WO2011089860A1 - Wireless relay device and wireless relay method - Google Patents

Wireless relay device and wireless relay method Download PDF

Info

Publication number
WO2011089860A1
WO2011089860A1 PCT/JP2011/000046 JP2011000046W WO2011089860A1 WO 2011089860 A1 WO2011089860 A1 WO 2011089860A1 JP 2011000046 W JP2011000046 W JP 2011000046W WO 2011089860 A1 WO2011089860 A1 WO 2011089860A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
digital
unit
donor
wireless relay
Prior art date
Application number
PCT/JP2011/000046
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤顕市
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2011089860A1 publication Critical patent/WO2011089860A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • H04B7/15535Control of relay amplifier gain

Definitions

  • the present invention relates to a radio relay apparatus and a radio relay method for relaying signals transmitted and received between a mobile communication radio base station and a mobile terminal.
  • the radio relay apparatus is an area in which a radio signal transmitted from a radio base station for mobile communication cannot reach a mobile communication service due to attenuation in a propagation path (an environment where a sufficient SINR for a mobile terminal cannot be obtained. For example, indoors This is a device installed for relaying to the shadow of a building or in a rural area), receiving a carrier signal attenuated in a radio propagation path (a radio signal transmitted from a radio base station), amplifying and retransmitting it. To the area.
  • a radio signal relay method in a radio relay device is a method of down-converting a signal received by a donor unit to an intermediate frequency (IF) (frequency conversion to a low frequency) to a service unit using a coaxial cable.
  • the method to relay is taken.
  • the service unit refers to a unit that performs wireless communication with a mobile terminal in a wireless relay device.
  • a unit that performs radio communication with a service unit with a radio base station is called a donor unit.
  • FIG. 18 is an explanatory diagram illustrating a general configuration example of a wireless relay device.
  • the example shown in FIG. 18 shows a configuration in which one or more service units are connected to one donor unit via a distributor using a coaxial cable.
  • DUP duplexer
  • LNA Low Noise Amplifier
  • RF-BPF RF-Band-Pass filter
  • the obtained IF signal is passed through an IF out-of-band filter (IF-BPF: IF-Band-Pass filter) to remove noises other than the IF signal, and then on the coaxial cable via the antenna duplexer (here, the service unit). (Toward). When the insertion loss due to the IF signal out-of-band filter is large, an amplifier (IF-AMP) is inserted before sending the IF signal as well as before sending the RF signal.
  • IF-BPF IF-Band-Pass filter
  • the downstream IF signal from the donor unit is received via the antenna duplexer, and the received IF signal is removed to the RF signal after removing noise other than the IF signal by the IF out-of-band filter. Conversion (frequency conversion to high frequency). Then, after removing the noise other than the RF signal through the RF out-of-band filter, the obtained RF signal is further amplified by an amplifier (RF-AMP) and directed from the antenna to the mobile terminal through the antenna duplexer. Sending out.
  • RF-AMP an amplifier
  • the received RF signal is similar to the downlink RF signal from the radio base station in the donor unit.
  • noise other than the RF signal is removed using a low-noise amplifier circuit and an RF out-of-band filter, then down-converted to an IF signal, and the obtained IF signal is removed through the IF out-of-band filter to remove noise other than the IF signal. After that, it is sent out on the coaxial cable (in this case toward the donor unit) via the antenna duplexer.
  • the upstream IF signal (the signal obtained by converting the upstream RF signal from the mobile terminal into the IF band) transmitted from the service unit onto the coaxial cable is received via the antenna duplexer in the donor unit.
  • the received IF signal is up-converted to an RF signal after noise other than the IF signal is removed by an IF out-of-band filter in the same manner as the downlink IF signal from the donor unit in the service unit.
  • the obtained RF signal is further amplified by an amplifier (RF-AMP) and transmitted from the antenna to the radio base station through the antenna duplexer. is doing.
  • Patent Documents 1 and 2 are prior art documents related to a signal relay method in a wireless relay device. For example, in Patent Document 1, all radio waves from base stations arranged by a plurality of operating entities are received and amplified, branched into the number of operating entities, individually selected and amplified for each operating entity, and then combined and amplified. A wireless relay amplifying apparatus for sending to each operating entity mobile device is described.
  • Patent Document 2 a high-frequency signal received from a base station or a communication system is converted into a digital signal by wired or wireless connection, and then unnecessary interference waves included in the high-frequency signal are removed by a digital signal processing unit.
  • a private wireless distribution relay system is described in which an extension unit or a remote unit is connected to the output end.
  • the radio relay device is used to relay radio signals from a radio base station to an area where the mobile communication service does not reach in this way. Since the amount of propagation attenuation differs depending on the frequency, the input of the donor unit of the wireless relay device has different levels and C / N carrier groups for each carrier. Many of the radio relay apparatuses perform power control so that the total power value of the carrier signal group is constant at the service unit output end. That is, it operates with a fixed amplification gain.
  • the reception level of the input carrier signal group is ⁇ 50 dBm at the end of the donor unit
  • amplification of 60 dB is performed so as to be +10 dBm.
  • the signal from the terminal is subjected to constant amplification and is output from the donor unit and sent to the base station.
  • FIG. 19 is an explanatory diagram showing an installation example of the wireless relay device.
  • FIG. 19 shows an example of a radio relay apparatus that relays a carrier signal from a base station A for mobile communication and a carrier signal from a base station B in a building.
  • FIG. 19 shows an example of a radio relay apparatus including one donor unit 901 and three service units 902-1 to 902-3.
  • FIG. 20 is an explanatory diagram showing the level relationship in the radio relay apparatus when carrier signals for different services are mixedly transmitted from different base stations.
  • one carrier signal for the purpose of service B is transmitted from the base station A, and a total of two carrier signals, a carrier signal for the purpose of service A and a carrier signal for the purpose of service C, are transmitted from the base station B.
  • An example of transmission is shown.
  • FIG. 20A is an explanatory diagram illustrating the relationship among the radio relay device, the base station, and the terminal.
  • FIG. 20B is an explanatory diagram showing the input level (reception level) of each carrier signal in the wireless relay device.
  • FIG.20 (c) is explanatory drawing which shows the output level (transmission level) of each carrier signal in a radio relay apparatus.
  • the gain control for the C / N required by the terminal is larger than that of the service B and the service C.
  • Many radio relay apparatuses have a problem that radio capacity deteriorates due to interference with terminals other than the service unit because constant amplification is performed on a plurality of carrier groups.
  • a carrier signal that can be received at a relatively high level (for example, a carrier signal for service B)
  • a necessary carrier signal for example, for performing amplification so that the carrier signal does not exceed the peak level.
  • sufficient gain control is not performed on the carrier signal of service A and the terminal may not reach the terminal.
  • the wireless relay amplification device described in Patent Document 1 can be selected and amplified individually for each operating entity.
  • the wireless relay amplification device described in Patent Document 1 has a configuration in which a carrier signal is branched, amplified, combined, and relayed as an analog signal.
  • a radio signal from a mobile base station is greatly attenuated in a propagation path, and the attenuation amount is expressed by the following equation (1).
  • d represents the distance [m]
  • f represents the frequency [Hz]
  • c represents the speed of light (3.0 ⁇ 10 8 ).
  • the wireless relay device when it is 10 km away from the base station to be communicated, it arrives after being attenuated by 111.5 dB in the 2 GHz band. For example, if the base station that is not the target is 100 m away, the radio signal is 78.5 dB. Reach with a decay of.
  • This 40 dB level difference is a major interference for mobile communication wireless relay.
  • a filter having a steep out-of-passband attenuation is required in order to remove interference signals from different base stations.
  • the filter is required to be steep, attenuation of the desired wave increases, so that a multistage amplifier is required, resulting in a problem that the scale of the analog circuit increases.
  • Patent Document 2 after converting a received high-frequency signal into a digital signal, an unnecessary interference wave included in the high-frequency signal is removed by a digital signal processing unit, and an extension unit or a remote unit is connected to the output end thereof A local wireless distribution relay system is described.
  • the local wireless distribution relay system described in Patent Document 2 is a cable with a high frequency (bit rate) when digital signals are transmitted between a donor unit and a service unit (an extension unit or a remote unit). No consideration is given to degradation due to transmission.
  • an object of the present invention is to make it possible to obtain a stable received signal on the terminal side without installing a different radio relay apparatus for each carrier used for different purposes. More specifically, with a single wireless relay device, a plurality of carrier groups used for different purposes transmitted from a single or a plurality of base stations are amplified while suppressing deterioration of wireless capacity due to amplification and relay distance. An object of the present invention is to enable relaying so that a stable received signal can be obtained on the terminal side.
  • a radio relay apparatus is a radio relay apparatus installed between a single or a plurality of mobile communication base stations and terminals, a donor unit that performs radio communication with a base station side, One or a plurality of service units that perform communication, and the donor unit and the service unit are connected via a cable, and the donor unit directly converts the input RF signal into I and Q baseband signals.
  • An RF-to-digital converter that obtains a digital IQ signal by converting it into a digital signal, and a downlink digital IQ signal are separated into carrier units for each antenna, and gain or delay with respect to the separated digital signal, or both, respectively.
  • a downlink digital signal processing unit that re-synthesizes a digital IQ signal from the adjusted separated digital signal, and a service Digital IQ signal transmission / reception unit that transmits / receives digital IQ signals to / from the unit, and uplink digital IQ signals are separated in units of carriers for each antenna, and gain and / or delay for each separated digital signal
  • An uplink digital signal processing unit that re-synthesizes the digital IQ signal from the adjusted separated digital signal, converts the input digital IQ signal into an analog signal, and converts the obtained I and Q baseband signals
  • the service unit includes a digital IQ signal transmission / reception unit that transmits / receives a digital IQ signal to / from the donor unit and is input.
  • a digital-RF converter for obtaining an RF signal, and an RF-digital converter for obtaining a digital IQ signal by directly converting the input RF signal into an I and Q baseband signal and then converting the digital signal to a digital signal It is characterized by including.
  • a radio relay method is a radio relay method applied to a radio relay device installed between a single or a plurality of mobile communication base stations and a terminal.
  • RF-to-digital conversion step for direct conversion to a baseband signal of Q and Q, and conversion to a digital signal, and a digital IQ signal obtained by the conversion by a donor unit that communicates with the mobile communication base station side for each antenna
  • a digital-to-RF conversion step that converts an IQ signal to an analog signal and directly converts the resulting I and Q baseband signals to an RF signal. Characterized in that it comprises and.
  • FIG. 3 is a block diagram illustrating a configuration example of a donor unit 100.
  • FIG. 3 is a functional block diagram illustrating a configuration example of a downlink digital processing unit 10.
  • FIG. 2 is a block diagram illustrating an embodiment of a digital filter 9 and a downlink digital processing unit 10.
  • FIG. It is explanatory drawing which shows the difference in the transmission amount (transmission signal bandwidth) by a modulation system.
  • 2 is a block diagram illustrating a configuration example of a service unit 200.
  • FIG. 3 is a functional block diagram illustrating a configuration example of an uplink digital processing unit 13.
  • FIG. 3 is a block diagram illustrating an example of an uplink digital processing unit 13 and a digital filter 12. It is explanatory drawing which shows the example of a carrier leak jamming wave and an I and Q image jamming wave. It is explanatory drawing which shows the example of the gain adjustment in a carrier unit. It is explanatory drawing which shows the example of the gain adjustment in a carrier unit. It is explanatory drawing which shows the relationship between the gain adjustment of a carrier unit, and the downlink digital process part. 4 is an explanatory diagram illustrating an example of signal processing in a delay adjustment unit 104 of a downlink digital processing unit 10.
  • FIG. FIG. 3 is a block diagram illustrating an example of a donor unit 100.
  • FIG. 3 is a block diagram illustrating a configuration example of a signal synthesis / distribution unit 300. It is explanatory drawing which shows the characteristic of this invention. It is explanatory drawing which shows the general structural example of a radio relay apparatus. It is explanatory drawing which shows the example of installation of a radio relay apparatus. It is explanatory drawing which shows the level relationship in a radio relay apparatus in case the carrier signal aiming at a different service is mixed and transmitted from a different base station.
  • FIG. 1 is a block diagram illustrating a configuration example of a wireless relay device according to the present embodiment.
  • the radio relay apparatus shown in FIG. 1 includes a donor unit 100 that performs radio communication with a base station side and one or a plurality of service units 200 that perform radio communication with a terminal side.
  • the donor unit 100 and each service unit 200 are connected by an optical cable, a LAN cable, or the like. With such a configuration, the radio signal from the base station received by the donor unit 100 is relayed to the area where each service unit 200 is installed.
  • the donor unit 100 performs radio communication with a single or a plurality of base stations, digitizes the received radio signal (RF signal) and relays (transmits) it to the service unit 200. Also, the donor unit 100 demodulates (converts) the RF signal received after being synthesized into the I and Q baseband signals without converting them into IF frequencies, and converts them into digital signals.
  • the digital signal thus obtained (hereinafter referred to as digital I / Q signal) is separated for each carrier, and the gain and delay are adjusted according to the traffic amount and capacity on the service unit side, and again.
  • the digital I / Q signal is combined and relayed as a digital carrier signal.
  • the service unit 200 converts the digital carrier signal received from the donor unit 100 into an RF signal and sends it to a terminal under the service.
  • the service unit 200 modulates the I and Q baseband signals obtained by converting the digital carrier signals into analog signals into RF signals.
  • FIG. 2 is a block diagram illustrating a configuration example of the donor unit 100.
  • the donor unit 100 shown in FIG. 2 includes one or more antennas 1, an antenna duplexer (duplexer) 2, a low noise amplifier (LNA) 3, out-of-band filters (BPF) 4, 5, and an amplifier (PA ) 6, quadrature demodulation unit 7, quadrature modulation unit 8, digital filters 9 and 12, downlink digital processing unit (DL digital processing unit) 10, uplink digital processing unit (UL digital processing unit) 12, Serial converters 11 and 14.
  • the antenna duplexer 2 In the case where a plurality of antennas 1 are provided due to diversity or MIMO (Multi-Input Multi-Output) configuration, the antenna duplexer 2, the low noise amplifier 3, the out-of-band filter 4, the quadrature modulation unit 7, and the out-of-band filter 5 are provided.
  • a plurality of amplifiers 6 and quadrature demodulation units 8 may be provided in accordance with the antenna configuration.
  • antenna 1 for signal transmission in the downlink (link from base station to terminal), antenna 1, antenna duplexer 2, low noise amplifier 3, out-of-band filter 4, orthogonal demodulator 7, These are connected in the order of the digital filter 9, the downlink digital processing unit 10, and the serial conversion unit 11.
  • the serial conversion unit 14 In order to perform signal transmission in the uplink (link from the terminal to the base station), the serial conversion unit 14, the uplink digital processing unit 13, the digital filter 12, the quadrature modulation unit 8, the amplifier 6, the out-of-band filter 5, The antenna duplexer 2 and the antenna 1 are connected in this order.
  • the antenna 1 is shared by the antenna duplexer 2 for transmission and reception.
  • the antenna 1 receives a radio signal from the base station.
  • the duplexer 2 is an antenna duplexer for sharing the antenna 1 for transmission and reception, and electrically separates the transmission path and the reception path.
  • the low noise amplifier 3 is a low noise amplifier that selects and amplifies an input signal.
  • the out-of-band filter 4 is a filter circuit that passes only a specific frequency band and attenuates other frequencies.
  • the received radio signal (RF signal) is amplified by the low noise amplifier 3, and the interference wave (such as a radio wave of another operator or a radio signal in another band) is removed by the out-of-band filter 4.
  • the orthogonal demodulator 7 directly demodulates (down-converts) the RF signal into I and Q baseband signal bands, and converts the obtained I and Q signals into digital signals.
  • the quadrature demodulator 7 includes, for example, a frequency oscillator 71, multipliers 72 and 73 and low-pass filters (LPF) 74 and 75 corresponding to the I and Q signals, and an analog-digital converter (ADC) 78, for example.
  • ADC analog-digital converter
  • an orthogonal correction circuit may be further provided after the analog-digital converter 78.
  • the orthogonal correction circuit removes an image (I, Q image interference wave) generated due to a mismatch in amplitude and phase of the I and Q signals by the direct demodulation method.
  • the digital filter 9 removes noise other than the baseband from the digital I / Q signal digitized by the orthogonal demodulation unit 7.
  • the aliasing interference wave having the sampling frequency generated in the downlink digital processing unit 10 is mainly removed.
  • the digital I / Q signal can be handled separately as a digital signal I signal and a Q signal or collectively as a complex number.
  • the downlink digital processing unit 10 separates the input digital I / Q signal into carrier units to be relayed to the service unit, and adjusts the carrier-separated signal for each antenna according to the situation under the service antenna. The gain is adjusted, the delay is adjusted, and the digital I / Q signal is synthesized again and output as a digital carrier signal.
  • FIG. 3 is a functional block diagram illustrating a configuration example of the downlink digital processing unit 10.
  • the downlink digital processing unit 10 includes a digital carrier / antenna separation unit 101, a separated carrier-specific digital filter 102 (102-1 to 102-n), and a gain adjustment unit 103 (103- 1 to 103-n), a delay adjusting unit 104 (104-1 to 104-n), and a digital carrier / antenna combining unit 105.
  • the digital carrier / antenna separation unit 101 separates the input digital I / Q signal into carrier units for each antenna.
  • the information on the carrier to be separated may be arbitrarily set to a deviation (Fa) from 0 Hz and a bandwidth (Fb), for example, F0 (0 Hz) + Fa, + Fb.
  • the digital filter 102 removes unnecessary signals from the separated carrier unit signals. Thereby, a desired carrier component is taken out.
  • Each gain adjusting unit 103 changes the gain of the digital signal corresponding to the input one carrier component. Depending on the gain change performed by the gain adjusting unit 103, the presence / absence of relaying is set.
  • Each delay adjustment unit 104 performs delay adjustment on the input digital signal corresponding to one carrier component.
  • the delay adjustment unit 104 performs delay adjustment by inserting a delay time (multiplying an arbitrary time delay) into the input digital signal as necessary.
  • the digital carrier / antenna combining unit 105 multiplexes the digital signals separated in units of carriers, recombines the digital I / Q signals, and outputs them as digital carrier signals that are relayed to the service unit 200.
  • FIG. 4 is a block diagram showing an embodiment of the digital filter 9 and the downlink digital processing unit 10.
  • the digital filter 9 and the downlink digital processing unit 10 are realized by an FPGA (Field Programmable Gate Array) 40.
  • FPGA Field Programmable Gate Array
  • FIR filters FIR1: Finite Impulse Response Filter
  • FIR1 Finite Impulse Response Filter
  • the signals that have passed through the FIR filters 401 and 402 are input to the subsequent multipliers 403 and 404.
  • Offset signals signals for digitally offsetting the frequency
  • NCO Numerically Controlled Oscillators
  • a desired carrier component is extracted by the sum calculation (carrier separation calculation) by the multipliers 403 and 404.
  • Subsequent FIR filters (FIR2, FIR3) 407 and 408 remove unnecessary signals, respectively.
  • the signals are input to gain controllers (Gain) 409 and 410 as carrier unit signals, respectively, and gain adjustment is performed.
  • the gain controllers 409 and 410 each adjust the gain by changing the amplitude of the input signal. The amplitude is changed by, for example, arithmetic processing on a digital signal.
  • the signals are again passed through the multipliers 411 and 412, and then input to a delay insertion unit (Delay Insertion) 413, and delay adjustment is performed as necessary.
  • the delay insertion unit 512 may insert a delay for correcting a delay difference due to the cable length.
  • a delay may be individually inserted into a carrier unit signal that requires a delay, such as MIMO and antenna diversity transmission.
  • the delay time to be inserted may be variable by setting, for example.
  • the multiplexer (MUX) 414 multiplexes the digital signals corresponding to the respective carrier components, re-synthesizes the digital I / Q signal, and outputs it as a digital carrier signal to be relayed to the service unit 200.
  • signal processing for each carrier may be performed by parallel processing of programs.
  • the serial conversion unit 11 converts the input digital carrier signal into a serial signal and sends it to the service unit 200 which is a connection destination.
  • the serial signal may be a Gigabit Ethernet (registered trademark) signal (gigabit Ethernet signal) as long as it is 1 Gbit / sec or less, for example.
  • a physical interface such as GpE-PHY in FIG. 4 that transmits a Gigabit Ethernet signal may be used for signal transmission.
  • FIG. 5 is an explanatory diagram showing the difference in transmission amount (transmission signal bandwidth) depending on the modulation method.
  • FIG. 5A is an explanatory diagram illustrating an example of a transmission amount when transmission is performed in the RF frequency band without conversion (RF frequency relay).
  • FIG. 5B is an explanatory diagram showing an example of the transmission amount when converted to the IF frequency band (IF frequency conversion).
  • FIG. 5C is an explanatory diagram illustrating an example of a transmission amount when converted by a direct modulation method (also referred to as Zero IF method, direct conversion method, or I / Q conversion). As shown in FIG.
  • the signal band that must be transmitted is 0 to 2 GHz + 10 MHz.
  • An extra signal band is included with respect to the bandwidth of 20 MHz.
  • FIG. 5B when the IF frequency band is converted to 140 MHz and transmitted, it is 0 to 140 MHz + 10 MHz, and the signal band that must be transmitted is narrower than that in FIG. 5A. But still includes extra signal bandwidth.
  • FIG. 5C in the direct modulation method employed in the present invention, the signal band that must be transmitted is 20 MHz, which is the same as the actual signal bandwidth, and the extra signal band is Not included. In this manner, by minimizing the signal band for digital conversion, transmission at a low bit rate is possible while reducing the processing capability required for the conversion unit.
  • FIG. 6 is a block diagram illustrating a configuration example of the service unit 200.
  • the service unit 200 includes serial conversion units 21 and 22, digital filters 23 and 24, quadrature modulation units 25 and 26, an amplifier 27, out-of-band filters 28 and 29, a low noise amplifier 30, and an antenna duplexer 31. And an antenna 32.
  • the serial conversion unit 21, the digital filter 23, the quadrature modulation unit 25, the amplifier 27, the out-of-band filter 28, the antenna duplexer 31, and the antenna 32 are arranged in this order. These are connected.
  • the antenna 32, the antenna duplexer 31, the low noise amplifier 30, the out-of-band filter 29, the orthogonal demodulation unit 26, the digital filter 24, and the serial conversion unit 22 are connected in this order. ing.
  • the antenna 32 is shared by the antenna duplexer 31 for transmission and reception.
  • the serial conversion unit 21 receives the digital serial signal transmitted from the donor unit 100 and assembles it into a digital carrier signal. Thereafter, the digital filter 23 and the quadrature modulation unit 25 directly convert the input digital carrier signal into an RF signal (more specifically, the analog signal is converted into an I and Q baseband signal and then directly converted into the RF signal. Convert).
  • the amplifier 27 amplifies the RF signal obtained by the quadrature modulation unit 25.
  • the out-of-band filter 28 removes out-of-band signals. The RF signal obtained in this way is transmitted from the antenna 32 through the antenna duplexer 31.
  • the digital carrier signal sent from the donor unit 100 may be converted into an analog signal and then orthogonally modulated again before being transmitted. This is because the digital carrier signal sent from the donor unit has already been gain-adjusted to the power required for service and diversity-combined after delay adjustment between antennas. For this reason, the circuit on the service unit side can be simplified. Further, since gain adjustment includes control of presence / absence of relaying, noise and interference can be minimized by relaying only necessary carriers.
  • the signal processing in the uplink is basically the same as that obtained by inverting the relationship between the donor unit 100 and the service unit 200 in the downlink.
  • the gain adjustment and delay adjustment for each carrier are performed by the donor unit 100 as in the downlink. That is, the signal from the terminal is converted into a digital signal (digital I / Q signal) corresponding to the I and Q baseband signals by each service unit 200 and then transmitted to the donor unit 100 by cable as a digital carrier signal.
  • each service unit 200 receives a radio signal (RF signal) from the terminal by the antenna 32 and then divides it into transmission and reception by the antenna duplexer 31.
  • the received RF signal is amplified by the low noise amplifier 30 and the interference wave (radio signal of other business operator, radio signal such as TV band) is removed by the out-of-band filter 29.
  • the signal is directly converted into I and Q baseband signals by the orthogonal demodulator 26 and digitized.
  • the I / Q image generated by the orthogonal demodulation may be removed by the correction circuit.
  • the digitized I / Q baseband signal is input to the digital filter 24, and the digital filter 24 removes interference waves (here, mainly sampling frequency aliasing).
  • the digital I / Q signal thus obtained is converted into a serial format (for example, a Gigabit Ethernet signal) by the serial conversion unit 22 and transmitted as a digital carrier signal to the donor unit 100 which is a connection destination.
  • a digital carrier signal received from each service unit that is, a digital I / Q signal is separated into carrier units, gain adjustment and delay adjustment are performed, and a digital I / Q signal obtained by synthesizing the signals again. Is converted into an analog signal, converted directly into an RF signal, and transmitted to the base station.
  • the donor unit 100 receives a digital carrier signal (that is, a digital I / Q signal) serially transmitted from each service unit 200 by the serial conversion unit 14. Thereafter, the uplink digital processing unit 13 separates the digital I / Q signal into carriers, adjusts the signal level to be relayed to the base station by performing delay adjustment and gain adjustment, and then synthesizes again.
  • the digital filter 12 removes unnecessary waves outside the transmission band (in this case, mainly the folding of the sampling frequency), while the quadrature modulation unit 8 converts it to an analog signal. Directly converted to RF signal after conversion. Then, after being amplified by the amplifier 6, unnecessary signals are removed through the out-of-band filter 5 and transmitted from the antenna 1 to the base station through the antenna duplexer 2.
  • FIG. 7 is a functional block diagram illustrating a configuration example of the uplink digital processing unit 13. As shown in FIG. 7, the digital carrier / antenna separation 131, the separated carrier-specific digital filters 132 (132-1 to 132-n), the delay adjustment unit 133 (133-1 to 133-n), and the gain adjustment Unit 134 (134-1 to 134-n), power clipping unit 135 (135-1 to 135-n), and digital carrier / antenna combining unit 136.
  • the digital carrier / antenna separation unit 131, the digital filter 132, the delay adjustment unit 133, the gain adjustment unit 134, and the digital carrier / antenna combination unit 136 are the digital carrier / antenna separation unit 101 and the digital filter 102 in the downlink processing unit 10, respectively.
  • the delay adjustment unit 104, the gain adjustment unit 103, and the digital carrier / antenna combination unit 105 are the same.
  • the uplink has a power clipping unit 135 to suppress distortion due to peak power during synthesis.
  • the carrier unit signal is subjected to gain adjustment, reduced in peak power by power clipping 135, and then recombined into a digital I / Q signal by a digital carrier / antenna combining unit 136.
  • the I / Q digital signal obtained by the synthesis is directly converted into an RF analog signal by the quadrature modulation unit 8 after unnecessary waves outside the transmission band are removed by the digital filter 12. Then, after being amplified by the amplifier 6, unnecessary signals are removed through the out-of-band filter 5 and transmitted from the antenna 1 to the base station through the antenna duplexer 2.
  • FIG. 8 is a block diagram showing an embodiment of the uplink digital processing unit 13 and the digital filter 12.
  • the uplink digital processing unit 13 and the digital filter 12 are realized by an FPGA.
  • multipliers 502 and 503 for inputting a digital carrier signal (digital I / Q signal) input from the serial conversion unit 14 are provided in the previous stage.
  • the multipliers 502 and 503 receive the offset signals from the NCOs 504 and 505, respectively.
  • a desired carrier component is extracted by the sum calculation (carrier separation calculation) by the multipliers 504 and 505.
  • FIR2, FIR3 FIR2, FIR3
  • 506 and 507 remove unnecessary signals, respectively.
  • the signals are input to gain controllers (Gain) 508 and 509 as carrier unit signals, respectively, and gain adjustment is performed.
  • the signals are again passed through the multipliers 510 and 511, and then input to the delay insertion unit 512, and the delay adjustment is performed as necessary.
  • a multiplexer (MUX) 513 multiplexes digital signals corresponding to each carrier component, and re-synthesizes the digital I / Q signal.
  • FIR filters (FIR1) 514 and 515 corresponding to I and Q are provided, and a digital I / Q signal from which unnecessary waves are removed is output to the quadrature modulation unit 8.
  • a peak controller Peak Controller
  • a peak controller Peak Controller
  • the radio signal is directly based on the orthogonal demodulator 7 of the donor unit 100 in the downlink and the orthogonal demodulator 26 of the service unit 200 in the uplink. Demodulate to band I and Q signals.
  • Such a method is generally used for a mobile terminal as a direct modulation method (direct conversion method) or a Zero-IF method.
  • direct modulation method direct conversion method
  • Zero-IF method Zero-IF method.
  • carrier leaks and IQ image interference waves caused by the orthogonal error of the orthogonal demodulation unit become problems, and the required specifications. Have been shunned by harsh wireless repeaters and base stations.
  • the out-of-band signal generated after demodulation in the quadrature demodulator is first digitized after being removed by an analog LPF (LPF 74, 75, 264, 265), and the out-of-band signal generated after the digitization is digitally filtered ( It is removed by digital filters 9, 24).
  • LPF analog LPF
  • digital filters 9 and 24 digital filters 9 and 24
  • FIG. 9 is an explanatory diagram showing examples of carrier leak jamming waves and I and Q image jamming waves.
  • an arrow indicated by a is a carrier leak interference wave
  • an arrow indicated by b is an IQ image interference wave.
  • the carrier leak is also called a DC leak, and is a DC noise component in which a local signal leaks to the IQ baseband in I / Q conversion (demodulation).
  • the IQ image is an interference wave that appears as shown in FIG. 9 according to the amount of deviation when the phase difference (90 degrees) and the amplitude difference between the local signals of I and Q are deviated from zero in quadrature demodulation. Since these interference waves appear as an image in the pass band, the band elimination filter cannot take measures.
  • the present embodiment not only has a correction circuit for removing an I / Q image generated by quadrature demodulation in the subsequent stage of the analog-digital converter, but also a filter system that feeds back I and Q and performs complex multiplication in the digital filter. By adopting it, it is possible to perform signal multiplication to erase each other's image.
  • the signal band for digital conversion is minimized.
  • the processing capability of the digital conversion unit can be reduced, and the transmission rate with the service unit 200 can be set to a low bit rate.
  • 10 and 11 are explanatory diagrams illustrating an example of gain adjustment in units of carriers. 10 and 11 show the frequency spectrum (relationship between frequency and level) of the input and output from the wireless relay device.
  • FIG. 10 shows an example of installation in an environment in which base station A transmits CDMA-1X system 7 carriers and base station B transmits CDMA-EVDO system 3 carriers.
  • the input level of the radio signal in the radio relay apparatus is higher than the CDMA-1X system 7 carrier from the base station A, compared with the CDMA-EVDO system from the base station B.
  • 3 carriers were low.
  • FIG. 11 shows an example in which an LTE system 1 carrier is transmitted from the base station A and a CDMA system 3 carrier is transmitted from the base station B.
  • the radio signal reception level in the radio relay apparatus is lower in the LTE system 1 carrier from the base station A than in the CDMA system 3 carrier from the base station B.
  • the adjacent carrier of the base station A is relayed OFF as interference reduction and level adjustment from the base station B to the LTE signal.
  • the gain of the EVDO signal from the base station B may be increased and relayed to each service unit.
  • FIG. 12 is an explanatory diagram showing the relationship between the example of gain adjustment for each carrier shown in FIG. 11 and the downlink digital processing unit 10.
  • FIG. 12 illustrates an example of signal processing in the gain adjustment unit 103 of the downlink digital processing unit 10 in the donor unit 100.
  • the CDMA3 carrier is transmitted from the base station A and the LTE1 carrier is transmitted from the base station B.
  • the digital filter 102 corresponding to each carrier, the gain An adjustment unit 103 and a delay adjustment unit 104 are provided in the digital carrier / antenna separation 101.
  • a desired signal is extracted by the subsequent digital filter 102 by performing up-down conversion of one of 0 Hz by digital processing.
  • the CDMA carrier 1 is associated with the digital filter 102-1, the gain adjusting unit 103-1, and the delay adjusting unit 104-1.
  • the CDMA carrier 2 is associated with the digital filter 102-2, the gain adjustment unit 103-2, and the delay adjustment unit 104-2.
  • the CDMA carrier 3 is associated with the digital filter 102-3, the gain adjustment unit 103-3, and the delay adjustment unit 104-3.
  • LTE is associated with the digital filter 102-4, the gain adjustment unit 103-4, and the delay adjustment unit 104-4.
  • the gain adjusting unit 103-1 sets the gain to 0 with respect to the digital signal corresponding to the CDMA carrier 1 component. Control to turn off (erase). Further, for example, the gain adjusting unit 103-2 and the gain adjusting unit 103-2 perform control to reduce the gain by 1 dB for the input digital signal corresponding to the carrier 2 or carrier 3 component of CDMA. Further, for example, the gain adjustment unit 103-4 performs control to increase the gain by 3 dB with respect to the digital signal corresponding to the LTE carrier component.
  • the adjustment value of the gain may be determined by setting, or at the input of the donor unit 100, the pilot signal quality of the base station is measured, and the gain calculation for keeping the level at the service output constant is performed by the CPU or the like. Automatic gain control can also be performed based on this.
  • the adjustment case when a plurality of carriers of the same system are relayed, it is also possible to control to select only a certain carrier and increase the gain. For example, when there are four W-CDMA signals, only the carrier used for HSDPA (high-speed data communication) may be selected and controlled to increase (amplify) the gain.
  • HSDPA high-speed data communication
  • the adjustment method may be fixed adjustment by external setting or automatic adjustment.
  • the gain value may be held in advance in each gain adjustment unit, or the gain value may be set (input) from the outside.
  • the donor unit 100 may have a quality measurement unit (not shown) that receives a radio signal from the base station and measures reception quality. Based on the pilot signal multiplexed on the radio signal from the base station, it is determined whether or not the signal is a signal to be relayed. If the signal is a relay target (a signal that is permitted to be relayed), the Ec of the pilot signal is determined. / No (signal-to-noise ratio) and the input level may be used to determine the gain range for control.
  • the status under the service antenna is determined by measuring the amount of uplink traffic or by notification from the service unit 200, and when it is determined that there are many subscribers (mobile stations) under the service unit, the gain is increased. Such control may be performed.
  • the LTE gain may be increased and the CDMA gain may be decreased. Further, the gain can be varied according to the presence or absence of data.
  • gain adjustment can be performed based on the output value at the antenna output end on the service unit side. For example, if the service unit output is less than the maximum value after gain adjustment by the above method, the gain adjustment value may be increased.
  • the service unit 200 periodically measures the output level and notifies the result to the donor unit 100. Based on the notified output level, the donor unit 100 may perform control such as increasing the gain value if it is below the threshold value or decreasing the gain value if it is above the threshold value.
  • the gain adjustment can be performed not only by the donor unit 100 but also by the service unit 200 individually. If the service unit 200 measures the input level and statistically processes the input level and determines that the level is high, the service unit 200 may perform control such as changing the individual gain assuming that the traffic amount is large.
  • FIG. 13 is an explanatory diagram illustrating an example of signal processing in the delay adjustment unit 104 of the downlink digital processing unit 10.
  • delay diversity (a system that intentionally transmits buses having different delay times) is used as an SIR improvement of a non-MIMO CDMA signal in the LTE MIMO signals received by antenna # 1 and antenna # 2. This is an example of transmission.
  • the antenna # 1 receives an LTE MIMO signal and a CDMA3 carrier
  • the antenna # 2 receives an LTE MIMO signal.
  • the downlink digital processing unit 10 receives each carrier for each antenna.
  • a corresponding digital filter 102, gain adjustment unit 103, and delay adjustment unit 104 are provided.
  • the CDMA carrier 1 is associated with the digital filter 102-1, the gain adjusting unit 103-1, and the delay adjusting unit 104-1.
  • the CDMA carrier 2 is associated with the digital filter 102-2, the gain adjustment unit 103-2, and the delay adjustment unit 104-2.
  • the CDMA carrier 3 is associated with the digital filter 102-3, the gain adjustment unit 103-3, and the delay adjustment unit 104-3.
  • LTE1 LTE MIMO signal received by antenna # 1
  • LTE2 LTE MIMO signal received by antenna # 2
  • LTE2 LTE MIMO signal received by antenna # 2
  • the delay adjustment unit 104-1, the delay adjustment unit 104-2, and the delay adjustment unit 104-3 input each CDMA carrier component.
  • Delay processing for inserting a predetermined delay time may be performed on the digital signal corresponding to the above.
  • the delay adjustment can be performed not only for delay diversity of a CDMA signal of a non-MIMO signal but also for adjustment of a delay amount generated from a cable length between a donor unit and a service unit.
  • the delay amount may be set according to the cable length with the service unit as the transmission destination. For example, when a plurality of service units are connected and the distance between the service unit and the donor unit is different from 10 m, 1 km, and 2 km, the delay on the service unit side is set so that the delay difference due to this distance becomes zero. insert.
  • a delay equivalent to 1990 m is inserted for a signal to a service unit 10 m away
  • a delay equivalent to 1000 m is inserted for a signal to a service unit 1 km away
  • a service unit 2 km away The delay adjustment may be performed so that the delay to zero is zero.
  • Such a delay amount may be set in the service unit based on the setting from the donor unit or the result of measuring the cable length by a signal synthesis / distribution unit described later.
  • gain adjustment and delay adjustment in the downlink have been described, but the same adjustment may be performed for the uplink.
  • FIG. 14 is a block diagram showing an example of the donor unit 100 of this embodiment.
  • the donor unit 100 shown in FIG. 14 includes an RF front end unit 1001, an RF-digital modem 1002, a broadband-digital processor 1003, and an interface / power supply unit 1003.
  • the RF front end unit 1001 includes an antenna 1, an antenna duplexer 2, a low noise amplifier 3, out-of-band filters 4 and 5, an amplifier 6, and a pulse density modulator (PDM) 1005.
  • the RF-digital modem 1002 includes components of the quadrature demodulator 7, a quadrature correction processing unit 77, components of the quadrature modulation unit 8, a quadrature correction processing / peak control unit 87, and a PLL (Phase Locked Loop). Circuit 1006.
  • the baseband-digital processor 1003 includes a digital up / down converter 1007, a downlink filter / gain control / delay control unit 1008, a digital signal multiplexing / demultiplexing / serial conversion unit 1009, and a digital up / down converter 1010.
  • the interface / power supply unit 1013 includes a cable modem driver 1013, a cable power supply (PoE) 1014, and a DC power supply 1015.
  • This example is an example in which quadrature correction is incorporated in the quadrature demodulation unit 7 and an example in which quadrature correction processing and peak control are incorporated in the quadrature modulation unit.
  • the digital up / down converter 1007 and the filter / gain control / delay control unit 1008 of the baseband-digital processor 1003 realize the functions of the digital filter 9 and the downlink digital processing unit 10.
  • the digital up / down converter 1010 and the filter / gain control / delay control unit 1011 of the baseband-digital processor 1003 realize the functions of the digital filter 12 and the uplink digital processing unit 12 (except for peak control). ing.
  • This embodiment can also be realized by such a configuration.
  • the radio signal from the base station is orthogonally demodulated by the direct modulation method, digitized, and relayed between the donor unit and the service unit by the digital signal. Therefore, the scale of the RF analog circuit can be reduced, the cost can be suppressed, and deterioration due to long-distance cable transmission can be suppressed because it does not include useless bandwidth information as the transmission amount.
  • gain adjustment and delay adjustment are performed on the digitized signal, it is possible to easily cope with a change in the carrier bandwidth with the same hardware. Further, since the delay can be made variable in units of service units, a multipath combined gain can be obtained.
  • the gain can be adjusted for each carrier, it is possible to stably relay different types of radio carrier signals from different base stations. Also, when non-MIMO signals are relayed by two antennas, such as LTE MIMO format signals and CDMA format signals, non-MIMO signals can be maintained while delaying and multiplexing the non-MIMO signals while maintaining the effects of the MIMO signals. The gain effect of the signal can be increased.
  • this wireless relay device can also be applied to multi-system wireless relay devices such as GSM and W-CDMA. It is also possible to directly connect the base station with a coaxial cable or an optical cable without using a radio (antenna).
  • FIG. 15 is a block diagram showing another configuration example of the wireless relay device.
  • a signal synthesis / distribution unit 300 may be provided between the donor unit 100 and the service unit 200.
  • the signal synthesis / distribution unit 300 is a unit that synthesizes and distributes digital signals between the donor unit 100 and the service unit 200.
  • FIG. 16 is a block diagram showing a configuration example of a signal synthesis / distribution unit (referred to as HUB in the figure) 300.
  • a signal synthesis / distribution unit 300 shown in FIG. 16 includes a cable modem transceiver / cascade control unit 301, a digital signal synthesis / separation / serial conversion unit 302, a donor unit (DU) transmission rate control unit 303, a dynamic range control 304, , Uplink signal control unit 305, downlink signal control unit 306, service unit (SU) state monitoring / ON / OFF control unit 307, maintenance / monitoring unit (O & M) 308, cable model transceiver 309, cable A power supply (PoE) 310 and a power supply unit 311 are provided.
  • a cable modem transceiver / cascade control unit 301 includes a cable modem transceiver / cascade control unit 301, a digital signal synthesis / separation / serial conversion unit 302, a donor unit (DU) transmission rate control unit
  • the cable modem transceiver / cascade control unit 301 is a transceiver for transmitting and receiving signals from a cable on the donor unit side. In the case of supporting the cascade connection, as cascade control, a process of amplifying and converting the cascade signal separated by the digital signal synthesis separation / serial conversion unit 302 described later and transmitting it to another port is also performed.
  • the digital signal synthesis / separation unit 302 synthesizes and separates digital signals, converts a digital carrier signal to be relayed to the donor unit into a digital serial signal, or receives a digital serial signal received from the donor unit. Performs conversion from signal to digital carrier signal. In cascade connection composed of a plurality of HUBs, the cascade signals are separated and multiplexed.
  • the downlink signal control unit 306 generates a digital carrier signal to be transmitted to each connected service unit based on the digital signal transmitted from the donor unit 100 input from the digital signal synthesis / separation / serial conversion unit 302. , Output to the service unit state monitoring / ON / OFF control unit 307.
  • individual control according to the service unit of the transmission source can be performed. In the individual control, for example, the gain of a certain carrier signal may be set to zero.
  • the service unit status monitoring / ON / OFF control unit 307 monitors the status of the connection destination service unit, and determines whether or not to transmit the signal input from the downlink signal control unit 306 to the connection destination service unit. Make a decision. Further, it is determined whether or not to accept a digital signal from the service unit 200 input from a cable modem transceiver 309 described later. Further, it may have a function of deriving (measuring) the cable length with the service unit from the delay amount. By notifying the service unit of the derived cable length, the service unit may perform delay insertion for cable length correction.
  • the cable modem transceiver 309 is a driver for transmitting and receiving signals from the cable on the service unit side.
  • the cable power supply 310 is a device that supplies power to the Ethernet cable.
  • the maintenance / monitoring unit 308 performs maintenance and monitoring of the signal synthesis / distribution unit 300.
  • the uplink signal control unit 305 generates a digital carrier signal to be transmitted to the connected donor unit based on the digital signal transmitted from the service unit 200 input via the service unit state monitoring / ON / OFF control unit 307. Addition (multiplexing) is performed and output to the dynamic range control unit 304.
  • the dynamic range control unit 304 performs power limiter control so that the signal power transmitted to the donor unit 100 does not become too large. For example, the peak value is predicted by statistical calculation, and the filter process is performed.
  • the donor unit transmission rate control unit 303 adjusts the rate according to the size of the dynamic range. For example, when the dynamic range is large, control such as increasing the communication speed may be performed.
  • the number of donor units 100 and the number of service units 200 that can be relayed can be increased.
  • FIG. 17 is an explanatory diagram showing features of the present invention.
  • the radio relay apparatus according to the present invention is a radio relay apparatus installed between a single or a plurality of mobile communication base stations and terminals, and is a donor that performs radio communication with the base station side.
  • a unit 701 and one or a plurality of service units 702 that perform wireless communication with the terminal side are provided.
  • the donor unit 701 and the service unit 702 are connected via a cable.
  • the donor unit 701 includes an RF-digital conversion unit 801, a downlink (DL) digital signal processing unit 802, a digital IQ signal transmission / reception unit 803, an uplink (UL) digital signal processing unit 804, and a digital-RF conversion unit. 805.
  • DL downlink
  • UL uplink
  • the service unit 702 includes a digital IQ signal transmission / reception unit 804, a digital-RF conversion unit 805, and an RF-digital conversion unit 801.
  • the RF-digital conversion unit 801 and the digital-RF conversion unit 805 may be the same in the donor unit 701 and the service unit 702.
  • the RF-digital converter 801 (for example, the quadrature demodulator 7 and the digital filter 9, the quadrature demodulator 26 and the digital filter 24) directly converts the input RF signal into I and Q baseband signals, and then converts the digital signal. To obtain a digital IQ signal.
  • the downlink digital signal processing unit (eg, the downlink digital processing unit 10) separates the downlink digital IQ signal into carrier units for each antenna, and performs gain and / or delay on the separated digital signal, respectively. Adjust and re-synthesize the digital IQ signal from the adjusted separated digital signal.
  • the digital IQ signal transmission / reception unit 803 (for example, the serial conversion units 11 and 14) transmits / receives a digital IQ signal to / from the service unit 702.
  • the uplink digital signal processing unit 804 (for example, the uplink digital processing unit 13) separates the uplink digital IQ signal into carrier units for each antenna, and gain or delay with respect to the separated digital signal or both, respectively.
  • the digital IQ signal is re-synthesized from the adjusted separated digital signal.
  • the digital-RF conversion unit 805 (for example, the quadrature modulation unit 8 and the quadrature modulation unit 25) converts the input digital IQ signal into an analog signal, and directly converts the obtained I and Q baseband signals into an RF signal. Then, an RF signal is obtained.
  • the digital IQ signal transmission / reception unit 806 (for example, the serial conversion units 21 and 22) transmits / receives a digital IQ signal to / from the donor unit 701.
  • a plurality of carrier groups used for different purposes transmitted from a single or a plurality of base stations can be amplified by one radio relay device while suppressing deterioration of radio capacity due to amplification and relay distance.
  • the RF-digital conversion unit converts the I signal and the Q signal to the I signal and the Q signal of the digital signal obtained by the conversion when the I and Q baseband signals are changed to the digital signal.
  • Unnecessary signals may be removed by a digital filter (for example, digital filters 9 and 24) employing a filter system that performs complex multiplication.
  • the RF-digital conversion unit directly outputs a desired signal from the quadrature demodulation unit (eg, the quadrature demodulation units 7 and 26) that directly demodulates the RF signal into I and Q baseband signals, and the analog signal obtained by the quadrature demodulation unit.
  • An analog filter circuit (for example, LPF 74, 75 or LPF 264, 265) corresponding to the I signal and Q signal that removes out-of-band signals, and the analog signal I signal and Q signal output from the analog filter circuit are digital signals, respectively.
  • An analog-to-digital converter that converts the signal to the digital signal, and an I signal and a Q signal that are digital signals output from the analog-to-digital converter, and the I signal and Q signal of the input digital signal
  • a digital filter (for example, digital filters 9 and 24) that employs a filter system that performs complex multiplication with the Q signal. It can have.
  • the downlink digital signal processing unit may perform delay adjustment on each separated digital signal based on a delay time determined according to a cable length between the donor unit and the service unit. .
  • the wireless relay device is installed in a wireless environment that receives an RF signal in which a MIMO signal and a non-MIMO signal are combined, and the downlink digital signal processing unit corresponds to a specific carrier component that is a non-MIMO signal. You may perform the delay adjustment which inserts predetermined delay time with respect to the isolate
  • the donor unit includes a reception quality measurement unit that measures the quality of the received RF signal, and the downlink digital signal processing unit calculates a gain range based on the reception quality measured by the reception quality measurement unit, Gain adjustment may be performed on each separated digital signal.
  • the uplink digital signal processing unit may perform gain adjustment and delay adjustment similar to those of the downlink signal processing unit.
  • a signal distribution / combination unit that distributes a signal addressed to the service unit received from the connected donor unit and combines a signal addressed to the donor unit received from the connected service unit between the donor unit and the service unit.
  • a signal synthesis / distribution unit 300 may be provided.
  • the I signal and the Q signal of the digital signal obtained by converting the analog signal into the digital signal are respectively obtained.
  • a filter method for complex multiplication may be implemented to remove unnecessary signals.
  • delay adjustment may be performed on each separated digital signal based on a delay time determined according to the cable length between the donor unit and the service unit.
  • the donor unit measures the quality of the received RF signal, and the digital signal processing step calculates a gain range based on the measured reception quality and performs gain adjustment on each separated digital signal. May be.
  • the signal addressed to the service unit received from the connected donor unit is distributed, and the signal addressed to the donor unit received from the connected service unit is synthesized. This may be done via a signal distribution and synthesis unit.
  • the present invention can be suitably applied to a purpose of relaying a signal of wireless communication performed between a mobile communication base station and a terminal.

Abstract

Equipped with an RF-digital conversion unit (801) that obtains a digital IQ signal by converting an input RF signal into a digital signal after directly converting the RF signal into an I and Q baseband signal; digital signal processing units (802, 804) that separate the digital IQ signal, which was obtained in a donor unit by means of the aforementioned conversion, into the carrier unit of each antenna, respectively perform gain adjustment and/or delay adjustment on the separated digital signal, and re-synthesize the digital IQ signal after adjustment; digital IQ signal transmission/reception units (803, 806) that transmit and receive the digital IQ signal between the donor unit and a service unit; and a digital-RF conversion unit (805) that converts the input digital IQ signal into an analog signal, and directly converts the I and Q baseband signal that was obtained into an RF signal.

Description

無線中継装置および無線中継方法Radio relay apparatus and radio relay method
 本発明は、移動体通信の無線基地局と移動体端末との間で送受信される信号を中継する無線中継装置および無線中継方法に関する。 The present invention relates to a radio relay apparatus and a radio relay method for relaying signals transmitted and received between a mobile communication radio base station and a mobile terminal.
 無線中継装置は、移動体通信の無線基地局から送信された無線信号が伝搬路での減衰により移動体通信サービスが届かないエリア(移動体端末にとって十分なSINRが得られない環境。例えば、屋内、ビルの陰、ルーラル地域)への中継用に設置される装置であって、無線伝搬路で減衰したキャリア信号(無線基地局から送信される無線信号)を受信、増幅して再送信することによって該エリアに中継する。 The radio relay apparatus is an area in which a radio signal transmitted from a radio base station for mobile communication cannot reach a mobile communication service due to attenuation in a propagation path (an environment where a sufficient SINR for a mobile terminal cannot be obtained. For example, indoors This is a device installed for relaying to the shadow of a building or in a rural area), receiving a carrier signal attenuated in a radio propagation path (a radio signal transmitted from a radio base station), amplifying and retransmitting it. To the area.
 無線中継装置における無線信号の中継方法は、一般的に、ドナーユニットで受信した信号を中間周波数(IF)にダウンコンバージョン(低周波数への周波数変換)したアナログ信号を同軸ケーブルを用いてサービスユニットに中継する方法が採られている。ここで、サービスユニットとは、無線中継装置において、移動体端末との間で無線通信を行うユニットをいう。一方、サービスユニットに対して、無線基地局との間で無線通信を行うユニットのことをドナーユニットという。 In general, a radio signal relay method in a radio relay device is a method of down-converting a signal received by a donor unit to an intermediate frequency (IF) (frequency conversion to a low frequency) to a service unit using a coaxial cable. The method to relay is taken. Here, the service unit refers to a unit that performs wireless communication with a mobile terminal in a wireless relay device. On the other hand, a unit that performs radio communication with a service unit with a radio base station is called a donor unit.
 図18は、無線中継装置の一般的な構成例を示す説明図である。図18に示す例では、1つのドナーユニットに対して、1つ以上のサービスユニットを分配器を介して同軸ケーブルで接続する構成を示している。ドナーユニット内では、アンテナ共用器(DUP:デュプレクサ)を介して無線基地局からの下りRF信号を受信すると、その受信したRF信号に対して、低雑音増幅回路(LNA:Low Noise Amplifier)と、RF帯域外フィルタ(RF-BPF:RF-Band-Pass filter)とを通すことでRF信号以外の雑音を除去した上でIF信号にダウンコンバージョンしている。そして、得られたIF信号をIF帯域外フィルタ(IF-BPF:IF-Band-Pass filter)を通してIF信号以外の雑音を除去した後、アンテナ共用器を介して同軸ケーブル上に(ここではサービスユニットに向けて)送出している。なお、IF信号用の帯域外フィルタによる挿入損失が大きい場合には、RF信号の送出前と同様にIF信号を送出する前にも増幅器(IF-AMP)が挿入される。 FIG. 18 is an explanatory diagram illustrating a general configuration example of a wireless relay device. The example shown in FIG. 18 shows a configuration in which one or more service units are connected to one donor unit via a distributor using a coaxial cable. In the donor unit, when a downlink RF signal is received from a radio base station via an antenna duplexer (DUP: duplexer), a low noise amplification circuit (LNA: Low Noise Amplifier) is received for the received RF signal, By passing through an RF out-of-band filter (RF-BPF: RF-Band-Pass filter), noise other than the RF signal is removed and down-converted to an IF signal. The obtained IF signal is passed through an IF out-of-band filter (IF-BPF: IF-Band-Pass filter) to remove noises other than the IF signal, and then on the coaxial cable via the antenna duplexer (here, the service unit). (Toward). When the insertion loss due to the IF signal out-of-band filter is large, an amplifier (IF-AMP) is inserted before sending the IF signal as well as before sending the RF signal.
 サービスユニット内では、アンテナ共用器を介してドナーユニットからの下りIF信号を受信し、その受信したIF信号に対して、IF帯域外フィルタでIF信号以外の雑音を除去した上でRF信号にアップコンバージョン(高周波数への周波数変換)している。そして、得られたRF信号をRF帯域外フィルタを介してRF信号以外の雑音を除去した後、さらに増幅器(RF-AMP)で増幅し、アンテナ共用器を介してアンテナから移動体端末に向けて送出している。 In the service unit, the downstream IF signal from the donor unit is received via the antenna duplexer, and the received IF signal is removed to the RF signal after removing noise other than the IF signal by the IF out-of-band filter. Conversion (frequency conversion to high frequency). Then, after removing the noise other than the RF signal through the RF out-of-band filter, the obtained RF signal is further amplified by an amplifier (RF-AMP) and directed from the antenna to the mobile terminal through the antenna duplexer. Sending out.
 また、サービスユニット内では、アンテナからアンテナ共用器を介して移動体端末からの上りRF信号を受信すると、その受信したRF信号に対して、ドナーユニット内における無線基地局からの下りRF信号と同様に、低雑音増幅回路とRF帯域外フィルタとを用いてRF信号以外の雑音を除去した上でIF信号にダウンコンバージョンし、得られたIF信号をIF帯域外フィルタを通してIF信号以外の雑音を除去した後、アンテナ共用器を介して同軸ケーブル上に(ここではドナーユニットに向けて)送出している。 In the service unit, when an uplink RF signal is received from the mobile terminal from the antenna via the antenna duplexer, the received RF signal is similar to the downlink RF signal from the radio base station in the donor unit. In addition, noise other than the RF signal is removed using a low-noise amplifier circuit and an RF out-of-band filter, then down-converted to an IF signal, and the obtained IF signal is removed through the IF out-of-band filter to remove noise other than the IF signal. After that, it is sent out on the coaxial cable (in this case toward the donor unit) via the antenna duplexer.
 サービスユニットから同軸ケーブル上に送出された上りIF信号(移動体端末からの上りRF信号がIF帯に変換された信号)は、ドナーユニット内で、アンテナ共用器を介して受信される。ドナーユニット内では、その受信したIF信号に対して、サービスユニット内におけるドナーユニットからの下りIF信号と同様に、IF帯域外フィルタでIF信号以外の雑音を除去した上でRF信号にアップコンバージョンし、得られたRF信号をRF帯域外フィルタを介してRF信号以外の雑音を除去した後、さらに増幅器(RF-AMP)で増幅し、アンテナ共用器を介してアンテナから無線基地局に向けて送出している。 The upstream IF signal (the signal obtained by converting the upstream RF signal from the mobile terminal into the IF band) transmitted from the service unit onto the coaxial cable is received via the antenna duplexer in the donor unit. In the donor unit, the received IF signal is up-converted to an RF signal after noise other than the IF signal is removed by an IF out-of-band filter in the same manner as the downlink IF signal from the donor unit in the service unit. After removing the noise other than the RF signal through the RF out-of-band filter, the obtained RF signal is further amplified by an amplifier (RF-AMP) and transmitted from the antenna to the radio base station through the antenna duplexer. is doing.
 しかし、このようにIF信号に変換し、それを同軸ケーブルを用いて中継する方式では、ケーブル長による減衰やサービスユニットで発生する熱雑音のSIRへの影響が問題となっている。また、近傍雑音をBPFで除去する場合、その挿入損失が大きいため、増幅器(RF-AMPやIF-AMP)が多く必要となるという問題がある。 However, in the method of converting into an IF signal and relaying it using a coaxial cable in this way, attenuation due to the cable length and the influence of the thermal noise generated in the service unit on the SIR are problematic. Further, when the neighborhood noise is removed by BPF, the insertion loss is large, so that there is a problem that many amplifiers (RF-AMP and IF-AMP) are required.
 ところで、近年では、IF信号をデジタル化させて光ケーブルで伝送する方式も採用されている。しかし、IF信号をデジタル化する場合は、高速のデジタル処理信号が求められるとともに、単にデジタル化するだけではキャリア単位での利得や遅延制御ができず、きめ細やかなエリア設計ができないという問題がある。無線中継装置では、今後、3G(3rd Generation:第3世代携帯電話方式)からLTE(Long Term Evolution)へサービスが移行する場合などを考慮すると、キャリア単位での利得や遅延制御が行えることが要望としてあげられる。 By the way, in recent years, a method of digitizing IF signals and transmitting them using optical cables has also been adopted. However, when an IF signal is digitized, a high-speed digital processing signal is required, and there is a problem that gain and delay control cannot be performed in units of carriers simply by digitizing, and a fine area design cannot be performed. . In the future, wireless relay devices are expected to be able to perform gain and delay control in units of carriers, considering the case where the service is shifted from 3G (3rd Generation: 3rd generation mobile phone system) to LTE (Long Term Evolution). It is given as.
 無線中継装置における信号の中継方法に関連する先行技術文書として、特許文献1,2がある。例えば、特許文献1には、複数の運用主体が配置した基地局からの電波をすべて受信増幅して運用主体の数に分岐し、各運用主体毎に個別選択増幅した後、合成して増幅し各運用主体の移動機に送出する無線中継増幅装置が記載されている。 Patent Documents 1 and 2 are prior art documents related to a signal relay method in a wireless relay device. For example, in Patent Document 1, all radio waves from base stations arranged by a plurality of operating entities are received and amplified, branched into the number of operating entities, individually selected and amplified for each operating entity, and then combined and amplified. A wireless relay amplifying apparatus for sending to each operating entity mobile device is described.
 また、例えば、特許文献2には、有線または無線接続により基地局または通信システムから受信した高周波信号をデジタル信号に変換した後、デジタル信号処理部により高周波信号に含まれた不要な干渉波を除去し、その出力端に拡張ユニットまたはリモートユニットが接続される構内無線分配中継システムが記載されている。 Further, for example, in Patent Document 2, a high-frequency signal received from a base station or a communication system is converted into a digital signal by wired or wireless connection, and then unnecessary interference waves included in the high-frequency signal are removed by a digital signal processing unit. A private wireless distribution relay system is described in which an extension unit or a remote unit is connected to the output end.
特開2000-031879号公報JP 2000-031879 A 特開2006-186997号公報JP 2006-186997 A
 無線中継装置は、このように移動体通信サービスが届かないエリアへ無線基地局からの無線信号を中継するために用いられるが、複数の無線基地局からの無線信号を中継対象とする場合、距離や周波数によって伝搬減衰量が異なるため、無線中継装置のドナーユニットの入力では、キャリア毎に異なるレベルやC/Nのキャリア群となっている。無線中継装置の多くは、このキャリア信号群をサービスユニット出力端でトータル電力値が一定となるようにパワーコントロールを行う。すなわち、固定の増幅利得を持って運用している。 The radio relay device is used to relay radio signals from a radio base station to an area where the mobile communication service does not reach in this way. Since the amount of propagation attenuation differs depending on the frequency, the input of the donor unit of the wireless relay device has different levels and C / N carrier groups for each carrier. Many of the radio relay apparatuses perform power control so that the total power value of the carrier signal group is constant at the service unit output end. That is, it operates with a fixed amplification gain.
 例えば、ドナーユニット端で入力キャリア信号群の受信レベルが-50dBmの場合は、+10dBmになるように60dBの増幅を行う。端末からの信号も同様に一定の増幅を行ってドナーユニットから出力されて基地局に送られる。 For example, when the reception level of the input carrier signal group is −50 dBm at the end of the donor unit, amplification of 60 dB is performed so as to be +10 dBm. Similarly, the signal from the terminal is subjected to constant amplification and is output from the donor unit and sent to the base station.
 図19は、無線中継装置の設置例を示す説明図である。図19では、建物内で移動体通信の基地局Aからのキャリア信号と基地局Bからのキャリア信号を中継する無線中継装置の例を示している。なお、図19では、1つのドナーユニット901と、3つのサービスユニット902-1~902-3とを備える無線中継装置の例を示している。また、図20は、異なる基地局から異なるサービスを目的としたキャリア信号が混在して送信される場合の無線中継装置におけるレベル関係について示す説明図である。図20では、基地局AからサービスBを目的とした1つのキャリア信号が送信され、基地局BからサービスAを目的としたキャリア信号とサービスCを目的としたキャリア信号の計2つのキャリア信号が送信される場合を例に示している。なお、図20(a)は、無線中継装置と基地局と端末との関係を示す説明図である。また、図20(b)は、無線中継装置における各キャリア信号の入力レベル(受信レベル)を示す説明図である。また、図20(c)は、無線中継装置における各キャリア信号の出力レベル(送信レベル)を示す説明図である。 FIG. 19 is an explanatory diagram showing an installation example of the wireless relay device. FIG. 19 shows an example of a radio relay apparatus that relays a carrier signal from a base station A for mobile communication and a carrier signal from a base station B in a building. FIG. 19 shows an example of a radio relay apparatus including one donor unit 901 and three service units 902-1 to 902-3. FIG. 20 is an explanatory diagram showing the level relationship in the radio relay apparatus when carrier signals for different services are mixedly transmitted from different base stations. In FIG. 20, one carrier signal for the purpose of service B is transmitted from the base station A, and a total of two carrier signals, a carrier signal for the purpose of service A and a carrier signal for the purpose of service C, are transmitted from the base station B. An example of transmission is shown. FIG. 20A is an explanatory diagram illustrating the relationship among the radio relay device, the base station, and the terminal. FIG. 20B is an explanatory diagram showing the input level (reception level) of each carrier signal in the wireless relay device. Moreover, FIG.20 (c) is explanatory drawing which shows the output level (transmission level) of each carrier signal in a radio relay apparatus.
 図20に示す例において、サービスAは、基地局からの距離が長く、また帯域幅が広いため、サービスB及びサービスCに比べて端末で必要なC/Nに対して大きな利得制御が必要であるとする。多くの無線中継装置では、複数キャリア群に一定の増幅を行うためサービスユニット以外の端末に干渉を与え、無線容量が劣化するという問題があった。また、比較的高いレベルで受信できているキャリア信号(例えば、サービスBのキャリア信号)がある場合には、そのキャリア信号がピークレベルを超えないよう増幅を行うために、必要なキャリア信号(例えば、サービスAのキャリア信号)に十分な利得制御がなされず端末まで届かない場合があるといった問題もあった。 In the example shown in FIG. 20, since the service A has a long distance from the base station and a wide bandwidth, the gain control for the C / N required by the terminal is larger than that of the service B and the service C. Suppose there is. Many radio relay apparatuses have a problem that radio capacity deteriorates due to interference with terminals other than the service unit because constant amplification is performed on a plurality of carrier groups. In addition, when there is a carrier signal that can be received at a relatively high level (for example, a carrier signal for service B), a necessary carrier signal (for example, for performing amplification so that the carrier signal does not exceed the peak level). Further, there is a problem that sufficient gain control is not performed on the carrier signal of service A and the terminal may not reach the terminal.
 なお、データや音声など異なる目的で使用されるキャリア単位で増幅する場合は、それぞれのキャリア信号を中継対象とする複数の中継装置を設置していた。 In addition, when amplifying in units of carriers that are used for different purposes such as data and voice, a plurality of relay apparatuses for relaying the respective carrier signals have been installed.
 このような問題に関し、例えば、特許文献1に記載されている無線中継増幅装置を用いれば、各運用主体毎に個別に選択して増幅させることができる。しかし、特許文献1に記載されている無線中継増幅装置は、キャリア信号をアナログ信号のまま分岐、増幅、合成して中継する構成である。 Regarding such a problem, for example, if the wireless relay amplification device described in Patent Document 1 is used, it can be selected and amplified individually for each operating entity. However, the wireless relay amplification device described in Patent Document 1 has a configuration in which a carrier signal is branched, amplified, combined, and relayed as an analog signal.
 一般に移動体基地局からの無線信号は伝搬路での減衰が大きく、その減衰量は以下の式(1)によって表される。ここで、dは距離[m]を表し、fは周波数[Hz]を表し、cは光速(3.0×10)を表している。 In general, a radio signal from a mobile base station is greatly attenuated in a propagation path, and the attenuation amount is expressed by the following equation (1). Here, d represents the distance [m], f represents the frequency [Hz], and c represents the speed of light (3.0 × 10 8 ).
Loss=20log(4πdf/c) ・・・式(1) Loss = 20 log (4πdf / c) (1)
 例えば、通信対象とする基地局から10km離れている場合に、2GHz帯では111.5dB減衰されて到達するが、例えば対象外の基地局が100m先にあった場合はその無線信号は78.5dBの減衰で到達する。この40dBのレベル差が移動体通信の無線中継にとって大きな干渉となる。無線中継装置では、異なる基地局からの干渉信号を除去するために、急峻な通過帯外減衰量をもつフィルタが求められる。一般に、フィルタの急峻が求められると、希望波の減衰も大きくなるため、多段の増幅器が必要となり、結果としてアナログ回路の規模が大きくなるという問題がある。 For example, when it is 10 km away from the base station to be communicated, it arrives after being attenuated by 111.5 dB in the 2 GHz band. For example, if the base station that is not the target is 100 m away, the radio signal is 78.5 dB. Reach with a decay of. This 40 dB level difference is a major interference for mobile communication wireless relay. In the wireless relay device, a filter having a steep out-of-passband attenuation is required in order to remove interference signals from different base stations. In general, when the filter is required to be steep, attenuation of the desired wave increases, so that a multistage amplifier is required, resulting in a problem that the scale of the analog circuit increases.
 なお、特許文献2には、受信した高周波信号をデジタル信号に変換した後、デジタル信号処理部により高周波信号に含まれた不要な干渉波を除去し、その出力端に拡張ユニットまたはリモートユニットが接続される構内無線分配中継システムが記載されている。しかし、特許文献2に記載されている構内無線分配中継システムは、ドナーユニットとサービスユニット(拡張ユニットまたはリモートユニット)との間をデジタル信号で伝送する場合において、高い周波数(ビットレート)でのケーブル伝送による劣化について何ら考慮されていない。例えば、デジタル信号に変換する場合、ケーブル伝送ではなるべく低いビットレートで送ることが求められるが、受信した高周波信号を中間周波数にダウンコンバージョンしたものをA/D変換器によりデジタル信号に変換するだけでは、デジタル変換する信号帯域幅に無駄が生じるため、伝送データ量が多くなってしまう。また、変換部の処理能力も必要となる。このため、ケーブル伝送による劣化が生じてしまう可能性がある。 In Patent Document 2, after converting a received high-frequency signal into a digital signal, an unnecessary interference wave included in the high-frequency signal is removed by a digital signal processing unit, and an extension unit or a remote unit is connected to the output end thereof A local wireless distribution relay system is described. However, the local wireless distribution relay system described in Patent Document 2 is a cable with a high frequency (bit rate) when digital signals are transmitted between a donor unit and a service unit (an extension unit or a remote unit). No consideration is given to degradation due to transmission. For example, when converting to a digital signal, it is required to send at a bit rate as low as possible in cable transmission, but by simply converting a received high-frequency signal downconverted to an intermediate frequency into a digital signal by an A / D converter Since the signal bandwidth for digital conversion is wasted, the amount of transmission data is increased. Also, the processing capability of the conversion unit is required. For this reason, degradation due to cable transmission may occur.
 そこで、本発明は、異なる目的で使用されているキャリア単位で異なる無線中継装置を設置しなくても、端末側で安定した受信信号を得られるようにすることを目的とする。より具体的には、1つの無線中継装置で、単一又は複数の基地局から送信される異なる目的で使用されている複数のキャリア群を、増幅および中継距離による無線容量の劣化を抑止しつつ、端末側で安定した受信信号を得られるように中継できるようにすることを目的とする。 Therefore, an object of the present invention is to make it possible to obtain a stable received signal on the terminal side without installing a different radio relay apparatus for each carrier used for different purposes. More specifically, with a single wireless relay device, a plurality of carrier groups used for different purposes transmitted from a single or a plurality of base stations are amplified while suppressing deterioration of wireless capacity due to amplification and relay distance. An object of the present invention is to enable relaying so that a stable received signal can be obtained on the terminal side.
 本発明による無線中継装置は、単一または複数の移動体通信基地局と端末との間に設置される無線中継装置であって、基地局側と無線通信を行うドナーユニットと、端末側と無線通信を行う1または複数のサービスユニットとを備え、ドナーユニットとサービスユニットとはケーブルを介して接続され、ドナーユニットは、入力されるRF信号をIとQのベースバンド信号に直接変換した上でデジタル信号に変換して、デジタルIQ信号を得るRF-デジタル変換部と、ダウンリンクのデジタルIQ信号をアンテナ毎のキャリア単位に分離し、分離されたデジタル信号に対してそれぞれ利得もしくは遅延またはその両方を調整し、調整後の分離デジタル信号からデジタルIQ信号を再合成するダウンリンクデジタル信号処理部と、サービスユニットとの間でデジタルIQ信号の送受信を行うデジタルIQ信号送受信部と、アップリンクのデジタルIQ信号をアンテナ毎のキャリア単位に分離し、分離されたデジタル信号に対してそれぞれ利得もしくは遅延またはその両方を調整し、調整後の分離デジタル信号からデジタルIQ信号を再合成するアップリンクデジタル信号処理部と、入力されるデジタルIQ信号をアナログ信号に変換し、得られたIとQのベースバンド信号をRF信号に直接変換して、RF信号を得るデジタル-RF変換部とを含み、サービスユニットは、ドナーユニットとの間でデジタルIQ信号の送受信を行うデジタルIQ信号送受信部とを含み、入力されるデジタルIQ信号をアナログ信号に変換し、得られたIとQのベースバンド信号をRF信号に直接変換して、RF信号を得るデジタル-RF変換部と、入力されるRF信号をIとQのベースバンド信号に直接変換した上でデジタル信号に変換して、デジタルIQ信号を得るRF-デジタル変換部とを含むことを特徴とする。 A radio relay apparatus according to the present invention is a radio relay apparatus installed between a single or a plurality of mobile communication base stations and terminals, a donor unit that performs radio communication with a base station side, One or a plurality of service units that perform communication, and the donor unit and the service unit are connected via a cable, and the donor unit directly converts the input RF signal into I and Q baseband signals. An RF-to-digital converter that obtains a digital IQ signal by converting it into a digital signal, and a downlink digital IQ signal are separated into carrier units for each antenna, and gain or delay with respect to the separated digital signal, or both, respectively. A downlink digital signal processing unit that re-synthesizes a digital IQ signal from the adjusted separated digital signal, and a service Digital IQ signal transmission / reception unit that transmits / receives digital IQ signals to / from the unit, and uplink digital IQ signals are separated in units of carriers for each antenna, and gain and / or delay for each separated digital signal An uplink digital signal processing unit that re-synthesizes the digital IQ signal from the adjusted separated digital signal, converts the input digital IQ signal into an analog signal, and converts the obtained I and Q baseband signals The service unit includes a digital IQ signal transmission / reception unit that transmits / receives a digital IQ signal to / from the donor unit and is input. Converts digital IQ signals to analog signals and directly converts the resulting I and Q baseband signals to RF signals A digital-RF converter for obtaining an RF signal, and an RF-digital converter for obtaining a digital IQ signal by directly converting the input RF signal into an I and Q baseband signal and then converting the digital signal to a digital signal It is characterized by including.
 また、本発明による無線中継方法は、単一または複数の移動体通信基地局と端末との間に設置される無線中継装置に適用される無線中継方法であって、入力されるRF信号をIとQのベースバンド信号に直接変換した上でデジタル信号に変換するRF-デジタル変換ステップと、変換によって得られたデジタルIQ信号を、移動体通信基地局側と通信を行うドナーユニットで、アンテナ毎のキャリア単位に分離し、分離されたデジタル信号に対してそれぞれ利得もしくは遅延またはその両方を調整し、調整後の分離デジタル信号からデジタルIQ信号を再合成するデジタル信号処理ステップと、入力されるデジタルIQ信号をアナログ信号に変換し、得られたIとQのベースバンド信号をRF信号に直接変換するデジタル-RF変換ステップとを含むことを特徴とする。 A radio relay method according to the present invention is a radio relay method applied to a radio relay device installed between a single or a plurality of mobile communication base stations and a terminal. RF-to-digital conversion step for direct conversion to a baseband signal of Q and Q, and conversion to a digital signal, and a digital IQ signal obtained by the conversion by a donor unit that communicates with the mobile communication base station side for each antenna A digital signal processing step of separating the digital signal into individual carrier units, adjusting the gain and / or delay of each of the separated digital signals, and re-synthesizing the digital IQ signal from the separated separated digital signal; A digital-to-RF conversion step that converts an IQ signal to an analog signal and directly converts the resulting I and Q baseband signals to an RF signal. Characterized in that it comprises and.
 本発明によれば、異なる目的で使用されているキャリア単位で異なる無線中継装置を設置しなくても、端末側で安定した受信信号を得ることが可能となる。 According to the present invention, it is possible to obtain a stable received signal on the terminal side without installing a different radio relay device for each carrier used for different purposes.
第1の実施形態の無線中継装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the radio relay apparatus of 1st Embodiment. ドナーユニット100の構成例を示すブロック図である。3 is a block diagram illustrating a configuration example of a donor unit 100. FIG. ダウンリンクデジタル処理部10の構成例を示す機能ブロック図である。3 is a functional block diagram illustrating a configuration example of a downlink digital processing unit 10. FIG. デジタルフィルタ9およびダウンリンクデジタル処理部10の一実施例を示すブロック図である。2 is a block diagram illustrating an embodiment of a digital filter 9 and a downlink digital processing unit 10. FIG. 変調方式による伝送量(伝送信号帯域幅)の違いを示す説明図である。It is explanatory drawing which shows the difference in the transmission amount (transmission signal bandwidth) by a modulation system. サービスユニット200の構成例を示すブロック図である。2 is a block diagram illustrating a configuration example of a service unit 200. FIG. アップリンクデジタル処理部13の構成例を示す機能ブロック図である。3 is a functional block diagram illustrating a configuration example of an uplink digital processing unit 13. FIG. アップリンクデジタル処理部13およびデジタルフィルタ12の一実施例を示すブロック図である。FIG. 3 is a block diagram illustrating an example of an uplink digital processing unit 13 and a digital filter 12. キャリアリーク妨害波とI,Qイメージ妨害波の例を示す説明図である。It is explanatory drawing which shows the example of a carrier leak jamming wave and an I and Q image jamming wave. キャリア単位での利得調整の例を示す説明図である。It is explanatory drawing which shows the example of the gain adjustment in a carrier unit. キャリア単位での利得調整の例を示す説明図である。It is explanatory drawing which shows the example of the gain adjustment in a carrier unit. キャリア単位の利得調整とダウンリンクデジタル処理部10との関係を示す説明図である。It is explanatory drawing which shows the relationship between the gain adjustment of a carrier unit, and the downlink digital process part. ダウンリンクデジタル処理部10の遅延調整部104における信号処理の例を示す説明図である。4 is an explanatory diagram illustrating an example of signal processing in a delay adjustment unit 104 of a downlink digital processing unit 10. FIG. ドナーユニット100の一実施例を示すブロック図である。FIG. 3 is a block diagram illustrating an example of a donor unit 100. 無線中継装置の他の構成例を示すブロック図である。It is a block diagram which shows the other structural example of a radio relay apparatus. 信号合成・分配ユニット300の構成例を示すブロック図である。FIG. 3 is a block diagram illustrating a configuration example of a signal synthesis / distribution unit 300. 本発明の特徴を示す説明図である。It is explanatory drawing which shows the characteristic of this invention. 無線中継装置の一般的な構成例を示す説明図である。It is explanatory drawing which shows the general structural example of a radio relay apparatus. 無線中継装置の設置例を示す説明図である。It is explanatory drawing which shows the example of installation of a radio relay apparatus. 異なる基地局から異なるサービスを目的としたキャリア信号が混在して送信される場合の無線中継装置におけるレベル関係について示す説明図である。It is explanatory drawing which shows the level relationship in a radio relay apparatus in case the carrier signal aiming at a different service is mixed and transmitted from a different base station.
 以下、本発明を実施するための形態について図面を参照して説明する。図1は、本実施形態の無線中継装置の構成例を示すブロック図である。図1に示す無線中継装置は、基地局側との無線通信を行うドナーユニット100と、端末側との無線通信を行う1つまたは複数のサービスユニット200とを備える。ドナーユニット100と各サービスユニット200とは、光ケーブルやLANケーブルなどにより接続される。このような構成により、ドナーユニット100が受信した基地局からの無線信号を各サービスユニット200が設置されたエリアに中継する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. FIG. 1 is a block diagram illustrating a configuration example of a wireless relay device according to the present embodiment. The radio relay apparatus shown in FIG. 1 includes a donor unit 100 that performs radio communication with a base station side and one or a plurality of service units 200 that perform radio communication with a terminal side. The donor unit 100 and each service unit 200 are connected by an optical cable, a LAN cable, or the like. With such a configuration, the radio signal from the base station received by the donor unit 100 is relayed to the area where each service unit 200 is installed.
 ドナーユニット100は、単一または複数の基地局と無線通信を行い、受信した無線信号(RF信号)をデジタル化してサービスユニット200に中継(送信)する。また、ドナーユニット100は、合成されて受信されるRF信号をIF周波数に変換せず直接IとQのベースバンド信号に復調(変換)した上でデジタル信号に変換する。このようにして得られたデジタル信号(以下、デジタルI/Q信号という。)を、キャリア毎に分離して、サービスユニット側のトラヒック量やキャパシティに応じて、利得や遅延を調整し、再度デジタルI/Q信号に合成して、デジタルキャリア信号として中継する。 The donor unit 100 performs radio communication with a single or a plurality of base stations, digitizes the received radio signal (RF signal) and relays (transmits) it to the service unit 200. Also, the donor unit 100 demodulates (converts) the RF signal received after being synthesized into the I and Q baseband signals without converting them into IF frequencies, and converts them into digital signals. The digital signal thus obtained (hereinafter referred to as digital I / Q signal) is separated for each carrier, and the gain and delay are adjusted according to the traffic amount and capacity on the service unit side, and again. The digital I / Q signal is combined and relayed as a digital carrier signal.
 サービスユニット200は、ドナーユニット100から受信したデジタルキャリア信号をRF信号に変換して、配下の端末に向けて送出する。なお、サービスユニット200では、デジタルキャリア信号をアナログ信号に変換して得られたI,Qのベースバンド信号からRF信号に変調する。 The service unit 200 converts the digital carrier signal received from the donor unit 100 into an RF signal and sends it to a terminal under the service. The service unit 200 modulates the I and Q baseband signals obtained by converting the digital carrier signals into analog signals into RF signals.
 図2は、ドナーユニット100の構成例を示すブロック図である。図2に示すドナーユニット100は、1つまたは複数のアンテナ1と、アンテナ共用器(デュプレクサ)2と、低雑音増幅器(LNA)3と、帯域外フィルタ(BPF)4,5と、増幅器(PA)6と、直交復調部7と,直交変調部8と、デジタルフィルタ9,12と、ダウンリンクデジタル処理部(DLデジタル処理部)10と、アップリンクデジタル処理部(ULデジタル処理部)12と、シリアル変換部11,14とを備える。なお、アンテナ1をダイバーシチやMIMO(Muliti-Input Multi-Output)構成とするなどによって複数備える場合は、アンテナ共用器2、低雑音増幅器3、帯域外フィルタ4、直交変調部7、帯域外フィルタ5、増幅器6、直交復調部8を、アンテナ構成に合わせてそれぞれ複数設ければよい。 FIG. 2 is a block diagram illustrating a configuration example of the donor unit 100. The donor unit 100 shown in FIG. 2 includes one or more antennas 1, an antenna duplexer (duplexer) 2, a low noise amplifier (LNA) 3, out-of-band filters (BPF) 4, 5, and an amplifier (PA ) 6, quadrature demodulation unit 7, quadrature modulation unit 8, digital filters 9 and 12, downlink digital processing unit (DL digital processing unit) 10, uplink digital processing unit (UL digital processing unit) 12, Serial converters 11 and 14. In the case where a plurality of antennas 1 are provided due to diversity or MIMO (Multi-Input Multi-Output) configuration, the antenna duplexer 2, the low noise amplifier 3, the out-of-band filter 4, the quadrature modulation unit 7, and the out-of-band filter 5 are provided. A plurality of amplifiers 6 and quadrature demodulation units 8 may be provided in accordance with the antenna configuration.
 なお、図2に示す例では、ダウンリンク(基地局から端末方向のリンク)における信号伝送のために、アンテナ1、アンテナ共用器2、低雑音増幅器3、帯域外フィルタ4、直交復調部7、デジタルフィルタ9、ダウンリンクデジタル処理部10、シリアル変換部11の順でこれらが接続されている。また、アップリンク(端末から基地局方向のリンク)における信号伝送を行うために、シリアル変換部14、アップリンクデジタル処理部13、デジタルフィルタ12、直交変調部8、増幅器6、帯域外フィルタ5、アンテナ共用器2、アンテナ1の順でこれらが接続されている。なお、アンテナ1は、アンテナ共用器2によって送信と受信とで共用されている。 In the example shown in FIG. 2, for signal transmission in the downlink (link from base station to terminal), antenna 1, antenna duplexer 2, low noise amplifier 3, out-of-band filter 4, orthogonal demodulator 7, These are connected in the order of the digital filter 9, the downlink digital processing unit 10, and the serial conversion unit 11. In order to perform signal transmission in the uplink (link from the terminal to the base station), the serial conversion unit 14, the uplink digital processing unit 13, the digital filter 12, the quadrature modulation unit 8, the amplifier 6, the out-of-band filter 5, The antenna duplexer 2 and the antenna 1 are connected in this order. The antenna 1 is shared by the antenna duplexer 2 for transmission and reception.
 まず、ダウンリンクにおける信号伝送に関して各部を説明する。アンテナ1は、基地局からの無線信号を受信する。デュプレクサ2は、アンテナ1を送信と受信とで共用するためのアンテナ共用器であって、送信経路と受信経路を電気的に分離する。低雑音増幅器3は、入力された信号を選択および増幅する低雑音増幅器である。帯域外フィルタ4は、特定の周波数帯域のみを通過させ、他の周波数を減衰させるフィルタ回路である。受信した無線信号(RF信号)に対して低雑音増幅器3で増幅し、帯域外フィルタ4で妨害波(他事業者の電波や他の帯域の無線信号など)を除去する。 First, each part will be described regarding signal transmission in the downlink. The antenna 1 receives a radio signal from the base station. The duplexer 2 is an antenna duplexer for sharing the antenna 1 for transmission and reception, and electrically separates the transmission path and the reception path. The low noise amplifier 3 is a low noise amplifier that selects and amplifies an input signal. The out-of-band filter 4 is a filter circuit that passes only a specific frequency band and attenuates other frequencies. The received radio signal (RF signal) is amplified by the low noise amplifier 3, and the interference wave (such as a radio wave of another operator or a radio signal in another band) is removed by the out-of-band filter 4.
 直交復調部7は、RF信号を直接IとQのベースバンド信号帯域に復調(ダウンコンバート変換)し、得られたI,Q信号をデジタル信号に変換する。直交復調部7は、例えば、周波数発振器71と、I,Q信号それぞれに対応した乗算器72,73および低域通過フィルタ(LPF)74,75と、アナログデジタル変換器(ADC)78により構成される。なお、図示省略しているが、アナログデジタル変換器78の後段に、さらに直交補正回路を備えていてもよい。直交補正回路は、直接復調方式によるI,Q信号の振幅や位相のミスマッチにより発生するイメージ(I,Qイメージ妨害波)を除去する。 The orthogonal demodulator 7 directly demodulates (down-converts) the RF signal into I and Q baseband signal bands, and converts the obtained I and Q signals into digital signals. The quadrature demodulator 7 includes, for example, a frequency oscillator 71, multipliers 72 and 73 and low-pass filters (LPF) 74 and 75 corresponding to the I and Q signals, and an analog-digital converter (ADC) 78, for example. The Although not shown, an orthogonal correction circuit may be further provided after the analog-digital converter 78. The orthogonal correction circuit removes an image (I, Q image interference wave) generated due to a mismatch in amplitude and phase of the I and Q signals by the direct demodulation method.
 デジタルフィルタ9は、直交復調部7によってデジタル化されたデジタルI/Q信号に対して、ベースバンド帯域以外のノイズを除去する。ここでは、主に、ダウンリンクデジタル処理部10で発生するサンプリング周波数の折り返し妨害波を除去する。なお、デジタルI/Q信号は、デジタル信号のI信号とQ信号として別々に扱うことも、複素数として一括して扱うことも可能である。 The digital filter 9 removes noise other than the baseband from the digital I / Q signal digitized by the orthogonal demodulation unit 7. Here, the aliasing interference wave having the sampling frequency generated in the downlink digital processing unit 10 is mainly removed. The digital I / Q signal can be handled separately as a digital signal I signal and a Q signal or collectively as a complex number.
 ダウンリンクデジタル処理部10は、入力されたデジタルI/Q信号に対して、サービスユニットに中継すべきキャリア単位に信号を分離し、アンテナ毎にキャリア分離した信号を、サービスアンテナ配下の状況に合わせて利得調整、遅延調整し、再度デジタルI/Q信号に合成してデジタルキャリア信号として出力する。 The downlink digital processing unit 10 separates the input digital I / Q signal into carrier units to be relayed to the service unit, and adjusts the carrier-separated signal for each antenna according to the situation under the service antenna. The gain is adjusted, the delay is adjusted, and the digital I / Q signal is synthesized again and output as a digital carrier signal.
 図3は、ダウンリンクデジタル処理部10の構成例を示す機能ブロック図である。図3に示す例では、ダウンリンクデジタル処理部10は、デジタルキャリア/アンテナ分離部101と、分離されたキャリア別のデジタルフィルタ102(102-1~102-n)、利得調整部103(103-1~103-n)、遅延調整部104(104-1~104-n)と、デジタルキャリア/アンテナ合成部105とを含む。 FIG. 3 is a functional block diagram illustrating a configuration example of the downlink digital processing unit 10. In the example shown in FIG. 3, the downlink digital processing unit 10 includes a digital carrier / antenna separation unit 101, a separated carrier-specific digital filter 102 (102-1 to 102-n), and a gain adjustment unit 103 (103- 1 to 103-n), a delay adjusting unit 104 (104-1 to 104-n), and a digital carrier / antenna combining unit 105.
 デジタルキャリア/アンテナ分離部101は、入力されたデジタルI/Q信号をアンテナ毎のキャリア単位に分離させる。なお、分離対象とするキャリアの情報は、例えば、F0(0Hz)+Fa、+Fbというように0Hzからのずれ(Fa)と帯域幅(Fb)を任意に設定できるようにしてもよい。デジタルフィルタ102は、分離されたキャリア単位の信号から不要な信号を除去する。これによって所望のキャリア成分が取り出される。各利得調整部103は、入力された1キャリア成分に対応するデジタル信号に対して利得を変更する。なお、利得調整部103が行う利得変更によっては、中継有無の設定が行われる。各遅延調整部104は、入力された1キャリア成分に対応するデジタル信号に対して遅延調整を行う。遅延調整部104は、必要に応じて入力されたデジタル信号に遅延時間を挿入する(任意時間の遅延を掛ける)ことによって遅延調整を行う。デジタルキャリア/アンテナ合成部105は、キャリア単位に分離されたデジタル信号を多重化して、デジタルI/Q信号を再合成し、サービスユニット200に中継するデジタルキャリア信号として出力する。 The digital carrier / antenna separation unit 101 separates the input digital I / Q signal into carrier units for each antenna. Note that the information on the carrier to be separated may be arbitrarily set to a deviation (Fa) from 0 Hz and a bandwidth (Fb), for example, F0 (0 Hz) + Fa, + Fb. The digital filter 102 removes unnecessary signals from the separated carrier unit signals. Thereby, a desired carrier component is taken out. Each gain adjusting unit 103 changes the gain of the digital signal corresponding to the input one carrier component. Depending on the gain change performed by the gain adjusting unit 103, the presence / absence of relaying is set. Each delay adjustment unit 104 performs delay adjustment on the input digital signal corresponding to one carrier component. The delay adjustment unit 104 performs delay adjustment by inserting a delay time (multiplying an arbitrary time delay) into the input digital signal as necessary. The digital carrier / antenna combining unit 105 multiplexes the digital signals separated in units of carriers, recombines the digital I / Q signals, and outputs them as digital carrier signals that are relayed to the service unit 200.
 図4は、デジタルフィルタ9およびダウンリンクデジタル処理部10の一実施例を示すブロック図である。図4に示す実施例では、デジタルフィルタ9およびダウンリンクデジタル処理部10をFPGA(Field Programmable Gate Array)40によって実現している。 FIG. 4 is a block diagram showing an embodiment of the digital filter 9 and the downlink digital processing unit 10. In the embodiment shown in FIG. 4, the digital filter 9 and the downlink digital processing unit 10 are realized by an FPGA (Field Programmable Gate Array) 40.
 図4に示す例では、まずIとQに対応したFIRフィルタ(FIR1:Finite Impulse Response Filter)401,402が設けられ、ADCからの折り返し波を除去している。FIRフィルタ401,402を通った信号は、その後段の乗算器403,404に入力される。この乗算器403,404にはNCO(Numerically Controlled Oscillator)405,406からのオフセット信号(デジタル的に周波数をオフセットさせるための信号)がそれぞれ入力される。この乗算器403,404による和の演算(キャリア分離演算)により所望のキャリア成分を取り出す。その後段のFIRフィルタ(FIR2,FIR3)407,408では、それぞれ不要な信号を除去する。その後、キャリア単位の信号としてそれぞれゲインコントローラ(Gain)409,410に入力し、利得調整を行う。ゲインコントローラ409,410は、それぞれ入力信号の振幅を変化させることにより、利得を調整する。振幅の変更は、例えばデジタル信号に対する演算処理によって行う。このような利得調整後、再度乗算器411,412を通した上で、遅延挿入部(Delay Insertion)413に入力して、必要に応じて遅延調整を行う。遅延挿入部512は、例えば、ドナーユニットとサービスユニット間のケーブル長が異なる場合には、そのケーブル長による遅延差を補正するための遅延を挿入してもよい。また、例えば、MIMO及びアンテナダイバーシチ送信のような、遅延が必要なキャリア単位の信号に対して、個別に遅延を挿入してもよい。なお、挿入される遅延時間は、例えば設定により可変としてもよい。その後、マルチプレクサ(MUX)414で各キャリア成分に対応するデジタル信号を多重化して、デジタルI/Q信号を再合成し、サービスユニット200に中継するデジタルキャリア信号として出力する。なお、キャリア毎の信号処理は、プログラムの並列処理によって行えばよい。 In the example shown in FIG. 4, first, FIR filters (FIR1: Finite Impulse Response Filter) 401 and 402 corresponding to I and Q are provided to remove the return wave from the ADC. The signals that have passed through the FIR filters 401 and 402 are input to the subsequent multipliers 403 and 404. Offset signals (signals for digitally offsetting the frequency) from NCO (Numerically Controlled Oscillators) 405 and 406 are input to the multipliers 403 and 404, respectively. A desired carrier component is extracted by the sum calculation (carrier separation calculation) by the multipliers 403 and 404. Subsequent FIR filters (FIR2, FIR3) 407 and 408 remove unnecessary signals, respectively. Thereafter, the signals are input to gain controllers (Gain) 409 and 410 as carrier unit signals, respectively, and gain adjustment is performed. The gain controllers 409 and 410 each adjust the gain by changing the amplitude of the input signal. The amplitude is changed by, for example, arithmetic processing on a digital signal. After such gain adjustment, the signals are again passed through the multipliers 411 and 412, and then input to a delay insertion unit (Delay Insertion) 413, and delay adjustment is performed as necessary. For example, when the cable length between the donor unit and the service unit is different, the delay insertion unit 512 may insert a delay for correcting a delay difference due to the cable length. Further, for example, a delay may be individually inserted into a carrier unit signal that requires a delay, such as MIMO and antenna diversity transmission. Note that the delay time to be inserted may be variable by setting, for example. Thereafter, the multiplexer (MUX) 414 multiplexes the digital signals corresponding to the respective carrier components, re-synthesizes the digital I / Q signal, and outputs it as a digital carrier signal to be relayed to the service unit 200. Note that signal processing for each carrier may be performed by parallel processing of programs.
 シリアル変換部11は、入力されたデジタルキャリア信号をシリアル信号に変換し、接続先であるサービスユニット200に送出する。シリアル信号は、例えば、1Gbit/sec以下であれば、ギガビットイーサネット(登録商標)用の信号(ギガビットイーサネット信号)であってもよい。この場合、信号伝送には、ギガビットイーサネット信号を伝送する物理インタフェース(図4におけるGpE-PHYなど)を用いればよい。 The serial conversion unit 11 converts the input digital carrier signal into a serial signal and sends it to the service unit 200 which is a connection destination. The serial signal may be a Gigabit Ethernet (registered trademark) signal (gigabit Ethernet signal) as long as it is 1 Gbit / sec or less, for example. In this case, a physical interface (such as GpE-PHY in FIG. 4) that transmits a Gigabit Ethernet signal may be used for signal transmission.
 図5は、変調方式による伝送量(伝送信号帯域幅)の違いを示す説明図である。図5(a)は、変換せずRF周波数帯のまま伝送する場合(RF周波数中継)の伝送量の例を示す説明図である。図5(b)は、IF周波数帯に変換した場合(IF周波数変換)の伝送量の例を示す説明図である。図5(c)は、直接変調方式(Zero IF方式、ダイレクトコンバージョン方式、I/Q変換とも呼ばれる)によって変換した場合の伝送量の例を示す説明図である。図5(a)に示すように、RF周波数帯域が2GHzで帯域幅が20MHzであった場合、RF信号をそのまま伝送しようとすると、伝送しなければならない信号帯域は0~2GHz+10MHzとなり、実際の信号帯域幅である20MHzに対して余分な信号帯域が含まれる。また、図5(b)に示すように、IF周波数帯として140MHzに変換して伝送する場合は、0~140MHz+10MHzとなり、図5(a)に比べて伝送しなければならない信号帯域は狭くはなっているが、それでも余分な信号帯域が含まれる。これに対して、図5(c)に示すように、本発明で採用している直接変調方式では、伝送しなければならない信号帯域は実際信号帯域幅と同じ20MHzであり、余分な信号帯域が含まれない。このように、デジタル変換する信号帯域を最小にすることで、変換部に必要な処理能力を下げつつ、低いビットレートでの伝送を可能にする。 FIG. 5 is an explanatory diagram showing the difference in transmission amount (transmission signal bandwidth) depending on the modulation method. FIG. 5A is an explanatory diagram illustrating an example of a transmission amount when transmission is performed in the RF frequency band without conversion (RF frequency relay). FIG. 5B is an explanatory diagram showing an example of the transmission amount when converted to the IF frequency band (IF frequency conversion). FIG. 5C is an explanatory diagram illustrating an example of a transmission amount when converted by a direct modulation method (also referred to as Zero IF method, direct conversion method, or I / Q conversion). As shown in FIG. 5 (a), when the RF frequency band is 2 GHz and the bandwidth is 20 MHz, if an RF signal is transmitted as it is, the signal band that must be transmitted is 0 to 2 GHz + 10 MHz. An extra signal band is included with respect to the bandwidth of 20 MHz. Further, as shown in FIG. 5B, when the IF frequency band is converted to 140 MHz and transmitted, it is 0 to 140 MHz + 10 MHz, and the signal band that must be transmitted is narrower than that in FIG. 5A. But still includes extra signal bandwidth. On the other hand, as shown in FIG. 5C, in the direct modulation method employed in the present invention, the signal band that must be transmitted is 20 MHz, which is the same as the actual signal bandwidth, and the extra signal band is Not included. In this manner, by minimizing the signal band for digital conversion, transmission at a low bit rate is possible while reducing the processing capability required for the conversion unit.
 次に、ダウンリンクにおける信号伝送に関して、サービスユニット側の構成を説明する。図6は、サービスユニット200の構成例を示すブロック図である。サービスユニット200は、シリアル変換部21,22と、デジタルフィルタ23,24と、直交変調部25,26と、増幅器27と、帯域外フィルタ28,29と、低雑音増幅器30と、アンテナ共用器31と、アンテナ32とを備える。 Next, the configuration on the service unit side regarding signal transmission in the downlink will be described. FIG. 6 is a block diagram illustrating a configuration example of the service unit 200. The service unit 200 includes serial conversion units 21 and 22, digital filters 23 and 24, quadrature modulation units 25 and 26, an amplifier 27, out-of- band filters 28 and 29, a low noise amplifier 30, and an antenna duplexer 31. And an antenna 32.
 なお、図6に示す例では、ダウンリンクにおける信号伝送のために、シリアル変換部21、デジタルフィルタ23、直交変調部25、増幅器27、帯域外フィルタ28、アンテナ共用器31、アンテナ32の順でこれらが接続されている。また、アップリンクにおける信号伝送を行うために、アンテナ32、アンテナ共用器31、低雑音増幅器30、帯域外フィルタ29、直交復調部26、デジタルフィルタ24、シリアル変換部22の順でこれらが接続されている。なお、アンテナ32は、アンテナ共用器31によって送信と受信とで共用されている。 In the example shown in FIG. 6, in order of signal transmission in the downlink, the serial conversion unit 21, the digital filter 23, the quadrature modulation unit 25, the amplifier 27, the out-of-band filter 28, the antenna duplexer 31, and the antenna 32 are arranged in this order. These are connected. In order to perform signal transmission in the uplink, the antenna 32, the antenna duplexer 31, the low noise amplifier 30, the out-of-band filter 29, the orthogonal demodulation unit 26, the digital filter 24, and the serial conversion unit 22 are connected in this order. ing. The antenna 32 is shared by the antenna duplexer 31 for transmission and reception.
 シリアル変換部21は、ドナーユニット100から送信されるデジタルシリアル信号を受信し、デジタルキャリア信号に組み立てる。その後、デジタルフィルタ23と直交変調部25とで、入力されたデジタルキャリア信号をRF信号にダイレクト変換する(より具体的には、I,Qのベースバンド信号にアナログ変換した上でRF信号にダイレクト変換する)。増幅器27は、直交変調部25によって得られたRF信号を増幅させる。帯域外フィルタ28は、帯域外信号を除去する。このようにして得られたRF信号は、アンテナ共用器31を通ってアンテナ32から送信される。 The serial conversion unit 21 receives the digital serial signal transmitted from the donor unit 100 and assembles it into a digital carrier signal. Thereafter, the digital filter 23 and the quadrature modulation unit 25 directly convert the input digital carrier signal into an RF signal (more specifically, the analog signal is converted into an I and Q baseband signal and then directly converted into the RF signal. Convert). The amplifier 27 amplifies the RF signal obtained by the quadrature modulation unit 25. The out-of-band filter 28 removes out-of-band signals. The RF signal obtained in this way is transmitted from the antenna 32 through the antenna duplexer 31.
 このように、各サービスユニット200では、ドナーユニット100から送られてきたデジタルキャリア信号を、アナログ信号に変換後再度直交変調して送波すればよい。ドナーユニットから送られるデジタルキャリア信号が、既にサービスに必要な電力に利得調整され、またアンテナ間の遅延調整後にダイバーシティ合成されているためである。このため、サービスユニット側での回路を簡素化できる。また、利得調整には中継有無の制御を含んでいるため、必要なキャリアのみを中継することで、ノイズや干渉を最小限にすることができる。 Thus, in each service unit 200, the digital carrier signal sent from the donor unit 100 may be converted into an analog signal and then orthogonally modulated again before being transmitted. This is because the digital carrier signal sent from the donor unit has already been gain-adjusted to the power required for service and diversity-combined after delay adjustment between antennas. For this reason, the circuit on the service unit side can be simplified. Further, since gain adjustment includes control of presence / absence of relaying, noise and interference can be minimized by relaying only necessary carriers.
 次に、アップリンクにおける信号伝送に関して、各部を説明する。なお、アップリンクにおける信号処理は基本的には、ダウンリンクにおけるドナーユニット100とサービスユニット200の関係を反転したものと同じである。ただし、キャリア単位の利得調整、遅延調整は、ダウンリンクと同様ドナーユニット100が行う。すなわち、端末からの信号は、各サービスユニット200でI,Qのベースバンド信号に対応したデジタル信号(デジタルI/Q信号)に変換された後にデジタルキャリア信号としてドナーユニット100にケーブル伝送される。 Next, each part will be described regarding signal transmission in the uplink. The signal processing in the uplink is basically the same as that obtained by inverting the relationship between the donor unit 100 and the service unit 200 in the downlink. However, the gain adjustment and delay adjustment for each carrier are performed by the donor unit 100 as in the downlink. That is, the signal from the terminal is converted into a digital signal (digital I / Q signal) corresponding to the I and Q baseband signals by each service unit 200 and then transmitted to the donor unit 100 by cable as a digital carrier signal.
 より具体的には、各サービスユニット200は、端末からの無線信号(RF信号)をアンテナ32で受けたあと、アンテナ共用器31で送信と受信に分ける。受信したRF信号は低雑音増幅器30で増幅し、帯域外フィルタ29で妨害波(他事業者の電波やTV帯域などの無線信号等)を除去する。そして、直交復調器26で直接IとQのベースバンド信号に変換後、デジタル化する。その際、補正回路により直交復調で発生するI/Qイメージを除去してもよい。デジタル化されたI/Qベースバンド信号はデジタルフィルタ24に入力され、デジタルフィルタ24は妨害波(ここでは、主にサンプリング周波数の折り返し)を除去する。このようにして得られたデジタルI/Q信号をシリアル変換部22でシリアルフォーマット(例えば、ギガビットイーサネット信号)に変換し、デジタルキャリア信号として接続先であるドナーユニット100に送信する。 More specifically, each service unit 200 receives a radio signal (RF signal) from the terminal by the antenna 32 and then divides it into transmission and reception by the antenna duplexer 31. The received RF signal is amplified by the low noise amplifier 30 and the interference wave (radio signal of other business operator, radio signal such as TV band) is removed by the out-of-band filter 29. Then, the signal is directly converted into I and Q baseband signals by the orthogonal demodulator 26 and digitized. At that time, the I / Q image generated by the orthogonal demodulation may be removed by the correction circuit. The digitized I / Q baseband signal is input to the digital filter 24, and the digital filter 24 removes interference waves (here, mainly sampling frequency aliasing). The digital I / Q signal thus obtained is converted into a serial format (for example, a Gigabit Ethernet signal) by the serial conversion unit 22 and transmitted as a digital carrier signal to the donor unit 100 which is a connection destination.
 ドナーユニット100では、各サービスユニットから受信したデジタルキャリア信号、すなわちデジタルI/Q信号をキャリア単位に分離して利得調整や遅延調整を行い、それを再度合成して得られたデジタルI/Q信号をアナログ信号に変換した上でRF信号にダイレクト変換して基地局に向けて送波する。 In the donor unit 100, a digital carrier signal received from each service unit, that is, a digital I / Q signal is separated into carrier units, gain adjustment and delay adjustment are performed, and a digital I / Q signal obtained by synthesizing the signals again. Is converted into an analog signal, converted directly into an RF signal, and transmitted to the base station.
 より具体的には、ドナーユニット100は、各サービスユニット200からシリアル伝送されるデジタルキャリア信号(すなわちデジタルI/Q信号)をシリアル変換部14で受信する。その後、アップリンクデジタル処理部13で、デジタルI/Q信号をキャリア分離させ、遅延調整、利得調整を行って基地局に中継すべき信号レベルに調整後、再び合成する。合成して得られたデジタルI/Q信号に対して、デジタルフィルタ12で送信帯域外の不要波(ここでは、主にサンプリング周波数の折り返し)を除去しつつ、直交変調部8で、アナログ信号に変換後直接RF信号にダイレクト変換する。その後、増幅器6により増幅した上で帯域外フィルタ5を通して不要な信号を除去し、アンテナ共用器2を通してアンテナ1から基地局に向けて送波する。 More specifically, the donor unit 100 receives a digital carrier signal (that is, a digital I / Q signal) serially transmitted from each service unit 200 by the serial conversion unit 14. Thereafter, the uplink digital processing unit 13 separates the digital I / Q signal into carriers, adjusts the signal level to be relayed to the base station by performing delay adjustment and gain adjustment, and then synthesizes again. For the digital I / Q signal obtained by synthesis, the digital filter 12 removes unnecessary waves outside the transmission band (in this case, mainly the folding of the sampling frequency), while the quadrature modulation unit 8 converts it to an analog signal. Directly converted to RF signal after conversion. Then, after being amplified by the amplifier 6, unnecessary signals are removed through the out-of-band filter 5 and transmitted from the antenna 1 to the base station through the antenna duplexer 2.
 図7は、アップリンクデジタル処理部13の構成例を示す機能ブロック図である。図7に示すように、デジタルキャリア/アンテナ分離131と、分離されたキャリア別のデジタルフィルタ132(132-1~132-n)、遅延調整部133(133-1~133-n)、利得調整部134(134-1~134-n)、電力クリッピング部135(135-1~135-n)と、デジタルキャリア/アンテナ合成部136とを含む。 FIG. 7 is a functional block diagram illustrating a configuration example of the uplink digital processing unit 13. As shown in FIG. 7, the digital carrier / antenna separation 131, the separated carrier-specific digital filters 132 (132-1 to 132-n), the delay adjustment unit 133 (133-1 to 133-n), and the gain adjustment Unit 134 (134-1 to 134-n), power clipping unit 135 (135-1 to 135-n), and digital carrier / antenna combining unit 136.
 なお、デジタルキャリア/アンテナ分離部131、デジタルフィルタ132、遅延調整部133、利得調整部134、デジタルキャリア/アンテナ合成部136は、ダウンリンク処理部10におけるデジタルキャリア/アンテナ分離部101、デジタルフィルタ102、遅延調整部104、利得調整部103、デジタルキャリア/アンテナ合成部105と同様である。 The digital carrier / antenna separation unit 131, the digital filter 132, the delay adjustment unit 133, the gain adjustment unit 134, and the digital carrier / antenna combination unit 136 are the digital carrier / antenna separation unit 101 and the digital filter 102 in the downlink processing unit 10, respectively. The delay adjustment unit 104, the gain adjustment unit 103, and the digital carrier / antenna combination unit 105 are the same.
 アップリンクにおいては、合成時にピーク電力による歪みを抑えるため、電力クリッピング部135を有する。キャリア単位の信号は、利得調整後、電力クリッピング135でピーク電力を削減した上で、デジタルキャリア/アンテナ合成部136でデジタルI/Q信号に再合成される。合成して得られたI/Qデジタル信号は、デジタルフィルタ12で送信帯域外の不要波を除去した上で、直交変調部8により直接RFアナログ信号にダイレクト変換される。その後、増幅器6により増幅した上で帯域外フィルタ5を通して不要な信号を除去し、アンテナ共用器2を通してアンテナ1から基地局に向けて送波する。 The uplink has a power clipping unit 135 to suppress distortion due to peak power during synthesis. The carrier unit signal is subjected to gain adjustment, reduced in peak power by power clipping 135, and then recombined into a digital I / Q signal by a digital carrier / antenna combining unit 136. The I / Q digital signal obtained by the synthesis is directly converted into an RF analog signal by the quadrature modulation unit 8 after unnecessary waves outside the transmission band are removed by the digital filter 12. Then, after being amplified by the amplifier 6, unnecessary signals are removed through the out-of-band filter 5 and transmitted from the antenna 1 to the base station through the antenna duplexer 2.
 図8は、アップリンクデジタル処理部13およびデジタルフィルタ12の一実施例を示すブロック図である。図8に示す実施例では、アップリンクデジタル処理部13およびデジタルフィルタ12をFPGAによって実現している。 FIG. 8 is a block diagram showing an embodiment of the uplink digital processing unit 13 and the digital filter 12. In the embodiment shown in FIG. 8, the uplink digital processing unit 13 and the digital filter 12 are realized by an FPGA.
 図8に示す例では、まず前段にシリアル変換部14から入力されるデジタルキャリア信号(デジタルI/Q信号)を入力する乗算器502,503が設けられている。この乗算器502,503には、NCO504,505からのオフセット信号がそれぞれ入力される。この乗算器504,505による和の演算(キャリア分離演算)により所望のキャリア成分を取り出す。その後段のFIRフィルタ(FIR2,FIR3)506,507では、それぞれ不要な信号を除去する。その後、キャリア単位の信号としてそれぞれゲインコントローラ(Gain)508,509に入力し、利得調整を行う。利得調整後、再度乗算器510,511を通した上で、遅延挿入部(Delay Insertion)512に入力して、必要に応じて遅延調整を行う。遅延調整が行われた後は、マルチプレクサ(MUX)513で各キャリア成分に対応するデジタル信号を多重化して、デジタルI/Q信号を再合成する。その後段において、IとQに対応したFIRフィルタ(FIR1)514,515が設けられ、不要波を除去したデジタルI/Q信号を直交変調部8に出力する。なお、ピーク制御を行うピークコントローラ(Peak Controller)を遅延挿入部512の前段に設けてもよい。 In the example shown in FIG. 8, firstly, multipliers 502 and 503 for inputting a digital carrier signal (digital I / Q signal) input from the serial conversion unit 14 are provided in the previous stage. The multipliers 502 and 503 receive the offset signals from the NCOs 504 and 505, respectively. A desired carrier component is extracted by the sum calculation (carrier separation calculation) by the multipliers 504 and 505. Subsequent FIR filters (FIR2, FIR3) 506 and 507 remove unnecessary signals, respectively. Thereafter, the signals are input to gain controllers (Gain) 508 and 509 as carrier unit signals, respectively, and gain adjustment is performed. After the gain adjustment, the signals are again passed through the multipliers 510 and 511, and then input to the delay insertion unit 512, and the delay adjustment is performed as necessary. After delay adjustment is performed, a multiplexer (MUX) 513 multiplexes digital signals corresponding to each carrier component, and re-synthesizes the digital I / Q signal. In the subsequent stage, FIR filters (FIR1) 514 and 515 corresponding to I and Q are provided, and a digital I / Q signal from which unnecessary waves are removed is output to the quadrature modulation unit 8. A peak controller (Peak Controller) that performs peak control may be provided before the delay insertion unit 512.
 次に、本実施形態における無線キャリア信号のデジタル化について、より具体的に説明する。本実施形態では、アナログ回路規模を大幅に削減するため、ダウンリンクにおいてはドナーユニット100の直交復調部7で、またアップリンクにおいてはサービスユニット200の直交復調部26で、それぞれ無線信号を直接ベースバンド帯域のI,Q信号に復調する。このような方式は、直接変調方式(ダイレクトコンバージョン方式)またはZero-IF方式として移動体端末に一般に用いられるが、直交復調部の直交誤差から出るキャリアリークやIQイメージ妨害波が問題となり、要求仕様の厳しい無線中継装置や基地局では敬遠されてきた。本実施形態では、まず直交復調部において復調後に生じる帯域外信号をアナログLPF(LPF74,75,264,265)で除去した上でデジタル化し、さらに、そのデジタル化後に生じる帯域外信号をデジタルフィルタ(デジタルフィルタ9,24)で除去する。そして、この直交復調部の後段に設けたデジタルフィルタ(デジタルフィルタ9,24)を、IとQをそれぞれ複素乗算したフィルタ方式とすることでこの問題を回避している。 Next, the digitization of the wireless carrier signal in this embodiment will be described more specifically. In this embodiment, in order to greatly reduce the analog circuit scale, the radio signal is directly based on the orthogonal demodulator 7 of the donor unit 100 in the downlink and the orthogonal demodulator 26 of the service unit 200 in the uplink. Demodulate to band I and Q signals. Such a method is generally used for a mobile terminal as a direct modulation method (direct conversion method) or a Zero-IF method. However, carrier leaks and IQ image interference waves caused by the orthogonal error of the orthogonal demodulation unit become problems, and the required specifications. Have been shunned by harsh wireless repeaters and base stations. In the present embodiment, the out-of-band signal generated after demodulation in the quadrature demodulator is first digitized after being removed by an analog LPF ( LPF 74, 75, 264, 265), and the out-of-band signal generated after the digitization is digitally filtered ( It is removed by digital filters 9, 24). This problem is avoided by adopting a filter system in which the digital filters (digital filters 9 and 24) provided in the subsequent stage of the quadrature demodulation unit are complex multiplied by I and Q, respectively.
 図9は、キャリアリーク妨害波とI,Qイメージ妨害波の例を示す説明図である。図9において、aで示している矢印がキャリアリーク妨害波であり、bで示している矢印がIQイメージ妨害波である。キャリアリークとは別名DCリークとも呼ばれ、I/Q変換(復調)においてローカル信号がIQベースバンドに漏れる直流ノイズ成分である。IQイメージとは、直交復調においてIとQのローカル信号の位相差(90度)及び振幅差がゼロからずれていると、ずれた分に応じて図9に示すように表れる妨害波である。これらの妨害波は通過帯域内にイメージとして表れるので、帯域除去フィルタでは対策できない。本実施形態では、アナログデジタル変換器の後段に直交復調により発生するI/Qイメージを除去する補正回路を有するだけでなく、デジタルフィルタにおいて、IとQをフィードバックさせ、それぞれ複素乗算するフィルタ方式を採用することで、お互いのイメージをうち消し合うための信号乗算を行い対応している。 FIG. 9 is an explanatory diagram showing examples of carrier leak jamming waves and I and Q image jamming waves. In FIG. 9, an arrow indicated by a is a carrier leak interference wave, and an arrow indicated by b is an IQ image interference wave. The carrier leak is also called a DC leak, and is a DC noise component in which a local signal leaks to the IQ baseband in I / Q conversion (demodulation). The IQ image is an interference wave that appears as shown in FIG. 9 according to the amount of deviation when the phase difference (90 degrees) and the amplitude difference between the local signals of I and Q are deviated from zero in quadrature demodulation. Since these interference waves appear as an image in the pass band, the band elimination filter cannot take measures. In the present embodiment, not only has a correction circuit for removing an I / Q image generated by quadrature demodulation in the subsequent stage of the analog-digital converter, but also a filter system that feeds back I and Q and performs complex multiplication in the digital filter. By adopting it, it is possible to perform signal multiplication to erase each other's image.
 このように、キャリアリークやIQイメージ妨害波を回避した直交変調方式を採用することで、デジタル変換する信号帯域を最小にしている。これにより、デジタル変換部の処理能力を下げ、かつサービスユニット200との間の伝送速度を低いビットレートとすることができる。 Thus, by adopting an orthogonal modulation method that avoids carrier leaks and IQ image interference waves, the signal band for digital conversion is minimized. Thereby, the processing capability of the digital conversion unit can be reduced, and the transmission rate with the service unit 200 can be set to a low bit rate.
 次に、キャリア単位での利得調整および遅延調整の例について説明する。図10および図11は、キャリア単位での利得調整の例を示す説明図である。図10および図11は、無線中継装置からの入力と出力の周波数スペクトラム(周波数とレベルの関係)を示している。 Next, an example of gain adjustment and delay adjustment for each carrier will be described. 10 and 11 are explanatory diagrams illustrating an example of gain adjustment in units of carriers. 10 and 11 show the frequency spectrum (relationship between frequency and level) of the input and output from the wireless relay device.
 図10は、基地局AからCDMA-1X方式7キャリアが送信され、基地局BからCDMA-EVDO方式3キャリアが送信されている環境に設置された例である。図10(a)の入力時のグラフに示すように、無線中継装置における無線信号の入力レベルは、基地局AからのCDMA-1X方式7キャリアに比べて、基地局BからのCDMA-EVDO方式3キャリアが低かったとする。 FIG. 10 shows an example of installation in an environment in which base station A transmits CDMA-1X system 7 carriers and base station B transmits CDMA-EVDO system 3 carriers. As shown in the graph at the time of input in FIG. 10A, the input level of the radio signal in the radio relay apparatus is higher than the CDMA-1X system 7 carrier from the base station A, compared with the CDMA-EVDO system from the base station B. Suppose 3 carriers were low.
 このような場合には、図10(a)の出力時のグラフに示すように、基地局BからのEVDO信号の干渉軽減およびレベル調整として、基地局Aからの隣接キャリアを中継OFFにするとともに、基地局BからのEVDO方式信号の各キャリアの利得を上げて各サービスユニットに中継送信してもよい。 In such a case, as shown in the graph at the time of output in FIG. 10 (a), as the interference reduction and level adjustment of the EVDO signal from the base station B, the adjacent carrier from the base station A is relayed OFF. The gain of each carrier of the EVDO system signal from the base station B may be increased and relayed to each service unit.
 また、図11は、基地局AからLTE方式1キャリアが送信され、基地局BからCDMA方式3キャリアが送信されている環境に設置された例である。図11(b)の入力時のグラフに示すように、無線中継装置における無線信号の受信レベルは、基地局BからのCDMA方式3キャリアに比べて、基地局AからのLTE方式1キャリアが低かったとする。 FIG. 11 shows an example in which an LTE system 1 carrier is transmitted from the base station A and a CDMA system 3 carrier is transmitted from the base station B. As shown in the graph at the time of input in FIG. 11B, the radio signal reception level in the radio relay apparatus is lower in the LTE system 1 carrier from the base station A than in the CDMA system 3 carrier from the base station B. Suppose.
 このような場合には、図11(b)の出力時のグラフに示すように、基地局BからのLTE方式信号への干渉軽減およびレベル調整として基地局Aの隣接キャリアを中継OFFにするとともに、基地局BからのEVDO信号の利得を上げて各サービスユニットに中継送信してもよい。 In such a case, as shown in the graph at the time of output of FIG. 11B, the adjacent carrier of the base station A is relayed OFF as interference reduction and level adjustment from the base station B to the LTE signal. The gain of the EVDO signal from the base station B may be increased and relayed to each service unit.
 また、図12は、図11に示すキャリア単位での利得調整の例とダウンリンクデジタル処理部10との関係を示す説明図である。図12では、ドナーユニット100内のダウンリンクデジタル処理部10の利得調整部103における信号処理の例を示している。図12に示す例では、基地局AからCDMA3キャリアが送信され、基地局BからLTE1キャリアが送信される場合であって、ダウンリンクデジタル処理部10では、各キャリアに対応したデジタルフィルタ102、利得調整部103、遅延調整部104が設けられている。デジタルキャリア/アンテナ分離101では、デジタル処理により0Hzの一をアップダウンコンバージョンさせることで、後段のデジタルフィルタ102で希望する信号を抽出する。 FIG. 12 is an explanatory diagram showing the relationship between the example of gain adjustment for each carrier shown in FIG. 11 and the downlink digital processing unit 10. FIG. 12 illustrates an example of signal processing in the gain adjustment unit 103 of the downlink digital processing unit 10 in the donor unit 100. In the example shown in FIG. 12, the CDMA3 carrier is transmitted from the base station A and the LTE1 carrier is transmitted from the base station B. In the downlink digital processing unit 10, the digital filter 102 corresponding to each carrier, the gain An adjustment unit 103 and a delay adjustment unit 104 are provided. In the digital carrier / antenna separation 101, a desired signal is extracted by the subsequent digital filter 102 by performing up-down conversion of one of 0 Hz by digital processing.
 なお、本例では、CDMAのキャリア1は、デジタルフィルタ102-1、利得調整部103-1、遅延調整部104-1に対応づけられているとする。また、CDMAのキャリア2は、デジタルフィルタ102-2、利得調整部103-2、遅延調整部104-2に対応づけられているとする。また、CDMAのキャリア3は、デジタルフィルタ102-3、利得調整部103-3、遅延調整部104-3に対応づけられているとする。また、LTEは、デジタルフィルタ102-4、利得調整部103-4、遅延調整部104-4に対応づけられているとする。 In this example, it is assumed that the CDMA carrier 1 is associated with the digital filter 102-1, the gain adjusting unit 103-1, and the delay adjusting unit 104-1. The CDMA carrier 2 is associated with the digital filter 102-2, the gain adjustment unit 103-2, and the delay adjustment unit 104-2. Further, it is assumed that the CDMA carrier 3 is associated with the digital filter 102-3, the gain adjustment unit 103-3, and the delay adjustment unit 104-3. In addition, it is assumed that LTE is associated with the digital filter 102-4, the gain adjustment unit 103-4, and the delay adjustment unit 104-4.
 このような場合に、図11(b)に示すような出力を得るようにするには、例えば利得調整部103-1は、CDMAのキャリア1成分に対応したデジタル信号に対して、利得0にする(消し去る)制御を行う。また、例えば利得調整部103-2および利得調整部103-2は、入力されたCDMAのキャリア2またはキャリア3成分に対応したデジタル信号に対して、利得を1dBダウンさせる制御を行う。また、例えば利得調整部103-4は、LTEキャリア成分に対応したデジタル信号に対して、利得を3dBアップさせる制御を行う。 In such a case, in order to obtain an output as shown in FIG. 11B, for example, the gain adjusting unit 103-1 sets the gain to 0 with respect to the digital signal corresponding to the CDMA carrier 1 component. Control to turn off (erase). Further, for example, the gain adjusting unit 103-2 and the gain adjusting unit 103-2 perform control to reduce the gain by 1 dB for the input digital signal corresponding to the carrier 2 or carrier 3 component of CDMA. Further, for example, the gain adjustment unit 103-4 performs control to increase the gain by 3 dB with respect to the digital signal corresponding to the LTE carrier component.
 なお、利得の調整値は設定により定めてもよいし、ドナーユニット100の入力において、基地局のパイロット信号品質を測定し、サービス出力におけるレベルを一定に保つための利得計算をCPU等で行い、それを元に自動利得制御を行うことも可能である。 The adjustment value of the gain may be determined by setting, or at the input of the donor unit 100, the pilot signal quality of the base station is measured, and the gain calculation for keeping the level at the service output constant is performed by the CPU or the like. Automatic gain control can also be performed based on this.
 調整ケースの他の例として、同一方式の複数キャリアを中継する場合に、あるキャリアのみ選択して利得を上げるように制御することも可能である。例えば、W-CDMA信号が4キャリアある場合に、HSDPA(高速データ通信)に用いられているキャリアのみを選択して、利得を上げる(増幅する)よう制御してもよい。 As another example of the adjustment case, when a plurality of carriers of the same system are relayed, it is also possible to control to select only a certain carrier and increase the gain. For example, when there are four W-CDMA signals, only the carrier used for HSDPA (high-speed data communication) may be selected and controlled to increase (amplify) the gain.
 また、調整方法としては、外部からの設定等による固定調整であっても、自動調整であってもよい。固定調整を行う場合には、予め各利得調整部に利得値を保持させておくか、または外部から利得値を設定(入力)するようにしてもよい。また、自動調整を行う場合には、ドナーユニット100に基地局からの無線信号を受信して受信品質測定を行う品質測定部(図示せず。)を持たせればよい。基地局からの無線信号に多重されているパイロット信号を元に、その信号が中継対象の信号か否かを判定し、中継対象(中継を許可される信号)である場合にはパイロット信号のEc/No(信号対雑音の比)と入力レベルから利得範囲を求め、制御を行ってもよい。 Also, the adjustment method may be fixed adjustment by external setting or automatic adjustment. When performing the fixed adjustment, the gain value may be held in advance in each gain adjustment unit, or the gain value may be set (input) from the outside. When performing automatic adjustment, the donor unit 100 may have a quality measurement unit (not shown) that receives a radio signal from the base station and measures reception quality. Based on the pilot signal multiplexed on the radio signal from the base station, it is determined whether or not the signal is a signal to be relayed. If the signal is a relay target (a signal that is permitted to be relayed), the Ec of the pilot signal is determined. / No (signal-to-noise ratio) and the input level may be used to determine the gain range for control.
 また、サービスアンテナ配下の状況を、アップリンクのトラヒック量の計測、またはサービスユニット200からの通知により判断し、サービスユニット配下の加入者(移動局)が多いと判断された場合に、利得を上げるといった制御を行ってもよい。 Further, the status under the service antenna is determined by measuring the amount of uplink traffic or by notification from the service unit 200, and when it is determined that there are many subscribers (mobile stations) under the service unit, the gain is increased. Such control may be performed.
 この他、データサービスでスループットをよくしたいときに、LTEの利得を上げ、CDMAの利得を下げるといった制御をしてもよい。また、データの有無に応じて利得の可変も可能である。 In addition, when it is desired to improve the throughput of the data service, the LTE gain may be increased and the CDMA gain may be decreased. Further, the gain can be varied according to the presence or absence of data.
 また、サービスユニット側のアンテナ出力端での出力値を基に、利得調整を行うことも可能である。例えば、上記方法による利得調整後、サービスユニット出力が最大値未満である場合は、利得の調整値を上げてもよい。サービスユニット200は、出力レベルを定期的に測定し、その結果をドナーユニット100に通知する。ドナーユニット100では、通知された出力レベルを基に、閾値以下であれば利得値を上げたり、閾値以上であれば利得値を下げるといった制御を行ってもよい。 Also, gain adjustment can be performed based on the output value at the antenna output end on the service unit side. For example, if the service unit output is less than the maximum value after gain adjustment by the above method, the gain adjustment value may be increased. The service unit 200 periodically measures the output level and notifies the result to the donor unit 100. Based on the notified output level, the donor unit 100 may perform control such as increasing the gain value if it is below the threshold value or decreasing the gain value if it is above the threshold value.
 なお、利得調整は、ドナーユニット100によるものだけでなく、サービスユニット200が個別に行うことも可能である。サービスユニット200は、入力レベルを測定し、それを統計処理した結果、レベルが高いと判断した場合にはトラヒック量が大きいとして、個別利得を変えるといった制御を行ってもよい。 The gain adjustment can be performed not only by the donor unit 100 but also by the service unit 200 individually. If the service unit 200 measures the input level and statistically processes the input level and determines that the level is high, the service unit 200 may perform control such as changing the individual gain assuming that the traffic amount is large.
 また、例えば、2アンテナでMIMO信号を中継する場合、図13に示すような遅延調整を行ってもよい。図13は、ダウンリンクデジタル処理部10の遅延調整部104における信号処理の例を示す説明図である。図13に示す例では、アンテナ#1とアンテナ#2で受信したLTE MIMO信号に非MIMOであるCDMA信号のSIR改善として、遅延ダイバーシチ(遅延時間の異なるバスを意図的に送信する方式)にして送信する例である。 Also, for example, when a MIMO signal is relayed with two antennas, delay adjustment as shown in FIG. 13 may be performed. FIG. 13 is an explanatory diagram illustrating an example of signal processing in the delay adjustment unit 104 of the downlink digital processing unit 10. In the example shown in FIG. 13, delay diversity (a system that intentionally transmits buses having different delay times) is used as an SIR improvement of a non-MIMO CDMA signal in the LTE MIMO signals received by antenna # 1 and antenna # 2. This is an example of transmission.
 図13に示す例では、アンテナ#1でLTE MIMO信号とCDMA3キャリアを受信し、アンテナ#2でLTE MIMO信号を受信する場合であって、ダウンリンクデジタル処理部10では、アンテナ毎の各キャリアに対応したデジタルフィルタ102、利得調整部103、遅延調整部104が設けられている。 In the example shown in FIG. 13, the antenna # 1 receives an LTE MIMO signal and a CDMA3 carrier, and the antenna # 2 receives an LTE MIMO signal. The downlink digital processing unit 10 receives each carrier for each antenna. A corresponding digital filter 102, gain adjustment unit 103, and delay adjustment unit 104 are provided.
 なお、本例では、CDMAのキャリア1は、デジタルフィルタ102-1、利得調整部103-1、遅延調整部104-1に対応づけられているとする。また、CDMAのキャリア2は、デジタルフィルタ102-2、利得調整部103-2、遅延調整部104-2に対応づけられているとする。また、CDMAのキャリア3は、デジタルフィルタ102-3、利得調整部103-3、遅延調整部104-3に対応づけられているとする。また、LTE1(アンテナ#1で受信されたLTE MIMO信号)は、デジタルフィルタ102-4、利得調整部103-4、遅延調整部104-4に対応づけられているとする。また、LTE2(アンテナ#2で受信されたLTE MIMO信号)は、デジタルフィルタ102-5、利得調整部103-5、遅延調整部104-5に対応づけられているとする。 In this example, it is assumed that the CDMA carrier 1 is associated with the digital filter 102-1, the gain adjusting unit 103-1, and the delay adjusting unit 104-1. The CDMA carrier 2 is associated with the digital filter 102-2, the gain adjustment unit 103-2, and the delay adjustment unit 104-2. Further, it is assumed that the CDMA carrier 3 is associated with the digital filter 102-3, the gain adjustment unit 103-3, and the delay adjustment unit 104-3. Further, it is assumed that LTE1 (LTE MIMO signal received by antenna # 1) is associated with digital filter 102-4, gain adjustment unit 103-4, and delay adjustment unit 104-4. Further, it is assumed that LTE2 (LTE MIMO signal received by antenna # 2) is associated with the digital filter 102-5, the gain adjustment unit 103-5, and the delay adjustment unit 104-5.
 このような場合に、非MIMO信号のCDMA信号を遅延ダイバーシチするには、例えば遅延調整部104-1、遅延調整部104-2および遅延調整部104-3で、入力されたCDMAの各キャリア成分に対応したデジタル信号に対して、所定の遅延時間を挿入する遅延処理を行ってもよい。 In such a case, in order to delay-divide the CDMA signal of the non-MIMO signal, for example, the delay adjustment unit 104-1, the delay adjustment unit 104-2, and the delay adjustment unit 104-3 input each CDMA carrier component. Delay processing for inserting a predetermined delay time may be performed on the digital signal corresponding to the above.
 なお、遅延調整は、非MIMO信号のCDMA信号を遅延ダイバーシチにするためのほかに、ドナーユニットとサービスユニット間のケーブル長からでる遅延量の調整のために行うことも可能である。このような場合には、送信先となるサービスユニットとの間のケーブル長に応じて、遅延量を設定すればよい。例えば、複数のサービスユニットが接続される構成であって、サービスユニットとドナーユニットとの距離が10m、1km、2kmと異なる場合、この距離による遅延差がゼロになるようにサービスユニット側で遅延を挿入する。本例の場合、10m離れたサービスユニットへの信号に対しては1990m相当の遅延を挿入し、1km離れたサービスユニットへの信号に対しては1000m相当の遅延を挿入し、2km離れたサービスユニットへの信号に対しては遅延ゼロとする遅延調整を行ってもよい。なお、このような遅延量は、ドナーユニットからの設定または後述する信号合成・分配ユニット等でケーブル長を測定した結果によりサービスユニットに設定されるようにしてもよい。 Note that the delay adjustment can be performed not only for delay diversity of a CDMA signal of a non-MIMO signal but also for adjustment of a delay amount generated from a cable length between a donor unit and a service unit. In such a case, the delay amount may be set according to the cable length with the service unit as the transmission destination. For example, when a plurality of service units are connected and the distance between the service unit and the donor unit is different from 10 m, 1 km, and 2 km, the delay on the service unit side is set so that the delay difference due to this distance becomes zero. insert. In the case of this example, a delay equivalent to 1990 m is inserted for a signal to a service unit 10 m away, a delay equivalent to 1000 m is inserted for a signal to a service unit 1 km away, and a service unit 2 km away The delay adjustment may be performed so that the delay to zero is zero. Such a delay amount may be set in the service unit based on the setting from the donor unit or the result of measuring the cable length by a signal synthesis / distribution unit described later.
 なお、上記例では、ダウンリンクにおける利得調整および遅延調整について説明したが、アップリンクについても同様の調整を行えばよい。 In the above example, gain adjustment and delay adjustment in the downlink have been described, but the same adjustment may be performed for the uplink.
 また、図14は、本実施形態のドナーユニット100の一実施例を示すブロック図である。図14に示すドナーユニット100は、RFフロントエンド部1001と、RF-デジタルモデム1002と、ブロードバンド-デジタルプロセッサ1003と、インタフェース・電源部1003とによって構成されている。 FIG. 14 is a block diagram showing an example of the donor unit 100 of this embodiment. The donor unit 100 shown in FIG. 14 includes an RF front end unit 1001, an RF-digital modem 1002, a broadband-digital processor 1003, and an interface / power supply unit 1003.
 RFフロントエンド部1001は、アンテナ1と、アンテナ共用器2と、低雑音増幅器3と、帯域外フィルタ4、5と、増幅器6と、パルス密度変調器(PDM)1005とを含む。RF-デジタルモデム1002は、直交復調部7の各構成要素と、直交補正処理部77と、直交変調部8の各構成要素と、直交補正処理・ピーク制御部87と、PLL(Phase Locked Loop)回路1006とを含む。ベースバンド-デジタルプロセッサ1003は、デジタルアップダウンコンバータ1007と、ダウンリンク用のフィルタ・利得制御・遅延制御部1008と、デジタル信号多重/分離・シリアル変換部1009と、デジタルアップダウンコンバータ1010と、アップリンク用のフィルタ・利得制御・遅延制御部1011と、CPU1012とを含む。インタフェース・電源部1013は、ケーブルモデムドライバ1013と、ケーブル給電(PoE)1014と、DC電源1015とを含む。 The RF front end unit 1001 includes an antenna 1, an antenna duplexer 2, a low noise amplifier 3, out-of-band filters 4 and 5, an amplifier 6, and a pulse density modulator (PDM) 1005. The RF-digital modem 1002 includes components of the quadrature demodulator 7, a quadrature correction processing unit 77, components of the quadrature modulation unit 8, a quadrature correction processing / peak control unit 87, and a PLL (Phase Locked Loop). Circuit 1006. The baseband-digital processor 1003 includes a digital up / down converter 1007, a downlink filter / gain control / delay control unit 1008, a digital signal multiplexing / demultiplexing / serial conversion unit 1009, and a digital up / down converter 1010. A link filter / gain control / delay control unit 1011 and a CPU 1012 are included. The interface / power supply unit 1013 includes a cable modem driver 1013, a cable power supply (PoE) 1014, and a DC power supply 1015.
 本例は、直交復調部7に直交補正を組み込んだ例および直交変調部に直交補正処理とピーク制御を組み込んだ例である。また、図14に示す例では、ベースバンド-デジタルプロセッサ1003のデジタルアップダウンコンバータ1007およびフィルタ・利得制御・遅延制御部1008が、デジタルフィルタ9とダウンリンクデジタル処理部10の機能を実現している。また、ベースバンド-デジタルプロセッサ1003のデジタルアップダウンコンバータ1010およびフィルタ・利得制御・遅延制御部1011が、デジタルフィルタ12とアップリンクデジタル処理部12の機能(ただし、ピーク制御を除く。)を実現している。このような構成によっても本実施形態を実現可能である。 This example is an example in which quadrature correction is incorporated in the quadrature demodulation unit 7 and an example in which quadrature correction processing and peak control are incorporated in the quadrature modulation unit. In the example shown in FIG. 14, the digital up / down converter 1007 and the filter / gain control / delay control unit 1008 of the baseband-digital processor 1003 realize the functions of the digital filter 9 and the downlink digital processing unit 10. . Also, the digital up / down converter 1010 and the filter / gain control / delay control unit 1011 of the baseband-digital processor 1003 realize the functions of the digital filter 12 and the uplink digital processing unit 12 (except for peak control). ing. This embodiment can also be realized by such a configuration.
 以上のように、本実施形態では、基地局からの無線信号を直接変調方式で直交復調し、デジタル化してデジタル信号によりドナーユニット-サービスユニット間を中継している。このため、RFアナログ回路の規模を削減し、コストを抑えることができるとともに、伝送量として無駄な帯域幅の情報を含まないため長距離ケーブル伝送による劣化を抑えることができる。 As described above, in this embodiment, the radio signal from the base station is orthogonally demodulated by the direct modulation method, digitized, and relayed between the donor unit and the service unit by the digital signal. Therefore, the scale of the RF analog circuit can be reduced, the cost can be suppressed, and deterioration due to long-distance cable transmission can be suppressed because it does not include useless bandwidth information as the transmission amount.
 また、利得調整や遅延調整を、デジタル化された信号に対して行っているため、同一ハードウェアでキャリアの帯域幅の変更に容易に対処できる。また、サービスユニット単位で遅延を可変とすることができるため、マルチパスによる合成利得を得ることができる。 Moreover, since gain adjustment and delay adjustment are performed on the digitized signal, it is possible to easily cope with a change in the carrier bandwidth with the same hardware. Further, since the delay can be made variable in units of service units, a multipath combined gain can be obtained.
 また、キャリア毎に利得を調整することができるので、異なる基地局から異なる方式の無線キャリア信号を安定して中継することができる。また、LTE MIMO形式の信号とCDMA形式の信号というように、非MIMO信号を2本のアンテナで中継する場合に、非MIMO信号を遅延多重することにより、MIMO信号の効果を保ちつつ、非MIMO信号の利得効果をあげることができる。 Also, since the gain can be adjusted for each carrier, it is possible to stably relay different types of radio carrier signals from different base stations. Also, when non-MIMO signals are relayed by two antennas, such as LTE MIMO format signals and CDMA format signals, non-MIMO signals can be maintained while delaying and multiplexing the non-MIMO signals while maintaining the effects of the MIMO signals. The gain effect of the signal can be increased.
 なお、本無線中継装置は、GSM方式やW-CDMAなどのマルチシステムの無線中継装置にも適用可能である。また、基地局との接続を無線(アンテナ)を使わずに同軸ケーブルや光ケーブルで直接接続することも可能である。 Note that this wireless relay device can also be applied to multi-system wireless relay devices such as GSM and W-CDMA. It is also possible to directly connect the base station with a coaxial cable or an optical cable without using a radio (antenna).
 また、図15は、無線中継装置の他の構成例を示すブロック図である。図15に示すように、ドナーユニット100とサービスユニット200と直接接続する代わりに、信号合成・分配ユニット300をドナーユニット100とサービスユニット200との間に設けてもよい。信号合成・分配ユニット300は、ドナーユニット100とサービスユニット200間のデジタル信号を合成および分配するユニットである。 FIG. 15 is a block diagram showing another configuration example of the wireless relay device. As shown in FIG. 15, instead of directly connecting the donor unit 100 and the service unit 200, a signal synthesis / distribution unit 300 may be provided between the donor unit 100 and the service unit 200. The signal synthesis / distribution unit 300 is a unit that synthesizes and distributes digital signals between the donor unit 100 and the service unit 200.
 図16は、信号合成・分配ユニット(図では、HUBと称している。)300の構成例を示すブロック図である。図16に示す信号合成・分配ユニット300は、ケーブルモデムトランシーバ・カスケード制御部301と、デジタル信号合成分離・シリアル変換部302と、ドナーユニット(DU)伝送速度制御部303と、ダイナミックレンジ制御304と、アップリンク信号制御部305と、ダウンリンク信号制御部306と、サービスユニット(SU)状態監視・ON/OFF制御部307と、保守・監視部(O&M)308と、ケーブルモデルトランシーバ309と、ケーブル給電(PoE)310と、電源部311とを備える。 FIG. 16 is a block diagram showing a configuration example of a signal synthesis / distribution unit (referred to as HUB in the figure) 300. A signal synthesis / distribution unit 300 shown in FIG. 16 includes a cable modem transceiver / cascade control unit 301, a digital signal synthesis / separation / serial conversion unit 302, a donor unit (DU) transmission rate control unit 303, a dynamic range control 304, , Uplink signal control unit 305, downlink signal control unit 306, service unit (SU) state monitoring / ON / OFF control unit 307, maintenance / monitoring unit (O & M) 308, cable model transceiver 309, cable A power supply (PoE) 310 and a power supply unit 311 are provided.
 ケーブルモデムトランシーバ・カスケード制御部301は、ドナーユニット側のケーブルから信号を送受信するためのトランシーバである。なお、カスケード接続に対応する場合には、カスケード制御として、後述するデジタル信号合成分離・シリアル変換部302で分離されたカスケード信号を増幅変換して他のポートに送信する処理も行う。 The cable modem transceiver / cascade control unit 301 is a transceiver for transmitting and receiving signals from a cable on the donor unit side. In the case of supporting the cascade connection, as cascade control, a process of amplifying and converting the cascade signal separated by the digital signal synthesis separation / serial conversion unit 302 described later and transmitting it to another port is also performed.
 デジタル信号合成分離・シリアル変換部302は、デジタル信号の合成や分離を行い、ドナーユニットへの中継対象とされるデジタルキャリア信号からデジタルシリアル信号への変換を行ったり、ドナーユニットから受信したデジタルシリアル信号からデジタルキャリア信号への変換を行う。また、複数のHUBで構成されるカスケード接続時には、カスケード信号の分離・多重を行う。 The digital signal synthesis / separation unit 302 synthesizes and separates digital signals, converts a digital carrier signal to be relayed to the donor unit into a digital serial signal, or receives a digital serial signal received from the donor unit. Performs conversion from signal to digital carrier signal. In cascade connection composed of a plurality of HUBs, the cascade signals are separated and multiplexed.
 ダウンリンク信号制御部306は、デジタル信号合成分離・シリアル変換部302から入力されるドナーユニット100から送信されたデジタル信号を基に、接続先の各サービスユニットに送信するデジタルキャリア信号を生成して、サービスユニット状態監視・ON/OFF制御部307に出力する。その際、サービスユニット状態監視・ON/OFF制御部307からのサービスユニット状態通知に応じて、送信元のサービスユニットに応じた個別制御を行うことも可能である。個別制御は、例えば、あるキャリアの信号の利得を0にしてもよい。 The downlink signal control unit 306 generates a digital carrier signal to be transmitted to each connected service unit based on the digital signal transmitted from the donor unit 100 input from the digital signal synthesis / separation / serial conversion unit 302. , Output to the service unit state monitoring / ON / OFF control unit 307. At that time, in accordance with the service unit status notification from the service unit status monitoring / ON / OFF control unit 307, individual control according to the service unit of the transmission source can be performed. In the individual control, for example, the gain of a certain carrier signal may be set to zero.
 サービスユニット状態監視・ON/OFF制御部307は、接続先のサービスユニットの状態を監視し、ダウンリンク信号制御部306から入力された信号を、接続先であるサービスユニットに送信するか否かの判定を行う。また、後述するケーブルモデムトランシーバ309から入力されるサービスユニット200からのデジタル信号を、受け付けるか否かの判定を行う。また、サービスユニットとのケーブル長を遅延量から導出(測定)する機能を有していてもよい。導出したケーブル長をサービスユニットに通知することにより、サービスユニット側でケーブル長補正の遅延挿入を行ってもよい。 The service unit status monitoring / ON / OFF control unit 307 monitors the status of the connection destination service unit, and determines whether or not to transmit the signal input from the downlink signal control unit 306 to the connection destination service unit. Make a decision. Further, it is determined whether or not to accept a digital signal from the service unit 200 input from a cable modem transceiver 309 described later. Further, it may have a function of deriving (measuring) the cable length with the service unit from the delay amount. By notifying the service unit of the derived cable length, the service unit may perform delay insertion for cable length correction.
 ケーブルモデムトランシーバ309は、サービスユニット側のケーブルから信号を送受信するためのドライバである。ケーブル給電310は、イーサネットケーブルに電力を供給する機器である。保守・監視部308は、当該信号合成・分配ユニット300の保守および監視を行う。 The cable modem transceiver 309 is a driver for transmitting and receiving signals from the cable on the service unit side. The cable power supply 310 is a device that supplies power to the Ethernet cable. The maintenance / monitoring unit 308 performs maintenance and monitoring of the signal synthesis / distribution unit 300.
 アップリンク信号制御部305は、サービスユニット状態監視・ON/OFF制御部307を介して入力されるサービスユニット200から送信されたデジタル信号を基に、接続先のドナーユニットに送信するデジタルキャリア信号を加算演算(多重)して、ダイナミックレンジ制御部304に出力する。 The uplink signal control unit 305 generates a digital carrier signal to be transmitted to the connected donor unit based on the digital signal transmitted from the service unit 200 input via the service unit state monitoring / ON / OFF control unit 307. Addition (multiplexing) is performed and output to the dynamic range control unit 304.
 ダイナミックレンジ制御部304は、ドナーユニット100に送信する信号電力が大きくなりすぎないように、電力リミッタ(Limitter)制御を行う。例えば、ピーク値を統計演算にて予測し、フィルタ処理を行う。ドナーユニット伝送速度制御部303は、ダイナミックレンジの大きさに応じて速度調整を行う。例えば、ダイナミックレンジが大きいときは通信速度を上げるといった制御を行ってもよい。 The dynamic range control unit 304 performs power limiter control so that the signal power transmitted to the donor unit 100 does not become too large. For example, the peak value is predicted by statistical calculation, and the filter process is performed. The donor unit transmission rate control unit 303 adjusts the rate according to the size of the dynamic range. For example, when the dynamic range is large, control such as increasing the communication speed may be performed.
 このような信号合成・分配ユニット300を間に設けることにより、1台のドナーユニット100と中継可能なサービスユニット200の数(接続数)を増やすことができる。 By providing such a signal synthesis / distribution unit 300 in between, the number of donor units 100 and the number of service units 200 that can be relayed (the number of connections) can be increased.
 次に、本発明の特徴について説明する。図17は、本発明の特徴を示す説明図である。図17に示すように、本発明による無線中継装置は、単一または複数の移動体通信基地局と端末との間に設置される無線中継装置であって、基地局側と無線通信を行うドナーユニット701と、端末側と無線通信を行う1または複数のサービスユニット702とを備える。なお、ドナーユニット701とサービスユニット702とはケーブルを介して接続される。 Next, features of the present invention will be described. FIG. 17 is an explanatory diagram showing features of the present invention. As shown in FIG. 17, the radio relay apparatus according to the present invention is a radio relay apparatus installed between a single or a plurality of mobile communication base stations and terminals, and is a donor that performs radio communication with the base station side. A unit 701 and one or a plurality of service units 702 that perform wireless communication with the terminal side are provided. The donor unit 701 and the service unit 702 are connected via a cable.
 ドナーユニット701は、RF-デジタル変換部801と、ダウンリンク(DL)デジタル信号処理部802と、デジタルIQ信号送受信部803と、アップリンク(UL)デジタル信号処理部804と、デジタル-RF変換部805とを含む。 The donor unit 701 includes an RF-digital conversion unit 801, a downlink (DL) digital signal processing unit 802, a digital IQ signal transmission / reception unit 803, an uplink (UL) digital signal processing unit 804, and a digital-RF conversion unit. 805.
 サービスユニット702は、デジタルIQ信号送受信部804と、デジタル-RF変換部805と、RF-デジタル変換部801とを含む。 The service unit 702 includes a digital IQ signal transmission / reception unit 804, a digital-RF conversion unit 805, and an RF-digital conversion unit 801.
 なお、RF-デジタル変換部801およびデジタル-RF変換部805は、ドナーユニット701とサービスユニット702とで同様でよい。 The RF-digital conversion unit 801 and the digital-RF conversion unit 805 may be the same in the donor unit 701 and the service unit 702.
 RF-デジタル変換部801(例えば、直交復調部7およびデジタルフィルタ9、直交復調部26およびデジタルフィルタ24)は、入力されるRF信号をIとQのベースバンド信号に直接変換した上でデジタル信号に変換して、デジタルIQ信号を得る。 The RF-digital converter 801 (for example, the quadrature demodulator 7 and the digital filter 9, the quadrature demodulator 26 and the digital filter 24) directly converts the input RF signal into I and Q baseband signals, and then converts the digital signal. To obtain a digital IQ signal.
 ダウンリンクデジタル信号処理部(例えば、ダウンリンクデジタル処理部10)は、ダウンリンクのデジタルIQ信号をアンテナ毎のキャリア単位に分離し、分離されたデジタル信号に対してそれぞれ利得もしくは遅延またはその両方を調整し、調整後の分離デジタル信号からデジタルIQ信号を再合成する。 The downlink digital signal processing unit (eg, the downlink digital processing unit 10) separates the downlink digital IQ signal into carrier units for each antenna, and performs gain and / or delay on the separated digital signal, respectively. Adjust and re-synthesize the digital IQ signal from the adjusted separated digital signal.
 デジタルIQ信号送受信部803(例えば、シリアル変換部11,14)は、サービスユニット702との間でデジタルIQ信号の送受信を行う。 The digital IQ signal transmission / reception unit 803 (for example, the serial conversion units 11 and 14) transmits / receives a digital IQ signal to / from the service unit 702.
 アップリンクデジタル信号処理部804(例えば、アップリンクデジタル処理部13)は、アップリンクのデジタルIQ信号をアンテナ毎のキャリア単位に分離し、分離されたデジタル信号に対してそれぞれ利得もしくは遅延またはその両方を調整し、調整後の分離デジタル信号からデジタルIQ信号を再合成する。 The uplink digital signal processing unit 804 (for example, the uplink digital processing unit 13) separates the uplink digital IQ signal into carrier units for each antenna, and gain or delay with respect to the separated digital signal or both, respectively. The digital IQ signal is re-synthesized from the adjusted separated digital signal.
 デジタル-RF変換部805(例えば、直交変調部8、直交変調部25)は、入力されるデジタルIQ信号をアナログ信号に変換し、得られたIとQのベースバンド信号をRF信号に直接変換して、RF信号を得る。 The digital-RF conversion unit 805 (for example, the quadrature modulation unit 8 and the quadrature modulation unit 25) converts the input digital IQ signal into an analog signal, and directly converts the obtained I and Q baseband signals into an RF signal. Then, an RF signal is obtained.
 デジタルIQ信号送受信部806(例えば、シリアル変換部21,22)は、ドナーユニット701との間でデジタルIQ信号の送受信を行う。 The digital IQ signal transmission / reception unit 806 (for example, the serial conversion units 21 and 22) transmits / receives a digital IQ signal to / from the donor unit 701.
 このような構成により、1つの無線中継装置で、単一又は複数の基地局から送信される異なる目的で使用されている複数のキャリア群を、増幅および中継距離による無線容量の劣化を抑止しつつ、端末側で安定した受信信号を得られるように中継できるようにすることができる。 With such a configuration, a plurality of carrier groups used for different purposes transmitted from a single or a plurality of base stations can be amplified by one radio relay device while suppressing deterioration of radio capacity due to amplification and relay distance. Thus, it is possible to relay so that a stable received signal can be obtained on the terminal side.
 なお、RF-デジタル変換部は、IとQのベースバンド信号をデジタル信号に変更する際に、変換によって得られたデジタル信号のI信号とQ信号に対して、当該I信号とQ信号とをそれぞれ複素乗算するフィルタ方式を採用したデジタルフィルタ(例えば、デジタルフィルタ9、24)により、不要な信号を除去してもよい。 The RF-digital conversion unit converts the I signal and the Q signal to the I signal and the Q signal of the digital signal obtained by the conversion when the I and Q baseband signals are changed to the digital signal. Unnecessary signals may be removed by a digital filter (for example, digital filters 9 and 24) employing a filter system that performs complex multiplication.
 また、RF-デジタル変換部は、RF信号を直接IとQのベースバンド信号に復調する直交復調部(例えば、直交復調部7、26)と、直交復調部によって得られたアナログ信号から所望の帯域外信号を除去する、I信号とQ信号に対応したアナログフィルタ回路(例えば、LPF74,75またはLPF264,265)と、アナログフィルタ回路から出力されるアナログ信号のI信号とQ信号をそれぞれデジタル信号に変換するアナログ-デジタル変換部と、アナログ-デジタル変換部から出力されるデジタル信号のI信号とQ信号を入力し、入力されたデジタル信号のI信号とQ信号に対して、当該I信号とQ信号とをそれぞれ複素乗算するフィルタ方式を採用したデジタルフィルタ(例えば、デジタルフィルタ9、24)とを有していてもよい。 Further, the RF-digital conversion unit directly outputs a desired signal from the quadrature demodulation unit (eg, the quadrature demodulation units 7 and 26) that directly demodulates the RF signal into I and Q baseband signals, and the analog signal obtained by the quadrature demodulation unit. An analog filter circuit (for example, LPF 74, 75 or LPF 264, 265) corresponding to the I signal and Q signal that removes out-of-band signals, and the analog signal I signal and Q signal output from the analog filter circuit are digital signals, respectively. An analog-to-digital converter that converts the signal to the digital signal, and an I signal and a Q signal that are digital signals output from the analog-to-digital converter, and the I signal and Q signal of the input digital signal A digital filter (for example, digital filters 9 and 24) that employs a filter system that performs complex multiplication with the Q signal. It can have.
 また、ダウンリンクデジタル信号処理部は、ドナーユニットとサービスユニットとの間のケーブル長に応じて定められている遅延時間に基づいて、各分離されたデジタル信号に対して遅延調整を行ってもよい。 Further, the downlink digital signal processing unit may perform delay adjustment on each separated digital signal based on a delay time determined according to a cable length between the donor unit and the service unit. .
 また、MIMO信号と非MIMO信号が合成されたRF信号を受信する無線環境に設置される無線中継装置であって、ダウンリンクデジタル信号処理部は、非MIMO信号である特定のキャリア成分に対応する分離されたデジタル信号に対して、所定の遅延時間を挿入する遅延調整を行ってもよい。 Further, the wireless relay device is installed in a wireless environment that receives an RF signal in which a MIMO signal and a non-MIMO signal are combined, and the downlink digital signal processing unit corresponds to a specific carrier component that is a non-MIMO signal. You may perform the delay adjustment which inserts predetermined delay time with respect to the isolate | separated digital signal.
 また、ドナーユニットは、受信したRF信号の品質を測定する受信品質測定部を備え、ダウンリンクデジタル信号処理部は、受信品質測定部によって測定された受信品質に基づいて、利得範囲を計算し、各分離されたデジタル信号に対して利得調整を行ってもよい。 The donor unit includes a reception quality measurement unit that measures the quality of the received RF signal, and the downlink digital signal processing unit calculates a gain range based on the reception quality measured by the reception quality measurement unit, Gain adjustment may be performed on each separated digital signal.
 また、アップリンクデジタル信号処理部は、ダウンリンク信号処理部と同様の利得調整および遅延調整を行ってもよい。 Also, the uplink digital signal processing unit may perform gain adjustment and delay adjustment similar to those of the downlink signal processing unit.
 また、ドナーユニットとサービスユニットとの間に、接続先のドナーユニットから受信したサービスユニット宛ての信号を分配し、かつ接続先のサービスユニットから受信したドナーユニット宛ての信号を合成する信号分配合成ユニット(例えば、信号合成・分配ユニット300)を備えていてもよい。 Also, a signal distribution / combination unit that distributes a signal addressed to the service unit received from the connected donor unit and combines a signal addressed to the donor unit received from the connected service unit between the donor unit and the service unit. (For example, a signal synthesis / distribution unit 300) may be provided.
 また、本発明による無線中継方法は、RF-デジタル変換ステップで、アナログ信号をデジタル信号に変換して得られたデジタル信号のI信号とQ信号に対して、当該I信号とQ信号とをそれぞれ複素乗算するフィルタ方式を実施して、不要な信号を除去してもよい。 In the wireless relay method according to the present invention, in the RF-digital conversion step, the I signal and the Q signal of the digital signal obtained by converting the analog signal into the digital signal are respectively obtained. A filter method for complex multiplication may be implemented to remove unnecessary signals.
 また、デジタル信号処理ステップで、ドナーユニットとサービスユニットとの間のケーブル長に応じて定められている遅延時間に基づいて、各分離されたデジタル信号に対して遅延調整を行ってもよい。 Also, in the digital signal processing step, delay adjustment may be performed on each separated digital signal based on a delay time determined according to the cable length between the donor unit and the service unit.
 また、MIMO信号と非MIMO信号が合成されたRF信号を受信する無線環境に設置される無線中継装置に適用される無線中継方法であって、デジタル信号処理ステップで、非MIMO信号である特定のキャリア成分に対応する分離されたデジタル信号に対して、所定の遅延時間を挿入する遅延調整を行ってもよい。 A wireless relay method applied to a wireless relay device installed in a wireless environment that receives an RF signal in which a MIMO signal and a non-MIMO signal are combined, and is a specific method that is a non-MIMO signal in a digital signal processing step. You may perform the delay adjustment which inserts predetermined delay time with respect to the isolate | separated digital signal corresponding to a carrier component.
 また、ドナーユニットで、受信したRF信号の品質を測定し、デジタル信号処理ステップで、測定された受信品質に基づいて、利得範囲を計算し、各分離されたデジタル信号に対して利得調整を行ってもよい。 The donor unit measures the quality of the received RF signal, and the digital signal processing step calculates a gain range based on the measured reception quality and performs gain adjustment on each separated digital signal. May be.
 ドナーユニットとサービスユニットとの間のデジタルIQ信号の送受信を、接続先のドナーユニットから受信したサービスユニット宛ての信号を分配し、かつ接続先のサービスユニットから受信したドナーユニット宛ての信号を合成する信号分配合成ユニットを介して行ってもよい。 For transmission and reception of digital IQ signals between the donor unit and the service unit, the signal addressed to the service unit received from the connected donor unit is distributed, and the signal addressed to the donor unit received from the connected service unit is synthesized. This may be done via a signal distribution and synthesis unit.
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 The present invention has been described above with reference to the embodiments, but the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 この出願は、2010年1月22日に出願された日本特許出願2010-11903を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application 2010-11903 filed on January 22, 2010, the entire disclosure of which is incorporated herein.
 本発明は、移動体通信基地局と端末との間で行われる無線通信の信号を中継する用途に好適に適用可能である。 The present invention can be suitably applied to a purpose of relaying a signal of wireless communication performed between a mobile communication base station and a terminal.
 100 ドナーユニット
 1 アンテナ
 2 アンテナ共用器(デュプレクサ)
 3 低雑音増幅器(LNA)
 4、5 帯域外フィルタ(BRF)
 6 増幅器(PA)
 7 直交復調部
 8 直交変調部
 9,12 デジタルフィルタ
 10 ダウンリンク(DL)デジタル処理部
 101 デジタルキャリア/アンテナ分離部
 102-1~102-n デジタルフィルタ
 103-1~103-n 利得調整部
 104-1~104-n 遅延調整部
 105 デジタルキャリア/アンテナ合成部
 11,14 シリアル変換部
 13 アップリンク(UL)デジタル処理部
 131 デジタルキャリア/アンテナ分離部
 132-1~132-n デジタルフィルタ
 133-1~133-n 遅延調整部
 134-1~134-n 利得調整部
 135-1~135-n 電力クリッピング部
 136 デジタルキャリア/アンテナ合成部
 200 サービスユニット
 21,22 シリアル変換部
 23,24 デジタルフィルタ
 25 直交変調部
 26 直交復調部
 27 増幅器(PA)
 28,29 帯域外フィルタ(BPF)
 30 低雑音増幅器(LNA)
 31 アンテナ共用器
 32 アンテナ
 300 信号合成・分配ユニット
 301 ケーブルモデムトランシーバ・カスケード制御部
 302 デジタル信号合成分離・シリアル変換部
 303 ドナーユニット(DU)伝送速度制御部
 304 ダイナミックレンジ制御
 305 アップリンク信号制御部
 306 ダウンリンク信号制御部
 307 サービスユニット(SU)状態監視・ON/OFF制御部
 308 保守・監視部(O&M)
 309 ケーブルモデルトランシーバ
 310 ケーブル給電(PoE)
 311 電源部
 701 ドナーユニット
 702 サービスユニット
 801 RF-デジタル変換部
 802 ダウンリンクデジタル信号処理部
 803,806 デジタルIQ信号送受信部
 804 アップリンクデジタル信号処理部
 805 デジタル-RF変換部
100 Donor unit 1 Antenna 2 Antenna duplexer (duplexer)
3 Low noise amplifier (LNA)
4, 5 Out-of-band filter (BRF)
6 Amplifier (PA)
7 Quadrature demodulation unit 8 Quadrature modulation unit 9,12 Digital filter 10 Downlink (DL) digital processing unit 101 Digital carrier / antenna separation unit 102-1 to 102-n Digital filter 103-1 to 103-n Gain adjustment unit 104- 1 to 104-n delay adjustment unit 105 digital carrier / antenna combining unit 11, 14 serial conversion unit 13 uplink (UL) digital processing unit 131 digital carrier / antenna separation unit 132-1 to 132-n digital filter 133-1 to 133-n Delay adjustment unit 134-1 to 134-n Gain adjustment unit 135-1 to 135-n Power clipping unit 136 Digital carrier / antenna combination unit 200 Service unit 21, 22 Serial conversion unit 23, 24 Digital filter 25 Quadrature modulation Part 26 orthogonal Demodulator 27 Amplifier (PA)
28, 29 Out-of-band filter (BPF)
30 Low noise amplifier (LNA)
31 antenna duplexer 32 antenna 300 signal synthesis / distribution unit 301 cable modem transceiver / cascade control unit 302 digital signal synthesis / separation unit 303 donor unit (DU) transmission rate control unit 304 dynamic range control 305 uplink signal control unit 306 Downlink signal control unit 307 Service unit (SU) status monitoring / ON / OFF control unit 308 Maintenance / monitoring unit (O & M)
309 Cable model transceiver 310 Cable power supply (PoE)
311 Power supply unit 701 Donor unit 702 Service unit 801 RF-digital conversion unit 802 Downlink digital signal processing unit 803, 806 Digital IQ signal transmission / reception unit 804 Uplink digital signal processing unit 805 Digital-RF conversion unit

Claims (14)

  1.  単一または複数の移動体通信基地局と端末との間に設置される無線中継装置であって、
     基地局側と無線通信を行うドナーユニットと、端末側と無線通信を行う1または複数のサービスユニットとを備え、
     前記ドナーユニットと前記サービスユニットとはケーブルを介して接続され、
     前記ドナーユニットは、
     入力されるRF信号をIとQのベースバンド信号に直接変換した上でデジタル信号に変換して、デジタルIQ信号を得るRF-デジタル変換部と、
     ダウンリンクのデジタルIQ信号をアンテナ毎のキャリア単位に分離し、分離されたデジタル信号に対してそれぞれ利得もしくは遅延またはその両方を調整し、調整後の分離デジタル信号からデジタルIQ信号を再合成するダウンリンクデジタル信号処理部と、
     前記サービスユニットとの間でデジタルIQ信号の送受信を行うデジタルIQ信号送受信部と、
     アップリンクのデジタルIQ信号をアンテナ毎のキャリア単位に分離し、分離されたデジタル信号に対してそれぞれ利得もしくは遅延またはその両方を調整し、調整後の分離デジタル信号からデジタルIQ信号を再合成するアップリンクデジタル信号処理部と、
     入力されるデジタルIQ信号をアナログ信号に変換し、得られたIとQのベースバンド信号をRF信号に直接変換して、RF信号を得るデジタル-RF変換部とを含み、
     サービスユニットは、
     ドナーユニットとの間でデジタルIQ信号の送受信を行うデジタルIQ信号送受信部とを含み、
     入力されるデジタルIQ信号をアナログ信号に変換し、得られたIとQのベースバンド信号をRF信号に直接変換して、RF信号を得るデジタル-RF変換部と、
     入力されるRF信号をIとQのベースバンド信号に直接変換した上でデジタル信号に変換して、デジタルIQ信号を得るRF-デジタル変換部とを含む
     ことを特徴とする無線中継装置。
    A wireless relay device installed between a single or multiple mobile communication base stations and a terminal,
    A donor unit that performs wireless communication with the base station side, and one or a plurality of service units that perform wireless communication with the terminal side,
    The donor unit and the service unit are connected via a cable,
    The donor unit is
    An RF-to-digital converter that directly converts an input RF signal into an I and Q baseband signal and then converts it into a digital signal to obtain a digital IQ signal;
    A downlink digital IQ signal is separated into carrier units for each antenna, gain and / or delay is adjusted for each separated digital signal, and the digital IQ signal is recombined from the adjusted separated digital signal. A link digital signal processing unit;
    A digital IQ signal transmission / reception unit for transmitting / receiving a digital IQ signal to / from the service unit;
    Uplink digital IQ signal is separated into carrier units for each antenna, gain and / or delay is adjusted for each separated digital signal, and digital IQ signal is re-synthesized from the separated separated digital signal A link digital signal processing unit;
    A digital-RF converter that converts an input digital IQ signal into an analog signal, directly converts the obtained I and Q baseband signals into an RF signal, and obtains an RF signal;
    Service unit
    A digital IQ signal transmission / reception unit that transmits / receives a digital IQ signal to / from a donor unit,
    A digital-RF converter that converts an input digital IQ signal into an analog signal, directly converts the obtained I and Q baseband signals into an RF signal, and obtains an RF signal;
    A radio relay apparatus comprising: an RF-digital conversion unit that directly converts an input RF signal into an I and Q baseband signal and then converts the RF signal into a digital signal to obtain a digital IQ signal.
  2.  RF-デジタル変換部は、IとQのベースバンド信号をデジタル信号に変更する際に、変換によって得られたデジタル信号のI信号とQ信号に対して、当該I信号とQ信号とをそれぞれ複素乗算するフィルタ方式を採用したデジタルフィルタにより、不要な信号を除去する
     請求項1に記載の無線中継装置。
    The RF-digital conversion unit converts the I signal and the Q signal into complex signals with respect to the I signal and the Q signal of the digital signal obtained by the conversion when the I and Q baseband signals are changed to the digital signal. The wireless relay apparatus according to claim 1, wherein an unnecessary signal is removed by a digital filter that employs a filter method for multiplication.
  3.  RF-デジタル変換部は、
     RF信号を直接IとQのベースバンド信号に復調する直交復調部と、
     前記直交復調部によって得られたアナログ信号から所望の帯域外信号を除去する、I信号とQ信号に対応したアナログフィルタ回路と、
     前記アナログフィルタ回路から出力されるアナログ信号のI信号とQ信号をそれぞれデジタル信号に変換するアナログ-デジタル変換部と、
     前記アナログ-デジタル変換部から出力されるデジタル信号のI信号とQ信号を入力し、入力されたデジタル信号のI信号とQ信号に対して、当該I信号とQ信号とをそれぞれ複素乗算するフィルタ方式を採用したデジタルフィルタとを有する
     請求項1または請求項2に記載の無線中継装置。
    The RF-digital converter is
    An orthogonal demodulator that directly demodulates the RF signal into I and Q baseband signals;
    An analog filter circuit corresponding to the I signal and the Q signal for removing a desired out-of-band signal from the analog signal obtained by the quadrature demodulation unit;
    An analog-to-digital converter that converts each of the I signal and Q signal of the analog signal output from the analog filter circuit into a digital signal;
    A filter that receives an I signal and a Q signal of a digital signal output from the analog-digital conversion unit, and performs complex multiplication of the input I signal and the Q signal with the I signal and the Q signal, respectively. The wireless relay device according to claim 1, further comprising a digital filter that employs a system.
  4.  ダウンリンクデジタル信号処理部は、ドナーユニットとサービスユニットとの間のケーブル長に応じて定められている遅延時間に基づいて、各分離されたデジタル信号に対して遅延調整を行う
     請求項1から請求項3のうちのいずれか1項に記載の無線中継装置。
    The downlink digital signal processing unit performs delay adjustment on each separated digital signal based on a delay time determined according to a cable length between the donor unit and the service unit. Item 4. The wireless relay device according to any one of items 3 to 3.
  5.  MIMO信号と非MIMO信号が合成されたRF信号を受信する無線環境に設置される無線中継装置であって、
     ダウンリンクデジタル信号処理部は、非MIMO信号である特定のキャリア成分に対応する分離されたデジタル信号に対して、所定の遅延時間を挿入する遅延調整を行う
     請求項1から請求項4のうちのいずれか1項に記載の無線中継装置。
    A wireless relay device installed in a wireless environment for receiving an RF signal in which a MIMO signal and a non-MIMO signal are combined,
    The downlink digital signal processing unit performs delay adjustment by inserting a predetermined delay time for the separated digital signal corresponding to a specific carrier component that is a non-MIMO signal. The wireless relay device according to any one of the above.
  6.  ドナーユニットは、
     受信したRF信号の品質を測定する受信品質測定部を備え、
     ダウンリンクデジタル信号処理部は、前記受信品質測定部によって測定された受信品質に基づいて、利得範囲を計算し、各分離されたデジタル信号に対して利得調整を行う
     請求項1から請求項5のうちのいずれか1項に記載の無線中継装置。
    Donor units
    A reception quality measuring unit for measuring the quality of the received RF signal;
    6. The downlink digital signal processing unit calculates a gain range based on the reception quality measured by the reception quality measurement unit, and performs gain adjustment on each separated digital signal. The wireless relay device according to any one of the above.
  7.  アップリンクデジタル信号処理部は、ダウンリンク信号処理部と同様の利得調整および遅延調整を行う
     請求項1から請求項6のうちのいずれか1項に記載の無線中継装置。
    The radio relay apparatus according to any one of claims 1 to 6, wherein the uplink digital signal processing unit performs the same gain adjustment and delay adjustment as the downlink signal processing unit.
  8.  ドナーユニットとサービスユニットとの間に、接続先のドナーユニットから受信したサービスユニット宛ての信号を分配し、かつ接続先のサービスユニットから受信したドナーユニット宛ての信号を合成する信号分配合成ユニットを備える
     請求項1から請求項7のうちのいずれか1項に記載の無線中継装置。
    Provided between the donor unit and the service unit is a signal distribution / combination unit that distributes the signal addressed to the service unit received from the connected donor unit and combines the signal addressed to the donor unit received from the connected service unit. The wireless relay device according to any one of claims 1 to 7.
  9.  単一または複数の移動体通信基地局と端末との間に設置される無線中継装置に適用される無線中継方法であって、
     入力されるRF信号をIとQのベースバンド信号に直接変換した上でデジタル信号に変換するRF-デジタル変換ステップと、
     前記変換によって得られたデジタルIQ信号を、移動体通信基地局側と通信を行うドナーユニットで、アンテナ毎のキャリア単位に分離し、分離されたデジタル信号に対してそれぞれ利得もしくは遅延またはその両方を調整し、調整後の分離デジタル信号からデジタルIQ信号を再合成するデジタル信号処理ステップと、
     入力されるデジタルIQ信号をアナログ信号に変換し、得られたIとQのベースバンド信号をRF信号に直接変換するデジタル-RF変換ステップとを含む
     ことを特徴とする無線中継方法。
    A wireless relay method applied to a wireless relay device installed between a single or multiple mobile communication base stations and a terminal,
    An RF-digital conversion step for directly converting an input RF signal into an I and Q baseband signal and then converting the digital signal into a digital signal;
    The digital IQ signal obtained by the conversion is separated into carrier units for each antenna in a donor unit that communicates with the mobile communication base station side, and gain or delay or both are respectively applied to the separated digital signal. A digital signal processing step of adjusting and recombining the digital IQ signal from the adjusted separated digital signal;
    A radio relay method comprising: a digital-RF conversion step of converting an input digital IQ signal into an analog signal, and directly converting the obtained I and Q baseband signals into an RF signal.
  10.  RF-デジタル変換ステップで、アナログ信号をデジタル信号に変換して得られたデジタル信号のI信号とQ信号に対して、当該I信号とQ信号とをそれぞれ複素乗算するフィルタ方式を実施して、不要な信号を除去する
     請求項9に記載の無線中継方法。
    In the RF-to-digital conversion step, a filter method for performing complex multiplication of the I signal and the Q signal on the I signal and the Q signal of the digital signal obtained by converting the analog signal into the digital signal, respectively, The wireless relay method according to claim 9, wherein unnecessary signals are removed.
  11.  デジタル信号処理ステップで、ドナーユニットとサービスユニットとの間のケーブル長に応じて定められている遅延時間に基づいて、各分離されたデジタル信号に対して遅延調整を行う
     請求項9または請求項10に記載の無線中継方法。
    The delay adjustment is performed on each separated digital signal based on a delay time determined according to a cable length between the donor unit and the service unit in the digital signal processing step. The wireless relay method described in 1.
  12.  MIMO信号と非MIMO信号が合成されたRF信号を受信する無線環境に設置される無線中継装置に適用される無線中継方法であって、
     デジタル信号処理ステップで、非MIMO信号である特定のキャリア成分に対応する分離されたデジタル信号に対して、所定の遅延時間を挿入する遅延調整を行う
     請求項9から請求項11のうちのいずれか1項に記載の無線中継方法。
    A wireless relay method applied to a wireless relay device installed in a wireless environment that receives an RF signal in which a MIMO signal and a non-MIMO signal are combined,
    The digital signal processing step performs delay adjustment for inserting a predetermined delay time for the separated digital signal corresponding to a specific carrier component which is a non-MIMO signal. The wireless relay method according to item 1.
  13.  ドナーユニットで、受信したRF信号の品質を測定し、
     デジタル信号処理ステップで、前記測定された受信品質に基づいて、利得範囲を計算し、各分離されたデジタル信号に対して利得調整を行う
     請求項9から請求項12のうちのいずれか1項に記載の無線中継方法。
    The donor unit measures the quality of the received RF signal,
    The digital signal processing step calculates a gain range based on the measured reception quality, and performs gain adjustment for each separated digital signal. The wireless relay method described.
  14.  ドナーユニットとサービスユニットとの間のデジタルIQ信号の送受信を、接続先のドナーユニットから受信したサービスユニット宛ての信号を分配し、かつ接続先のサービスユニットから受信したドナーユニット宛ての信号を合成する信号分配合成ユニットを介して行う
     請求項9から請求項13のうちのいずれか1項に記載の無線中継方法。
    Send and receive digital IQ signals between the donor unit and the service unit, distribute the signal addressed to the service unit received from the connected donor unit, and synthesize the signal addressed to the donor unit received from the connected service unit The wireless relay method according to claim 9, wherein the wireless relay method is performed via a signal distribution / combination unit.
PCT/JP2011/000046 2010-01-22 2011-01-07 Wireless relay device and wireless relay method WO2011089860A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-011903 2010-01-22
JP2010011903 2010-01-22

Publications (1)

Publication Number Publication Date
WO2011089860A1 true WO2011089860A1 (en) 2011-07-28

Family

ID=44306663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000046 WO2011089860A1 (en) 2010-01-22 2011-01-07 Wireless relay device and wireless relay method

Country Status (1)

Country Link
WO (1) WO2011089860A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013066222A1 (en) * 2011-11-01 2013-05-10 Telefonaktiebolaget L M Ericsson (Publ) Relay node, main unit for a relay node and method therein

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08307465A (en) * 1995-04-28 1996-11-22 Mitsubishi Electric Corp Compensation method for reception equipment, reception equipment, and transmission/reception equipment
JP2003298486A (en) * 2002-03-29 2003-10-17 Maruko & Co Ltd Radio relaying system
WO2006118125A1 (en) * 2005-04-28 2006-11-09 Matsushita Electric Industrial Co., Ltd. Communication relay apparatus and communication relay method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08307465A (en) * 1995-04-28 1996-11-22 Mitsubishi Electric Corp Compensation method for reception equipment, reception equipment, and transmission/reception equipment
JP2003298486A (en) * 2002-03-29 2003-10-17 Maruko & Co Ltd Radio relaying system
WO2006118125A1 (en) * 2005-04-28 2006-11-09 Matsushita Electric Industrial Co., Ltd. Communication relay apparatus and communication relay method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013066222A1 (en) * 2011-11-01 2013-05-10 Telefonaktiebolaget L M Ericsson (Publ) Relay node, main unit for a relay node and method therein
CN103891171A (en) * 2011-11-01 2014-06-25 瑞典爱立信有限公司 Relay node, main unit for a relay node and method therein
CN103891171B (en) * 2011-11-01 2016-11-23 瑞典爱立信有限公司 Via node, for the master unit of via node and method therein

Similar Documents

Publication Publication Date Title
US10601378B2 (en) Distributed antenna system architectures
US11283530B2 (en) Wideband remote unit for distributed antenna system
US9225500B2 (en) Microwave backhaul system having a dual channel over a single interconnect
US8331509B2 (en) Method and device for cancelling transmitter interference in transceiver, and transceiver
KR101336531B1 (en) Method and apparatus for reducing combiner loss in a multi-sector, omni-base station
US20100136900A1 (en) Radio Relay Device and Method
EP1617572B1 (en) Single-frequency relay for removing multi-path interference in a wireless communication system, and method
US9859982B2 (en) Distributed antenna system
EP3734846A1 (en) Rf front end reduction of receiver de-sensitivity
KR102165072B1 (en) Distributed antenna system and remote apparatus thereof
WO2011089860A1 (en) Wireless relay device and wireless relay method
US10461839B2 (en) Digital repeater system
US11456762B2 (en) Control device and radio communication device
KR20190028933A (en) Multi Channel-Distributed Antenna System comprising 5G converter Unit
KR20130057073A (en) A relay station for reducing transmission rate and method thereof
Chen et al. Demonstration of analog millimeter-wave fronthaul link for 64-qam lte signal transmission
CN215420247U (en) Digital multi-channel signal far-end frequency conversion device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11734468

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11734468

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP