WO2011089916A1 - Receiver and reception method - Google Patents

Receiver and reception method Download PDF

Info

Publication number
WO2011089916A1
WO2011089916A1 PCT/JP2011/000312 JP2011000312W WO2011089916A1 WO 2011089916 A1 WO2011089916 A1 WO 2011089916A1 JP 2011000312 W JP2011000312 W JP 2011000312W WO 2011089916 A1 WO2011089916 A1 WO 2011089916A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
unit
antenna
signal
control
Prior art date
Application number
PCT/JP2011/000312
Other languages
French (fr)
Japanese (ja)
Inventor
小西 孝明
紀幸 松尾
大 福田
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011089916A1 publication Critical patent/WO2011089916A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/44Receiver circuitry for the reception of television signals according to analogue transmission standards
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/53Arrangements specially adapted for specific applications, e.g. for traffic information or for mobile receivers
    • H04H20/61Arrangements specially adapted for specific applications, e.g. for traffic information or for mobile receivers for local area broadcast, e.g. instore broadcast
    • H04H20/63Arrangements specially adapted for specific applications, e.g. for traffic information or for mobile receivers for local area broadcast, e.g. instore broadcast to plural spots in a confined site, e.g. MATV [Master Antenna Television]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/41Structure of client; Structure of client peripherals
    • H04N21/426Internal components of the client ; Characteristics thereof
    • H04N21/42607Internal components of the client ; Characteristics thereof for processing the incoming bitstream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/438Interfacing the downstream path of the transmission network originating from a server, e.g. retrieving encoded video stream packets from an IP network
    • H04N21/4383Accessing a communication channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/61Network physical structure; Signal processing
    • H04N21/6106Network physical structure; Signal processing specially adapted to the downstream path of the transmission network
    • H04N21/6143Network physical structure; Signal processing specially adapted to the downstream path of the transmission network involving transmission via a satellite
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/44Receiver circuitry for the reception of television signals according to analogue transmission standards
    • H04N5/4446IF amplifier circuits specially adapted for B&W TV
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/44Receiver circuitry for the reception of television signals according to analogue transmission standards
    • H04N5/50Tuning indicators; Automatic tuning control

Definitions

  • the present invention relates to a command collision avoidance technique for antenna control in a plurality of receivers in which an antenna is connected by a single cable and signals received by the antenna are received via the cable.
  • DiSEqC Digital Satellite Control
  • EUTELSAT European Telecommunications Satellite Organization
  • DiSEqC is a system that controls switching of a plurality of antennas and a plurality of polarization satellite signals.
  • CENELEC Commit Europe de Normalization Electrotechnique / European Committee for Electronic 49
  • SCIF Control signals SCIF Control signals
  • the CENELEC system controls the antenna unit by a control command included in a control signal transmitted from the receiver.
  • An intermediate frequency signal of 1 GHz band received by a plurality of antennas is frequency-converted to a predetermined user band (hereinafter also referred to as “UB”) by a control command and output to a single coaxial cable.
  • the predetermined user band is sent to the receiver that has transmitted the control command.
  • FIG. 15 is a block diagram showing the configuration of the CENELEC system.
  • a plurality of antennas for receiving satellite A, satellite B, satellite C it is assumed that a plurality of antennas for receiving satellite A, satellite B, satellite C,.
  • a receiver 1300a, a receiver 1300b, a receiver 1300c,..., A receiver 1300m and a plurality of receivers are installed.
  • the number of satellites and the number of receivers may be the same or different.
  • the control command included in the control signal output from the receiver 1300 a is transmitted to the CSS (Channel Stacking Switch) of the antenna unit 1100 via the distributor 1201 and one coaxial cable (transmission path). ) 1105.
  • the CSS 1105 converts the intermediate frequency signal corresponding to the designated satellite, polarization, and channel to the designated UB ( Frequency conversion to UB1, UB2,..., UBn).
  • the receiver 1300a that has transmitted the control command via one coaxial cable (transmission path) and distributor 1201 can receive the designated UB.
  • FIG. 16 is a block diagram showing a configuration of a conventional receiver 1300a.
  • the remote control light receiving unit 1316 receives user operation information from a remote control (not shown) and transmits it to the control unit 1314 as a key code.
  • the control unit 1314 performs predetermined control on the voltage output unit 1317 and the command transmission unit 1318 in order to cause the tuner unit 1311 to select a predetermined service corresponding to the key code transmitted from the remote control light receiving unit 1316.
  • a command is transmitted to the unit 1100.
  • FIG. 17 is a diagram conceptually illustrating a voltage output from the voltage output unit 1317 of the conventional receiver 1300a and a control command transmitted from the command transmission unit 1318 to the antenna unit 1100.
  • the control that the control unit 1314 performs on the voltage output unit 1317 and the command transmission unit 1318 will be described with reference to FIG.
  • the voltage output unit 1317 always outputs the output voltage Xv for power supply of the antenna unit 1100 under the control of the control unit 1314.
  • a command is transmitted from the receiver 1300a to the antenna unit 1100 to cause the tuner unit 1311 to select a predetermined service corresponding to the key code transmitted from the remote control light receiving unit 1316
  • a voltage output unit that receives a command from the control unit 1314 1317 changes the output voltage Xv to the output voltage Yv.
  • the command transmission unit 1318 that has received a command from the control unit 1314 superimposes the control command on the output voltage Yv from the voltage output unit 1317 and transmits it to the antenna unit 1100.
  • the voltage output unit 1317 that has received a command again from the control unit 1314 changes the output voltage Yv to the output voltage Xv.
  • the tuner unit 1311 selects a signal transmitted from the antenna unit 1100 to the receiver 1300a via one coaxial cable / distributor 1201 based on the control command transmitted from the receiver 1300a.
  • the signal selected by the tuner unit 1311 is converted into a digital signal and the signal level is adjusted, and then input to the demodulation unit 1312.
  • the signal input to the demodulation unit 1312 is demodulated and subjected to error correction.
  • the demodulated TS (Transport Stream) signal is output to a VID / AID (Video Identifier / Audio Identifier) detection unit 1313 in order to detect a VID (Video Identifier) and an AID (Audio Identifier).
  • the VID / AID detection unit 1313 detects the VID and AID of the TS signal output from the demodulation unit 1312, and the detection result is transmitted to the control unit 1314.
  • a plurality of control commands transmitted from a plurality of receivers (1300a, 1300b,..., 1300m) may collide with each other before reaching the antenna unit 1100. .
  • the antenna unit 1100 cannot recognize the formal control command, and as a result, each receiver that has transmitted the control command receives the VID and AID in the VID / AID detection unit 1313. It cannot be detected. Then, since a certain time is required for the receiver to retransmit the control command, a waiting time of several seconds is generated until a channel is selected and an image is output.
  • a receiver includes a plurality of antennas connected by a single cable, and a receiver that receives a video signal via a distributor connected to the cable, and an antenna voltage input from the outside and a predetermined voltage threshold value
  • a voltage comparison unit that outputs a comparison result, a voltage output unit that outputs a voltage for outputting a control command, a command transmission unit that transmits a control command, a voltage output unit based on the comparison result,
  • a control unit that controls the control command transmission unit. The control unit controls the voltage and the transmission of the control command based on the comparison result of the voltage comparison unit.
  • the receiving method of the present invention is a receiving method in a receiver in which a plurality of receivers are connected by an antenna and a single cable, and receives a user band signal including a video / audio signal that has been received and converted by the antenna. Comparing an antenna voltage input from the outside with a predetermined voltage threshold, outputting a comparison result, outputting a voltage for outputting a control command, sending a control command, and comparing the result And a step of controlling the transmission of the voltage and the control command.
  • the receiver and the reception method of the present invention by comparing a voltage input from the outside with a predetermined voltage threshold to check whether another receiver is transmitting a command in advance, It is possible to avoid command collision and reduce the waiting time at the time of tuning.
  • FIG. 1 is a block diagram showing a configuration of a receiver according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram illustrating a voltage output from the voltage output unit of the receiver according to Embodiment 1 of the present invention, a control command transmitted from the command transmission unit, and a predetermined threshold.
  • FIG. 3 is a flowchart showing a control method for receiving a control command of the receiver while avoiding a collision according to the first embodiment of the present invention.
  • FIG. 4 is a block diagram showing a configuration of a receiver according to Embodiment 2 of the present invention.
  • FIG. 5 is a diagram illustrating an example of voltages output from a plurality of receivers according to Embodiment 1 of the present invention, control commands to be transmitted, and threshold values.
  • FIG. 6 is a block diagram showing a configuration of a receiver according to Embodiment 2 of the present invention.
  • FIG. 7A is a waveform diagram showing an example of a voltage output from the receiver according to Embodiment 3 of the present invention, a control command to be transmitted, and an output signal of the differentiating circuit unit.
  • FIG. 7B is a flowchart showing a reception method for receiving a control command while avoiding a collision in the receiver according to Embodiment 3 of the present invention.
  • FIG. 8 is a block diagram showing a configuration of a satellite broadcast receiving system according to Embodiment 4 of the present invention.
  • FIG. 9A is a block diagram showing a configuration of a control signal generator of the receiver according to Embodiment 4 of the present invention.
  • FIG. 9B is a diagram illustrating a voltage output from the receiver according to Embodiment 4 of the present invention, a control command to be transmitted, and a predetermined threshold.
  • FIG. 9C is a block diagram showing a configuration of a control signal collision detection unit of the receiver according to Embodiment 4 of the present invention.
  • FIG. 10 is a diagram showing a time change of the power value when there is no collision in the antenna control signal when the power is turned on in the receiver according to Embodiment 4 of the present invention.
  • FIG. 11 is a diagram showing a time change of the power value when there is a collision in the antenna control signal when the power is turned on in the receiver according to Embodiment 4 of the present invention.
  • FIG. 10 is a diagram showing a time change of the power value when there is no collision in the antenna control signal when the power is turned on in the receiver according to Embodiment 4 of the present invention.
  • FIG. 11 is a diagram showing a time change of the power value when there is a collision
  • FIG. 12 is a diagram showing a time change of the power value when there is no collision in the antenna control signal at the time of channel switching in the receiver according to Embodiment 4 of the present invention.
  • FIG. 13 is a diagram showing a time change of the power value when there is a collision in the antenna control signal at the time of channel switching in the receiver according to Embodiment 4 of the present invention.
  • FIG. 14A is a flowchart showing processing in the reception method according to Embodiment 4 of the present invention.
  • FIG. 14B is a flowchart for explaining in detail steps of detecting a collision in the reception method according to Embodiment 4 of the present invention.
  • FIG. 15 is a block diagram showing the configuration of the CENELEC system.
  • FIG. 16 is a block diagram showing a configuration of a conventional receiver.
  • FIG. 17 is a diagram illustrating a voltage output from the voltage output unit of the conventional receiver and a control command transmitted from the command transmission unit to the antenna unit.
  • the present invention relates to a receiver in which a plurality of receivers are connected by an antenna and a single cable and receives a user band signal including a video / audio signal received by the antenna and frequency-converted. Although it is assumed that there are a plurality of antennas, one antenna may be used when a plurality of polarization signals can be received.
  • FIG. 1 is a block diagram showing a configuration of a receiver 500a according to Embodiment 1 of the present invention.
  • the receiver 500a includes a tuner unit 311, a demodulation unit 312, a VID / AID (Video Identifier / Audio Identifier) detection unit 313, a control unit 314, an AV output unit 315, a remote control light receiving unit 316, a voltage output unit 317, and a command transmission unit 318.
  • the voltage comparison unit 501 is configured.
  • the remote controller light receiving unit 316 receives user operation information from a remote controller (not shown). Then, the remote control light receiving unit 316 transmits user operation information to the control unit 314 as a key code.
  • the control unit 314 In order to cause the tuner unit 311 to select a predetermined service corresponding to the key code transmitted from the remote control light receiving unit 316, the control unit 314 performs predetermined control on the voltage output unit 317 and the command transmission unit 318. That is, the control unit 314 causes the command transmission unit 318 to transmit a control command to the antenna.
  • the tuner unit 311 is a frequency-converted video / audio signal transmitted from the antenna to the receiver 500a via one coaxial cable and distributor 201 based on a control command included in the control signal transmitted from the receiver 500a. Select a user band signal including.
  • the signal selected by the tuner unit 311 is converted into a digital signal and the signal level is adjusted, and then input to the demodulation unit 312.
  • the signal input to the demodulation unit 312 is demodulated and subjected to error correction. Thereafter, the demodulated TS (Transport Stream) signal is output to the VID / AID detector 313.
  • the TS signal output from the demodulator 312 is detected by the VID / AID detector 313 as VID (Video Identifier) and AID (Audio Identifier), and the detection result is transmitted to the controller 314.
  • the control unit 314 extracts a PID (Packet Identification) from the header of the TS signal, and extracts a TS packet of the corresponding channel selection channel from the TS signal using the extracted PID. Then, the control unit 314 decodes video / audio signal data from the TS signal. The decoded video / audio signal is output to a display or the like in a predetermined format via the AV output unit 315.
  • PID Packet Identification
  • the voltage comparison unit 501 compares the antenna voltage input from the outside with a predetermined voltage threshold value, and outputs the comparison result to the control unit 314.
  • the voltage output unit 317 outputs a voltage for outputting a control command to the antenna via the distributor 201 under the control of the control unit 314.
  • the command transmission unit 318 transmits a control command to the antenna under the control of the control unit 314.
  • the control unit 314 controls the voltage output unit 317 and the command transmission unit 318 based on the comparison result output from the voltage comparison unit 501. That is, the control unit 314 controls the voltage output unit 317 to output a voltage and the command transmission unit 318 to transmit a control command based on the comparison result of the voltage comparison unit 501.
  • the receiver 500a according to Embodiment 1 of the present invention includes a voltage comparison unit 501.
  • a configuration, an operation, and a reception method for the receiver 500a to receive the control command while avoiding the collision of the control command using the voltage comparison unit 501 will be described in detail with reference to FIGS.
  • FIG. 2 shows the voltage output from the voltage output unit 317 of the receiver 500a according to the first embodiment of the present invention, the control command transmitted from the command transmission unit 318, and a predetermined voltage threshold (hereinafter also abbreviated as “Sv”).
  • FIG. 2 the control unit 314 always outputs the output voltage Xv from the voltage output unit 317 as a power source for the antenna.
  • the control unit 314 outputs the output voltage Yv from the voltage output unit 317.
  • the control unit 314 causes the voltage output unit 317 to output a voltage for outputting a command when the externally input antenna voltage is lower than a predetermined voltage threshold, and the command transmission unit The control command is transmitted to 318.
  • the voltage output unit 317 is not output a voltage for transmitting a control command, and the command transmission unit 318 is not transmitted.
  • the control unit 314 does not cause the voltage output unit 317 to output a voltage for outputting a control command when the externally input antenna voltage is higher than a predetermined voltage threshold, and the command The transmission unit 318 is not allowed to transmit a control command. Then, after waiting for the antenna voltage input from the outside to become lower than the predetermined voltage threshold, the voltage output unit 317 outputs a voltage for transmitting the control command, and the command transmission unit 318 outputs the control command. Send it.
  • FIG. 3 is a flowchart showing a control method for receiving the control command of the receiver 500a according to the first embodiment of the present invention while avoiding a collision.
  • the remote control light receiving unit 316 When user operation information is received from a remote controller (not shown) by a user operation, the remote control light receiving unit 316 outputs a key code corresponding to the user operation information.
  • the control unit 314 In order to cause the tuner unit 311 to select a predetermined service corresponding to the key code, the control unit 314 causes the voltage comparison unit 501 to hold the antenna voltage input from the outside via the distributor 201 and the voltage comparison unit 501. The predetermined voltage threshold value is compared, and the comparison result is output (step S101).
  • the control unit 314 determines that a control command is not transmitted from another receiver (for example, the receiver 500b in FIG. 1). Then, the control unit 314 causes the voltage output unit 317 to change its output from the output voltage Xv to the output voltage Yv. That is, the voltage output unit 317 outputs a voltage for outputting a control command (step S102). Then, the control unit 314 causes the command transmission unit 318 to superimpose the control command on the output voltage Yv from the voltage output unit 317.
  • the command transmission unit 318 transmits a control command to the antenna (step S104). Then, after several milliseconds, the control unit 314 causes the voltage output unit 317 to change its output from the output voltage Yv to the output voltage Xv. That is, the voltage output unit 317 stops outputting the voltage for outputting the control command (step S106). As described above, the control unit 314 controls the voltage for outputting the control command and the transmission of the control command based on the comparison result.
  • step S101 if the antenna voltage is higher than the predetermined voltage threshold (“No” in step S101), the output of the voltage comparison unit 501 changes to High (or Low). Since the interrupt port of the control unit 314 changes to High (or Low), the control unit 314 determines that another receiver (for example, the receiver 500b in FIG. 1) is transmitting a control command. Then, the process returns to step S101.
  • another receiver for example, the receiver 500b in FIG. 1
  • control unit 314 does not cause the voltage output unit 317 to output a voltage for outputting a control command, and does not cause the command transmission unit 318 to transmit the control command to the antenna. Then, after waiting for the antenna voltage to become lower than the predetermined voltage threshold (“Yes” in step S101), the control unit 314 causes the voltage output unit 317 to change from the output voltage Xv to the output voltage Yv. . That is, the control unit 314 outputs a voltage for outputting a control command from the voltage output unit 317 (step S102). Then, the control unit 314 causes the command transmission unit 318 to transmit a control command to the antenna (step S104).
  • another receiver is transmitting a control command in advance by comparing the antenna voltage input from the outside with a predetermined voltage threshold (Sv). By checking whether or not, it is possible to avoid a collision of control commands between the receivers and reduce the waiting time at the time of tuning.
  • Sv predetermined voltage threshold
  • FIG. 4 is a block diagram showing a configuration of receiver 600a according to Embodiment 2 of the present invention.
  • the receiver 600a includes a tuner unit 311, a demodulation unit 312, a VID / AID detection unit 313, a control unit 314a, an AV output unit 315, a remote control light receiving unit 316, a command transmission unit 318, a voltage comparison unit 501, a voltage Xv output unit 601, A voltage Yv output unit 602 and a switch 603 are included.
  • the receiver 600a is characterized by including a voltage Xv output unit 601, a voltage Yv output unit 602, and a switch 603.
  • the components having the same functions as those of the first embodiment are denoted by the same reference numerals, and detailed description of the configuration and operation may be omitted.
  • the control unit 314a always outputs the output voltage Xv from the voltage Xv output unit 601 as a power source for the antenna. Further, the control unit 314a constantly outputs a voltage for changing the output voltage Xv to the output voltage Yv from the voltage Yv output unit 602.
  • the output voltage Yv is a voltage for superimposing the control command from the command transmission unit 318.
  • the control unit 314a always outputs a control command to be superimposed on the output voltage Yv from the command transmission unit 318.
  • the switch 603 when the switch 603 is open, only the output voltage Xv from the voltage Xv output unit 601 is output to the antenna.
  • the switch 603 is closed, the control command is superimposed on the output voltage Yv and output to the antenna.
  • the remote control light receiving unit 316 outputs a key code corresponding to the user operation information.
  • the control unit 314a causes the voltage comparison unit 501 to hold the antenna voltage input from the outside via the distributor 201 and the voltage comparison unit 501.
  • a predetermined voltage threshold value (Sv) is compared.
  • the control unit 314a determines that a control command is not transmitted from another receiver (for example, the receiver 600b in FIG. 4). Then, the control unit 314a closes the switch 603, superimposes the control command on the output voltage Yv, and transmits the control command to the antenna. Then, the control unit 314a opens the switch 603. As a result, after several milliseconds, the output voltage to the antenna changes from Yv to Xv under the control of the control unit 314a.
  • the control unit 314a keeps the switch 603 open, does not output a voltage for outputting the control command, and does not transmit the control command. Then, after waiting for the antenna voltage to become lower than the predetermined voltage threshold, the control unit 314a closes the switch 603.
  • the receiver 600a it is confirmed whether another receiver is transmitting a command in advance by comparing the antenna voltage input from the outside with a predetermined voltage threshold. By doing so, it is possible to avoid command collision between receivers and reduce the waiting time at the time of tuning.
  • the collision avoidance impossible period (t1) is a period from when the output voltage of the receiver 500a starts to change from Xv to Yv and reaches a predetermined voltage threshold.
  • the receiver 500b shown in FIG. 5 has a control command collision since the antenna voltage input from the outside is lower than a predetermined threshold at time t3.
  • the control command is not transmitted from another receiver (for example, receiver 500a in FIG. 5), and the control command is output.
  • FIG. 6 is a block diagram showing a configuration of a receiver 500c according to Embodiment 3 of the present invention.
  • an operation of receiver 500c in the present embodiment will be described.
  • the rest of the configuration excluding the differentiation circuit unit 319 is the same as that of the first embodiment, and the same reference numerals are given and detailed description of the configuration and operation is omitted.
  • the receiver 500d has a configuration equivalent to that of the receiver 500c.
  • the differentiation circuit unit 319 is connected to the input terminal of the tuner unit 311 and receives an antenna voltage.
  • the differentiation circuit unit 319 outputs, as an output signal, a change in the antenna voltage with time generated by time differentiation of the antenna voltage to the control unit 314b. That is, the output signal of the differentiation circuit unit 319 is input to the control unit 314b.
  • the antenna voltage may be input to the differentiating circuit unit 319 through a low-pass filter in order to remove noise having a minute and high-frequency component in the antenna voltage.
  • FIG. 7A is a waveform diagram showing an example of a voltage output from the receiver 500c according to Embodiment 3 of the present invention, a control command to be transmitted, and an output signal of the differentiating circuit unit 319.
  • the output signal of the differentiating circuit unit 319 becomes a predetermined output level in the collision avoidable period (t2) as shown in FIG. 7A.
  • t2 collision avoidable period
  • the other receiver 500d has the differentiating circuit unit 319, and therefore controls so as not to start transmission of the control command. Therefore, in receiver 500c according to the present embodiment, collision avoidance impossible period (t1) can be set as a collision avoidance possible period (t2).
  • the control unit 314b determines that a control command collision occurs when the control command is output when the output signal of the differentiating circuit unit 319 is at a predetermined output level and there is no fluctuation.
  • the predetermined output level corresponds to the magnitude of the time change when the antenna voltage changes from Xv to Yv. Therefore, the predetermined output level changes depending on the relationship between the driving capability of the voltage output unit 317 and the load circuit including a plurality of receivers.
  • the control unit 314b may determine that a control command collision occurs when the control command is output.
  • control unit 314b has a predetermined output level when the output signal generated by time differentiation of the antenna voltage at a time point (time t3) when the output of the voltage for outputting the control command is started. If so, control is performed so that the command transmission unit 318 does not transmit a control command.
  • control unit 314b starts outputting the voltage for outputting the control command (time t7)
  • the output signal generated by time differentiation of the antenna voltage does not have a predetermined output level.
  • the control unit 314b causes the voltage output unit 317 to output a voltage for outputting a control command.
  • the command transmission unit 318 is caused to transmit a control command. In this way, control command collision does not occur.
  • the collision avoidance impossible period (t1) does not occur unlike the receivers 500a and 600a according to the first and second embodiments. Therefore, it is possible to avoid a command collision between the receivers and reduce the waiting time during channel selection.
  • the output signal of the differentiating circuit unit 319 is a collision avoidable period as shown in FIG. 7A, as described above.
  • a predetermined output level is reached at (t9). Since the output signal generated by time-differentiating the antenna voltage at a time point (time t6) at which output of the voltage for outputting the control command is started, the control unit 314b has a predetermined output level. Control is performed so that the transmission unit 318 does not transmit a control command. Therefore, the control unit 314b waits for a certain time, and again determines whether the differential signal has a predetermined output level, for example, at the time (t7), and does not have the predetermined output level. The control unit 314b may cause the voltage output unit 317 to output a voltage for outputting a control command.
  • FIG. 7B is a flowchart showing a reception method for receiving a control command while avoiding a collision in receiver 500c according to Embodiment 3 of the present invention.
  • steps S101 to 106 are the same as those in FIG.
  • the receiving method in this embodiment is different from the receiving method in Embodiment 1 in that it further includes a step of outputting an output signal generated by time-differentiating an antenna voltage input from the outside. .
  • the controlling step has a predetermined output level when the output signal generated by differentiating the antenna voltage with respect to time starts outputting the voltage for outputting the control command (time t3, t6). If it is, the control command is not transmitted.
  • the differentiation circuit unit 319 of the receiver 500c in the present embodiment generates a differential signal of the input antenna voltage (step S151).
  • the differential signal output from the differentiation circuit unit 319 is input to the control unit 314b.
  • the control unit 314b determines whether or not the differential signal has a predetermined output level at a time point (time t3, t7) at which output of a voltage for outputting a control command is started (step S153). If it has a predetermined output level (“Yes” in step S153), the process is terminated without transmitting a control command.
  • step S153 if it does not have the predetermined output level (“No” in step S153), the process proceeds to step S101. Since the following is the same as that of the first embodiment as described above, the description thereof is omitted.
  • the collision avoidance impossible period (t1) does not occur. Therefore, it is possible to avoid a command collision between the receivers and reduce the waiting time during channel selection.
  • another receiver is transmitting a control command in advance by comparing the antenna voltage input from the outside with a predetermined voltage threshold (Sv). It is characterized by avoiding the collision of the control command between the receivers by checking whether or not. Further, in the present embodiment, for example, when a command collision occurs in the collision avoidance impossible period t1 shown in FIG. 5, the power value 822 output from the automatic gain control unit 817 is input, and the control signal collision detection unit 825 is characterized in that it is determined in a short time whether the antenna control signal 826a collides with the antenna control signal 826b or the antenna control signal 826c from another receiver. This determination is performed by detecting a change in the power value 822. When the control signal collision detection unit 825 detects a collision of antenna control signals, the control unit retransmits the control command.
  • Sv predetermined voltage threshold
  • FIG. 8 is a block diagram showing a configuration of a satellite broadcast receiving system 800 according to Embodiment 4 of the present invention.
  • the satellite broadcast receiving system 800 includes a satellite antenna device 807, a receiver 813, a receiver 814, and a receiver 819.
  • the satellite antenna device 807 includes an antenna 803, an antenna 804, an LNB (Low Noise Block Converter) 805, an LNB 806, and a user band conversion unit 812.
  • the satellite antenna device 807 includes two sets of antennas and LNBs, but is not limited thereto, and may be one or three or more.
  • a plurality of receivers 813, 814, and 819 are connected by a single cable to the antennas 803 and 804, and are received by the antennas 803 and 804 and converted to frequency.
  • User band signal including signal is received via cable. Note that the distributor for distributing the user band signal shown in the first embodiment is omitted for the sake of simplicity.
  • the receiver 819 includes a tuner 815, an AD conversion unit 816, an automatic gain control unit 817, a demodulation unit 818, an error correction unit 820, an LPF (Low Pass Filter) 823, a control signal collision detection unit 825, and a control signal generation unit 828.
  • the control unit includes a CPU (Central Processing Unit) 829, a remote control light receiving unit 832, a TS demultiplexing unit 833, an MPEG decoder 834, and a DA (Digital Analog) conversion unit 835.
  • the tuner unit 815a includes a tuner 815, an AD conversion unit 816, and an LPF 823.
  • the receiver 813 and the receiver 814 have the same configuration as the receiver 819. In FIG.
  • the receiver 813 and the receiver 814 show only the tuner 815b, the tuner 815c, the control signal generator 828b, and the control signal generator 828c.
  • the satellite broadcast receiving system 800 in the present embodiment is configured to include three receivers, but is not limited to this, and may be one, two, or four or more.
  • the antenna 803 receives the satellite signal 801 and the antenna 804 receives the satellite signal 802.
  • the LNB 805 converts the frequency of the 12 GHz band signal received by the antenna 803 into a 1 GHz band horizontal polarization signal 808 and a vertical polarization signal 809, and the LNB 806 converts the 12 GHz band signal received by the antenna 804 to the 1 GHz band horizontal polarization signal. Frequency conversion into a wave signal 810 and a vertically polarized signal 811 is performed.
  • the user band conversion unit 812 is a frequency-converted horizontal polarization signal 808, horizontal polarization signal 810, vertical polarization signal 809, vertical polarization based on antenna control signals from the receiver 813, the receiver 814, and the receiver 819.
  • a signal selected from the wave signal 811 is frequency-converted to a user band signal 837.
  • the user band signal 837 is received by the tuner 815, gain-controlled to a certain level, and then frequency-converted into a baseband signal of a real axis signal and an imaginary axis signal.
  • the baseband signal is converted into a digital signal by the AD conversion unit 816 and then input to the demodulation unit 818 and digitally demodulated.
  • the digitally demodulated signal is error-corrected by the error correction unit 820 and output to the TS demultiplexing unit 833 as a TS (Transport Stream) signal 838.
  • the TS signal 838 is separated from the video / audio signal by the TS demultiplexing unit 833 and decoded by the MPEG decoder 834.
  • the decoded digital signal is converted into an analog signal by the DA converter 835 and then output as a video / audio signal 836.
  • the automatic gain control unit 817 detects the output level of the baseband signal from the digitized baseband signal. Further, a PWM (Pulse Width Modulation) signal 824 is generated based on the detected output level. The generated PWM signal 824 becomes an automatic gain control voltage 821 through the LPF 823.
  • the automatic gain control unit 817 controls the gain of the tuner 815 with the automatic gain control voltage 821 and operates so as to keep the output level of the baseband signal constant. Further, the automatic gain control unit 817 outputs a power value 822 corresponding to the intensity of the signal input to the tuner 815 to the control signal collision detection unit 825 based on a signal for controlling the gain of the tuner 815.
  • the user band conversion unit 812 of the satellite antenna device 807 receives the antenna control signal 826a from the receiver 819, and receives the horizontal polarization signal 808, the horizontal polarization signal 810, the vertical polarization signal 809, A signal selected from the vertical polarization signal 811 is frequency-converted into a predetermined user band signal.
  • the receiver 819 transmits the antenna control signal 826a and the receiver 813 transmits the antenna control signal 826b
  • a collision between the antenna control signal 826a and the antenna control signal 826b occurs.
  • the user band conversion unit 812 cannot correctly receive the antenna control signal 826a and the antenna control signal 826b. Therefore, the receiver 813 and the receiver 819 use the signals selected from the horizontal polarization signal 808, the horizontal polarization signal 810, the vertical polarization signal 809, and the vertical polarization signal 811 as predetermined user band signals 837.
  • the frequency is converted and cannot be received. Therefore, a control signal collision detection unit 825 for detecting a collision of the antenna control signal 826a is arranged in the receiver 813, the receiver 814, and the receiver 819.
  • the CPU 829 starts the channel selection operation of the channel stored in itself.
  • FIG. 9A is a block diagram showing a configuration of control signal generation section 828 of receiver 819 according to Embodiment 4 of the present invention.
  • the control signal generation unit 828 includes a voltage comparison unit 501, a voltage output unit 317, and a command transmission unit 318. Further, a tuner 815 and a CPU 829 as a control unit are connected to a control signal generation unit 828 as shown in the figure.
  • the voltage comparison unit 501 compares the antenna voltage input from the outside with a predetermined voltage threshold (Sv), and outputs the comparison result to the CPU 829.
  • the voltage output unit 317 outputs a voltage for outputting a control command (also referred to as an antenna control signal) to the user band conversion unit 812 under the control of the CPU 829.
  • a control command also referred to as an antenna control signal
  • the command transmission unit 318 transmits a control command to the user band conversion unit 812 under the control of the CPU 829.
  • the CPU 829 controls the voltage output unit 317 and the command transmission unit 318 based on the comparison result output from the voltage comparison unit 501. That is, the CPU 829 causes the voltage output unit 317 to output a voltage and causes the command transmission unit 318 to transmit a control command based on the comparison result of the voltage comparison unit 501.
  • FIG. 9B is a diagram illustrating a voltage output from the receiver 819 according to Embodiment 4 of the present invention, a control command to be transmitted, and a predetermined threshold (Sv).
  • the CPU 829 always outputs the output voltage Xv from the voltage output unit 317 for the power supply of the antenna.
  • the CPU 829 causes the voltage output unit 317 to output the output voltage Yv.
  • the CPU 829 causes the voltage output unit 317 to output a voltage for outputting a command when the externally input antenna voltage is lower than a predetermined voltage threshold, and causes the command transmission unit 318 to output the command. Send a control command.
  • the voltage output unit 317 is not output a voltage for transmitting a control command, and the command transmission unit 318 is not transmitted.
  • the CPU 829 does not output a voltage for outputting a control command to the voltage output unit 317 when the externally input antenna voltage is higher than a predetermined voltage threshold, and the command transmission unit 318 does not send a control command. Then, after waiting for the antenna voltage input from the outside to become lower than the predetermined voltage threshold, the voltage output unit 317 outputs a voltage for transmitting the control command, and the command transmission unit 318 outputs the control command. Send it.
  • FIG. 9c is a block diagram showing the configuration of the control signal collision detection unit 825 of the receiver 819 according to Embodiment 4 of the present invention.
  • the control signal collision detection unit 825 includes a holding unit 839, a trigger signal generation unit 841, a minimum value / maximum value detection unit 842, and a time counter 845.
  • FIG. 10 is a diagram showing a time change of the power value 822 when the antenna control signal 826a does not collide when the power is turned on in the receiver 819 according to Embodiment 4 of the present invention.
  • the control signal generation unit 828 receives an instruction from the CPU 829, transmits an antenna control signal 826 a for selecting a channel stored in the CPU 829 to the user band conversion unit 812, and then transmits a tuner control signal 827 to the tuner 815. Send.
  • the holding unit 839 of the control signal collision detection unit 825 indicates that the control signal generation unit 828 transmits the antenna control signal 826 a to the user band conversion unit 812 in response to a channel selection instruction from the CPU 829.
  • the holding of the power value 822 is started.
  • the control signal generation unit 828 transmits the antenna control signal 826a to the user band conversion unit 812 and transmits the tuner control signal 827 to the tuner 815, the antenna control signal 826a, the antenna control signal 826b of the receiver 813, and the receiver 814
  • the digitized baseband signal is normally input to the automatic gain control unit 817.
  • the power value 822 changes. In this case, the power value 822 converges to a certain power maximum value (y) after a certain time.
  • the time counter 845 of the control signal collision detection unit 825 starts counting the minimum value / maximum value detection period T as a predetermined period from the timing when the holding of the power value 822 in the holding unit 839 is started.
  • the minimum value / maximum value detection unit 842 detects the power maximum value (y) and the power minimum value (z) of the power value 822 during the minimum value / maximum value detection period T, and the power maximum value (y). And the power minimum value (z) are output to the trigger signal generator 841 as the detection signal 843.
  • the trigger signal generator 841 compares the power maximum value (y) and the power hold value (x) 840, and transmits the comparison result (trigger signal 830) to the CPU 829 as a detection signal.
  • the CPU 829 Based on the trigger signal 830, the CPU 829, when
  • A is a predetermined power threshold
  • FIG. 11 is a diagram showing a time change of the power value 822 when the antenna control signal 826a has a collision when the power is turned on in the receiver 819 according to Embodiment 4 of the present invention.
  • the control signal generator 828 converts the antenna control signal 826a into the user band converter 812.
  • the antenna control signal 826a of the receiver 819 and the antenna control signal 826b of the receiver 813 or the antenna control signal 826c of the receiver 814 collide with each other.
  • the state where there is no signal input to the automatic gain control unit 817 continues. Therefore, as shown in FIG. 11, the power value 822 remains unchanged at the power minimum value (z). Therefore, in this case, the power minimum value (z) and the power maximum value (y) are equal.
  • the holding unit 839 of the control signal collision detection unit 825 starts counting the minimum value / maximum value detection period T by the time counter 845 from the timing when the holding of the power value 822 is started.
  • the minimum value / maximum value detection unit 842 detects the power maximum value (y) and the power minimum value (z) of the power value 822 during the minimum value / maximum value detection period T, and the power maximum value (y). And the power minimum value (z) are output to the trigger signal generator 841 as the detection signal 843.
  • the trigger signal generator 841 compares the power maximum value (y) and the power hold value (x) 840, and transmits the comparison result (trigger signal 830) to the CPU 829 as a detection signal.
  • the CPU 829 determines that the antenna control signal 826 a of the receiver 819 and the antenna control signal 826 b of the receiver 813, or the receiver 814, if
  • control signal collision detection unit 825 detects the collision of the antenna control signal 826a based on the change in the power value 822 and outputs a detection signal. And a control part retransmits a control command, when the collision of the antenna control signal 826a is detected based on a detection signal.
  • the remote control light receiving unit 832 receives a channel switching signal and transmits the received channel switching signal to the CPU 829.
  • the CPU 829 When the CPU 829 receives the channel switching signal, the CPU 829 instructs the control signal generation unit 828 to transmit the antenna control signal 826a to the user band conversion unit 812.
  • the control signal generation unit 828 receives a channel selection instruction from the CPU 829 and transmits an antenna control signal 826a to the user band conversion unit 812 so that a channel to be switched based on a user operation can be selected. However, the control signal generation unit 828 does not transmit the tuner control signal 827 to the tuner 815 during channel switching.
  • the holding unit 839 of the control signal collision detection unit 825 receives the power value 822 at the same timing as the control signal generation unit 828 transmits the antenna control signal 826a to the user band conversion unit 812 in response to the channel selection instruction from the CPU 829. Start holding. Then, the holding unit 839 outputs the power holding value (x) 840 to the trigger signal generating unit 841.
  • FIG. 12 is a diagram showing a time change of the power value 822 when there is no collision in the antenna control signal 826a at the time of channel switching in the receiver 819 according to Embodiment 4 of the present invention.
  • the control signal generation unit 828 transmits the antenna control signal 826a to the user band conversion unit 812, a collision between the antenna control signal 826a of the receiver 819, the antenna control signal 826b of the receiver 813, and the antenna control signal 826c of the receiver 814.
  • the digitized baseband signal input to the automatic gain controller 17 is momentarily interrupted, and the power value 822 becomes the minimum power value (z).
  • the power value 822 changes, and after a certain time, the power value 822 converges to a certain power maximum value (y).
  • the time counter 845 of the control signal collision detection unit 825 starts counting the minimum value / maximum value detection period T from the timing at which the holding of the power value 822 in the holding unit 839 is started.
  • the minimum value / maximum value detection unit 842 detects the power maximum value (y) and the power minimum value (z) of the power value 822 during the minimum value / maximum value detection period T, and the power maximum value (y). And the power minimum value (z) are output to the trigger signal generator 841 as the detection signal 843.
  • the trigger signal generator 841 compares the power holding value (x) 840, the power maximum value (y), and the power minimum value (z), and transmits the comparison result (trigger signal 830) to the CPU 829.
  • the CPU 829 determines that the antenna control signal 826a of the receiver 819 and the receiver 813 are in the case of
  • FIG. 13 is a diagram showing a time change of the power value 822 when there is a collision in the antenna control signal 826a at the time of channel switching in the receiver 819 according to Embodiment 4 of the present invention.
  • the control signal generator 828 converts the antenna control signal 826a into the user band converter 812.
  • the antenna control signal 826a and the antenna control signal 826b of the receiver 813 or the antenna control signal 826c of the receiver 814 collide, so that the signal input to the automatic gain control unit 817 does not change, As shown in FIG. 13, the power value 822 does not change. Therefore, in this case, the power minimum value (z) and the power maximum value (y) are equal.
  • the holding unit 839 of the control signal collision detection unit 825 starts counting the minimum value / maximum value detection period T by the time counter 845 from the timing when the holding of the power value 822 is started.
  • the minimum value / maximum value detection unit 842 detects the power maximum value (y) and the power minimum value (z) of the power value 822 during the minimum value / maximum value detection period T, and the power maximum value (y). And the power minimum value (z) are output to the trigger signal generator 841 as the detection signal 843.
  • the trigger signal generator 841 compares the power maximum value (y) and the power minimum value (z), and transmits the comparison result (trigger signal 830) to the CPU 829.
  • the CPU 829 determines that the antenna control signal 826a of the receiver 819 and the receiver 813 when
  • control signal collision detection unit 825 measures the power value 822 output from the automatic gain control unit 817 for a predetermined period, the power value (power holding value (x) 840) at the start of the measurement for the predetermined period, and the predetermined period And the difference between the maximum value of power value (power maximum value (y)) and the power value (power holding value (x) 840) at the start of measurement for a predetermined period and the minimum value ( When the difference from the power maximum value (y) is equal to or less than a predetermined power threshold, it is determined that the antenna control signal has collided.
  • the antenna control signal 826a is transmitted from the control signal generator 828 to the user band.
  • the time from the transmission to the conversion unit 812 until the power value 822 changes and converges is a maximum of 200 msec. Therefore, by the above-described operation, the time required for collision detection of the antenna control signal 826a can be significantly shortened compared to the conventional antenna control signal collision detection period of 1000 msec.
  • the antenna control signal 826a of the receiver 819 collides with the antenna control signal 826b of the receiver 813 or the antenna control signal 826c of the receiver 814, and the control signal generator 828 again outputs the antenna control signal 826a according to the instruction of the CPU 829. Even after transmission, the time until video and audio are output can be shortened.
  • the satellite antenna device 807 receives a satellite signal
  • the present invention is not limited to this, and the invention described in this embodiment receives a terrestrial broadcast signal and the like. It is also possible to apply to this.
  • the satellite broadcast receiving system 800 includes a satellite antenna device 807, a receiver 813, a receiver 814, and a receiver 819. And the receiving method in this Embodiment has a step as shown to FIG. 14A and 14B.
  • FIG. 14A is a flowchart showing processing in the reception method according to Embodiment 4 of the present invention.
  • the CPU 829 causes the voltage comparison unit 501 to compare the antenna voltage input from the outside with a predetermined voltage threshold held by the voltage comparison unit 501 and output the comparison result (step S101).
  • the output of the voltage comparison unit 501 remains low (or high) and does not change. Since the interrupt port of the CPU 829 remains Low (or High), the CPU 829 determines that a control command has not been transmitted from another receiver (for example, the receiver 813 and the receiver 814 in FIG. 8). Then, the CPU 829 causes the voltage output unit 317 to change its output from the output voltage Xv to the output voltage Yv. That is, the voltage output unit 317 outputs a voltage for outputting a control command (step S102). Then, the CPU 829 superimposes a control command on the output voltage Yv from the voltage output unit 317. That is, the command transmission unit 318 transmits a control command to the satellite antenna device 807 (step S104). As described above, the CPU 829 controls the voltage for outputting the control command and the transmission of the control command based on the comparison result.
  • step S101 if the antenna voltage is higher than the predetermined voltage threshold (“No” in step S101), the output of the voltage comparison unit 501 changes to High (or Low). Since the interrupt port of the CPU 829 changes to High (or Low), the CPU 829 determines that another receiver (for example, the receiver 813 or the receiver 814 in FIG. 8) is transmitting a control command. Then, the process returns to step S101.
  • the CPU 829 does not cause the voltage output unit 317 to output a voltage for outputting a control command, and does not cause the command transmission unit 318 to transmit the control command to the satellite antenna device 807. Then, after waiting for the antenna voltage to become lower than the predetermined voltage threshold (“Yes” in step S101), the CPU 829 causes the voltage output unit 317 to change from the output voltage Xv to the output voltage Yv. That is, the CPU 829 outputs a voltage for outputting a control command from the voltage output unit 317 (step S102). Then, the CPU 829 causes the command transmission unit 318 to transmit a control command to the satellite antenna device 807 (step S104).
  • the tuner 815 receives the user band signal and converts the received user band signal into a baseband signal (step S210).
  • the automatic gain control unit 817 detects the output level of the baseband signal and adjusts the strength of the user band signal based on the signal that is controlled so as to keep the output level of the baseband signal constant.
  • the corresponding power value 822 is output (step S220).
  • the control signal collision detection unit 825 outputs an antenna control signal 826a for selecting a video / audio signal received by the antennas 803 and 804, and the antenna control signal based on the change in the power value 822 A collision at 826a is detected (step S230). If a collision of the antenna control signal 826a is detected (“Yes” in step S240), the CPU 829 retransmits the control command based on the detection signal (step S246).
  • FIG. 14B is a flowchart for explaining in detail the step of detecting a collision in FIG. 14A (step S230).
  • the holding unit 839 of the control signal collision detecting unit 825 sets the time counter 845 as a predetermined period from the start of holding the power value 822. Counting of the minimum value / maximum value detection period T is started (step S255). Then, it is determined whether the predetermined period has been completed (step S260). If the predetermined period has not been completed (“No” in step S260), the process returns to step S260.
  • step S260 when the predetermined period is completed (“Yes” in step S260), the process proceeds to step S270. Then, the minimum value / maximum value detection unit 842 measures the power value 822 for a predetermined period, the power value (power holding value (x) 840) when the measurement for the predetermined period is started, and the maximum value of the power value in the predetermined period. The difference from (power maximum value (y)), and the power value (power holding value (x) 840) when measurement for a predetermined period is started and the minimum value (power maximum value (y) at the predetermined period) ) Is less than or equal to the predetermined power threshold (“Yes” in step S270), it is determined that the antenna control signal 826a has detected a collision (step S280). On the other hand, if not (“No” in step S270), the antenna control signal 826a determines that there is no collision (step S290).
  • antenna control signal 826a of receiver 819 collides with antenna control signal 826b of receiver 813 or antenna control signal 826c of receiver 814.
  • the CPU 829 causes the command transmission unit 318 to retransmit the control command.
  • the control signal generation unit 828 retransmits the antenna control signal 826a in accordance with an instruction from the CPU 829, so that the time until video and audio are output can be shortened.
  • the present invention avoids a command collision between receivers by selecting whether another receiver is transmitting a command in advance by comparing a voltage input from the outside with a predetermined voltage threshold. This is useful as a receiver in which a plurality of antennas are connected by a single coaxial cable and a video signal is received via a distributor connected to the coaxial cable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)

Abstract

The disclosed receiver, which receives a user band signal containing frequency converted video/audio signals, receives via antennas, and wherein a plurality of antennas are connected via a single cable, is provided with: a voltage comparison unit that compares an antenna voltage input from outside and a predetermined voltage threshold; a voltage output unit that outputs voltage for outputting a control command; a command transmission unit that transmits the control command; and a control unit that controls the command transmission unit and the voltage output unit on the basis of the comparison results.

Description

受信機及び受信方法Receiver and receiving method
 本発明は、アンテナが一本のケーブルで接続され、アンテナで受信した信号をケーブル経由で受信する複数の受信機におけるアンテナ制御のためのコマンドの衝突回避技術に関するものである。 The present invention relates to a command collision avoidance technique for antenna control in a plurality of receivers in which an antenna is connected by a single cable and signals received by the antenna are received via the cable.
 衛星アンテナの制御規格としてEUTELSAT(European Telecommunications Satellite Organization)で規格化されたDiSEqC(Digital Satellite Equipment Control)がある。DiSEqCとは複数のアンテナ、複数の偏波の衛星信号の切り替え制御を行うシステムのことである。また、DiSEqCの拡張規格として、複数の衛星及び複数の偏波を受信するアンテナと複数の受信機を1本の同軸ケーブルで接続するCENELEC(Comite Europeen de Normalisation Electrotechnique/European Committee for Electrotecnical Standardization) EN50494における5節の「SCIF Control signals」で規格化されたシステム(以下、「CENELECシステム」と称す)がある(非特許文献1参照)。 As a satellite antenna control standard, there is DiSEqC (Digital Satellite Control) standardized by EUTELSAT (European Telecommunications Satellite Organization). DiSEqC is a system that controls switching of a plurality of antennas and a plurality of polarization satellite signals. In addition, as an extension of DiSEqC, CENELEC (Commit Europe de Normalization Electrotechnique / European Committee for Electronic 49) is connected to multiple satellites and antennas that receive multiple polarizations and multiple receivers with a single coaxial cable. There is a system (hereinafter referred to as “CENELEC system”) standardized by “SCIF Control signals” in Section 5 (see Non-Patent Document 1).
 CENELECシステムは、受信機から送信された制御信号に含まれる制御コマンドによってアンテナ部を制御する。複数のアンテナで受信した1GHz帯の中間周波信号は、制御コマンドによって所定のユーザーバンド(以下、「UB」とも称す)に周波数変換され、1本の同軸ケーブルに出力される。そして、所定のユーザーバンドは、制御コマンドを送信した受信機へ送られる。 The CENELEC system controls the antenna unit by a control command included in a control signal transmitted from the receiver. An intermediate frequency signal of 1 GHz band received by a plurality of antennas is frequency-converted to a predetermined user band (hereinafter also referred to as “UB”) by a control command and output to a single coaxial cable. The predetermined user band is sent to the receiver that has transmitted the control command.
 図15は、CENELECシステムの構成を示すブロック図である。図15では、衛星A、衛星B、衛星C、・・・、衛星Nをそれぞれ受信する複数のアンテナが設置されているとしている。また、受信機1300a、受信機1300b、受信機1300c、・・・、受信機1300mと複数の受信機を設置している。衛星の個数と受信機の個数は、同数でもよく、異なっていてもよい。 FIG. 15 is a block diagram showing the configuration of the CENELEC system. In FIG. 15, it is assumed that a plurality of antennas for receiving satellite A, satellite B, satellite C,. In addition, a receiver 1300a, a receiver 1300b, a receiver 1300c,..., A receiver 1300m and a plurality of receivers are installed. The number of satellites and the number of receivers may be the same or different.
 図15に示すように、例えば、受信機1300aから出力された制御信号に含まれる制御コマンドは、分配器1201、1本の同軸ケーブル(伝送路)を介してアンテナ部1100のCSS(Channel Stacking Switch)1105に送信される。受信機1300aから送信された制御コマンドにより、衛星、偏波、チャンネル及びUBが指定されると、CSS1105は、指定された衛星、偏波、チャンネルに該当する中間周波信号を、指定されたUB(UB1、UB2、・・・、UBnの内1つ)へ周波数変換する。そして、1本の同軸ケーブル(伝送路)、分配器1201を介して制御コマンドを送信した受信機1300aが、指定されたUBを受信できる。 As shown in FIG. 15, for example, the control command included in the control signal output from the receiver 1300 a is transmitted to the CSS (Channel Stacking Switch) of the antenna unit 1100 via the distributor 1201 and one coaxial cable (transmission path). ) 1105. When the satellite, polarization, channel, and UB are designated by the control command transmitted from the receiver 1300a, the CSS 1105 converts the intermediate frequency signal corresponding to the designated satellite, polarization, and channel to the designated UB ( Frequency conversion to UB1, UB2,..., UBn). The receiver 1300a that has transmitted the control command via one coaxial cable (transmission path) and distributor 1201 can receive the designated UB.
 図16は、従来の受信機1300aの構成を示すブロック図である。 FIG. 16 is a block diagram showing a configuration of a conventional receiver 1300a.
 リモコン受光部1316は、リモコン(図示せず)からユーザー操作情報を受信し、キーコードとして制御部1314に送信する。 The remote control light receiving unit 1316 receives user operation information from a remote control (not shown) and transmits it to the control unit 1314 as a key code.
 制御部1314は、リモコン受光部1316から送信されたキーコードに応じた所定のサービスをチューナー部1311に選局させるため、電圧出力部1317及びコマンド送信部1318に対して所定の制御を行い、アンテナ部1100に対してコマンドの送信を行う。 The control unit 1314 performs predetermined control on the voltage output unit 1317 and the command transmission unit 1318 in order to cause the tuner unit 1311 to select a predetermined service corresponding to the key code transmitted from the remote control light receiving unit 1316. A command is transmitted to the unit 1100.
 図17は、従来の受信機1300aの電圧出力部1317から出力される電圧及びコマンド送信部1318からアンテナ部1100に送信される制御コマンドを概念的に示した図である。図17を用いて、制御部1314が電圧出力部1317及びコマンド送信部1318に対して行う制御について説明する。 FIG. 17 is a diagram conceptually illustrating a voltage output from the voltage output unit 1317 of the conventional receiver 1300a and a control command transmitted from the command transmission unit 1318 to the antenna unit 1100. The control that the control unit 1314 performs on the voltage output unit 1317 and the command transmission unit 1318 will be described with reference to FIG.
 図17に示すように、電圧出力部1317は、制御部1314による制御により、出力電圧Xvをアンテナ部1100の電源用として常に出力している。リモコン受光部1316から送信されたキーコードに応じた所定のサービスをチューナー部1311に選局させるため受信機1300aからアンテナ部1100にコマンドを送信する場合、制御部1314から命令を受けた電圧出力部1317は出力電圧Xvを出力電圧Yvへと変化させる。そして、制御部1314から命令を受けたコマンド送信部1318は、電圧出力部1317からの出力電圧Yvに制御コマンドを重畳してアンテナ部1100に送信する。数ミリ秒後、制御部1314から再び命令を受けた電圧出力部1317は出力電圧Yvを出力電圧Xvへと変化させる。 As shown in FIG. 17, the voltage output unit 1317 always outputs the output voltage Xv for power supply of the antenna unit 1100 under the control of the control unit 1314. When a command is transmitted from the receiver 1300a to the antenna unit 1100 to cause the tuner unit 1311 to select a predetermined service corresponding to the key code transmitted from the remote control light receiving unit 1316, a voltage output unit that receives a command from the control unit 1314 1317 changes the output voltage Xv to the output voltage Yv. Then, the command transmission unit 1318 that has received a command from the control unit 1314 superimposes the control command on the output voltage Yv from the voltage output unit 1317 and transmits it to the antenna unit 1100. After several milliseconds, the voltage output unit 1317 that has received a command again from the control unit 1314 changes the output voltage Yv to the output voltage Xv.
 チューナー部1311は、受信機1300aから送信された制御コマンドに基づきアンテナ部1100から1本の同軸ケーブル、分配器1201を介して受信機1300aに送信された信号を選局する。そして、チューナー部1311で選局された信号は、デジタル信号への変換や信号レベルの調整が行われた後、復調部1312に入力される。復調部1312に入力された信号は、デモジュレーションされ、エラー訂正を施される。その後、復調されたTS(Transport Stream)信号は、VID(Video Identifier)及びAID(Audio Identifier)を検出するために、VID/AID(Video Identifier/Audio Identifier)検出部1313に出力される。復調部1312から出力されたTS信号は、VID/AID検出部1313でVID及びAIDの検出が行われ、検出結果は制御部1314に伝達される。 The tuner unit 1311 selects a signal transmitted from the antenna unit 1100 to the receiver 1300a via one coaxial cable / distributor 1201 based on the control command transmitted from the receiver 1300a. The signal selected by the tuner unit 1311 is converted into a digital signal and the signal level is adjusted, and then input to the demodulation unit 1312. The signal input to the demodulation unit 1312 is demodulated and subjected to error correction. Thereafter, the demodulated TS (Transport Stream) signal is output to a VID / AID (Video Identifier / Audio Identifier) detection unit 1313 in order to detect a VID (Video Identifier) and an AID (Audio Identifier). The VID / AID detection unit 1313 detects the VID and AID of the TS signal output from the demodulation unit 1312, and the detection result is transmitted to the control unit 1314.
 しかしながら上記従来の受信機では、複数台の受信機(1300a、1300b、・・・、1300m)から送信される複数の制御コマンドがアンテナ部1100へ到達する以前に、伝送路で衝突する場合がある。 However, in the conventional receiver, a plurality of control commands transmitted from a plurality of receivers (1300a, 1300b,..., 1300m) may collide with each other before reaching the antenna unit 1100. .
 制御コマンドが衝突することで、アンテナ部1100は正式な制御コマンドを認識することができず、その結果、制御コマンドの送信を行なった各受信機は、VID/AID検出部1313でVID及びAIDを検出できない。そして、受信機が、制御コマンドを再送信するために一定の時間が必要であるため、選局して映像が出力されるまで数秒の待ち時間が発生してしまうことになる。 When the control command collides, the antenna unit 1100 cannot recognize the formal control command, and as a result, each receiver that has transmitted the control command receives the VID and AID in the VID / AID detection unit 1313. It cannot be detected. Then, since a certain time is required for the receiver to retransmit the control command, a waiting time of several seconds is generated until a channel is selected and an image is output.
 本発明の受信機は、複数のアンテナが一本のケーブルで接続され、ケーブルに接続された分配器を介して映像信号を受信する受信機において、外部から入力されるアンテナ電圧と所定の電圧閾値とを比較し、比較結果を出力する電圧比較部と、制御コマンドを出力するための電圧を出力する電圧出力部と、制御コマンドを送信するコマンド送信部と、比較結果に基づき、電圧出力部と制御コマンド送信部とを制御する制御部と、を備える。制御部は、電圧比較部の比較結果に基づいて、電圧と制御コマンドの送信とを制御する。 A receiver according to the present invention includes a plurality of antennas connected by a single cable, and a receiver that receives a video signal via a distributor connected to the cable, and an antenna voltage input from the outside and a predetermined voltage threshold value A voltage comparison unit that outputs a comparison result, a voltage output unit that outputs a voltage for outputting a control command, a command transmission unit that transmits a control command, a voltage output unit based on the comparison result, A control unit that controls the control command transmission unit. The control unit controls the voltage and the transmission of the control command based on the comparison result of the voltage comparison unit.
 また、本発明の受信方法は、アンテナと一本のケーブルで複数の受信機が接続され、アンテナで受信し周波数変換した映像・音声信号を含むユーザーバンド信号を受信する受信機における受信方法において、外部から入力されるアンテナ電圧と所定の電圧閾値とを比較し、比較結果を出力するステップと、制御コマンドを出力するための電圧を出力するステップと、制御コマンドを送信するステップと、比較結果に基づき、電圧と制御コマンドの送信とを制御するステップと、を備える。 Further, the receiving method of the present invention is a receiving method in a receiver in which a plurality of receivers are connected by an antenna and a single cable, and receives a user band signal including a video / audio signal that has been received and converted by the antenna. Comparing an antenna voltage input from the outside with a predetermined voltage threshold, outputting a comparison result, outputting a voltage for outputting a control command, sending a control command, and comparing the result And a step of controlling the transmission of the voltage and the control command.
 本発明の受信機、及び受信方法によれば、外部から入力される電圧と所定の電圧閾値を比較することで予め他の受信機がコマンドを送信中かどうか確認することにより、受信機間のコマンド衝突を回避し、選局時の待ち時間を軽減することができる。 According to the receiver and the reception method of the present invention, by comparing a voltage input from the outside with a predetermined voltage threshold to check whether another receiver is transmitting a command in advance, It is possible to avoid command collision and reduce the waiting time at the time of tuning.
図1は、本発明の実施の形態1に係わる受信機の構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of a receiver according to Embodiment 1 of the present invention. 図2は、本発明の実施の形態1に係わる受信機の電圧出力部から出力される電圧、コマンド送信部から送信される制御コマンド及び所定の閾値を示す図である。FIG. 2 is a diagram illustrating a voltage output from the voltage output unit of the receiver according to Embodiment 1 of the present invention, a control command transmitted from the command transmission unit, and a predetermined threshold. 図3は、本発明の実施の形態1に係わる受信機の制御コマンドの衝突回避をしながら受信するための制御方法を示したフローチャートである。FIG. 3 is a flowchart showing a control method for receiving a control command of the receiver while avoiding a collision according to the first embodiment of the present invention. 図4は、本発明の実施の形態2に係わる受信機の構成を示すブロック図である。FIG. 4 is a block diagram showing a configuration of a receiver according to Embodiment 2 of the present invention. 図5は、本発明の実施の形態1に係わる複数の受信機から出力される電圧、送信される制御コマンド及び閾値の一例を示す図である。FIG. 5 is a diagram illustrating an example of voltages output from a plurality of receivers according to Embodiment 1 of the present invention, control commands to be transmitted, and threshold values. 図6は、本発明の実施の形態2に係わる受信機の構成を示すブロック図である。FIG. 6 is a block diagram showing a configuration of a receiver according to Embodiment 2 of the present invention. 図7Aは、本発明の実施の形態3に係わる受信機から出力される電圧、送信される制御コマンド及び微分回路部の出力信号の一例を示す波形図である。FIG. 7A is a waveform diagram showing an example of a voltage output from the receiver according to Embodiment 3 of the present invention, a control command to be transmitted, and an output signal of the differentiating circuit unit. 図7Bは、本発明の実施の形態3に係わる受信機において、制御コマンドの衝突回避をしつつ受信するための受信方法を示したフローチャートである。FIG. 7B is a flowchart showing a reception method for receiving a control command while avoiding a collision in the receiver according to Embodiment 3 of the present invention. 図8は、本発明の実施の形態4に係わる衛星放送受信システムの構成を示すブロック図である。FIG. 8 is a block diagram showing a configuration of a satellite broadcast receiving system according to Embodiment 4 of the present invention. 図9Aは、本発明の実施の形態4に係わる受信機の制御信号発生部の構成を示すブロック図である。FIG. 9A is a block diagram showing a configuration of a control signal generator of the receiver according to Embodiment 4 of the present invention. 図9Bは、本発明の実施の形態4に係わる受信機から出力される電圧、送信される制御コマンド及び所定の閾値を示す図である。FIG. 9B is a diagram illustrating a voltage output from the receiver according to Embodiment 4 of the present invention, a control command to be transmitted, and a predetermined threshold. 図9Cは、本発明の実施の形態4に係わる受信機の制御信号衝突検出部の構成を示すブロック図である。FIG. 9C is a block diagram showing a configuration of a control signal collision detection unit of the receiver according to Embodiment 4 of the present invention. 図10は、本発明の実施の形態4に係わる受信機における電源投入時でアンテナ制御信号に衝突がない場合のパワー値の時間変化を示す図である。FIG. 10 is a diagram showing a time change of the power value when there is no collision in the antenna control signal when the power is turned on in the receiver according to Embodiment 4 of the present invention. 図11は、本発明の実施の形態4に係わる受信機における電源投入時でアンテナ制御信号に衝突がある場合のパワー値の時間変化を示す図である。FIG. 11 is a diagram showing a time change of the power value when there is a collision in the antenna control signal when the power is turned on in the receiver according to Embodiment 4 of the present invention. 図12は、本発明の実施の形態4に係わる受信機におけるチャンネル切換時でアンテナ制御信号に衝突がない場合のパワー値の時間変化を示す図である。FIG. 12 is a diagram showing a time change of the power value when there is no collision in the antenna control signal at the time of channel switching in the receiver according to Embodiment 4 of the present invention. 図13は、本発明の実施の形態4に係わる受信機におけるチャンネル切換時でアンテナ制御信号に衝突がある場合のパワー値の時間変化を示す図である。FIG. 13 is a diagram showing a time change of the power value when there is a collision in the antenna control signal at the time of channel switching in the receiver according to Embodiment 4 of the present invention. 図14Aは、本発明の実施の形態4に係る受信方法における処理を示すフローチャートである。FIG. 14A is a flowchart showing processing in the reception method according to Embodiment 4 of the present invention. 図14Bは、本発明の実施の形態4に係る受信方法における衝突を検出するステップを詳細に説明するためのフローチャートである。FIG. 14B is a flowchart for explaining in detail steps of detecting a collision in the reception method according to Embodiment 4 of the present invention. 図15は、CENELECシステムの構成を示すブロック図である。FIG. 15 is a block diagram showing the configuration of the CENELEC system. 図16は、従来の受信機の構成を示すブロック図である。FIG. 16 is a block diagram showing a configuration of a conventional receiver. 図17は、従来の受信機の電圧出力部から出力される電圧及びコマンド送信部からアンテナ部に送信される制御コマンドを示す図である。FIG. 17 is a diagram illustrating a voltage output from the voltage output unit of the conventional receiver and a control command transmitted from the command transmission unit to the antenna unit.
 (実施の形態1)
 以下、本発明を実施するための形態について、図面を参照しながら説明する。本発明は、アンテナと一本のケーブルで複数の受信機が接続され、アンテナで受信し周波数変換した映像・音声信号を含むユーザーバンド信号を受信する受信機に関する。アンテナは、複数であることを想定しているが、複数の偏波信号を受信できる場合、1つであってもよい。
(Embodiment 1)
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. The present invention relates to a receiver in which a plurality of receivers are connected by an antenna and a single cable and receives a user band signal including a video / audio signal received by the antenna and frequency-converted. Although it is assumed that there are a plurality of antennas, one antenna may be used when a plurality of polarization signals can be received.
 図1は、本発明の実施の形態1に係わる受信機500aの構成を示すブロック図である。受信機500aは、チューナー部311、復調部312、VID/AID(Video Identifier/Audio Identifier)検出部313、制御部314、AV出力部315、リモコン受光部316、電圧出力部317、コマンド送信部318、電圧比較部501から構成される。 FIG. 1 is a block diagram showing a configuration of a receiver 500a according to Embodiment 1 of the present invention. The receiver 500a includes a tuner unit 311, a demodulation unit 312, a VID / AID (Video Identifier / Audio Identifier) detection unit 313, a control unit 314, an AV output unit 315, a remote control light receiving unit 316, a voltage output unit 317, and a command transmission unit 318. The voltage comparison unit 501 is configured.
 リモコン受光部316は、リモコン(図示せず)からユーザー操作情報を受信する。そして、リモコン受光部316は、ユーザー操作情報をキーコードとして制御部314に送信する。 The remote controller light receiving unit 316 receives user operation information from a remote controller (not shown). Then, the remote control light receiving unit 316 transmits user operation information to the control unit 314 as a key code.
 リモコン受光部316から送信されたキーコードに応じた所定のサービスをチューナー部311に選局させるため、制御部314は、電圧出力部317及びコマンド送信部318に対して所定の制御を行う。すなわち、制御部314は、アンテナへの制御コマンドの送信をコマンド送信部318に行わせる。 In order to cause the tuner unit 311 to select a predetermined service corresponding to the key code transmitted from the remote control light receiving unit 316, the control unit 314 performs predetermined control on the voltage output unit 317 and the command transmission unit 318. That is, the control unit 314 causes the command transmission unit 318 to transmit a control command to the antenna.
 チューナー部311は、受信機500aから送信された制御信号に含まれる制御コマンドに基づき、アンテナから1本の同軸ケーブル、分配器201を介して受信機500aに送信された周波数変換した映像・音声信号を含むユーザーバンド信号を選局する。そして、チューナー部311で選局された信号は、デジタル信号への変換や信号レベルの調整が行われた後、復調部312に入力される。復調部312に入力された信号は、復調され、エラー訂正を施される。その後、復調されたTS(Transport Stream)信号は、VID/AID検出部313に出力される。復調部312から出力されたTS信号は、VID/AID検出部313でVID(Video Identifier)及びAID(Audio Identifier)の検出が行われ、検出結果は制御部314に伝達される。 The tuner unit 311 is a frequency-converted video / audio signal transmitted from the antenna to the receiver 500a via one coaxial cable and distributor 201 based on a control command included in the control signal transmitted from the receiver 500a. Select a user band signal including. The signal selected by the tuner unit 311 is converted into a digital signal and the signal level is adjusted, and then input to the demodulation unit 312. The signal input to the demodulation unit 312 is demodulated and subjected to error correction. Thereafter, the demodulated TS (Transport Stream) signal is output to the VID / AID detector 313. The TS signal output from the demodulator 312 is detected by the VID / AID detector 313 as VID (Video Identifier) and AID (Audio Identifier), and the detection result is transmitted to the controller 314.
 制御部314は、TS信号のヘッダからPID(Packet Identification)を抽出し、抽出したPIDを用いてTS信号から該当する選局チャネルのTSパケットを抽出する。そして、制御部314は、TS信号から映像・音声信号のデータを復号する。復号した映像・音声信号は、AV出力部315を介して所定のフォーマットでディスプレイ等に出力される。 The control unit 314 extracts a PID (Packet Identification) from the header of the TS signal, and extracts a TS packet of the corresponding channel selection channel from the TS signal using the extracted PID. Then, the control unit 314 decodes video / audio signal data from the TS signal. The decoded video / audio signal is output to a display or the like in a predetermined format via the AV output unit 315.
 電圧比較部501は、外部から入力されるアンテナ電圧と所定の電圧閾値とを比較し、比較結果を制御部314に出力する。 The voltage comparison unit 501 compares the antenna voltage input from the outside with a predetermined voltage threshold value, and outputs the comparison result to the control unit 314.
 電圧出力部317は、制御部314の制御により、制御コマンドを出力するための電圧を、分配器201を介してアンテナへ出力する。 The voltage output unit 317 outputs a voltage for outputting a control command to the antenna via the distributor 201 under the control of the control unit 314.
 コマンド送信部318は、制御部314の制御により、制御コマンドをアンテナへ送信する。 The command transmission unit 318 transmits a control command to the antenna under the control of the control unit 314.
 制御部314は、電圧比較部501から出力された比較結果に基づき、電圧出力部317とコマンド送信部318とを制御する。すなわち、制御部314は、電圧比較部501の比較結果に基づいて、電圧出力部317に電圧を出力させ、且つコマンド送信部318に制御コマンドを送信させるように制御する。 The control unit 314 controls the voltage output unit 317 and the command transmission unit 318 based on the comparison result output from the voltage comparison unit 501. That is, the control unit 314 controls the voltage output unit 317 to output a voltage and the command transmission unit 318 to transmit a control command based on the comparison result of the voltage comparison unit 501.
 図1に示すように、本発明の実施の形態1に係わる受信機500aは、電圧比較部501を備えている。以下、受信機500aが、電圧比較部501を用いて制御コマンドの衝突回避をしながら受信するための構成と動作及び受信方法について、図2及び図3を用いながら詳説する。 As shown in FIG. 1, the receiver 500a according to Embodiment 1 of the present invention includes a voltage comparison unit 501. Hereinafter, a configuration, an operation, and a reception method for the receiver 500a to receive the control command while avoiding the collision of the control command using the voltage comparison unit 501 will be described in detail with reference to FIGS.
 図2は、本発明の実施の形態1に係わる受信機500aの電圧出力部317から出力される電圧、コマンド送信部318から送信される制御コマンド及び所定の電圧閾値(以下、「Sv」とも略記する)を示す図である。図2に示すように、制御部314は、電圧出力部317から出力電圧Xvを、アンテナの電源用として常に出力させている。そして、コマンド送信部318から制御コマンドを出力させる場合、制御部314は、電圧出力部317から出力電圧Yvを出力させる。 FIG. 2 shows the voltage output from the voltage output unit 317 of the receiver 500a according to the first embodiment of the present invention, the control command transmitted from the command transmission unit 318, and a predetermined voltage threshold (hereinafter also abbreviated as “Sv”). FIG. As shown in FIG. 2, the control unit 314 always outputs the output voltage Xv from the voltage output unit 317 as a power source for the antenna. When the control command is output from the command transmission unit 318, the control unit 314 outputs the output voltage Yv from the voltage output unit 317.
 すなわち、制御部314は、比較結果に基づいて、外部から入力されるアンテナ電圧が所定の電圧閾値よりも低い場合、電圧出力部317にコマンドを出力するための電圧を出力させ、且つコマンド送信部318に制御コマンドを送信させる。一方、外部から入力されるアンテナ電圧が所定の電圧閾値よりも高い場合、電圧出力部317に制御コマンドを送信するための電圧を出力させず、且つコマンド送信部318に制御コマンドを送信させない。 That is, based on the comparison result, the control unit 314 causes the voltage output unit 317 to output a voltage for outputting a command when the externally input antenna voltage is lower than a predetermined voltage threshold, and the command transmission unit The control command is transmitted to 318. On the other hand, when the antenna voltage input from the outside is higher than a predetermined voltage threshold, the voltage output unit 317 is not output a voltage for transmitting a control command, and the command transmission unit 318 is not transmitted.
 また、制御部314は、比較結果に基づいて、外部から入力されるアンテナ電圧が所定の電圧閾値よりも高い場合、電圧出力部317に制御コマンドを出力するための電圧を出力させず、且つコマンド送信部318に制御コマンドを送信させない。そして、外部から入力されるアンテナ電圧が所定の電圧閾値よりも低くなるのを待ってから、電圧出力部317に制御コマンドを送信するための電圧を出力させ、且つコマンド送信部318に制御コマンドを送信させる。 Further, based on the comparison result, the control unit 314 does not cause the voltage output unit 317 to output a voltage for outputting a control command when the externally input antenna voltage is higher than a predetermined voltage threshold, and the command The transmission unit 318 is not allowed to transmit a control command. Then, after waiting for the antenna voltage input from the outside to become lower than the predetermined voltage threshold, the voltage output unit 317 outputs a voltage for transmitting the control command, and the command transmission unit 318 outputs the control command. Send it.
 図3は、本発明の実施の形態1に係わる受信機500aの制御コマンドの衝突回避をしながら受信するための制御方法を示したフローチャートである。ユーザーの操作によりリモコン(図示せず)からユーザー操作情報を受信すると、リモコン受光部316は、ユーザー操作情報に対応したキーコードを出力する。そのキーコードに応じた所定のサービスをチューナー部311に選局させるため、制御部314は、電圧比較部501に、分配器201を介して外部から入力されるアンテナ電圧と電圧比較部501が保持する所定の電圧閾値とを比較させ、比較結果を出力させる(ステップS101)。 FIG. 3 is a flowchart showing a control method for receiving the control command of the receiver 500a according to the first embodiment of the present invention while avoiding a collision. When user operation information is received from a remote controller (not shown) by a user operation, the remote control light receiving unit 316 outputs a key code corresponding to the user operation information. In order to cause the tuner unit 311 to select a predetermined service corresponding to the key code, the control unit 314 causes the voltage comparison unit 501 to hold the antenna voltage input from the outside via the distributor 201 and the voltage comparison unit 501. The predetermined voltage threshold value is compared, and the comparison result is output (step S101).
 その結果、アンテナ電圧が所定の電圧閾値よりも低ければ(ステップS101の「Yes」)、電圧比較部501の出力はLow(もしくはHigh)のままで変化しない。制御部314の割り込みポートがLow(もしくはHigh)のままであるため、制御部314は、他の受信機(例えば、図1では、受信機500b)から制御コマンドが送信されていないと判断する。そして、制御部314は、電圧出力部317に対し、その出力を出力電圧Xvから出力電圧Yvへと変化させる。すなわち、電圧出力部317は、制御コマンドを出力するための電圧を出力する(ステップS102)。そして、制御部314は、コマンド送信部318に対し、電圧出力部317からの出力電圧Yvに制御コマンドを重畳させる。すなわち、コマンド送信部318は、アンテナに制御コマンドを送信する(ステップS104)。そして、数ミリ秒後に、制御部314は、電圧出力部317に対し、その出力を出力電圧Yvから出力電圧Xvへと変化させる。すなわち、電圧出力部317は、制御コマンドを出力するための電圧の出力を停止する(ステップS106)。上記したように、制御部314は、比較結果に基づき、制御コマンドを出力するための電圧と制御コマンドの送信とを制御する。 As a result, if the antenna voltage is lower than the predetermined voltage threshold (“Yes” in step S101), the output of the voltage comparison unit 501 remains low (or high) and does not change. Since the interrupt port of the control unit 314 remains Low (or High), the control unit 314 determines that a control command is not transmitted from another receiver (for example, the receiver 500b in FIG. 1). Then, the control unit 314 causes the voltage output unit 317 to change its output from the output voltage Xv to the output voltage Yv. That is, the voltage output unit 317 outputs a voltage for outputting a control command (step S102). Then, the control unit 314 causes the command transmission unit 318 to superimpose the control command on the output voltage Yv from the voltage output unit 317. That is, the command transmission unit 318 transmits a control command to the antenna (step S104). Then, after several milliseconds, the control unit 314 causes the voltage output unit 317 to change its output from the output voltage Yv to the output voltage Xv. That is, the voltage output unit 317 stops outputting the voltage for outputting the control command (step S106). As described above, the control unit 314 controls the voltage for outputting the control command and the transmission of the control command based on the comparison result.
 一方、アンテナ電圧が所定の電圧閾値よりも高ければ(ステップS101の「No」)、電圧比較部501の出力はHigh(もしくはLow)へ変化する。制御部314の割り込みポートがHigh(もしくはLow)へ変化するため、制御部314は、他の受信機(例えば、図1では、受信機500b)が制御コマンドを送信中であると判断する。そして、ステップS101に戻る。 On the other hand, if the antenna voltage is higher than the predetermined voltage threshold (“No” in step S101), the output of the voltage comparison unit 501 changes to High (or Low). Since the interrupt port of the control unit 314 changes to High (or Low), the control unit 314 determines that another receiver (for example, the receiver 500b in FIG. 1) is transmitting a control command. Then, the process returns to step S101.
 この場合、制御部314は、電圧出力部317に対し、制御コマンドを出力するための電圧を出力させず、かつコマンド送信部318に対し、アンテナへ制御コマンドの送信をさせない。そして、アンテナ電圧が所定の電圧閾値よりも低くなるのを待ってから(ステップS101の「Yes」)、制御部314は、電圧出力部317に対し、出力電圧Xvから出力電圧Yvへと変化させる。すなわち、制御部314は、電圧出力部317から制御コマンドを出力するための電圧を出力させる(ステップS102)。そして、制御部314は、コマンド送信部318からアンテナに制御コマンドを送信させる(ステップS104)。 In this case, the control unit 314 does not cause the voltage output unit 317 to output a voltage for outputting a control command, and does not cause the command transmission unit 318 to transmit the control command to the antenna. Then, after waiting for the antenna voltage to become lower than the predetermined voltage threshold (“Yes” in step S101), the control unit 314 causes the voltage output unit 317 to change from the output voltage Xv to the output voltage Yv. . That is, the control unit 314 outputs a voltage for outputting a control command from the voltage output unit 317 (step S102). Then, the control unit 314 causes the command transmission unit 318 to transmit a control command to the antenna (step S104).
 上記したように、本実施の形態に係わる受信機500aによれば、外部から入力されるアンテナ電圧と所定の電圧閾値(Sv)を比較することで、予め他の受信機が制御コマンドを送信中かどうか確認することにより、受信機間の制御コマンドの衝突を回避し、選局時の待ち時間を軽減することができる。 As described above, according to the receiver 500a according to the present embodiment, another receiver is transmitting a control command in advance by comparing the antenna voltage input from the outside with a predetermined voltage threshold (Sv). By checking whether or not, it is possible to avoid a collision of control commands between the receivers and reduce the waiting time at the time of tuning.
 (実施の形態2)
 図4は、本発明の実施の形態2に係わる受信機600aの構成を示すブロック図である。受信機600aは、チューナー部311、復調部312、VID/AID検出部313、制御部314a、AV出力部315、リモコン受光部316、コマンド送信部318、電圧比較部501、電圧Xv出力部601、電圧Yv出力部602、スイッチ603から構成される。
(Embodiment 2)
FIG. 4 is a block diagram showing a configuration of receiver 600a according to Embodiment 2 of the present invention. The receiver 600a includes a tuner unit 311, a demodulation unit 312, a VID / AID detection unit 313, a control unit 314a, an AV output unit 315, a remote control light receiving unit 316, a command transmission unit 318, a voltage comparison unit 501, a voltage Xv output unit 601, A voltage Yv output unit 602 and a switch 603 are included.
 本実施の形態に係わる受信機600aは、電圧Xv出力部601、電圧Yv出力部602、スイッチ603を備えていることが特徴である。実施の形態1と同等の機能を有する構成については、同等の符号を付け、詳細な構成と動作の説明を省略することがある。 The receiver 600a according to this embodiment is characterized by including a voltage Xv output unit 601, a voltage Yv output unit 602, and a switch 603. The components having the same functions as those of the first embodiment are denoted by the same reference numerals, and detailed description of the configuration and operation may be omitted.
 制御部314aは、電圧Xv出力部601から、出力電圧Xvをアンテナの電源用として常に出力させている。また、制御部314aは、出力電圧Xvを、出力電圧Yvに変化させるための電圧を、電圧Yv出力部602から常に出力させている。ここで、出力電圧Yvは、コマンド送信部318からの制御コマンドを重畳させるための電圧である。また、制御部314aは、コマンド送信部318から、出力電圧Yvに重畳させる制御コマンドを常に出力させている。ここで、スイッチ603がオープンされている場合、電圧Xv出力部601からの出力電圧Xvだけがアンテナに出力される。一方、スイッチ603がクローズされている場合、出力電圧Yvに制御コマンドが重畳されてアンテナに出力される。 The control unit 314a always outputs the output voltage Xv from the voltage Xv output unit 601 as a power source for the antenna. Further, the control unit 314a constantly outputs a voltage for changing the output voltage Xv to the output voltage Yv from the voltage Yv output unit 602. Here, the output voltage Yv is a voltage for superimposing the control command from the command transmission unit 318. The control unit 314a always outputs a control command to be superimposed on the output voltage Yv from the command transmission unit 318. Here, when the switch 603 is open, only the output voltage Xv from the voltage Xv output unit 601 is output to the antenna. On the other hand, when the switch 603 is closed, the control command is superimposed on the output voltage Yv and output to the antenna.
 そして、ユーザーの操作によりリモコン(図示せず)からユーザー操作情報を受信すると、リモコン受光部316は、ユーザー操作情報に対応したキーコードを出力する。そのキーコードに応じた所定のサービスをチューナー部311に選局させるため、制御部314aは、電圧比較部501に、分配器201を介して外部から入力されるアンテナ電圧と電圧比較部501が保持する所定の電圧閾値(Sv)とを比較させる。 Then, when user operation information is received from a remote controller (not shown) by a user operation, the remote control light receiving unit 316 outputs a key code corresponding to the user operation information. In order to cause the tuner unit 311 to select a predetermined service corresponding to the key code, the control unit 314a causes the voltage comparison unit 501 to hold the antenna voltage input from the outside via the distributor 201 and the voltage comparison unit 501. A predetermined voltage threshold value (Sv) is compared.
 アンテナ電圧が所定の電圧閾値よりも低ければ、電圧比較部501の出力はLow(もしくはHigh)のままで変化しない。制御部314aの割り込みポートがLow(もしくはHigh)のままであるため、制御部314aは、他の受信機(例えば、図4では、受信機600b)から制御コマンドが送信されていないと判断する。そして、制御部314aは、スイッチ603をクローズさせ、出力電圧Yvに制御コマンドを重畳させ、アンテナに制御コマンドを送信する。そして、制御部314aは、スイッチ603をオープンする。その結果、数ミリ秒後に、制御部314aの制御により、アンテナへの出力電圧は、YvからXvへと変化する。 If the antenna voltage is lower than the predetermined voltage threshold, the output of the voltage comparison unit 501 remains Low (or High) and does not change. Since the interrupt port of the control unit 314a remains Low (or High), the control unit 314a determines that a control command is not transmitted from another receiver (for example, the receiver 600b in FIG. 4). Then, the control unit 314a closes the switch 603, superimposes the control command on the output voltage Yv, and transmits the control command to the antenna. Then, the control unit 314a opens the switch 603. As a result, after several milliseconds, the output voltage to the antenna changes from Yv to Xv under the control of the control unit 314a.
 一方、アンテナ電圧が所定の電圧閾値よりも高ければ、電圧比較部501の出力はHigh(もしくはLow)へ変化する。制御部314aの割り込みポートがHigh(もしくはLow)へ変化するため、他の受信機(例えば、図4では、受信機600b)が制御コマンドを送信中であると判断する。そして、制御部314aは、スイッチ603をオープンのまま維持し、制御コマンドを出力するための電圧を出力させず、かつ制御コマンドを送信させない。そして、アンテナ電圧が所定の電圧閾値よりも低くなるのを待ってから、制御部314aは、スイッチ603をクローズさせる。 On the other hand, if the antenna voltage is higher than the predetermined voltage threshold, the output of the voltage comparison unit 501 changes to High (or Low). Since the interrupt port of the control unit 314a changes to High (or Low), it is determined that another receiver (for example, the receiver 600b in FIG. 4) is transmitting a control command. Then, the control unit 314a keeps the switch 603 open, does not output a voltage for outputting the control command, and does not transmit the control command. Then, after waiting for the antenna voltage to become lower than the predetermined voltage threshold, the control unit 314a closes the switch 603.
 上記したように、本実施の形態に係わる受信機600aによれば、外部から入力されるアンテナ電圧と所定の電圧閾値とを比較することで、予め他の受信機がコマンドを送信中かどうか確認することにより、受信機間のコマンド衝突を回避し、選局時の待ち時間を軽減することができる。 As described above, according to the receiver 600a according to the present embodiment, it is confirmed whether another receiver is transmitting a command in advance by comparing the antenna voltage input from the outside with a predetermined voltage threshold. By doing so, it is possible to avoid command collision between receivers and reduce the waiting time at the time of tuning.
 (実施の形態3)
 実施の形態1では、図3に示したように外部から入力されるアンテナ電圧と所定の電圧閾値(Sv)とを比較することで、予め他の受信機500bが制御コマンドを送信中かどうか確認することにより、受信機500a及び受信機500b間の制御コマンドの衝突を回避した。
(Embodiment 3)
In the first embodiment, as shown in FIG. 3, it is confirmed in advance whether another receiver 500b is transmitting a control command by comparing an antenna voltage input from the outside with a predetermined voltage threshold (Sv). By doing so, the collision of control commands between the receiver 500a and the receiver 500b was avoided.
 しかしながら、図5に示すように、発明者らは、実施の形態1、2の構成の受信機500a、500bでは、制御コマンドの衝突を回避できない期間が生じることを確認した。この衝突回避不可期間(t1)は、例えば受信機500aの出力電圧が、XvからYvに向けて変化し始めて、所定の電圧閾値に到達するまでの期間である。この衝突回避不可期間に、他の受信機として、例えば、図5に示した受信機500bは、時間t3において、外部から入力されるアンテナ電圧が所定の閾値よりも低いので、制御コマンドの衝突が生じるにもかかわらず、他の受信機(例えば、図5では、受信機500a)から制御コマンドが送信されていないと判断し、制御コマンドを出力する。 However, as shown in FIG. 5, the inventors have confirmed that there is a period in which a control command collision cannot be avoided in the receivers 500 a and 500 b configured in the first and second embodiments. The collision avoidance impossible period (t1) is a period from when the output voltage of the receiver 500a starts to change from Xv to Yv and reaches a predetermined voltage threshold. During this collision avoidance period, as another receiver, for example, the receiver 500b shown in FIG. 5 has a control command collision since the antenna voltage input from the outside is lower than a predetermined threshold at time t3. Despite the occurrence, it is determined that the control command is not transmitted from another receiver (for example, receiver 500a in FIG. 5), and the control command is output.
 そこで、発明者らは、さらなる検討によって、実施の形態1の構成に対して、図6に示すように微分回路部319を付加した構成により、上記した新たな課題を解決した。図6は、本発明の実施の形態3に係わる受信機500cの構成を示すブロック図である。以下、本実施の形態における受信機500cの動作について説明する。微分回路部319を除く他の構成は、実施の形態1と同様であり、同等な符号をつけて、詳細な構成と動作の説明を省略する。なお、受信機500dは、受信機500cと同等の構成を有している。 Therefore, the inventors have solved the above-described new problem by further study, by adding a differentiating circuit unit 319 to the configuration of the first embodiment as shown in FIG. FIG. 6 is a block diagram showing a configuration of a receiver 500c according to Embodiment 3 of the present invention. Hereinafter, an operation of receiver 500c in the present embodiment will be described. The rest of the configuration excluding the differentiation circuit unit 319 is the same as that of the first embodiment, and the same reference numerals are given and detailed description of the configuration and operation is omitted. Note that the receiver 500d has a configuration equivalent to that of the receiver 500c.
 微分回路部319は、チューナー部311の入力端子に接続され、アンテナ電圧が入力されている。微分回路部319は、アンテナ電圧を時間微分して生成したアンテナ電圧の時間変化を出力信号として、制御部314bに出力する。すなわち、微分回路部319の出力信号は、制御部314bに入力されている。なお、アンテナ電圧における微小かつ高周波成分を有する雑音を除去するため低域通過フィルタを介して、アンテナ電圧を微分回路部319に入力してもよい。 The differentiation circuit unit 319 is connected to the input terminal of the tuner unit 311 and receives an antenna voltage. The differentiation circuit unit 319 outputs, as an output signal, a change in the antenna voltage with time generated by time differentiation of the antenna voltage to the control unit 314b. That is, the output signal of the differentiation circuit unit 319 is input to the control unit 314b. Note that the antenna voltage may be input to the differentiating circuit unit 319 through a low-pass filter in order to remove noise having a minute and high-frequency component in the antenna voltage.
 図7Aは、本発明の実施の形態3に係わる受信機500cから出力される電圧、送信される制御コマンド及び微分回路部319の出力信号の一例を示す波形図である。ユーザー操作情報に対応して、アンテナ電圧がXvからYvに向けて変化すると、微分回路部319の出力信号は、図7Aに示すように衝突回避可能期間(t2)において所定の出力レベルとなる。ここで、例えば、他の受信機500dが、制御コマンドを出力するための電圧の出力を開始する時点(図7では、時間t3で示す)で、微分回路部319から所定の出力レベルが出力されている場合には、例えば、他の受信機500dは、微分回路部319を有しているため、制御コマンドの送信を開始しないように制御する。したがって、本実施の形態に係る受信機500cでは、衝突回避不可期間(t1)を衝突回避可能期間(t2)とすることができる。 FIG. 7A is a waveform diagram showing an example of a voltage output from the receiver 500c according to Embodiment 3 of the present invention, a control command to be transmitted, and an output signal of the differentiating circuit unit 319. When the antenna voltage changes from Xv to Yv corresponding to the user operation information, the output signal of the differentiating circuit unit 319 becomes a predetermined output level in the collision avoidable period (t2) as shown in FIG. 7A. Here, for example, when the other receiver 500d starts outputting a voltage for outputting a control command (indicated by time t3 in FIG. 7), a predetermined output level is output from the differentiating circuit unit 319. In this case, for example, the other receiver 500d has the differentiating circuit unit 319, and therefore controls so as not to start transmission of the control command. Therefore, in receiver 500c according to the present embodiment, collision avoidance impossible period (t1) can be set as a collision avoidance possible period (t2).
 上記したように、図7Aに示すように制御部314bは、微分回路部319の出力信号が所定の出力レベルであって変動がない場合、制御コマンドを出力すると、制御コマンドの衝突が生じると判定する。なお、所定の出力レベルは、アンテナ電圧がXvからYvに向けて変化する際の時間変化の大きさに対応する。したがって、所定の出力レベルは、電圧出力部317の駆動能力と複数の受信機を含む負荷回路との関係によって変化するものである。図7Aに示すように、所定の出力レベルがある値であって、その時間変化がほとんど生じない場合、制御部314bは、制御コマンドを出力すると、制御コマンドの衝突が生じると判定してよい。このように、制御部314bは、制御コマンドを出力するための電圧の出力を開始する時点(時間t3)で、アンテナ電圧を時間微分して生成した出力信号が、所定の出力レベルを有している場合、コマンド送信部318に制御コマンドを送信させないように制御する。 As described above, as shown in FIG. 7A, the control unit 314b determines that a control command collision occurs when the control command is output when the output signal of the differentiating circuit unit 319 is at a predetermined output level and there is no fluctuation. To do. The predetermined output level corresponds to the magnitude of the time change when the antenna voltage changes from Xv to Yv. Therefore, the predetermined output level changes depending on the relationship between the driving capability of the voltage output unit 317 and the load circuit including a plurality of receivers. As shown in FIG. 7A, when the predetermined output level is a certain value and the time change hardly occurs, the control unit 314b may determine that a control command collision occurs when the control command is output. As described above, the control unit 314b has a predetermined output level when the output signal generated by time differentiation of the antenna voltage at a time point (time t3) when the output of the voltage for outputting the control command is started. If so, control is performed so that the command transmission unit 318 does not transmit a control command.
 一方、制御部314bは、制御コマンドを出力するための電圧の出力を開始する時点(時間t7)で、アンテナ電圧を時間微分して生成した出力信号が、所定の出力レベルを有していない場合、制御部314bは、電圧出力部317に、制御コマンドを出力するための電圧を出力させる。そして、コマンド送信部318に、制御コマンドを送信させる。このようにすれば、制御コマンドの衝突は生じない。 On the other hand, when the control unit 314b starts outputting the voltage for outputting the control command (time t7), the output signal generated by time differentiation of the antenna voltage does not have a predetermined output level. The control unit 314b causes the voltage output unit 317 to output a voltage for outputting a control command. Then, the command transmission unit 318 is caused to transmit a control command. In this way, control command collision does not occur.
 このようにして、本実施の形態に係る受信機500c、受信機500dでは、実施の形態1、2に係る受信機500a、600aのように衝突回避不可期間(t1)が生じない。したがって、受信機間のコマンド衝突を回避し、選局時の待ち時間を軽減することができる。 Thus, in the receiver 500c and the receiver 500d according to the present embodiment, the collision avoidance impossible period (t1) does not occur unlike the receivers 500a and 600a according to the first and second embodiments. Therefore, it is possible to avoid a command collision between the receivers and reduce the waiting time during channel selection.
 なお、アンテナ電圧が所定の電圧を超える期間(t8)では、制御コマンドの送出により、微分回路部319の出力信号は大きく変化することも想定される。しかしながら、ステップS101におけるアンテナ電圧と所定の電圧との比較に結果により、制御コマンドが送出され衝突することはない。これは、例えば時間t4、t5において、例えば他の受信機500dが、制御コマンドを出力するための電圧の出力を開始しようとした場合において、想定されることである。 In the period (t8) when the antenna voltage exceeds the predetermined voltage, it is assumed that the output signal of the differentiating circuit unit 319 changes greatly due to the transmission of the control command. However, according to the result of the comparison between the antenna voltage and the predetermined voltage in step S101, a control command is sent and no collision occurs. This is assumed, for example, when another receiver 500d starts to output a voltage for outputting a control command at times t4 and t5, for example.
 また、制御コマンドを送出した後に、アンテナ電圧がYvからXvに向けて変化する場合については、上記したことと同様に、微分回路部319の出力信号は、図7Aに示すように衝突回避可能期間(t9)において所定の出力レベルとなる。制御部314bは、制御コマンドを出力するための電圧の出力を開始する時点(時間t6)で、アンテナ電圧を時間微分して生成した出力信号が、所定の出力レベルを有しているので、コマンド送信部318に制御コマンドを送信させないように制御する。そのため、制御部314bは、一定の時間を待って再度、例えば時間(t7)の時点で、微分信号が所定の出力レベルを有しているかを判定し、所定の出力レベルを有していない場合、制御部314bは、電圧出力部317に、制御コマンドを出力するための電圧を出力させればよい。 Further, in the case where the antenna voltage changes from Yv to Xv after sending the control command, the output signal of the differentiating circuit unit 319 is a collision avoidable period as shown in FIG. 7A, as described above. A predetermined output level is reached at (t9). Since the output signal generated by time-differentiating the antenna voltage at a time point (time t6) at which output of the voltage for outputting the control command is started, the control unit 314b has a predetermined output level. Control is performed so that the transmission unit 318 does not transmit a control command. Therefore, the control unit 314b waits for a certain time, and again determines whether the differential signal has a predetermined output level, for example, at the time (t7), and does not have the predetermined output level. The control unit 314b may cause the voltage output unit 317 to output a voltage for outputting a control command.
 次に、本実施の形態における受信方法について、説明する。図7Bは、本発明の実施の形態3に係わる受信機500cにおいて、制御コマンドの衝突回避をしつつ受信するための受信方法を示したフローチャートである。なお、図7Bにおいて、ステップS101からステップ106までは、図3と同様であるので、詳細な説明を省略する。 Next, the reception method in this embodiment will be described. FIG. 7B is a flowchart showing a reception method for receiving a control command while avoiding a collision in receiver 500c according to Embodiment 3 of the present invention. In FIG. 7B, steps S101 to 106 are the same as those in FIG.
 本実施の形態における受信方法が、実施の形態1における受信方法と異なるのは、外部から入力されるアンテナ電圧を時間微分して生成した出力信号を出力するステップを、さらに備えていることである。そして、制御するステップは、アンテナ電圧を時間微分して生成した出力信号が、制御コマンドを出力するための電圧の出力を開始する時点(時間t3、t6)で、所定の出力レベルを有している場合、制御コマンドを送信させないことを特徴とする。 The receiving method in this embodiment is different from the receiving method in Embodiment 1 in that it further includes a step of outputting an output signal generated by time-differentiating an antenna voltage input from the outside. . The controlling step has a predetermined output level when the output signal generated by differentiating the antenna voltage with respect to time starts outputting the voltage for outputting the control command (time t3, t6). If it is, the control command is not transmitted.
 図7Bに示すように、本実施の形態における受信機500cの微分回路部319は、入力されるアンテナ電圧の微分信号を生成する(ステップS151)。微分回路部319から出力された微分信号は、制御部314bに入力される。そして、制御部314bは、制御コマンドを出力するための電圧の出力を開始する時点(時間t3、t7)で、微分信号が所定の出力レベルを有しているかを判定する(ステップS153)。所定の出力レベルを有している場合(ステップS153の「Yes」)、制御コマンドを送信させないで終了する。 As shown in FIG. 7B, the differentiation circuit unit 319 of the receiver 500c in the present embodiment generates a differential signal of the input antenna voltage (step S151). The differential signal output from the differentiation circuit unit 319 is input to the control unit 314b. Then, the control unit 314b determines whether or not the differential signal has a predetermined output level at a time point (time t3, t7) at which output of a voltage for outputting a control command is started (step S153). If it has a predetermined output level (“Yes” in step S153), the process is terminated without transmitting a control command.
 一方、所定の出力レベルを有していない場合(ステップS153の「No」)、ステップS101に進む。以下は、上述したように実施の形態1と同様であるので、説明を省略する。 On the other hand, if it does not have the predetermined output level (“No” in step S153), the process proceeds to step S101. Since the following is the same as that of the first embodiment as described above, the description thereof is omitted.
 なお、複数の受信機が、殆ど同時に制御コマンドを出力するための電圧の出力を開始する場合を想定すると、さらに工夫をする必要がある。すなわち、例えば、制御コマンドを出力するための電圧の出力を開始する時点(t5)で、微分信号が所定の出力レベルを有しているかを判定し、さらに一定の時間をおいて、再度、時間t6、t7と、微分信号が所定の出力レベルを有しているかを判定するようにすれば、上記した課題にも対応できる。なお、再度、微分信号が所定の出力レベルを有しているかを判定する時点の時間間隔は、固定とする必要はなく、適宜変化させてもよい。 Note that it is necessary to further devise a case where a plurality of receivers start outputting a voltage for outputting a control command almost simultaneously. That is, for example, at the time (t5) when the output of the voltage for outputting the control command is started, it is determined whether or not the differential signal has a predetermined output level, and after a certain time, the time again If it is determined whether t6 and t7 and the differential signal has a predetermined output level, the above-described problems can be dealt with. Note that the time interval at which it is determined again whether the differential signal has a predetermined output level need not be fixed and may be changed as appropriate.
 このようにして、本実施の形態に係る受信機及び受信方法では、衝突回避不可期間(t1)が生じない。したがって、受信機間のコマンド衝突を回避し、選局時の待ち時間を軽減することができる。 Thus, in the receiver and the receiving method according to the present embodiment, the collision avoidance impossible period (t1) does not occur. Therefore, it is possible to avoid a command collision between the receivers and reduce the waiting time during channel selection.
 (実施の形態4)
 本実施の形態では、実施の形態1および2で述べたように、外部から入力されるアンテナ電圧と所定の電圧閾値(Sv)を比較することで、予め他の受信機が制御コマンドを送信中かどうか確認することにより、受信機間の制御コマンドの衝突を回避することを特徴としている。また、本実施の形態では、例えば、図5に示す衝突回避不可期間t1においてコマンドの衝突が発生した場合に、自動利得制御部817の出力するパワー値822を入力して、制御信号衝突検出部825が、アンテナ制御信号826aに対して、他の受信機からのアンテナ制御信号826b、またはアンテナ制御信号826cと衝突しているかどうかを短時間で判定することを特徴としている。この判定は、パワー値822の変化を検出して行う。そして、制御信号衝突検出部825が、アンテナ制御信号の衝突を検出した場合、制御部が、制御コマンドを再送信させることを特徴としている。
(Embodiment 4)
In this embodiment, as described in the first and second embodiments, another receiver is transmitting a control command in advance by comparing the antenna voltage input from the outside with a predetermined voltage threshold (Sv). It is characterized by avoiding the collision of the control command between the receivers by checking whether or not. Further, in the present embodiment, for example, when a command collision occurs in the collision avoidance impossible period t1 shown in FIG. 5, the power value 822 output from the automatic gain control unit 817 is input, and the control signal collision detection unit 825 is characterized in that it is determined in a short time whether the antenna control signal 826a collides with the antenna control signal 826b or the antenna control signal 826c from another receiver. This determination is performed by detecting a change in the power value 822. When the control signal collision detection unit 825 detects a collision of antenna control signals, the control unit retransmits the control command.
 図8は、本発明の実施の形態4に係わる衛星放送受信システム800の構成を示すブロック図である。衛星放送受信システム800は、衛星アンテナ装置807、受信機813、受信機814および受信機819から構成される。また、衛星アンテナ装置807は、アンテナ803、アンテナ804、LNB(Low Noise Block Converter)805、LNB806、ユーザーバンド変換部812から構成される。なお、本実施の形態において衛星アンテナ装置807は、アンテナとLNBの組を2つ備えるがこれに限定されず、1つ又は3つ以上であっても良い。すなわち、本実施の形態における衛星放送受信システム800は、アンテナ803、804と一本のケーブルで複数の受信機813、814、819が接続され、アンテナ803、804で受信し周波数変換した映像・音声信号を含むユーザーバンド信号をケーブル経由で受信する。なお、実施の形態1で示したユーザーバンド信号を分配するための分配器を、図面を簡便にするため省略している。 FIG. 8 is a block diagram showing a configuration of a satellite broadcast receiving system 800 according to Embodiment 4 of the present invention. The satellite broadcast receiving system 800 includes a satellite antenna device 807, a receiver 813, a receiver 814, and a receiver 819. The satellite antenna device 807 includes an antenna 803, an antenna 804, an LNB (Low Noise Block Converter) 805, an LNB 806, and a user band conversion unit 812. In this embodiment, the satellite antenna device 807 includes two sets of antennas and LNBs, but is not limited thereto, and may be one or three or more. That is, in the satellite broadcast receiving system 800 according to the present embodiment, a plurality of receivers 813, 814, and 819 are connected by a single cable to the antennas 803 and 804, and are received by the antennas 803 and 804 and converted to frequency. User band signal including signal is received via cable. Note that the distributor for distributing the user band signal shown in the first embodiment is omitted for the sake of simplicity.
 また、受信機819は、チューナー815、AD変換部816、自動利得制御部817、復調部818、誤り訂正部820、LPF(Low Pass Filter)823、制御信号衝突検出部825、制御信号発生部828、制御部としてのCPU(Central Processing Unit)829、リモコン受光部832、TS多重分離部833、MPEGデコーダ834、DA(Digital Analog)変換部835から構成される。なお、チューナー部815aは、チューナー815、AD変換部816、LPF823を含む。受信機813、受信機814は、受信機819と同じ構成である。図8では、簡略化のため、受信機813、受信機814は、チューナー815b、チューナー815c、制御信号発生部828b、制御信号発生部828cのみを図示している。また、本実施の形態における衛星放送受信システム800は、受信機を3つ備える構成としたが、これに限定されず、1つ、2つ又は4つ以上であっても良い。 The receiver 819 includes a tuner 815, an AD conversion unit 816, an automatic gain control unit 817, a demodulation unit 818, an error correction unit 820, an LPF (Low Pass Filter) 823, a control signal collision detection unit 825, and a control signal generation unit 828. The control unit includes a CPU (Central Processing Unit) 829, a remote control light receiving unit 832, a TS demultiplexing unit 833, an MPEG decoder 834, and a DA (Digital Analog) conversion unit 835. The tuner unit 815a includes a tuner 815, an AD conversion unit 816, and an LPF 823. The receiver 813 and the receiver 814 have the same configuration as the receiver 819. In FIG. 8, for simplification, the receiver 813 and the receiver 814 show only the tuner 815b, the tuner 815c, the control signal generator 828b, and the control signal generator 828c. In addition, the satellite broadcast receiving system 800 in the present embodiment is configured to include three receivers, but is not limited to this, and may be one, two, or four or more.
 初めに、衛星信号の受信から映像・音声信号836が出力されるまでの動作について図8を用いて説明する。 First, the operation from the reception of the satellite signal to the output of the video / audio signal 836 will be described with reference to FIG.
 まず、衛星アンテナ装置807の動作を説明する。衛星アンテナ装置807において、アンテナ803は衛星信号801、アンテナ804は衛星信号802を受信する。 First, the operation of the satellite antenna device 807 will be described. In the satellite antenna device 807, the antenna 803 receives the satellite signal 801 and the antenna 804 receives the satellite signal 802.
 LNB805は、アンテナ803で受信した12GHz帯域の信号を1GHz帯域の水平偏波信号808と垂直偏波信号809に周波数変換し、LNB806は、アンテナ804で受信した12GHz帯域の信号を1GHz帯域の水平偏波信号810と垂直偏波信号811に周波数変換する。 The LNB 805 converts the frequency of the 12 GHz band signal received by the antenna 803 into a 1 GHz band horizontal polarization signal 808 and a vertical polarization signal 809, and the LNB 806 converts the 12 GHz band signal received by the antenna 804 to the 1 GHz band horizontal polarization signal. Frequency conversion into a wave signal 810 and a vertically polarized signal 811 is performed.
 ユーザーバンド変換部812は、受信機813、受信機814および受信機819からのアンテナ制御信号に基づき、周波数変換された水平偏波信号808、水平偏波信号810、垂直偏波信号809、垂直偏波信号811の信号の中から選局指定された信号をユーザーバンド信号837に周波数変換する。ユーザーバンド信号は複数あり、本実施の形態のように3台の受信機813、受信機814、受信機819が接続されている場合には、受信機813、受信機814、受信機819のそれぞれが使用するユーザーバンド信号が必要なため、ユーザーバンド変換部812から、通常3つのユーザーバンド信号が出力される。 The user band conversion unit 812 is a frequency-converted horizontal polarization signal 808, horizontal polarization signal 810, vertical polarization signal 809, vertical polarization based on antenna control signals from the receiver 813, the receiver 814, and the receiver 819. A signal selected from the wave signal 811 is frequency-converted to a user band signal 837. There are a plurality of user band signals. When three receivers 813, a receiver 814, and a receiver 819 are connected as in this embodiment, each of the receiver 813, the receiver 814, and the receiver 819 is connected. Therefore, the user band signal is normally output from the user band conversion unit 812.
 次に、衛星アンテナ装置807で周波数変換されたユーザーバンド信号837を受信機819で受信し、受信機819から映像・音声信号836が出力されるまでの動作を説明する。 Next, the operation until the receiver 819 receives the user band signal 837 frequency-converted by the satellite antenna device 807 and the video / audio signal 836 is output from the receiver 819 will be described.
 ユーザーバンド信号837は、チューナー815により受信され、一定のレベルに利得制御された上で、実軸信号と虚軸信号のベースバンド信号に周波数変換される。そして、ベースバンド信号は、AD変換部816でデジタル信号に変換後、復調部818に入力されデジタル復調される。その後、デジタル復調された信号は、誤り訂正部820で誤り訂正され、TS(Transport Stream)信号838として、TS多重分離部833に出力される。TS信号838は、TS多重分離部833により映像・音声信号などが分離され、MPEGデコーダ834で復号される。そして、復号されたデジタル信号は、DA変換部835でアナログ信号に変換された後、映像・音声信号836として出力される。 The user band signal 837 is received by the tuner 815, gain-controlled to a certain level, and then frequency-converted into a baseband signal of a real axis signal and an imaginary axis signal. The baseband signal is converted into a digital signal by the AD conversion unit 816 and then input to the demodulation unit 818 and digitally demodulated. Thereafter, the digitally demodulated signal is error-corrected by the error correction unit 820 and output to the TS demultiplexing unit 833 as a TS (Transport Stream) signal 838. The TS signal 838 is separated from the video / audio signal by the TS demultiplexing unit 833 and decoded by the MPEG decoder 834. The decoded digital signal is converted into an analog signal by the DA converter 835 and then output as a video / audio signal 836.
 一方、自動利得制御部817は、デジタル化されたベースバンド信号からそのベースバンド信号の出力レベルを検出する。また、検出した出力レベルを元にPWM(Pulse Width Modulation)信号824を生成する。生成されたPWM信号824は、LPF823を通して自動利得制御電圧821となる。自動利得制御部817は、チューナー815の利得を、自動利得制御電圧821で制御し、ベースバンド信号の出力レベルを一定に保つように動作する。また、自動利得制御部817は、チューナー815の利得を制御する信号に基づいて、チューナー815に入力される信号の強度に対応するパワー値822を制御信号衝突検出部825に出力する。 On the other hand, the automatic gain control unit 817 detects the output level of the baseband signal from the digitized baseband signal. Further, a PWM (Pulse Width Modulation) signal 824 is generated based on the detected output level. The generated PWM signal 824 becomes an automatic gain control voltage 821 through the LPF 823. The automatic gain control unit 817 controls the gain of the tuner 815 with the automatic gain control voltage 821 and operates so as to keep the output level of the baseband signal constant. Further, the automatic gain control unit 817 outputs a power value 822 corresponding to the intensity of the signal input to the tuner 815 to the control signal collision detection unit 825 based on a signal for controlling the gain of the tuner 815.
 次に、アンテナ制御信号826aの衝突有無の検出方法について図8から図13を用いて説明する。 Next, a method for detecting whether the antenna control signal 826a has a collision will be described with reference to FIGS.
 先にも述べたように、衛星アンテナ装置807のユーザーバンド変換部812は、受信機819からアンテナ制御信号826aを受信し、水平偏波信号808、水平偏波信号810、垂直偏波信号809、垂直偏波信号811から選局指定された信号を所定のユーザーバンド信号に周波数変換する。 As described above, the user band conversion unit 812 of the satellite antenna device 807 receives the antenna control signal 826a from the receiver 819, and receives the horizontal polarization signal 808, the horizontal polarization signal 810, the vertical polarization signal 809, A signal selected from the vertical polarization signal 811 is frequency-converted into a predetermined user band signal.
 ここで、例えば、受信機819がアンテナ制御信号826aを送信すると同時に、受信機813がアンテナ制御信号826bを送信すると、アンテナ制御信号826aとアンテナ制御信号826bとの衝突が発生する。その結果、ユーザーバンド変換部812は、アンテナ制御信号826aとアンテナ制御信号826bとをそれぞれ正しく受け取ることができない。したがって、受信機813と受信機819は、水平偏波信号808、水平偏波信号810、垂直偏波信号809、垂直偏波信号811から選局指定された信号を、所定のユーザーバンド信号837に周波数変換して、受け取ることができなくなる。そのため受信機813、受信機814、受信機819にはアンテナ制御信号826aの衝突を検出する制御信号衝突検出部825を配置している。 Here, for example, when the receiver 819 transmits the antenna control signal 826a and the receiver 813 transmits the antenna control signal 826b, a collision between the antenna control signal 826a and the antenna control signal 826b occurs. As a result, the user band conversion unit 812 cannot correctly receive the antenna control signal 826a and the antenna control signal 826b. Therefore, the receiver 813 and the receiver 819 use the signals selected from the horizontal polarization signal 808, the horizontal polarization signal 810, the vertical polarization signal 809, and the vertical polarization signal 811 as predetermined user band signals 837. The frequency is converted and cannot be received. Therefore, a control signal collision detection unit 825 for detecting a collision of the antenna control signal 826a is arranged in the receiver 813, the receiver 814, and the receiver 819.
 まず、受信機819の電源投入時におけるアンテナ制御信号826aの衝突有無の検出方法について、図8から図11を用いて説明する。 First, a method for detecting the presence or absence of a collision of the antenna control signal 826a when the receiver 819 is turned on will be described with reference to FIGS.
 受信機819の電源が投入されると、CPU829は、自身に記憶しているチャンネルの選局動作を開始する。 When the power of the receiver 819 is turned on, the CPU 829 starts the channel selection operation of the channel stored in itself.
 図9Aは、本発明の実施の形態4に係わる受信機819の制御信号発生部828の構成を示すブロック図である。制御信号発生部828は、電圧比較部501、電圧出力部317、コマンド送信部318から構成される。また、チューナー815、制御部としてのCPU829は、それぞれ図に示すように、制御信号発生部828に接続されている。 FIG. 9A is a block diagram showing a configuration of control signal generation section 828 of receiver 819 according to Embodiment 4 of the present invention. The control signal generation unit 828 includes a voltage comparison unit 501, a voltage output unit 317, and a command transmission unit 318. Further, a tuner 815 and a CPU 829 as a control unit are connected to a control signal generation unit 828 as shown in the figure.
 電圧比較部501は、外部から入力されるアンテナ電圧と所定の電圧閾値(Sv)とを比較し、比較結果をCPU829に出力する。 The voltage comparison unit 501 compares the antenna voltage input from the outside with a predetermined voltage threshold (Sv), and outputs the comparison result to the CPU 829.
 電圧出力部317は、CPU829の制御により、制御コマンド(アンテナ制御信号とも言う)を出力するための電圧を、ユーザーバンド変換部812へ出力する。 The voltage output unit 317 outputs a voltage for outputting a control command (also referred to as an antenna control signal) to the user band conversion unit 812 under the control of the CPU 829.
 コマンド送信部318は、CPU829の制御により、制御コマンドをユーザーバンド変換部812へ送信する。 The command transmission unit 318 transmits a control command to the user band conversion unit 812 under the control of the CPU 829.
 CPU829は、電圧比較部501から出力された比較結果に基づき、電圧出力部317とコマンド送信部318とを制御する。すなわち、CPU829は、電圧比較部501の比較結果に基づいて、電圧出力部317に電圧を出力させ、且つコマンド送信部318に制御コマンドを送信させる。 The CPU 829 controls the voltage output unit 317 and the command transmission unit 318 based on the comparison result output from the voltage comparison unit 501. That is, the CPU 829 causes the voltage output unit 317 to output a voltage and causes the command transmission unit 318 to transmit a control command based on the comparison result of the voltage comparison unit 501.
 図9Bは、本発明の実施の形態4に係わる受信機819から出力される電圧、送信される制御コマンド及び所定の閾値(Sv)を示す図である。図9Bに示すように、CPU829は、電圧出力部317から出力電圧Xvを、アンテナの電源用として常に出力させている。そして、コマンド送信部318から制御コマンドを出力させる場合、CPU829は、電圧出力部317から出力電圧Yvを出力させる。 FIG. 9B is a diagram illustrating a voltage output from the receiver 819 according to Embodiment 4 of the present invention, a control command to be transmitted, and a predetermined threshold (Sv). As shown in FIG. 9B, the CPU 829 always outputs the output voltage Xv from the voltage output unit 317 for the power supply of the antenna. When outputting a control command from the command transmission unit 318, the CPU 829 causes the voltage output unit 317 to output the output voltage Yv.
 すなわち、CPU829は、比較結果に基づいて、外部から入力されるアンテナ電圧が所定の電圧閾値よりも低い場合、電圧出力部317にコマンドを出力するための電圧を出力させ、且つコマンド送信部318に制御コマンドを送信させる。一方、外部から入力されるアンテナ電圧が所定の電圧閾値よりも高い場合、電圧出力部317に制御コマンドを送信するための電圧を出力させず、且つコマンド送信部318に制御コマンドを送信させない。 That is, based on the comparison result, the CPU 829 causes the voltage output unit 317 to output a voltage for outputting a command when the externally input antenna voltage is lower than a predetermined voltage threshold, and causes the command transmission unit 318 to output the command. Send a control command. On the other hand, when the antenna voltage input from the outside is higher than a predetermined voltage threshold, the voltage output unit 317 is not output a voltage for transmitting a control command, and the command transmission unit 318 is not transmitted.
 また、CPU829は、比較結果に基づいて、外部から入力されるアンテナ電圧が所定の電圧閾値よりも高い場合、電圧出力部317に制御コマンドを出力するための電圧を出力させず、且つコマンド送信部318に制御コマンドを送信させない。そして、外部から入力されるアンテナ電圧が所定の電圧閾値よりも低くなるのを待ってから、電圧出力部317に制御コマンドを送信するための電圧を出力させ、且つコマンド送信部318に制御コマンドを送信させる。 On the basis of the comparison result, the CPU 829 does not output a voltage for outputting a control command to the voltage output unit 317 when the externally input antenna voltage is higher than a predetermined voltage threshold, and the command transmission unit 318 does not send a control command. Then, after waiting for the antenna voltage input from the outside to become lower than the predetermined voltage threshold, the voltage output unit 317 outputs a voltage for transmitting the control command, and the command transmission unit 318 outputs the control command. Send it.
 図9cは、本発明の実施の形態4に係わる受信機819の制御信号衝突検出部825の構成を示すブロック図である。制御信号衝突検出部825は、保持部839、トリガー信号発生部841、最小値/最大値検出部842、時間カウンター845から構成される。 FIG. 9c is a block diagram showing the configuration of the control signal collision detection unit 825 of the receiver 819 according to Embodiment 4 of the present invention. The control signal collision detection unit 825 includes a holding unit 839, a trigger signal generation unit 841, a minimum value / maximum value detection unit 842, and a time counter 845.
 図10は、本発明の実施の形態4に係わる受信機819における電源投入時でアンテナ制御信号826aに衝突がない場合のパワー値822の時間変化を示す図である。図10に示すように、電源投入時は自動利得制御部817に入力される信号が無いため、制御信号衝突検出部825に入力されるパワー値822は、最小値(この場合、z=0)となる。 FIG. 10 is a diagram showing a time change of the power value 822 when the antenna control signal 826a does not collide when the power is turned on in the receiver 819 according to Embodiment 4 of the present invention. As shown in FIG. 10, since there is no signal input to the automatic gain control unit 817 when the power is turned on, the power value 822 input to the control signal collision detection unit 825 is the minimum value (in this case, z = 0). It becomes.
 制御信号発生部828は、CPU829から指示を受け、CPU829が記憶しているチャンネルを選局するためのアンテナ制御信号826aをユーザーバンド変換部812に送信し、次にチューナー制御信号827をチューナー815に送信する。 The control signal generation unit 828 receives an instruction from the CPU 829, transmits an antenna control signal 826 a for selecting a channel stored in the CPU 829 to the user band conversion unit 812, and then transmits a tuner control signal 827 to the tuner 815. Send.
 その後、図10に示すように、制御信号衝突検出部825の保持部839は、CPU829からの選局指示により、制御信号発生部828がアンテナ制御信号826aをユーザーバンド変換部812に送信するのと同じタイミングで、パワー値822の保持を開始する。そして、保持部839は、パワー保持値(この場合、x=0)840をトリガー信号発生部841に出力する。 Thereafter, as shown in FIG. 10, the holding unit 839 of the control signal collision detection unit 825 indicates that the control signal generation unit 828 transmits the antenna control signal 826 a to the user band conversion unit 812 in response to a channel selection instruction from the CPU 829. At the same timing, the holding of the power value 822 is started. Then, holding unit 839 outputs a power holding value (in this case, x = 0) 840 to trigger signal generating unit 841.
 制御信号発生部828がアンテナ制御信号826aをユーザーバンド変換部812に送信し、チューナー制御信号827をチューナー815に送信すると、アンテナ制御信号826aと受信機813のアンテナ制御信号826b、及び受信機814のアンテナ制御信号826cとの衝突がない場合、自動利得制御部817にデジタル化されたベースバンド信号が正常に入力される。そして、図10に示すように、パワー値822が変化し、この場合では、一定時間後パワー値822がある一定のパワー最大値(y)に収束する。 When the control signal generation unit 828 transmits the antenna control signal 826a to the user band conversion unit 812 and transmits the tuner control signal 827 to the tuner 815, the antenna control signal 826a, the antenna control signal 826b of the receiver 813, and the receiver 814 When there is no collision with the antenna control signal 826c, the digitized baseband signal is normally input to the automatic gain control unit 817. Then, as shown in FIG. 10, the power value 822 changes. In this case, the power value 822 converges to a certain power maximum value (y) after a certain time.
 制御信号衝突検出部825の時間カウンター845は、パワー値822の保持部839への保持を開始したタイミングから所定期間としての最小値/最大値検出期間Tのカウントを開始する。そして、最小値/最大値検出部842は、最小値/最大値検出期間Tの間のパワー値822のパワー最大値(y)とパワー最小値(z)を検出し、パワー最大値(y)とパワー最小値(z)を検出信号843としてトリガー信号発生部841に出力する。トリガー信号発生部841は、パワー最大値(y)とパワー保持値(x)840とを比較し、比較結果(トリガー信号830)をCPU829に検出信号として送信する。 The time counter 845 of the control signal collision detection unit 825 starts counting the minimum value / maximum value detection period T as a predetermined period from the timing when the holding of the power value 822 in the holding unit 839 is started. The minimum value / maximum value detection unit 842 detects the power maximum value (y) and the power minimum value (z) of the power value 822 during the minimum value / maximum value detection period T, and the power maximum value (y). And the power minimum value (z) are output to the trigger signal generator 841 as the detection signal 843. The trigger signal generator 841 compares the power maximum value (y) and the power hold value (x) 840, and transmits the comparison result (trigger signal 830) to the CPU 829 as a detection signal.
 CPU829は、トリガー信号830に基づき、|y-x|>A (ここで、Aは所定のパワー閾値)の場合、受信機819のアンテナ制御信号826aと受信機813のアンテナ制御信号826b、及び受信機814のアンテナ制御信号826cとの衝突がないと判断する。 Based on the trigger signal 830, the CPU 829, when | yx |> A (where A is a predetermined power threshold), the antenna control signal 826a of the receiver 819, the antenna control signal 826b of the receiver 813, and the reception It is determined that there is no collision with the antenna control signal 826c of the machine 814.
 次に、受信機819のアンテナ制御信号826aと受信機813のアンテナ制御信号826b、受信機814のアンテナ制御信号826cとの衝突がある場合について説明する。図11は、本発明の実施の形態4に係わる受信機819における電源投入時でアンテナ制御信号826aに衝突がある場合のパワー値822の時間変化を示す図である。受信機819のアンテナ制御信号826aと受信機813のアンテナ制御信号826b、または受信機814のアンテナ制御信号826cとの衝突がある場合、制御信号発生部828がアンテナ制御信号826aをユーザーバンド変換部812に送信し、チューナー制御信号827をチューナー815に送信しても、受信機819のアンテナ制御信号826aと受信機813のアンテナ制御信号826b、または受信機814のアンテナ制御信号826cとが衝突することで、自動利得制御部817に入力される信号が無い状態が続く。したがって、図11に示す通り、パワー値822は、パワー最小値(z)のまま変化しない。したがって、この場合、パワー最小値(z)とパワー最大値(y)とは等しい。 Next, a case where there is a collision between the antenna control signal 826a of the receiver 819, the antenna control signal 826b of the receiver 813, and the antenna control signal 826c of the receiver 814 will be described. FIG. 11 is a diagram showing a time change of the power value 822 when the antenna control signal 826a has a collision when the power is turned on in the receiver 819 according to Embodiment 4 of the present invention. When there is a collision between the antenna control signal 826a of the receiver 819 and the antenna control signal 826b of the receiver 813 or the antenna control signal 826c of the receiver 814, the control signal generator 828 converts the antenna control signal 826a into the user band converter 812. Even if the tuner control signal 827 is transmitted to the tuner 815, the antenna control signal 826a of the receiver 819 and the antenna control signal 826b of the receiver 813 or the antenna control signal 826c of the receiver 814 collide with each other. The state where there is no signal input to the automatic gain control unit 817 continues. Therefore, as shown in FIG. 11, the power value 822 remains unchanged at the power minimum value (z). Therefore, in this case, the power minimum value (z) and the power maximum value (y) are equal.
 制御信号衝突検出部825の保持部839は、パワー値822の保持を開始したタイミングから時間カウンター845で最小値/最大値検出期間Tのカウントを開始する。そして、最小値/最大値検出部842は、最小値/最大値検出期間Tの間のパワー値822のパワー最大値(y)とパワー最小値(z)を検出し、パワー最大値(y)とパワー最小値(z)を検出信号843としてトリガー信号発生部841に出力する。トリガー信号発生部841でパワー最大値(y)とパワー保持値(x)840とを比較し、比較結果(トリガー信号830)をCPU829に検出信号として送信する。 The holding unit 839 of the control signal collision detection unit 825 starts counting the minimum value / maximum value detection period T by the time counter 845 from the timing when the holding of the power value 822 is started. The minimum value / maximum value detection unit 842 detects the power maximum value (y) and the power minimum value (z) of the power value 822 during the minimum value / maximum value detection period T, and the power maximum value (y). And the power minimum value (z) are output to the trigger signal generator 841 as the detection signal 843. The trigger signal generator 841 compares the power maximum value (y) and the power hold value (x) 840, and transmits the comparison result (trigger signal 830) to the CPU 829 as a detection signal.
 CPU829は、トリガー信号830に基づき、|y-x|≦A (ここで、Aは閾値)の場合、受信機819のアンテナ制御信号826aと受信機813のアンテナ制御信号826b、または受信機814のアンテナ制御信号826cとの衝突があると判断する。この場合、CPU829は、検出信号に基づいて、制御信号発生部828に制御コマンドを再送信させる。 Based on the trigger signal 830, the CPU 829 determines that the antenna control signal 826 a of the receiver 819 and the antenna control signal 826 b of the receiver 813, or the receiver 814, if | y−x | ≦ A (where A is a threshold). It is determined that there is a collision with the antenna control signal 826c. In this case, the CPU 829 causes the control signal generator 828 to retransmit the control command based on the detection signal.
 上記したように、制御信号衝突検出部825は、パワー値822の変化に基づき、アンテナ制御信号826aの衝突を検出して検出信号を出力する。そして、制御部は、検出信号に基づいて、アンテナ制御信号826aの衝突を検出した場合、制御コマンドを再送信させる。 As described above, the control signal collision detection unit 825 detects the collision of the antenna control signal 826a based on the change in the power value 822 and outputs a detection signal. And a control part retransmits a control command, when the collision of the antenna control signal 826a is detected based on a detection signal.
 次に、受信機819のチャンネル切換時におけるアンテナ制御信号826aの衝突有無の検出方法について、図8、図9、図12および図13を用いて説明する。 Next, a method for detecting the presence or absence of collision of the antenna control signal 826a when the channel of the receiver 819 is switched will be described with reference to FIG. 8, FIG. 9, FIG.
 ユーザーが、例えばリモコン(図示せず)でチャンネルを切換えると、リモコン受光部832はチャンネル切換の信号を受信し、受信したチャンネル切換の信号をCPU829に送信する。 When the user switches channels with, for example, a remote controller (not shown), the remote control light receiving unit 832 receives a channel switching signal and transmits the received channel switching signal to the CPU 829.
 CPU829は、チャンネル切換の信号を受信すると、制御信号発生部828に対してアンテナ制御信号826aをユーザーバンド変換部812に送信するように選局指示をする。 When the CPU 829 receives the channel switching signal, the CPU 829 instructs the control signal generation unit 828 to transmit the antenna control signal 826a to the user band conversion unit 812.
 制御信号発生部828は、CPU829から選局指示を受け、ユーザーの操作に基づき切換えられるチャンネルが選局できるようにするためのアンテナ制御信号826aを、ユーザーバンド変換部812に送信する。しかし、チャンネル切換時には制御信号発生部828は、チューナー制御信号827をチューナー815に送信しない。 The control signal generation unit 828 receives a channel selection instruction from the CPU 829 and transmits an antenna control signal 826a to the user band conversion unit 812 so that a channel to be switched based on a user operation can be selected. However, the control signal generation unit 828 does not transmit the tuner control signal 827 to the tuner 815 during channel switching.
 その後、制御信号衝突検出部825の保持部839は、CPU829からの選局指示により、制御信号発生部828がアンテナ制御信号826aをユーザーバンド変換部812に送信するのと同じタイミングで、パワー値822の保持を開始する。そして、保持部839は、パワー保持値(x)840をトリガー信号発生部841に出力する。 Thereafter, the holding unit 839 of the control signal collision detection unit 825 receives the power value 822 at the same timing as the control signal generation unit 828 transmits the antenna control signal 826a to the user band conversion unit 812 in response to the channel selection instruction from the CPU 829. Start holding. Then, the holding unit 839 outputs the power holding value (x) 840 to the trigger signal generating unit 841.
 図12は、本発明の実施の形態4に係わる受信機819におけるチャンネル切換時でアンテナ制御信号826aに衝突がない場合のパワー値822の時間変化を示す図である。制御信号発生部828がアンテナ制御信号826aをユーザーバンド変換部812に送信すると、受信機819のアンテナ制御信号826aと受信機813のアンテナ制御信号826b、及び受信機814のアンテナ制御信号826cとの衝突がない場合、例えば、図12に示す通り、自動利得制御器17に入力されるデジタル化されたベースバンド信号が一瞬途切れ、パワー値822はパワー最小値(z)となる。その直後すぐにベースバンド信号が入力されることによりパワー値822が変化し、一定時間後にパワー値822がある一定のパワー最大値(y)に収束する。 FIG. 12 is a diagram showing a time change of the power value 822 when there is no collision in the antenna control signal 826a at the time of channel switching in the receiver 819 according to Embodiment 4 of the present invention. When the control signal generation unit 828 transmits the antenna control signal 826a to the user band conversion unit 812, a collision between the antenna control signal 826a of the receiver 819, the antenna control signal 826b of the receiver 813, and the antenna control signal 826c of the receiver 814. If there is no signal, for example, as shown in FIG. 12, the digitized baseband signal input to the automatic gain controller 17 is momentarily interrupted, and the power value 822 becomes the minimum power value (z). Immediately after that, when the baseband signal is input, the power value 822 changes, and after a certain time, the power value 822 converges to a certain power maximum value (y).
 制御信号衝突検出部825の時間カウンター845は、パワー値822の保持部839への保持を開始したタイミングから最小値/最大値検出期間Tのカウントを開始する。そして、最小値/最大値検出部842は、最小値/最大値検出期間Tの間のパワー値822のパワー最大値(y)とパワー最小値(z)を検出し、パワー最大値(y)とパワー最小値(z)を検出信号843としてトリガー信号発生部841に出力する。トリガー信号発生部841でパワー保持値(x)840とパワー最大値(y)とパワー最小値(z)を比較し、比較結果(トリガー信号830)をCPU829に送信する。 The time counter 845 of the control signal collision detection unit 825 starts counting the minimum value / maximum value detection period T from the timing at which the holding of the power value 822 in the holding unit 839 is started. The minimum value / maximum value detection unit 842 detects the power maximum value (y) and the power minimum value (z) of the power value 822 during the minimum value / maximum value detection period T, and the power maximum value (y). And the power minimum value (z) are output to the trigger signal generator 841 as the detection signal 843. The trigger signal generator 841 compares the power holding value (x) 840, the power maximum value (y), and the power minimum value (z), and transmits the comparison result (trigger signal 830) to the CPU 829.
 CPU829は、トリガー信号830に基づき、|y-x|>A または |z-x|>A (ここで、Aは所定のパワー閾値)の場合、受信機819のアンテナ制御信号826aと受信機813のアンテナ制御信号826b、及び受信機814のアンテナ制御信号826cの衝突がないと判断する。 Based on the trigger signal 830, the CPU 829 determines that the antenna control signal 826a of the receiver 819 and the receiver 813 are in the case of | yx |> A or | zx |> A (where A is a predetermined power threshold). It is determined that there is no collision between the antenna control signal 826b and the antenna control signal 826c of the receiver 814.
 次に、受信機819のアンテナ制御信号826aと受信機813のアンテナ制御信号826b、または受信機814のアンテナ制御信号826cとの衝突がある場合について説明する。図13は、本発明の実施の形態4に係わる受信機819におけるチャンネル切換時でアンテナ制御信号826aに衝突がある場合のパワー値822の時間変化を示す図である。受信機819のアンテナ制御信号826aと受信機813のアンテナ制御信号826b、または受信機814のアンテナ制御信号826cとの衝突がある場合、制御信号発生部828がアンテナ制御信号826aをユーザーバンド変換部812に送信しても、アンテナ制御信号826aと受信機813のアンテナ制御信号826b、または受信機814のアンテナ制御信号826cとが衝突するため、自動利得制御部817に入力される信号が変化せず、図13に示す通り、パワー値822も変化しない。したがって、この場合、パワー最小値(z)とパワー最大値(y)とは等しい。 Next, a case where there is a collision between the antenna control signal 826a of the receiver 819 and the antenna control signal 826b of the receiver 813 or the antenna control signal 826c of the receiver 814 will be described. FIG. 13 is a diagram showing a time change of the power value 822 when there is a collision in the antenna control signal 826a at the time of channel switching in the receiver 819 according to Embodiment 4 of the present invention. When there is a collision between the antenna control signal 826a of the receiver 819 and the antenna control signal 826b of the receiver 813 or the antenna control signal 826c of the receiver 814, the control signal generator 828 converts the antenna control signal 826a into the user band converter 812. , The antenna control signal 826a and the antenna control signal 826b of the receiver 813 or the antenna control signal 826c of the receiver 814 collide, so that the signal input to the automatic gain control unit 817 does not change, As shown in FIG. 13, the power value 822 does not change. Therefore, in this case, the power minimum value (z) and the power maximum value (y) are equal.
 制御信号衝突検出部825の保持部839は、パワー値822の保持を開始したタイミングから時間カウンター845で最小値/最大値検出期間Tのカウントを開始する。そして、最小値/最大値検出部842は、最小値/最大値検出期間Tの間のパワー値822のパワー最大値(y)とパワー最小値(z)を検出し、パワー最大値(y)とパワー最小値(z)を検出信号843としてトリガー信号発生部841に出力する。トリガー信号発生部841は、パワー最大値(y)とパワー最小値(z)を比較し、比較結果(トリガー信号830)をCPU829に送信する。 The holding unit 839 of the control signal collision detection unit 825 starts counting the minimum value / maximum value detection period T by the time counter 845 from the timing when the holding of the power value 822 is started. The minimum value / maximum value detection unit 842 detects the power maximum value (y) and the power minimum value (z) of the power value 822 during the minimum value / maximum value detection period T, and the power maximum value (y). And the power minimum value (z) are output to the trigger signal generator 841 as the detection signal 843. The trigger signal generator 841 compares the power maximum value (y) and the power minimum value (z), and transmits the comparison result (trigger signal 830) to the CPU 829.
 CPU829は、トリガー信号830に基づき、|y-x|≦A かつ |z-x|≦A(ここで、Aは所定の電圧閾値)の場合、受信機819のアンテナ制御信号826aと受信機813のアンテナ制御信号826b、または受信機814のアンテナ制御信号826cとの衝突があると判断する。すなわち、制御信号衝突検出部825は、自動利得制御部817の出力するパワー値822を所定期間計測し、所定期間の計測を開始した際のパワー値(パワー保持値(x)840)と所定期間におけるパワー値の最大値(パワー最大値(y))との差、かつ、所定期間の計測を開始した際のパワー値(パワー保持値(x)840)と所定期間におけるパワー値の最小値(パワー最大値(y))との差が所定のパワー閾値以下である場合、アンテナ制御信号が衝突したと判定する。 Based on the trigger signal 830, the CPU 829 determines that the antenna control signal 826a of the receiver 819 and the receiver 813 when | yx | ≦ A and | zx | ≦ A (where A is a predetermined voltage threshold). It is determined that there is a collision with the antenna control signal 826b of the receiver 814 or the antenna control signal 826c of the receiver 814. That is, the control signal collision detection unit 825 measures the power value 822 output from the automatic gain control unit 817 for a predetermined period, the power value (power holding value (x) 840) at the start of the measurement for the predetermined period, and the predetermined period And the difference between the maximum value of power value (power maximum value (y)) and the power value (power holding value (x) 840) at the start of measurement for a predetermined period and the minimum value ( When the difference from the power maximum value (y) is equal to or less than a predetermined power threshold, it is determined that the antenna control signal has collided.
 ここで、受信機819のアンテナ制御信号826aと受信機813のアンテナ制御信号826b、及び受信機814のアンテナ制御信号826cとの衝突がない場合、制御信号発生部828からアンテナ制御信号826aをユーザーバンド変換部812に送信してから、パワー値822が変化し、収束するまでの時間は最大200msecである。したがって、上記した動作により、アンテナ制御信号826aの衝突検出に要する時間は、従来のアンテナ制御信号衝突検出期間1000msecに比べ、大幅に短縮することができる。その結果、受信機819のアンテナ制御信号826aが受信機813のアンテナ制御信号826b、または受信機814のアンテナ制御信号826cと衝突し、CPU829の指示により制御信号発生部828が再度アンテナ制御信号826aを送信しても映像、音声が出力されるまでの時間を短くすることができる。 Here, when there is no collision between the antenna control signal 826a of the receiver 819, the antenna control signal 826b of the receiver 813, and the antenna control signal 826c of the receiver 814, the antenna control signal 826a is transmitted from the control signal generator 828 to the user band. The time from the transmission to the conversion unit 812 until the power value 822 changes and converges is a maximum of 200 msec. Therefore, by the above-described operation, the time required for collision detection of the antenna control signal 826a can be significantly shortened compared to the conventional antenna control signal collision detection period of 1000 msec. As a result, the antenna control signal 826a of the receiver 819 collides with the antenna control signal 826b of the receiver 813 or the antenna control signal 826c of the receiver 814, and the control signal generator 828 again outputs the antenna control signal 826a according to the instruction of the CPU 829. Even after transmission, the time until video and audio are output can be shortened.
 なお、本実施の形態においては、衛星アンテナ装置807が衛星信号を受信する場合を例に説明したが、これに限定されず、本実施の形態に記載の発明は、地上波放送信号その他を受信する場合にも適用することが可能である。 In this embodiment, the case where the satellite antenna device 807 receives a satellite signal has been described as an example. However, the present invention is not limited to this, and the invention described in this embodiment receives a terrestrial broadcast signal and the like. It is also possible to apply to this.
 次に、本実施の形態における受信方法について説明する。本実施の形態に係わる衛星放送受信システム800は、図8に示したように、衛星アンテナ装置807、受信機813、受信機814および受信機819から構成される。そして、本実施の形態における受信方法は、図14A、14Bに示すようなステップを有する。 Next, the reception method in this embodiment will be described. As shown in FIG. 8, the satellite broadcast receiving system 800 according to this embodiment includes a satellite antenna device 807, a receiver 813, a receiver 814, and a receiver 819. And the receiving method in this Embodiment has a step as shown to FIG. 14A and 14B.
 図14Aは、本発明の実施の形態4に係る受信方法における処理を示すフローチャートである。図14Aに示すように、CPU829は、電圧比較部501に、外部から入力されるアンテナ電圧と電圧比較部501が保持する所定の電圧閾値とを比較させ、比較結果を出力させる(ステップS101)。 FIG. 14A is a flowchart showing processing in the reception method according to Embodiment 4 of the present invention. As illustrated in FIG. 14A, the CPU 829 causes the voltage comparison unit 501 to compare the antenna voltage input from the outside with a predetermined voltage threshold held by the voltage comparison unit 501 and output the comparison result (step S101).
 その結果、アンテナ電圧が所定の電圧閾値よりも低ければ(ステップS101の「Yes」)、電圧比較部501の出力はLow(もしくはHigh)のままで変化しない。CPU829の割り込みポートがLow(もしくはHigh)のままであるため、CPU829は、他の受信機(例えば、図8では、受信機813及び受信機814)から制御コマンドが送信されていないと判断する。そして、CPU829は、電圧出力部317に対し、その出力を出力電圧Xvから出力電圧Yvへと変化させる。すなわち、電圧出力部317は、制御コマンドを出力するための電圧を出力する(ステップS102)。そして、CPU829は、に対し、電圧出力部317からの出力電圧Yvに制御コマンドを重畳させる。すなわち、コマンド送信部318は、衛星アンテナ装置807に制御コマンドを送信する(ステップS104)。上記したように、CPU829は、比較結果に基づき、制御コマンドを出力するための電圧と制御コマンドの送信とを制御する。 As a result, if the antenna voltage is lower than the predetermined voltage threshold (“Yes” in step S101), the output of the voltage comparison unit 501 remains low (or high) and does not change. Since the interrupt port of the CPU 829 remains Low (or High), the CPU 829 determines that a control command has not been transmitted from another receiver (for example, the receiver 813 and the receiver 814 in FIG. 8). Then, the CPU 829 causes the voltage output unit 317 to change its output from the output voltage Xv to the output voltage Yv. That is, the voltage output unit 317 outputs a voltage for outputting a control command (step S102). Then, the CPU 829 superimposes a control command on the output voltage Yv from the voltage output unit 317. That is, the command transmission unit 318 transmits a control command to the satellite antenna device 807 (step S104). As described above, the CPU 829 controls the voltage for outputting the control command and the transmission of the control command based on the comparison result.
 一方、アンテナ電圧が所定の電圧閾値よりも高ければ(ステップS101の「No」)、電圧比較部501の出力はHigh(もしくはLow)へ変化する。CPU829の割り込みポートがHigh(もしくはLow)へ変化するため、CPU829は、他の受信機(例えば、図8では、受信機813または受信機814)が制御コマンドを送信中であると判断する。そして、ステップS101に戻る。 On the other hand, if the antenna voltage is higher than the predetermined voltage threshold (“No” in step S101), the output of the voltage comparison unit 501 changes to High (or Low). Since the interrupt port of the CPU 829 changes to High (or Low), the CPU 829 determines that another receiver (for example, the receiver 813 or the receiver 814 in FIG. 8) is transmitting a control command. Then, the process returns to step S101.
 この場合、CPU829は、電圧出力部317に対し、制御コマンドを出力するための電圧を出力させず、かつコマンド送信部318に対し、衛星アンテナ装置807へ制御コマンドの送信をさせない。そして、アンテナ電圧が所定の電圧閾値よりも低くなるのを待ってから(ステップS101の「Yes」)、CPU829は、電圧出力部317に対し、出力電圧Xvから出力電圧Yvへと変化させる。すなわち、CPU829は、電圧出力部317から制御コマンドを出力するための電圧を出力させる(ステップS102)。そして、CPU829は、コマンド送信部318から衛星アンテナ装置807に制御コマンドを送信させる(ステップS104)。 In this case, the CPU 829 does not cause the voltage output unit 317 to output a voltage for outputting a control command, and does not cause the command transmission unit 318 to transmit the control command to the satellite antenna device 807. Then, after waiting for the antenna voltage to become lower than the predetermined voltage threshold (“Yes” in step S101), the CPU 829 causes the voltage output unit 317 to change from the output voltage Xv to the output voltage Yv. That is, the CPU 829 outputs a voltage for outputting a control command from the voltage output unit 317 (step S102). Then, the CPU 829 causes the command transmission unit 318 to transmit a control command to the satellite antenna device 807 (step S104).
 次に、周波数変換するステップでは、チューナー815が、ユーザーバンド信号を受信し、受信したユーザーバンド信号をベースバンド信号に周波数変換する(ステップS210)。 Next, in the frequency converting step, the tuner 815 receives the user band signal and converts the received user band signal into a baseband signal (step S210).
 パワー値を出力するステップでは、自動利得制御部817が、ベースバンド信号の出力レベルを検出し、ベースバンド信号の出力レベルを一定に保つように制御する信号に基づいて、ユーザーバンド信号の強度に対応するパワー値822を出力する(ステップS220)。 In the step of outputting the power value, the automatic gain control unit 817 detects the output level of the baseband signal and adjusts the strength of the user band signal based on the signal that is controlled so as to keep the output level of the baseband signal constant. The corresponding power value 822 is output (step S220).
 衝突を検出するステップでは、制御信号衝突検出部825が、アンテナ803、804で受信する映像・音声信号を選局するためのアンテナ制御信号826aを出力し、パワー値822の変化に基づきアンテナ制御信号826aの衝突を検出する(ステップS230)。そして、アンテナ制御信号826aの衝突を検出した場合(ステップS240の「Yes」)、検出信号に基づいて、CPU829は、制御コマンドを再送信させる(ステップS246)。 In the step of detecting a collision, the control signal collision detection unit 825 outputs an antenna control signal 826a for selecting a video / audio signal received by the antennas 803 and 804, and the antenna control signal based on the change in the power value 822 A collision at 826a is detected (step S230). If a collision of the antenna control signal 826a is detected (“Yes” in step S240), the CPU 829 retransmits the control command based on the detection signal (step S246).
 一方、アンテナ制御信号826bの衝突を検出しない場合(ステップS240の「No」)、一連の処理を終了する。 On the other hand, when the collision of the antenna control signal 826b is not detected (“No” in step S240), the series of processes is terminated.
 図14Bは、図14Aにおける衝突を検出するステップ(ステップS230)を詳細に説明するためのフローチャートである。図14Bに示すように、アンテナ制御信号826aの衝突を検出するステップでは、制御信号衝突検出部825の保持部839は、パワー値822の保持を開始したタイミングから、時間カウンター845で所定期間としての最小値/最大値検出期間Tのカウントを開始する(ステップS255)。そして、所定期間が完了したかを判定する(ステップS260)。所定期間が完了していない場合(ステップS260の「No」)、ステップS260に戻る。 FIG. 14B is a flowchart for explaining in detail the step of detecting a collision in FIG. 14A (step S230). As shown in FIG. 14B, in the step of detecting the collision of the antenna control signal 826a, the holding unit 839 of the control signal collision detecting unit 825 sets the time counter 845 as a predetermined period from the start of holding the power value 822. Counting of the minimum value / maximum value detection period T is started (step S255). Then, it is determined whether the predetermined period has been completed (step S260). If the predetermined period has not been completed (“No” in step S260), the process returns to step S260.
 一方、所定期間が完了した場合(ステップS260の「Yes」)、ステップS270に進む。そして、最小値/最大値検出部842は、パワー値822を所定期間計測し、所定期間の計測を開始した際のパワー値(パワー保持値(x)840)と所定期間におけるパワー値の最大値(パワー最大値(y))との差、かつ、所定期間の計測を開始した際のパワー値(パワー保持値(x)840)と所定期間におけるパワー値の最小値(パワー最大値(y))との差が所定のパワー閾値以下である場合(ステップS270の「Yes」)、アンテナ制御信号826aが衝突を検出したと判定する(ステップS280)。一方、そうでない場合(ステップS270の「No」)、アンテナ制御信号826aは衝突なしと判定する(ステップS290)。 On the other hand, when the predetermined period is completed (“Yes” in step S260), the process proceeds to step S270. Then, the minimum value / maximum value detection unit 842 measures the power value 822 for a predetermined period, the power value (power holding value (x) 840) when the measurement for the predetermined period is started, and the maximum value of the power value in the predetermined period. The difference from (power maximum value (y)), and the power value (power holding value (x) 840) when measurement for a predetermined period is started and the minimum value (power maximum value (y) at the predetermined period) ) Is less than or equal to the predetermined power threshold (“Yes” in step S270), it is determined that the antenna control signal 826a has detected a collision (step S280). On the other hand, if not (“No” in step S270), the antenna control signal 826a determines that there is no collision (step S290).
 このようにして、本実施の形態における受信方法によれば、受信機819のアンテナ制御信号826aが受信機813のアンテナ制御信号826b、または受信機814のアンテナ制御信号826cと衝突したと検出した場合、CPU829は、コマンド送信部318に制御コマンドの再送信をさせる。したがって、CPU829の指示により、制御信号発生部828がアンテナ制御信号826aを再送信することにより、映像、音声が出力されるまでの時間を短くすることができる。 Thus, according to the reception method in this embodiment, when it is detected that antenna control signal 826a of receiver 819 collides with antenna control signal 826b of receiver 813 or antenna control signal 826c of receiver 814. The CPU 829 causes the command transmission unit 318 to retransmit the control command. Accordingly, the control signal generation unit 828 retransmits the antenna control signal 826a in accordance with an instruction from the CPU 829, so that the time until video and audio are output can be shortened.
 本発明は、外部から入力される電圧と所定の電圧閾値を比較することで予め他の受信機がコマンドを送信中かどうか確認することにより、受信機間のコマンド衝突を回避し、選局時の待ち時間を軽減することができ、複数のアンテナが一本の同軸ケーブルで接続され、該同軸ケーブルに接続された分配器を介して映像信号を受信する受信機として有用である。 The present invention avoids a command collision between receivers by selecting whether another receiver is transmitting a command in advance by comparing a voltage input from the outside with a predetermined voltage threshold. This is useful as a receiver in which a plurality of antennas are connected by a single coaxial cable and a video signal is received via a distributor connected to the coaxial cable.
 100  アンテナ部
 200  室内部
 201  分配器
 300a~300n,500a,500b,600a,600b,813,814,819  受信機
 311  チューナー部
 312  復調部
 313  VID/AID検出部
 314,314a,314b  制御部
 315  AV出力部
 316  リモコン受光部
 317  電圧出力部
 318  コマンド送信部
 501  電圧比較部
 601  電圧Xv出力部
 602  電圧Yv出力部
 603  スイッチ
 800  衛星放送受信システム
 801,802  衛星信号
 803,804  アンテナ
 805,806  LNB(Low Noise Block Converter)
 807  衛星アンテナ装置
 808,810  水平偏波信号
 809,811  垂直偏波信号
 812  ユーザーバンド変換部
 815,815b,815c  チューナー
 815a  チューナー部
 816  AD変換部
 817  自動利得制御部
 818  復調部
 820  誤り訂正部
 821  自動利得制御電圧
 822  パワー値
 823  LPF(Low Pass Fileter)
 824  PWM(Pulse Width Modulation)信号
 825  制御信号衝突検出部
 826a,826b,826c  アンテナ制御信号
 827  チューナー制御信号
 828,828b,828c  制御信号発生部
 829  CPU(Central Processing Unit)
 830  トリガー信号
 831  アンテナ制御信号送信開始信号
 832  リモコン受光部
 833  TS多重分離部
 834  MPEGデコーダ
 835  DA(Digital Analog)変換部
 836  映像・音声信号
 837  ユーザーバンド信号
 838  TS(Transport Stream)信号
 839  保持部
 840  パワー保持値
 841  トリガー信号発生部
 842  最小値/最大値検出部
 843  検出信号
 845  時間カウンター
DESCRIPTION OF SYMBOLS 100 Antenna part 200 Indoor part 201 Divider 300a-300n, 500a, 500b, 600a, 600b, 813, 814, 819 Receiver 311 Tuner part 312 Demodulator 313 VID / AID detection part 314, 314a, 314b Control part 315 AV output Unit 316 remote control light receiving unit 317 voltage output unit 318 command transmission unit 501 voltage comparison unit 601 voltage Xv output unit 602 voltage Yv output unit 603 switch 800 satellite broadcast reception system 801, 802 satellite signal 803, 804 antenna 805, 806 LNB (Low Noise) Block Converter)
807 Satellite antenna device 808, 810 Horizontal polarization signal 809, 811 Vertical polarization signal 812 User band conversion unit 815, 815b, 815c Tuner 815a Tuner unit 816 AD conversion unit 817 Automatic gain control unit 818 Demodulation unit 820 Error correction unit 821 Automatic Gain control voltage 822 Power value 823 LPF (Low Pass Filter)
824 PWM (Pulse Width Modulation) signal 825 Control signal collision detection unit 826a, 826b, 826c Antenna control signal 827 Tuner control signal 828, 828b, 828c Control signal generation unit 829 CPU (Central Processing Unit)
830 Trigger signal 831 Antenna control signal transmission start signal 832 Remote control light receiving unit 833 TS demultiplexing unit 834 MPEG decoder 835 DA (Digital Analog) conversion unit 836 Video / audio signal 837 User band signal 838 TS (Transport Stream) signal 839 Holding unit 839 Power holding value 841 Trigger signal generator 842 Minimum / maximum value detector 843 Detection signal 845 Time counter

Claims (12)

  1. アンテナと一本のケーブルで複数の受信機が接続され、前記アンテナで受信し周波数変換した映像・音声信号を含むユーザーバンド信号を受信する前記受信機において、
    外部から入力されるアンテナ電圧と所定の電圧閾値とを比較し、比較結果を出力する電圧比較部と、
    制御コマンドを出力するための電圧を出力する電圧出力部と、
    前記制御コマンドを送信するコマンド送信部と、
    前記比較結果に基づき、前記電圧出力部と前記制御コマンド送信部とを制御する制御部と、を備え
    前記制御部は、前記電圧比較部の前記比較結果に基づいて、前記電圧と前記制御コマンドの送信とを制御する受信機。
    In the receiver for receiving a user band signal including a video / audio signal received by the antenna and frequency-converted by connecting a plurality of receivers with an antenna and a single cable,
    A voltage comparison unit that compares an antenna voltage input from the outside with a predetermined voltage threshold and outputs a comparison result;
    A voltage output unit for outputting a voltage for outputting a control command;
    A command transmission unit for transmitting the control command;
    A control unit configured to control the voltage output unit and the control command transmission unit based on the comparison result, the control unit configured to control the voltage and the control command based on the comparison result of the voltage comparison unit. A receiver that controls transmission.
  2. 前記制御部は、前記比較結果に基づいて、
    前記外部から入力される前記アンテナ電圧が前記所定の電圧閾値よりも低い場合、
    前記電圧出力部に前記コマンドを出力するための前記電圧を出力させ、且つ前記コマンド送信部に前記制御コマンドを送信させ、
    前記外部から入力される前記アンテナ電圧が前記所定の電圧閾値よりも高い場合、
    前記電圧出力部に前記制御コマンドを送信するための前記電圧を出力させず、且つ前記コマンド送信部に前記制御コマンドを送信させない請求項1記載の受信機。
    The control unit is based on the comparison result,
    When the antenna voltage input from the outside is lower than the predetermined voltage threshold,
    Causing the voltage output unit to output the voltage for outputting the command, and causing the command transmission unit to transmit the control command,
    When the antenna voltage input from the outside is higher than the predetermined voltage threshold,
    The receiver according to claim 1, wherein the voltage output unit does not output the voltage for transmitting the control command, and the command transmission unit does not transmit the control command.
  3. 前記制御部は、前記比較結果に基づいて、
    前記外部から入力される前記アンテナ電圧が前記所定の電圧閾値よりも高い場合、
    前記電圧出力部に前記制御コマンドを出力するための前記電圧を出力させず、且つ前記コマンド送信部に前記制御コマンドを送信させず、
    前記外部から入力される前記アンテナ電圧が前記所定の電圧閾値よりも低くなるのを待ってから、前記電圧出力部に前記制御コマンドを送信するための前記電圧を出力させ、且つ前記コマンド送信部に前記制御コマンドを送信させる
    請求項1記載の受信機。
    The control unit is based on the comparison result,
    When the antenna voltage input from the outside is higher than the predetermined voltage threshold,
    Do not output the voltage for outputting the control command to the voltage output unit, and do not transmit the control command to the command transmission unit,
    After waiting for the antenna voltage input from the outside to become lower than the predetermined voltage threshold, the voltage output unit outputs the voltage for transmitting the control command, and the command transmission unit The receiver according to claim 1, wherein the control command is transmitted.
  4. 前記外部から入力される前記アンテナ電圧を時間微分して生成した出力信号を前記制御部に出力する微分回路部を、さらに備え、
    前記制御部は、前記制御コマンドを出力するための前記電圧の出力を開始する時点で、前記アンテナ電圧を時間微分して生成した前記出力信号が、所定の出力レベルを有している場合、前記コマンド送信部に前記制御コマンドを送信させない
    請求項1記載の受信機。
    A differentiation circuit unit that outputs an output signal generated by time differentiation of the antenna voltage input from the outside to the control unit;
    When the output signal generated by time-differentiating the antenna voltage has a predetermined output level at the time of starting the output of the voltage for outputting the control command, the control unit, The receiver according to claim 1, wherein the control command is not transmitted to a command transmission unit.
  5. 前記分配器を介して前記ユーザーバンド信号を受信し、受信した前記ユーザーバンド信号をベースバンド信号に周波数変換するチューナー部と、
    前記ベースバンド信号の出力レベルを検出し、前記検出したベースバンド信号の出力レベルに応じて前記チューナー部の利得を、前記ベースバンド信号の出力レベルが一定に保たれるように制御する信号を前記チューナー部にフィードバックするとともに、前記利得を制御する前記信号に基づいて前記チューナー部に入力される前記ユーザーバンド信号の強度に対応するパワー値を出力する自動利得制御部と、
    前記パワー値の変化に基づき、アンテナ制御信号の衝突を検出して検出信号を出力する制御信号衝突検出部と、
    をさらに備え、
    前記制御部は、前記検出信号に基づいて、前記アンテナ制御信号の衝突を検出した場合、前記制御コマンドを再送信させる、
    請求項1記載の受信機。
    A tuner unit that receives the user band signal via the distributor and converts the received user band signal into a baseband signal;
    A signal for detecting an output level of the baseband signal, and controlling a gain of the tuner unit according to the detected output level of the baseband signal so that the output level of the baseband signal is kept constant. An automatic gain control unit that feeds back to a tuner unit and outputs a power value corresponding to the intensity of the user band signal input to the tuner unit based on the signal that controls the gain;
    A control signal collision detection unit that detects a collision of antenna control signals based on the change in the power value and outputs a detection signal;
    Further comprising
    When the control unit detects a collision of the antenna control signal based on the detection signal, the control unit retransmits the control command.
    The receiver according to claim 1.
  6. 前記制御信号衝突検出部は、
    前記自動利得制御部の出力する前記パワー値を所定期間計測し、前記所定期間の計測を開始した際の前記パワー値と前記所定期間における前記パワー値の最大値との差、かつ、前記所定期間の計測を開始した際の前記パワー値と前記所定期間における前記パワー値の最小値との差が所定のパワー閾値以下である場合、前記アンテナ制御信号が衝突したと判定する
    請求項5記載の受信機。
    The control signal collision detection unit
    The power value output from the automatic gain control unit is measured for a predetermined period, the difference between the power value when the measurement of the predetermined period is started and the maximum value of the power value in the predetermined period, and the predetermined period 6. The reception according to claim 5, wherein when the difference between the power value at the start of measurement and the minimum value of the power value in the predetermined period is equal to or less than a predetermined power threshold, it is determined that the antenna control signal has collided. Machine.
  7. アンテナと一本のケーブルで複数の受信機が接続され、前記アンテナで受信し周波数変換した映像・音声信号を含むユーザーバンド信号を受信する受信機における受信方法において、
    外部から入力されるアンテナ電圧と所定の電圧閾値とを比較し、比較結果を出力するステップと、
    制御コマンドを出力するための電圧を出力するステップと、
    前記制御コマンドを送信するステップと、
    前記比較結果に基づき、前記電圧と前記制御コマンドの送信とを制御するステップと、
    を備える受信方法。
    In a receiving method in a receiver in which a plurality of receivers are connected by an antenna and a single cable, and a user band signal including a video / audio signal received and frequency-converted by the antenna is received,
    Comparing the antenna voltage input from the outside with a predetermined voltage threshold, and outputting a comparison result;
    Outputting a voltage for outputting a control command;
    Transmitting the control command;
    Controlling the voltage and the transmission of the control command based on the comparison result;
    A receiving method comprising:
  8. 前記制御するステップは、前記比較結果に基づいて、
    前記外部から入力される前記アンテナ電圧が前記所定の電圧閾値よりも低い場合、
    前記制御コマンドを出力するための前記電圧を出力させ、且つ前記制御コマンドを送信させ、
    前記外部から入力される前記アンテナ電圧が前記所定の電圧閾値よりも高い場合、
    前記制御コマンドを出力するための前記電圧を出力させず、且つ前記制御コマンドを送信させない
    請求項7記載の受信方法。
    The controlling step is based on the comparison result.
    When the antenna voltage input from the outside is lower than the predetermined voltage threshold,
    Outputting the voltage for outputting the control command, and transmitting the control command,
    When the antenna voltage input from the outside is higher than the predetermined voltage threshold,
    The receiving method according to claim 7, wherein the voltage for outputting the control command is not output, and the control command is not transmitted.
  9. 前記制御するステップは、前記比較結果に基づいて、
    前記外部から入力される前記アンテナ電圧が前記所定の電圧閾値よりも高い場合、
    前記制御コマンドを出力するための前記電圧を出力させず、かつ前記制御コマンドを送信させず、
    前記外部から入力される前記アンテナ電圧が前記所定の電圧閾値よりも低くなるのを待ってから、前記制御コマンドを出力するための前記電圧を出力させ、且つ前記制御コマンドを送信させる
    請求項7記載の受信方法。
    The controlling step is based on the comparison result.
    When the antenna voltage input from the outside is higher than the predetermined voltage threshold,
    Do not output the voltage for outputting the control command, and do not transmit the control command,
    8. The output of the voltage for outputting the control command and transmission of the control command after waiting for the antenna voltage input from the outside to become lower than the predetermined voltage threshold. Receiving method.
  10. 前記外部から入力される前記アンテナ電圧を時間微分して生成した出力信号を出力するステップを、さらに備え、
    前記制御するステップは、前記アンテナ電圧を時間微分して生成した前記出力信号が、前記制御コマンドを出力するための前記電圧の出力を開始する時点で、所定の出力レベルを有している場合、前記制御コマンドを送信させない請求項7記載の受信方法。
    Outputting an output signal generated by time differentiation of the antenna voltage input from the outside, further comprising:
    In the control step, when the output signal generated by differentiating the antenna voltage with respect to time has a predetermined output level at the time when the output of the voltage for outputting the control command is started, The receiving method according to claim 7, wherein the control command is not transmitted.
  11. 前記ユーザーバンド信号を受信し、受信した前記ユーザーバンド信号をベースバンド信号に周波数変換するステップと、
    前記ベースバンド信号の出力レベルを検出し、前記ベースバンド信号の前記出力レベルを一定に保つように制御する信号に基づいて、前記ユーザーバンド信号の強度に対応するパワー値を出力するステップと、
    前記パワー値の変化に基づきアンテナ制御信号の衝突を検出するステップと、をさらに備え、
    前記制御するステップは、前記検出するステップにおいて、
      前記アンテナ制御信号の衝突を検出した場合、前記検出信号に基づいて、前記制御コマンドを再送信させる、
    請求項7記載の受信方法。
    Receiving the user band signal and frequency-converting the received user band signal into a baseband signal;
    Detecting the output level of the baseband signal and outputting a power value corresponding to the intensity of the userband signal based on a signal that is controlled to keep the output level of the baseband signal constant;
    Detecting a collision of antenna control signals based on a change in the power value, and
    The controlling step includes the detecting step,
    When a collision of the antenna control signal is detected, the control command is retransmitted based on the detection signal.
    The receiving method according to claim 7.
  12. 前記アンテナ制御信号の衝突を検出するステップは、
    前記パワー値を所定期間計測し、前記所定期間の計測を開始した際の前記パワー値と前記所定期間における前記パワー値の最大値との差、かつ、前記所定期間の計測を開始した際の前記パワー値と前記所定期間における前記パワー値の最小値との差が所定のパワー閾値以下である場合、前記アンテナ制御信号が衝突したと判定する
    請求項11記載の受信方法。
    Detecting a collision of the antenna control signals,
    The power value is measured for a predetermined period, the difference between the power value when the measurement of the predetermined period is started and the maximum value of the power value during the predetermined period, and the measurement when the measurement of the predetermined period is started The reception method according to claim 11, wherein when the difference between the power value and the minimum value of the power value in the predetermined period is equal to or less than a predetermined power threshold, it is determined that the antenna control signal has collided.
PCT/JP2011/000312 2010-01-22 2011-01-21 Receiver and reception method WO2011089916A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-011610 2010-01-22
JP2010011610 2010-01-22
JP2010059037 2010-03-16
JP2010-059037 2010-03-16

Publications (1)

Publication Number Publication Date
WO2011089916A1 true WO2011089916A1 (en) 2011-07-28

Family

ID=44306719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000312 WO2011089916A1 (en) 2010-01-22 2011-01-21 Receiver and reception method

Country Status (1)

Country Link
WO (1) WO2011089916A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10327093A (en) * 1997-05-23 1998-12-08 Fuji Xerox Co Ltd Communication network using twisted pair cable and its communication method
JPH1127167A (en) * 1997-06-27 1999-01-29 Smk Corp Satellite signal receiver
JP2000115226A (en) * 1998-10-02 2000-04-21 Aichi Electronic Co Ltd Method for detecting collision in lan, collision detector and its terminal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10327093A (en) * 1997-05-23 1998-12-08 Fuji Xerox Co Ltd Communication network using twisted pair cable and its communication method
JPH1127167A (en) * 1997-06-27 1999-01-29 Smk Corp Satellite signal receiver
JP2000115226A (en) * 1998-10-02 2000-04-21 Aichi Electronic Co Ltd Method for detecting collision in lan, collision detector and its terminal

Similar Documents

Publication Publication Date Title
KR101668852B1 (en) System and method for combined home network communications and broadcast reception in a settop box
US10715642B2 (en) Interface device and receiver including the same
US20090253456A1 (en) Dual band receiver with control means for preventing signal overloading
US20130268977A1 (en) Method and system for full spectrum capture for terrestrial applications
EP2413500B1 (en) Reception apparatus, reception method, program, and reception system
JP2009525700A (en) Method and apparatus for detecting and preventing crosstalk in multiple tuner receivers
US20130051481A1 (en) Electric power-supply apparatus and receiving apparatus
US9479722B2 (en) Television receiver, television broadcast receiving method and mobile terminal
WO2011114607A1 (en) Receiving device, and method for detecting collision of antenna control signals of the receiving device
US10257459B2 (en) Television receiving apparatus and television receiving method
JP2641148B2 (en) Television receiver
JP5540089B2 (en) How to retransmit digital signals
WO2011089916A1 (en) Receiver and reception method
JP6522979B2 (en) TV receiver
US9160468B1 (en) Method and system for reconfigurable time-interleaved ADC for direct conversion K-band and L-band I/Q
US11582529B2 (en) Satellite integrated receiver decoder and conflict detecting method
KR100252936B1 (en) A method for local oscillation frequency establishing of low noise block in satellite receiver
KR20160028173A (en) Digital television and control method thereof
EP3490173A1 (en) Satellite receiver device and method for receiving satellite signals
EP3987693A1 (en) Apparatus for receiving and transmitting data via a satellite using at least two polarisations
JP5055825B2 (en) Television receiver
KR20100137888A (en) Apparatus and method for receiving a broadcasting signal
KR100648339B1 (en) Gain control apparatus and method in the digital television
JPH10210387A (en) Voice-muting device
JP2009302832A (en) Broadcast receiver and control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11734523

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11734523

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP