650J, Duranol T4672, Duranol TG3452 all are trade names).
  • polyol having a polyolefin skeleton examples include a polyol having a hydrogenated polybutadiene skeleton, a polyol having an ethylene / ⁇ -olefin skeleton, and a polyol having a polyisobutylene skeleton.
  • examples of commercially available products include Polytail H, Polytail HA manufactured by Mitsubishi Chemical Corporation, GI-1000 and GI-2000 manufactured by Nippon Soda (all are trade names).
  • Examples of the polyol having a polyvinyl skeleton or the polyol having a polyacryl skeleton include a polyol compound obtained by copolymerizing a vinyl polymerizable monomer typified by a vinyl ether compound or an acrylic compound and a vinyl polymerizable monomer having a hydroxyl group.
  • the Examples of commercially available products include Alfon UH-2000 and UH-2032 manufactured by Toagosei Co., Ltd., Actflow UT-1001, UMB-2005 and UME-2005 manufactured by Soken Chemical Co., Ltd. (all of which are trade names).
  • Examples of the polyol having a polybutadiene skeleton or a polyisoprene skeleton include compounds obtained by polymerizing diene monomers typified by butadiene and isoprene.
  • Examples of commercially available products include Poly bd R-15HT, Poly bd R-45HT, Poly ip, Claysole LBH2000, LBH-P3000, and the like (all are trade names) manufactured by Idemitsu Kosan Co., Ltd.
  • a polyol compound having a plurality of skeletons a polyol having a polyether skeleton and a polyester skeleton in one molecule, a polyol having a polycarbonate skeleton and a polyester skeleton in one molecule, a polyether skeleton and a polyacryl skeleton in one molecule
  • the polyol etc. which have are illustrated.
  • Asahi Glass Co., Ltd. brand name Advanol series, Nippon Polyurethane Industry Co., Ltd. brand name Nippon Run 982R etc. are illustrated.
  • polyisocyanate compound examples include aliphatic, alicyclic, araliphatic, and aromatic polyisocyanate compounds. Specific examples thereof will be given below.
  • Aliphatic diisocyanate compounds trimethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, pentamethylene diisocyanate, 1,2-propylene diisocyanate, 1,2-butylene diisocyanate, 2,3-butylene diisocyanate, 1,3-butylene diisocyanate, 2 , 4,4- or 2,2,4-trimethylhexamethylene diisocyanate, 2,6-diisocyanate methylcaproate, and the like.
  • Alicyclic diisocyanate compounds 1,3-cyclopentene diisocyanate, 1,4-cyclohexane diisocyanate, 1,3-cyclohexane diisocyanate, 3-isocyanate methyl-3,5,5-trimethylcyclohexyl isocyanate, 4,4'-methylenebis (cyclohexyl) Isocyanate), methyl-2,4-cyclohexane diisocyanate, methyl-2,6-cyclohexane diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, 1,4-bis (isocyanatomethyl) cyclohexane, isophorone diisocyanate and the like.
  • Aroaliphatic diisocyanate compound 1,3- or 1,4-xylylene diisocyanate or a mixture thereof, ⁇ , ⁇ '-diisocyanate-1,4-diethylbenzene, 1,3- or 1,4-bis (1-isocyanate) -1-methylethyl) benzene or a mixture thereof.
  • Aromatic diisocyanate compounds m-phenylene diisocyanate, p-phenylene diisocyanate, 4,4'-diphenyl diisocyanate, 1,5-naphthalene diisocyanate, 4,4'-diphenylmethane diisocyanate, 2,4- or 2,6-tolylene diisocyanate 4,4'-toluidine diisocyanate, 4,4'-diphenyl ether diisocyanate and the like.
  • Aliphatic polyisocyanate compounds lysine ester triisocyanate, 1,4,8-triisocyanate octane, 1,6,11-triisocyanate undecane, 1,8-diisocyanate-4-isocyanate methyloctane, 1,3,6-tri Isocyanate hexane, 2,5,7-trimethyl-1,8-diisocyanate-5-isocyanate methyloctane, and the like.
  • Alicyclic polyisocyanate compounds 1,3,5-triisocyanatecyclohexane, 1,3,5-trimethylisocyanatecyclohexane, 3-isocyanate-3,3,5-trimethylcyclohexylisocyanate, 2- (3-isocyanatepropyl)- 2,5-di (isocyanatomethyl) -bicyclo [2,2,1] heptane, 2- (3-isocyanatopropyl) -2,6-di (isocyanatomethyl) -bicyclo [2,2,1] heptane, 5 -(2-isocyanatoethyl) -2-isocyanatomethyl-3- (3-isocyanatopropyl) -bicyclo [2,2,1] heptane, 6- (2-isocyanatoethyl) -2-isocyanatomethyl-3- (3 -Isocyanatopropyl) -bicyclo [2,2,1] heptane
  • Aro-aliphatic polyisocyanate compound 1,3,5-triisocyanate methylbenzene and the like.
  • Aromatic polyisocyanate compounds triphenylmethane-4,4 ′, 4 ′′ -triisocyanate, 1,3,5-triisocyanatebenzene, 2,4,6-triisocyanate toluene, 4,4′-diphenylmethane-2, 2 ', 5,5'-tetraisocyanate and the like.
  • Other polyisocyanate compounds diisocyanates containing sulfur atoms such as phenyl diisothiocyanate.
  • the above polyisocyanate compounds may be used singly or in combination depending on the purpose of use and required performance. Moreover, you may use together the multimer (for example, a dimer, a trimer) illustrated above and a monoisocyanate compound for physical property adjustment etc.
  • GENIOSIL STP-E10 (trade name manufactured by Wacker Chemie AG, molecular weight of about 10,000 converted from methoxy group equivalent, viscosity of about 10,000 mPa ⁇ s / 25 ° C. (catalog value)
  • GENIOSIL STP-E30 (trade name, manufactured by Wacker Chemie AG, molecular weight of about 16,000 converted from methoxy group equivalent, viscosity of about 30,000 mPa ⁇ s / 25 ° C. (catalog value)), and the like.
  • the structures of the crosslinkable silicon groups of STP-E10 and STP-E30 are represented by the following general formula (5), and the main chain structure is polyoxypropylene. —O—CO—NH—CH 2 —SiCH 3 (OCH 3 ) 2 Formula (5)
  • the curable resin (A) may be appropriately selected in order to obtain desired performance, and may be used alone or in combination of two or more.
  • the curable resin (B) in the present invention has a crosslinkable silicon group in the molecule having a structure in which an alkylene group having 2 or more carbon atoms is bonded to a silicon atom, and the main chain is a vinyl polymer. Resin. However, the curable resin included in the curable resin (A) is not included in the curable resin (B).
  • the silicon atom contained in the crosslinkable silicon group in the curable resin (B) has a hydrolyzable group.
  • a conventionally known hydrolyzable group an alkoxy group, an acyloxy group, and the like.
  • Groups, ketoximate groups, amino groups, amide groups, aminooxy groups, mercapto groups, alkenyloxy groups, halogen groups and the like can be used.
  • an alkoxy group is most preferably used from the viewpoint of high reactivity and low odor.
  • the curable resin (B) may be appropriately selected in order to obtain desired performance, and may be used alone or in combination of two or more.
  • the curable resin (B) will be described in detail with a curable resin having a crosslinkable silicon group represented by the general formula (2) in the molecule as a representative example.
  • a hydrocarbon group (X) having 2 to 20 carbon atoms is bonded to a silicon atom in the crosslinkable silicon group, and the hydrocarbon group is further bonded to a vinyl polymer which is a main chain skeleton.
  • the nitrogen-containing characteristic group mentioned above and other coupling groups may exist between the hydrocarbon group (X) and the main chain skeleton.
  • the silicon atom is bonded with 1 to 3 alkoxy groups (OR 4 ) as hydrolyzable groups and carbonized as the remaining bonds.
  • R 3 One having 2 to 0 hydrogen groups (R 3 ) bonded thereto.
  • R 3 includes, for example, an aryl group such as a phenyl group and an alkyl group having 1 to 20 carbon atoms, preferably an alkyl group having 1 to 20 carbon atoms.
  • a methyl group, an ethyl group, a propyl group, a butyl group, and a phenyl group are preferable, a methyl group, an ethyl group, a propyl group, and a butyl group are more preferable, and a methyl group and an ethyl group are preferable. It is particularly preferred.
  • the alkoxy group (OR 4 ) is a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a 2- (butoxy) ethoxy group (—O—CH 2 CH 2 —O—C 4 H 9 ), or a phenoxy group.
  • R 4 is preferably an organic group having a molecular weight of 300 or less from the viewpoint of hydrolyzability.
  • the number of hydrolyzable groups bonded to the crosslinkable silicon group of the curable resin (B) may be appropriately adjusted depending on the performance required for each curable resin composition.
  • the molecular weight of the curable resin (B) is not particularly limited, but the number average molecular weight is preferably 1,000 to 200,000, more preferably 1,500 to 100,000, and particularly preferably 2,000 to 40,000. If the molecular weight is less than 1,000, the cured product obtained may have brittle physical properties because the crosslinking density becomes too high. If the molecular weight exceeds 200,000, the viscosity increases and the workability deteriorates. In some cases, blending may be limited, such as requiring a large amount of plasticizer.
  • Examples of the method for synthesizing the curable resin (B) include a polymerizable vinyl compound (b1) having a crosslinkable silicon group represented by the general formula (2) in the molecule, and other polymerizable vinyl compounds. It can be obtained by copolymerizing the compound (b2).
  • Methods and conditions for obtaining the curable resin (B) are not particularly limited, and general radical polymerization methods, anionic polymerization methods, cationic polymerization methods, and polymerization conditions in those polymerization methods may be applied. it can.
  • Various organic solvents may be used as the reaction solvent during polymerization, and a curable or non-curable resin may be used.
  • Such a curable or non-curable resin may be a low molecular weight substance or a high molecular weight substance as long as it is liquid at room temperature.
  • the method in which the curable resin (A) is regarded as a solvent and the vinyl compound (b1) and the polymerizable vinyl compound (b2) are copolymerized in the curable resin (A) is most preferable.
  • the viscosity of the mixture of the curable resin (A) and the curable resin (B) can be adjusted to be low, and the reaction solvent is essential in the conventional solution polymerization. Since the removal step is not necessary, it can be said that this is an industrially extremely useful production method.
  • the vinyl compound (b1) and the polymerizable vinyl compound (b2) may be appropriately selected in order to obtain desired performance, and may be used alone or in combination of two or more.
  • Examples of the polymerizable vinyl compound (b1) include vinyltrimethoxysilane, vinyltriethoxysilane, 3- (meth) acryloylpropyltrimethoxysilane, 3- (meth) acryloylpropyltrimethoxysilane, and 3- (meth) acryloyl.
  • Examples include, but are not limited to, propylmethyldimethoxysilane, 3- (meth) acryloylpropyltriethoxysilane, 3- (meth) acryloylpropylmethyldiethoxysilane, p-styryltrimethoxysilane, and the like. Of these, 3-methacryloylpropyltrimethoxysilane and 3-methacryloylpropylmethyldimethoxysilane are most preferable from the viewpoints of cost and ease of polymerization reaction.
  • Examples of the polymerizable vinyl compound (b2) include an ⁇ , ⁇ -unsaturated carbonyl compound (b21), an acrylonitrile compound (b22), a vinyl ester compound (b23), a vinyl ether compound (b24), and other vinyl compounds (b25). ) Or more types of compounds selected from.
  • the ⁇ , ⁇ -unsaturated carbonyl compound (b21) is a compound having an ⁇ , ⁇ -unsaturated carbonyl group in the molecule.
  • Specific examples include acrylic acid, methacrylic acid (hereinafter referred to as (meth) acrylic acid together with acrylic acid and methacrylic acid), methyl (meth) acrylate, lauryl (meth) acrylate, and (meth) acrylic acid.
  • Hexahydrophthalimidoalkyl (meth) acrylates such as isostearyl, (meth) acryloylmorpholine, N-isopropyl (meth) acrylamide, N- (meth) acryloyloxyethyl hexahydrophthalimide, N- (meth) acryloyloxypropyl hexahydrophthalimide Compounds such as tetrahydrophthalimide alkyl (meth) acrylate compounds such as N- (meth) acryloyloxyethyl tetrahydrophthalimide, N- (meth) acryloyloxypropyl tetrahydrophthalimide, etc.
  • Acrylic compounds maleic acid, dimethyl maleate, although maleic acid compounds such as diethyl maleate, and the like, but are not limited to. Of these, (meth) acrylic acid ester compounds and maleic acid ester compounds are preferred, and (meth) acrylic acid ester compounds are particularly preferred from the viewpoint of ease of reaction.
  • the acrylonitrile compound (b22) is a compound having an acrylonitrile structure in the molecule. Specific examples include, but are not limited to, acrylonitrile, ⁇ -methylacrylonitrile, 2,4-dicyanobutene, and the like.
  • Examples of the vinyl ester compound (b23) include, but are not limited to, vinyl acetate, vinyl butyrate, vinyl neononanoate, neodecanoate, and the like.
  • Examples of the vinyl ether compound (b24) include butyl vinyl ether and hexyl vinyl ether, but are not limited thereto.
  • Examples of the other vinyl compound (b25) include ⁇ -olefin compounds such as 1-butene, 1-hexene, 1-decene and 1-dodecene 1-octadecene, allyl compounds such as allylamine, allyl chloride and allyl alkyl ether, N Examples thereof include vinylpyrrolidone compounds such as -vinyl-2-pyrrolidone and N-vinylethyl-2-pyrrolidone, but are not limited thereto.
  • a vinyl compound having a cyclic amide functional group for example, the above-mentioned tetrahydrophthalimide alkyl (meth) acrylate compound, hexahydrophthalimide alkyl (meth) acrylate compound, vinyl pyrrolidone
  • a vinyl compound having a cyclic amide functional group for example, the above-mentioned tetrahydrophthalimide alkyl (meth) acrylate compound, hexahydrophthalimide alkyl (meth) acrylate compound, vinyl pyrrolidone
  • the compounding amount of the polymerizable vinyl compound (b1) the monomer components (polymerizable vinyl compound (b1) and other polymerizable vinyl compounds (b2)) constituting the curable resin (B) are used.
  • 0.1 to 50% by mass is preferably copolymerized, more preferably 0.5 to 30% by mass, and particularly preferably 1.0 to 15% by mass.
  • polymerizable vinyl compounds (b2) polymerizable vinyl compounds having a homopolymer Tg of ⁇ 20 ° C. or less are more preferably used.
  • At least low temperature curing of the curable resin composition according to the present invention by introducing a structural unit derived from a polymerizable vinyl compound having a Tg of ⁇ 20 ° C. or less into the curable resin (B). It becomes possible to improve the property.
  • the low temperature curability is increased.
  • the vinyl polymer copolymerized with a vinyl polymerizable vinyl compound having a Tg of ⁇ 20 ° C. or lower actively undergoes molecular motion even at low temperatures, moisture in the curable resin composition can be absorbed even at low temperatures. It is assumed that it is because of its high permeability. From such an effect, it is possible to obtain a curable resin composition that can be sufficiently adapted even in a curable resin composition used outdoors in winter.
  • polymerizable vinyl compound in which the Tg of the homopolymer is -20 ° C. or lower examples include butyl acrylate, 2-ethylhexyl acrylate, lauryl methacrylate, and the like, but are not limited thereto.
  • the glass transition temperature (Tg) in the present invention means the glass transition temperature of the homopolymer in the case of a homopolymer obtained by using one kind of polymerizable vinyl compound.
  • Tg glass transition temperature obtained by using one kind of polymerizable vinyl compound.
  • a copolymer obtained using two or more kinds of polymerizable vinyl compounds it means a glass transition temperature obtained based on the FOX formula.
  • the formula of FOX is as follows.
  • Tg ⁇ (a n / Tg n )
  • Tg is the glass transition temperature of the copolymer
  • a n is the mass fraction of the n-th polymerizable vinyl compound
  • Tg n is a homopolymer obtained from the n-th polymerizable vinyl compound
  • the glass transition temperature used in the equation is the Kelvin temperature.
  • at least a vinyl polymer copolymerized with a vinyl polymerizable vinyl compound having a homopolymer Tg of ⁇ 20 ° C. or lower has a low glass transition temperature as a copolymer. This leads to the inference that molecular motion is actively performed even at low temperatures as described above.
  • the polymerizable vinyl compound having a homopolymer Tg of ⁇ 20 ° C. or lower is preferably blended in an amount of 2 to 95% by mass among the other polymerizable vinyl compounds (b2). More preferably, 10 to 60% by mass is added.
  • the curable resin (B) when synthesized by copolymerization, a conventionally known chain transfer agent can be used in addition to the constituent monomer components.
  • a chain transfer agent By using a chain transfer agent, the molecular weight of the curable resin (B) can be controlled, and the viscosity of the curable resin (B) can be adjusted.
  • chain transfer agent examples include mercapto compounds such as n-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, thiophenol, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -mercaptopropylmethyldimethoxysilane, ⁇ -mercaptopropyltri Examples include mercaptosilane compounds such as ethoxysilane and ⁇ -mercaptopropylmethyldiethoxysilane, disulfide compounds such as dibutyl disulfide and ⁇ -trimethoxysilylpropyl disulfide, and aromatic hydrocarbon compounds such as benzene and toluene.
  • mercapto compounds such as n-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, thiophenol,
  • n-dodecyl mercaptan and mercaptosilane compounds are preferable because of their low odor, and the mercaptosilane compounds exhibit an effect as a chain transfer agent and can introduce a crosslinkable silicon group into the molecule. More preferable.
  • the chain transfer initiator is preferably used in an amount of 0.1 to 35% by weight, more preferably 1 to 25% by weight, based on the monomer component constituting the curable resin (B). 15% by mass is particularly preferred.
  • a conventionally known initiator suitable for the radical polymerization method, the anion polymerization method, and the cation polymerization method may be used.
  • the polymerization initiator becomes a radical initiator.
  • radical initiator examples include 2,2′-azobisisobutyronitrile, 2,2′-azobis (2-methylbutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2'-azobis (2-methyl-4-trimethoxysilylpentonitrile), 2,2'-azobis (2-methyl-4-methyldimethoxysilylpentonitrile), trade name manufactured by Wako Pure Chemical Industries, Ltd .: VA Azo compounds such as -046B, VA-057, VA-061, VA-085, VA-086, VA-096, V-601, V-65 and VAm-110, benzoyl peroxide, t-alkylperoxyesters, Peroxides such as acetyl peroxide and diisopropyl peroxycarbonate can be used.
  • the initiator is preferably used in the range of 0.1 to 10% by weight, particularly preferably 0.5 to 5% by weight, based on the monomer component constituting the curable resin (B).
  • the effect of adding the curable resin (B) adheresiveness, The effect of improving various performances such as heat resistance, oil resistance, water resistance, etc.
  • the curable resin (A) and the curable resin (B) are the main components of the cured network in the curable resin composition of the present invention.
  • the curable resin composition of the present invention other than the essential components of the present invention, according to each application and required performance such as an adhesive and a sealing material, within a range not impairing the effects of the present invention.
  • Any conventionally known compound or substance can be added as the component.
  • it is the sum of the curable resin (A) and the curable resin (B), and it may be blended in the curable resin composition by 15% by mass or more (preferably 30% by mass or more). If no other component is blended, the basic compound (C) is contained in an amount of 0.1 to 30 parts by mass with respect to 100 parts by mass of the total of the curable resin (A) and the curable resin (B). Therefore, the content of the curable resin (A) and the curable resin (B) in the curable resin composition is 70 to 99.9% by mass.
  • the curable resin composition according to the present invention has a crosslinkable silicon group in the molecule having a structure in which an alkylene group having 2 or more carbon atoms is bonded to a silicon atom, and —CH 2 CH in the main chain.
  • a curable resin (Z) which is a polymer containing 2 O- (oxyethylene group) as a structural unit can be used in combination.
  • the curable resin (Z) in combination the low-temperature curability is further increased. The reason is considered to be that the oxyethylene group in the curable resin (Z) increases moisture permeability into the curable resin composition even at low temperatures.
  • the blending amount of the curable resin (Z) is preferably 1 to 100 parts by mass and more preferably 2 to 80 parts by mass with respect to 100 parts by mass of the total of the curable resin (A) and the curable resin (B). 3 to 60 parts by mass is particularly preferable, and 5 to 40 parts by mass is particularly preferable.
  • the basic compound (C) in the present invention is a compound that accelerates the curing of the curable resin (A) and the curable resin (B).
  • an amine compound or a phosphazene compound is preferably used as the basic compound (C).
  • the amine compound is a compound having at least a primary amino group, a secondary amino group, or a tertiary amino group in the molecule.
  • the basic compound (C) may be appropriately selected in order to obtain desired performance, and may be used alone or in combination of two or more.
  • amine compound examples include primary amine compounds such as hexylamine, dodecylamine and stearylamine, secondary amine compounds such as di-n-butylamine, dioctylamine, dilaurylamine and piperidine, triethylamine and tributylamine.
  • Tertiary amine compounds such as trihexylamine, guanidine, 1,1,3,3-tetramethylguanidine, N, N'-diphenylguanidine, 1-phenylguanidine, phenylbiguanide, 1- (o-tolyl) biguanide
  • Guanidine compounds such as pyridine, 1,5,7-triazabicyclo [4.4.0] dec-5-ene, 7-methyl-1,5,7-triazabicyclo [4.4.0] deca -5-ene, 1,8-diazabicyclo [5.4.0] undec-7-ene, 6-dibutylamino-1 8-diazabicyclo [5.4.0] undec-7-ene, 1,5-diazabicyclo [4.3.0] non-5-cyclic amine compounds such as ene, H 2 N (C 2 H 4 NH) n
  • a compound represented by H (n ⁇ 1), a polyoxyalkylene having a primary amino group at the molecular terminal such
  • a ketimine compound that is a reaction product of a primary amino group-containing compound and a ketone in the above amine compound an aldimine compound that is a reaction product of a primary amino group-containing compound and an aldehyde, ⁇ -amino
  • An oxazolidine compound that is a reaction product of an alcohol compound and ketones can also be used.
  • an aminosilane compound having one or more amino groups and one or more crosslinkable silicon groups in the molecule can be used as the basic compound (C) in the present invention.
  • Specific examples of the aminosilane compound include a compound represented by the general formula (3) and / or a compound represented by the general formula (4).
  • R 5 and R 6 represent an organic group or a hydrogen atom having a molecular weight of 500 or less, preferably a hydrocarbon group or a hydrogen atom having 20 or less carbon atoms, more preferably a methyl group, an ethyl group, A hydrocarbon group having 6 or less carbon atoms such as a butyl group, a hexyl group and a phenyl group or a hydrogen atom, particularly preferably a hydrogen atom.
  • R 5 and R 6 may be the same organic group or a hydrogen atom, or may be different.
  • R 7 represents an organic group having a molecular weight of 500 or less, preferably a hydrocarbon group having 20 or less carbon atoms, more preferably a carbon number such as a methylene group, an ethylene group, a propylene group, an isobutylene group, a dimethylbutylene group or a hexylene group. 6 or less hydrocarbon groups, particularly preferably a propylene group, an isobutylene group, and a dimethylbutylene group.
  • the silicon atom bonded to R 7 is bonded with 1 to 3 alkoxy groups (OR 9 ) as hydrolyzable groups and hydrocarbon groups (R 8 ) as the remaining bonds. In which 2 to 0 are bonded.
  • R 8 includes, for example, an aryl group such as a phenyl group and an alkyl group having 1 to 20 carbon atoms, preferably an alkyl group having 1 to 20 carbon atoms.
  • a methyl group, an ethyl group, a propyl group, a butyl group, and a phenyl group are preferable, a methyl group, an ethyl group, a propyl group, and a butyl group are more preferable, and a methyl group and an ethyl group are preferable. It is particularly preferred.
  • the alkoxy group (OR 9 ) is a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a 2- (butoxy) ethoxy group (—O—CH 2 CH 2 —O—C 4 H 9 ), or a phenoxy group.
  • R 9 is preferably an organic group having a molecular weight of 300 or less from the viewpoint of hydrolyzability.
  • the number of hydrolyzable groups bonded to the silicon atom of the basic compound (C) represented by the general formula (3) can be appropriately adjusted depending on the performance required for each curable resin composition.
  • R 10 represents an organic group having a molecular weight of 200 or less, preferably a hydrocarbon group having 20 or less carbon atoms, more preferably a methylene group, an ethylene group, a propylene group, an isobutylene group, or a dimethylbutylene group.
  • R 11 represents a hydrocarbon group having 1 to 20 carbon atoms, preferably a hydrocarbon group having 6 or less carbon atoms such as a methylene group, an ethylene group, a propylene group, an isobutylene group, a dimethylbutylene group, or a hexylene group, and is particularly preferable. Is a propylene group, an isobutylene group, or a dimethylbutylene group.
  • the silicon atom bonded to R 11 has 1 to 3 alkoxy groups (OR 13 ) bonded as a hydrolyzable group and a hydrocarbon group (R 12 ) as the remaining bond. In which 2 to 0 are bonded.
  • R 12 includes, for example, an aryl group such as a phenyl group, an alkyl group having 1 to 20 carbon atoms, and an alkoxyalkyl group such as 2- (butoxy) ethyl group.
  • 20 alkyl groups particularly preferably an alkyl group having 1 to 20 carbon atoms.
  • a methyl group, an ethyl group, a propyl group, a butyl group, and a phenyl group are preferable, a methyl group, an ethyl group, a propyl group, and a butyl group are more preferable, and a methyl group and an ethyl group are preferable. It is particularly preferred.
  • the alkoxy group (OR 13 ) is a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a 2- (butoxy) ethoxy group (—O—CH 2 CH 2 —O—C 4 H 9 ), or a phenoxy group.
  • R 13 is preferably an organic group having a molecular weight of 300 or less from the viewpoint of hydrolyzability.
  • the number of hydrolyzable groups bonded to the silicon atom of the basic compound (C) represented by the general formula (4) can be appropriately adjusted depending on the performance required for each curable resin composition.
  • aminosilane having a tertiary amino group a ketimine silane compound having a functional group that reacts with water to form a primary amino group (3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, etc.) or Aldiminesilane compounds, MS Silyl of aminosilane such as 301 (trade name, manufactured by Chisso Corporation), MS3302 (trade name, manufactured by Chisso Corporation), X-40-2651 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.), DYNASYLAN 1146 (trade name, manufactured by Evonik Degussa)
  • a compound obtained by condensing a group alone or with another alkoxysilane compound may be used, but it is not limited thereto. Since an aminosilane compound generally functions as an adhesion promoter for metal materials, the aminosilane compound according to the present invention can be used as a curing accelerator and adhesion promoter.
  • the compounding amount of the basic compound (C) is not particularly limited as long as the curable resin (A) and the curable resin (B) are cured, but the curable resin (A) and the curable resin ( 0.1 to 30 parts by mass, more preferably 0.5 to 20 parts by mass, and particularly preferably 1.0 to 10 parts by mass with respect to 100 parts by mass as a sum of B). If it is less than 0.1 parts by mass, the effect of promoting curing may not be sufficient, and if it exceeds 30 parts by mass, the balance of the film of the final cured product may be deteriorated.
  • any conventionally known compound or substance can be blended as other components within a range that does not impair the effects of the present invention.
  • various curable resins other than the curable resin used in the present invention for example, moisture curable resins other than the curable resin (A) and the curable resin (B), epoxy resins, urethane resins, oxetane resins, Cyclic carbonate resins) and non-curing resins (acrylic resins, polycarbonate resins, polyester resins, polystyrene resins, etc.), silane coupling agents such as ⁇ -glycidoxypropyltrimethoxysilane, vinyltrimethoxysilane, calcium carbonate powder Body, clay powder, hydrophilic or hydrophobic silica powder, titanium oxide powder, inorganic filler such as carbon black powder, organic filler such as polyacryl powder, polystyrene powder, polyurethane powder, phenol resin , Terpen
  • a curing accelerator other than the basic compound (C) can be used depending on the application.
  • the curing accelerator may be appropriately selected in order to obtain a desired performance, and may be used alone or in combination of two or more.
  • Specific examples of the curing accelerator include conventionally known acidic compounds such as carboxylic acids, phosphoric acids and various Lewis acids and salts thereof, non-tin organometallic compounds, and Japanese Patent Application Laid-Open No. 2008-260932. Fluorinating agents, fluorinating agents proposed in Japanese Unexamined Patent Publication No. 2008-260932, alkali metal salts of polyvalent fluoro compounds proposed in Japanese Unexamined Patent Publication No. 2008-260933, fluorosilane compounds, etc.
  • Lewis acid examples include metal halides and boron halide compounds.
  • basic compounds, non-tin organic metal compounds, and boron halide compounds are preferably used because of their high activity. In view of safety, it is preferable not to use an organotin compound.
  • organic tin compounds can also be used as curing accelerators depending on the application. In that case, an octyltin compound and a carboxylic acid tin compound are preferable because they do not contain a tributyltin derivative.
  • non-tin-based organometallic compounds include compounds mainly composed of Group 1 alkali metal based metal elements, compounds composed mainly of Group 2 alkaline earth metal based metal elements, transition metal based metal elements (for example, Group 3 rare earth metal elements, Group 4 titanium group metal elements, Group 5 vanadium group metal elements, Group 6 chromium group metal elements, Group 7 manganese group metal elements, Group 8 iron group metal elements, Group 9 metal elements, Group 10 platinum group metal elements, Group 11 copper group metal elements), Group 12 zinc group metals Examples include compounds mainly composed of elements, compounds mainly composed of Group 13 earth metal-based metal elements, and compounds mainly composed of Group 15 nitrogen-based metal elements, but are not limited thereto. Absent.
  • the non-tin organometallic compound may be appropriately selected in order to obtain desired performance, and may be used alone or in combination of two or more.
  • the non-tin organometallic compound has a structure such as alkoxide, carboxylate, chelate, etc., so that the activity as a curing accelerator is increased and the compatibility with each curable resin is increased, thereby effectively promoting the curing acceleration ability. Is expressed.
  • a single compound may have a structure such as alkoxide, carboxylate, chelate or the like, or a plurality of structures may be mixed.
  • alkoxide when alkoxide is taken as an example, a plurality of alkoxide structures (for example, a methoxide structure and a butoxide structure) may be mixed, and a structure such as a carboxylate or a chelate may be mixed. Good.
  • alkoxide structure examples include, but are not limited to, methoxide, ethoxyside, normal propoxide, isopropoxide, normal butoxide, s-butoxide, isobutoxide, t-butoxide, and the like.
  • carboxylate structure examples include, but are not limited to, naphthenate, octylate, dodecanoate, stearate, isostearate, oleate, and the like.
  • examples of the chelate structure include, but are not limited to, various chelate compounds in addition to an acetylacetonate complex and an ethyl acetoacetate complex.
  • non-tin-based organometallic compound examples include lithium naphthenate, sodium stearate, potassium octylate, etc. as a compound mainly composed of a group 1 alkali metal group metal element.
  • lithium naphthenate sodium stearate
  • potassium octylate etc.
  • titanium as compounds mainly composed of metal-based metal elements, and yttrium octylate, titanium tetrabutoxide, titanium acetylacetone complex, titanium as compounds mainly composed of transition metal-based metal elements Diisopropoxybis (ethyl acetoacetate), zirconium tetrapropoxide, zirconium tributoxy monoacetylacetonate, zirconium monobutoxyacetylacetonate bis (ethylacetoacetate), vanadyl acetylacetonate, vana Umum acetylacetonate, chromium acetylacetone complex, manganese acetylacetone complex, iron octylate, cobalt naphthenate, cobalt octylate, nickel acetylacetone complex, copper naphthenate, copper acetylacetone complex, etc.
  • transition metal-based metal elements Diisopropoxybis (ethyl acetoa
  • Zinc acetylacetonate monohydrate, zinc naphthenate, zinc octylate, etc. are compounds mainly composed of Group 13 earth metal elements, such as aluminum acetylacetone complex, aluminum tributoxide, aluminum ethyl
  • Examples of the compound mainly composed of a group 15 nitrogen group metal element such as an acetoacetate complex and an indium acetylacetone complex include bismuth naphthenate and bismuth tris (2-ethylhexanoate). But it is not limited to these.
  • non-tin organometallic compounds are commercially available and can be used in the present invention.
  • Specific examples of commercially available products include nursem aluminum, nursem chromium, nursem first cobalt, nursem second cobalt, nursem copper, nursem ferric iron, nursem nickel, nursem vanadyl, nursem zinc, nursem indium, nursem magnesium, nurse Sem Manganese, Nasemu Yttrium, Nasemu Cerium, Nasemu Strontium, Nasemu Palladium, Nasemu Barium, Nasem Molybdenyl, Nasemu Lanthanum, Nasem Zirconium, Nasemu Titanium, Naphtex Co Series, Nikka Octix Co Series, Naphtex Mn Series, Nikka Octix Mn Series, Naphtex Zn Series, Nikka Octix Zn Series, Naftex Ca Series, Nikka Octics Ca Series, Naphtec K series, Nikka oct
  • the non-tin-based organometallic compound when it is at least one selected from the group consisting of zirconium compounds, titanium compounds, aluminum compounds, and bismuth compounds, it is possible to reduce the environmental burden, to ensure safety, and to achieve a curing rate that can withstand actual use. Is preferable in that it is easily obtained. Further, when importance is attached to the stability of the non-tin-based organometallic compound, a structure such as a carboxylate or a chelate is preferable, and when importance is attached to the curing promoting ability of the non-tin-based organometallic compound, an alkoxide or a carboxylate is preferred. The structure is preferred.
  • boron trifluoride compound As the boron halide compound, a boron trifluoride compound is preferably used. Specific examples of boron trifluoride compounds include, but are not limited to, boron trifluoride amine complexes, alcohol complexes, ether complexes, thiol complexes, sulfide complexes, carboxylic acid complexes, water complexes, and the like. Do not mean. Among the boron trifluoride compounds, an alcohol complex or an amine complex is preferable from the viewpoint of availability and ease of blending, and an amine complex is most preferable because it has both stability and curing acceleration activity.
  • Examples of amine compounds used in the boron trifluoride amine complex include ammonia, monoethylamine, triethylamine, piperidine, aniline, morpholine, cyclohexylamine, n-butylamine, monoethanolamine, diethanolamine, triethanolamine, guanidine, 2, 2,6,6-tetramethylpiperidine, 1,2,2,6,6-pentamethylpiperidine, N-methyl-3,3'-iminobis (propylamine), ethylenediamine, diethylenetriamine, triethylenediamine, pentaethylenediamine, 1 , 2-diaminopropane, 1,3-diaminopropane, 1,2-diaminobutane, 1,4-diaminobutane, 1,9-diaminononane, ATU (3,9-bis (3-aminopropyl) -2,4 , 8,1 -Tetraoxaspiro [5.5] undecane
  • ⁇ -aminopropyltriethoxysilane ⁇ -aminopropylmethyldiethoxysilane, 4-amino-3-dimethylbutyltriethoxysilane, N- ⁇ (aminoethyl) - ⁇ -aminopropyltriethoxysilane, N- ⁇ (Aminoethyl) - ⁇ -aminopropylmethyldiethoxysilane, N-3- [amino (dipropyleneoxy)] aminopropyltriethoxysilane, (aminoethylaminomethyl) phenethyltriethoxysilane, N- (6-aminohexyl) ) Aminomethyltriethoxysilane, N-phenyl- ⁇ -aminopropyltriethoxysilane, N- (2-aminoethyl) -11- An aminosilane compound such as aminoundecyltriethoxysilane may
  • the curable resin composition in this invention can be used for all the uses to which the conventional curable resin was applied.
  • it can be used as an adhesive, a sealing material, an adhesive, a paint, a coating material, a sealing material, a casting material, a coating material, and the like.
  • the curable resin composition in the present invention is cured by crosslinking of crosslinkable silicon groups in the presence of moisture. Therefore, when used as a one-component composition, it is handled in a hermetically sealed state so as not to come into contact with moisture in the air during storage or transportation. And if it opens and uses it in arbitrary places at the time of use, it will contact with the water
  • tackifier resin when using as an adhesive precursor composition, tackifier resin is further mix
  • curable resin composition and tackifying resin when mixing curable resin composition and tackifying resin uniformly, for example, when compatibility of both is inadequate, you may use an organic solvent.
  • the organic solvent alcohols such as ethanol, ethyl acetate, toluene, methylcyclohexane and the like are used. Further, when the compatibility between the curable resin composition and the tackifier resin is good or when the organic solvent is not preferred, the organic solvent may not be used.
  • a pressure-sensitive adhesive layer can be formed by applying the pressure-sensitive adhesive precursor composition thus obtained to the surface (one side or both sides) of a conventionally known tape base or sheet base and curing it. And an adhesive tape or an adhesive sheet is obtained. Since the curable resin composition concerning this invention has little temperature dependency of sclerosis
  • curable resin (A) and curable resin (B) As the curable resin (A), GENIOSIL STP-E10 (trade name, manufactured by Wacker Chemie AG, molecular weight of about 10,000 converted from methoxy group equivalent, viscosity of about 10,000 mPa ⁇ s / 25 ° C. (catalog value)) was prepared. .
  • Curable resin AB-1 which is a mixture containing the equivalent of the polymerizable resin (B) and the ratio of the polymerizable vinyl compound in which the Tg of the homopolymer in the polymerizable vinyl compound is ⁇ 20 ° C. or less: about 38% by mass) Got.
  • Curable resin AB-2 which is a mixture containing the equivalent of the polymerizable resin (B) and the ratio of the polymerizable vinyl compound in which the Tg of the homopolymer in the polymerizable vinyl compound is ⁇ 20 ° C. or less: about 14% by mass) Got.
  • the urethane-based tree having an isocyanate group in its molecule
  • the silane compound SE-1 (15.1 parts by mass) was added, and while stirring and mixing in a nitrogen atmosphere, the isocyanate group in the urethane-based resin U-1 and the silane compound SE-1 in the silane compound SE-1 were mixed.
  • a secondary amino group 80 ° C.
  • the main chain is a copolymer of ethylene oxide and propylene oxide, a urethane bond in the molecule, a urea bond substituted with one active hydrogen, and
  • a curable resin SU-1 having a trimethoxysilyl group (corresponding to a moisture curable resin other than the curable resin (A) and the curable resin (B)) was obtained.
  • IR measurement was performed, and no characteristic absorption (2265 cm-1) attributed to the isocyanate group was observed.
  • a reaction vessel is charged with AB-1 (100 parts by mass), added with a curable resin SU-1 (10 parts by mass) in a nitrogen atmosphere, and kneaded for 30 minutes under reduced pressure, thereby providing STP-E10 (curable resin).
  • a vinyl polymer having a trimethoxysilyl group in the molecule correspond to curable resin (B)
  • a curable resin whose main chain is a random copolymer of ethylene oxide and propylene oxide.
  • a curable resin AB-3 which is a mixture containing SU-1 (corresponding to a moisture curable resin other than the curable resin (A) and the curable resin (B)), was obtained.
  • PMLS4012 (trade name, manufactured by Asahi Glass Co., Ltd., polyoxypropylene polyol, number average molecular weight of about 10,000, 100 parts by mass), isophorone diisocyanate (4.83 parts by mass) and dioctyltin diversate
  • the urethane resin U having a main chain of an oxyalkylene polymer and an isocyanate group in the molecule is prepared by reacting at 80 ° C. for 3 hours while stirring and mixing in a nitrogen atmosphere. -1 was obtained.
  • the silane compound SE-1 (8.90 parts by mass) was added, and while stirring and mixing in a nitrogen atmosphere, the isocyanate group in the urethane resin U-1 and the silane compound SE-1 in the silane compound SE-1 were mixed.
  • the main chain is an oxyalkylene polymer, and a urethane group, a urea group substituted with one active hydrogen in its molecule, and a trimethoxysilyl group A curable resin P-1 was obtained.
  • IR measurement was performed, and no characteristic absorption (2265 cm ⁇ 1 ) attributed to the isocyanate group was observed.
  • curable resin P-1 100 parts by mass was placed and heated to 80 ° C. in a nitrogen atmosphere. There, 37.5 parts by mass of methyl methacrylate, 25 parts by mass of lauryl methacrylate, 3.0 parts by mass of 3-acryloxypropyltrimethoxysilane, 7.0 parts by mass of 3-mercaptopropyltrimethoxysilane, and 2,2 A monomer mixture mixed with 0.50 parts by mass of '-azobis (2,4-dimethylvaleronitrile) was added dropwise over 30 minutes to conduct a polymerization reaction. Furthermore, after reacting at 80 ° C.
  • curable resin P-1 (a curable resin not applied to the curable resin (A)) and a trimethoxysilyl group in the molecule.
  • a vinyl polymer (corresponding to the curable resin (B), the ratio of the polymerizable vinyl compound in which the Tg of the homopolymer in the polymerizable vinyl compound is ⁇ 20 ° C. or less: about 38% by mass).
  • a curable resin PB-1 was obtained.
  • SAT400 a curable resin not applied to the curable resin (A)
  • PB- a vinyl polymer having a methyldimethoxysilyl group in the molecule
  • a curable resin PB- which is a mixture containing a curable resin (B) and a proportion of a polymerizable vinyl compound in which the Tg of the homopolymer in the polymerizable vinyl compound is ⁇ 20 ° C. or less: about 14% by mass
  • curable resin PB-3 (Preparation of curable resin PB-3) PB-1 (100 parts by mass) is placed in a reaction vessel, curable resin SU-1 (10 parts by mass) is added in a nitrogen atmosphere, and the mixture is kneaded for 30 minutes under reduced pressure, whereby curable resin P-1 ( A curable resin not applied to the curable resin (A)), a vinyl polymer having a trimethoxysilyl group in the molecule (corresponding to the curable resin (B)), and a random copolymer of ethylene oxide and propylene oxide in the main chain.
  • a curable resin PB-3 which is a mixture containing the curable resin SU-1 (corresponding to a moisture curable resin other than the curable resin (A) and the curable resin (B)) as a coalescence, was obtained.
  • KBM-903 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd., 3-aminopropyltrimethoxysilane
  • KBM-603 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.), N- (2-aminoethyl) ) -3-aminopropyltrimethoxysilane).
  • Neostan U-830 (trade name, manufactured by Nitto Kasei Co., Ltd., octyltin compound) and dibutyltin dimethoxide were prepared as metal catalysts that can be used as curing accelerators.
  • Examples 1 to 3, Comparative Examples 1 to 3 [Evaluation of low-temperature curability]
  • Each curable resin composition was prepared by mixing each raw material for 30 seconds using a spatula under the conditions of 5 ⁇ 2 ° C. and relative humidity of 35 ⁇ 5% at the blending ratio (parts by mass) shown in Table 1.
  • the curing rates of the obtained curable resins were compared.
  • the comparison of the curing rate was performed using the skinning time.
  • the starting time is the time immediately after mixing each raw material for 30 seconds
  • the time when the film formed on the surface of the cured product is not transferred to the spatula is the end time
  • the time from the start to the end is skinned. It was time.
  • Each skinning time is shown in Table 1.
  • the condition of 5 ⁇ 2 ° C. relative humidity 35 ⁇ 5% may be referred to as “low temperature condition”.
  • the curable resin composition according to the present invention has very high curability even under low temperature conditions. Specifically, Comparative Examples 1 to 3 which do not apply to the present invention require 12 hours or more for skinning, whereas Examples 1 to 3 according to the present invention require less than 1 hour. You can see that it is skinned. Since Example 1 and Comparative Example 1, Example 2 and Comparative Example 2 are the same as Example 3 and Comparative Example 3 except for the curable resin, these effects are the same as those of the curable resin according to the present invention. It can be said that it is a peculiar effect by using together (A) and curable resin (B).
  • the curable resin composition according to the present invention can be sufficiently applied to, for example, a sealing material and an adhesive used outdoors in winter and can be said to be very useful industrially.
  • Examples 1 and 3 do not use a dibutyltin compound that has a concern about toxicity, and also in Example 2 using an organic tin compound, the organic tin compound is safe among the organic tin compounds.
  • the addition amount thereof is less than 1,000 ppm relative to the total mass part of the curable resin composition. From this, the curable resin composition according to the present invention has a wide range of applications and can be said to be extremely useful industrially because safety is ensured and low-temperature curability is high.
  • the starting time is the time immediately after mixing each raw material for 30 seconds
  • the time when the film formed on the surface of the cured product is not transferred to the spatula is the end time
  • the time from the start to the end is skinned. It was time.
  • Each skinning time is shown in Table 2.
  • the condition of 23 ⁇ 2 ° C. and relative humidity 50 ⁇ 5% may be referred to as “room temperature condition”.
  • the curable resin composition according to the present invention has very high curability even under low temperature conditions, and there is little difference in curability between normal temperature conditions and low temperature conditions.
  • Comparative Examples 4 and 5 which are not related to the present invention have a skinning time magnification (low temperature condition / normal temperature condition) of about 5 times, whereas Examples 4 and 5 according to the present invention are 2. Since it is 4 times, there is little fall of sclerosis
  • the addition amount thereof is less than 1,000 ppm with respect to the total mass part of the curable resin composition. Therefore, the curable resin composition according to the present invention has a wide range of applications and is extremely useful industrially because safety is ensured and low-temperature curability is high and the change in curability due to temperature is small. You can say that.
  • the curable resin composition in the present invention can be used for all uses where a one-component or multi-component curable resin composition has been used.
  • it can be used as an adhesive, an adhesive, a sealing material, a paint, a coating material, a sealing material, a casting material, a coating material, and the like.

Abstract

Disclosed is a curable resin composition which can be reduced in the burden on the environment, while securing safety and having extremely high curability at low temperatures. Specifically disclosed is a curable resin composition which contains: a curable resin (A) that has a crosslinkable silicon group in each molecule, said crosslinkable silicon group having a chemical structure wherein a carbon atom is bonded to a silicon atom in the crosslinkable silicon group and a heteroatom having an unshared electron pair is bonded to the carbon atom; a curable resin (B) that has a crosslinkable silicon group in each molecule and a main chain composed of a vinyl polymer, said crosslinkable silicon group having a structure wherein an alkylene group having two or more carbon atoms is bonded to a silicon atom; and a basic compound (C). The curable resin composition is characterized in that the (mass) ratio of the curable resin (A) to the curable resin (B) is from 5:95 to 95:5, and the basic compound (C) is contained in an amount of 0.1-30 parts by mass relative to 100 parts by mass of the total of the curable resin (A) and the curable resin (B).

Description

硬化性樹脂組成物Curable resin composition
 本発明は、主鎖がビニル重合体である湿気硬化性樹脂が配合されてなる室温大気下で硬化可能な硬化性樹脂組成物に関し、より詳しくは、環境負荷の低減が可能であるとともに、安全性を確保しつつ、低温硬化性が極めて高い硬化性樹脂組成物に関するものである。さらには、硬化性の温度依存性が低い硬化性樹脂組成物に関するものである。 The present invention relates to a curable resin composition that can be cured at room temperature in the atmosphere, which is composed of a moisture curable resin whose main chain is a vinyl polymer. More specifically, the present invention is capable of reducing environmental burden and is safe. The present invention relates to a curable resin composition having extremely high low-temperature curability while ensuring properties. Furthermore, the present invention relates to a curable resin composition having low temperature dependency of curability.
 主鎖が有機重合体であり、その分子内に分子間架橋可能な架橋性珪素基を有する硬化性樹脂は、アルコキシシリル基等の架橋性珪素基が大気中の水分で加水分解し架橋する、いわゆる湿気硬化型ポリマーであり、シーリング材、接着剤、粘着剤、塗料等のベースポリマーとして幅広く利用されている(特許文献1~4)。このような湿気硬化型ポリマーは、シーリング材、接着剤、塗料等に使用する場合、一般的に有機錫化合物などが、該湿気硬化型ポリマーの硬化を促進させるために配合される(特許文献5、6)。 The main chain is an organic polymer, and the curable resin having a crosslinkable silicon group that can be cross-linked between molecules in the molecule crosslinks a crosslinkable silicon group such as an alkoxysilyl group by hydrolysis with moisture in the atmosphere. It is a so-called moisture curable polymer and is widely used as a base polymer for sealing materials, adhesives, pressure-sensitive adhesives, paints and the like (Patent Documents 1 to 4). When such a moisture curable polymer is used for a sealing material, an adhesive, a paint, or the like, generally an organic tin compound is blended in order to promote the curing of the moisture curable polymer (Patent Document 5). 6).
 しかしながら、有機錫化合物は、その硬化促進活性は非常に高いが、近年その毒性が問題となっているものがあるため、有機錫化合物に代わる硬化促進剤が求められていた。ところが、その代替の硬化促進剤に例えばアミン化合物等を利用すると、有機錫化合物と比較して硬化促進活性が低いため硬化性が不十分であるという問題があった。また、カルボン酸等の酸性化合物を利用すると、シーリング材や接着剤等に応用する際に、接着性が不十分になる場合があるという問題があった。 However, organotin compounds have a very high curing accelerating activity, but in recent years their toxicity has become a problem, and therefore a curing accelerator that can replace the organic tin compounds has been demanded. However, when an amine compound or the like is used as an alternative curing accelerator, for example, there is a problem that the curability is insufficient because the curing accelerating activity is lower than that of the organic tin compound. In addition, when an acidic compound such as carboxylic acid is used, there is a problem that adhesiveness may be insufficient when applied to a sealing material or an adhesive.
 そこで、そのような問題を解決するために、三フッ化ホウ素等に代表されるハロゲン化ホウ素化合物やフルオロシラン化合物等のハロゲン化合物が、該湿気硬化型ポリマーの硬化促進剤として使用できることが提案されている(特許文献7~9)。 Therefore, in order to solve such problems, it has been proposed that halogenated compounds such as boron trifluoride and halogen compounds such as fluorosilane compounds can be used as curing accelerators for the moisture-curable polymer. (Patent Documents 7 to 9).
日本国特開昭52-73998号公報Japanese Laid-Open Patent Publication No. 52-73998 日本国特許第3030020号公報Japanese Patent No. 3030020 日本国特許第3343604号公報Japanese Patent No. 3343604 日本国特表2005-514504号公報Japanese National Table 2005-514504 日本国特開平8-283366号公報Japanese Unexamined Patent Publication No. 8-283366 日本国特許第3062625号公報Japanese Patent No. 3062625 日本国特開2005-054174号公報Japanese Laid-Open Patent Publication No. 2005-054174 WO2006/051799号公報WO2006 / 051799 Publication WO2007/123167号公報WO2007 / 123167
 近年、地球環境のみならず作業者の使用環境に至るまで、環境に対する関心の高まりから化学物質の安全性に関する要求は強くなっている。有機錫化合物については、近年その毒性が問題となっているものがあり、その使用量については組成物に対し1000ppm未満に抑えることが望まれている。特に有機錫化合物の中でも、毒性の比較的高いトリブチル錫誘導体が含まれているもの(例えばジブチル錫化合物には副生成物としてトリブチル錫化合物が含有される可能性がある)は、その使用について特に注意が必要となる。つまり、硬化促進剤としては非常に有用な有機錫化合物の含有量を硬化性樹脂組成物全質量部に対して1000ppm未満に抑えたうえ、十分な硬化性が発現し、なおかつ、諸性能のバランスが取れた硬化性樹脂組成物の開発が求められていた。 In recent years, not only the global environment but also the working environment of workers, the demand for the safety of chemical substances has become stronger due to the growing interest in the environment. Some organotin compounds have become problematic in recent years, and it is desired that the amount used be less than 1000 ppm based on the composition. In particular, organic tin compounds containing relatively toxic tributyltin derivatives (for example, dibutyltin compounds may contain tributyltin compounds as by-products), especially for their use. Attention is required. In other words, the content of the organotin compound, which is very useful as a curing accelerator, is suppressed to less than 1000 ppm with respect to the total mass part of the curable resin composition, sufficient curability is exhibited, and various performances are balanced. There has been a demand for the development of a curable resin composition that can be removed.
 一方、一般的に、シーリング材、接着剤、粘着剤、塗料等のベースポリマーとして利用さる湿気硬化性樹脂は、接着性、耐熱性、耐油性、耐水性等の諸性能を向上させるため、主鎖がビニル重合体である湿気硬化性樹脂を併用することがある。しかしながら、主鎖がビニル重合体である湿気硬化性樹脂を併用することにより、上記の機能は向上するが、一方では、主鎖がビニル重合体である湿気硬化性樹脂の疎水性の高さにより、低温での硬化性が低いという問題があった。そのため、環境負荷の低減と安全性の確保をしたうえで、低温硬化性の高い硬化性樹脂組成物の開発が求められていた。合わせて、硬化性の温度依存性が低い硬化性樹脂組成物の開発が求められていた。 On the other hand, moisture curable resins generally used as base polymers for sealants, adhesives, pressure-sensitive adhesives, paints, etc. are mainly used for improving various properties such as adhesion, heat resistance, oil resistance, and water resistance. A moisture curable resin whose chain is a vinyl polymer may be used in combination. However, the above function is improved by using a moisture curable resin whose main chain is a vinyl polymer, but on the other hand, due to the high hydrophobicity of the moisture curable resin whose main chain is a vinyl polymer. There was a problem that curability at low temperature was low. Therefore, development of a curable resin composition having high low-temperature curability has been demanded after reducing environmental burden and ensuring safety. In addition, development of a curable resin composition having low temperature dependency of curability has been demanded.
 すなわち、本発明が解決しようとする課題は、接着性、耐熱性、耐油性、耐水性等の諸性能を向上させるため、主鎖がビニル重合体である湿気硬化性樹脂が配合されてなる硬化性樹脂組成物に関して、環境負荷の低減が可能であるとともに、安全性を確保しつつ、低温硬化性が極めて高い硬化性樹脂組成物を提供することであり、さらには、硬化性の温度依存性が低い硬化性樹脂組成物を提供することである。 That is, the problem to be solved by the present invention is to cure a moisture curable resin whose main chain is a vinyl polymer in order to improve various properties such as adhesion, heat resistance, oil resistance, and water resistance. With respect to the curable resin composition, it is possible to provide a curable resin composition that is capable of reducing the environmental burden and that has extremely low-temperature curability while ensuring safety. Is to provide a low curable resin composition.
 第1の発明は、架橋性珪素基の珪素原子に炭素原子が結合し、さらに該炭素原子に非共有電子対を有するヘテロ原子が結合した化学構造を有する架橋性珪素基を分子内に有する硬化性樹脂(A)、珪素原子に炭素数2以上のアルキレン基が結合する構造を有する架橋性珪素基を分子内に有し、かつ、主鎖がビニル重合体である硬化性樹脂(B)、及び、塩基性化合物(C)を含有する硬化性樹脂組成物であって、硬化性樹脂(A)と硬化性樹脂(B)の割合(質量部)が5:95~95:5であり、硬化性樹脂(A)と硬化性樹脂(B)との総和100質量部に対して、塩基性化合物(C)が0.1~30質量部含有されることを特徴とする、硬化性樹脂組成物に関するものである。架橋性珪素基の珪素原子に炭素原子が結合し、さらに該炭素原子に非共有電子対を有するヘテロ原子が結合した化学構造を有する架橋性珪素基を分子内に有する硬化性樹脂(A)が一定の割合で含有されていることで硬化性が高まる。また、珪素原子に炭素数2以上のアルキレン基が結合する構造を有する架橋性珪素基を分子内に有し、かつ、主鎖がビニル重合体である硬化性樹脂(B)が一定の割合で含有されていることで、低温硬化性が極めて高い硬化性樹脂組成物を得ることができる。 1st invention is hardening which has a crosslinkable silicon group in a molecule | numerator which has a chemical structure which the carbon atom couple | bonded with the silicon atom of the crosslinkable silicon group, and also the hetero atom which has an unshared electron pair couple | bonded with this carbon atom. Curable resin (A), curable resin (B) having a crosslinkable silicon group in the molecule having a structure in which an alkylene group having 2 or more carbon atoms is bonded to a silicon atom, and the main chain is a vinyl polymer, And a curable resin composition containing the basic compound (C), wherein the ratio (parts by mass) of the curable resin (A) and the curable resin (B) is 5:95 to 95: 5, A curable resin composition comprising 0.1 to 30 parts by mass of the basic compound (C) with respect to 100 parts by mass of the total of the curable resin (A) and the curable resin (B). It is about things. A curable resin (A) having a crosslinkable silicon group in the molecule having a chemical structure in which a carbon atom is bonded to a silicon atom of a crosslinkable silicon group and a heteroatom having an unshared electron pair is bonded to the carbon atom. The curability is increased by containing at a certain ratio. In addition, a curable resin (B) having a crosslinkable silicon group having a structure in which an alkylene group having 2 or more carbon atoms is bonded to a silicon atom in the molecule and the main chain being a vinyl polymer at a certain ratio. By containing, a curable resin composition having extremely high low-temperature curability can be obtained.
 第2の発明は、硬化性樹脂(A)が、分子内に下記一般式(1)で表される架橋性珪素基を有する硬化性樹脂であり、かつ、硬化性樹脂(B)が、分子内に下記一般式(2)で表される架橋性珪素基を有する硬化性樹脂であることを特徴とする、第1の発明に係る硬化性樹脂組成物に関するものである。
  -A-CH-SiR 3-a(OR   ・・・式(1)
(但し、Aは架橋性珪素基に含まれる珪素原子に結合するメチレン基に非共有電子対を有するヘテロ原子が結合している結合官能基を、Rは炭素数1~20の炭化水素基を、Rは分子量300以下の有機基を、aは1、2又は3を、それぞれ示す)
  -X-SiR 3-b(OR   ・・・式(2)
(但し、Xは炭素数2~20の炭化水素基を、Rは炭素数1~20の炭化水素基を、Rは分子量300以下の有機基を、bは1、2又は3を、それぞれ示す)
 硬化性樹脂(A)及び硬化性樹脂(B)が、特定構造の架橋性珪素基を有することにより、低温硬化性が極めて高く、硬化性の温度依存性が低い硬化性樹脂組成物を得ることができる。
In the second invention, the curable resin (A) is a curable resin having a crosslinkable silicon group represented by the following general formula (1) in the molecule, and the curable resin (B) is a molecule. The present invention relates to a curable resin composition according to the first invention, which is a curable resin having a crosslinkable silicon group represented by the following general formula (2).
—A—CH 2 —SiR 1 3-a (OR 2 ) a (1)
(Wherein A is a bonding functional group in which a hetero atom having an unshared electron pair is bonded to a methylene group bonded to a silicon atom contained in the crosslinkable silicon group, and R 1 is a hydrocarbon group having 1 to 20 carbon atoms. R 2 represents an organic group having a molecular weight of 300 or less, and a represents 1, 2 or 3)
-X-SiR 3 3-b (OR 4 ) b Formula (2)
(Wherein X is a hydrocarbon group having 2 to 20 carbon atoms, R 3 is a hydrocarbon group having 1 to 20 carbon atoms, R 4 is an organic group having a molecular weight of 300 or less, b is 1, 2 or 3; Each)
When the curable resin (A) and the curable resin (B) have a crosslinkable silicon group having a specific structure, a curable resin composition having extremely high low-temperature curability and low temperature dependency of curability is obtained. Can do.
 第3の発明は、硬化性樹脂(A)の主鎖が、ポリオキシアルキレンであることを特徴とする、第1又は第2のいずれかの発明に係る硬化性樹脂組成物に関するものである。硬化性樹脂(A)の主鎖が、ポリオキシアルキレンであることで、硬化物の柔軟性が高い硬化性樹脂組成物を得やすい。 The third invention relates to a curable resin composition according to any one of the first and second inventions, wherein the main chain of the curable resin (A) is polyoxyalkylene. When the main chain of the curable resin (A) is polyoxyalkylene, it is easy to obtain a curable resin composition having high flexibility of the cured product.
 第4の発明は、硬化性樹脂(A)が、含窒素特性基を介して主鎖に架橋性珪素基が連結されることを特徴とする、第1~3のいずれかの発明に係る硬化性樹脂組成物に関するものである。硬化性樹脂(A)が、含窒素特性基を介して主鎖に架橋性珪素基が連結される硬化性樹脂であることで、十分な硬化性が得られやすい。 The fourth invention is the curing according to any one of the first to third inventions, wherein the curable resin (A) has a crosslinkable silicon group linked to the main chain via a nitrogen-containing characteristic group. The present invention relates to a conductive resin composition. When the curable resin (A) is a curable resin in which a crosslinkable silicon group is linked to the main chain via a nitrogen-containing characteristic group, sufficient curability is easily obtained.
 第5の発明は、硬化性樹脂(B)が、少なくとも、ホモポリマーのガラス転移温度(以下、「Tg」と表記することがある)が-20℃以下である重合性ビニル系化合物から誘導される構造単位を含むビニル重合体であることを特徴とする、第1~4のいずれかの発明に係る硬化性樹脂組成物に関するものである。硬化性樹脂(B)が、少なくとも、ホモポリマーのTgが-20℃以下である重合性ビニル系化合物から誘導される構造単位を含むビニル重合体であることで、低温硬化性が極めて高く、硬化性の温度依存性が低い硬化性樹脂組成物を得ることができる。 In a fifth aspect of the invention, the curable resin (B) is derived from a polymerizable vinyl compound in which the glass transition temperature of the homopolymer (hereinafter sometimes referred to as “Tg”) is −20 ° C. or less. The present invention relates to a curable resin composition according to any one of the first to fourth inventions, characterized in that the polymer is a vinyl polymer containing a structural unit. Since the curable resin (B) is a vinyl polymer containing a structural unit derived from a polymerizable vinyl compound having a homopolymer Tg of −20 ° C. or lower, the low temperature curability is extremely high, and the curing is performed. It is possible to obtain a curable resin composition having low temperature dependency of properties.
 第6の発明は、塩基性化合物(C)が、下記一般式(3)で表されるアミノシラン化合物であることを特徴とする、第1~5のいずれかの発明に係る硬化性樹脂組成物に関するものである。
  RN-R-SiR 3-c(OR   ・・・式(3)
(但し、R、Rは分子量500以下の有機基又は水素原子を、Rは分子量500以下の有機基を、Rは炭素数1~20の炭化水素基を、Rは分子量300以下の有機基を、cは1、2又は3を、それぞれ示す)
 アミノシラン化合物(C)が特定構造の化合物であるため、シーリング材、接着剤又は粘着剤前駆体等に応用した際に十分な接着性が発現しやすい。
A sixth invention provides the curable resin composition according to any one of the first to fifth inventions, wherein the basic compound (C) is an aminosilane compound represented by the following general formula (3): It is about.
R 5 R 6 N—R 7 —SiR 8 3-c (OR 9 ) c Formula (3)
(However, R 5 and R 6 are organic groups or hydrogen atoms having a molecular weight of 500 or less, R 7 is an organic group having a molecular weight of 500 or less, R 8 is a hydrocarbon group having 1 to 20 carbon atoms, and R 9 is a molecular weight of 300. The following organic groups, c represents 1, 2 or 3, respectively)
Since the aminosilane compound (C) is a compound having a specific structure, sufficient adhesiveness is likely to be exhibited when applied to a sealing material, an adhesive, or a pressure sensitive adhesive precursor.
 第7の発明は、塩基性化合物(C)が、下記一般式(4)で表されるアミノシラン化合物であることを特徴とする、第1~6のいずれかの発明に係る硬化性樹脂組成物に関するものである。
  HN-R10-NH-R11-SiR12 3-d(OR13 ・・・式(4)
(但し、R10は分子量200以下の有機基を、R11は炭素数1~20の炭化水素基を、R12は炭素数1~20の炭化水素基を、R13は分子量300以下の有機基を、dは1、2又は3を、それぞれ示す)
 アミノシラン化合物(C)が特定構造の化合物であるため、シーリング材、接着剤又は粘着剤前駆体等に応用した際に十分な接着性がより発現しやすい。
According to a seventh invention, the curable resin composition according to any one of the first to sixth inventions, wherein the basic compound (C) is an aminosilane compound represented by the following general formula (4): It is about.
H 2 N—R 10 —NH—R 11 —SiR 12 3-d (OR 13 ) d Formula (4)
(However, R 10 is an organic group having a molecular weight of 200 or less, R 11 is a hydrocarbon group having 1 to 20 carbon atoms, R 12 is a hydrocarbon group having 1 to 20 carbon atoms, and R 13 is an organic group having a molecular weight of 300 or less. A group, d is 1, 2 or 3, respectively)
Since the aminosilane compound (C) is a compound having a specific structure, sufficient adhesiveness is more easily exhibited when applied to a sealing material, an adhesive, or a pressure sensitive adhesive precursor.
 第8の発明は、有機錫化合物の含有量が、硬化性樹脂組成物全質量部に対して0~1000ppm未満であることを特徴とする、第1~7のいずれかの発明に係る硬化性樹脂組成物に関するものである。有機錫系触媒が上記の範囲であれば、環境負荷の低減が可能であるとともに、安全性を確保できることから好ましい。 The eighth aspect of the present invention is the curability according to any one of the first to seventh aspects, wherein the content of the organic tin compound is 0 to less than 1000 ppm relative to the total mass part of the curable resin composition. The present invention relates to a resin composition. If the organotin-based catalyst is in the above range, it is preferable because it is possible to reduce environmental burden and to ensure safety.
 第9の発明は、硬化性樹脂(A)中で、硬化性樹脂(B)を形成するためのビニル重合反応を行うことで、硬化性樹脂(A)と硬化性樹脂(B)の混合物を調製することを特徴とする、第1~8のいずれかの発明に係る硬化性樹脂組成物に関するものである。硬化性樹脂(A)中でビニル重合反応を行うことで、硬化性樹脂(A)と硬化性樹脂(B)の混合物の粘度が低く調製できるうえ、反応溶媒除去工程が必要なくなるため、産業上極めて有用な製造方法である。 In the ninth invention, a mixture of the curable resin (A) and the curable resin (B) is obtained by performing a vinyl polymerization reaction for forming the curable resin (B) in the curable resin (A). The present invention relates to a curable resin composition according to any one of the first to eighth inventions. By performing a vinyl polymerization reaction in the curable resin (A), the viscosity of the mixture of the curable resin (A) and the curable resin (B) can be adjusted to be low, and a reaction solvent removing step is not necessary. This is a very useful production method.
 第10の発明は、第1~9のいずれかの発明に係る硬化性樹脂組成物を硬化性成分の主体とするシーリング材組成物、接着剤組成物又は粘着剤前駆体組成物に関するものである。本発明に係る硬化性樹脂組成物は、環境負荷の低減が可能であるとともに、安全性を確保しつつ、低温硬化性が極めて高く、さらには、硬化性の温度依存性が低い硬化性樹脂組成物であることから、シーリング材組成物、接着剤組成物又は粘着剤前駆体組成物として特に好適に用いることができる。 A tenth invention relates to a sealing material composition, an adhesive composition or a pressure sensitive adhesive precursor composition mainly comprising the curable resin composition according to any one of the first to ninth inventions as a curable component. . The curable resin composition according to the present invention is capable of reducing the environmental burden, has a very high low temperature curability while ensuring safety, and further has a low curable temperature dependency. Since it is a thing, it can use especially suitably as a sealing material composition, an adhesive composition, or an adhesive precursor composition.
 本発明の硬化性樹脂組成物は、主鎖がビニル重合体である特定構造を有する湿気硬化性樹脂が配合されてなる硬化性樹脂組成物であり、環境負荷の低減が可能であるとともに、安全性を確保しつつ、低温硬化性が極めて高く、さらには、硬化性の温度依存性が低いという効果を奏するものである。 The curable resin composition of the present invention is a curable resin composition in which a moisture curable resin having a specific structure whose main chain is a vinyl polymer is blended, and is capable of reducing environmental burden and is safe. In addition, the low-temperature curability is extremely high and the temperature dependency of curability is low.
 以下、本発明を実施するための形態を、詳細に説明する。なお、本発明はこれらの例示にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更を加え得ることは勿論である。 Hereinafter, modes for carrying out the present invention will be described in detail. In addition, this invention is not limited only to these illustrations, Of course, a various change can be added in the range which does not deviate from the summary of this invention.
[硬化性樹脂(A)について]
 本発明における硬化性樹脂(A)は、架橋性珪素基の珪素原子に炭素原子が結合し、さらに該炭素原子に非共有電子対を有するヘテロ原子が結合した化学構造を有する架橋性珪素基を分子内に有する硬化性樹脂である。珪素原子に炭素原子が結合し、さらに該炭素原子に非共有電子対を有するヘテロ原子が結合する架橋性珪素基は、その架橋活性が高いため、硬化性樹脂(A)は、硬化促進活性は非常に高いが毒性に関する懸念がある有機錫化合物を使用しない、或いは通常よりもはるかに少量の使用量(硬化性樹脂組成物全質量部に対して1000ppm未満)でも、十分な硬化性を発現する。
 また、硬化性樹脂(A)は、分子内に上記一般式(1)で表される架橋性珪素基含有官能基を有する硬化性樹脂も好適に用いられる。本発明では、上記一般式(1)で表されるような化学構造を「α-シラン構造」と表記する。α-シラン構造を選択することにより通常の架橋性珪素基よりも極めて高い湿分反応性を示すため、有機錫化合物を使用しない、或いは通常よりもはるかに少量の使用量(硬化性樹脂組成物全質量部に対して1000ppm未満)でも十分な硬化速度を得ることができるのである。
[About curable resin (A)]
The curable resin (A) in the present invention has a crosslinkable silicon group having a chemical structure in which a carbon atom is bonded to a silicon atom of a crosslinkable silicon group, and a heteroatom having a lone pair is bonded to the carbon atom. It is a curable resin in the molecule. Since the crosslinkable silicon group in which a carbon atom is bonded to a silicon atom and a heteroatom having a lone pair is bonded to the carbon atom has a high crosslinking activity, the curable resin (A) has a curing accelerating activity. Even if the organotin compound, which is very high but has a concern about toxicity, is not used, or if it is used in a much smaller amount than usual (less than 1000 ppm relative to the total mass part of the curable resin composition), sufficient curability is exhibited. .
Moreover, curable resin which has a crosslinkable silicon group containing functional group represented by the said General formula (1) in a molecule | numerator is also used suitably for curable resin (A). In the present invention, a chemical structure represented by the general formula (1) is expressed as “α-silane structure”. By selecting an α-silane structure, the moisture reactivity is much higher than that of a normal cross-linkable silicon group. Therefore, no organotin compound is used, or a much smaller amount than usual (curable resin composition) Even if it is less than 1000 ppm with respect to the total mass part, a sufficient curing rate can be obtained.
 上記ヘテロ原子は、非共有電子対を有する原子であれば特に限定されないが、特に求核性の高い原子や電気陰性度の高い原子が好ましい。なかでも、原料の入手のしやすさや合成の容易さから、窒素(N)原子、酸素(O)原子、硫黄(S)原子、ハロゲン(I、Br、Cl、F)原子であるのが好ましく、各種性能のバランスから、窒素(N)原子、酸素(O)原子、硫黄(S)原子であるのがより好ましく、硬化性の高さから、窒素(N)原子であるのが特に好ましい。ヘテロ原子が、求核性の高い原子や電気陰性度の高い原子であると、通常の架橋性珪素基よりも極めて高い湿分反応性を示す理由は定かではないが、求核性の高い原子の場合は、その高求核性原子が近接する珪素原子に相互作用することにより珪素原子の反応性が高まることが、電気陰性度の高い原子の場合は、その高電気陰性度原子の効果で隣接する炭素原子を介して珪素原子から電子が流れることにより珪素原子の反応性が高まることが、要因であると推察される。
 硬化性樹脂(A)は、所望の性能を得るために適宜選択すればよく、さらに1種単独又は2種以上合わせて使用してもよい。
The heteroatom is not particularly limited as long as it has an unshared electron pair, but an atom with high nucleophilicity or an atom with high electronegativity is particularly preferable. Of these, nitrogen (N) atoms, oxygen (O) atoms, sulfur (S) atoms, and halogen (I, Br, Cl, F) atoms are preferred because of the availability of raw materials and the ease of synthesis. From the balance of various performances, a nitrogen (N) atom, an oxygen (O) atom, and a sulfur (S) atom are more preferable, and a nitrogen (N) atom is particularly preferable from the viewpoint of high curability. If the heteroatom is a highly nucleophilic atom or an electronegativity atom, the reason why it shows a moisture reactivity much higher than that of a normal crosslinkable silicon group is not clear, but a highly nucleophilic atom In this case, the reactivity of the silicon atom is increased by the interaction of the highly nucleophilic atom with the adjacent silicon atom. In the case of an atom having a high electronegativity, the effect of the high electronegativity atom It is surmised that the reason is that the reactivity of silicon atoms is increased by the flow of electrons from silicon atoms through adjacent carbon atoms.
The curable resin (A) may be appropriately selected in order to obtain desired performance, and may be used alone or in combination of two or more.
 硬化性樹脂(A)について、分子内に上記一般式(1)で表される架橋性珪素基を有する硬化性樹脂を代表例として、詳細に説明する。該架橋性珪素基は、珪素原子に炭素原子が結合し、さらに該炭素原子に非共有電子対を有するヘテロ原子が結合した化学構造を有する。上記一般式(1)で表される架橋性珪素基は、珪素原子がメチレン基を介して、非共有電子対を有するヘテロ原子を含む結合官能基に結合した構成であり、前記非共有電子対を有するヘテロ原子はメチレン基と結合を形成する。また、一般式(1)において、この結合官能基は、架橋性珪素基と主鎖をつなぐ機能を有する部位である。すなわち、架橋性珪素基は結合官能基の部位で後述するポリオキシアルキレン等の主鎖に連結される。
 結合官能基としては、非共有電子対を有するヘテロ原子を有し、且つ架橋性珪素基に含まれる珪素原子に結合するメチレン基に該非共有電子対を有するヘテロ原子が結合する構造を有するものであれば特に制限されないが、(チオ)ウレタン基、アロファネート基、その他のN-置換ウレタン基およびN-置換アロファネート基等の(チオ)ウレタン基由来の結合基、(チオ)ウレア基、ビウレット基、それ以外のN-置換ウレア基、N,N′-置換ウレア基、N-置換ビウレット基およびN,N′-置換ビウレット基等の(チオ)ウレア基由来の結合基、アミド基およびN-置換アミド基等のアミド基由来の結合基、イミノ基由来の結合基に代表される含窒素特性基や、(チオ)エステル基、(チオ)エーテル基等が挙げられるが、これらに限定されるわけではない。これらのなかでは、硬化性の高さから含窒素特性基が好ましく、合成の容易さから(チオ)ウレタン基由来の結合基、(チオ)ウレア由来の結合基がより好ましい。ここで上述の「(チオ)」とは、各結合基中の酸素原子のうち1個以上が硫黄原子となった基を意味する。一例を挙げると、「(チオ)ウレタン基」とは、ウレタン基[-NH-C(=O)O-]及びチオウレタン基[-NH-C(=S)O-、-NH-C(=O)S-又は-NH-C(=S)S-]の総称として表記している。また、上述の「N-置換」とは、各結合基中の窒素原子に結合する水素原子が他の有機基に置換されている基を意味する。一例を挙げると、「N-置換ウレタン基」とは、化学式-NR-C(=O)O-(ここでのRは有機基を意味する)という結合基を意味するものである。
The curable resin (A) will be described in detail with a curable resin having a crosslinkable silicon group represented by the general formula (1) in the molecule as a representative example. The crosslinkable silicon group has a chemical structure in which a carbon atom is bonded to a silicon atom, and a hetero atom having an unshared electron pair is bonded to the carbon atom. The crosslinkable silicon group represented by the general formula (1) has a structure in which a silicon atom is bonded to a bonding functional group containing a hetero atom having an unshared electron pair via a methylene group, A heteroatom having a bond with a methylene group. In the general formula (1), this bonding functional group is a site having a function of connecting the crosslinkable silicon group and the main chain. That is, the crosslinkable silicon group is linked to a main chain such as polyoxyalkylene described later at the site of the bonding functional group.
The bonding functional group has a structure in which a heteroatom having an unshared electron pair is bonded to a methylene group having a heteroatom having an unshared electron pair and bonded to a silicon atom contained in a crosslinkable silicon group. As long as it is not particularly limited, (thio) urethane groups, allophanate groups, other N-substituted urethane groups and N-substituted allophanate groups such as (thio) urethane group-derived linking groups, (thio) urea groups, biuret groups, Other N-substituted urea groups, N, N'-substituted urea groups, N-substituted biuret groups, N, N'-substituted biuret groups and other (thio) urea-derived linking groups, amide groups, and N-substituted Examples include amide group-derived linking groups derived from amide groups, nitrogen-containing characteristic groups typified by linking groups derived from imino groups, (thio) ester groups, (thio) ether groups, etc. But it is not limited. Among these, a nitrogen-containing characteristic group is preferable because of its high curability, and a bonding group derived from a (thio) urethane group and a bonding group derived from (thio) urea are more preferable from the viewpoint of ease of synthesis. Here, the above-mentioned “(thio)” means a group in which one or more oxygen atoms in each linking group are sulfur atoms. For example, “(thio) urethane group” means urethane group [—NH—C (═O) O—] and thiourethane group [—NH—C (═S) O—, —NH—C ( = O) S- or -NH-C (= S) S-]. In addition, the above-mentioned “N-substitution” means a group in which a hydrogen atom bonded to a nitrogen atom in each linking group is replaced with another organic group. As an example, “N-substituted urethane group” means a linking group having the chemical formula —NR—C (═O) O— (where R represents an organic group).
 また、当該珪素原子については、メチレン基との結合手以外に、加水分解性基としてアルコキシ基(OR)が1~3個結合すると共に、残りの結合手として炭化水素基(R)が2~0個結合しているものである。ここで、Rは、例えば、フェニル基等のアリール基、炭素数1~20のアルキル基が含まれ、好ましくは炭素数1~20のアルキル基である。具体的には、メチル基、エチル基、プロピル基、ブチル基、フェニル基であることが好ましく、メチル基、エチル基、プロピル基、ブチル基であることがより好ましく、メチル基、エチル基であることが特に好ましい。
 アルコキシ基(OR)としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、2-(ブトキシ)エトキシ基(-O-CHCH-O-C)、フェノキシ基であるのが好ましく、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基であるのがより好ましく、メトキシ基又はエトキシ基であるのが特に好ましい。Rは、加水分解性の観点から分子量300以下の有機基であることが好ましい。
In addition to the bond with the methylene group, the silicon atom has 1 to 3 alkoxy groups (OR 2 ) as hydrolyzable groups and a hydrocarbon group (R 1 ) as the remaining bonds. 2 to 0 are bonded. Here, R 1 includes, for example, an aryl group such as a phenyl group and an alkyl group having 1 to 20 carbon atoms, preferably an alkyl group having 1 to 20 carbon atoms. Specifically, a methyl group, an ethyl group, a propyl group, a butyl group, and a phenyl group are preferable, a methyl group, an ethyl group, a propyl group, and a butyl group are more preferable, and a methyl group and an ethyl group are preferable. It is particularly preferred.
The alkoxy group (OR 2 ) is a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a 2- (butoxy) ethoxy group (—O—CH 2 CH 2 —O—C 4 H 9 ), or a phenoxy group. Are more preferable, and a methoxy group, an ethoxy group, a propoxy group, and a butoxy group are more preferable, and a methoxy group or an ethoxy group is particularly preferable. R 2 is preferably an organic group having a molecular weight of 300 or less from the viewpoint of hydrolyzability.
 また、硬化性樹脂(A)の架橋性珪素基に含まれる珪素原子に結合する加水分解性基の数は、各々の硬化性樹脂組成物に求められる性能によって、適宜比率を調整すればよく、例えば、速硬化性や高モジュラス性を付与したい場合には、トリアルコキシ(a=3)やジアルコキシ(a=2)が好適に用いられ、長い可使時間や低モジュラス性を付与したい場合には、ジアルコキシ(a=2)やモノアルコキシ(a=1)が好適に用いられる。これらのなかでは、ジアルコキシ(a=2)が、入手が容易であること、及び、硬化性と硬化物モジュラスのバランスが優れているため好ましい。 Further, the number of hydrolyzable groups bonded to silicon atoms contained in the crosslinkable silicon group of the curable resin (A) may be appropriately adjusted according to the performance required for each curable resin composition, For example, trialkoxy (a = 3) or dialkoxy (a = 2) is preferably used when it is desired to impart fast curability and high modulus, and when it is desired to impart long pot life or low modulus. Is preferably dialkoxy (a = 2) or monoalkoxy (a = 1). Among these, dialkoxy (a = 2) is preferable because it is easily available and the balance between curability and cured product modulus is excellent.
 硬化性樹脂(A)の主鎖骨格としては、従来公知の有機重合体の主鎖骨格を用いることができる。例えば、ポリオキシアルキレン、ビニル重合体(例えば、ポリアクリレート、ポリメタクリレート等)、飽和炭化水素重合体、不飽和炭化水素重合体、ポリエステル、ポリカーボネート、ポリジメチルシロキサン等のシリコーン樹脂及び変成シリコーン樹脂に一般的に用いられている主鎖骨格から選ばれる1種以上の骨格が採用できる。これらのなかでは、本質的にポリオキシアルキレンあるいはビニル重合体であることが、入手の容易さ、合成の容易さの点からより好ましく、ポリオキシアルキレンであることが硬化物の皮膜物性のバランス等から特に好ましい。ここで、「本質的に」とは、該構造が硬化性樹脂(A)の主鎖骨格である繰り返し単位の主要素であることを意味する。また、硬化性樹脂(A)の中に該構造が単独で含まれていてもよいし、2種以上含まれていてもよい。 As the main chain skeleton of the curable resin (A), a conventionally known main chain skeleton of an organic polymer can be used. For example, polyoxyalkylene, vinyl polymer (eg, polyacrylate, polymethacrylate, etc.), saturated hydrocarbon polymer, unsaturated hydrocarbon polymer, polyester resin, polycarbonate, polydimethylsiloxane, etc. One or more skeletons selected from commonly used main chain skeletons can be employed. Among these, a polyoxyalkylene or a vinyl polymer is more preferable from the viewpoint of easy availability and ease of synthesis, and a polyoxyalkylene is preferable from the viewpoint of balance of film properties of a cured product. Is particularly preferred. Here, “essentially” means that the structure is a main element of a repeating unit which is the main chain skeleton of the curable resin (A). Moreover, in the curable resin (A), this structure may be contained independently, and 2 or more types may be contained.
 硬化性樹脂(A)の分子量は特に制限されないが、数平均分子量で1,000~200,000が好ましく、1,500~100,000がより好ましく、2,000~40,000が特に好ましい。分子量が1,000を下回ると、架橋密度が高くなり過ぎることから得られる硬化物が脆い物性となる場合があり、分子量が200,000を上回ると、粘度が高くなり作業性が悪くなるため溶剤や可塑剤が多量に必要になるなど配合が制限される場合がある。 The molecular weight of the curable resin (A) is not particularly limited, but the number average molecular weight is preferably 1,000 to 200,000, more preferably 1,500 to 100,000, and particularly preferably 2,000 to 40,000. If the molecular weight is less than 1,000, the cured product obtained may have brittle physical properties because the crosslinking density becomes too high. If the molecular weight exceeds 200,000, the viscosity increases and the workability deteriorates. In some cases, blending may be limited, such as requiring a large amount of plasticizer.
 硬化性樹脂(A)を得るためには、従来公知の方法で合成を行えばよい。例えば、(1)ポリオール化合物にイソシアネートメチルアルコキシシラン化合物を反応させる方法、(2)ポリオール化合物とポリイソシアネート化合物を反応させイソシアネート基末端ポリマーを合成した後、該イソシアネート基末端ポリマーにメルカプトメチルアルコキシシラン化合物あるいはアミノメチルアルコキシシラン化合物等のアルコキシシリル基の珪素原子のα位炭素に活性水素基を有するヘテロ原子が結合している化合物を反応させる方法、(3)分子内に二重結合基を有する有機重合体にメルカプトメチルアルコキシシランをラジカル付加させる方法、(4)珪素原子に炭素原子が結合し、さらに該炭素原子に非共有電子対を有するヘテロ原子が結合する構造をもつ架橋性珪素基を有する重合性ビニル系化合物を単独もしくはその他の重合性ビニル系化合物と共重合させる方法、(5)分子内に二重結合基を有する有機重合体に対して、珪素原子に炭素原子が結合し、さらに該炭素原子に非共有電子対を有するヘテロ原子が結合する構造を有する有機基及び水素原子が少なくとも結合したシラン化合物をヒドロシリル化反応により付加反応させる方法等が知られている。 In order to obtain the curable resin (A), synthesis may be performed by a conventionally known method. For example, (1) a method in which an isocyanate methylalkoxysilane compound is reacted with a polyol compound, (2) an isocyanate group-terminated polymer is synthesized by reacting a polyol compound with a polyisocyanate compound, and then the mercaptomethylalkoxysilane compound is added to the isocyanate group-terminated polymer. Alternatively, a method of reacting a compound in which a hetero atom having an active hydrogen group is bonded to the α-position carbon of the silicon atom of an alkoxysilyl group such as an aminomethylalkoxysilane compound, (3) an organic compound having a double bond group in the molecule (4) having a crosslinkable silicon group having a structure in which a carbon atom is bonded to a silicon atom and a heteroatom having a lone pair is bonded to the carbon atom. A polymerizable vinyl compound alone Or a method of copolymerizing with other polymerizable vinyl compounds, and (5) an organic polymer having a double bond group in the molecule, in which a carbon atom is bonded to a silicon atom, and the carbon atom is not shared. A method of adding an organic group having a structure in which a hetero atom having an electron pair is bonded and a silane compound having at least a hydrogen atom bonded thereto by a hydrosilylation reaction is known.
 なお、ここではトリアルコキシシラン、アルキルジアルコキシシシラン、ジアルキルアルコキシシシランを総称して「アルコキシシラン」と表記している。該アミノメチルアルコキシシラン化合物のアミノ基は、第1級アミノ基であっても第2級アミノ基であってもよいが、第2級アミノ基であるほうが、硬化性樹脂(A)の粘度が比較的低粘度に調製できるため好ましい。なお、第2級アミノ基を有するアミノメチルアルコキシシラン化合物は、第1級アミノ基を有するアミノメチルアルコキシシラン化合物から誘導することもできる。具体的には、第1級アミノ基を有するアミノメチルアルコキシシラン化合物と、α,β-不飽和カルボニル化合物あるいはアクリロニトリル化合物等のアミノ基と共役付加反応を起こす官能基を有する化合物とを反応させる方法などが挙げられる。さらに、日本国特表2004-518801、日本国特表2004-536957、日本国特表2005-501146、WO2010/004948等に記載の方法で容易に合成できる。 Here, trialkoxysilane, alkyl dialkoxy silane, and dialkyl alkoxy silane are collectively referred to as “alkoxy silane”. The amino group of the aminomethylalkoxysilane compound may be a primary amino group or a secondary amino group, but the viscosity of the curable resin (A) is higher when it is a secondary amino group. It is preferable because it can be adjusted to a relatively low viscosity. The aminomethylalkoxysilane compound having a secondary amino group can also be derived from an aminomethylalkoxysilane compound having a primary amino group. Specifically, a method of reacting an aminomethylalkoxysilane compound having a primary amino group with a compound having a functional group causing a conjugate addition reaction with an amino group such as an α, β-unsaturated carbonyl compound or an acrylonitrile compound. Etc. Furthermore, it can be easily synthesized by the methods described in Japan Special Tables 2004-518801, Japan Special Tables 2004-536957, Japan Special Tables 2005-501146, WO2010 / 004948, and the like.
 上記イソシアネート基末端ポリマーは、ポリオール化合物とポリイソシアネート化合物を反応させることで合成できる。該ポリオール化合物として、上記の主鎖骨格を有するポリオール化合物を選択すればよく、ポリイソシアネート化合物として、従来公知のポリイソシアネート化合物を用いればよい。また、上記イソシアネート基末端ポリマーを合成する際、原料となるポリオール化合物とポリイソシアネート化合物は、所望の性能を得るために適宜選択すればよく、さらに1種単独又は2種以上合わせて使用してもよい。 The isocyanate group-terminated polymer can be synthesized by reacting a polyol compound and a polyisocyanate compound. A polyol compound having the above main chain skeleton may be selected as the polyol compound, and a conventionally known polyisocyanate compound may be used as the polyisocyanate compound. Moreover, when synthesizing the above-mentioned isocyanate group-terminated polymer, the polyol compound and polyisocyanate compound as raw materials may be appropriately selected in order to obtain desired performance, and may be used alone or in combination of two or more. Good.
 上記ポリオール化合物の具体例としては、ポリエーテル骨格、ポリエステル骨格、ポリカーボネート骨格、ポリオレフィン骨格、ポリビニル骨格、ポリアクリル骨格、ポリブタジエン骨格、ポリイソプレン骨格等の従来公知の主鎖構造を1種又は2種以上有するポリオール化合物が例示される。この他、ポリシロキサン骨格を有するポリオールや、フッ素原子、珪素原子、硫黄原子又はロジン骨格を有する有機基を含有するポリオール化合物が挙げられ、使用目的や求められる性能に応じて、適宜ポリオール化合物を単独あるいは複数混合して用いればよい。分子1個あたりの平均水酸基数は、1.1以上であるものが好ましく、1.3以上であるものがより好ましく、1.5以上のものが特に好ましいが、物性調整等のため1.1未満のものも必要に応じて使用できる。 Specific examples of the polyol compound include one or more conventionally known main chain structures such as a polyether skeleton, a polyester skeleton, a polycarbonate skeleton, a polyolefin skeleton, a polyvinyl skeleton, a polyacryl skeleton, a polybutadiene skeleton, and a polyisoprene skeleton. The polyol compound which has is illustrated. Other examples include polyols having a polysiloxane skeleton and polyol compounds containing an organic group having a fluorine atom, a silicon atom, a sulfur atom, or a rosin skeleton. Alternatively, a mixture of a plurality may be used. The average number of hydroxyl groups per molecule is preferably 1.1 or more, more preferably 1.3 or more, and particularly preferably 1.5 or more. Less than can be used as needed.
 上記ポリエーテル骨格を有するポリオールとしては、ポリオキシエチレン、ポリオキシプロピレン、ポリオキシブチレン、ポリオキシヘキシレン、ポリオキシテトラメチレン等の単独重合体、並びにエチレンオキシド、プロピレンオキシド、ブチレンオキシド、ヘキシレンオキシド及びテトラヒドロフランよりなる群から選ばれた1種又は2種以上のモノエポキシド及び/又は環状エーテルを開環共重合させてなる共重合体が例示される。 Examples of the polyol having a polyether skeleton include homopolymers such as polyoxyethylene, polyoxypropylene, polyoxybutylene, polyoxyhexylene, and polyoxytetramethylene, and ethylene oxide, propylene oxide, butylene oxide, hexylene oxide, and the like. Examples thereof include copolymers obtained by ring-opening copolymerization of one or more monoepoxides and / or cyclic ethers selected from the group consisting of tetrahydrofuran.
 上記ポリエーテル骨格を有するポリオールの市販品としては、株式会社ADEKA製P-2000、P-3000、PR-3007、PR-5007等、旭硝子株式会社製エクセノール2020、エクセノール510、PMLS4012、PMLS4015、PMLS3011等、三井化学株式会社製D-1000、D-2000、D-4000、T-5000等、住化バイエルウレタン株式会社製スミフェン3600、スミフェン3700、保土谷化学工業株式会社製PTG-2000、PTG-L2000等(以上、いずれも商品名)が例示される。 Commercially available polyols having a polyether skeleton include ADEKA P-2000, P-3000, PR-3007, PR-5007, etc., Asahi Glass Co., Ltd. Exenol 2020, Exenol 510, PMLS4012, PMLS4015, PMLS3011, etc. Mitsui Chemicals D-1000, D-2000, D-4000, T-5000, etc., Sumika Bayer Urethane Co., Ltd. Sumifen 3600, Sumifene 3700, Hodogaya Chemical Co., Ltd. PTG-2000, PTG-L2000 Etc. (all are trade names).
 上記ポリエステル骨格を有するポリオールとしては、マレイン酸、アジピン酸、セバシン酸、フタル酸等のジカルボン酸類の1種又は2種以上と、ジオール類の1種又は2種以上とを重縮合して得られる重合体、ε-カプロラクトン、バレロラクトン等の環状エステル類の1種又は2種以上を開環重合させてなる開環重合物、活性水素を2個以上有するひまし油等のひまし油誘導体化合物が例示される。市販品としては、株式会社ADEKA製NS-2400、川崎化成工業株式会社製FSK-2000、マキシモールRDK-133、豊国製油株式会社製HS 2N-220S、伊藤製油株式会社製URIC PH-5001等(以上、いずれも商品名)が例示される。 The polyol having a polyester skeleton is obtained by polycondensation of one or more dicarboxylic acids such as maleic acid, adipic acid, sebacic acid and phthalic acid and one or more diols. Examples include polymers, ring-opening polymers obtained by ring-opening polymerization of one or more cyclic esters such as ε-caprolactone and valerolactone, and castor oil derivative compounds such as castor oil having two or more active hydrogens. . Commercially available products include NS-2400 manufactured by ADEKA Corporation, FSK-2000 manufactured by Kawasaki Kasei Kogyo Co., Ltd., Maximol RDK-133, HS 2N-220S manufactured by Toyokuni Oil Co., Ltd., URIC PH-5001 manufactured by Ito Oil Co., Ltd. ( As described above, the product names are exemplified.
 上記ポリカーボネート骨格を有するポリオールとしては、1,6-ヘキサンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオールなどから誘導されるポリカーボネート骨格を有するポリオール等が例示される。市販品としては、日本ポリウレタン工業株式会社製ニッポラン971、ニッポラン965、ニッポラン963、旭化成ケミカルズ株式会社製デュラノールT5652、デュラノールT5650J、デュラノールT4672、デュラノールTG3452等(以上、いずれも商品名)が例示される。 Examples of the polyol having a polycarbonate skeleton include polyols having a polycarbonate skeleton derived from 1,6-hexanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, and the like. Examples of the commercially available products include Nippon Run 971, Nippon Run 965, Nippon Run 965, Nippon Run 963, Asahi Kasei Chemicals Co., Ltd. Duranol T5652, Duranol T5650J, Duranol T4672, Duranol TG3452 (all are trade names).
 上記ポリオレフィン骨格を有するポリオールとしては、水添ポリブタジエン骨格を有するポリオール、エチレン・α-オレフィン骨格を有するポリオール、ポリイソブチレン骨格を有するポリオール等が例示される。市販品としては、三菱化学株式会社製ポリテールH、ポリテールHA、日本曹達製GI-1000、GI-2000(以上、いずれも商品名)等が例示される。 Examples of the polyol having a polyolefin skeleton include a polyol having a hydrogenated polybutadiene skeleton, a polyol having an ethylene / α-olefin skeleton, and a polyol having a polyisobutylene skeleton. Examples of commercially available products include Polytail H, Polytail HA manufactured by Mitsubishi Chemical Corporation, GI-1000 and GI-2000 manufactured by Nippon Soda (all are trade names).
 上記ポリビニル骨格を有するポリオール又はポリアクリル骨格を有するポリオールとしては、ビニルエーテル化合物やアクリル化合物等に代表されるビニル重合性モノマーと、水酸基を有するビニル重合性モノマーを共重合させたポリオール化合物等が例示される。市販品としては、東亞合成株式会社製アルフォンUH-2000、UH-2032等、綜研化学株式会社製アクトフローUT-1001、UMB-2005、UME-2005等(以上、いずれも商品名)が例示される。 Examples of the polyol having a polyvinyl skeleton or the polyol having a polyacryl skeleton include a polyol compound obtained by copolymerizing a vinyl polymerizable monomer typified by a vinyl ether compound or an acrylic compound and a vinyl polymerizable monomer having a hydroxyl group. The Examples of commercially available products include Alfon UH-2000 and UH-2032 manufactured by Toagosei Co., Ltd., Actflow UT-1001, UMB-2005 and UME-2005 manufactured by Soken Chemical Co., Ltd. (all of which are trade names). The
 上記ポリブタジエン骨格又はポリイソプレン骨格を有するポリオールとしては、ブタジエンやイソプレン等に代表されるジエン系モノマーを重合して得られる化合物等が例示される。市販品としては、出光興産株式会社製Poly bd R-15HT、Poly bd R-45HT、Poly ip、クレイソールLBH2000、LBH-P3000等(以上、いずれも商品名)が例示される。 Examples of the polyol having a polybutadiene skeleton or a polyisoprene skeleton include compounds obtained by polymerizing diene monomers typified by butadiene and isoprene. Examples of commercially available products include Poly bd R-15HT, Poly bd R-45HT, Poly ip, Claysole LBH2000, LBH-P3000, and the like (all are trade names) manufactured by Idemitsu Kosan Co., Ltd.
 また、複数の骨格を有するポリオール化合物としては、1分子中にポリエーテル骨格とポリエステル骨格を有するポリオール、1分子中にポリカーボネート骨格とポリエステル骨格を有するポリオール、1分子中にポリエーテル骨格とポリアクリル骨格を有するポリオール等が例示される。市販品としては、旭硝子株式会社製商品名アドバノールシリーズ、日本ポリウレタン工業株式会社製商品名ニッポラン982R等が例示される。 In addition, as a polyol compound having a plurality of skeletons, a polyol having a polyether skeleton and a polyester skeleton in one molecule, a polyol having a polycarbonate skeleton and a polyester skeleton in one molecule, a polyether skeleton and a polyacryl skeleton in one molecule The polyol etc. which have are illustrated. As a commercial item, Asahi Glass Co., Ltd. brand name Advanol series, Nippon Polyurethane Industry Co., Ltd. brand name Nippon Run 982R etc. are illustrated.
 上記ポリイソシアネート化合物の具体例としては、例えば脂肪族、脂環式、芳香脂肪族、芳香族のポリイソシアネート化合物等が挙げられる。以下に、それらの具体例を挙げる。
 脂肪族ジイソシアネート化合物:トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ペンタメチレンジイソシアネート、1,2-プロピレンジイソシアネート、1,2-ブチレンジイソシアネート、2,3-ブチレンジイソシアネート、1,3-ブチレンジイソシアネート、2,4,4-又は2,2,4-トリメチルヘキサメチレンジイソシアネート、2,6-ジイソシアネートメチルカプロエート等。
 脂環式ジイソシアネート化合物:1,3-シクロペンテンジイソシアネート、1,4-シクロヘキサンジイソシアネート、1,3-シクロヘキサンジイソシアネート、3-イソシアネートメチル-3,5,5-トリメチルシクロヘキシルイソシアネート、4,4′-メチレンビス(シクロヘキシルイソシアネート)、メチル-2,4-シクロヘキサンジイソシアネート、メチル-2,6-シクロヘキサンジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン、1,4-ビス(イソシアネートメチル)シクロヘキサン、イソホロンジイソシアネート等。
 芳香脂肪族ジイソシアネート化合物:1,3-若しくは1,4-キシリレンジイソシアネート又はそれらの混合物、ω,ω′-ジイソシアネート-1,4-ジエチルベンゼン、1,3-若しくは1,4-ビス(1-イソシアネート-1-メチルエチル)ベンゼン又はそれらの混合物等。
 芳香族ジイソシアネート化合物:m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、4,4′-ジフェニルジイソシアネート、1,5-ナフタレンジイソシアネート、4,4′-ジフェニルメタンジイソシアネート、2,4-又は2,6-トリレンジイソシアネート、4,4′-トルイジンジイソシアネート、4,4′-ジフェニルエーテルジイソシアネート等。
 脂肪族ポリイソシアネート化合物:リジンエステルトリイソシアネート、1,4,8-トリイソシアネートオクタン、1,6,11-トリイソシアネートウンデカン、1,8-ジイソシアネート-4-イソシアネートメチルオクタン、1,3,6-トリイソシアネートヘキサン、2,5,7-トリメチル-1,8-ジイソシアネート-5-イソシアネートメチルオクタン等。
 脂環式ポリイソシアネート化合物:1,3,5-トリイソシアネートシクロヘキサン、1,3,5-トリメチルイソシアネートシクロヘキサン、3-イソシアネート-3,3,5-トリメチルシクロヘキシルイソシアネート、2-(3-イソシアネートプロピル)-2,5-ジ(イソシアネートメチル)-ビシクロ[2,2,1]ヘプタン、2-(3-イソシアネートプロピル)-2,6-ジ(イソシアネートメチル)-ビシクロ[2,2,1]ヘプタン、5-(2-イソシアネートエチル)-2-イソシアネートメチル-3-(3-イソシアネートプロピル)-ビシクロ[2,2,1]ヘプタン、6-(2-イソシアネートエチル)-2-イソシアネートメチル-3-(3-イソシアネートプロピル)-ビシクロ[2,2,1]ヘプタン、5-(2-イソシアネートエチル)-2-イソシアネートメチル-2-(3-イソシアネートプロピル)-ビシクロ[2,2,1]ヘプタン、6-(2-イソシアネートエチル)-2-(3-イソシアネートプロピル)-ビシクロ[2,2,1]ヘプタン等。
 芳香脂肪族ポリイソシアネート化合物:1,3,5-トリイソシアネートメチルベンゼン等。
 芳香族ポリイソシアネート化合物:トリフェニルメタン-4,4′,4″-トリイソシアネート、1,3,5-トリイソシアネートベンゼン、2,4,6-トリイソシアネートトルエン、4,4′-ジフェニルメタン-2,2′,5,5′-テトライソシアネート等。
 その他のポリイソシアネート化合物:フェニルジイソチオシアネート等硫黄原子を含むジイソシアネート類等。
Specific examples of the polyisocyanate compound include aliphatic, alicyclic, araliphatic, and aromatic polyisocyanate compounds. Specific examples thereof will be given below.
Aliphatic diisocyanate compounds: trimethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, pentamethylene diisocyanate, 1,2-propylene diisocyanate, 1,2-butylene diisocyanate, 2,3-butylene diisocyanate, 1,3-butylene diisocyanate, 2 , 4,4- or 2,2,4-trimethylhexamethylene diisocyanate, 2,6-diisocyanate methylcaproate, and the like.
Alicyclic diisocyanate compounds: 1,3-cyclopentene diisocyanate, 1,4-cyclohexane diisocyanate, 1,3-cyclohexane diisocyanate, 3-isocyanate methyl-3,5,5-trimethylcyclohexyl isocyanate, 4,4'-methylenebis (cyclohexyl) Isocyanate), methyl-2,4-cyclohexane diisocyanate, methyl-2,6-cyclohexane diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, 1,4-bis (isocyanatomethyl) cyclohexane, isophorone diisocyanate and the like.
Aroaliphatic diisocyanate compound: 1,3- or 1,4-xylylene diisocyanate or a mixture thereof, ω, ω'-diisocyanate-1,4-diethylbenzene, 1,3- or 1,4-bis (1-isocyanate) -1-methylethyl) benzene or a mixture thereof.
Aromatic diisocyanate compounds: m-phenylene diisocyanate, p-phenylene diisocyanate, 4,4'-diphenyl diisocyanate, 1,5-naphthalene diisocyanate, 4,4'-diphenylmethane diisocyanate, 2,4- or 2,6-tolylene diisocyanate 4,4'-toluidine diisocyanate, 4,4'-diphenyl ether diisocyanate and the like.
Aliphatic polyisocyanate compounds: lysine ester triisocyanate, 1,4,8-triisocyanate octane, 1,6,11-triisocyanate undecane, 1,8-diisocyanate-4-isocyanate methyloctane, 1,3,6-tri Isocyanate hexane, 2,5,7-trimethyl-1,8-diisocyanate-5-isocyanate methyloctane, and the like.
Alicyclic polyisocyanate compounds: 1,3,5-triisocyanatecyclohexane, 1,3,5-trimethylisocyanatecyclohexane, 3-isocyanate-3,3,5-trimethylcyclohexylisocyanate, 2- (3-isocyanatepropyl)- 2,5-di (isocyanatomethyl) -bicyclo [2,2,1] heptane, 2- (3-isocyanatopropyl) -2,6-di (isocyanatomethyl) -bicyclo [2,2,1] heptane, 5 -(2-isocyanatoethyl) -2-isocyanatomethyl-3- (3-isocyanatopropyl) -bicyclo [2,2,1] heptane, 6- (2-isocyanatoethyl) -2-isocyanatomethyl-3- (3 -Isocyanatopropyl) -bicyclo [2,2,1] heptane, -(2-isocyanatoethyl) -2-isocyanatomethyl-2- (3-isocyanatopropyl) -bicyclo [2,2,1] heptane, 6- (2-isocyanatoethyl) -2- (3-isocyanatopropyl)- Bicyclo [2,2,1] heptane and the like.
Aro-aliphatic polyisocyanate compound: 1,3,5-triisocyanate methylbenzene and the like.
Aromatic polyisocyanate compounds: triphenylmethane-4,4 ′, 4 ″ -triisocyanate, 1,3,5-triisocyanatebenzene, 2,4,6-triisocyanate toluene, 4,4′-diphenylmethane-2, 2 ', 5,5'-tetraisocyanate and the like.
Other polyisocyanate compounds: diisocyanates containing sulfur atoms such as phenyl diisothiocyanate.
 上記ポリイソシアネート化合物は、使用目的や求められる性能に応じて、適宜単独あるいは複数混合して用いればよい。また、物性調整等のため、上に例示した多量体(例えば、二量体、三量体)や、モノイソシアネート化合物を併用してもよい。 The above polyisocyanate compounds may be used singly or in combination depending on the purpose of use and required performance. Moreover, you may use together the multimer (for example, a dimer, a trimer) illustrated above and a monoisocyanate compound for physical property adjustment etc.
 硬化性樹脂(A)の市販品としては、GENIOSIL STP-E10(Wacker Chemie AG製商品名、メトキシ基当量から換算した分子量約10,000、粘度約10,000mPa・s/25℃(カタログ値))、GENIOSIL STP-E30(Wacker Chemie AG製商品名、メトキシ基当量から換算した分子量約16,000、粘度約30,000mPa・s/25℃(カタログ値))等が挙げられる。該STP-E10及び該STP-E30の架橋性珪素基の構造は、下記一般式(5)で示され、主鎖構造はポリオキシプロピレンである。
  -O-CO-NH-CH-SiCH(OCH    ・・・式(5)
 硬化性樹脂(A)は、所望の性能を得るために適宜選択すればよく、さらに1種単独又は2種以上合わせて使用してもよい。
As a commercial product of the curable resin (A), GENIOSIL STP-E10 (trade name manufactured by Wacker Chemie AG, molecular weight of about 10,000 converted from methoxy group equivalent, viscosity of about 10,000 mPa · s / 25 ° C. (catalog value) ), GENIOSIL STP-E30 (trade name, manufactured by Wacker Chemie AG, molecular weight of about 16,000 converted from methoxy group equivalent, viscosity of about 30,000 mPa · s / 25 ° C. (catalog value)), and the like. The structures of the crosslinkable silicon groups of STP-E10 and STP-E30 are represented by the following general formula (5), and the main chain structure is polyoxypropylene.
—O—CO—NH—CH 2 —SiCH 3 (OCH 3 ) 2 Formula (5)
The curable resin (A) may be appropriately selected in order to obtain desired performance, and may be used alone or in combination of two or more.
[硬化性樹脂(B)について]
 本発明における硬化性樹脂(B)は、珪素原子に炭素数2以上のアルキレン基が結合する構造を有する架橋性珪素基を分子内に有し、かつ、主鎖がビニル重合体である硬化性樹脂である。但し、硬化性樹脂(A)に包含される硬化性樹脂は、硬化性樹脂(B)には含まれない。
[About curable resin (B)]
The curable resin (B) in the present invention has a crosslinkable silicon group in the molecule having a structure in which an alkylene group having 2 or more carbon atoms is bonded to a silicon atom, and the main chain is a vinyl polymer. Resin. However, the curable resin included in the curable resin (A) is not included in the curable resin (B).
 なお、硬化性樹脂(B)中の架橋性珪素基に含まれる珪素原子は加水性分解基を有しており、硬化性の観点では、従来公知の加水分解性基である、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、アミノオキシ基、メルカプト基、アルケニルオキシ基、ハロゲン基などが利用できる。これらの中でも、高反応性及び低臭性などの点から、アルコキシ基が最も好適に用いられる。
 硬化性樹脂(B)は、所望の性能を得るために適宜選択すればよく、さらに1種単独又は2種以上合わせて使用してもよい。
In addition, the silicon atom contained in the crosslinkable silicon group in the curable resin (B) has a hydrolyzable group. From the viewpoint of curability, a conventionally known hydrolyzable group, an alkoxy group, an acyloxy group, and the like. Groups, ketoximate groups, amino groups, amide groups, aminooxy groups, mercapto groups, alkenyloxy groups, halogen groups and the like can be used. Among these, an alkoxy group is most preferably used from the viewpoint of high reactivity and low odor.
The curable resin (B) may be appropriately selected in order to obtain desired performance, and may be used alone or in combination of two or more.
 硬化性樹脂(B)について、分子内に上記一般式(2)で表される架橋性珪素基を有する硬化性樹脂を代表例として、詳細に説明する。該架橋性珪素基中の珪素原子には、炭素数2~20の炭化水素基(X)が結合し、さらに該炭化水素基は、主鎖骨格であるビニル重合体に結合している。なお、炭化水素基(X)と主鎖骨格との間に上述した含窒素特性基や他の連結基(例えばエステル、エーテル基等)が存在していてもよい。 The curable resin (B) will be described in detail with a curable resin having a crosslinkable silicon group represented by the general formula (2) in the molecule as a representative example. A hydrocarbon group (X) having 2 to 20 carbon atoms is bonded to a silicon atom in the crosslinkable silicon group, and the hydrocarbon group is further bonded to a vinyl polymer which is a main chain skeleton. In addition, the nitrogen-containing characteristic group mentioned above and other coupling groups (for example, ester, ether group, etc.) may exist between the hydrocarbon group (X) and the main chain skeleton.
 また、当該珪素原子については、炭素数2~20の炭化水素基との結合手以外に、加水分解性基としてアルコキシ基(OR)が1~3個結合すると共に、残りの結合手として炭化水素基(R)が2~0個結合しているものである。ここで、Rは、例えば、フェニル基等のアリール基、炭素数1~20のアルキル基が含まれ、好ましくは炭素数1~20のアルキル基である。具体的には、メチル基、エチル基、プロピル基、ブチル基、フェニル基であることが好ましく、メチル基、エチル基、プロピル基、ブチル基であることがより好ましく、メチル基、エチル基であることが特に好ましい。
 アルコキシ基(OR)としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、2-(ブトキシ)エトキシ基(-O-CHCH-O-C)、フェノキシ基であるのが好ましく、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基であるのがより好ましく、メトキシ基又はエトキシ基であるのが特に好ましい。Rは、加水分解性の観点から分子量300以下の有機基であることが好ましい。
In addition to the bond with the hydrocarbon group having 2 to 20 carbon atoms, the silicon atom is bonded with 1 to 3 alkoxy groups (OR 4 ) as hydrolyzable groups and carbonized as the remaining bonds. One having 2 to 0 hydrogen groups (R 3 ) bonded thereto. Here, R 3 includes, for example, an aryl group such as a phenyl group and an alkyl group having 1 to 20 carbon atoms, preferably an alkyl group having 1 to 20 carbon atoms. Specifically, a methyl group, an ethyl group, a propyl group, a butyl group, and a phenyl group are preferable, a methyl group, an ethyl group, a propyl group, and a butyl group are more preferable, and a methyl group and an ethyl group are preferable. It is particularly preferred.
The alkoxy group (OR 4 ) is a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a 2- (butoxy) ethoxy group (—O—CH 2 CH 2 —O—C 4 H 9 ), or a phenoxy group. Are more preferable, and a methoxy group, an ethoxy group, a propoxy group, and a butoxy group are more preferable, and a methoxy group or an ethoxy group is particularly preferable. R 4 is preferably an organic group having a molecular weight of 300 or less from the viewpoint of hydrolyzability.
 また、硬化性樹脂(B)の架橋性珪素基に結合する加水分解性基の数は、各々の硬化性樹脂組成物に求められる性能によって、適宜比率を調整すればよく、例えば、速硬化性や高モジュラス性を付与したい場合には、トリアルコキシ(b=3)やジアルコキシ(b=2)が好適に用いられ、長い可使時間や低モジュラス性を付与したい場合には、ジアルコキシ(b=2)やモノアルコキシ(b=1)が好適に用いられる。これらのなかでは、ジアルコキシ(b=2)が、入手が容易であること、及び、硬化性と硬化物モジュラスのバランスが優れているため好ましい。 Further, the number of hydrolyzable groups bonded to the crosslinkable silicon group of the curable resin (B) may be appropriately adjusted depending on the performance required for each curable resin composition. Or trialkoxy (b = 3) or dialkoxy (b = 2) is preferably used for imparting high modulus properties, and dialkoxy (b = 2) for imparting long pot life or low modulus properties. b = 2) and monoalkoxy (b = 1) are preferably used. Among these, dialkoxy (b = 2) is preferable because it is easily available and the balance between curability and cured product modulus is excellent.
 硬化性樹脂(B)の分子量は特に制限されないが、数平均分子量で1,000~200,000が好ましく、1,500~100,000がより好ましく、2,000~40,000が特に好ましい。分子量が1,000を下回ると、架橋密度が高くなり過ぎることから得られる硬化物が脆い物性となる場合があり、分子量が200,000を上回ると、粘度が高くなり作業性が悪くなるため溶剤や可塑剤が多量に必要になるなど配合が制限される場合がある。 The molecular weight of the curable resin (B) is not particularly limited, but the number average molecular weight is preferably 1,000 to 200,000, more preferably 1,500 to 100,000, and particularly preferably 2,000 to 40,000. If the molecular weight is less than 1,000, the cured product obtained may have brittle physical properties because the crosslinking density becomes too high. If the molecular weight exceeds 200,000, the viscosity increases and the workability deteriorates. In some cases, blending may be limited, such as requiring a large amount of plasticizer.
 硬化性樹脂(B)の合成方法としては、例えば、上記一般式(2)で表される架橋性珪素基を分子内に有する重合性ビニル系化合物(b1)、及び、その他の重合性ビニル系化合物(b2)を共重合することによって得ることができる。硬化性樹脂(B)を得るための方法・条件は特に限定されるものではなく、一般的なラジカル重合法、アニオン重合法、カチオン重合法、及びそれらの重合法における重合条件を適用することができる。また、重合時の反応溶媒は、各種有機溶媒を用いてもよいし、硬化性あるいは非硬化性の樹脂を用いても良い。そのような硬化性あるいは非硬化性の樹脂は、常温で液体であれば、低分子量体でも高分子量体であってもかまわない。これらのなかでも、硬化性樹脂(A)を溶媒として見立て、硬化性樹脂(A)中でビニル系化合物(b1)及び重合性ビニル系化合物(b2)を共重合する方法が最も好ましい。硬化性樹脂(A)中でビニル重合反応を行うことで、硬化性樹脂(A)と硬化性樹脂(B)の混合物の粘度が低く調製できるうえ、従来の溶液重合で必須であった反応溶媒除去工程が必要なくなるため、産業上極めて有用な製造方法であるといえる。ビニル系化合物(b1)及び重合性ビニル系化合物(b2)は、所望の性能を得るために適宜選択すればよく、さらに1種単独又は2種以上合わせて使用してもよい。 Examples of the method for synthesizing the curable resin (B) include a polymerizable vinyl compound (b1) having a crosslinkable silicon group represented by the general formula (2) in the molecule, and other polymerizable vinyl compounds. It can be obtained by copolymerizing the compound (b2). Methods and conditions for obtaining the curable resin (B) are not particularly limited, and general radical polymerization methods, anionic polymerization methods, cationic polymerization methods, and polymerization conditions in those polymerization methods may be applied. it can. Various organic solvents may be used as the reaction solvent during polymerization, and a curable or non-curable resin may be used. Such a curable or non-curable resin may be a low molecular weight substance or a high molecular weight substance as long as it is liquid at room temperature. Among these, the method in which the curable resin (A) is regarded as a solvent and the vinyl compound (b1) and the polymerizable vinyl compound (b2) are copolymerized in the curable resin (A) is most preferable. By performing a vinyl polymerization reaction in the curable resin (A), the viscosity of the mixture of the curable resin (A) and the curable resin (B) can be adjusted to be low, and the reaction solvent is essential in the conventional solution polymerization. Since the removal step is not necessary, it can be said that this is an industrially extremely useful production method. The vinyl compound (b1) and the polymerizable vinyl compound (b2) may be appropriately selected in order to obtain desired performance, and may be used alone or in combination of two or more.
 上記重合性ビニル系化合物(b1)としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3-(メタ)アクリロイルプロピルトリメトキシシラン、3-(メタ)アクリロイルプロピルトリメトキシシラン、3-(メタ)アクリロイルプロピルメチルジメトキシシラン、3-(メタ)アクリロイルプロピルトリエトキシシラン、3-(メタ)アクリロイルプロピルメチルジエトキシシラン、p-スチリルトリメトキシシラン等が挙げられるが、これらに限定されるわけではない。これらの中では、コスト及び重合反応の容易さなどの面から、3-メタクリロイルプロピルトリメトキシシラン、3-メタクリロイルプロピルメチルジメトキシシランが最も好ましい。 Examples of the polymerizable vinyl compound (b1) include vinyltrimethoxysilane, vinyltriethoxysilane, 3- (meth) acryloylpropyltrimethoxysilane, 3- (meth) acryloylpropyltrimethoxysilane, and 3- (meth) acryloyl. Examples include, but are not limited to, propylmethyldimethoxysilane, 3- (meth) acryloylpropyltriethoxysilane, 3- (meth) acryloylpropylmethyldiethoxysilane, p-styryltrimethoxysilane, and the like. Of these, 3-methacryloylpropyltrimethoxysilane and 3-methacryloylpropylmethyldimethoxysilane are most preferable from the viewpoints of cost and ease of polymerization reaction.
 上記重合性ビニル系化合物(b2)としては、α,β-不飽和カルボニル化合物(b21)、アクリロニトリル化合物(b22)、ビニルエステル化合物(b23)、ビニルエーテル化合物(b24)、及びその他のビニル化合物(b25)から選ばれる一種以上の化合物が挙げられる。 Examples of the polymerizable vinyl compound (b2) include an α, β-unsaturated carbonyl compound (b21), an acrylonitrile compound (b22), a vinyl ester compound (b23), a vinyl ether compound (b24), and other vinyl compounds (b25). ) Or more types of compounds selected from.
 上記α,β-不飽和カルボニル化合物(b21)としては、分子内にα,β-不飽和カルボニル基を有する化合物である。具体例としては、アクリル酸、メタクリル酸(以下、アクリル酸、メタクリル酸を合わせて(メタ)アクリル酸と表記する)、(メタ)アクリル酸メチル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸イソステアリル、(メタ)アクリロイルモルホリン、N-イソプロピル(メタ)アクリルアミド、N-(メタ)アクリロイルオキシエチルヘキサヒドロフタルイミド、N-(メタ)アクリロイルオキシプロピルヘキサヒドロフタルイミドなどのヘキサヒドロフタルイミドアルキル(メタ)アクリレート系化合物、N-(メタ)アクリロイルオキシエチルテトラヒドロフタルイミド、N-(メタ)アクリロイルオキシプロピルテトラヒドロフタルイミドなどのテトラヒドロフタルイミドアルキル(メタ)アクリレート系化合物等の(メタ)アクリル酸系化合物、マレイン酸、マレイン酸ジメチル、マレイン酸ジエチル等のマレイン酸系化合物等が挙げられるが、これらに限定されるわけではない。これらの中では、反応の容易さの点から、(メタ)アクリル酸エステル化合物、マレイン酸エステル化合物が好ましく、(メタ)アクリル酸エステル化合物が特に好ましい。 The α, β-unsaturated carbonyl compound (b21) is a compound having an α, β-unsaturated carbonyl group in the molecule. Specific examples include acrylic acid, methacrylic acid (hereinafter referred to as (meth) acrylic acid together with acrylic acid and methacrylic acid), methyl (meth) acrylate, lauryl (meth) acrylate, and (meth) acrylic acid. Hexahydrophthalimidoalkyl (meth) acrylates such as isostearyl, (meth) acryloylmorpholine, N-isopropyl (meth) acrylamide, N- (meth) acryloyloxyethyl hexahydrophthalimide, N- (meth) acryloyloxypropyl hexahydrophthalimide Compounds such as tetrahydrophthalimide alkyl (meth) acrylate compounds such as N- (meth) acryloyloxyethyl tetrahydrophthalimide, N- (meth) acryloyloxypropyl tetrahydrophthalimide, etc. Acrylic compounds, maleic acid, dimethyl maleate, although maleic acid compounds such as diethyl maleate, and the like, but are not limited to. Of these, (meth) acrylic acid ester compounds and maleic acid ester compounds are preferred, and (meth) acrylic acid ester compounds are particularly preferred from the viewpoint of ease of reaction.
 上記アクリロニトリル化合物(b22)としては、分子内にアクリロニトリル構造を有する化合物である。具体例としては、アクリロニトリル、α-メチルアクリロニトリル、2,4-ジシアノブテン等が挙げられるが、これらに限定されるわけではない。 The acrylonitrile compound (b22) is a compound having an acrylonitrile structure in the molecule. Specific examples include, but are not limited to, acrylonitrile, α-methylacrylonitrile, 2,4-dicyanobutene, and the like.
 上記ビニルエステル化合物(b23)としては、酢酸ビニル、酪酸ビニル、ネオノナン酸ビニル、ネオデカン酸エステル等が挙げられるが、これらに限定されるわけではない。 Examples of the vinyl ester compound (b23) include, but are not limited to, vinyl acetate, vinyl butyrate, vinyl neononanoate, neodecanoate, and the like.
 上記ビニルエーテル化合物(b24)としては、ブチルビニルエーテル、ヘキシルビニルエーテル等が挙げられるが、これらに限定されるわけではない。 Examples of the vinyl ether compound (b24) include butyl vinyl ether and hexyl vinyl ether, but are not limited thereto.
 上記その他のビニル化合物(b25)としては、1-ブテン、1-ヘキセン、1-デセン、1-ドデセン1-オクタデセン等のα-オレフィン化合物、アリルアミン、アリルクロライド、アリルアルキルエーテル等のアリル化合物、N-ビニル-2-ピロリドン、N-ビニルエチル-2-ピロリドンなどのビニルピロリドン系化合物等が挙げられるが、これらに限定されるわけではない。 Examples of the other vinyl compound (b25) include α-olefin compounds such as 1-butene, 1-hexene, 1-decene and 1-dodecene 1-octadecene, allyl compounds such as allylamine, allyl chloride and allyl alkyl ether, N Examples thereof include vinylpyrrolidone compounds such as -vinyl-2-pyrrolidone and N-vinylethyl-2-pyrrolidone, but are not limited thereto.
 これらの重合性ビニル系化合物(b2)なかでは、環状アミド系官能基を有するビニル系化合物(例えば、上記テトラヒドロフタルイミドアルキル(メタ)アクリレート系化合物、ヘキサヒドロフタルイミドアルキル(メタ)アクリレート系化合物、ビニルピロリドン系等)を用いると、ABS樹脂、アクリル樹脂、ポリスチレン樹脂等に対する密着性が向上するため好ましい。 Among these polymerizable vinyl compounds (b2), a vinyl compound having a cyclic amide functional group (for example, the above-mentioned tetrahydrophthalimide alkyl (meth) acrylate compound, hexahydrophthalimide alkyl (meth) acrylate compound, vinyl pyrrolidone) Is preferably used because adhesion to an ABS resin, an acrylic resin, a polystyrene resin, or the like is improved.
 上記重合性ビニル系化合物(b1)の配合量としては、硬化性樹脂(B)を構成する単量体成分(重合性ビニル系化合物(b1)及びその他の重合性ビニル系化合物(b2))の中で、0.1~50質量%共重合することが好ましく、0.5~30質量%がより好ましく、1.0~15質量%が特に好ましい。 As the compounding amount of the polymerizable vinyl compound (b1), the monomer components (polymerizable vinyl compound (b1) and other polymerizable vinyl compounds (b2)) constituting the curable resin (B) are used. Among these, 0.1 to 50% by mass is preferably copolymerized, more preferably 0.5 to 30% by mass, and particularly preferably 1.0 to 15% by mass.
 さらに、その他の重合性ビニル系化合物(b2)のなかでは、ホモポリマーのTgが-20℃以下である重合性ビニル系化合物が、より好適に用いられる。少なくとも、ホモポリマーのTgが-20℃以下である重合性ビニル系化合物から誘導される構造単位を硬化性樹脂中(B)に導入することによって、本発明にかかる硬化性樹脂組成物の低温硬化性をより向上することが可能となる。ホモポリマーのTgが-20℃以下である重合性ビニル系化合物から誘導される構造単位を硬化性樹脂中(B)に含むことによって、低温硬化性が高くなる理由としては、少なくとも、ホモポリマーのTgが-20℃以下であるビニル重合性ビニル系化合物を共重合されたビニル重合体は、低温でも分子的な運動が活発に行われることから、低温時でも硬化性樹脂組成物中への湿気透過性が高いためである推察させる。このような効果から、冬場の屋外等で使用される硬化性樹脂組成物においても、十分適合可能な硬化性樹脂組成物を得ることができる。 Furthermore, among other polymerizable vinyl compounds (b2), polymerizable vinyl compounds having a homopolymer Tg of −20 ° C. or less are more preferably used. At least low temperature curing of the curable resin composition according to the present invention by introducing a structural unit derived from a polymerizable vinyl compound having a Tg of −20 ° C. or less into the curable resin (B). It becomes possible to improve the property. By including in the curable resin (B) a structural unit derived from a polymerizable vinyl compound having a Tg of -20 ° C. or less in the homopolymer, the low temperature curability is increased. Since the vinyl polymer copolymerized with a vinyl polymerizable vinyl compound having a Tg of −20 ° C. or lower actively undergoes molecular motion even at low temperatures, moisture in the curable resin composition can be absorbed even at low temperatures. It is assumed that it is because of its high permeability. From such an effect, it is possible to obtain a curable resin composition that can be sufficiently adapted even in a curable resin composition used outdoors in winter.
 上記ホモポリマーのTgが-20℃以下である重合性ビニル系化合物の具体例としては、ブチルアクリレート、2-エチルヘキシルアクリレート、ラウリルメタクリレート等が挙げられるが、これらに限定されるわけではない。 Specific examples of the polymerizable vinyl compound in which the Tg of the homopolymer is -20 ° C. or lower include butyl acrylate, 2-ethylhexyl acrylate, lauryl methacrylate, and the like, but are not limited thereto.
 本発明におけるガラス転移温度(Tg)は、各々一種の重合性ビニル系化合物を用いて得られるホモポリマーの場合は、当該ホモポリマーのガラス転移温度を意味している。一方、二種以上の重合性ビニル系化合物を用いて得られるコポリマーの場合は、FOXの式に基づいて求められるガラス転移温度を意味している。FOXの式は、以下のとおりである。
   1/Tg=Σ(a/Tg
(式中、Tgはコポリマーのガラス転移温度であり、aは第n番目の重合性ビニル系化合物の質量分率であり、Tgは第n番目の重合性ビニル系化合物より得られるホモポリマーのガラス転移温度である。なお、式中で用いるガラス転移温度はケルビン温度である。)
 つまり、該FOXの式によると、少なくとも、ホモポリマーのTgが-20℃以下であるビニル重合性ビニル系化合物を共重合されたビニル重合体は、コポリマーとしてのガラス転移温度も低くなる。このことから、上記のような低温でも分子的な運動が活発に行われるという推察が導かれる。
The glass transition temperature (Tg) in the present invention means the glass transition temperature of the homopolymer in the case of a homopolymer obtained by using one kind of polymerizable vinyl compound. On the other hand, in the case of a copolymer obtained using two or more kinds of polymerizable vinyl compounds, it means a glass transition temperature obtained based on the FOX formula. The formula of FOX is as follows.
1 / Tg = Σ (a n / Tg n )
(Wherein, Tg is the glass transition temperature of the copolymer, a n is the mass fraction of the n-th polymerizable vinyl compound, Tg n is a homopolymer obtained from the n-th polymerizable vinyl compound (The glass transition temperature used in the equation is the Kelvin temperature.)
That is, according to the formula of FOX, at least a vinyl polymer copolymerized with a vinyl polymerizable vinyl compound having a homopolymer Tg of −20 ° C. or lower has a low glass transition temperature as a copolymer. This leads to the inference that molecular motion is actively performed even at low temperatures as described above.
 上記ホモポリマーのTgが-20℃以下である重合性ビニル系化合物は、その他の重合性ビニル系化合物(b2)の中で、2~95質量%配合されることが好ましく、5~80質量%配合されることがより好ましく、10~60質量%配合されることがより好ましい。 The polymerizable vinyl compound having a homopolymer Tg of −20 ° C. or lower is preferably blended in an amount of 2 to 95% by mass among the other polymerizable vinyl compounds (b2). More preferably, 10 to 60% by mass is added.
 さらに、硬化性樹脂(B)を共重合により合成する際には、構成する単量体成分以外に、従来公知の連鎖移動剤を用いることができる。連鎖移動剤を用いることにより、硬化性樹脂(B)の分子量のコントロールができるうえ、硬化性樹脂(B)の粘度調整なども可能である。該連鎖移動剤としては、n-オクチルメルカプタン、n-ドデシルメルカプタン、t-ドデシルメルカプタン、チオフェノール等のメルカプト化合物、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、γ-メルカプトプロピルメチルジエトキシシラン等のメルカプトシラン化合物、ジブチルジスルフィド、γ-トリメトキシシリルプロピルジスルフィド等のジスルフィド化合物、ベンゼン、トルエン等の芳香族炭化水素化合物等が挙げられるが、これらに限定されるものではない。これらのなかでは、n-ドデシルメルカプタン及びメルカプトシラン化合物が低臭気であるため好ましく、メルカプトシラン化合物が連鎖移動剤としての効果を発現すると同時に、分子内に架橋性珪素基を導入することができるため、より好ましい。連鎖移動剤開始剤は、硬化性樹脂(B)を構成する単量体成分に対して0.1~35質量%の範囲で使用することが好ましく、1~25質量%がより好ましく、5~15質量%が特に好ましい。 Furthermore, when the curable resin (B) is synthesized by copolymerization, a conventionally known chain transfer agent can be used in addition to the constituent monomer components. By using a chain transfer agent, the molecular weight of the curable resin (B) can be controlled, and the viscosity of the curable resin (B) can be adjusted. Examples of the chain transfer agent include mercapto compounds such as n-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, thiophenol, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, γ-mercaptopropyltri Examples include mercaptosilane compounds such as ethoxysilane and γ-mercaptopropylmethyldiethoxysilane, disulfide compounds such as dibutyl disulfide and γ-trimethoxysilylpropyl disulfide, and aromatic hydrocarbon compounds such as benzene and toluene. It is not limited. Among these, n-dodecyl mercaptan and mercaptosilane compounds are preferable because of their low odor, and the mercaptosilane compounds exhibit an effect as a chain transfer agent and can introduce a crosslinkable silicon group into the molecule. More preferable. The chain transfer initiator is preferably used in an amount of 0.1 to 35% by weight, more preferably 1 to 25% by weight, based on the monomer component constituting the curable resin (B). 15% by mass is particularly preferred.
 さらに、硬化性樹脂(B)を共重合により合成する際には、ラジカル重合法、アニオン重合法、カチオン重合法に合った、従来公知の開始剤を利用すればよい。例えば、汎用的に利用されるラジカル重合法を例に取ると、その重合開始剤はラジカル開始剤となる。該ラジカル開始剤としては、2,2′-アゾビスイソブチロニトリル、2,2′-アゾビス(2-メチルブチロニトリル)、2,2′-アゾビス(2,4-ジメチルバレロニトリル)、2,2′-アゾビス(2-メチル-4-トリメトキシシリルペントニトリル)、2,2′-アゾビス(2-メチル-4-メチルジメトキシシリルペントニトリル)、和光純薬工業社製商品名:VA-046B、VA-057、VA-061、VA-085、VA-086、VA-096、V-601、V-65及びVAm-110等のアゾ化合物、ベンゾイルパーオキシド、t-アルキルパーオキシエステル、アセチルパーオキシド、ジイソプロピルパーオキシカーボネート等の過酸化物が使用できる。開始剤は、硬化性樹脂(B)を構成する単量体成分に対して0.1~10質量%の範囲で使用することが好ましく、0.5~5質量%が特に好ましい。 Furthermore, when synthesizing the curable resin (B) by copolymerization, a conventionally known initiator suitable for the radical polymerization method, the anion polymerization method, and the cation polymerization method may be used. For example, taking a general-purpose radical polymerization method as an example, the polymerization initiator becomes a radical initiator. Examples of the radical initiator include 2,2′-azobisisobutyronitrile, 2,2′-azobis (2-methylbutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2'-azobis (2-methyl-4-trimethoxysilylpentonitrile), 2,2'-azobis (2-methyl-4-methyldimethoxysilylpentonitrile), trade name manufactured by Wako Pure Chemical Industries, Ltd .: VA Azo compounds such as -046B, VA-057, VA-061, VA-085, VA-086, VA-096, V-601, V-65 and VAm-110, benzoyl peroxide, t-alkylperoxyesters, Peroxides such as acetyl peroxide and diisopropyl peroxycarbonate can be used. The initiator is preferably used in the range of 0.1 to 10% by weight, particularly preferably 0.5 to 5% by weight, based on the monomer component constituting the curable resin (B).
 硬化性樹脂(B)の配合量(質量部)は、硬化性樹脂(A):硬化性樹脂(B)=5:95~95:5となる範囲で使用され、20:80~90:10がより好ましく、30:70~80:20が特に好ましく、40:60~70:30が最も好ましい。硬化性樹脂(B)の配合割合(質量部)が、硬化性樹脂(A):硬化性樹脂(B)=95:5を下回ると、硬化性樹脂(B)を配合する効果(接着性、耐熱性、耐油性、耐水性等の諸性能を向上させる効果)が薄れる場合があり、硬化性樹脂(A):硬化性樹脂(B)=5:95を上回ると、粘度が極めて高くなり作業性が低下してしまう場合がある。
 硬化性樹脂(A)及び硬化性樹脂(B)は、本発明の硬化性樹脂組成物において、硬化ネットワークの主体成分となるものである。後述するように、本発明の硬化性樹脂組成物中には、本発明にかかる効果を損なわない範囲で、接着剤やシーリング材などの各用途や要求性能に合わせて、本発明の必須成分以外の成分として従来公知の任意の化合物乃至物質を配合することができる。一般的には、硬化性樹脂(A)と硬化性樹脂(B)との総和で、硬化性樹脂組成物中に15質量%以上配合されていればよい(30質量%以上が好ましい)。また、他の成分を配合しないのであれば、硬化性樹脂(A)と硬化性樹脂(B)との総和100質量部に対して、塩基性化合物(C)が0.1~30質量部含有されるから、硬化性樹脂(A)及び硬化性樹脂(B)の硬化性樹脂組成物中の含有量は70~99.9質量%となる。
The blending amount (parts by mass) of the curable resin (B) is used in the range of curable resin (A): curable resin (B) = 5: 95 to 95: 5, and 20:80 to 90:10. Is more preferable, 30:70 to 80:20 is particularly preferable, and 40:60 to 70:30 is most preferable. When the blending ratio (parts by mass) of the curable resin (B) is less than the curable resin (A): curable resin (B) = 95: 5, the effect of adding the curable resin (B) (adhesiveness, The effect of improving various performances such as heat resistance, oil resistance, water resistance, etc.) may be diminished, and when the curable resin (A): curable resin (B) = 5: 95 is exceeded, the viscosity becomes extremely high and the work May deteriorate.
The curable resin (A) and the curable resin (B) are the main components of the cured network in the curable resin composition of the present invention. As will be described later, in the curable resin composition of the present invention, other than the essential components of the present invention, according to each application and required performance such as an adhesive and a sealing material, within a range not impairing the effects of the present invention. Any conventionally known compound or substance can be added as the component. Generally, it is the sum of the curable resin (A) and the curable resin (B), and it may be blended in the curable resin composition by 15% by mass or more (preferably 30% by mass or more). If no other component is blended, the basic compound (C) is contained in an amount of 0.1 to 30 parts by mass with respect to 100 parts by mass of the total of the curable resin (A) and the curable resin (B). Therefore, the content of the curable resin (A) and the curable resin (B) in the curable resin composition is 70 to 99.9% by mass.
 さらに、本発明にかかる硬化性樹脂組成物には、珪素原子に炭素数2以上のアルキレン基が結合する構造を有する架橋性珪素基を分子内に有し、かつ、主鎖に-CHCHO-(オキシエチレン基)を構成単位として含む重合体である硬化性樹脂(Z)を併用することができる。硬化性樹脂(Z)を併用することで、さらに低温硬化性が高まる。その理由としては、硬化性樹脂(Z)中のオキシエチレン基が、低温時でも硬化性樹脂組成物中への湿気透過性を高めるためであると考えられる。硬化性樹脂(Z)の配合量としては、硬化性樹脂(A)と硬化性樹脂(B)の総和100質量部に対して、1~100質量部が好ましく、2~80質量部がより好ましく、3~60質量部が特に好ましく、5~40質量部が特に好ましい。 Furthermore, the curable resin composition according to the present invention has a crosslinkable silicon group in the molecule having a structure in which an alkylene group having 2 or more carbon atoms is bonded to a silicon atom, and —CH 2 CH in the main chain. A curable resin (Z) which is a polymer containing 2 O- (oxyethylene group) as a structural unit can be used in combination. By using the curable resin (Z) in combination, the low-temperature curability is further increased. The reason is considered to be that the oxyethylene group in the curable resin (Z) increases moisture permeability into the curable resin composition even at low temperatures. The blending amount of the curable resin (Z) is preferably 1 to 100 parts by mass and more preferably 2 to 80 parts by mass with respect to 100 parts by mass of the total of the curable resin (A) and the curable resin (B). 3 to 60 parts by mass is particularly preferable, and 5 to 40 parts by mass is particularly preferable.
[塩基性化合物(C)について]
 本発明における塩基性化合物(C)は、硬化性樹脂(A)及び硬化性樹脂(B)の硬化を促進する化合物である。塩基性化合物(C)としては、アミン化合物やホスファゼン化合物が好適に用いられる。該アミン化合物は、分子内に少なくとも第一級アミノ基、第二級アミノ基、又は第三級アミノ基を有する化合物である。塩基性化合物(C)は、所望の性能を得るために適宜選択すればよく、さらに1種単独又は2種以上合わせて使用してもよい。
[About the basic compound (C)]
The basic compound (C) in the present invention is a compound that accelerates the curing of the curable resin (A) and the curable resin (B). As the basic compound (C), an amine compound or a phosphazene compound is preferably used. The amine compound is a compound having at least a primary amino group, a secondary amino group, or a tertiary amino group in the molecule. The basic compound (C) may be appropriately selected in order to obtain desired performance, and may be used alone or in combination of two or more.
 該アミン化合物の具体例としては、ヘキシルアミン、ドデシルアミン、ステアリルアミン等の第一級アミン化合物、ジn-ブチルアミン、ジオクチルアミン、ジラウリルアミン、ピペリジン等の第二級アミン化合物、トリエチルアミン、トリブチルアミン、トリヘキシルアミン等の第三級アミン化合物、グアニジン、1,1,3,3-テトラメチルグアニジン、N,N′-ジフェニルグアニジン、1-フェニルグアニジン、フェニルビグアニド、1-(o-トリル)ビグアニド等のグアニジン化合物、ピリジン、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、6-ジブチルアミノ-1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン等の環状アミン化合物、HN(CNH)H(n≧1)で表わされる化合物、ハンツマン社製商品名ジェファーミンシリーズ等の分子末端に第1級アミノ基を有するポリオキシアルキレン、日本触媒株式会社製商品名エポミンシリーズ等のポリエチレンイミン、日本触媒株式会社製商品名ポリメントシリーズ等のアミノエチル化アクリルポリマー等が挙げられるが、これらに限定されるわけではない。また、上記のアミン化合物における第一級アミノ基含有化合物とケトン類との反応生成物であるケチミン化合物、第一級アミノ基含有化合物とアルデヒド類との反応生成物であるアルジミン化合物、β-アミノアルコール化合物とケトン類との反応生成物であるオキサゾリジン化合物も使用することができる。
 これらの化合物の中では、助触媒的な効果が高い1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン等の環状アミン化合物が好ましく、さらに液状であることから1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、1,5-ジアザビシクロ[4.3.0]ノナ-5-エンがより好ましい。
Specific examples of the amine compound include primary amine compounds such as hexylamine, dodecylamine and stearylamine, secondary amine compounds such as di-n-butylamine, dioctylamine, dilaurylamine and piperidine, triethylamine and tributylamine. , Tertiary amine compounds such as trihexylamine, guanidine, 1,1,3,3-tetramethylguanidine, N, N'-diphenylguanidine, 1-phenylguanidine, phenylbiguanide, 1- (o-tolyl) biguanide Guanidine compounds such as pyridine, 1,5,7-triazabicyclo [4.4.0] dec-5-ene, 7-methyl-1,5,7-triazabicyclo [4.4.0] deca -5-ene, 1,8-diazabicyclo [5.4.0] undec-7-ene, 6-dibutylamino-1 8-diazabicyclo [5.4.0] undec-7-ene, 1,5-diazabicyclo [4.3.0] non-5-cyclic amine compounds such as ene, H 2 N (C 2 H 4 NH) n A compound represented by H (n ≧ 1), a polyoxyalkylene having a primary amino group at the molecular terminal such as a trade name Jeffamine series manufactured by Huntsman, a polyethyleneimine such as a trade name Epomin series manufactured by Nippon Shokubai Co., Ltd., Examples include, but are not limited to, aminoethylated acrylic polymers such as Nippon Shokubai Co., Ltd. trade name Polyment series. In addition, a ketimine compound that is a reaction product of a primary amino group-containing compound and a ketone in the above amine compound, an aldimine compound that is a reaction product of a primary amino group-containing compound and an aldehyde, β-amino An oxazolidine compound that is a reaction product of an alcohol compound and ketones can also be used.
Among these compounds, 1,8-diazabicyclo [5.4.0] undec-7-ene, 1,5-diazabicyclo [4.3.0] non-5-ene, which have a high promoter effect, Cyclic amine compounds such as 1,5,7-triazabicyclo [4.4.0] dec-5-ene are preferred, and since it is liquid, 1,8-diazabicyclo [5.4.0] undec-7 More preferred is -ene, 1,5-diazabicyclo [4.3.0] non-5-ene.
 また、本発明における塩基性化合物(C)として、分子内に1個以上のアミノ基と1個以上の架橋性珪素基を有するアミノシラン化合物を利用することができる。該アミノシラン化合物の具体例としては、上記一般式(3)で表される化合物及び/又は上記一般式(4)で表される化合物である。 Further, as the basic compound (C) in the present invention, an aminosilane compound having one or more amino groups and one or more crosslinkable silicon groups in the molecule can be used. Specific examples of the aminosilane compound include a compound represented by the general formula (3) and / or a compound represented by the general formula (4).
 上記式(3)において、R、Rは分子量500以下の有機基又は水素原子を表し、好ましくは炭素数20以下の炭化水素基又は水素原子であり、より好ましくはメチル基、エチル基、ブチル基、ヘキシル基及びフェニル基等の炭素数6以下の炭化水素基又は水素原子であり、特に好ましくは水素原子である。R、Rは同一の有機基又は水素原子であってもよいし、異なっていてもよい。
 Rは分子量500以下の有機基を表し、好ましくは炭素数20以下の炭化水素基であり、より好ましくはメチレン基、エチレン基、プロピレン基、イソブチレン基、ジメチルブチレン基、ヘキシレン基等の炭素数6以下の炭化水素基であり、特に好ましくはプロピレン基、イソブチレン基、ジメチルブチレン基である。
 また、上記式(3)において、Rと結合する珪素原子は、加水分解性基としてアルコキシ基(OR)が1~3個結合すると共に、残りの結合手として炭化水素基(R)が2~0個結合しているものである。ここで、Rは、例えば、フェニル基等のアリール基、炭素数1~20のアルキル基が含まれ、好ましくは炭素数1~20のアルキル基である。具体的には、メチル基、エチル基、プロピル基、ブチル基、フェニル基であることが好ましく、メチル基、エチル基、プロピル基、ブチル基であることがより好ましく、メチル基、エチル基であることが特に好ましい。
 アルコキシ基(OR)としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、2-(ブトキシ)エトキシ基(-O-CHCH-O-C)、フェノキシ基であるのが好ましく、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基であるのがより好ましく、メトキシ基又はエトキシ基であるのが特に好ましい。Rは、加水分解性の観点から分子量300以下の有機基であることが好ましい。
In the above formula (3), R 5 and R 6 represent an organic group or a hydrogen atom having a molecular weight of 500 or less, preferably a hydrocarbon group or a hydrogen atom having 20 or less carbon atoms, more preferably a methyl group, an ethyl group, A hydrocarbon group having 6 or less carbon atoms such as a butyl group, a hexyl group and a phenyl group or a hydrogen atom, particularly preferably a hydrogen atom. R 5 and R 6 may be the same organic group or a hydrogen atom, or may be different.
R 7 represents an organic group having a molecular weight of 500 or less, preferably a hydrocarbon group having 20 or less carbon atoms, more preferably a carbon number such as a methylene group, an ethylene group, a propylene group, an isobutylene group, a dimethylbutylene group or a hexylene group. 6 or less hydrocarbon groups, particularly preferably a propylene group, an isobutylene group, and a dimethylbutylene group.
In the above formula (3), the silicon atom bonded to R 7 is bonded with 1 to 3 alkoxy groups (OR 9 ) as hydrolyzable groups and hydrocarbon groups (R 8 ) as the remaining bonds. In which 2 to 0 are bonded. Here, R 8 includes, for example, an aryl group such as a phenyl group and an alkyl group having 1 to 20 carbon atoms, preferably an alkyl group having 1 to 20 carbon atoms. Specifically, a methyl group, an ethyl group, a propyl group, a butyl group, and a phenyl group are preferable, a methyl group, an ethyl group, a propyl group, and a butyl group are more preferable, and a methyl group and an ethyl group are preferable. It is particularly preferred.
The alkoxy group (OR 9 ) is a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a 2- (butoxy) ethoxy group (—O—CH 2 CH 2 —O—C 4 H 9 ), or a phenoxy group. Are more preferable, and a methoxy group, an ethoxy group, a propoxy group, and a butoxy group are more preferable, and a methoxy group or an ethoxy group is particularly preferable. R 9 is preferably an organic group having a molecular weight of 300 or less from the viewpoint of hydrolyzability.
 また、上記一般式(3)で表される塩基性化合物(C)の珪素原子に結合する加水分解性基の数は、各々の硬化性樹脂組成物に求められる性能によって、適宜比率を調整すればよく、例えば、速硬化性や高モジュラス性を付与したい場合には、トリアルコキシ(c=3)やジアルコキシ(c=2)が好適に用いられ、長い可使時間や低モジュラス性を付与したい場合には、ジアルコキシ(c=2)やモノアルコキシ(c=1)が好適に用いられる。これらのなかでは、ジアルコキシ(c=2)が、入手が容易であること、及び、硬化性と硬化物モジュラスのバランスが優れているため好ましい。 In addition, the number of hydrolyzable groups bonded to the silicon atom of the basic compound (C) represented by the general formula (3) can be appropriately adjusted depending on the performance required for each curable resin composition. For example, trial alkoxy (c = 3) or dialkoxy (c = 2) is preferably used for imparting fast curability and high modulus, and imparts a long pot life and low modulus. If desired, dialkoxy (c = 2) or monoalkoxy (c = 1) is preferably used. Among these, dialkoxy (c = 2) is preferable because it is easily available and the balance between curability and cured product modulus is excellent.
 上記式(4)において、R10は分子量200以下の有機基を表し、好ましくは炭素数20以下の炭化水素基であり、より好ましくはメチレン基、エチレン基、プロピレン基、イソブチレン基、ジメチルブチレン基、ヘキシレン基等の炭素数6以下の炭化水素基であり、特に好ましくはプロピレン基、イソブチレン基、ジメチルブチレン基である。
 R11は炭素数1~20の炭化水素基を表し、好ましくはメチレン基、エチレン基、プロピレン基、イソブチレン基、ジメチルブチレン基、ヘキシレン基等の炭素数6以下の炭化水素基であり、特に好ましくはプロピレン基、イソブチレン基、ジメチルブチレン基である。
 また、上記式(4)において、R11と結合する珪素原子は、加水分解性基としてアルコキシ基(OR13)が1~3個結合すると共に、残りの結合手として炭化水素基(R12)が2~0個結合しているものである。ここで、R12は、例えば、フェニル基等のアリール基、炭素数1~20のアルキル基、2-(ブトキシ)エチル基等のアルコキシアルキル基が含まれ、好ましくはアリール基、炭素数1~20のアルキル基であり、特に好ましくは炭素数1~20のアルキル基である。具体的には、メチル基、エチル基、プロピル基、ブチル基、フェニル基であることが好ましく、メチル基、エチル基、プロピル基、ブチル基であることがより好ましく、メチル基、エチル基であることが特に好ましい。
 アルコキシ基(OR13)としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、2-(ブトキシ)エトキシ基(-O-CHCH-O-C)、フェノキシ基であるのが好ましく、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基であるのがより好ましく、メトキシ基又はエトキシ基であるのが特に好ましい。R13は、加水分解性の観点から分子量300以下の有機基であることが好ましい。
In the above formula (4), R 10 represents an organic group having a molecular weight of 200 or less, preferably a hydrocarbon group having 20 or less carbon atoms, more preferably a methylene group, an ethylene group, a propylene group, an isobutylene group, or a dimethylbutylene group. , A hexylene group or other hydrocarbon group having 6 or less carbon atoms, particularly preferably a propylene group, an isobutylene group or a dimethylbutylene group.
R 11 represents a hydrocarbon group having 1 to 20 carbon atoms, preferably a hydrocarbon group having 6 or less carbon atoms such as a methylene group, an ethylene group, a propylene group, an isobutylene group, a dimethylbutylene group, or a hexylene group, and is particularly preferable. Is a propylene group, an isobutylene group, or a dimethylbutylene group.
In the above formula (4), the silicon atom bonded to R 11 has 1 to 3 alkoxy groups (OR 13 ) bonded as a hydrolyzable group and a hydrocarbon group (R 12 ) as the remaining bond. In which 2 to 0 are bonded. Here, R 12 includes, for example, an aryl group such as a phenyl group, an alkyl group having 1 to 20 carbon atoms, and an alkoxyalkyl group such as 2- (butoxy) ethyl group. 20 alkyl groups, particularly preferably an alkyl group having 1 to 20 carbon atoms. Specifically, a methyl group, an ethyl group, a propyl group, a butyl group, and a phenyl group are preferable, a methyl group, an ethyl group, a propyl group, and a butyl group are more preferable, and a methyl group and an ethyl group are preferable. It is particularly preferred.
The alkoxy group (OR 13 ) is a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a 2- (butoxy) ethoxy group (—O—CH 2 CH 2 —O—C 4 H 9 ), or a phenoxy group. Are more preferable, and a methoxy group, an ethoxy group, a propoxy group, and a butoxy group are more preferable, and a methoxy group or an ethoxy group is particularly preferable. R 13 is preferably an organic group having a molecular weight of 300 or less from the viewpoint of hydrolyzability.
 また、上記一般式(4)で表される塩基性化合物(C)の珪素原子に結合する加水分解性基の数は、各々の硬化性樹脂組成物に求められる性能によって、適宜比率を調整すればよく、例えば、速硬化性や高モジュラス性を付与したい場合には、トリアルコキシ(d=3)やジアルコキシ(d=2)が好適に用いられ、長い可使時間や低モジュラス性を付与したい場合には、ジアルコキシ(d=2)やモノアルコキシ(d=1)が好適に用いられる。これらのなかでは、ジアルコキシ(d=2)が、入手が容易であること、及び、硬化性と硬化物モジュラスのバランスが優れているため好ましい。 In addition, the number of hydrolyzable groups bonded to the silicon atom of the basic compound (C) represented by the general formula (4) can be appropriately adjusted depending on the performance required for each curable resin composition. For example, trial alkoxy (d = 3) or dialkoxy (d = 2) is preferably used to provide fast curability and high modulus, giving long pot life and low modulus. If desired, dialkoxy (d = 2) or monoalkoxy (d = 1) is preferably used. Among these, dialkoxy (d = 2) is preferable because it is easily available and the balance between curability and cured product modulus is excellent.
 この上記一般式(3)および一般式(4)として、より具体的には、3-アミノプロピルトリメトキシシラン、3-アミノプロピルメチルジメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルメチルジエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(6-アミノヘキシル)アミノメチルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジエトキシシラン、4-アミノ-3-ジメチルブチルトリメトキシシラン、4-アミノ-3-ジメチルブチルメチルジメトキシシラン、[2-アミノエチル-(2′-アミノエチル)]-3-アミノプロピルトリメトキシシラン等の第1級アミノ基含有アミノシラン化合物、N-フェニルアミノプロピルトリメトキシシラン、N-フェニルアミノプロピルトリエトキシシラン、N-ブチルアミノプロピルトリメトキシシラン、N-エチルアミノイソブチルトリメトキシシラン、ビス(トリメトキシシリルプロピル)アミン等の第2級アミノ基含有アミノシラン化合物、分子内にイミダゾール基及び架橋性珪素基を有するイミダゾールシラン化合物等の第3級アミノ基を有するアミノシラン、水と反応して第1級アミノ基を生成する官能基を有するケチミンシラン化合物(3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン等)あるいはアルジミンシラン化合物、MS3301(チッソ株式会社製商品名)、MS3302(チッソ株式会社製商品名)、X-40-2651(信越化学工業株式会社製商品名)、DYNASYLAN1146(エボニックデグサ社製商品名)等のアミノシランのシリル基を単独あるいはその他のアルコキシシラン化合物と一部縮合させた化合物等が挙げられるが、これらに限定されるわけではない。
 一般的にアミノシラン化合物は、金属材料に対する接着性付与剤として機能するため、本発明にかかる上記アミノシラン化合物は、硬化促進剤兼接着性付与剤として活用することができる。
As the above general formula (3) and general formula (4), more specifically, 3-aminopropyltrimethoxysilane, 3-aminopropylmethyldimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropylmethyl Diethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, N- (6-aminohexyl) aminomethyltriethoxy Silane, N- (2-aminoethyl) -3-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldiethoxysilane, 4-amino-3-dimethylbutyltrimethoxysilane, 4 -Amino-3-dimethylbutylmethyldimethoxysilane, [2-aminoethyl (2'-aminoethyl)]-3-aminopropyltrimethoxysilane and other primary amino group-containing aminosilane compounds, N-phenylaminopropyltrimethoxysilane, N-phenylaminopropyltriethoxysilane, N-butylaminopropyl Secondary amino group-containing aminosilane compounds such as trimethoxysilane, N-ethylaminoisobutyltrimethoxysilane and bis (trimethoxysilylpropyl) amine, imidazolesilane compounds having an imidazole group and a crosslinkable silicon group in the molecule, etc. An aminosilane having a tertiary amino group, a ketimine silane compound having a functional group that reacts with water to form a primary amino group (3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, etc.) or Aldiminesilane compounds, MS Silyl of aminosilane such as 301 (trade name, manufactured by Chisso Corporation), MS3302 (trade name, manufactured by Chisso Corporation), X-40-2651 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.), DYNASYLAN 1146 (trade name, manufactured by Evonik Degussa) A compound obtained by condensing a group alone or with another alkoxysilane compound may be used, but it is not limited thereto.
Since an aminosilane compound generally functions as an adhesion promoter for metal materials, the aminosilane compound according to the present invention can be used as a curing accelerator and adhesion promoter.
 塩基性化合物(C)の配合量は、硬化性樹脂(A)及び硬化性樹脂(B)が硬化する量であれば特に限定されないのではあるが、硬化性樹脂(A)と硬化性樹脂(B)との総和100質量部に対して、0.1~30質量部であり、0.5~20質量部がより好ましく、1.0~10質量部が特に好ましい。0.1質量部を下回ると、硬化促進効果が十分でない場合があり、30質量部を上回ると、最終硬化物の皮膜のバランスが悪くなる場合がある。 The compounding amount of the basic compound (C) is not particularly limited as long as the curable resin (A) and the curable resin (B) are cured, but the curable resin (A) and the curable resin ( 0.1 to 30 parts by mass, more preferably 0.5 to 20 parts by mass, and particularly preferably 1.0 to 10 parts by mass with respect to 100 parts by mass as a sum of B). If it is less than 0.1 parts by mass, the effect of promoting curing may not be sufficient, and if it exceeds 30 parts by mass, the balance of the film of the final cured product may be deteriorated.
[その他の成分]
 本発明における硬化性樹脂組成物中には、本発明にかかる効果を損なわない範囲で、その他の成分として従来公知の任意の化合物乃至物質を配合することができる。たとえば、本発明で用いる硬化性樹脂以外の各種硬化性樹脂(例えば、硬化性樹脂(A)及び硬化性樹脂(B)以外の湿気硬化性樹脂、エポキシ系樹脂、ウレタン系樹脂、オキセタン系樹脂、環状カーボネート系樹脂)及び非硬化性の樹脂(アクリル樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリスチレン樹脂等)、γ-グリシドキシプロピルトリメトキシシラン、ビニルトリメトキシシラン等のシランカップリング剤、炭酸カルシウム粉体、クレイ粉体、親水性又は疎水性シリカ粉体、酸化チタン粉体、カーボンブラック粉体等の無機系フィラー、ポリアクリル粉体、ポリスチレン粉体、ポリウレタン粉体等の有機系フィラー、フェノール樹脂,テルペン樹脂,テルペンフェノール樹脂、石油系樹脂、ロジン系樹脂等の粘着付与剤、低極性被着材への密着性を向上させる塩素化ポリプロピレン,無水マレイン酸変性ポリプロピレン,酸化ポリエチレン等の極性基含有ポリオレフィン、アマイドワックス等の揺変剤、酸化カルシウム等の脱水剤、希釈剤、可塑剤、難燃剤、各種液状機能性オリゴマー、老化防止剤、紫外線吸収剤、顔料、チタンカップリング剤、アルミニウムカップリング剤、ジルコニウムカップリング剤、乾性油等を配合することができる。
[Other ingredients]
In the curable resin composition of the present invention, any conventionally known compound or substance can be blended as other components within a range that does not impair the effects of the present invention. For example, various curable resins other than the curable resin used in the present invention (for example, moisture curable resins other than the curable resin (A) and the curable resin (B), epoxy resins, urethane resins, oxetane resins, Cyclic carbonate resins) and non-curing resins (acrylic resins, polycarbonate resins, polyester resins, polystyrene resins, etc.), silane coupling agents such as γ-glycidoxypropyltrimethoxysilane, vinyltrimethoxysilane, calcium carbonate powder Body, clay powder, hydrophilic or hydrophobic silica powder, titanium oxide powder, inorganic filler such as carbon black powder, organic filler such as polyacryl powder, polystyrene powder, polyurethane powder, phenol resin , Terpene resin, terpene phenol resin, petroleum resin, rosin resin and other tackifiers Polar group-containing polyolefins such as chlorinated polypropylene, maleic anhydride-modified polypropylene, and polyethylene oxide that improve adhesion to low-polar substrates, thixotropic agents such as amide wax, dehydrating agents such as calcium oxide, diluents, plastics Agents, flame retardants, various liquid functional oligomers, anti-aging agents, ultraviolet absorbers, pigments, titanium coupling agents, aluminum coupling agents, zirconium coupling agents, drying oils and the like can be blended.
 また、本発明においては、用途に応じて、塩基性化合物(C)以外の硬化促進剤を利用することができる。該硬化促進剤は、所望の性能を得るために適宜選択すればよく、さらに1種単独又は2種以上合わせて使用してもよい。該硬化促進剤の具体例としては、従来公知のカルボン酸,リン酸,各種ルイス酸等の酸性化合物及びその塩、非錫系有機金属化合物、日本国特開2008-260932号公報で提案されているフッ素化剤、日本国特開2008-260932号公報で提案されているフッ素化剤、日本国特開2008-260933号公報で提案されている多価フルオロ化合物のアルカリ金属塩、フルオロシラン化合物等が挙げられるが、これらに限定されるわけではない。上記ルイス酸としては、金属ハロゲン化物、ハロゲン化ホウ素化合物等が挙げられる。これらのなかでは、塩基性化合物、非錫系有機金属化合物、ハロゲン化ホウ素化合物が、その活性の高さから好適に用いられる。なお、安全性の問題から有機錫化合物は使用しないのが好ましい。但し、用途に応じて、有機錫化合物も硬化促進剤として利用することができる。その場合、オクチル錫化合物やカルボン酸錫化合物が、トリブチル錫誘導体を含まないため好ましい。 In the present invention, a curing accelerator other than the basic compound (C) can be used depending on the application. The curing accelerator may be appropriately selected in order to obtain a desired performance, and may be used alone or in combination of two or more. Specific examples of the curing accelerator include conventionally known acidic compounds such as carboxylic acids, phosphoric acids and various Lewis acids and salts thereof, non-tin organometallic compounds, and Japanese Patent Application Laid-Open No. 2008-260932. Fluorinating agents, fluorinating agents proposed in Japanese Unexamined Patent Publication No. 2008-260932, alkali metal salts of polyvalent fluoro compounds proposed in Japanese Unexamined Patent Publication No. 2008-260933, fluorosilane compounds, etc. However, it is not necessarily limited to these. Examples of the Lewis acid include metal halides and boron halide compounds. Of these, basic compounds, non-tin organic metal compounds, and boron halide compounds are preferably used because of their high activity. In view of safety, it is preferable not to use an organotin compound. However, organic tin compounds can also be used as curing accelerators depending on the application. In that case, an octyltin compound and a carboxylic acid tin compound are preferable because they do not contain a tributyltin derivative.
 上記非錫系有機金属化合物としては、第1族のアルカリ金属系金属元素を主体とする化合物、第2族のアルカリ土類金属系金属元素を主体とする化合物、遷移金属系金属元素(例えば、第3族の希土類系金属元素、第4族のチタン族系金属元素、第5族のバナジウム族系金属元素、第6族のクロム族系金属元素、第7族のマンガン族系金属元素、第8族の鉄族系金属元素、第9族系金属元素、第10族の白金族系金属元素、第11族の銅族系金属元素)を主体とする化合物、第12族の亜鉛族系金属元素を主体とする化合物、第13族の土類金属系金属元素を主体とする化合物、第15族の窒素族系金属元素を主体とする化合物等が挙げられるが、これらに限定されるわけではない。上記非錫系有機金属化合物は、所望の性能を得るために適宜選択すればよく、さらに1種単独又は2種以上合わせて使用してもよい。 Examples of the non-tin-based organometallic compounds include compounds mainly composed of Group 1 alkali metal based metal elements, compounds composed mainly of Group 2 alkaline earth metal based metal elements, transition metal based metal elements (for example, Group 3 rare earth metal elements, Group 4 titanium group metal elements, Group 5 vanadium group metal elements, Group 6 chromium group metal elements, Group 7 manganese group metal elements, Group 8 iron group metal elements, Group 9 metal elements, Group 10 platinum group metal elements, Group 11 copper group metal elements), Group 12 zinc group metals Examples include compounds mainly composed of elements, compounds mainly composed of Group 13 earth metal-based metal elements, and compounds mainly composed of Group 15 nitrogen-based metal elements, but are not limited thereto. Absent. The non-tin organometallic compound may be appropriately selected in order to obtain desired performance, and may be used alone or in combination of two or more.
 上記非錫系有機金属化合物は、アルコキサイド、カルボキシラート、キレート等の構造を取ることによって、硬化促進剤としての活性も高まるうえ、各硬化性樹脂との相溶性が高まり、効果的に硬化促進能が発現される。上記非錫系有機金属化合物は、一つの化合物中に、アルコキサイド、カルボキシラート、キレート等の構造がそれぞれ単独で存在してもよいし、複数の構造が混在してもよい。さらに、例えばアルコキサイドを例に取ると、複数のアルコキサイド構造(例えば、メトキサイド構造とブトキサイド構造等)が混在してもよく、カルボキシラート、キレート等の構造においても、種々の構造が複数混在してもよい。 The non-tin organometallic compound has a structure such as alkoxide, carboxylate, chelate, etc., so that the activity as a curing accelerator is increased and the compatibility with each curable resin is increased, thereby effectively promoting the curing acceleration ability. Is expressed. In the non-tin-based organometallic compound, a single compound may have a structure such as alkoxide, carboxylate, chelate or the like, or a plurality of structures may be mixed. Further, for example, when alkoxide is taken as an example, a plurality of alkoxide structures (for example, a methoxide structure and a butoxide structure) may be mixed, and a structure such as a carboxylate or a chelate may be mixed. Good.
 上記アルコキサイド構造としては、メトキサイド、エトキシサイド、ノルマルプロポキサイド、イソプロポキサイド、ノルマルブトキサイド、s-ブトキサイド、イソブトキサイド、t-ブトキサイド等が挙げられるが、これらに限定されるわけではない。また、上記カルボキシラート構造としては、ナフテン酸塩、オクチル酸塩、ドデカン酸塩、ステアリン酸塩、イソステアリン酸塩、オレイン酸塩等が挙げられるが、これらに限定されるわけではない。さらに、キレート構造としては、アセチルアセトナト錯体、アセト酢酸エチル錯体の他、種々のキレート化合物等が挙げられるが、これらに限定されるわけではない。 Examples of the alkoxide structure include, but are not limited to, methoxide, ethoxyside, normal propoxide, isopropoxide, normal butoxide, s-butoxide, isobutoxide, t-butoxide, and the like. Examples of the carboxylate structure include, but are not limited to, naphthenate, octylate, dodecanoate, stearate, isostearate, oleate, and the like. Furthermore, examples of the chelate structure include, but are not limited to, various chelate compounds in addition to an acetylacetonate complex and an ethyl acetoacetate complex.
 上記非錫系有機金属化合物の具体例としては、第1族のアルカリ金属系金属元素を主体とする化合物として、ナフテン酸リチウム、ステアリン酸ナトリウム、オクチル酸カリウム等が、第2族のアルカリ土類金属系金属元素を主体とする化合物として、ナフテン酸マグネシウム、オクチル酸カルシウム、オクチル酸バリウム等が、遷移金属系金属元素を主体とする化合物として、オクチル酸イットリウム、チタンテトラブトキシド、チタンアセチルアセトン錯体、チタンジイソプロポキシビス(エチルアセトアセテート)等、ジルコニウムテトラプロポキシド、ジルコニウムトリブトキシモノアセチルアセトネート、ジルコニウムモノブトキシアセチルアセトネートビス(エチルアセトアセテート)、バナジルアセチルアセトネート、バナジウムアセチルアセトネート、クロムアセチルアセトン錯体、マンガンアセチルアセトン錯体、オクチル酸鉄、ナフテン酸コバルト、オクチル酸コバルト、ニッケルアセチルアセトン錯体、ナフテン酸銅、銅アセチルアセトン錯体等が、第12族の亜鉛族系金属元素を主体とする化合物として、亜鉛アセチルアセトナートモノハイドレート、ナフテン酸亜鉛、オクチル酸亜鉛等が、第13族の土類金属系金属元素を主体とする化合物として、アルミニウムアセチルアセトン錯体、アルミニウムトリブトキシド、アルミニウムエチルアセトアセテート錯体、インジウムアセチルアセトン錯体等が、第15族の窒素族系金属元素を主体とする化合物として、ナフテン酸ビスマス、ビスマストリス(2-エチルヘキサノエート)等が挙げられるが、これらに限定されるわけではない。 Specific examples of the non-tin-based organometallic compound include lithium naphthenate, sodium stearate, potassium octylate, etc. as a compound mainly composed of a group 1 alkali metal group metal element. Magnesium naphthenate, calcium octylate, barium octylate, etc. as compounds mainly composed of metal-based metal elements, and yttrium octylate, titanium tetrabutoxide, titanium acetylacetone complex, titanium as compounds mainly composed of transition metal-based metal elements Diisopropoxybis (ethyl acetoacetate), zirconium tetrapropoxide, zirconium tributoxy monoacetylacetonate, zirconium monobutoxyacetylacetonate bis (ethylacetoacetate), vanadyl acetylacetonate, vana Umum acetylacetonate, chromium acetylacetone complex, manganese acetylacetone complex, iron octylate, cobalt naphthenate, cobalt octylate, nickel acetylacetone complex, copper naphthenate, copper acetylacetone complex, etc. mainly composed of group 12 zinc group metal elements Zinc acetylacetonate monohydrate, zinc naphthenate, zinc octylate, etc. as the compounds to be used are compounds mainly composed of Group 13 earth metal elements, such as aluminum acetylacetone complex, aluminum tributoxide, aluminum ethyl Examples of the compound mainly composed of a group 15 nitrogen group metal element such as an acetoacetate complex and an indium acetylacetone complex include bismuth naphthenate and bismuth tris (2-ethylhexanoate). But it is not limited to these.
 上記非錫系有機金属化合物は市販されており、本発明ではそれらを用いることができる。市販品の具体例としては、ナーセムアルミニウム、ナーセムクロム、ナーセム第一コバルト、ナーセム第二コバルト、ナーセム銅、ナーセム第二鉄、ナーセムニッケル、ナーセムバナジル、ナーセム亜鉛、ナーセムインジウム、ナーセムマグネシウム、ナーセムマンガン、ナーセムイットリウム、ナーセムセリウム、ナーセムストロンチウム、ナーセムパラジウム、ナーセムバリウム、ナーセムモリブデニル、ナーセムランタン、ナーセムジルコニウム、ナーセムチタン、ナフテックスCoシリーズ、ニッカオクチックスCoシリーズ、ナフテックスMnシリーズ、ニッカオクチックスMnシリーズ、ナフテックスZnシリーズ、ニッカオクチックスZnシリーズ、ナフテックスCaシリーズ、ニッカオクチックスCaシリーズ、ナフテックスKシリーズ、ニッカオクチックスKシリーズ、ニッカオクチックスBiシリーズ、ネオデカン酸Biシリーズ、プキャットシリーズ、PAシリーズ、ナフテックスZrシリーズ、ニッカオクチックスZrシリーズ、ナフテックスFeシリーズ、ニッカオクチックスFeシリーズ、ナフテックスMgシリーズ、ナフテックスLiシリーズ、ナフテックスCuシリーズ、ナフテックスBaシリーズ、ニッカオクチックス・レアースシリーズ、ニッカオクチックスNiシリーズ等(以上、日本化学産業社製商品名)、オルガチックスZA-40、オルガチックスZA-65、オルガチックスZC-150、オルガチックスZC-540、オルガチックスZC-570、オルガチックスZC-580、オルガチックスZC-700、オルガチックスZB-320、オルガチックスTA-10、オルガチックスTA-25、オルガチックスTA-22、オルガチックスTA-30、オルガチックスTC-100、オルガチックスTC-401、オルガチックスTC-200、オルガチックスTC-750、オルガチックスTPHS等(以上、マツモトファインケミカル社製商品名)、SNAPCURE3020、SNAPCURE3030、VERTEC NPZ等(以上、ジョンソン・マッセイ社製商品名)、ネオスタンU-600、ネオスタンU-660等(以上、日東化成社製商品名)、ケンリアクトNZ01、ケンリアクトNZ33、ケンリアクトNZ39等(以上、ケンリッチ社製商品名)、アルミニウムエトキサイド、AIPD、PADM、AMD、ASBD、ALCH、ALCH-TR、アルミキレートM、アルミキレートD、アルミキレートA、アルゴマー、アルゴマー800AF、アルゴマー1000SF、プレンアクトALM等(以上、川研ファインケミカル社製商品名)、A-1、B-1、TOT、TOG、T-50、T-60、A-10、B-2、B-4、B-7、B-10、TBSTA、DPSTA-25、S-151、S-152、S-181等(以上、日本曹達社製商品名)、オクトープシリーズ、ケロープシリーズ、オリープシリーズ、アセトープシリーズ、ケミホープシリーズ等(ホープ製薬社製商品名)等が挙げられるが、これらに限定されるわけではない。 The above-mentioned non-tin organometallic compounds are commercially available and can be used in the present invention. Specific examples of commercially available products include nursem aluminum, nursem chromium, nursem first cobalt, nursem second cobalt, nursem copper, nursem ferric iron, nursem nickel, nursem vanadyl, nursem zinc, nursem indium, nursem magnesium, nurse Sem Manganese, Nasemu Yttrium, Nasemu Cerium, Nasemu Strontium, Nasemu Palladium, Nasemu Barium, Nasem Molybdenyl, Nasemu Lanthanum, Nasem Zirconium, Nasemu Titanium, Naphtex Co Series, Nikka Octix Co Series, Naphtex Mn Series, Nikka Octix Mn Series, Naphtex Zn Series, Nikka Octix Zn Series, Naftex Ca Series, Nikka Octics Ca Series, Naphtec K series, Nikka octix K series, Nikka octix Bi series, Bidecanoic acid Bi series, Pecat series, PA series, naphthex Zr series, Nikka octix Zr series, naphthex Fe series, Nikka octix Fe series, naphthex Mg series , Naftex Li series, Naphtex Cu series, Naphtex Ba series, Nikka Octix Reals series, Nikka Octix Ni series, etc. (above, product names manufactured by Nippon Chemical Industry Co., Ltd.), Olgatics ZA-40, Olgatics ZA-65, ORGATICS ZC-150, ORGATICS ZC-540, ORGATICS ZC-570, ORGATICS ZC-580, ORGATICS ZC-700, ORGATICS B-320, ORGATICS TA-10, ORGATICS TA-25, ORGATICS TA-22, ORGATICS TA-30, ORGATICS TC-100, ORGATICS TC-401, ORGATICS TC-200, ORGATICS TC- 750, Olga Tix TPHS, etc. (named Matsumoto Fine Chemical, trade name), SNAPCURE3020, SNAPCURE3030, VERTEC NPZ, etc. (named, Johnson Matthey, trade name), Neostan U-600, Neostan U-660, etc. (named, Nitto) Kasei Co., Ltd. product name), Kenriact NZ01, Kenriact NZ33, Kenriact NZ39, etc. (above, product name produced by Kenrich), Aluminum Etoxide, AIPD, PADM, AMD, ASBD, ALCH, ALC H-TR, aluminum chelate M, aluminum chelate D, aluminum chelate A, algomer, algomer 800AF, algomer 1000SF, pre-act ALM, etc. (above, product names manufactured by Kawaken Fine Chemical Co., Ltd.), A-1, B-1, TOT, TOG , T-50, T-60, A-10, B-2, B-4, B-7, B-10, TBSTA, DPSTA-25, S-151, S-152, S-181, etc. Nippon Soda Co., Ltd. trade name), Octope series, Kerop series, Olipe series, Acetop series, Chemihope series etc. (trade name made by Hope Pharmaceutical Co., Ltd.), etc. are not limited thereto.
 なかでも、ジルコニウム化合物、チタン化合物、アルミニウム化合物、ビスマス化合物からなる群から選ばれる一種以上であると、環境負荷の低減が可能であるとともに、安全性を確保でき、さらに実使用に耐えうる硬化速度が得られやすいという点で好ましい。また、上記非錫系有機金属化合物の安定性を重視する場合は、カルボキシラートあるいはキレート等の構造が好ましく、上記非錫系有機金属化合物の硬化促進能を重視する場合は、アルコキサイドあるいはカルボキシラート等の構造が好ましい。 Among these, when it is at least one selected from the group consisting of zirconium compounds, titanium compounds, aluminum compounds, and bismuth compounds, it is possible to reduce the environmental burden, to ensure safety, and to achieve a curing rate that can withstand actual use. Is preferable in that it is easily obtained. Further, when importance is attached to the stability of the non-tin-based organometallic compound, a structure such as a carboxylate or a chelate is preferable, and when importance is attached to the curing promoting ability of the non-tin-based organometallic compound, an alkoxide or a carboxylate is preferred. The structure is preferred.
 上記ハロゲン化ホウ素化合物としては、三フッ化ホウ素化合物が好適に用いられる。
 三フッ化ホウ素化合物の具体例としては、例えば、三フッ化ホウ素のアミン錯体、アルコール錯体、エーテル錯体、チオール錯体、スルフィド錯体、カルボン酸錯体、水錯体等が挙げられるが、これらに限定されるわけではない。上記三フッ化ホウ素化合物の中では、入手の容易さ及び配合のしやすさから、アルコール錯体又はアミン錯体が好ましく、安定性と硬化促進活性を兼ね備えていることから、アミン錯体が最も好ましい。
As the boron halide compound, a boron trifluoride compound is preferably used.
Specific examples of boron trifluoride compounds include, but are not limited to, boron trifluoride amine complexes, alcohol complexes, ether complexes, thiol complexes, sulfide complexes, carboxylic acid complexes, water complexes, and the like. Do not mean. Among the boron trifluoride compounds, an alcohol complex or an amine complex is preferable from the viewpoint of availability and ease of blending, and an amine complex is most preferable because it has both stability and curing acceleration activity.
 上記三フッ化ホウ素のアミン錯体に用いられるアミン化合物としては、アンモニア、モノエチルアミン、トリエチルアミン、ピペリジン、アニリン、モルホリン、シクロヘキシルアミン、n-ブチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、グアニジン、2,2,6,6-テトラメチルピペリジン、1,2,2,6,6-ペンタメチルピペリジン、N-メチル-3,3′-イミノビス(プロピルアミン)、エチレンジアミン、ジエチレントリアミン、トリエチレンジアミン、ペンタエチレンジアミン、1,2-ジアミノプロパン、1,3-ジアミノプロパン、1,2-ジアミノブタン、1,4-ジアミノブタン、1,9-ジアミノノナン、ATU(3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン)、CTUグアナミン、ドデカン酸ジヒドラジド、ヘキサメチレンジアミン、m-キシリレンジアミン、ジアニシジン、4,4′-ジアミノ-3,3′-ジエチルジフェニルメタン、ジアミノジフェニルエーテル、3,3′-ジメチル-4,4′-ジアミノジフェニルメタン、トリジンベース、m-トルイレンジアミン、o-フェニレンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、メラミン、1,3-ジフェニルグアニジン、ジ-o-トリルグアニジン、1,1,3,3-テトラメチルグアニジン、ビス(アミノプロピル)ピペラジン、N-(3-アミノプロピル)-1,3-プロパンジアミン、ビス(3-アミノプロピル)エーテル、ハンツマン社製ジェファーミン等の複数の第一級アミノ基を有する化合物、ピペラジン、シス-2,6-ジメチルピペラジン、シス-2,5-ジメチルピペラジン、2-メチルピペラジン、N,N′-ジ-t-ブチルエチレンジアミン、2-アミノメチルピペリジン、4-アミノメチルピペリジン、1,3-ジ-(4-ピペリジル)-プロパン、4-アミノプロピルアニリン、ホモピペラジン、N,N′-ジフェニルチオ尿素、N,N′-ジエチルチオ尿素、N-メチル-1,3-プロパンジアミン等の複数の第二級アミノ基を有する化合物、更に、メチルアミノプロピルアミン、エチルアミノプロピルアミン、エチルアミノエチルアミン、ラウリルアミノプロピルアミン、2-ヒドロキシエチルアミノプロピルアミン、1-(2-アミノエチル)ピペラジン、N-アミノプロピルピペラジン、3-アミノピロリジン、1-o-トリルビグアニド、2-アミノメチルピペラジン、N-アミノプロピルアニリン、エチルアミンエチルアミン、2-ヒドロキシエチルアミノプロピルアミン、ラウリルアミノプロピルアミン、2-アミノメチルピペリジン、4-アミノメチルピペリジン、式 HN(CNH)H(n≒5)で表わされる化合物(商品名:ポリエイト、東ソー社製)、N-アルキルモルホリン、1,8-ジアザビシクロ[5.4.0]ウンデセン-7、6-ジブチルアミノ-1,8-ジアザビシクロ[5.4.0]ウンデセン-7、1,5-ジアザビシクロ[4.3.0]ノネン-5、1,4-ジアザビシクロ[2.2.2]オクタン、ピリジン、N-アルキルピペリジン、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン等の複環状第三級アミン化合物等の他、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルメチルジエトキシシラン、4-アミノ-3-ジメチルブチルトリエトキシシラン、N-β(アミノエチル)-γ-アミノプロピルトリエトキシシラン、N-β(アミノエチル)-γ-アミノプロピルメチルジエトキシシラン、N-3-[アミノ(ジプロピレンオキシ)]アミノプロピルトリエトキシシラン、(アミノエチルアミノメチル)フェネチルトリエトキシシラン、N-(6-アミノヘキシル)アミノメチルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-11-アミノウンデシルトリエトキシシラン等のアミノシラン化合物が挙げられるが、これらに限定されるわけではない。三フッ化ホウ素アミン錯体は市販されており、本発明ではそれらを用いることができる。市販品としては、エアプロダクツジャパン株式会社製のアンカー1040、アンカー1115、アンカー1170、アンカー1222、BAK1171等が挙げられる。 Examples of amine compounds used in the boron trifluoride amine complex include ammonia, monoethylamine, triethylamine, piperidine, aniline, morpholine, cyclohexylamine, n-butylamine, monoethanolamine, diethanolamine, triethanolamine, guanidine, 2, 2,6,6-tetramethylpiperidine, 1,2,2,6,6-pentamethylpiperidine, N-methyl-3,3'-iminobis (propylamine), ethylenediamine, diethylenetriamine, triethylenediamine, pentaethylenediamine, 1 , 2-diaminopropane, 1,3-diaminopropane, 1,2-diaminobutane, 1,4-diaminobutane, 1,9-diaminononane, ATU (3,9-bis (3-aminopropyl) -2,4 , 8,1 -Tetraoxaspiro [5.5] undecane), CTU guanamine, dodecanoic acid dihydrazide, hexamethylenediamine, m-xylylenediamine, dianisidine, 4,4'-diamino-3,3'-diethyldiphenylmethane, diaminodiphenyl ether, 3 , 3'-dimethyl-4,4'-diaminodiphenylmethane, tolidine base, m-toluylenediamine, o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, melamine, 1,3-diphenylguanidine, di-o -Tolylguanidine, 1,1,3,3-tetramethylguanidine, bis (aminopropyl) piperazine, N- (3-aminopropyl) -1,3-propanediamine, bis (3-aminopropyl) ether, Huntsman Such as Jeffermine A compound having a primary amino group, piperazine, cis-2,6-dimethylpiperazine, cis-2,5-dimethylpiperazine, 2-methylpiperazine, N, N′-di-t-butylethylenediamine, 2-amino Methylpiperidine, 4-aminomethylpiperidine, 1,3-di- (4-piperidyl) -propane, 4-aminopropylaniline, homopiperazine, N, N'-diphenylthiourea, N, N'-diethylthiourea, N -Compounds having a plurality of secondary amino groups such as methyl-1,3-propanediamine, and further methylaminopropylamine, ethylaminopropylamine, ethylaminoethylamine, laurylaminopropylamine, 2-hydroxyethylaminopropylamine , 1- (2-Aminoethyl) piperazine, N-aminopropyl Piperazine, 3-aminopyrrolidine, 1-o-tolylbiguanide, 2-aminomethylpiperazine, N-aminopropylaniline, ethylamineethylamine, 2-hydroxyethylaminopropylamine, laurylaminopropylamine, 2-aminomethylpiperidine, 4- Aminomethylpiperidine, a compound represented by the formula H 2 N (C 2 H 4 NH) n H (n≈5) (trade name: Polyate, manufactured by Tosoh Corporation), N-alkylmorpholine, 1,8-diazabicyclo [5. 4.0] undecene-7,6-dibutylamino-1,8-diazabicyclo [5.4.0] undecene-7,1,5-diazabicyclo [4.3.0] nonene-5,1,4-diazabicyclo [2.2.2] Octane, pyridine, N-alkylpiperidine, 1,5,7-triazabi Such as bicyclic tertiary amine compounds such as chloro [4.4.0] dec-5-ene, 7-methyl-1,5,7-triazabicyclo [4.4.0] dec-5-ene, etc. Other, γ-aminopropyltriethoxysilane, γ-aminopropylmethyldiethoxysilane, 4-amino-3-dimethylbutyltriethoxysilane, N-β (aminoethyl) -γ-aminopropyltriethoxysilane, N-β (Aminoethyl) -γ-aminopropylmethyldiethoxysilane, N-3- [amino (dipropyleneoxy)] aminopropyltriethoxysilane, (aminoethylaminomethyl) phenethyltriethoxysilane, N- (6-aminohexyl) ) Aminomethyltriethoxysilane, N-phenyl-γ-aminopropyltriethoxysilane, N- (2-aminoethyl) -11- An aminosilane compound such as aminoundecyltriethoxysilane may be mentioned, but is not limited thereto. Boron trifluoride amine complexes are commercially available and can be used in the present invention. Examples of commercially available products include Anchor 1040, Anchor 1115, Anchor 1170, Anchor 1222, and BAK 1171 manufactured by Air Products Japan.
 本発明における硬化性樹脂組成物は、従来の硬化性樹脂が適用されていた全ての用途に用いることができる。たとえば、接着剤、シーリング材、粘着剤、塗料、コーティング材、目止め材、注型材、被覆材等として用いることができる。
 本発明における硬化性樹脂組成物は、水分の存在下で、架橋性珪素基同士が架橋することによって硬化するものである。したがって、1液性の組成物として使用する場合、保管乃至搬送中は、空気中の水分と接触しないよう、気密に密封した状態で取り扱われる。そして、使用時には開封して任意の箇所に適用すれば、空気中の水分と接触して硬化性樹脂が硬化するのである。
 また、粘着剤前駆体組成物として使用する場合には、上記の硬化性樹脂組成物に対して、さらに粘着付与樹脂を配合し均一に混合して粘着剤前駆体組成物を得る。なお、硬化性樹脂組成物と粘着付与樹脂とを均一に混合する場合、たとえば両者の相溶性が不十分な場合などにおいては、有機溶剤を使用してもよい。有機溶剤としては、エタノール等のアルコール類、酢酸エチル、トルエン、メチルシクロヘキサン等が用いられる。また、硬化性樹脂組成物と粘着付与樹脂の相溶性が良好な場合や、有機溶媒が好まれない用途などには、有機溶剤を使用しなくてもよい。
 このようにして得られた粘着剤前駆体組成物を、従来公知のテープ基材又はシート基材の表面(片面又は両面)に塗布し、これを硬化させることで粘着剤層を形成することができ、粘着テープ又は粘着シートが得られる。本発明にかかる硬化性樹脂組成物は、硬化性の温度依存性が少ないことから、粘着テープ作成時における温度管理が比較的柔軟にできるため、本用途に好適に用いることができる。
The curable resin composition in this invention can be used for all the uses to which the conventional curable resin was applied. For example, it can be used as an adhesive, a sealing material, an adhesive, a paint, a coating material, a sealing material, a casting material, a coating material, and the like.
The curable resin composition in the present invention is cured by crosslinking of crosslinkable silicon groups in the presence of moisture. Therefore, when used as a one-component composition, it is handled in a hermetically sealed state so as not to come into contact with moisture in the air during storage or transportation. And if it opens and uses it in arbitrary places at the time of use, it will contact with the water | moisture content in air and a curable resin will harden | cure.
Moreover, when using as an adhesive precursor composition, tackifier resin is further mix | blended with said curable resin composition, and it mixes uniformly, and obtains an adhesive precursor composition. In addition, when mixing curable resin composition and tackifying resin uniformly, for example, when compatibility of both is inadequate, you may use an organic solvent. As the organic solvent, alcohols such as ethanol, ethyl acetate, toluene, methylcyclohexane and the like are used. Further, when the compatibility between the curable resin composition and the tackifier resin is good or when the organic solvent is not preferred, the organic solvent may not be used.
A pressure-sensitive adhesive layer can be formed by applying the pressure-sensitive adhesive precursor composition thus obtained to the surface (one side or both sides) of a conventionally known tape base or sheet base and curing it. And an adhesive tape or an adhesive sheet is obtained. Since the curable resin composition concerning this invention has little temperature dependency of sclerosis | hardenability, since temperature control at the time of adhesive tape preparation can be made comparatively flexible, it can be used suitably for this use.
 以下、本発明を実施例に基づいて詳細に説明するが、本発明は実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail based on examples, but the present invention is not limited to the examples.
[硬化性樹脂(A)及び硬化性樹脂(B)の準備]
 硬化性樹脂(A)として、GENIOSIL STP-E10(Wacker Chemie AG製商品名、メトキシ基当量から換算した分子量約10,000、粘度約10,000mPa・s/25℃(カタログ値))を準備した。
[Preparation of curable resin (A) and curable resin (B)]
As the curable resin (A), GENIOSIL STP-E10 (trade name, manufactured by Wacker Chemie AG, molecular weight of about 10,000 converted from methoxy group equivalent, viscosity of about 10,000 mPa · s / 25 ° C. (catalog value)) was prepared. .
(硬化性樹脂AB-1の調製)
 反応容器に、GENIOSIL STP-E10(Wacker Chemie AG製商品名、メトキシ基当量から換算した分子量約10,000、粘度約10,000mPa・s/25℃(カタログ値)、100質量部)を入れ、窒素雰囲気下、80℃まで昇温した。そこに、メタクリル酸メチル37.5質量部、メタクリル酸ラウリル25質量部、3-アクリロキシプロピルトリメトキシシラン3.0質量部、3-メルカプトプロピルトリメトキシシラン7.0質量部、および2,2′-アゾビス(2,4-ジメチルバレロニトリル)0.50質量部を混合したモノマー混合液を30分かけて滴下し、重合反応を行った。さらに、80℃で30分反応させた後、2,2′-アゾビス(2,4-ジメチルバレロニトリル)0.20質量部とメチルエチルケトン10質量部の混合溶液を滴下し、重合反応を行った。次いで、80℃で30分反応させた後、2,2′-アゾビス(2,4-ジメチルバレロニトリル)0.10質量部とメチルエチルケトン10質量部の混合溶液を滴下し、重合反応を行った。さらに、80℃で3時間反応させた後、メチルエチルケトンを減圧留去することで、STP-E10(硬化性樹脂(A)に相当)と、分子内にトリメトキシシリル基を有するビニル重合体(硬化性樹脂(B)に相当、重合性ビニル化合物におけるホモポリマーのTgが-20℃以下である重合性ビニル系化合物の割合:約38質量%)とを含有する混合物である硬化性樹脂AB-1を得た。
(Preparation of curable resin AB-1)
In a reaction vessel, GENIOSIL STP-E10 (trade name, manufactured by Wacker Chemie AG, molecular weight of about 10,000 converted from methoxy group equivalent, viscosity of about 10,000 mPa · s / 25 ° C. (catalog value), 100 parts by mass) The temperature was raised to 80 ° C. in a nitrogen atmosphere. There, 37.5 parts by mass of methyl methacrylate, 25 parts by mass of lauryl methacrylate, 3.0 parts by mass of 3-acryloxypropyltrimethoxysilane, 7.0 parts by mass of 3-mercaptopropyltrimethoxysilane, and 2,2 A monomer mixture mixed with 0.50 parts by mass of '-azobis (2,4-dimethylvaleronitrile) was added dropwise over 30 minutes to conduct a polymerization reaction. Furthermore, after reacting at 80 ° C. for 30 minutes, a mixed solution of 0.20 part by mass of 2,2′-azobis (2,4-dimethylvaleronitrile) and 10 parts by mass of methyl ethyl ketone was added dropwise to carry out a polymerization reaction. Next, after reacting at 80 ° C. for 30 minutes, a mixed solution of 0.10 parts by mass of 2,2′-azobis (2,4-dimethylvaleronitrile) and 10 parts by mass of methyl ethyl ketone was added dropwise to carry out a polymerization reaction. Further, after reacting at 80 ° C. for 3 hours, methyl ethyl ketone was distilled off under reduced pressure to obtain STP-E10 (corresponding to the curable resin (A)) and a vinyl polymer having a trimethoxysilyl group in the molecule (cured). Curable resin AB-1 which is a mixture containing the equivalent of the polymerizable resin (B) and the ratio of the polymerizable vinyl compound in which the Tg of the homopolymer in the polymerizable vinyl compound is −20 ° C. or less: about 38% by mass) Got.
(硬化性樹脂AB-2の調製)
 反応容器に、GENIOSIL STP-E10(Wacker Chemie AG製商品名、メトキシ基当量から換算した分子量約10,000、粘度約10,000mPa・s/25℃(カタログ値)、100質量部)を入れ、窒素雰囲気下、80℃まで昇温した。そこに、メタクリル酸メチルを40質量部、アクリル酸ブチルを9.0質量部、メタクリル酸ステアリルを10質量部、3-アクリロキシプロピルメチルジメトキシシランを5.0質量部、3-メルカプトプロピルメチルジメトキシシランを5.0質量部、および2,2′-アゾビス(2,4-ジメチルバレロニトリル)0.46質量部を混合したモノマー混合液を30分かけて滴下し、重合反応を行った。さらに、80℃で30分反応させた後、2,2′-アゾビス(2,4-ジメチルバレロニトリル)0.15質量部とメチルエチルケトン10質量部の混合溶液を滴下し、重合反応を行った。次いで、80℃で30分反応させた後、2,2′-アゾビス(2,4-ジメチルバレロニトリル)0.08質量部とメチルエチルケトン10質量部の混合溶液を滴下し、重合反応を行った。さらに、80℃で3時間反応させた後、メチルエチルケトンを減圧留去することで、STP-E10(硬化性樹脂(A)に相当)と、分子内にメチルジメトキシシリル基を有するビニル重合体(硬化性樹脂(B)に相当、重合性ビニル化合物におけるホモポリマーのTgが-20℃以下である重合性ビニル系化合物の割合:約14質量%)とを含有する混合物である硬化性樹脂AB-2を得た。
(Preparation of curable resin AB-2)
In a reaction vessel, GENIOSIL STP-E10 (trade name, manufactured by Wacker Chemie AG, molecular weight of about 10,000 converted from methoxy group equivalent, viscosity of about 10,000 mPa · s / 25 ° C. (catalog value), 100 parts by mass) The temperature was raised to 80 ° C. in a nitrogen atmosphere. There, 40 parts by mass of methyl methacrylate, 9.0 parts by mass of butyl acrylate, 10 parts by mass of stearyl methacrylate, 5.0 parts by mass of 3-acryloxypropylmethyldimethoxysilane, 3-mercaptopropylmethyldimethoxy A monomer mixed solution obtained by mixing 5.0 parts by mass of silane and 0.46 parts by mass of 2,2′-azobis (2,4-dimethylvaleronitrile) was dropped over 30 minutes to carry out a polymerization reaction. Furthermore, after reacting at 80 ° C. for 30 minutes, a mixed solution of 0.15 parts by mass of 2,2′-azobis (2,4-dimethylvaleronitrile) and 10 parts by mass of methyl ethyl ketone was added dropwise to carry out a polymerization reaction. Next, after reacting at 80 ° C. for 30 minutes, a mixed solution of 0.08 parts by mass of 2,2′-azobis (2,4-dimethylvaleronitrile) and 10 parts by mass of methyl ethyl ketone was dropped to carry out a polymerization reaction. Furthermore, after reacting at 80 ° C. for 3 hours, methyl ethyl ketone was distilled off under reduced pressure to obtain STP-E10 (corresponding to the curable resin (A)) and a vinyl polymer having a methyldimethoxysilyl group in the molecule (cured). Curable resin AB-2, which is a mixture containing the equivalent of the polymerizable resin (B) and the ratio of the polymerizable vinyl compound in which the Tg of the homopolymer in the polymerizable vinyl compound is −20 ° C. or less: about 14% by mass) Got.
(硬化性樹脂AB-3の調製)
 反応容器内で、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン(222.4質量部)を窒素雰囲気下室温で撹拌しながら、アクリル酸メチル(172.2質量部、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシランに対して2モル当量)を1時間かけて滴下し、さらに50℃で7日間反応させることで、分子内にトリメトキシシリル基及び第二級アミノ基を有するシラン化合物SE-1を得た。
 反応容器内で、アデカポリエーテルPR-5007(株式会社ADEKA製商品名、エチレンオキサイドとプロピレンオキサイドのランダム共重合体、エチレンオキサイド:プロピレンオキサイド=7:3(モル比)、水酸基価22.2、100質量部)、イソホロンジイソシアネート(8.79質量部)及びニッカオクチックスジルコニウム12%(T)(日本化学産業株式会社製商品名、2-エチルヘキサン酸ジルコニル化合物溶液(Zr含有率=約12質量%)、PR-5007に対してジルコニウム金属換算で20ppm)を仕込み、窒素雰囲気下にて撹拌混合しながら、80℃で5時間反応させることで、主鎖がエチレンオキサイドとプロピレンオキサイドの共重合体であり、その分子内にイソシアネート基を有するウレタン系樹脂U-1を得た。
 さらに、上記シラン化合物SE-1(15.1質量部)を添加し、窒素雰囲気下にて撹拌混合しながら、上記ウレタン系樹脂U-1中のイソシアネート基と上記シラン化合物SE-1中の第二級アミノ基とを80℃で1時間反応させることで、主鎖がエチレンオキサイドとプロピレンオキサイドの共重合体であり、その分子内にウレタン結合、活性水素が1個置換されたウレア結合、及び、トリメトキシシリル基を有する硬化性樹脂SU-1(硬化性樹脂(A)及び硬化性樹脂(B)以外の湿気硬化性樹脂に相当)を得た。反応終了後、IR測定を行ったところイソシアネート基に帰属される特性吸収(2265cm-1)は観測されなかった。
 反応容器に、AB-1(100質量部)を入れ、窒素雰囲気下、硬化性樹脂SU-1(10質量部)添加し、減圧下で30分混練することで、STP-E10(硬化性樹脂(A)に相当)と、分子内にトリメトキシシリル基を有するビニル重合体(硬化性樹脂(B)に相当)と、主鎖がエチレンオキサイドとプロピレンオキサイドのランダム共重合体である硬化性樹脂SU-1(硬化性樹脂(A)及び硬化性樹脂(B)以外の湿気硬化性樹脂に相当)とを含有する混合物である硬化性樹脂AB-3を得た。
(Preparation of curable resin AB-3)
In a reaction vessel, while stirring N- (2-aminoethyl) -3-aminopropyltrimethoxysilane (222.4 parts by mass) at room temperature under a nitrogen atmosphere, methyl acrylate (172.2 parts by mass, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane) was added dropwise over 1 hour and further reacted at 50 ° C. for 7 days. A silane compound SE-1 having a secondary amino group was obtained.
In the reaction vessel, ADEKA polyether PR-5007 (trade name, manufactured by ADEKA Corporation, random copolymer of ethylene oxide and propylene oxide, ethylene oxide: propylene oxide = 7: 3 (molar ratio), hydroxyl value 22.2, 100 parts by mass), isophorone diisocyanate (8.79 parts by mass) and Nikka Octix Zirconium 12% (T) (trade name, 2-ethylhexanoic acid zirconyl compound solution (Zr content = about 12 parts by mass) %) And 20 ppm) in terms of zirconium metal with respect to PR-5007, and the reaction is carried out at 80 ° C. for 5 hours while stirring and mixing in a nitrogen atmosphere, so that the main chain is a copolymer of ethylene oxide and propylene oxide. The urethane-based tree having an isocyanate group in its molecule To obtain a U-1.
Further, the silane compound SE-1 (15.1 parts by mass) was added, and while stirring and mixing in a nitrogen atmosphere, the isocyanate group in the urethane-based resin U-1 and the silane compound SE-1 in the silane compound SE-1 were mixed. By reacting with a secondary amino group at 80 ° C. for 1 hour, the main chain is a copolymer of ethylene oxide and propylene oxide, a urethane bond in the molecule, a urea bond substituted with one active hydrogen, and Thus, a curable resin SU-1 having a trimethoxysilyl group (corresponding to a moisture curable resin other than the curable resin (A) and the curable resin (B)) was obtained. After completion of the reaction, IR measurement was performed, and no characteristic absorption (2265 cm-1) attributed to the isocyanate group was observed.
A reaction vessel is charged with AB-1 (100 parts by mass), added with a curable resin SU-1 (10 parts by mass) in a nitrogen atmosphere, and kneaded for 30 minutes under reduced pressure, thereby providing STP-E10 (curable resin). (Corresponding to (A)), a vinyl polymer having a trimethoxysilyl group in the molecule (corresponding to curable resin (B)), and a curable resin whose main chain is a random copolymer of ethylene oxide and propylene oxide. A curable resin AB-3, which is a mixture containing SU-1 (corresponding to a moisture curable resin other than the curable resin (A) and the curable resin (B)), was obtained.
(硬化性樹脂PB-1の調製)
 反応容器内で、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン(222.4質量部)を窒素雰囲気下室温で撹拌しながら、アクリル酸メチル(172.2質量部、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシランに対して2モル当量)を1時間かけて滴下し、さらに50℃で7日間反応させることで、分子内にトリメトキシシリル基及び第二級アミノ基を有するシラン化合物SE-1を得た。
 別の反応容器内で、PMLS4012(旭硝子株式会社製商品名、ポリオキシプロピレンポリオール、数平均分子量約10,000、100質量部)、イソホロンジイソシアネート(4.83質量部)及びジオクチルスズジバーサテート(PMLS4012に対して50ppm)を仕込み、窒素雰囲気下にて撹拌混合しながら、80℃で3時間反応させることで、主鎖がオキシアルキレン重合体でありその分子内にイソシアネート基を有するウレタン系樹脂U-1を得た。
 さらに、上記シラン化合物SE-1(8.90質量部)を添加し、窒素雰囲気下にて撹拌混合しながら、上記ウレタン系樹脂U-1中のイソシアネート基と上記シラン化合物SE-1中の第二級アミノ基とを80℃で1時間反応させることで、主鎖がオキシアルキレン重合体でありその分子内にウレタン基、活性水素が1個置換されたウレア基、及び、トリメトキシシリル基を有する硬化性樹脂P-1を得た。反応終了後、IR測定を行ったところイソシアネート基に帰属される特性吸収(2265cm-1)は観測されなかった。
(Preparation of curable resin PB-1)
In a reaction vessel, while stirring N- (2-aminoethyl) -3-aminopropyltrimethoxysilane (222.4 parts by mass) at room temperature under a nitrogen atmosphere, methyl acrylate (172.2 parts by mass, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane) was added dropwise over 1 hour and further reacted at 50 ° C. for 7 days. A silane compound SE-1 having a secondary amino group was obtained.
In a separate reaction vessel, PMLS4012 (trade name, manufactured by Asahi Glass Co., Ltd., polyoxypropylene polyol, number average molecular weight of about 10,000, 100 parts by mass), isophorone diisocyanate (4.83 parts by mass) and dioctyltin diversate ( The urethane resin U having a main chain of an oxyalkylene polymer and an isocyanate group in the molecule is prepared by reacting at 80 ° C. for 3 hours while stirring and mixing in a nitrogen atmosphere. -1 was obtained.
Further, the silane compound SE-1 (8.90 parts by mass) was added, and while stirring and mixing in a nitrogen atmosphere, the isocyanate group in the urethane resin U-1 and the silane compound SE-1 in the silane compound SE-1 were mixed. By reacting with a secondary amino group at 80 ° C. for 1 hour, the main chain is an oxyalkylene polymer, and a urethane group, a urea group substituted with one active hydrogen in its molecule, and a trimethoxysilyl group A curable resin P-1 was obtained. After completion of the reaction, IR measurement was performed, and no characteristic absorption (2265 cm −1 ) attributed to the isocyanate group was observed.
 反応容器に、硬化性樹脂P-1(100質量部)を入れ、窒素雰囲気下、80℃まで昇温した。そこに、メタクリル酸メチル37.5質量部、メタクリル酸ラウリル25質量部、3-アクリロキシプロピルトリメトキシシラン3.0質量部、3-メルカプトプロピルトリメトキシシラン7.0質量部、および2,2′-アゾビス(2,4-ジメチルバレロニトリル)0.50質量部を混合したモノマー混合液を30分かけて滴下し、重合反応を行った。さらに、80℃で30分反応させた後、2,2′-アゾビス(2,4-ジメチルバレロニトリル)0.20質量部とメチルエチルケトン10質量部の混合溶液を滴下し、重合反応を行った。次いで、80℃で30分反応させた後、2,2′-アゾビス(2,4-ジメチルバレロニトリル)0.10質量部とメチルエチルケトン10質量部の混合溶液を滴下し、重合反応を行った。さらに、80℃で3時間反応させた後、メチルエチルケトンを減圧留去することで、硬化性樹脂P-1(硬化性樹脂(A)にかからない硬化性樹脂)と、分子内にトリメトキシシリル基を有するビニル重合体(硬化性樹脂(B)に相当、重合性ビニル化合物におけるホモポリマーのTgが-20℃以下である重合性ビニル系化合物の割合:約38質量%)とを含有する混合物である硬化性樹脂PB-1を得た。 In a reaction vessel, curable resin P-1 (100 parts by mass) was placed and heated to 80 ° C. in a nitrogen atmosphere. There, 37.5 parts by mass of methyl methacrylate, 25 parts by mass of lauryl methacrylate, 3.0 parts by mass of 3-acryloxypropyltrimethoxysilane, 7.0 parts by mass of 3-mercaptopropyltrimethoxysilane, and 2,2 A monomer mixture mixed with 0.50 parts by mass of '-azobis (2,4-dimethylvaleronitrile) was added dropwise over 30 minutes to conduct a polymerization reaction. Furthermore, after reacting at 80 ° C. for 30 minutes, a mixed solution of 0.20 part by mass of 2,2′-azobis (2,4-dimethylvaleronitrile) and 10 parts by mass of methyl ethyl ketone was added dropwise to carry out a polymerization reaction. Next, after reacting at 80 ° C. for 30 minutes, a mixed solution of 0.10 parts by mass of 2,2′-azobis (2,4-dimethylvaleronitrile) and 10 parts by mass of methyl ethyl ketone was added dropwise to carry out a polymerization reaction. Furthermore, after reacting at 80 ° C. for 3 hours, methyl ethyl ketone was distilled off under reduced pressure to obtain a curable resin P-1 (a curable resin not applied to the curable resin (A)) and a trimethoxysilyl group in the molecule. And a vinyl polymer (corresponding to the curable resin (B), the ratio of the polymerizable vinyl compound in which the Tg of the homopolymer in the polymerizable vinyl compound is −20 ° C. or less: about 38% by mass). A curable resin PB-1 was obtained.
(硬化性樹脂PB-2の調製)
 反応容器に、SAT400(株式会社カネカ製商品名、メチルジメトキシシリル基を末端に有するポリオキシアルキレン、100質量部)を入れ、窒素雰囲気下、80℃まで昇温した。そこに、メタクリル酸メチルを40質量部、アクリル酸ブチルを9.0質量部、メタクリル酸ステアリルを10質量部、3-アクリロキシプロピルメチルジメトキシシランを5.0質量部、3-メルカプトプロピルメチルジメトキシシランを5.0質量部、および2,2′-アゾビス(2,4-ジメチルバレロニトリル)0.46質量部を混合したモノマー混合液を30分かけて滴下し、重合反応を行った。さらに、80℃で30分反応させた後、2,2′-アゾビス(2,4-ジメチルバレロニトリル)0.15質量部とメチルエチルケトン10質量部の混合溶液を滴下し、重合反応を行った。次いで、80℃で30分反応させた後、2,2′-アゾビス(2,4-ジメチルバレロニトリル)0.08質量部とメチルエチルケトン10質量部の混合溶液を滴下し、重合反応を行った。さらに、80℃で3時間反応させた後、メチルエチルケトンを減圧留去することで、SAT400(硬化性樹脂(A)にかからない硬化性樹脂)と、分子内にメチルジメトキシシリル基を有するビニル重合体(硬化性樹脂(B)に相当、重合性ビニル化合物におけるホモポリマーのTgが-20℃以下である重合性ビニル系化合物の割合:約14質量%)とを含有する混合物である硬化性樹脂PB-2を得た。
(Preparation of curable resin PB-2)
In a reaction vessel, SAT400 (trade name, manufactured by Kaneka Corporation, polyoxyalkylene having a methyldimethoxysilyl group at the end, 100 parts by mass) was placed, and the temperature was raised to 80 ° C. in a nitrogen atmosphere. There, 40 parts by mass of methyl methacrylate, 9.0 parts by mass of butyl acrylate, 10 parts by mass of stearyl methacrylate, 5.0 parts by mass of 3-acryloxypropylmethyldimethoxysilane, 3-mercaptopropylmethyldimethoxy A monomer mixed solution obtained by mixing 5.0 parts by mass of silane and 0.46 parts by mass of 2,2′-azobis (2,4-dimethylvaleronitrile) was dropped over 30 minutes to carry out a polymerization reaction. Furthermore, after reacting at 80 ° C. for 30 minutes, a mixed solution of 0.15 parts by mass of 2,2′-azobis (2,4-dimethylvaleronitrile) and 10 parts by mass of methyl ethyl ketone was added dropwise to carry out a polymerization reaction. Next, after reacting at 80 ° C. for 30 minutes, a mixed solution of 0.08 parts by mass of 2,2′-azobis (2,4-dimethylvaleronitrile) and 10 parts by mass of methyl ethyl ketone was dropped to carry out a polymerization reaction. Furthermore, after reacting at 80 ° C. for 3 hours, methyl ethyl ketone was distilled off under reduced pressure, whereby SAT400 (a curable resin not applied to the curable resin (A)) and a vinyl polymer having a methyldimethoxysilyl group in the molecule ( A curable resin PB-, which is a mixture containing a curable resin (B) and a proportion of a polymerizable vinyl compound in which the Tg of the homopolymer in the polymerizable vinyl compound is −20 ° C. or less: about 14% by mass) 2 was obtained.
(硬化性樹脂PB-3の調製)
 反応容器に、PB-1(100質量部)を入れ、窒素雰囲気下、硬化性樹脂SU-1(10質量部)添加し、減圧下で30分混練することで、硬化性樹脂P-1(硬化性樹脂(A)にかからない硬化性樹脂)と、分子内にトリメトキシシリル基を有するビニル重合体(硬化性樹脂(B)に相当)と、主鎖がエチレンオキサイドとプロピレンオキサイドのランダム共重合体である硬化性樹脂SU-1(硬化性樹脂(A)及び硬化性樹脂(B)以外の湿気硬化性樹脂に相当)とを含有する混合物である硬化性樹脂PB-3を得た。
(Preparation of curable resin PB-3)
PB-1 (100 parts by mass) is placed in a reaction vessel, curable resin SU-1 (10 parts by mass) is added in a nitrogen atmosphere, and the mixture is kneaded for 30 minutes under reduced pressure, whereby curable resin P-1 ( A curable resin not applied to the curable resin (A)), a vinyl polymer having a trimethoxysilyl group in the molecule (corresponding to the curable resin (B)), and a random copolymer of ethylene oxide and propylene oxide in the main chain. A curable resin PB-3, which is a mixture containing the curable resin SU-1 (corresponding to a moisture curable resin other than the curable resin (A) and the curable resin (B)) as a coalescence, was obtained.
[塩基性化合物(C)の準備]
 塩基性化合物(C)として、KBM-903(信越化学工業株式会社製商品名、3-アミノプロピルトリメトキシシラン)、KBM-603(信越化学工業株式会社製商品名、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン)を準備した。
[Preparation of basic compound (C)]
As basic compounds (C), KBM-903 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd., 3-aminopropyltrimethoxysilane), KBM-603 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.), N- (2-aminoethyl) ) -3-aminopropyltrimethoxysilane).
[金属系触媒の準備]
 硬化促進剤として利用できる金属触媒として、ネオスタンU-830(日東化成株式会社製商品名、オクチル錫系化合物)、及び、ジブチル錫ジメトキシドを準備した。
[Preparation of metal catalyst]
Neostan U-830 (trade name, manufactured by Nitto Kasei Co., Ltd., octyltin compound) and dibutyltin dimethoxide were prepared as metal catalysts that can be used as curing accelerators.
(実施例1~3、比較例1~3)
[低温硬化性の評価]
 表1に示す配合割合(質量部)で、5±2℃相対湿度35±5%の条件下、スパーチュラを用いて各原料を30秒間混合することで、各硬化性樹脂組成物を調製した。得られた各硬化性樹脂の硬化速度を比較した。硬化速度の比較は皮張り時間を用いて行った。当該測定においては、各原料を30秒間混合した直後を開始時間とし、硬化物の表面に形成された皮膜がスパーチュラに転着しなくなった時間を終了時間として、開始から終了までの時間を皮張り時間とした。各皮張り時間を表1に示す。なお、5±2℃相対湿度35±5%の条件を「低温条件」と記す場合がある。
(Examples 1 to 3, Comparative Examples 1 to 3)
[Evaluation of low-temperature curability]
Each curable resin composition was prepared by mixing each raw material for 30 seconds using a spatula under the conditions of 5 ± 2 ° C. and relative humidity of 35 ± 5% at the blending ratio (parts by mass) shown in Table 1. The curing rates of the obtained curable resins were compared. The comparison of the curing rate was performed using the skinning time. In this measurement, the starting time is the time immediately after mixing each raw material for 30 seconds, the time when the film formed on the surface of the cured product is not transferred to the spatula is the end time, and the time from the start to the end is skinned. It was time. Each skinning time is shown in Table 1. The condition of 5 ± 2 ° C. relative humidity 35 ± 5% may be referred to as “low temperature condition”.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、本発明にかかる硬化性樹脂組成物は、低温条件下でも、非常に硬化性が高いことが分かる。具体的には、本発明にかからない比較例1~3は、皮張りに12時間かそれ以上の時間が必要であるのに対して、本発明にかかる実施例1~3は、1時間以内で皮張りしていることが分かる。実施例1と比較例1、実施例2と比較例2は、実施例3と比較例3は、硬化性樹脂以外の成分は同じであるため、これらの効果は、本発明にかかる硬化性樹脂(A)及び硬化性樹脂(B)を併用することによる、特異な効果であるといえる。これらのことから、本発明にかかる硬化性樹脂組成物は、例えば、冬場の屋外などで使用されるシーリング材や接着剤などにも十分適用可能であり、産業上非常に有用であるといえる。さらに、実施例1及び3は、毒性の懸念があるジブチル錫化合物を使用しておらず、有機錫化合物を使用している実施例2についても、その有機錫化合物が有機錫化合物の中でも安全性の比較的高いジオクチル錫化合物であるうえ、その添加量が硬化性樹脂組成物の全量質量部に対して1,000ppm未満である。このことから、本発明にかかる硬化性樹脂組成物は、安全性が確保されたているうえ低温硬化性が高いことから、応用範囲が広く、産業上極めて有用であるといえる。 From the results in Table 1, it can be seen that the curable resin composition according to the present invention has very high curability even under low temperature conditions. Specifically, Comparative Examples 1 to 3 which do not apply to the present invention require 12 hours or more for skinning, whereas Examples 1 to 3 according to the present invention require less than 1 hour. You can see that it is skinned. Since Example 1 and Comparative Example 1, Example 2 and Comparative Example 2 are the same as Example 3 and Comparative Example 3 except for the curable resin, these effects are the same as those of the curable resin according to the present invention. It can be said that it is a peculiar effect by using together (A) and curable resin (B). From these facts, the curable resin composition according to the present invention can be sufficiently applied to, for example, a sealing material and an adhesive used outdoors in winter and can be said to be very useful industrially. Further, Examples 1 and 3 do not use a dibutyltin compound that has a concern about toxicity, and also in Example 2 using an organic tin compound, the organic tin compound is safe among the organic tin compounds. In addition to the relatively high dioctyltin compound, the addition amount thereof is less than 1,000 ppm relative to the total mass part of the curable resin composition. From this, the curable resin composition according to the present invention has a wide range of applications and can be said to be extremely useful industrially because safety is ensured and low-temperature curability is high.
(実施例4及び5、比較例4及び5)
[低温硬化性の評価]
 表2に示す配合割合(質量部)で、5±2℃相対湿度35±5%、及び、23±2℃相対湿度50±5%の条件下、スパーチュラを用いて各原料を30秒間混合することで、各硬化性樹脂組成物を調製した。得られた各硬化性樹脂の硬化速度を比較した。硬化速度の比較は皮張り時間を用いて行った。当該測定においては、各原料を30秒間混合した直後を開始時間とし、硬化物の表面に形成された皮膜がスパーチュラに転着しなくなった時間を終了時間として、開始から終了までの時間を皮張り時間とした。各皮張り時間を表2に示す。なお、23±2℃相対湿度50±5%の条件を「常温条件」と記す場合がある。
(Examples 4 and 5, Comparative Examples 4 and 5)
[Evaluation of low-temperature curability]
Each raw material is mixed for 30 seconds using a spatula under the conditions of 5 ± 2 ° C. relative humidity 35 ± 5% and 23 ± 2 ° C. relative humidity 50 ± 5% at the blending ratio (parts by mass) shown in Table 2. Thus, each curable resin composition was prepared. The curing rates of the obtained curable resins were compared. The comparison of the curing rate was performed using the skinning time. In this measurement, the starting time is the time immediately after mixing each raw material for 30 seconds, the time when the film formed on the surface of the cured product is not transferred to the spatula is the end time, and the time from the start to the end is skinned. It was time. Each skinning time is shown in Table 2. The condition of 23 ± 2 ° C. and relative humidity 50 ± 5% may be referred to as “room temperature condition”.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2の結果から、本発明にかかる硬化性樹脂組成物は、低温条件下でも非常に硬化性が高いうえに、常温条件と低温条件での硬化性の違いも少ないことが分かる。具体的には、本発明にかからない比較例4及び5は、皮張り時間倍率(低温条件/常温条件)が5倍前後であるのに対して、本発明にかかる実施例4及び5は2.4倍であることから、低温にした際の硬化性の低下が少ない。一般的に、低温になると、架橋性珪素基同士の架橋反応が低下するため硬化性は落ちるが、本発明にかかる硬化性樹脂組成物はその低下が小さい。このような効果は、従来の硬化性樹脂組成物では得られないものであり、本発明にかかる硬化性樹脂(A)及び硬化性樹脂(B)を併用することによって得られた、特異な結果であるといえる。以上のことから、本発明にかかる硬化性樹脂組成物は、各種の温度範囲で、可使時間や硬化時間等の設定が容易になるため、産業非常に有用であるといえる。さらに、実施例4は、毒性の懸念があるジブチル錫化合物を使用しておらず、有機錫化合物を使用している実施例5についても、その有機錫化合物が有機錫化合物の中でも安全性の比較的高いジオクチル錫化合物であるうえ、その添加量が硬化性樹脂組成物の全質量部に対して1,000ppm未満である。このことから、本発明にかかる硬化性樹脂組成物は、安全性が確保されているうえ低温硬化性が高く、なおかつ温度による硬化性の変化が小さいため、極めて応用範囲が広く、産業上極めて有用であるといえる。 From the results of Table 2, it can be seen that the curable resin composition according to the present invention has very high curability even under low temperature conditions, and there is little difference in curability between normal temperature conditions and low temperature conditions. Specifically, Comparative Examples 4 and 5 which are not related to the present invention have a skinning time magnification (low temperature condition / normal temperature condition) of about 5 times, whereas Examples 4 and 5 according to the present invention are 2. Since it is 4 times, there is little fall of sclerosis | hardenability at low temperature. In general, when the temperature is low, the cross-linking reaction between cross-linkable silicon groups decreases, so that the curability decreases. However, the decrease is small in the curable resin composition according to the present invention. Such an effect cannot be obtained with a conventional curable resin composition, and is a unique result obtained by using the curable resin (A) and the curable resin (B) according to the present invention in combination. You can say that. From the above, it can be said that the curable resin composition according to the present invention is very useful in the industry because it makes it easy to set the pot life and the curing time in various temperature ranges. Further, Example 4 does not use a dibutyltin compound that has a concern of toxicity, and also in Example 5 that uses an organic tin compound, the organic tin compound is a safety comparison among the organic tin compounds. In addition to a particularly high dioctyltin compound, the addition amount thereof is less than 1,000 ppm with respect to the total mass part of the curable resin composition. Therefore, the curable resin composition according to the present invention has a wide range of applications and is extremely useful industrially because safety is ensured and low-temperature curability is high and the change in curability due to temperature is small. You can say that.
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本出願は、2010年1月20日付で出願された日本特許出願(特願2010-010541)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
Although the invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
Note that this application is based on a Japanese patent application filed on January 20, 2010 (Japanese Patent Application No. 2010-010541), which is incorporated by reference in its entirety. Also, all references cited herein are incorporated as a whole.
 本発明における硬化性樹脂組成物は、従来一液型又は多液型の硬化性樹脂組成物が用いられてきた全ての用途に使用できる。たとえば、接着剤、粘着剤、シーリング材、塗料、コーティング材、目止め材、注型材、被覆材等として用いることができる。 The curable resin composition in the present invention can be used for all uses where a one-component or multi-component curable resin composition has been used. For example, it can be used as an adhesive, an adhesive, a sealing material, a paint, a coating material, a sealing material, a casting material, a coating material, and the like.

Claims (10)

  1.  架橋性珪素基の珪素原子に炭素原子が結合し、さらに該炭素原子に非共有電子対を有するヘテロ原子が結合した化学構造を有する架橋性珪素基を分子内に有する硬化性樹脂(A)、
     珪素原子に炭素数2以上のアルキレン基が結合する構造を有する架橋性珪素基を分子内に有し、かつ、主鎖がビニル重合体である硬化性樹脂(B)、
    及び、
     塩基性化合物(C)を含有する硬化性樹脂組成物であって、
     硬化性樹脂(A)と硬化性樹脂(B)の割合(質量部)が5:95~95:5であり、
     硬化性樹脂(A)と硬化性樹脂(B)との総和100質量部に対して、塩基性化合物(C)が0.1~30質量部含有されることを特徴とする、硬化性樹脂組成物。
    A curable resin (A) having a crosslinkable silicon group in the molecule having a chemical structure in which a carbon atom is bonded to a silicon atom of a crosslinkable silicon group and a heteroatom having a lone pair is bonded to the carbon atom;
    A curable resin (B) having a crosslinkable silicon group in the molecule having a structure in which an alkylene group having 2 or more carbon atoms is bonded to a silicon atom, and the main chain is a vinyl polymer;
    as well as,
    A curable resin composition containing a basic compound (C),
    The ratio (parts by mass) of the curable resin (A) and the curable resin (B) is 5:95 to 95: 5,
    A curable resin composition comprising 0.1 to 30 parts by mass of the basic compound (C) with respect to 100 parts by mass of the total of the curable resin (A) and the curable resin (B). object.
  2.  硬化性樹脂(A)が、分子内に下記一般式(1)で表される架橋性珪素基を有する硬化性樹脂であり、かつ、硬化性樹脂(B)が、分子内に下記一般式(2)で表される架橋性珪素基を有する硬化性樹脂であることを特徴とする、請求項1に記載の硬化性樹脂組成物。
      -A-CH-SiR 3-a(OR   ・・・式(1)
    (但し、Aは架橋性珪素基に含まれる珪素原子に結合するメチレン基に非共有電子対を有するヘテロ原子が結合している結合官能基を、Rは炭素数1~20の炭化水素基を、Rは分子量300以下の有機基を、aは1、2又は3を、それぞれ示す)
      -X-SiR 3-b(OR   ・・・式(2)
    (但し、Xは炭素数2~20の炭化水素基を、Rは炭素数1~20の炭化水素基を、Rは分子量300以下の有機基を、bは1、2又は3を、それぞれ示す)
    The curable resin (A) is a curable resin having a crosslinkable silicon group represented by the following general formula (1) in the molecule, and the curable resin (B) has the following general formula ( The curable resin composition according to claim 1, which is a curable resin having a crosslinkable silicon group represented by 2).
    —A—CH 2 —SiR 1 3-a (OR 2 ) a (1)
    (Wherein A is a bonding functional group in which a hetero atom having an unshared electron pair is bonded to a methylene group bonded to a silicon atom contained in the crosslinkable silicon group, and R 1 is a hydrocarbon group having 1 to 20 carbon atoms. R 2 represents an organic group having a molecular weight of 300 or less, and a represents 1, 2 or 3)
    -X-SiR 3 3-b (OR 4 ) b Formula (2)
    (Wherein X is a hydrocarbon group having 2 to 20 carbon atoms, R 3 is a hydrocarbon group having 1 to 20 carbon atoms, R 4 is an organic group having a molecular weight of 300 or less, b is 1, 2 or 3; Each)
  3.  硬化性樹脂(A)の主鎖が、ポリオキシアルキレンであることを特徴とする、請求項1又は2に記載の硬化性樹脂組成物。 The curable resin composition according to claim 1 or 2, wherein the main chain of the curable resin (A) is polyoxyalkylene.
  4.  硬化性樹脂(A)が、含窒素特性基を介して主鎖に架橋性珪素基が連結されることを特徴とする、請求項1~3のいずれか一項に記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 3, wherein the curable resin (A) has a crosslinkable silicon group linked to the main chain via a nitrogen-containing characteristic group. .
  5.  硬化性樹脂(B)が、少なくとも、ホモポリマーのガラス転移温度が-20℃以下である重合性ビニル系化合物から誘導される構造単位を含むビニル重合体であることを特徴とする、請求項1~4のいずれか一項に記載の硬化性樹脂組成物。 The curable resin (B) is a vinyl polymer containing at least a structural unit derived from a polymerizable vinyl compound in which the glass transition temperature of the homopolymer is -20 ° C or lower. The curable resin composition according to any one of 1 to 4.
  6.  塩基性化合物(C)が、下記一般式(3)で表されるアミノシラン化合物であることを特徴とする、請求項1~5のいずれか一項に記載の硬化性樹脂組成物。
      RN-R-SiR 3-c(OR   ・・・式(3)
    (但し、R、Rは分子量500以下の有機基又は水素原子を、Rは分子量500以下の有機基を、Rは炭素数1~20の炭化水素基を、Rは分子量300以下の有機基を、cは1、2又は3を、それぞれ示す)
    The curable resin composition according to any one of claims 1 to 5, wherein the basic compound (C) is an aminosilane compound represented by the following general formula (3).
    R 5 R 6 N—R 7 —SiR 8 3-c (OR 9 ) c Formula (3)
    (However, R 5 and R 6 are organic groups or hydrogen atoms having a molecular weight of 500 or less, R 7 is an organic group having a molecular weight of 500 or less, R 8 is a hydrocarbon group having 1 to 20 carbon atoms, and R 9 is a molecular weight of 300. The following organic groups, c represents 1, 2 or 3, respectively)
  7.  塩基性化合物(C)が、下記一般式(4)で表されるアミノシラン化合物であることを特徴とする、請求項1~6のいずれか一項に記載の硬化性樹脂組成物。
      HN-R10-NH-R11-SiR12 3-d(OR13 ・・・式(4)
    (但し、R10は分子量200以下の有機基を、R11は炭素数1~20の炭化水素基を、R12は炭素数1~20の炭化水素基を、R13は分子量300以下の有機基を、dは1、2又は3を、それぞれ示す)
    The curable resin composition according to any one of claims 1 to 6, wherein the basic compound (C) is an aminosilane compound represented by the following general formula (4).
    H 2 N—R 10 —NH—R 11 —SiR 12 3-d (OR 13 ) d Formula (4)
    (However, R 10 is an organic group having a molecular weight of 200 or less, R 11 is a hydrocarbon group having 1 to 20 carbon atoms, R 12 is a hydrocarbon group having 1 to 20 carbon atoms, and R 13 is an organic group having a molecular weight of 300 or less. A group, d is 1, 2 or 3, respectively)
  8.  有機錫化合物の含有量が、硬化性樹脂組成物全質量部に対して0~1000ppm未満であることを特徴とする、請求項1~7のいずれか一項に記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 7, wherein the content of the organic tin compound is 0 to less than 1000 ppm with respect to the total mass part of the curable resin composition.
  9.  硬化性樹脂(A)中で、硬化性樹脂(B)を形成するためのビニル重合反応を行うことで、硬化性樹脂(A)と硬化性樹脂(B)の混合物を調製することを特徴とする、請求項1~8のいずれか一項に記載の硬化性樹脂組成物。 A mixture of the curable resin (A) and the curable resin (B) is prepared by performing a vinyl polymerization reaction for forming the curable resin (B) in the curable resin (A). The curable resin composition according to any one of claims 1 to 8.
  10.  請求項1~9のいずれか一項に記載の硬化性樹脂組成物を硬化性成分の主体とするシーリング材組成物、接着剤組成物又は粘着剤前駆体組成物。 A sealing material composition, an adhesive composition or a pressure sensitive adhesive precursor composition comprising the curable resin composition according to any one of claims 1 to 9 as a main component of a curable component.
PCT/JP2011/050814 2010-01-20 2011-01-19 Curable resin composition WO2011090046A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011550916A JPWO2011090046A1 (en) 2010-01-20 2011-01-19 Curable resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-010541 2010-01-20
JP2010010541 2010-01-20

Publications (1)

Publication Number Publication Date
WO2011090046A1 true WO2011090046A1 (en) 2011-07-28

Family

ID=44306848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050814 WO2011090046A1 (en) 2010-01-20 2011-01-19 Curable resin composition

Country Status (3)

Country Link
JP (1) JPWO2011090046A1 (en)
TW (1) TW201139536A (en)
WO (1) WO2011090046A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013234235A (en) * 2012-05-08 2013-11-21 Konishi Co Ltd Moisture-curable adhesive composition
EP2813528A1 (en) * 2013-06-11 2014-12-17 Sika Technology AG Curable composition on the basis of polyethers containing alkoxysilane groups and a phosphazene base

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004518801A (en) * 2001-02-20 2004-06-24 コンゾルテイウム フユール エレクトロケミツシエ インヅストリー ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Isocyanate-free foamable mixture with high cure speed
JP2005501146A (en) * 2001-08-28 2005-01-13 コンゾルテイウム フユール エレクトロケミツシエ インヅストリー ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Fast-curing one-component mixture containing alkoxysilane terminated polymer
JP2005054174A (en) * 2003-07-18 2005-03-03 Konishi Co Ltd Curable resin composition and moisture-curing adhesive composition
JP2005139452A (en) * 2003-11-06 2005-06-02 Wacker Chemie Gmbh Method for enhancing flexibility of moisture cured elastomer
JP2005281495A (en) * 2004-03-30 2005-10-13 Yokohama Rubber Co Ltd:The Curable composition
JP2006199905A (en) * 2005-01-18 2006-08-03 Konishi Co Ltd Curable resin composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004518801A (en) * 2001-02-20 2004-06-24 コンゾルテイウム フユール エレクトロケミツシエ インヅストリー ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Isocyanate-free foamable mixture with high cure speed
JP2005501146A (en) * 2001-08-28 2005-01-13 コンゾルテイウム フユール エレクトロケミツシエ インヅストリー ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Fast-curing one-component mixture containing alkoxysilane terminated polymer
JP2005054174A (en) * 2003-07-18 2005-03-03 Konishi Co Ltd Curable resin composition and moisture-curing adhesive composition
JP2005139452A (en) * 2003-11-06 2005-06-02 Wacker Chemie Gmbh Method for enhancing flexibility of moisture cured elastomer
JP2005281495A (en) * 2004-03-30 2005-10-13 Yokohama Rubber Co Ltd:The Curable composition
JP2006199905A (en) * 2005-01-18 2006-08-03 Konishi Co Ltd Curable resin composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013234235A (en) * 2012-05-08 2013-11-21 Konishi Co Ltd Moisture-curable adhesive composition
EP2813528A1 (en) * 2013-06-11 2014-12-17 Sika Technology AG Curable composition on the basis of polyethers containing alkoxysilane groups and a phosphazene base

Also Published As

Publication number Publication date
TW201139536A (en) 2011-11-16
JPWO2011090046A1 (en) 2013-05-23

Similar Documents

Publication Publication Date Title
TW200920758A (en) Curable silyl-containing polymer composition containing paint adhesion additive
EP3008105B1 (en) Curable composition on the basis of polymers containing silane groups and a zinc catalyst
JP2010280880A (en) Curable resin composition
JP2013253175A (en) Curable resin composition
WO2007072825A1 (en) Room-temperature-curable composition
US10570243B2 (en) Non-tin catalyst for curing alkoxysilyl-containing polymer
JP2006199905A (en) Curable resin composition
JP2022546215A (en) Selective polyurethane prepolymer synthesis
JP2011168769A (en) Method for producing curable resin composition
JP2011178906A (en) Curable resin composition
JP4445584B2 (en) Curable resin composition
WO2011090046A1 (en) Curable resin composition
JP2011168772A (en) Curable resin composition
JP5922985B2 (en) Moisture curable adhesive composition
JP2011148884A (en) Curable resin composition
WO2004076555A1 (en) Curable resin composition and process for production thereof
JP2005179387A (en) Curable composition and sealing material composition
JP2011195741A (en) Curable resin composition
JP4076378B2 (en) Curable resin composition, method for producing the same, and adhesion method using the same
JP2005036034A (en) Curable composition and sealing material composition
JP2011037954A (en) Curable silicone-based resin composition
JP2011148885A (en) Curable resin composition
JP2011046755A (en) Curable silicone-based resin composition
JP2012219128A (en) Curable silylated urethane resin, and method of manufacturing the same
JP2011162666A (en) Curable silanized urethane resin and adhesive silanized urethane resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11734652

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011550916

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11734652

Country of ref document: EP

Kind code of ref document: A1