WO2011089572A1 - Agente colector y espumante para flotación a base de residuos orgánicos para la recuperación de metales a partir de minerales por flotación espumosa, proceso de obtención del agente colector y espumante de flotación y proceso de flotación espumosa que usa el agente colector y espumante - Google Patents

Agente colector y espumante para flotación a base de residuos orgánicos para la recuperación de metales a partir de minerales por flotación espumosa, proceso de obtención del agente colector y espumante de flotación y proceso de flotación espumosa que usa el agente colector y espumante Download PDF

Info

Publication number
WO2011089572A1
WO2011089572A1 PCT/IB2011/050283 IB2011050283W WO2011089572A1 WO 2011089572 A1 WO2011089572 A1 WO 2011089572A1 IB 2011050283 W IB2011050283 W IB 2011050283W WO 2011089572 A1 WO2011089572 A1 WO 2011089572A1
Authority
WO
WIPO (PCT)
Prior art keywords
flotation
collecting
foaming agent
foaming
minerals
Prior art date
Application number
PCT/IB2011/050283
Other languages
English (en)
French (fr)
Inventor
Rosanna Ginocchio Cea
Miguel Nicolás HERRERA MARCHANT
César Antonio SÁEZ NAVARRETE
Lorenzo Reyes Bozo
Original Assignee
Pontificia Universidad Católica De Chile
Centro De Investigación Minera Y Metalúrgica
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pontificia Universidad Católica De Chile, Centro De Investigación Minera Y Metalúrgica filed Critical Pontificia Universidad Católica De Chile
Priority to CA2787724A priority Critical patent/CA2787724C/en
Priority to US13/574,456 priority patent/US20130025410A1/en
Publication of WO2011089572A1 publication Critical patent/WO2011089572A1/es
Priority to ZA2012/05536A priority patent/ZA201205536B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/001Flotation agents
    • B03D1/004Organic compounds
    • B03D1/01Organic compounds containing nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/001Flotation agents
    • B03D1/004Organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/001Flotation agents
    • B03D1/004Organic compounds
    • B03D1/008Organic compounds containing oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/02Froth-flotation processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/14Flotation machines
    • B03D1/16Flotation machines with impellers; Subaeration machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/08Subsequent treatment of concentrated product
    • B03D1/085Subsequent treatment of concentrated product of the feed, e.g. conditioning, de-sliming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2201/00Specified effects produced by the flotation agents
    • B03D2201/007Modifying reagents for adjusting pH or conductivity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2201/00Specified effects produced by the flotation agents
    • B03D2201/02Collectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2201/00Specified effects produced by the flotation agents
    • B03D2201/04Frothers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2203/00Specified materials treated by the flotation agents; Specified applications
    • B03D2203/02Ores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2203/00Specified materials treated by the flotation agents; Specified applications
    • B03D2203/02Ores
    • B03D2203/04Non-sulfide ores
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/20Nature of the water, waste water, sewage or sludge to be treated from animal husbandry

Definitions

  • the present invention relates to collecting agents and foaming agents based on organic waste, useful in foaming flotation processes for the recovery of metals of commercial value from sulphured minerals (copper, zinc, lead, iron, molybdenum, among others) or not sulfurized (gold, among others).
  • the present invention consists of multifunctional flotation agents that serve as collectors and foaming agents based on organic waste derived from aerobic or anaerobic treatment or decomposition processes, or a fraction thereof (extract).
  • extract extract
  • the present invention also consists in the process of production and use of said collecting and foaming agents in a foaming flotation process for the recovery of commercially valuable metals from minerals. It also allows the generation of a tailings whose composition leaves it suitable for an environmental remediation treatment.
  • This invention aims to attack some of these challenges, in particular with regard to improving the mineral concentration stage by developing unique, bifunctional, effective, low-cost flotation reagents that are very competitive with reagents. existing in the market. In addition, it allows improving flotation efficiency and has the unique feature of generating tailings that allow a very positive environmental impact management to apply technologies such as phytoremediation.
  • Foamy flotation is one of the processes of greatest intensity of use in the benefit of sulphurated minerals (copper, zinc, lead, iron, molybdenum, among others) or non-sulphide (gold, among others) that contain commercially valuable metals.
  • the process allows to separate the commercial value metals from the associated bargain and / or separate the valuable metals from each other, from minerals previously subjected to the crushing and grinding stages.
  • foaming agents In the case of sulphurous minerals subjected to foamy flotation, different chemical compounds of specific action are used, such as foaming agents, collectors and modifiers.
  • the collectors are organic compounds of relatively short carbon chain and without foaming capacity.
  • a foaming agent for example, pine oil, cresyl acid, alcohols of the ROH type as methyl isobutyl , carbonyl, polyglycols and 2 ethyl hexanol.
  • foamy flotation separation is its efficient operation at a substantially lower cost than that of other beneficiation processes, such as gravitational concentration and centrifugal concentration, among others.
  • collectors or promoters are added, which allow the selective transformation of a lyophilic surface (hydrophilic in the case of water use) into a lyophobic surface (hydrophobic in the case of water use) in the minerals that contain the valuable metal that you want to obtain as the final product.
  • collectors or promoters allow the selective transformation of a lyophilic surface (hydrophilic in the case of water use) into a lyophobic surface (hydrophobic in the case of water use) in the minerals that contain the valuable metal that you want to obtain as the final product.
  • the application of flotation is intended to obtain a Copper Law range in the copper concentrate of 25% - 30% (weight / weight, dry base) from low grade minerals (0.5 - 2% Cu).
  • concentration by flotation in the copper industry reach copper recovery ranges from the ore of the order of 80% to 85%, and in optimal cases values close to 90%; however, the above is obtained with a high operational cost.
  • the flotation reagents used are made up of recalcitrant chemical compounds, which have a negative environmental impact.
  • the foaming flotation process based on the use of effluents conditioned with polyglycerol requires the typical addition of the foaming and collectors conventionally used in the rougher flotation stage.
  • the solution proposed in that document consisting of the use of effluents from sewage treatment plants conditioned with polyglycerol, is not intended for the total or partial replacement of the foaming agents conventionally used in foaming flotation processes, but as an alternative source of water for the mining process in those places where the possibilities of accessing natural sources of water are limited.
  • multifunctional flotation agent should be understood as an agent that can have the functions of collector and foaming at the same time.
  • collecting and foaming agent refers to a single multifunctional agent, which comprises the functions of collecting and foaming.
  • organic matter refers to biosolids from wastewater treatment plants, organic sludges from biogas production systems, compost water-soluble organic matter or other similar organic waste treated or biologically stabilized in aerobic and / or anaerobic conditions, industrial sludges from the treatment of industrial organic liquid wastes, water-soluble organic matter from vegetable mobs, guanos, manure or a combination of two or more of any of them, or a fraction thereof.
  • full acids refers to the organic components present in the organic matter (ie biosolids, manure) and which are obtained by basic extraction and which do not precipitate at low pH.
  • humic acids refers to organic components present in organic matter (ie biosolids, manure) and which are obtained by basic extraction and precipitate at low pH.
  • liquid extract of multifunctional flotation agent should be understood as a liquid agent that can have the functions of collector and foaming at the same time, which is a liquid extract obtained from the processing of organic waste derived from aerobic treatment or decomposition processes, such as biosolids and / or manures.
  • multifunctional flotation agents are provided, with collector and foaming function, on the basis of organic waste derived from aerobic or anaerobic treatment or decomposition processes, or a fraction thereof, available for flotation processes Foamy for the recovery of metals of commercial value from minerals. Also, a manufacturing process for them and use of said collecting and foaming agents in mining flotation processes are provided.
  • the main advantage of the present invention with respect to the state of the current technology is the lower cost and the lower environmental impact of the present collecting and foaming agent compared to the current collecting and foaming chemical reagents; there is also a better selectivity in the recovery of metals of commercial value from minerals and a wider spectrum of application.
  • the collecting and foaming agents of the present invention have the advantage of having a much more competitive cost to the existing collectors and foaming agents. Additionally, due to the organic origin of the collecting and foaming agents of the present invention, these are harmless to human health, the environment and subsequent metallurgical processes, because they are biodegradable This last attribute is of special relevance in terms of occupational stress and health, since the chemical collecting agents and foaming agents on the market are toxic and flammable organic compounds, persistent and stored in the tailings tanks after use.
  • the present invention allows the recovery of organic waste derived from aerobic or anaerobic treatment or decomposition processes, or a fraction thereof.
  • health companies could value the biosolids generated by their home wastewater treatment plants, just as the intensive livestock industry could value their organic waste (manure, slurry).
  • the present invention provides an environmentally safe and valued form of massive and bulky waste that has a very negative social perception. Simultaneously, the total or partial replacement of the current flotation reagents with organic waste or a fraction of them would eliminate the inherent environmental risks associated with the current chemical flotation reagents.
  • Figure 1 Shows the stages of the foaming flotation process for the recovery of commercially valuable metals.
  • Figure 2 Illustrates the variation of surface tension for pH 7 and 10 at different concentrations of humic substances (SH), biosolids (BS) and methyl-isobutyl-carbinol (MIBC):
  • SH humic substances
  • BS biosolids
  • MIBC methyl-isobutyl-carbinol
  • Figure 3 It shows the quantification of hydrophobic fractions of sulphide mineral copper (M), chalcopyrite (Cpy) and pyrite (Py) for a dosage of SH, BS, goat guano and RQCI obtained for the experimental condition of 100% water (surface tension of 72.1 mN m "1 ). The average values (n> 4) are shown; and the error bars.
  • Figure 4 Illustrates the foam flotation kinetics obtained with dosing of industrial chemical reagents (collectors + foaming agents), biosolids (BS) and humic substances (SH).
  • collectors + foaming agents collectors + foaming agents
  • biosolids BS
  • humic substances SH
  • the present invention consists of a multifunctional flotation agent comprising the functions of collector and foaming agent, for foaming flotation processes in the recovery of metals of commercial value from sulphured minerals (copper, zinc, lead, iron, molybdenum, among others) ) or non-sulfurized (gold, among others), which consist of organic waste derived from aerobic or anaerobic treatment or decomposition processes, or a fraction of them (extract).
  • the multifunctional flotation agent or "collecting and foaming agent” consists of organic waste derived from aerobic or anaerobic treatment or decomposition processes, such as biosolids and / or manures. Results of physical and chemical analyzes obtained from the literature for biosolids and manures are shown in Table 1. The percentages are indicated on a dry basis.
  • Table 1 Ranges for the chemical composition and physical characteristics of biosolids and manure obtained from the literature.
  • the production process of the multifunctional flotation agent of this invention consists of the following steps:
  • b. reduce in size and separate, for example through grinding and sieving to values less than or equal to 10 millimeters (mm).
  • the product obtained in point 2 can be subjected to an aqueous liquid extraction process using strong acids and / or bases that will maintain the same characteristics mentioned for the multifunctional flotation agent (collecting and foaming agent) of this invention.
  • the process of liquid extraction of the multifunctional flotation agent (collecting and foaming agent) consists of the following stages:
  • Extract through an acid-base process which considers a pH reduction between 1 and 2 with a strong acid, such as HC1, H 2 S0 4 , H 3 P0 4 , at room temperature. Adjust the volume of the solution with acid until obtaining a ratio between 1: 5 and 1: 10 organic residue: acid solution (mass: volume), on a dry basis. Shake the suspension for a period of less than or equal to 10 hours. Separate and reserve the supernatant of the solid fraction. Adjust the pH of the solid fraction to neutrality with a strong base, such as KOH, NaOH, etc., at room temperature. Adjust the volume of the solution with a base until a ratio between 1: 5 and 1: 10 is obtained, solid fraction: basic solution (mass: volume). Shake the suspension for a period of less than or equal to 10 hours. Separate and reserve the second supernatant from the second solid fraction. Mix the first and second stage supernatants described above to obtain the extract.
  • a strong acid such as HC1, H 2 S0 4 , H 3
  • Extract using water as an aqueous extractant which considers adjusting the volume of the solution with water in a range between 1: 5 and 1: 10, organic residue: water (volume: volume) on a dry basis, under environmental conditions. Shake the suspension for a period of less than or equal to 10 hours. Separate and reserve the supernatant (extract) from the solid fraction.
  • the foaming flotation process for the recovery of metals of commercial value from sulphured or non-sulfurized minerals comprises the steps of:
  • C. pH modifier (s) such as lime, strong bases such as KOH, NaOH, among others;
  • the collecting and foaming agent in general, it is added in amounts less than or equal to 30% of the mineral weight and preferably between 5% and 20%;
  • foaming flotation process for recovery of commercially valuable metals comprises the additional steps of:
  • liquid extract of the multifunctional flotation agent collecting and foaming agent
  • amounts of the collecting and foaming agent less than or equal to 45% of the mineral weight and more preferably between 2% and 30% are added
  • pH modifier such as lime, strong bases such as KOH, NaOH, among others
  • tailings for final disposal.
  • the tailings are discarded in tailings tanks built for these purposes, following the procedures and methods used for each tailings plant.
  • the foaming flotation process is suitable to benefit sulphurated minerals (copper, zinc, lead, iron, molybdenum, among others) or non-sulphide (gold, among others), and also commercial value metals contained in queues derived from the first phase of processing in two-phase foamy flotation processes.
  • copper can be benefited from minerals such as chalcopyrite (CuFeS 2 ) and mineral mixtures (chalcosite, Cu 2 S; covelin, CuS; bornite, Cu 5 FeS 4 , among others).
  • copper sulphide ores contain pyrite (FeS 2 ) and other metal sulphides that are also benefited.
  • the multifunctional flotation agent in step 2) and optionally in a step 6), is added in an amount that will depend on various factors , such as physical, chemical, speciation, particle size distribution, ore grade and degree of release, among others.
  • most of the commercial value iron contained in the foam can be recovered as an iron concentrate, and lower value copper ores commercial (for example chalcopyrite) and other sulfur metals of commercial value contained in the pulp (molybdenum, silver, etc.).
  • the pulp is agitated and aerated for a period of time that maximizes iron recovery.
  • the specific period of time will depend on the physical, chemical, speciation, particle size distribution, Law and degree of release, among others;
  • the time required to float a given mineral can be estimated according to the efficiency and production plans of the concentrator plant.
  • flotation is performed for a period of 2 to 20 minutes and more preferably for a period of 5 to 15 minutes.
  • the iron concentrate is collected and the tail is subjected to the second foamy flotation phase.
  • the tail is subsequently subjected to a second phase of foaming flotation to recover most of the commercial value copper contained in the foam (copper concentrate) and to lower the minerals with no commercial value and the bargain that remain in the lower phase (tailings ).
  • the second flotation phase between 2% and 30% of the mineral weight of a liquid extract of the collecting and foaming agent of the present invention is added.
  • the tail is agitated and aerated for a period of time that maximizes the recovery of copper.
  • the specific period of time depends on the physical, chemical, speciation, particle size distribution, Law of mineraly degree of release, among others;
  • the time required to float a given mineral can be estimated according to the production and efficiency objectives of the concentrator plant.
  • flotation is performed for a period of 2 to 20 minutes and preferably for a period of 5 to 15 minutes.
  • the copper concentrate is collected and the tailings or new tail is removed and removed.
  • the tailings are discarded in tailings deposits built for these purposes, according to the procedures established in each tailings plant.
  • a fraction of the organic waste used as foaming agents and collectors in the foaming flotation process of the present invention is retained in the tailings generated, which leaves them in a better condition for subsequent environmental remediation processes.
  • the multifunctional flotation agent (collecting and foaming agent) of the present invention can be supplemented with one or more of the foaming agents and / or collectors traditionally used in a specific operation of foamy flotation of sulphured or non-sulfurized minerals;
  • the amount of sparkling and / or aggregate collector will depend on the desired characteristics and critical process variables, which are determined by the specificities and singularities of each mineral concentration process.
  • any of the existing collectors in the market such as compounds containing ammonium and cationic polar groups (for example fatty acids, xanthates, xanthate esters, dithiocarbamates, mercaptans, thioureas and thionocarbamates), can be used with the new collectors indicated in phases I and II of this invention ( Figure 1).
  • foaming agents have been successfully used in the flotation of minerals from sulphured minerals, such as low molecular weight dihydrocarbon alcohols (for example methyl isobutylcarbinol, MIBC, polyglycol, pine oils, polyglycol monoesters and ethoxylates of alcohol, among others). Any of them can be used in a complementary and synergistic manner in the process of the present invention.
  • low molecular weight dihydrocarbon alcohols for example methyl isobutylcarbinol, MIBC, polyglycol, pine oils, polyglycol monoesters and ethoxylates of alcohol, among others. Any of them can be used in a complementary and synergistic manner in the process of the present invention.
  • the foamy flotation process of the present invention allows to obtain a copper concentrate of better quality, due to the lower content of iron ore attributes that allow to improve its commercial value, either for sale in the domestic market or in the international market.
  • the copper concentrate obtained by the present invention makes it possible to maintain an iron content suitable to the input requirements of the smelting stage, in the case of those tasks using Arthur converter furnaces,
  • APPLICATION EXAMPLE The present application examples used a multifunctional flotation agent, with collector and foaming functions based on sanitary sludge (biosolids) and a collecting and foaming agent based on humic substances, the characteristics of which are given in the following Tables:
  • the copper ore used in this example consists primarily of chalcopyrite-pyrite, with an average copper content of 0.74% and 4.50% iron and a particle size less than or equal to 400 microns.
  • the surface tension measurements were made on a Krüss K8 tensiometer, according to the Du Nouy method at room temperature of 18 ° C.
  • Solutions of biosolids (BS), humic substances (SH) and methyl isobutyl carbinol (MIBC) were prepared with ultrafiltered deionized water, with a resistivity of 18 ⁇ -cm (equivalent to an electrical conductivity of 5.55 x 10 "2 ⁇ 8 cm “ 1 ), and a surface tension of 72.1 mN m "1.
  • the concentrations tested for BS were 0; 1; 10; 25; 50 and 100 g L "1 , for SH 0; 0.1; one ; 5; 10 and 25 g L 1 and for MIBC 0; 0.1; 0.5; one ; 2.5; 5 and 7.5 g L "1.
  • the concentrations tested expressed in grams of humic substances per liter are equivalent for BS and SH.
  • a pH adjustment was made for each of the solutions of BS, SH and MIBC at pH 7 and 10, adding small aliquots of 0.1M NaOH and HC1 solution
  • the samples were measured at least 4. The results obtained are shown in Figure 2.
  • the results show that the SH, BS and MIBC have a surfactant activity throughout the measured concentration range.
  • the surface tension of the SH is pH dependent, showing that at pH 10 they are more surfactant than at pH 7.
  • a similar behavior is shown by the BS and the MIBC.
  • Figure 2 A shows that the BSs allow changing the surface tension as well as the MICB, determining that for a concentration of 100 g L "1 of BS the surface tension is 40 mN m " 1 , while the MIBC allows obtaining a similar surface tension with a concentration of 7.5 g L "1 .
  • Figure 2B shows that when correcting the concentrations of SH and BS by the sedimented fraction of said substances, the BS has a similar behavior to the MIBC. Doses less than 4 g L "1 of BS show to be more surfactant, at both pHs tested, compared to the MIBC, and therefore have better foaming properties.
  • Example 2 Measurement of foaming power and foam stability.
  • Foaming tests were performed following the Bikerman method. Said method allows to determine the dynamic generation of foam, ⁇ and static stability, ⁇ .
  • MIBC methyl-isobutyl-carbinol foaming agents
  • SH humic substances
  • BS biosolids
  • the dynamic generation of foam is produced continuously by atmospheric air injection.
  • a dry air compressor was used according to 4 air flows: 1, 2, 3 and 4 L min "1.
  • the injected air was passed through an air flow meter (Gilmont Instruments, Inc., USA), and then through a Pyrex glass filter of porosity grade 2, corresponding to an average diameter between 40 and 100 ⁇ .
  • the sample to be tested (20 mL of solution) was inside the filter.
  • the air was passed through the liquid in a column and, for each flow of air injected, the height of the foam was determined at steady state
  • the imprecision in the measure of the height of the foam at steady state was ⁇ 1 cm, depending on the type and concentration of Foaming and air flow used
  • the static stability ⁇ of the foam was quantified, which corresponds to the time for the total decrease of the foam produced, after the gas flow is turned off. The results are shown in the Table Four.
  • Table 4 Bikerman parameters for humic substances (SH), Biosolids (BS) and Methyl-Isobutyl-Carbinol (MIBC).
  • the concentrations of humic substances (SH) and biosolids (BS) are expressed in grams of humic substance per liter of solution.
  • the BS and the MIBC a positive relationship is observed between the concentration and the generation and static stability of the foam.
  • the concentrations of 0.1 and 1 g L 1 of SH, BS and MIBC have values of ⁇ that increase according to the air flow; however, for concentrations of 5 and 10 g L 1 of SH and BS, said relationship is inverse, showing that for a fixed concentration - as the air flow increases - ⁇ decreases dramatically.
  • the foam By increasing the air flow, the foam is more unstable, favoring the coalescence of the bubbles produced.
  • the BS show Bikerman parameters ( ⁇ and ⁇ ) of the same order of magnitude as those obtained for the MIBC, for the concentrations and air flows tested.
  • Example 3 Collecting power: Film flotation tests.
  • the "flotation film” technique allows to determine the hydrophilic and hydrophobic fractions of a mineral and / or mineralogical species exposed to different water: alcohol mixtures.
  • Humic substances (SH), biosolids (BS) and goat guano (GC) were added in a dosage of 1.5% humic substances (w / w, dry base), while chemical industrial reagents (RQCI) were used in the following dosages: potassium dialkyl dithiophosphate (Lib-K), 16 g ton "1 ; sodium isobutyl xanthate, 5 g ton "1 ; mercaptan (P-3), 11 g ton "1.
  • the mineral samples (sulphide copper ore, chalcopyrite and pyrite) were conditioned with the addition of the collecting reagents (SH, BS, GC and RQCI) for a period between 10 and 20 minutes, the pH was then adjusted with HCl and / or NaOH and each experimental condition was stirred on a shaker for 3 hours, at 25 ° C. In each test a particle size between 75 and 106 ⁇ was used.
  • the hydrophilic fraction was recovered, dried and weighed and, due to mass difference, the hydrophobic fraction was quantified.
  • the experimental condition of 100% water can be seen in Figure 3.
  • Figure 3 shows that the natural buoyancy, without the addition of reagents, of the sulphide copper ore and mineralogical species, such as chalcopyrite and pyrite, is low (of the order of 10%).
  • the use of RQCI makes it possible to change the natural buoyancy of copper sulphide ore and mineralogical species, allowing chalcopyrite and pyrite to float by 40%; in this way, the RQCIs allow floating said mineral species in a non-selective way, increasing the natural hydrophobicity of both mineralogical species.
  • the SHs allow the natural buoyancy of copper sulphide ore and / or mineralogical species to be increased to 15%.
  • the BS and the GC show a better affinity with the pyrite with respect to the chalcopyrite.
  • the BS allow 42% of pyrite to float, while the GC 37.5% of this mineralogical species.
  • BS floats 21% and GC 25%. Therefore, BS and GC show a similar behavior to the sulphide ore, chalcopyrite and pyrite tested, being more selective for pyrite.
  • the BS and the GC allow to change the natural buoyancy of the sulphide copper ore, allowing 36% and 26% of said ore to float, respectively.
  • Example 4 Foam flotation test in Denver Cell.
  • the experimental procedure considers the opening of the cell's air injection valve, in order to allow the formation of a foam phase on the pulp phase, which is extracted via paleteo from the foam phase surface in the following times: 1 -3 minutes; 3-6 minutes; 6-10 minutes; 10-14 minutes; 14-18 minutes At these times, samples of concentrate are collected, which are filtered, dried and chemically analyzed, via atomic absorption method.
  • Type 1 biosolids (SH 2, type 2) NaOH Type 1 biosolids (BS 1), and type 2 biosolids (BS 2), refer to samples of biosolids from the same household wastewater treatment plant, with BS 1 being a waste generated at least 2 years before BS 2.
  • Humic substances type 1 (SH 1) and type 2 (SH 2) refer to the same material tested in two different runs (repetitions).
  • RQCI Industrial collecting chemical reagents (potassium dialkyl dithiophosphate; sodium isobutyl xanthate; mercaptan)
  • RQEI Industrial foaming chemical reagents (DowFroth; Methyl-isobutyl-carbinol)
  • biosolids are foaming and effective iron collectors in foam flotation systems, while humic substances are effective copper collectors in foam flotation systems, at levels comparable to the standard flotation reagents used.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Sludge (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

La presente invención divulga un agente de flotación multifuncional con funciones de colector y espumante para proceso de flotación espumosa para recuperación de metales de valor a partir de minerales, que consiste en residuos orgánicos seleccionados del grupo consistente de biosólidos de plantas de tratamiento de aguas servidas, lodos orgánicos de sistemas de producción de biogás, materia orgánica hidrosoluble de compost u otros residuos orgánicos similares tratados o estabilizados biológicamente en condiciones aeróbicas y/o anaerobias, lodos industriales del tratamiento de residuos líquidos orgánicos industriales, materia orgánica hidrosoluble de turbas vegetales, guanos, estiércol, o una combinación de dos o más de cualquiera de los mismos, o una fracción de ellos, donde constituye entre un 35% a 98% de materia orgánica, con una densidad aparente de entre 0,2 a 0,8 g/mL, un pH entre 6,0 y 8,5, una conductividad eléctrica de entre 4,0 y 15 mS/cm. Además se divulga el proceso de obtención del agente de flotación multifuncional (agente colector y espumante) y proceso de flotación espumosa que usa el agente multifuncional divulgado en la presente invención.

Description

AGENTE COLECTOR Y ESPUMANTE PARA FLOTACIÓN A BASE DE RESIDUOS ORGÁNICOS PARA LA RECUPERACIÓN DE METALES A PARTIR DE MINERALES POR FLOTACIÓN ESPUMOSA, PROCESO DE OBTENCIÓN DEL AGENTE COLECTOR Y ESPUMANTE DE FLOTACIÓN Y PROCESO DE FLOTACIÓN ESPUMOSA QUE USA EL AGENTE COLECTOR Y ESPUMANTE
Campo de la invención
La presente invención se relaciona con agentes colectores y espumantes a base de residuos orgánicos, útiles en los procesos de flotación espumosa para la recuperación de metales de valor comercial a partir de minerales sulfurados (cobre, zinc, plomo, hierro, molibdeno, entre otros) o no sulfurados (oro, entre otros). En particular, la presente invención consiste en agentes para flotación multifuncionales que sirven como colectores y espumantes a base de residuos orgánicos derivados de procesos de tratamiento o de descomposición aeróbica o anaeróbica, o una fracción de ellos (extracto). La presente invención también consiste en el proceso de producción y de uso de dichos agentes colectores y espumantes en un proceso de flotación espumosa para la recuperación de metales de valor comercial desde minerales. También permite la generación de un relave cuya composición lo deja apto para un tratamiento de remediación ambiental.
Antecedentes
La contingencia actual ha impuesto a la industria minera, y en particular a los procesos metalúrgicos asociados, desafíos del recurso, de la operación y exógenos. En el caso de los recursos, se ha producido no sólo una disminución continua de las leyes de los minerales, y en consecuencia un aumento sostenido en los pasivos y residuos ambientales, sino que también la aparición de nuevas asociaciones mineralógicas. Por otra parte, desde el punto de vista operacional, sólo por nombrar los más importantes, existe la necesidad urgente por disminuir los costos energéticos y los consumos de agua. En el caso de los desafíos exógenos se han ido imponiendo políticas ambientales cada vez más exigentes y rigurosas. Además, se han impuesto nuevos estándares de exigencia de calidad de producto; más aún en los últimos años se ha producido un fuerte impacto en los costos de producción asociados a los insumos utilizados tanto en las operaciones mineras como en las operaciones metalúrgicas.
De lo anterior, surge con inusitada urgencia la necesidad de enfrentar estos desafíos de manera eficiente y eficaz. En esta invención se apunta a atacar algunos de estos desafíos, en particular lo concerniente a mejorar la etapa de concentración de minerales mediante el desarrollo de reactivos de flotación únicos, bifuncionales, efectivos, de bajo costo y que son muy competitivos con los reactivos existentes en el mercado. Además, permite mejorar la eficiencia en la flotación y tiene la particularidad única de generar relaves que permiten un manejo ambiental de impacto muy positivo para aplicar tecnologías tales como la fitorremediación.
La flotación espumosa es uno de los procesos de mayor intensidad de uso en la beneficiación de minerales sulfurados (cobre, zinc, plomo, hierro, molibdeno, entre otros) o no sulfurados (oro, entre otros) que contienen metales de valor comercial. El proceso permite separar los metales de valor comercial de la ganga asociada y/o separar los metales de valor entre sí, a partir de minerales previamente sometidos a las etapas de chancado y molienda.
Para el caso de minerales sulfurados sometidos a flotación espumosa, se usan diferentes compuestos químicos de acción específica, tales como espumantes, colectores y modificadores. Los colectores son compuestos orgánicos de cadena carbónica relativamente corta y sin capacidad espumante. A partir de la inyección de aire en la pulpa mineral bajo agitación, se forma una espuma compuesta por una solución acuosa del mineral finamente molido que contiene un agente espumante (por ejemplo, aceite de pino, ácido cresílico, alcoholes del tipo ROH como metil isobutil, carbonil, poliglicoles y 2 etil hexanol). Una ventaja importante de la separación por flotación espumosa es su eficiente operación a un costo sustancialmente más bajo que el de otros procesos de beneficiación, tales como la concentración gravitacional y la concentración centrífuga, entre otros.
Durante la operación de flotación se adicionan uno o varios reactivos denominados colectores o promotores, los que permiten la transformación selectiva de una superficie liofílica (hidrofílica en el caso de uso de agua) en una superficie liofóbica (hidrofóbica en el caso de uso de agua) en los minerales que contienen el metal valioso que se desea obtener como producto final. Desde el punto de vista científico, se ha constatado que la separación por flotación de una especie mineral de otra depende de la mojabilidad relativa de sus superficies en agua, la cual está determinada por el balance neto de las energías interfaciales, es decir, la variación de la energía libre por unidad de área entre las diferentes fases: sólida, líquida y gaseosa. Se han sugerido y usado diversos reactivos como colectores en procesos de flotación espumosa para la recuperación de metales de valor comercial, siendo los de mayor intensidad de uso los del tipo xantatos (xantatos, ésteres de xantato), carbamatos (ditiocarbamatos, tritiocarbamatos), mercaptanos, mercaptobenzotiazol y los derivados orgánicos del ácido fosfórico o del fósforo (ditiofosfatos, tiofosfatos, ácido dialquilditiofosfórico).
Uno de los problemas asociados con estos colectores es que a pH menor que 11 se logran menores abatimientos de la pirita y de la pirrotita. Además, la experiencia operacional ha demostrado que a medida que el pH disminuye, el poder colector de estos reactivos también disminuye, reduciendo de manera significativa la factibilidad de utilizarlos en pulpas levemente alcalinas, neutras o ácidas. Durante las operaciones industriales, el ajuste de pH se realiza mediante la adición de cal, óxidos de metales alcalinos e hidróxidos, entre otros. La inclusión de una base inorgánica es bien conocida para alcanzar valores deseados de pH. Al controlar y modificar el pH de la pulpa a niveles de 8,0 y más, y más frecuentemente de aproximadamente 11, el rendimiento de los colectores mejora.
Otros aspectos relevantes relacionados con los colectores existentes en el mercado es que son de alto costo, su especificidad es muy sensible e interferida por otras especies presentes en la pulpa y no son muy eficientes en abatir la pirita y/ la pirrotita. Adicionalmente, deben agregarse agentes espumantes, los cuales son de alto costo o aumentan los costos del proceso por la gran escala de toneladas de mineral que son procesadas en la gran minería.
En términos operacionales, la aplicación de la flotación tiene por objeto obtener un rango de Ley de cobre en el concentrado de cobre de 25% - 30% (peso/peso, base seca) a partir de minerales de baja ley (0,5 - 2% Cu). Actualmente, las operaciones de concentración por flotación en la industria del cobre, alcanzan rangos de recuperación de cobre desde el mineral del orden de 80% a 85%, y en casos óptimos valores cercanos al 90%; sin embargo, lo anterior se obtiene con un costo operacional elevado.
Actualmente, los reactivos de flotación utilizados están constituidos por compuestos químicos recalcitrantes, los que tienen un impacto ambiental negativo.
En ese sentido, el disponer de reactivos de flotación de menor costo y de menor impacto ambiental, como los residuos orgánicos derivados de procesos de tratamiento o de descomposición aeróbica o anaeróbica, o una fracción de ellos, tales como aquellos generados a partir de procesos de depuración de aguas servidas domiciliarias (biosólidos) y/o sistemas productivos pecuarios (purines, estiércol), tienen un impacto económico relevante para la industria minera, y, simultáneamente permite resolver problemáticas ambientales y sociales derivadas de su actual manejo y gestión operacional. En particular el tratamiento de aguas servidas domiciliarias mediante lodos activados, genera un volumen importante de residuos orgánicos o biosólidos, los que son usualmente dispuestos en superficie (rellenos sanitarios y monorrellenos), con un costo significativo no sólo para las empresas sanitarias sino también para los usuarios finales del sistema. Por lo tanto, resulta relevante la identificación de alternativas de valorización de estos residuos orgánicos, que por su naturaleza masiva deberían relacionarse con otros procesos industriales de gran escala, como la industria minera de gran escala. En el estado del arte, existe una propuesta de usar efluentes de plantas de tratamiento de aguas servidas como agua de proceso para la flotación espumosa de minerales, sin alterar la efectividad del mismo, divulgado en la patente US 4.028.235 del año 1976. El documento menciona que se requiere acondicionar el efluente con poliglicerol o con un tratamiento físico de clarificación, sedimentación y/o aireación, el que permita obtener agua de calidad adecuada para no afectar negativamente el proceso de flotación espumosa. Se menciona que el acondicionamiento del efluente con poliglicerol es más barato que las otras alternativas sugeridas y es esencial y crítico en el proceso. El uso directo del efluente, sin el acondicionamiento con poliglicerol, tiene efectos negativos en el proceso de flotación espumosa, ya que la ganga flota en lugar de ser abatida, generando un concentrado de menor calidad. Aunque se desconoce el mecanismo de acción del poliglicerol en el efluente, se sugiere una adición al efluente desde 3 a 10 partes por millón (ppm). Mayores cantidades de poliglicerol no demostraron mayores beneficios sobre el efluente. Adicionalmente, el documento menciona que el proceso de flotación espumosa basado en el uso de efluentes acondicionados con poliglicerol requiere la adición típica de los espumantes y colectores convencionalmente usados en la etapa rougher de flotación. Como puede observarse, la solución propuesta en ese documento, consistente en el uso de efluentes de plantas de tratamiento de aguas servidas acondicionados con poliglicerol, no está concebida para el reemplazo total o parcial de los espumantes convencionalmente usados en los procesos de flotación espumosa, sino como una fuente alternativa de agua para el proceso minero en aquellos lugares donde las posibilidades de acceder a fuentes naturales de agua son limitadas.
Definiciones
En la presente memoria descriptiva, el uso del término "agente de flotación multifuncional" debe entenderse como un agente que puede tener las funciones de colector y espumante a la vez. Indistintamente, el término "agente colector y espumante" hace referencia a un sólo agente multifuncional, que comprende las funciones de colector y espumante.
En el contexto de la presente invención, el término "materia orgánica" se refiere a biosólidos de plantas de tratamiento de aguas servidas, lodos orgánicos de sistemas de producción de biogás, materia orgánica hidrosoluble de compost u otros residuos orgánicos similares tratados o estabilizados biológicamente en condiciones aerobias y/o anaerobias, lodos industriales del tratamiento de residuos líquidos orgánicos industriales, materia orgánica hidrosoluble de turbas vegetales, guanos, estiércol o una combinación de dos o más de cualquiera de los mismos, o una fracción de ellos.
El término "ácidos fúlvicos" se refiere a los componentes orgánicos presentes en la materia orgánica (i.e. biosólidos, estiércol) y que son obtenidos por extracción básica y que no precipitan a pH bajo. El término "ácidos húmicos" se refiere a componentes orgánicos presentes en la materia orgánica (i.e. biosólidos, estiércol) y que son obtenidos por extracción básica y que precipitan a pH bajo.
En el contexto de la presente invención el término "extracto líquido de agente de flotación multifuncional" debe entenderse como un agente líquido que puede tener las funciones de colector y espumante a la vez, el cual, es un extracto líquido obtenido a partir del procesamiento de residuos orgánicos derivados de procesos de tratamiento o de descomposición aeróbica, tales como biosólidos y/o estiércoles.
Problema Técnico
Existe la necesidad de generar agentes colectores y espumantes para flotación de minerales sulfurados (cobre, zinc, plomo, hierro, molibdeno, entre otros) o no sulfurados (oro, entre otros) de bajo impacto ambiental, de bajo costo, multifuncionales (función simultánea de colector y espumante) y eficientes para la concentración y la separación de múltiples metales de valor desde los minerales sometidos a flotación, los que operen a amplios rangos de pH en procesos de recuperación de metales de valor comercial por flotación espumosa.
Solución Técnica
De acuerdo a la presente invención, se proveen agentes de flotación multifuncionales, con función de colector y espumante, en base de residuos orgánicos derivados de procesos de tratamiento o de descomposición aeróbica o anaeróbica, o una fracción de los mismos, disponibles para procesos de flotación espumosa para la recuperación de metales de valor comercial desde minerales. También, se proveen un proceso de fabricación para los mismos y uso de dichos agentes colectores y espumantes en procesos de flotación mineros.
Efectos Ventajosos
La principal ventaja de la presente invención con respecto al estado de la tecnología actual es el menor costo y el menor impacto ambiental del presente agente colector y espumante comparado con los actuales reactivos químicos colectores y espumantes; también se tiene una mejor selectividad en la recuperación de los metales de valor comercial desde los minerales y un espectro de aplicación más amplio.
Los agentes colectores y espumantes de la presente invención tienen la ventaja de tener un costo mucho más competitivo a los colectores y espumantes existentes en el mercado. Adicionalmente, por el origen orgánico de los agentes colectores y espumantes de la presente invención estos son inocuos para la salud humana, el medio ambiente y los posteriores procesos metalúrgicos, por ser biodegradables. Este último atributo es de especial relevancia en términos de estrés laboral y salud, ya que los agentes colectores y espumantes químicos existentes en el mercado son compuestos orgánicos tóxicos e inflamables, persistentes y quedan almacenados en los depósitos de relave tras su utilización.
Adicionalmente, la presente invención permite valorizar residuos orgánicos derivados de procesos de tratamiento o de descomposición aeróbica o anaeróbica, o una fracción de ellos. Por ejemplo, las empresas sanitarias podría valorizar los biosólidos generados por sus plantas de tratamiento de aguas servidas domiciliarias, al igual que la industria pecuaria intensiva podría valorizar sus residuos orgánicos (estiércoles, purines).
Por lo tanto, la presente invención provee una forma ambientalmente segura y valorizada de residuos masivos y voluminosos que posee una percepción social muy negativa. Simultáneamente, el reemplazo total o parcial de los actuales reactivos de flotación por residuos orgánicos o una fracción de ellos, eliminaría los riesgos ambientales inherentes asociados a los actuales reactivos de flotación químicos.
Breve descripción de las figuras
Figura 1: Muestra las etapas del proceso de flotación espumosa para la recuperación de metales de valor comercial.
Figura 2: Ilustra la variación de la tensión superficial para pH 7 y 10 a distintas concentraciones de sustancias húmicas (SH), biosólidos (BS) y metil-isobutil-carbinol (MIBC): (A) Ilustra los resultados obtenidos para una concentración total de espumante (SH, BS, MIBC); (B) Ilustra los resultados obtenidos para una concentración de espumante corregida por la fracción de material sedimentada. En ambas gráficas se muestran los valores promedio (n>4); las barras de error quedan dentro de los símbolos.
Figura 3: Muestra la cuantificación de las fracciones hidrofóbicas de mineral sulfurado de cobre (M), calcopirita (Cpy) y pirita (Py) para una dosificación de SH, BS, guano de cabra y RQCI obtenidas para la condición experimental de 100% agua (tensión superficial de 72,1 mN m"1). Se muestran los valores promedio (n> 4); y las barras de error.
Figura 4: Ilustra las cinéticas de flotación espumosa obtenidas con dosificación de reactivos químicos industriales (colectores + espumantes), biosólidos (BS) y sustancias húmicas (SH). (A) Ilustra los resultados obtenidos con relación a la Ley de cobre y (B) muestra los resultados obtenidos con relación a la Ley de hierro.
Descripción detallada de la Invención La presente invención consiste en un agente de flotación multifuncional que comprende las funciones de colector y espumante, para procesos de flotación espumosa en la recuperación de metales de valor comercial a partir de minerales sulfurados (cobre, zinc, plomo, hierro, molibdeno, entre otros) o no sulfurados (oro, entre otros), que consisten en residuos orgánicos derivados de procesos de tratamiento o de descomposición aeróbica o anaeróbica, o en una fracción de ellos (extracto).
En particular, el agente de flotación multifuncional, o "agente colector y espumante", consiste en residuos orgánicos derivados de procesos de tratamiento o de descomposición aeróbica o anaeróbica, tales como biosólidos y/o estiércoles. Resultados de análisis físicos y químicos obtenidos de la literatura para biosólidos y estiércoles se muestran en la Tabla 1. Los porcentajes se indican sobre base seca.
Tabla 1 : Rangos para la composición química y características físicas de biosólidos y estiércoles obtenidos de la literatura.
Figure imgf000009_0001
El proceso de producción del agente de flotación multifuncional de esta invención consta de las siguientes etapas:
1. Recolectar desde las fuentes generadoras la materia orgánica correspondiente a los biosólidos y/o estiércol, y seleccionar una vez determinadas sus propiedades físicas y químicas, enumeradas en la Tabla 1 ,
2. Acondicionar, lo que puede considerar algunas de las siguientes operaciones, dependiendo de su origen y su forma de aplicación:
a. deshidratar hasta un contenido de humedad menor o igual al 75% y más generalmente a un contenido de humedad menor o igual al 20%.
b. reducir de tamaño y separar, por ejemplo a través de molienda y tamizado a valores menores o iguales a 10 milímetros (mm).
c. compactar en la forma de pellets o de briquetas, y opcionalmente. 3. Envasado del producto.
El producto obtenido en el punto 2 puede ser sometido a un proceso de extracción líquida acuosa empleando ácidos y/o bases fuertes que mantendrá las mismas características mencionadas para el agente de flotación multifuncional (agente colector y espumante) de esta invención.
El proceso de extracción líquida del agente de flotación multifuncional (agente colector y espumante) consta de las siguientes etapas:
1. Tomar el producto al final de la etapa 2 descrita anteriormente.
2. Realizar una extracción, que considera algunos de los siguientes métodos alternativos, dependiendo de su origen y su forma de aplicación:
a. Extraer mediante un proceso ácido-base, que considera una reducción de pH entre 1 y 2 con un ácido fuerte, como por ejemplo HC1, H2S04, H3P04, a temperatura ambiente. Ajustar el volumen de la solución con ácido hasta obtener una relación entre 1 :5 y 1 : 10 residuo orgánico: solución ácida (masa:volumen), en base seca. Agitar la suspensión por un período de tiempo menor o igual a 10 horas. Separar y reservar el sobrenadante de la fracción sólida. Ajustar el pH de la fracción sólida a neutralidad con una base fuerte, tal como KOH, NaOH, etc., a temperatura ambiente. Ajustar el volumen de la solución con una base hasta obtener una relación entre 1 :5 y 1 : 10, fracción sólida: solución básica (masa:volumen). Agitar la suspensión por un período de tiempo menor o igual a 10 horas. Separar y reservar el segundo sobrenadante de la segunda fracción sólida. Mezclar los sobrenadantes de la primera y segunda etapa descritas anteriormente para obtener el extracto.
b. Extraer empleando agua como extractante acuoso, que considera ajustar el volumen de la solución con agua en un rango entre 1 :5 y 1 : 10, residuo orgánico:agua (volumen: volumen) en base seca, en condiciones ambientales. Agitar la suspensión por un período de tiempo menor o igual a 10 horas. Separar y reservar el sobrenadante (extracto) de la fracción sólida.
3. Envasar el extracto obtenido.
Descripción de un método de flotación espumosa en minería
Adicionalmente, se cuenta con un proceso alternativo y competitivo de flotación espumosa para la recuperación de metales de valor comercial a partir de minerales sulfurados o no sulfurados, el que utiliza el agente de flotación multifuncional (agente colector y espumante) de la invención, como elemento alternativo y altamente competitivo en comparación a los agentes colectores y espumantes usados hasta esta invención (Figura 1).
El proceso de flotación espumosa para recuperación de metales de valor comercial a partir de minerales sulfurados o no sulfurados de acuerdo a la presente invención comprende los pasos de:
1. Reducir el tamaño de los minerales sulfurados o no sulfurados a un tamaño de partícula bajo 400 mieras. Esto considera las etapas de chancado primario, secundario y terciario, y posterior molienda convencional o semiautógena;
2. Acondicionar el mineral molido en una pulpa mezclando:
a. dicho mineral molido;
b. agua para obtener una pulpa de mineral con un rango de 5% a 20% de peso de sólidos; c. modificador(es) de pH tales como cal, bases fuertes como KOH, NaOH, entre otras; d. el agente colector y espumante; en general, se agrega en cantidades menores o iguales que 30% del peso de mineral y preferentemente entre 5% y 20%;
3. Recibir dicha pulpa acondicionada en un equipo de flotación, donde se agrega agua para obtener una pulpa con un rango de 20% a 50% de peso de sólidos, y más preferentemente entre 30% y 40%;
4. Agitar para mantener el material en suspensión, preferentemente a una velocidad en un rango de 40 a 500 rpm, más preferentemente entre 70 a 90 rpm, y airear con un flujo de 5 - 200 metros cúbicos por minuto, durante un periodo de tiempo de 2 a 20 minutos dicha pulpa acondicionada, concentrando en una espuma dicho metal de valor comercial y abatiendo una cola de flotación.
5. Colectar dicha espuma rica en dicho metal de valor comercial como concentrado de dicho metal de valor comercial.
Adicionalmente, el proceso de flotación espumosa para recuperación de metales de valor comercial, de acuerdo a la presente invención, comprende los pasos adicionales de:
6. Traspasar dicha cola de flotación a un segundo equipo de flotación, para colectar un segundo metal de valor comercial;
7. Acondicionar dicha cola de flotación con:
a. extracto líquido del agente de flotación multifuncional (agente colector y espumante); en general, se agregan cantidades del agente colector y espumante menores o iguales que 45% del peso de mineral y más preferentemente entre 2% y 30%; b. modificador(es) de pH tales como cal, bases fuertes como KOH, NaOH, entre otras; 8. Someter dicha cola acondicionada a una segunda flotación espumosa, con agitación para mantener el material en suspensión, a una velocidad en un rango de 70 a 90 rpm y aireación entre 15 - 200 metros cúbicos por minuto, durante un periodo de tiempo de 2 a 20 minutos, concentrando en una espuma dicho segundo metal de valor comercial y abatiendo una ganga;
9. Colectar dicha espuma rica en dicho segundo metal de valor comercial como concentrado de dicho segundo metal de valor comercial.
10. Evacuar dicha cola (relave) para su disposición final. Los relaves son descartados en depósitos de relaves construidos para estos efectos, siguiendo los procedimientos y métodos usados para cada planta de relaves.
El proceso de flotación espumosa, de acuerdo a la presente invención, es adecuado para beneficiar minerales sulfurados (cobre, zinc, plomo, hierro, molibdeno, entre otros) o no sulfurados (oro, entre otros), y además metales de valor comercial contenidos en colas derivadas de la primera fase de procesamiento en procesos de flotación espumosa de dos fases. Por ejemplo, el cobre puede ser beneficiado a partir de minerales tales como calcopirita (CuFeS2) y mezclas de minerales (calcosita, Cu2S; covelina, CuS; bornita, Cu5FeS4, entre otros). Normalmente, los minerales de sulfuras de cobre contienen pirita (FeS2) y otros sulfuros de metal que también son beneficiados.
En adelante la descripción será aplicada a beneficiar y recuperar cobre a partir de minerales sulfurados, lo que se hará a modo de ejemplo y no con el fin de limitar el alcance de la invención. Sin embargo, esta descripción también aplica a otros minerales sulfurados o no sulfurados de metales de valor comercial, tales como galena (PbS) y esferalita (ZnS), entre otros. El proceso de la presente invención ha demostrado ser particularmente adecuado para beneficiar minerales de sulfuros de cobre, tales como minerales del tipo sulfuros de cobre asociados con pirita; a modo de ejemplo, las asociaciones típicas CuFeS2/FeS2.
De acuerdo con el proceso de la presente invención, en la etapa 2) y opcionalmente en una etapa 6), se agrega el agente multifuncional de flotación, con función de colector y espumante de la presente invención, en una cantidad que dependerá de diversos factores, tales como las propiedades físicas, químicas, especiación, distribución del tamaño de partículas, Ley del mineral y grado de liberación, entre otros.
En una primera fase de flotación espumosa, se puede recuperar la mayor parte de hierro de valor comercial contenido en la espuma como concentrado de hierro, y abatir minerales de cobre de valor comercial (por ejemplo calcopirita) y otros metales sulfurados de valor comercial contenidos en la pulpa (molibdeno, plata, etc.).
En la primera fase de flotación, se agrega entre 5% y 25% del peso de mineral del agente colector y espumante de la presente invención. La pulpa es agitada y aireada por un período de tiempo que maximiza la recuperación del hierro. El período específico de tiempo dependerá de las propiedades físicas, químicas, especiación, distribución del tamaño de partículas, Ley y grado de liberación, entre otros; el tiempo necesario para flotar un mineral determinado puede ser estimado de acuerdo a la eficiencia y planes de producción de la planta concentradora. Típicamente, la flotación se realiza por un período de 2 a 20 minutos y más preferentemente por un período de 5 a 15 minutos.
Concluida la primera fase de flotación por el período de tiempo seleccionado, el concentrado de hierro es colectado y la cola es sometida a la segunda fase de flotación espumosa. La cola, posteriormente es sometida a una segunda fase de flotación espumosa para recuperar la mayor parte del cobre de valor comercial contenido en la espuma (concentrado de cobre) y abatir los minerales sin valor comercial y la ganga que permanecen en la fase inferior (relaves).
En la segunda fase de flotación, se agrega entre 2% y 30% del peso de mineral de un extracto líquido del agente colector y espumante de la presente invención. La cola es agitada y aireada por un período de tiempo que maximiza la recuperación del cobre. El período específico de tiempo depende de las propiedades físicas, químicas, especiación, distribución del tamaño de partículas, Ley del mineraly grado de liberación, entre otros; el tiempo necesario para flotar un mineral determinado puede ser estimado de acuerdo a los objetivos de producción y eficiencia de la planta concentradora. Típicamente, la flotación se realiza por un período de 2 a 20 minutos y preferentemente por un período de 5 a 15 minutos.
Cuando se ha realizado la segunda fase de flotación por el período de tiempo deseado, el concentrado de cobre es colectado y el relave o nueva cola es removido y eliminado. Los relaves son descartados en depósitos de relaves construidos para estos efectos, de acuerdo a los procedimientos establecidos en cada planta de relaves. Una fracción de los residuos orgánicos usados como agentes espumantes y colectores en el proceso de flotación espumosa de la presente invención queda retenida en los relaves generados, lo que los deja en una mejor condición para procesos posteriores de remediación ambiental.
Tanto en la primera como en la segunda fase de flotación (fases I y II), el agente de flotación multifuncional (agente colector y espumante) de la presente invención puede ser complementado con uno o varios de los espumantes y/o colectores tradicionalmente usados en una operación específica de flotación espumosa de minerales sulfurados o no sulfurados; la cantidad de espumante y/o de colector agregada dependerá de las características deseadas y de las variables críticas del proceso, las que son determinadas por las especificidades y singularidades de cada proceso de concentración de minerales.
El uso de tales colectores y/o espumantes auxiliares tradicionales en combinación con el agente de flotación multifuncional (agente colector y espumante) de esta invención resulta, a menudo, en recuperaciones mayores y en consecuencia una mejor eficiencia específica en la etapa de concentración de minerales de hierro y/o cobre. En el caso de los colectores, cualquiera de los colectores existentes en el mercado, tales como compuestos que contienen grupos polares amónicos y catiónicos (por ejemplo ácidos grasos, xantatos, ésteres de xantato, ditiocarbamatos, mercaptanos, tioureas y tionocarbamatos), puede ser usado con los colectores nuevos indicados en las fases I y II de esta invención (Figura 1). Adicionalmente, una amplia variedad de agentes espumantes han sido usados exitosamente en la flotación de minerales a partir de minerales sulfurados, tales como alcoholes dihidrocarbonados de bajo peso molecular (por ejemplo metilisobutilcarbinol, MIBC, poliglicol, aceites de pino, monoésteres de poliglicoles y etoxilatos de alcohol, entre otros). Cualquiera de ellos puede ser usado de manera complementaria y sinérgica en el proceso de la presente invención.
Aunque en esta invención es posible usar un único equipo de flotación, tanto en la fase I como en la fase II (Figura 1) de flotación espumosa, se prefiere usar un sistema múltiple de equipos de flotación en ambas fases, ya que esto permite mejores recuperaciones de los metales de valor comercial debido a los mayores tiempos de contactacion de los reactivos de flotación con los minerales y a la posibilidad de agregar cantidades adicionales de colectores o químicos auxiliares, cuando éstos sean requeridos.
El proceso de flotación espumosa de la presente invención permite obtener un concentrado de cobre de mejor calidad, por el menor contenido de minerales de hierro atributo que permiten mejorar su valor comercial, ya sea para venta en el mercado interno o en el mercado internacional. Sin embargo, el concentrado de cobre obtenido por la presente invención permite mantener un contenido de hierro adecuado a los requerimientos de entrada de la etapa de fundición, en el caso de aquellas faenas que utilizan hornos convertidores Teniente,
EJEMPLO DE APLICACIÓN Los presentes ejemplos de aplicación utilizaron un agente de flotación multifuncional, con funciones de colector y espumante a base de lodos sanitarios (biosólidos) y un agente colector y espumante en base a sustancias húmicas, cuyas características se entregan en las siguientes Tablas:
Tabla 2: Características físicas y químicas generales de los biosólidos
Figure imgf000015_0001
Base seca
Tabla 3: Características químicas generales de las sustancias húmicas
Figure imgf000015_0002
ND: No determinado A menos que se indique lo contrario, todas las partes y porcentajes son en base a peso seco. El mineral de cobre usado en este ejemplo consiste primariamente en calcopirita-pirita, con un contenido medio de cobre de 0,74% y 4,50% de hierro y una granulometría menor o igual a 400 mieras.
Ejemplo 1: Poder espumante: Medición de la tensión superficial
Las mediciones de tensión superficial fueron realizadas en un tensiómetro Krüss K8, según el método de Du Nouy a temperatura ambiente de 18° C. Se prepararon soluciones de biosólidos (BS), sustancias húmicas (SH) y metil-isobutil-carbinol (MIBC) con agua desionizada ultrafiltrada, con una resistividad de 18 ΜΩ-cm (equivalente a una conductividad eléctrica de 5,55 x 10"2 μ8 cm"1), y una tensión superficial de 72,1 mN m"1. Las concentraciones ensayadas para BS fueron 0; 1 ; 10; 25; 50 y 100 g L"1, para SH 0; 0,1 ; 1 ; 5; 10 y 25 g L 1 y para MIBC 0; 0,1 ; 0,5; 1 ; 2,5; 5 y 7,5 g L"1. Las concentraciones ensayadas expresadas en gramos de sustancias húmicas por litro son equivalentes para BS y SH. Posteriormente, se realizó un ajuste de pH para cada una de las soluciones de BS, SH y MIBC a pH 7 y 10, agregando pequeñas alícuotas de solución de NaOH y HC1 0,1M. Para las distintas concentraciones ensayadas, las muestras se midieron al menos 4 veces. Los resultados obtenidos se muestran en la Figura 2.
Los resultados muestran que las SH, BS y MIBC tienen una actividad tensoactiva en todo el rango de concentraciones medido. La tensión superficial de las SH es dependiente del pH, mostrando que a pH 10 son más tensoactivas que a pH 7. Un comportamiento similar muestran los BS y el MIBC. La Figura 2 A muestra que los BS permiten cambiar la tensión superficial al igual que el MICB, determinándose que para una concentración de 100 g L"1 de BS la tensión superficial es 40 mN m"1, en tanto que el MIBC permite obtener una tensión superficial similar con una concentración de 7,5 g L"1.
La Figura 2B muestra que al corregir las concentraciones de SH y BS por la fracción sedimentada de dichas sustancias, se tiene que los BS tienen un comportamiento similar al MIBC. Las dosificaciones menores a 4 g L"1 de BS muestran ser más tensoactivas, a ambos pH ensayados, comparadas con el MIBC, y por tanto presentan mejores propiedades espumantes.
Ejemplo 2: Medición del poder espumante y estabilidad de la espuma.
Las pruebas de espumación se realizaron siguiendo el método de Bikerman. Dicho método permite determinar la generación dinámica de espuma, ε y la estabilidad estática, τ. En cada ensayo se usaron 20 mL de solución, según las siguientes concentraciones de espumantes metil-isobutil-carbinol (MIBC), sustancias húmicas (SH) y biosólidos (BS): 0,1, 1, 5 y 10 g L 1. Las muestras se prepararon con agua bidestilada, ajustando el pH inicial de las soluciones con pequeñas alícuotas de solución de NaOH y HCl 0,1M hasta alcanzar valores de pH 7 y 10, agitando y homogenizando las muestras por 10 minutos, a 200 rpm. Todos los ensayos se realizaron en duplicado, a temperatura ambiente.
La generación dinámica de espuma se produce de manera continua por inyección de aire atmosférico. Para ello, se usó un compresor de aire seco según 4 flujos de aire: 1, 2, 3 y 4 L min"1. El aire inyectado se pasó por un flujómetro de aire (Gilmont Instruments, Inc., USA), y luego a través de un filtro de vidrio Pyrex de porosidad grado 2, correspondiente a un diámetro medio comprendido entre los 40 y 100 μιη. La muestra a ensayar (20 mL de solución) se encontraba dentro del filtro. El aire se hizo pasar a través del líquido en una columna y, para cada caudal de aire inyectado, se determinó la altura de la espuma en estado estacionario. La imprecisión en la medida de la altura de la espuma en estado estacionario fue de ± 1 cm, dependiendo del tipo y concentración de espumante y del flujo de aire empleados. Además, se cuantificó la estabilidad estática τ de la espuma, la que corresponde al tiempo para el descenso total de la espuma producida, luego que es apagado el flujo de gas. Los resultados se muestran en la Tabla 4.
Tabla 4: Parámetros de Bikerman para sustancias húmicas (SH), Biosólidos (BS) y Metil-Isobutil-Carbinol (MIBC).
Figure imgf000018_0001
Las concentraciones de sustancias húmicas (SH) y biosólidos (BS) están expresadas en gramos de sustancia húmica por litro de solución.
La Tabla 4 anterior muestra que para todas las concentraciones y pH ensayados, SH, MIBC y BS permiten generar espuma. Para SH y BS, el pH tiene un efecto sobre el volumen de espuma generado. En todos los casos, el volumen de espuma muestra tener una dependencia lineal respecto del flujo de gas.
Para las SH, los BS y el MIBC se observa una relación positiva entre la concentración y la generación y estabilidad estática de la espuma. Las concentraciones de 0,1 y 1 g L 1 de SH, BS y MIBC presentan valores de τ que aumentan según el flujo de aire; sin embargo, para concentraciones de 5 y 10 g L 1 de SH y BS, dicha relación es inversa, mostrando que para una concentración fija -al aumentar el flujo de aire- el τ disminuye drásticamente. Al incrementar el flujo de aire, la espuma es más inestable, favoreciendo la coalescencia de las burbujas producidas. Adicionalmente, los BS muestran parámetros de Bikerman (ε y τ) del mismo orden de magnitud a los obtenidos para el MIBC, para las concentraciones y flujos de aire ensayados.
Ejemplo 3: Poder colector: Ensayos de Flotación de Película ("Film Flotation").
La técnica de "film flotation" permite determinar las fracciones hidrofílicas e hidrofóbicas de un mineral y/o especie mineralógica expuesta a distintas mezclas agua: alcohol. Se adicionaron sustancias húmicas (SH), biosólidos (BS) y guano de cabra (GC) en una dosificación de 1,5% de sustancias húmicas (p/p, base seca), mientras que los reactivos químicos colectores industriales (RQCI) se usaron en las siguientes dosificaciones: dialquil ditiofosfato de potasio (Lib-K), 16 g ton"1; isobutil xantato de sodio, 5 g ton"1; mercaptano (P-3), 11 g ton"1. Las muestras minerales (mineral sulfurado de cobre, calcopirita y pirita) se acondicionaron con la adición de los reactivos colectores (SH, BS, GC y RQCI) por un periodo comprendido entre 10 y 20 minutos. Luego se ajusto el pH con HCl y/o NaOH y cada condición experimental se agitó en un agitador por 3 horas, a 25° C. En cada ensayo se empleó un tamaño de partícula comprendido entre los 75 y 106 μιη. Dependiendo de las características de mojabilidad del sólido en cada muestra y para una tensión superficial particular de la mezcla agua:alcohol, la fracción hidrofílica fue recuperada, secada y pesada y, por diferencia de masa, se cuantificó la fracción hidrofóbica. Los resultados obtenidos para la condición experimental de 100% agua, se aprecian en la Figura 3.
La Figura 3 muestra que la flotabilidad natural, sin adición de reactivos, del mineral sulfurado de cobre y de las especies mineralógicas, como calcopirita y pirita, es baja (del orden del 10%). El uso de RQCI permite cambiar la flotabilidad natural del mineral sulfurado de cobre y de las especies mineralógicas, permitiendo flotar calcopirita y pirita en un 40%; de esta forma, los RQCI permiten flotar dichas especies mineralógicas de forma no selectiva, aumentando la hidrofobicidad natural de ambas especies mineralógicas. Las SH permiten aumentar a un 15% la flotabilidad natural de mineral sulfurado de cobre y/o de las especies mineralógicas. Los BS y el GC muestran una mejor afinidad con la pirita respecto de la calcopirita. Los BS permiten flotar un 42% de pirita, mientras que los GC un 37,5% de esta especie mineralógica. Para la calcopirita, los BS flotan un 21% y el GC un 25%. Por lo tanto, BS y GC muestran un comportamiento similar ante el mineral sulfurado, calcopirita y pirita ensayadas, siendo más selectivos por la pirita. Al mismo tiempo, los BS y el GC permiten cambiar la flotabilidad natural del mineral sulfurado de cobre, permitiendo flotar un 36% y un 26% de dicho mineral, respectivamente.
Ejemplo 4: Ensayo de flotación espumosa en Celda Denver.
En los ensayos de Celda Denver se usó un mineral sulfurado de Cobre con un tamaño de partícula entre 30 y 300 micrómetros (mayor a malla 400 y menor a malla 50). Se usó una concentración de sólidos del 30%, se agitó la pulpa a 1100 rpm, manteniendo un pH entre 10 y 11, temperatura ambiente. El ajuste de pH se realizó con cal y/o NaOH. Los ensayos con reactivos químicos industriales se usaron en la siguiente dosificación: cal 300 g ton"1; DowFroth 250 2,5 g ton"1; Metil- isobutil-carbinol 25 g ton"1; dialquil ditiofosfato de potasio (Lib-K), 16 g ton"1; isobutil xantato de sodio, 5 g ton"1; mercaptano (P-3), 11 g ton"1. Biosólidos (BS) y sustancias húmicas (SH) se usaron como agentes colectores y espumantes en una dosificación de 1,5% de sustancias húmicas (p/p, base seca). Para todas las condiciones experimentales ensayadas se empleó un tiempo de acondicionamiento de 10 minutos. El procedimiento experimental, considera la apertura de la válvula de inyección de aire de la celda, a objeto de permitir la formación de una fase espuma sobre la fase pulpa, la que es extraída vía paleteo desde la superficie fase espuma en los siguientes tiempos: 1-3 minutos; 3-6 minutos; 6-10 minutos; 10-14 minutos; 14-18 minutos. En dichos tiempos, se colectan muestras de concentrado, las que son filtradas, secadas y analizadas químicamente, vía método de absorción atómica.
Las condiciones experimentales ensayadas en Celda Denver se describen en la siguiente tabla:
Tabla 5: Condiciones experimentales ensayadas en Celda Denver a escala de laboratorio.
N° Condición experimental
Mineral Reactivos colectores y Ajuste de pH espumantes
1 Mineral sulfurado de Cobre RQCI + RQEI Cal
2 Mineral sulfurado de Cobre RQCI + RQEI NaOH
3 Mineral sulfurado de Cobre Biosólidos (BS 1, tipo 1) NaOH
4 Mineral sulfurado de Cobre Biosólidos (BS 2, tipo 2) NaOH
5 Mineral sulfurado de Cobre Sustancias húmicas (SH 1, tipo 1) NaOH
6 Mineral sulfurado de Cobre Sustancias húmicas (SH 2, tipo 2) NaOH Biosólido tipo 1 (BS 1), y biosólido tipo 2 (BS 2), hacen referencia a muestras de biosólidos provenientes de la misma planta de tratamiento de aguas servidas domiciliarias, siendo BS 1 una residuo generado al menos 2 años antes que BS 2.
Sustancias húmicas tipo 1 (SH 1) y tipo 2 (SH 2) hacen referencia al mismo material probado en dos corridas distintas (repeticiones).
RQCI = Reactivos químicos colectores industriales (dialquil ditiofosfato de potasio; isobutil xantato de sodio; mercaptano)
RQEI = Reactivos químicos espumantes industriales (DowFroth; Metil-isobutil-carbinol)
Los resultados de Ley de concentrado de cobre y de hierro, se muestran en la Figura 4. Los resultados muestran que los BS permiten recuperar un concentrado con una ley de cobre menor a la obtenida con SH y RQCI + RQEI. Sin embargo, BS producen un concentrado con una ley de hierro similar a la que se obtiene con SH y RQCI + RQEI. La Figura 4B muestra que BS pueden recuperar un concentrado con una alta ley de hierro. Adicionalmente, el extracto del reactivo colector y espumante, es decir, las sustancias húmicas muestran en la Figura 4A que dicho reactivo permite recuperar un concentrado de cobre con una ley mayor, durante los primeros 10 minutos de flotación, comparada con la ley del concentrado de cobre al usar RQCI + RQEI.
Como se desprende de los ejemplos, los biosólidos son espumantes y colectores efectivos de hierro en sistemas de flotación espumosa, mientras que las sustancias húmicas son efectivos colectores de cobre en sistemas de flotación espumosa, a niveles comparables con los reactivos estándar de flotación usados.
La presente invención ha sido explicada (ilustrada) en relación a algunas de sus posibilidades, pero debe entenderse que los ejemplos mencionados y la información específica entregada no tienen como objetivo limitar el espíritu o el ámbito de la invención reclamada.

Claims

REIVINDICACIONES
1. Agente colector y espumante para procesos de flotación espumosa en la recuperación de metales de valor comercial a partir de minerales sulfurados (cobre, zinc, plomo, hierro, molibdeno, entre otros) o no sulfurados (oro, entre otros) CARACTERIZADO porque consiste en residuos orgánicos derivados de procesos de tratamiento o descomposición aeróbica o anaeróbica, o en una fracción de ellos (extracto).
2. El agente colector y espumante de la reivindicación 1, CARACTERIADO porque consiste en residuos orgánicos derivados de procesos de tratamiento o descomposición aeróbica o anaeróbica seleccionados de biosólidos y/o estiércoles y/o sustancias húmicas.
3. El agente colector y espumante de la reivindicación 2, CARACTERIZADO porque los biosólidos comprenden entre 35% a 98% de materia orgánica en base seca
4. El agente colector y espumante de la reivindicación 3, CARACTERIZADO porque los biosólidos comprenden preferentemente entre un 40% a un 60% de materia orgánica en base seca.
5. El agente colector y espumante de la reivindicación 2, CARACTERIZADO porque los biosólidos tienen entre un 1 y un 25% de sustancias húmicas.
6. El agente colector y espumante de la reivindicación 5, CARACTERIZADO porque las sustancias húmicas tienen preferentemente entre 1% a 25% de ácidos fúl vicos y preferentemente entre un 5 % a 15% de ácidos húmicos.
8. El agente colector y espumante de la reivindicación 2, CARACTERIZADO porque las sustancias húmicas tienen entre un 20% y 70% de carbono.
9. El agente colector y espumante de la reivindicación 8, CARACTERIZADO porque las sustancias húmicas tienen preferentemente entre un 40% a 60% de carbono.
10. Proceso de producción del agente colector y espumante de la reivindicación 1, CARACTERIZADO porque comprende: - recolectar residuos orgánicos derivados de procesos de tratamiento o descomposición aeróbica o anaeróbica, o en una fracción de ellos (extracto) desde las fuentes generadoras la materia orgánica y determinar propiedades tales como contenido de materia orgánica y contenido de sustancias húmicas.
- acondicionar el material recolectado en la etapa anterior mediante las siguientes etapas:
- deshidratar el material recolectado hasta un contenido de humedad menor o igual al 75%;
- reducir de tamaño y separar el material deshidratado por molienda y tamizado para obtener material con un tamaño menor o igual a 10 milímetros (mm);
- compactar el material obtenido de la etapa anterior para formar pellets o briquetas.
11. El proceso de la reivindicación 10, CARACTERIZADO porque se deshidrata el material recolectado a un contenido de humedad menor o igual al 20%.
12. El proceso de la reivindicación 10, CARACTERIZADO porque comprende la etapa adicional de envasar el material compactado.
13. El proceso de la reivindicación 10, CARACTERIZADO porque la etapa de acondicionar además comprende someter el material recolectado a extracción líquida.
14. El proceso de la reivindicación 13, CARACTERIZADO porque la extracción líquida se lleva a cabo mediante la extracción ácido-base, que considera una reducción de pH entre 1 y 2 con un ácido fuerte a temperatura ambiente, ajustando el volumen de la solución con ácido hasta obtener una relación entre 1 :5 y 1 : 10 residuo orgánico: solución ácida (masa:volumen), en base seca, agitando la suspensión por un período de tiempo menor o igual a 10 horas, y separando y reservando el sobrenadante de la fracción sólida; para posteriormente ajustar el pH de la fracción sólida a neutralidad con una base fuerte a temperatura ambiente; ajustando el volumen de la solución con una base hasta obtener una relación entre 1:5 y 1 : 10, fracción sólida: solución básica (masa: volumen); agitando la suspensión por un período de tiempo menor o igual a 10 horas; separando y reservando el segundo sobrenadante de la segunda fracción sólida; mezclar los sobrenadantes de la primera y segunda etapa para obtener el extracto extrayendo con agua como extractante acuosa, ajustando el volumen de la solución con agua en un rango entre 1 :5 y 1 : 10, residuo orgánico:agua (volumen: volumen) en base seca, en condiciones ambientales; agitando la suspensión por un período de tiempo menor o igual a 10 horas, y separar y reservar el sobrenadante (extracto) de la fracción sólida.
15. El proceso de la reivindicación 14, CARACTERIZADO porque además comprende envasar el extracto obtenido.
16. El proceso de la reivindicación 14, CARACTERIZADO porque el ácido fuerte se selecciona de HC1, H2S04 o H3PO4.4
17. El proceso de la reivindicación 14, CARACTERIZADO porque la base fuerte se selecciona de KOH o NaOH.
18. Proceso de flotación espumosa para recuperación de metales de valor comercial a partir de minerales sulfurados o no sulfurados, CARACTERIZADO porque comprende los pasos de:
- reducir el tamaño de los minerales sulfurados o no sulfurados a un tamaño de partícula bajo 400 mieras mediante chancado primario, secundario y terciario, y posterior, molienda convencional o semiautógena;
- acondicionar el mineral molido en una pulpa mezclando:
a. dicho mineral molido;
b. agua para obtener una pulpa de mineral con un rango de 5% a 20% de peso de sólidos; c. modificador(es) de pH tales como cal, bases fuertes como KOH, NaOH, entre otras; y d. el agente colector y espumante de cualquiera de las reivindicaciones 1-9; recibir dicha pulpa acondicionada en un equipo de flotación, donde se agrega agua para obtener una pulpa con un rango de 20% a 50% de peso de sólidos;
agitar para mantener el material en suspensión, preferentemente a una velocidad en un rango de 40 rpm a 500 rpm, más preferentemente entre 70 rpm a 90 rpm y airear con un flujo de 5 - 200 metros cúbicos por minuto durante un periodo de tiempo de 2 a 20 minutos dicha pulpa acondicionada, concentrando en una espuma dicho metal de valor comercial y abatiendo una cola de flotación; y
colectar dicha espuma rica en dicho metal de valor comercial como concentrado de dicho metal de valor comercial.
19. El proceso de la reivindicación 18, CARACTERIZADO porque se agregan cantidades menores o iguales que 30% del peso de mineral del agente colector y espumante.
20. El proceso de la reivindicación 19, CARACTERIZADO porque se agregan cantidades entre 5% y 20% del peso de mineral del agente colector y espumante.
21. El proceso de cualquiera de las reivindicaciones 18, 19 o 20, CARACTERIZADO porque además se agrega agua en una cantidad entre 30% y 40%.
22. El proceso de cualquiera de las reivindicaciones 18, 19, 20 o 21, CARACTERIZADO porque además comprende:
- traspasar dicha cola de flotación a un segundo equipo de flotación, para colectar un segundo metal de valor comercial;
- acondicionar dicha cola de flotación con:
- extracto líquido del agente colector y espumante de cualquiera de las reivindicaciones 1- 9; y
- modificador(es) de pH, tales como cal, bases fuertes como KOH, NaOH, entre otras;
- someter dicha cola acondicionada a una segunda flotación espumosa, con agitación para mantener el material en suspensión, preferentemente a una velocidad en un rango de 70 a 90 rpm y airear con un flujo de 5 - 200 metros cúbicos por minuto durante un periodo de tiempo de 2 a 20 minutos, concentrando en una espuma dicho segundo metal de valor comercial y abatiendo una ganga;
- colectar dicha espuma rica en dicho segundo metal de valor comercial como concentrado de dicho segundo metal de valor comercial.
- evacuar dicha cola (relave) para su disposición final siguiendo los procedimientos y métodos pre-establecidos.
23. El proceso de la reivindicación 22, CARACTERIZADO porque se agregan cantidades menores o iguales que 30% del peso de mineral del agente colector y espumante.
24. El proceso de la reivindicación 23, CARACTERIZADO porque se agregan cantidades entre 5% y 20% del peso de mineral del agente colector y espumante.
25. Uso del agente colector y espumante de cualquiera de las reivindicaciones 1-9, CARACTERIZADO porque es útil en la flotación espumosa de minerales sulfurados (cobre, zinc, plomo, hierro, molibdeno, entre otros) o no sulfurados (oro, entre otros).
26. El uso de la reivindicación 25, CARACTERIZADO porque es útil en la flotación espumosa de calcopirita (CuFeS2) y mezclas de minerales (calcosita, Cu2S; covelina, CuS; bornita, Cu5FeS4, entre otros).
27. El uso de la reivindicación 25, CARACTERIZADO porque es útil en la flotación espumosa de minerales de sulfuras de cobre contienen pirita (FeS2).
28. El uso de la reivindicación 25, CARACTERIZADO porque es útil en la flotación de minerales de CuFeS2/FeS2.
29. El proceso de la reivindicación 22, CARACTERIZADO porque además se agregan colectores y/o espumantes auxiliares tradicionales en combinación con el agente colector y espumante de cualquiera de las reivindicaciones 1-9.
30. El proceso de la reivindicación 29, CARACTERIZADO porque el colector auxiliar tradicional se selecciona de compuestos hidrocarbonatos que contienen grupos polares aniónicos y catiónicos.
31. El proceso de la reivindicación 29, CARACTERIZADO porque el espumante auxiliar tradicional se selecciona de alcoholes dihidrocarbonados de bajo peso molecular.
32. El proceso de la reivindicación 30, CARACTERIZADO porque el compuesto de hidrocarbonato se selecciona de ácidos grasos, xantatos, ésteres de xantato, ditiocarbamatos, mercaptanos, tiureas y tionocarbamatos.
33. El proceso de la reivindicación 31, CARACTERIZADO porque el alcohol dihidrocarbonado se selecciona de metilisobutilcarbinol, MIBC, poliglicol, aceites de pino, monoésteres de poliglicoles y etoxilatos de alcohol.
34. El proceso de la reivindicación 10, CARACTERIZADO porque comprende recolectar residuos orgánicos derivados de procesos de tratamiento o descomposición de lodos sanitarios (biosólidos).
PCT/IB2011/050283 2010-01-22 2011-01-21 Agente colector y espumante para flotación a base de residuos orgánicos para la recuperación de metales a partir de minerales por flotación espumosa, proceso de obtención del agente colector y espumante de flotación y proceso de flotación espumosa que usa el agente colector y espumante WO2011089572A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA2787724A CA2787724C (en) 2010-01-22 2011-01-21 Collector and frothing agent for flotation based on organic residues for the recovery of metals from minerals by froth flotation, collector and frothing agent recovery process andfoaming flotation process that uses the collector and frothing agent
US13/574,456 US20130025410A1 (en) 2010-01-22 2011-01-21 Collector and frothing agent for flotation based on organic residues to recover metals from minerals by froth flotation, collector and frothing agent recovery process and foaming flotation process that uses the collector and frothing agent
ZA2012/05536A ZA201205536B (en) 2010-01-22 2012-07-23 Collector and frothing agent for flotation based on organic residues to recover metals from frothing floating minarals, collector and frothing agent recovery process and frothing flotation process that uses the collector and frothing agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL201000051 2010-01-22
CL2010000051A CL2010000051A1 (es) 2010-01-22 2010-01-22 Agente colector y espumante para flotacion espumosa en la recuperacion de metales a partir de minerales sulfurados o no sulfurados que consiste en residuos organicos derivados de procesos de tratamiento o descomposicion aerobica o anaerobica; proceso de produccion de dicho agente; su uso; y proceso de flotacion espumosa.

Publications (1)

Publication Number Publication Date
WO2011089572A1 true WO2011089572A1 (es) 2011-07-28

Family

ID=46827183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2011/050283 WO2011089572A1 (es) 2010-01-22 2011-01-21 Agente colector y espumante para flotación a base de residuos orgánicos para la recuperación de metales a partir de minerales por flotación espumosa, proceso de obtención del agente colector y espumante de flotación y proceso de flotación espumosa que usa el agente colector y espumante

Country Status (6)

Country Link
US (1) US20130025410A1 (es)
CA (1) CA2787724C (es)
CL (1) CL2010000051A1 (es)
PE (1) PE20130626A1 (es)
WO (1) WO2011089572A1 (es)
ZA (1) ZA201205536B (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112619878A (zh) * 2020-11-10 2021-04-09 西北矿冶研究院 一种铁共生有色金属铜铅锌综合回收工艺

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3012348B1 (fr) * 2013-10-30 2015-12-25 Commissariat Energie Atomique Procede de separation d'un couple forme par un tensioactif et au moins un ion
PE20210378A1 (es) * 2019-08-01 2021-03-02 Bustamante Felipe Jose Rey Agente depresante polimerico para el control de zinc y hierro en flotacion de minerales polimetalicos, su proceso de elaboracion y aplicacion como reemplazo de sulfatos de zinc, de cobre y cianuro
AU2021277602B2 (en) * 2020-12-10 2023-02-02 Nouryon Chemicals International B.V. MySx/ZSH mixture as sulfidizing agent
CN115301398B (zh) * 2022-08-08 2024-12-17 核工业北京化工冶金研究院 一种铀铍矿选矿分离富集方法
CN115417483B (zh) * 2022-09-16 2024-04-02 中国地质大学(武汉) 一种利用硫铁矿处理硫化矿矿山废水的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB502669A (en) * 1937-09-18 1939-03-20 Mikael Vogel Jorgensen Improvements in the separation of cement raw materials or the like by flotation
US4028235A (en) * 1976-06-04 1977-06-07 Inspiration Consolidated Copper Company Froth flotation with sewage treatment plant water effluent
US4046678A (en) * 1975-09-09 1977-09-06 James Edward Zajic Flotation of scheelite from calcite with a microbial based collector
US20090194466A1 (en) * 2008-02-05 2009-08-06 Georgia-Pacific Chemicals Llc Method for the froth flotation of coal

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1911865A (en) * 1930-12-30 1933-05-30 Cuban American Manganese Corp Concentrating manganese ores
SE350751B (es) * 1968-05-18 1972-11-06 Icb Spa Ind Chimica E Biolog
AU2007209053A1 (en) * 2006-01-24 2007-08-02 Kimleigh Technologies (Pty) Ltd Flotation process using an organometallic complex as activator
US20090087892A1 (en) * 2007-09-27 2009-04-02 Biometal L.L.C. Methods for producing mutant microbes useful for precious metal and bioenergy production
CN101181700A (zh) * 2007-12-17 2008-05-21 中国铝业股份有限公司 一种氧化矿浮选用混合捕收剂的配制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB502669A (en) * 1937-09-18 1939-03-20 Mikael Vogel Jorgensen Improvements in the separation of cement raw materials or the like by flotation
US4046678A (en) * 1975-09-09 1977-09-06 James Edward Zajic Flotation of scheelite from calcite with a microbial based collector
US4028235A (en) * 1976-06-04 1977-06-07 Inspiration Consolidated Copper Company Froth flotation with sewage treatment plant water effluent
US20090194466A1 (en) * 2008-02-05 2009-08-06 Georgia-Pacific Chemicals Llc Method for the froth flotation of coal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DENBY, B. ET AL.: "The use of short chain volatile fatty acids in fine coal preparation", FUEL., vol. 81, 29 October 2001 (2001-10-29), pages 595 - 603, XP004534072, DOI: doi:10.1016/S0016-2361(01)00163-6 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112619878A (zh) * 2020-11-10 2021-04-09 西北矿冶研究院 一种铁共生有色金属铜铅锌综合回收工艺
CN112619878B (zh) * 2020-11-10 2023-01-03 西北矿冶研究院 一种铁共生有色金属铜铅锌综合回收工艺

Also Published As

Publication number Publication date
CL2010000051A1 (es) 2010-06-18
PE20130626A1 (es) 2013-06-26
ZA201205536B (en) 2014-06-25
US20130025410A1 (en) 2013-01-31
CA2787724C (en) 2016-01-05
CA2787724A1 (en) 2011-07-28

Similar Documents

Publication Publication Date Title
Rao Surface chemistry of froth flotation: Volume 1: Fundamentals
Sis et al. Reagents used in the flotation of phosphate ores: a critical review
Vamvuka et al. The effect of chemical reagents on lignite flotation
Rubio et al. Overview of flotation as a wastewater treatment technique
US10144012B2 (en) Methods of increasing flotation rate
Muzenda An investigation into the effect of water quality on flotation performance
WO2011089572A1 (es) Agente colector y espumante para flotación a base de residuos orgánicos para la recuperación de metales a partir de minerales por flotación espumosa, proceso de obtención del agente colector y espumante de flotación y proceso de flotación espumosa que usa el agente colector y espumante
RU2631743C2 (ru) Обогащение сульфидных руд металлов с помощью пенной флотации с использованием окислителя
Altun et al. Enhancement of flotation performance of oil shale cleaning by ultrasonic treatment
Choi et al. Arsenic removal from contaminated soils for recycling via oil agglomerate flotation
AU2005291783A1 (en) Arsenide depression in flotation of multi-sulfide minerals
Pattanaik et al. Processing: An Overview
MX2012009361A (es) Auxiliar de flotacion de sulfuro.
Vanthuyne et al. The use of flotation techniques in the remediation of heavy metal contaminated sediments and soils: an overview of controlling factors
Vazifeh et al. Optimization of reagent dosages for copper flotation using statistical technique
Phetla et al. A multistage sulphidisation flotation procedure for a low grade malachite copper ore
Sis et al. Comparison of non-ionic and ionic collectors in the flotation of coal fines
WO2016109254A1 (en) Depressants for mineral ore flotation
Sayilgan et al. Effect of carbonate alkalinity on flotation behavior of quartz
Reyes-Bozo et al. Rougher flotation of copper sulphide ore using biosolids and humic acids
Klimpel Industrial experiences in the evaluation of various flotation reagent schemes for the recovery of gold
Abd El-Rahiem Recent trends in flotation of fine particles
Klimpel Optimizing the industrial flotation performance of sulfide minerals having some natural floatability
Veki The use of seawater as process water in concentration plant and the effects on the flotation performance of Cu-Mo ore
Muanda et al. Comparative Cleaning Stages in Recovery of Copper and Cobalt from Tailings using Potassium Amylxanthate as Collector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11734438

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 001024-2012

Country of ref document: PE

ENP Entry into the national phase

Ref document number: 2787724

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13574456

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11734438

Country of ref document: EP

Kind code of ref document: A1