WO2011086259A1 - Device for mixing a main gas flow and a secondary gas flow - Google Patents
Device for mixing a main gas flow and a secondary gas flow Download PDFInfo
- Publication number
- WO2011086259A1 WO2011086259A1 PCT/FR2010/052738 FR2010052738W WO2011086259A1 WO 2011086259 A1 WO2011086259 A1 WO 2011086259A1 FR 2010052738 W FR2010052738 W FR 2010052738W WO 2011086259 A1 WO2011086259 A1 WO 2011086259A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fraction
- gas stream
- main gas
- main
- accelerating
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/28—Construction of catalytic reactors
- F01N3/2892—Exhaust flow directors or the like, e.g. upstream of catalytic device
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/10—Mixing gases with gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/30—Injector mixers
- B01F25/31—Injector mixers in conduits or tubes through which the main component flows
- B01F25/313—Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
- B01F25/3131—Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit with additional mixing means other than injector mixers, e.g. screens, baffles or rotating elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/40—Static mixers
- B01F25/42—Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
- B01F25/43—Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
- B01F25/431—Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
- B01F25/4312—Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor having different kinds of baffles, e.g. plates alternating with screens
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/40—Static mixers
- B01F25/42—Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
- B01F25/43—Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
- B01F25/431—Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
- B01F25/4314—Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor with helical baffles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/40—Static mixers
- B01F25/42—Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
- B01F25/43—Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
- B01F25/431—Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
- B01F25/43195—Wires or coils
- B01F25/431951—Spirally-shaped baffle
- B01F25/431952—Conical or pyramidal elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/40—Static mixers
- B01F25/42—Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
- B01F25/43—Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
- B01F25/431—Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
- B01F25/43197—Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor characterised by the mounting of the baffles or obstructions
- B01F25/431973—Mounted on a support member extending transversally through the mixing tube
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F2025/91—Direction of flow or arrangement of feed and discharge openings
- B01F2025/913—Vortex flow, i.e. flow spiraling in a tangential direction and moving in an axial direction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F2101/00—Mixing characterised by the nature of the mixed materials or by the application field
- B01F2101/2204—Mixing chemical components in generals in order to improve chemical treatment or reactions, independently from the specific application
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2240/00—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
- F01N2240/20—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a flow director or deflector
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/02—Adding substances to exhaust gases the substance being ammonia or urea
Definitions
- the present invention relates to the field of gas mixing means, in particular applied to the automobile.
- nitrogen oxides mainly NO monoxide and nitrogen dioxide N0 2 , designated together under the abbreviation NO x . It should be noted that the production of nitrogen oxides is greater for diesel engines than for gasoline engines because of their higher combustion temperature.
- SCR system Selective Catalytic Reduction
- the reducing agent is injected into the exhaust line upstream of a specific catalyst SCR in which the reduction reaction occurs.
- SCR channels There are two SCR channels, one with the aqueous solution of urea and the other with ammonia, NH 3 , gaseous.
- the other route explored is SCR with ammonia, NH 3 gas.
- the NH 3 is injected as a gas directly into the exhaust gas where it must then mix.
- JP2008049306 discloses in particular a device comprising a main duct in which circulates a main gas stream, which may be an exhaust gas stream, an auxiliary duct in which circulates an auxiliary gas stream, which may be a gas stream. reducing agent of nitrogen oxides.
- the auxiliary duct has an L shape extending from the wall of the main duct towards the center of the main duct to inject the auxiliary gas stream substantially along the central axis of the main duct.
- the device Downstream of the injection point in the direction of the main gaseous flow, the device comprises a means for dispersing the auxiliary gaseous flow from the center to the periphery of the main pipe, followed by means for rotating the main gas stream and auxiliary by inclined fins.
- a device does not make it possible to obtain a homogeneous mixture between the main gas flow and the auxiliary gas flow throughout the section of the main duct.
- the auxiliary flow must first be distributed equitably over the entire surface of the dispersing means, which is not easy because of the low injection speed of the auxiliary gas flow.
- a second disadvantage is that the device is not compact. Such an arrangement is not suitable in environments where space available is limited, as in the case of an exhaust system of a motor vehicle.
- the object of the invention is to overcome the drawback of the prior art by proposing a new compact device which makes it possible to obtain a homogeneous mixture.
- the invention therefore relates to a device for mixing a main gas flow and an auxiliary gas flow comprising means for rotating gas, characterized in that it comprises a means of accelerating a first fraction of gas flow main means for supplying the auxiliary gas stream at the outlet of the acceleration means, in that the means for rotating gas is also a means for accelerating a second fraction of the main gas stream, the means for accelerating being upstream of the rotating and accelerating means and nested in said rotation and acceleration means in a substantially concentric manner so that at the outlet of the acceleration means the first fraction of main gas flow entrains the auxiliary gas stream and is rotated by the second fraction of the accelerated main gas stream and rotated to obtain a homogeneous mixture between the main gas stream and the auxiliary gas flow and to disperse the mixture obtained at the outlet of the device.
- the invention may include one or more of the following features:
- the acceleration means and the means of rotation and acceleration are integral with the means for supplying the auxiliary gas flow. This simply ensures the maintenance of the acceleration means and the means of rotation and acceleration by their attachment to the supply means.
- the acceleration means of the first fraction of the main gas stream comprises a convergent having an inlet surface of the first main gas stream fraction and an exit surface of the first main gas stream fraction, the surface input being greater than the output surface.
- a convergent is a simple and effective way to accelerate the gases.
- the exit area is less than or equal to half of the entrance area, to at least double the speed of the first main gas stream fraction.
- the convergent is of frustoconical shape.
- the convergent is in the form of a nozzle, in order to limit the losses in the flow.
- the means for supplying the auxiliary flow comprise an auxiliary duct opening substantially in the center of the exit surface of the convergent.
- the auxiliary flow is effectively driven by the first fraction of the main gas stream.
- the means for rotating and accelerating the second fraction of main gas flow comprises two oblique half-truncated cones each comprising an inlet edge forming an inlet angle and an outlet edge forming an angle the exit angle being greater than the entry angle and said oblique half-truncated cones being arranged so that the entrance edge of one of the oblique half-truncated cones is next to the exit edge of the other half oblique cone trunk.
- This original design thus makes it possible to accelerate the second fraction of the main gas flow by convergence and to deflect it via the variation between the angles of entry and exit.
- the exit angle is between the entry angle plus five degrees and twice the entry angle, and more preferably, the exit angle is substantially equal to the entry angle plus 8 degrees.
- the means for rotating and accelerating the second fraction of main gas flow comprises two half-nozzles, in order to control the pressure drops of the device.
- the means for rotating and accelerating the second fraction of gas flow comprises a diffuser having the shape of a substantially circular ring disposed at the output of said means for rotating and accelerating and for channeling the second fraction of gas flow to the first main gas stream fraction.
- the invention also relates to a combustion gas exhaust line produced by an internal combustion engine, characterized in that it comprises a device of the invention.
- FIG. 1 is a schematic representation in section of the device of the invention.
- FIG. 2 is a diagrammatic representation in perspective of a preferred embodiment of the gas mixing device according to the invention.
- FIG. 3 is a diagrammatic representation in perspective of a preferred embodiment of the means for rotating and accelerating the gases.
- FIG. 4 is a diagrammatic representation in perspective of a preferred embodiment of the gas acceleration means.
- FIG. 5 schematically shows the dynamics of the flow in the mixing zone generated by the device of the invention.
- Figure 1 shows a portion of exhaust line of burnt gases produced by an internal combustion engine.
- the exhaust line comprises a main duct 1, of passage section S in , in which circulates a stream 2 of flue gas said main gas stream and connected to a selective reduction catalyst 3 (or SCR) for the reduction of oxides of nitrogen NO x present in the exhaust gases by selective catalytic reaction between NOx and a reducing agent.
- reducing agent is meant an agent that can react chemically with pollutants to transform them into less polluting products.
- the main conduit 1 comprises, upstream of the catalyst 3 SCR, a device 6 for mixing gas between the main gas stream 2 and an auxiliary gas stream 4 of NH 3 .
- the device 6 comprises means for supplying the auxiliary gas flow.
- the reducing agent feed means such as ammonia, NH 3 , in gaseous form in the main conduit 1 comprises an auxiliary conduit 5 opening substantially at the central axis XX of the main conduit 1.
- Figure 2 shows a more detailed perspective view of a preferred embodiment of the gas mixing device 6 of the invention. According to this preferred embodiment, the gas mixing device 6 comprises two main means.
- the first principal means is an acceleration means 7 of a first fraction of the main gas stream 2.
- the acceleration means comprises a convergent 7 having an input surface S c i and an output surface S c 2 , the input surface S c i being greater than the output surface S c 2 .
- the convergent 7 is of frustoconical shape.
- the convergent 7 is shown, isolated from the rest of the device, in Figure 4.
- the convergent 7 further comprises a first notch 13 for passage to the mounting and placement of the auxiliary conduit 5.
- the second principal means is a means for rotating and accelerating 8 a second fraction of the main gas stream 2.
- This means of rotation and acceleration 8 which may still be designated by the English term “swirler” includes in this preferred embodiment two oblique half-truncated cones 9, 9 '.
- the means of rotation and acceleration 8 is presented, isolated from the rest of the device, in FIG.
- Each half-truncated oblique cone 9, 9 ' comprises respectively an input edge 10, 10' and an output edge 11, 11 '.
- Each half-truncated cone is said to be oblique because the entry edge does not have the same angle of convergence as the exit edge. Indeed, it is expected that the input edge 10, 10 'of each of the oblique half-cones 9, 9' has an angle of convergence of input, that the output edge 1 1, 1 1 'of each oblique half-cones 9, 9 'have an output convergence angle ⁇ , the output convergence angle ⁇ preferably being greater than the input convergence angle ⁇ .
- the angle ⁇ of output convergence is between the input convergence angle a plus 5 ° and twice the angle of convergence of input. More preferably, the output convergence angle ⁇ is substantially equal to the input convergence angle ⁇ plus 8 °.
- said oblique cone half-truncks 9, 9 ' are arranged in such a way that the input edge 10, 10' of one of the oblique half-truncated cones is opposite the output edge 1 1, 1 1 'of the other half-truncated oblique cone.
- the rotation and acceleration means 8 may comprise a diffuser 12.
- This diffuser 12 has the shape of a substantially circular ring disposed at the outlet of the rotation and acceleration means 8, in order to channel the second fraction of gas flow towards the central axis XX.
- the means for rotating and accelerating 8 further comprises a second notch 14 for ensuring the passage to the mounting of the auxiliary conduit 5.
- the first convergent 7 has a first inlet section S c i, substantially orthogonal to the central axis XX between which the first fraction of the main stream 2 of exhaust gas and a first outlet section S c2 , substantially orthogonal to the central axis XX through which the first fraction of the main stream 2 of exhaust gas.
- the rotation and acceleration means 8 have an input plane P e , substantially orthogonal to the central axis XX, through which the second fraction of the main gas flow 2 exhaust and a second outlet section S or by which leaves the first and second fraction of the main stream and the auxiliary flow of NH 3 gas.
- the convergent 7 is, with respect to the direction of flow of the main gas flow, upstream of the means of rotation and acceleration and preferably imbricated substantially concentrically in the means of rotation and acceleration 8 with respect to the central axis XX.
- nested means that the first output section S c i lies between the input plane P e and the second output section S or t-
- the mixing device 6 occupies the passage section S in of the conduit, that is, the rotation and acceleration means 8 has a section input S e substantially equivalent to the passage section.
- the second fraction of exhaust gas rotated by the rotation and acceleration means 8 enters through an effective input section S ee , peripheral to the convergent 7, substantially shaped like a crown.
- the second fraction of exhaust gas opens substantially orthogonally to the first output section S c i of the convergent 7 by an effective output section, S se , smaller than the effective input section S ee, the section reduction resulting from the convergence of the rotation and acceleration means 8 and its position relative to the convergent 7 generating the acceleration of the gases of the second fraction of the main gas stream 2.
- the auxiliary conduit opens at the central axis XX substantially in the center of the second output section S c2 of the convergent 7.
- the detail of the original operating principle of the invention is illustrated in FIG. 5.
- the main gas stream 2 of exhaust gas is therefore divided into two distinct streams.
- the first fraction 15 of exhaust gas, located in the central zone of the main duct 1 will be diverted and accelerated by the convergent 7.
- the second fraction 16 of exhaust gas located at the periphery of the main duct 1 will be accelerated and rotating around an axis parallel to the central axis XX by the rotating and accelerating means 8.
- This second fraction 16 will then join the first fraction 15 at the central axis XX that it will also rotate.
- the flow thus generated has a speed in the direction of the central axis XX greater than the flow upstream of the mixing device 6 and is rotated.
- This type of flow generates an intense central recirculation zone 17 in which the gaseous stream 4 of ammonia, driven by the first fraction of exhaust gas, is injected.
- This recirculation zone 17 makes it possible to increase the residence time of the ammonia and the exhaust gases, which makes it possible to better homogenize this mixture.
- the first convergent comprises an output surface S c2 of the first convergent 7 less than or equal to half of its input surface S c i.
- the second output section S 0Lrt is substantially equivalent to the first output section S c2 .
- the diffuser 12 has a crown width D which depends on the convergence angles of input and output convergence, ⁇ , ⁇ . However, preferably the crown width D is greater than or equal to the diameter of the second output section S 0Lrt .
- the effective output area S ee of the second fraction of the flux is less than or equal to the difference between the input section S e of the rotation and acceleration means 8 and the input section S c i of the convergent 7.
- the convergent 7 and the rotating and accelerating means 8 are fixed to the auxiliary duct 5.
- This mixing device 6 can be made from at least one sheet, by cutting, folding and assembly, for example by welding at the notches 13, 14, on the auxiliary duct 5. This advantageously makes it possible to provide a very efficient gas mixing device 6 for a particularly low manufacturing cost.
- the embodiment described in this specification is not limiting.
- the forms of the acceleration means as well as the rotation and acceleration means 8 can have different shapes but with similar effects. What ultimately matters is the optimization of the means of acceleration and the means of rotation and acceleration in order to generate an aerodynamic motion around the central axis XX intense to improve the mixture while controlling the loss. of charge generated by the device 6.
- the acceleration means can take a convergent form more complex than a simple convergent cone such as a nozzle shape with a progressive radius of curvature .
- the means for rotating and accelerating instead of to be composed of two half-truncated conical oblique cones, may have a shape approaching that of a nozzle and comprise two half-nozzles.
- the invention has the advantage of improving the homogeneity of the mixture of the exhaust gases with the gaseous NH 3 , which improves the overall efficiency of the SCR bread, and allows upstream to increase the combustion efficiency and reduce the consumption. In fact, rapid combustion reaches temperatures in the higher flue gases, which leads to a greater formation of nitrogen oxides. If the SCR device is more efficient by a better reducer / exhaust gas mixture, more nitrogen oxides can be formed in the combustion chamber which allows better phasing of the combustion for example and thus reduce consumption.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
The invention relates to a device for mixing a main gas flow (2) and a secondary gas flow (4), said device including a gas rotation means, characterized in that said device includes a means for accelerating a first fraction (15) of the main flow (2) and a means for moving the secondary flow (4). Said device is moreover characterized in that the gas rotation means is also a means for accelerating a second fraction (16) of the main flow (2). The acceleration means is fitted into said means in a substantially concentric manner such that, at the outlet of the acceleration means, the first fraction (15) drives the secondary flow (4) and is rotated by the second fraction (16) so as to obtain a uniform mixture of the main flow (2) and the secondary flow (4) and so as to break up the obtained mixture at the outlet of the device. The invention also relates to an exhaust line that includes the device of the invention.
Description
Dispositif pour le mélange entre un flux gazeux principal et un flux gazeux auxiliaire Domaine technique de l'invention Device for mixing a main gas stream and an auxiliary gas stream Technical field of the invention
La présente invention revendique la priorité de la demande française 1050287 déposée le 18 Janvier 2010 dont le contenu (texte, dessins et revendications) est ici incorporé par référence. The present invention claims the priority of the French application 1050287 filed January 18, 2010 whose content (text, drawings and claims) is here incorporated by reference.
La présente invention se rapporte au domaine des moyens de mélange de gaz, en particulier appliqué à l'automobile. The present invention relates to the field of gas mixing means, in particular applied to the automobile.
Arrière-plan technologique Technological background
Depuis de nombreuses années, les constructeurs de véhicules automobiles à moteur thermique font beaucoup d'efforts pour réduire l'émission dans l'atmosphère de composés chimiques nuisibles à l'environnement produits par les moteurs thermiques lors de la combustion du carburant. For many years, motor vehicle manufacturers have made great efforts to reduce the emission into the atmosphere of environmentally harmful chemical compounds produced by combustion engines during fuel combustion.
Parmi ces composés, on trouve notamment le dioxyde de carbone C02 ainsi que les oxydes d'azote, principalement le monoxyde NO et le dioxyde N02 d'azote, désignés ensemble sous l'abréviation NOx. Notons que la production d'oxydes d'azote est plus importante pour les moteurs Diesel que pour les moteurs à essence du fait de leur température de combustion plus élevée. Among these compounds, there are in particular carbon dioxide C0 2 as well as nitrogen oxides, mainly NO monoxide and nitrogen dioxide N0 2 , designated together under the abbreviation NO x . It should be noted that the production of nitrogen oxides is greater for diesel engines than for gasoline engines because of their higher combustion temperature.
Pour limiter l'émission des oxydes d'azote dans l'atmosphère, une solution actuellement utilisée consiste à placer sur la ligne d'échappement du véhicule un système de traitement des NOx, appelé système SCR (« Sélective Catalytic Réduction »), ayant pour fonction de réduire chimiquement les oxydes d'azote en molécules de di-azote et en vapeur d'eau au moyen d'un agent réducteur. En pratique, l'agent réducteur est injecté dans la ligne d'échappement en amont d'un catalyseur spécifique SCR dans lequel se produit la réaction de réduction. To limit the emission of nitrogen oxides in the atmosphere, a solution currently used is to place on the exhaust system of the vehicle an NO x treatment system, called SCR system (Selective Catalytic Reduction), having as a function of chemically reducing nitrogen oxides to di-nitrogen molecules and water vapor by means of a reducing agent. In practice, the reducing agent is injected into the exhaust line upstream of a specific catalyst SCR in which the reduction reaction occurs.
On distingue deux voies SCR, l'une avec la solution aqueuse d'urée et l'autre avec de l'ammoniac, NH3, gazeux. There are two SCR channels, one with the aqueous solution of urea and the other with ammonia, NH 3 , gaseous.
La SCR avec urée a été préalablement favorisée pour des raisons d'implantation véhicule. La solution aqueuse d'urée nécessitant un réservoir, le circuit d'alimentation du liquide est relativement simple. Cette voie a par contre l'inconvénient de nécessiter un ensemble de processus physico-chimiques séquentiels longs : l'injection de la solution
aqueuse d'urée, l'atomisation du spray d'urée en gouttes puis gouttelettes, l'évaporation et la décomposition chimique de ces gouttelettes en NH3 et enfin le mélange du NH3 avec les gaz d'échappement. Par ailleurs, étant donné l'espace disponible dans la ligne d'échappement pour les phénomènes injection/mélange, la solution SCR avec la solution aqueuse d'urée complique fortement l'homogénéisation de réducteur avec l'oxydant. SCR with urea has been previously favored for reasons of vehicle implantation. The aqueous solution of urea requiring a reservoir, the liquid supply circuit is relatively simple. This path has the disadvantage of requiring a set of sequential physico-chemical long processes: the injection of the solution aqueous urea, the atomization of the urea spray droplets and droplets, evaporation and chemical decomposition of these droplets in NH 3 and finally the mixture of NH 3 with the exhaust gas. Moreover, given the space available in the exhaust line for the injection / mixing phenomena, the SCR solution with the aqueous urea solution greatly complicates the homogenization of the reducing agent with the oxidant.
L'autre voie explorée est la SCR avec de l'ammoniac, NH3 gazeux. Dans ce cas, le NH3 est injecté sous forme de gaz directement dans les gaz d'échappement où il doit ensuite s'y mélanger. The other route explored is SCR with ammonia, NH 3 gas. In this case, the NH 3 is injected as a gas directly into the exhaust gas where it must then mix.
Il est connu de laisser une distance adéquate entre l'injecteur d'agent réducteur et le catalyseur SCR pour permettre l'obtention d'un mélange homogène le plus achevé possible entre les gaz d'échappement et l'agent réducteur. Afin d'améliorer l'homogénéité de ce mélange et de raccourcir la distance nécessaire à l'homogénéisation, il est connu d'avoir recours à un mélangeur dit statique, c'est-à-dire sans pièce mobile, positionné à l'intérieur du conduit d'échappement, entre le point d'injection d'agent réducteur dans les gaz d'échappement et l'entrée du catalyseur SCR. On connaît en particulier du document JP2008049306 un dispositif comprenant un conduit principal dans lequel circule un flux principal gazeux, qui peut être un flux de gaz d'échappement, un conduit auxiliaire dans lequel circule un flux gazeux auxiliaire, qui peut être un flux gazeux d'agent réducteur d'oxydes d'azote. Le conduit auxiliaire présente une forme en L s'étendant de la paroi du conduit principal vers le centre du conduit principal pour injecter le flux gazeux auxiliaire sensiblement selon l'axe central du conduit principal. En aval du point d'injection dans le sens du flux principal gazeux, le dispositif comprend un moyen de dispersion du flux auxiliaire gazeux du centre vers la périphérie de la conduite principale, suivi d'un moyen de mise en rotation des flux gazeux principal et auxiliaire par ailettes inclinées. It is known to leave an adequate distance between the reducing agent injector and the SCR catalyst to allow obtaining a homogeneous mixture as complete as possible between the exhaust gas and the reducing agent. In order to improve the homogeneity of this mixture and to shorten the distance required for homogenization, it is known to use a so-called static mixer, that is to say without moving parts, positioned inside. of the exhaust duct, between the point of injection of reducing agent in the exhaust gas and the entry of the catalyst SCR. JP2008049306 discloses in particular a device comprising a main duct in which circulates a main gas stream, which may be an exhaust gas stream, an auxiliary duct in which circulates an auxiliary gas stream, which may be a gas stream. reducing agent of nitrogen oxides. The auxiliary duct has an L shape extending from the wall of the main duct towards the center of the main duct to inject the auxiliary gas stream substantially along the central axis of the main duct. Downstream of the injection point in the direction of the main gaseous flow, the device comprises a means for dispersing the auxiliary gaseous flow from the center to the periphery of the main pipe, followed by means for rotating the main gas stream and auxiliary by inclined fins.
Cependant un tel dispositif ne permet pas d'obtenir un mélange homogène entre le flux gazeux principal et le flux gazeux auxiliaire dans toute la section du conduit principal. En effet, le flux auxiliaire doit tout d'abord être réparti équitablement sur toute la surface du moyen de dispersion, ce qui n'est pas aisé en raison de la faible vitesse d'injection du flux gazeux auxiliaire. De plus un deuxième inconvénient est que le dispositif est peu compact. Une telle disposition ne convient pas dans des environnements où l'espace
disponible est limité, comme dans le cas d'une ligne d'échappement d'un véhicule automobile. However, such a device does not make it possible to obtain a homogeneous mixture between the main gas flow and the auxiliary gas flow throughout the section of the main duct. Indeed, the auxiliary flow must first be distributed equitably over the entire surface of the dispersing means, which is not easy because of the low injection speed of the auxiliary gas flow. In addition a second disadvantage is that the device is not compact. Such an arrangement is not suitable in environments where space available is limited, as in the case of an exhaust system of a motor vehicle.
L'invention a pour but de pallier l'inconvénient de l'art antérieur en proposant un nouveau dispositif compact qui permet d'obtenir un mélange homogène. The object of the invention is to overcome the drawback of the prior art by proposing a new compact device which makes it possible to obtain a homogeneous mixture.
L'invention concerne donc un dispositif pour le mélange entre un flux gazeux principal et un flux gazeux auxiliaire comprenant un moyen de mise en rotation de gaz, caractérisé en ce qu'il comprend un moyen d'accélération d'une première fraction de flux gazeux principal, des moyens d'amenée du flux gazeux auxiliaire en sortie du moyen d'accélération, en ce que le moyen de mise en rotation de gaz est également un moyen d'accélération d'une seconde fraction du flux gazeux principal, le moyen d'accélération étant en amont du moyen de mise en rotation et d'accélération et imbriqué dans ledit moyen de mise en rotation et d'accélération de manière sensiblement concentrique de sorte qu'en sortie du moyen d'accélération la première fraction de flux gazeux principal entraine le flux gazeux auxiliaire et est mise en rotation par la seconde fraction du flux gazeux principal accélérée et mise en rotation pour obtenir un mélange homogène entre le flux gazeux principal et le flux gazeux auxiliaire et pour disperser le mélange obtenu en sortie du dispositif. The invention therefore relates to a device for mixing a main gas flow and an auxiliary gas flow comprising means for rotating gas, characterized in that it comprises a means of accelerating a first fraction of gas flow main means for supplying the auxiliary gas stream at the outlet of the acceleration means, in that the means for rotating gas is also a means for accelerating a second fraction of the main gas stream, the means for accelerating being upstream of the rotating and accelerating means and nested in said rotation and acceleration means in a substantially concentric manner so that at the outlet of the acceleration means the first fraction of main gas flow entrains the auxiliary gas stream and is rotated by the second fraction of the accelerated main gas stream and rotated to obtain a homogeneous mixture between the main gas stream and the auxiliary gas flow and to disperse the mixture obtained at the outlet of the device.
On obtient ainsi une intense zone de recirculation centrale qui permet d'augmenter le temps de séjour du flux gazeux auxiliaire tel que l'ammoniac et un flux gazeux principal tel que des gaz d'échappement, ce qui favorise l'homogénéisation des flux. Par ailleurs, l'invention peut comporter l'une ou plusieurs des caractéristiques suivantes : An intense central recirculation zone is thus obtained which makes it possible to increase the residence time of the auxiliary gas flow such as ammonia and a main gas flow such as exhaust gases, which favors the homogenization of the flows. In addition, the invention may include one or more of the following features:
De préférence, le moyen d'accélération et le moyen de mise en rotation et d'accélération sont solidaires des moyens d'amenée du flux gazeux auxiliaire. On assure ainsi simplement le maintien du moyen d'accélération et du moyen de mise en rotation et d'accélération par leur fixation au moyen d'amenée. Preferably, the acceleration means and the means of rotation and acceleration are integral with the means for supplying the auxiliary gas flow. This simply ensures the maintenance of the acceleration means and the means of rotation and acceleration by their attachment to the supply means.
Selon une variante, le moyen d'accélération de la première fraction du flux gazeux principal comprend un convergent comportant une surface d'entrée de la première fraction de flux gazeux principal et une surface de sortie de la première fraction de flux gazeux principal, la surface d'entrée étant supérieure à la surface de sortie. En effet un convergent est un moyen simple et efficace d'accélérer les gaz.
De préférence, la surface de sortie est inférieure ou égale à la moitié de la surface d'entrée, afin d'au moins doubler la vitesse de la première fraction de flux gazeux principal. De préférence, pour des raisons de simplicité de réalisation, le convergent est de forme tronconique. Alternatively, the acceleration means of the first fraction of the main gas stream comprises a convergent having an inlet surface of the first main gas stream fraction and an exit surface of the first main gas stream fraction, the surface input being greater than the output surface. Indeed a convergent is a simple and effective way to accelerate the gases. Preferably, the exit area is less than or equal to half of the entrance area, to at least double the speed of the first main gas stream fraction. Preferably, for reasons of simplicity of embodiment, the convergent is of frustoconical shape.
De préférence encore, le convergent est en forme de tuyère, afin de limiter les pertes de charge dans l'écoulement. More preferably, the convergent is in the form of a nozzle, in order to limit the losses in the flow.
De préférence, les moyens d'amenée du flux auxiliaire comprennent un conduit auxiliaire débouchant sensiblement au centre de la surface de sortie du convergent. Ainsi le flux auxiliaire est entraîné efficacement par la première fraction du flux gazeux principal. De préférence, le moyen de mise en rotation et d'accélération de la seconde fraction de flux gazeux principal comporte deux demi-troncs de cône obliques comprenant chacun un bord d'entrée formant un angle d'entrée et un bord de sortie formant un angle de sortie, l'angle de sortie étant supérieur à l'angle d'entrée et les dits demi-troncs de cône obliques étant disposés de manière à ce que le bord d'entrée de l'un des demi-troncs de cône obliques soit en regard du bord de sortie de l'autre demi-tronc de cône oblique. Cette conception originale permet ainsi d'accélérer la seconde fraction du flux gazeux principal par convergence et de la dévier via la variation entre les angles d'entrée et de sortie Preferably, the means for supplying the auxiliary flow comprise an auxiliary duct opening substantially in the center of the exit surface of the convergent. Thus the auxiliary flow is effectively driven by the first fraction of the main gas stream. Preferably, the means for rotating and accelerating the second fraction of main gas flow comprises two oblique half-truncated cones each comprising an inlet edge forming an inlet angle and an outlet edge forming an angle the exit angle being greater than the entry angle and said oblique half-truncated cones being arranged so that the entrance edge of one of the oblique half-truncated cones is next to the exit edge of the other half oblique cone trunk. This original design thus makes it possible to accelerate the second fraction of the main gas flow by convergence and to deflect it via the variation between the angles of entry and exit.
De préférence, l'angle de sortie est compris entre l'angle d'entrée plus cinq degrés et deux fois l'angle d'entrée et de préférence encore, l'angle de sortie est sensiblement égal à l'angle d'entrée plus 8 degrés. Preferably, the exit angle is between the entry angle plus five degrees and twice the entry angle, and more preferably, the exit angle is substantially equal to the entry angle plus 8 degrees.
Dans une variante, le moyen de mise en rotation et d'accélération de la seconde fraction de flux gazeux principal comprend deux demi-tuyères, afin de maîtriser les pertes de charge du dispositif. In a variant, the means for rotating and accelerating the second fraction of main gas flow comprises two half-nozzles, in order to control the pressure drops of the device.
De préférence, le moyen de mise en rotation et d'accélération de la seconde fraction de flux gazeux comprend un diffuseur présentant la forme d'une couronne sensiblement circulaire disposé en sortie dudit moyen de mise en rotation et d'accélération et destiné à canaliser la seconde fraction de flux gazeux vers la première fraction de flux gazeux principal.
Par ailleurs, l'invention a aussi pour objet une ligne d'échappement de gaz de combustion produits par un moteur à combustion interne, caractérisée en ce qu'elle comprend un dispositif de l'invention. Preferably, the means for rotating and accelerating the second fraction of gas flow comprises a diffuser having the shape of a substantially circular ring disposed at the output of said means for rotating and accelerating and for channeling the second fraction of gas flow to the first main gas stream fraction. Furthermore, the invention also relates to a combustion gas exhaust line produced by an internal combustion engine, characterized in that it comprises a device of the invention.
Brève description des dessins Brief description of the drawings
D'autres particularités et avantages apparaîtront à la lecture de la description ci-après d'un mode particulier de réalisation, non limitatif de l'invention, faite en référence aux figures dans lesquelles : Other features and advantages will appear on reading the following description of a particular embodiment, not limiting of the invention, with reference to the figures in which:
- La figure 1 est une représentation schématique en coupe du dispositif de l'invention.- Figure 1 is a schematic representation in section of the device of the invention.
- La figure 2 est une représentation schématique en perspective d'un mode de réalisation préféré du dispositif de mélange de gaz selon l'invention. FIG. 2 is a diagrammatic representation in perspective of a preferred embodiment of the gas mixing device according to the invention.
- La figure 3 est une représentation schématique en perspective d'un mode de réalisation préféré du moyen de mise en rotation et d'accélération des gaz. FIG. 3 is a diagrammatic representation in perspective of a preferred embodiment of the means for rotating and accelerating the gases.
- La figure 4 est une représentation schématique en perspective d'un mode de réalisation préféré du moyen d'accélération des gaz. FIG. 4 is a diagrammatic representation in perspective of a preferred embodiment of the gas acceleration means.
- La figure 5 présente schématiquement la dynamique de l'écoulement dans la zone de mélange générée par le dispositif de l'invention. - Figure 5 schematically shows the dynamics of the flow in the mixing zone generated by the device of the invention.
Description détaillée detailed description
La figure 1 présente une portion de ligne d'échappement de gaz brûlés produits par un moteur à combustion interne. La ligne d'échappement comprend un conduit 1 principal, de section de passage Sin, dans lequel circule un flux 2 de gaz brûlés dit flux gazeux principal et raccordé à un catalyseur 3 de réduction sélective (ou SCR), pour la réduction des oxydes d'azote NOx présents dans les gaz d'échappement, par réaction catalytique sélective entre les NOx et un agent réducteur. Par agent réducteur, il convient d'entendre un agent pouvant réagir chimiquement avec des polluants pour les transformer en des produits moins polluants. Figure 1 shows a portion of exhaust line of burnt gases produced by an internal combustion engine. The exhaust line comprises a main duct 1, of passage section S in , in which circulates a stream 2 of flue gas said main gas stream and connected to a selective reduction catalyst 3 (or SCR) for the reduction of oxides of nitrogen NO x present in the exhaust gases by selective catalytic reaction between NOx and a reducing agent. By reducing agent is meant an agent that can react chemically with pollutants to transform them into less polluting products.
Le conduit 1 principal comprend, en amont du catalyseur 3 SCR, un dispositif 6 de mélange de gaz entre le flux gazeux 2 principal et un flux gazeux 4 auxiliaire de NH3. The main conduit 1 comprises, upstream of the catalyst 3 SCR, a device 6 for mixing gas between the main gas stream 2 and an auxiliary gas stream 4 of NH 3 .
Le dispositif 6 comprend des moyens d'amenée du flux gazeux auxiliaire. Les moyens d'amenée d'agent réducteur tel que de l'ammoniac, NH3, sous forme gazeuse dans le conduit 1 principal comprenne un conduit 5 auxiliaire débouchant sensiblement au niveau de l'axe central XX du conduit 1 principal.
La figure 2 présente une vue en perspective plus détaillée d'un mode de réalisation préféré du dispositif 6 de mélange de gaz de l'invention. Selon ce mode de réalisation préféré, le dispositif 6 de mélange de gaz comprend deux moyens principaux. The device 6 comprises means for supplying the auxiliary gas flow. The reducing agent feed means such as ammonia, NH 3 , in gaseous form in the main conduit 1 comprises an auxiliary conduit 5 opening substantially at the central axis XX of the main conduit 1. Figure 2 shows a more detailed perspective view of a preferred embodiment of the gas mixing device 6 of the invention. According to this preferred embodiment, the gas mixing device 6 comprises two main means.
Le premier moyen principal est un moyen d'accélération 7 d'une première fraction du flux gazeux 2 principal. The first principal means is an acceleration means 7 of a first fraction of the main gas stream 2.
De préférence, le moyen d'accélération comprend un convergent 7 comportant une surface d'entrée Sci et une surface de sortie Sc2, la surface d'entrée Sci étant supérieure à la surface de sortie Sc2. Pour des raisons de simplicité de réalisation, de préférence le convergent 7 est de forme tronconique. Le convergent 7 est présenté, isolé du reste du dispositif, en figure 4. Le convergent 7 comprend en outre une première encoche 13 permettant le passage au montage et le placement du conduit 5 auxiliaire. Preferably, the acceleration means comprises a convergent 7 having an input surface S c i and an output surface S c 2 , the input surface S c i being greater than the output surface S c 2 . For reasons of simplicity of embodiment, preferably the convergent 7 is of frustoconical shape. The convergent 7 is shown, isolated from the rest of the device, in Figure 4. The convergent 7 further comprises a first notch 13 for passage to the mounting and placement of the auxiliary conduit 5.
Le second moyen principal est un moyen de mise en rotation et d'accélération 8 d'une seconde fraction du flux gazeux 2 principal. Ce moyen de mise en rotation et d'accélération 8, qui peut encore être désigné par le terme anglais « swirler » comporte dans ce mode de réalisation préféré deux demi-troncs de cône obliques 9, 9'. Le moyen de mise en rotation et d'accélération 8 est présenté, isolé du reste du dispositif, en figure 3. The second principal means is a means for rotating and accelerating 8 a second fraction of the main gas stream 2. This means of rotation and acceleration 8, which may still be designated by the English term "swirler" includes in this preferred embodiment two oblique half-truncated cones 9, 9 '. The means of rotation and acceleration 8 is presented, isolated from the rest of the device, in FIG.
Chaque demi-troncs de cône oblique 9, 9' comprend respectivement un bord d'entrée 10, 10' et un bord de sortie 1 1 , 1 1 '. Chaque demi-tronc de cône est dit oblique car le bord d'entrée ne présente pas le même angle de convergence que le bord de sortie. En effet, il est prévu que le bord d'entrée 10, 10' de chacun des demi-cônes obliques 9, 9' présente un angle a de convergence d'entrée, que le bord de sortie 1 1 , 1 1 ' de chacun des demi- cônes obliques 9, 9' présente un angle β de convergence de sortie, l'angle β de convergence de sortie étant de préférence supérieur à l'angle a de convergence d'entrée. Each half-truncated oblique cone 9, 9 'comprises respectively an input edge 10, 10' and an output edge 11, 11 '. Each half-truncated cone is said to be oblique because the entry edge does not have the same angle of convergence as the exit edge. Indeed, it is expected that the input edge 10, 10 'of each of the oblique half-cones 9, 9' has an angle of convergence of input, that the output edge 1 1, 1 1 'of each oblique half-cones 9, 9 'have an output convergence angle β, the output convergence angle β preferably being greater than the input convergence angle α.
Cette variation d'angle de convergence favorise la déviation de la seconde fraction de flux gazeux et permet de lui conférer le mouvement de rotation attendu en plus de l'accélération conférée par présence de la convergence. De préférence, l'angle β de convergence de sortie est compris entre l'angle de convergence d'entrée a plus 5° et deux fois l'angle a de convergence d'entrée.
De préférence encore, l'angle de convergence de sortie β est sensiblement égal à l'angle de convergence d'entrée a plus 8°. Par ailleurs, les dits demi-troncs de cône obliques 9, 9' sont disposés de manière à ce que le bord d'entrée 10, 10' de l'un des demi-troncs de cône obliques soit en regard du bord de sortie 1 1 , 1 1 ' de l'autre demi-tronc de cône oblique. This variation of convergence angle favors the deviation of the second gas flow fraction and makes it possible to confer on it the expected rotational movement in addition to the acceleration conferred by the presence of the convergence. Preferably, the angle β of output convergence is between the input convergence angle a plus 5 ° and twice the angle of convergence of input. More preferably, the output convergence angle β is substantially equal to the input convergence angle α plus 8 °. Moreover, said oblique cone half-truncks 9, 9 'are arranged in such a way that the input edge 10, 10' of one of the oblique half-truncated cones is opposite the output edge 1 1, 1 1 'of the other half-truncated oblique cone.
Le moyen de mise en rotation et d'accélération 8 peut comprendre un diffuseur 12. Ce diffuseur 12 présente la forme d'une couronne sensiblement circulaire disposée en sortie du moyen de mise en rotation et d'accélération 8, afin de canaliser la seconde fraction de flux gazeux vers l'axe central XX. The rotation and acceleration means 8 may comprise a diffuser 12. This diffuser 12 has the shape of a substantially circular ring disposed at the outlet of the rotation and acceleration means 8, in order to channel the second fraction of gas flow towards the central axis XX.
Le moyen de mise en rotation et d'accélération 8 comprend par ailleurs une seconde encoche 14 destinée assurer le passage au montage du conduit 5 auxiliaire. The means for rotating and accelerating 8 further comprises a second notch 14 for ensuring the passage to the mounting of the auxiliary conduit 5.
Comme le montre la figure 1 , le premier convergent 7 présente une première section d'entrée Sci , sensiblement orthogonale à l'axe central XX par laquelle entre la première fraction du flux principal 2 de gaz d'échappement et d'une première section de sortie Sc2, sensiblement orthogonale à l'axe central XX par laquelle sort la première fraction du flux principal 2 de gaz d'échappement. As shown in Figure 1, the first convergent 7 has a first inlet section S c i, substantially orthogonal to the central axis XX between which the first fraction of the main stream 2 of exhaust gas and a first outlet section S c2 , substantially orthogonal to the central axis XX through which the first fraction of the main stream 2 of exhaust gas.
Comme le montre encore la figure 1 , le moyen de mise en rotation et d'accélération 8 présente un plan d'entrée Pe, sensiblement orthogonal à l'axe central XX, que traverse la seconde fraction du flux principal 2 de gaz d'échappement et une seconde section de sortie Sou par laquelle sort les première et seconde fraction du flux principal ainsi que le flux auxiliaire de NH3 gazeux. As further shown in FIG. 1, the rotation and acceleration means 8 have an input plane P e , substantially orthogonal to the central axis XX, through which the second fraction of the main gas flow 2 exhaust and a second outlet section S or by which leaves the first and second fraction of the main stream and the auxiliary flow of NH 3 gas.
Comme le montre la figure 1 ainsi que la figure 2, le convergent 7 est, par rapport au sens de l'écoulement du flux gazeux principal, en amont du moyen de mise en rotation et d'accélération et de préférence imbriqué sensiblement concentriquement dans le moyen de mise en rotation et d'accélération 8 par rapport à l'axe central XX. Par imbriqué, on entend que la première section de sortie Sci est comprise entre le plan d'entrée Pe et la seconde section de sortie Sout- As shown in FIG. 1 as well as FIG. 2, the convergent 7 is, with respect to the direction of flow of the main gas flow, upstream of the means of rotation and acceleration and preferably imbricated substantially concentrically in the means of rotation and acceleration 8 with respect to the central axis XX. By nested means that the first output section S c i lies between the input plane P e and the second output section S or t-
Dans ce mode de réalisation, Le dispositif 6 de mélange occupe la section de passage Sin du conduit, autrement dit, le moyen de mise en rotation et d'accélération 8 a une section
d'entrée Se sensiblement équivalente à la section de passage. Toutefois, en raison de la présence du convergent 7, la seconde fraction de gaz d'échappement mise en rotation par le moyen de mise en rotation et d'accélération 8 entre par une section d'entrée effective See, périphérique au convergent 7, sensiblement en forme de couronne. La seconde fraction de gaz d'échappement débouche sensiblement orthogonalement à la première section de sortie Sci du convergent 7 par une section de sortie effective, Sse, inférieure à la section d'entrée effective See, la réduction de section résultant de la convergence du moyen de mise en rotation et d'accélération 8 et de sa position relative au convergent 7 engendrant l'accélération des gaz de la seconde fraction du flux gazeux principal 2. In this embodiment, the mixing device 6 occupies the passage section S in of the conduit, that is, the rotation and acceleration means 8 has a section input S e substantially equivalent to the passage section. However, because of the presence of the convergent 7, the second fraction of exhaust gas rotated by the rotation and acceleration means 8 enters through an effective input section S ee , peripheral to the convergent 7, substantially shaped like a crown. The second fraction of exhaust gas opens substantially orthogonally to the first output section S c i of the convergent 7 by an effective output section, S se , smaller than the effective input section S ee, the section reduction resulting from the convergence of the rotation and acceleration means 8 and its position relative to the convergent 7 generating the acceleration of the gases of the second fraction of the main gas stream 2.
Afin d'injecter le flux auxiliaire 4 d'ammoniac sous forme gazeuse de manière approprié dans le dispositif 6 de mélange de l'invention, de préférence, le conduit 5 auxiliaire débouche au niveau de l'axe central XX sensiblement au centre de la seconde section de sortie Sc2 du convergent 7. In order to inject the auxiliary flow 4 of gaseous ammonia appropriately into the mixing device 6 of the invention, preferably the auxiliary conduit opens at the central axis XX substantially in the center of the second output section S c2 of the convergent 7.
Le détail du principe de fonctionnement original de l'invention est illustré en figure 5. Le flux gazeux principal 2 de gaz d'échappement est donc réparti en deux flux distincts. La première fraction 15 de gaz d'échappement, située dans la zone centrale du conduit 1 principal va être détournée et accélérée par le convergent 7. La seconde fraction 16 de gaz d'échappement située à la périphérie du conduit 1 principal va être accélérée et mise en rotation autour d'un axe parallèle à l'axe central XX par le moyen de mise en rotation et d'accélération 8. Cette seconde fraction 16 va ensuite rejoindre la première fraction 15 au niveau de l'axe central XX qu'il va mettre également en rotation. L'écoulement ainsi généré dispose d'une vitesse dans la direction de l'axe central XX plus importante que l'écoulement en amont du dispositif de mélange 6 et est en rotation. Ce type d'écoulement génère une intense zone de recirculation 17 centrale dans laquelle le flux gazeux 4 d'ammoniac, entraîné par la première fraction 15 de gaz d'échappement, est injecté. Cette zone de recirculation 17 permet d'augmenter le temps de séjour de l'ammoniac et des gaz d'échappement, ce qui permet de mieux homogénéiser ce mélange. The detail of the original operating principle of the invention is illustrated in FIG. 5. The main gas stream 2 of exhaust gas is therefore divided into two distinct streams. The first fraction 15 of exhaust gas, located in the central zone of the main duct 1 will be diverted and accelerated by the convergent 7. The second fraction 16 of exhaust gas located at the periphery of the main duct 1 will be accelerated and rotating around an axis parallel to the central axis XX by the rotating and accelerating means 8. This second fraction 16 will then join the first fraction 15 at the central axis XX that it will also rotate. The flow thus generated has a speed in the direction of the central axis XX greater than the flow upstream of the mixing device 6 and is rotated. This type of flow generates an intense central recirculation zone 17 in which the gaseous stream 4 of ammonia, driven by the first fraction of exhaust gas, is injected. This recirculation zone 17 makes it possible to increase the residence time of the ammonia and the exhaust gases, which makes it possible to better homogenize this mixture.
Par la suite, en raison de la vitesse de rotation de l'écoulement, celui-ci va rapidement s'étendre du centre vers la périphérie (voir référence 18) et ainsi disperser de manière homogène le mélange de gaz d'échappement et d'ammoniac en sortie du dispositif dans le conduit 1 principal afin d'arroser le catalyseur SCR sur la totalité de sa surface d'entrée.
Afin d'assurer au moins un doublement de la vitesse de la première fraction gaz d'échappement, de préférence, le premier convergent comprend une surface de sortie Sc2 du premier convergent 7 inférieure ou égale à la moitié de sa surface d'entrée Sci . Subsequently, because of the rotational speed of the flow, it will rapidly extend from the center to the periphery (see reference 18) and thus disperse the mixture of exhaust gases and ammonia output of the device in the main duct 1 to water the SCR catalyst on the entire of its input surface. In order to ensure at least a doubling of the speed of the first exhaust gas fraction, preferably, the first convergent comprises an output surface S c2 of the first convergent 7 less than or equal to half of its input surface S c i.
Concernant le moyen de mise en rotation et d'accélération 8, de préférence, la seconde section de sortie S0Lrt est sensiblement équivalente à la première section de sortie Sc2. Regarding the means of rotation and acceleration 8, preferably, the second output section S 0Lrt is substantially equivalent to the first output section S c2 .
Le diffuseur 12 présente une largeur D de couronne qui dépend des angles de convergence d'entrée et de convergence de sortie, α, β. Toutefois, de préférence la largeur D de couronne est supérieure ou égale au diamètre de la seconde section de sortie S0Lrt. The diffuser 12 has a crown width D which depends on the convergence angles of input and output convergence, α, β. However, preferably the crown width D is greater than or equal to the diameter of the second output section S 0Lrt .
De préférence, il est prévu d'accélérer la seconde fraction de gaz d'échappement d'un facteur d'au moins deux. Pour ce faire, la surface de sortie effective See de la seconde fraction du flux est inférieure ou égale à la différence entre la section d'entrée Se du moyen de mise en rotation et d'accélération 8 et la section d'entrée Sci du convergent 7. Preferably, it is intended to accelerate the second fraction of exhaust gas by a factor of at least two. To do this, the effective output area S ee of the second fraction of the flux is less than or equal to the difference between the input section S e of the rotation and acceleration means 8 and the input section S c i of the convergent 7.
Avantageusement, le convergent 7 et le moyen de mise en rotation et d'accélération 8 sont fixé au conduit auxiliaire 5. Advantageously, the convergent 7 and the rotating and accelerating means 8 are fixed to the auxiliary duct 5.
Ce dispositif 6 de mélange peut être réalisé à partir d'au moins une tôle, par découpage, pliage et assemblage, par exemple par soudure au niveau des encoches 13, 14, sur le conduit 5 auxiliaire. Ceci permet avantageusement de proposer un dispositif 6 de mélange de gaz très efficace pour un coût de fabrication particulièrement réduit. This mixing device 6 can be made from at least one sheet, by cutting, folding and assembly, for example by welding at the notches 13, 14, on the auxiliary duct 5. This advantageously makes it possible to provide a very efficient gas mixing device 6 for a particularly low manufacturing cost.
Le mode de réalisation décrit dans ce mémoire n'est pas limitatif. Selon une variante, les formes du moyen d'accélération ainsi que du moyen de mise en rotation et d'accélération 8 peuvent avoir des formes différentes mais avec des effets proches. Ce qui importe finalement, c'est l'optimisation du moyen d'accélération et du moyen de mise en rotation et d'accélération afin de générer un mouvement aérodynamique autour de l'axe central XX intense pour améliorer le mélange tout en maîtrisant la perte de charge engendrée par le dispositif 6. Selon une variante permettant avantageusement de réduire la perte de charge le moyen d'accélération peut prendre une forme convergente plus complexe qu'un simple cône convergent comme par exemple une forme de tuyère avec un rayon de courbure progressif. De même, le moyen de mise en rotation et d'accélération, au lieu
d'être composé de deux demi- troncs de cônes obliques convergents, peut avoir une forme approchant celle d'une tuyère et comprendre deux demi tuyères. The embodiment described in this specification is not limiting. According to one variant, the forms of the acceleration means as well as the rotation and acceleration means 8 can have different shapes but with similar effects. What ultimately matters is the optimization of the means of acceleration and the means of rotation and acceleration in order to generate an aerodynamic motion around the central axis XX intense to improve the mixture while controlling the loss. of charge generated by the device 6. According to a variant advantageously to reduce the pressure drop the acceleration means can take a convergent form more complex than a simple convergent cone such as a nozzle shape with a progressive radius of curvature . Likewise, the means for rotating and accelerating, instead of to be composed of two half-truncated conical oblique cones, may have a shape approaching that of a nozzle and comprise two half-nozzles.
L'invention a pour avantage d'améliorer l'homogénéité du mélange des gaz d'échappement avec le NH3 gazeux, ce qui améliore l'efficacité globale du pain SCR, et permet en amont d'augmenter le rendement de combustion et réduire la consommation. En effet, une combustion rapide atteint des températures dans les gaz brûlés plus élevées, ce qui entraînent une formation d'oxydes d'azote plus importante. Si le dispositif SCR est plus efficace par un meilleur mélange réducteur/gaz échappement, plus d'oxydes d'azote peuvent être formés dans la chambre de combustion ce qui permet de mieux phaser la combustion par exemple et donc de réduire la consommation.
The invention has the advantage of improving the homogeneity of the mixture of the exhaust gases with the gaseous NH 3 , which improves the overall efficiency of the SCR bread, and allows upstream to increase the combustion efficiency and reduce the consumption. In fact, rapid combustion reaches temperatures in the higher flue gases, which leads to a greater formation of nitrogen oxides. If the SCR device is more efficient by a better reducer / exhaust gas mixture, more nitrogen oxides can be formed in the combustion chamber which allows better phasing of the combustion for example and thus reduce consumption.
Claims
1 . Dispositif pour le mélange entre un flux gazeux principal (2) et un flux gazeux auxiliaire (4) comprenant un moyen de mise en rotation de gaz, caractérisé en ce qu'il comprend un moyen d'accélération d'une première fraction (15) de flux gazeux principal (2), des moyens d'amenée du flux gazeux auxiliaire (4) en sortie du moyen d'accélération, en ce que le moyen de mise en rotation de gaz est également un moyen d'accélération d'une seconde fraction (16) du flux gazeux principal (2), le moyen d'accélération étant en amont du moyen de mise en rotation et d'accélération et imbriqué dans ledit moyen de mise en rotation et d'accélération de manière sensiblement concentrique de sorte qu'en sortie du moyen d'accélération la première fraction (15) de flux gazeux principal (2) entraine le flux gazeux auxiliaire (4) et est mise en rotation par la seconde fraction (16) du flux gazeux principal (2) accélérée et mise en rotation pour obtenir un mélange homogène entre le flux gazeux principal (2) et le flux gazeux auxiliaire (4) et pour disperser le mélange obtenu en sortie du dispositif. 1. Apparatus for mixing a main gas stream (2) and an auxiliary gas stream (4) comprising a means for rotating gas, characterized in that it comprises an acceleration means of a first fraction (15) main gas flow (2) means for supplying the auxiliary gas stream (4) at the outlet of the acceleration means, in that the means for rotating gas is also a means of accelerating a second fraction (16) of the main gas stream (2), the acceleration means being upstream of the rotation and acceleration means and nested in said rotation and acceleration means in a substantially concentric manner so that at the output of the acceleration means the first fraction (15) of the main gas stream (2) drives the auxiliary gas stream (4) and is rotated by the second fraction (16) of the accelerated main gas stream (2) and rotation to obtain a homogeneous mixture between the f main gaseous lux (2) and the auxiliary gas stream (4) and to disperse the mixture obtained at the outlet of the device.
2. Dispositif selon la revendication 1 , caractérisé en ce que le moyen d'accélération et le moyen de mise en rotation et d'accélération sont solidaires des moyens d'amenée du flux gazeux auxiliaire (4). 2. Device according to claim 1, characterized in that the acceleration means and the rotating and accelerating means are integral with the means for supplying the auxiliary gas stream (4).
3. Dispositif selon la revendication 1 ou la revendication 2, caractérisé en ce que le moyen d'accélération de la première fraction (15) du flux gazeux principal comprend un convergent (7) comportant une surface d'entrée (Sci) de la première fraction (15) de flux gazeux principal et une surface de sortie (Sc2) de la première fraction (15) de flux gazeux principal, la surface d'entrée (Sci) étant supérieure à la surface de sortie (Sc2). 3. Device according to claim 1 or claim 2, characterized in that the acceleration means of the first fraction (15) of the main gas flow comprises a convergent (7) having an inlet surface (S c i) of the first main gas stream fraction (15) and an exit surface (S c2 ) of the first main gas stream fraction (15), the input surface (S c i) being greater than the exit surface (S); c2 ).
4. Dispositif selon la revendication 3, caractérisé en ce que la surface de sortie (Sc2) est inférieure ou égale à la moitié de la surface d'entrée (Sci). 4. Device according to claim 3, characterized in that the output surface (S c2 ) is less than or equal to half of the input area (S c i).
5. Dispositif selon la revendication 3 ou la revendication 4, caractérisé en ce que le convergent (7) est de forme tronconique. 5. Device according to claim 3 or claim 4, characterized in that the convergent (7) is of frustoconical shape.
6. Dispositif selon la revendication 3 ou la revendication 4, caractérisé en ce que le convergent (7) est en forme de tuyère. 6. Device according to claim 3 or claim 4, characterized in that the convergent (7) is in the form of a nozzle.
7. Dispositif selon l'une quelconque des revendications 3 à 6, caractérisé en ce que les moyens d'amenée du flux auxiliaire comprennent un conduit auxiliaire (5) débouchant sensiblement au centre de la surface de sortie (Sc2) du convergent (7). 7. Device according to any one of claims 3 to 6, characterized in that the means for supplying the auxiliary flow comprise an auxiliary duct (5) opening substantially in the center of the outlet surface (S c2 ) of the convergent (7 ).
8. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le moyen de mise en rotation et d'accélération de la seconde fraction (16) de flux gazeux principal comporte deux demi-troncs de cône obliques (9, 9') comprenant chacun un bord (10, 10') d'entrée formant un angle d'entrée (a) et un bord (1 1 , 1 1 ') de sortie formant un angle de sortie (β), l'angle de sortie (β) étant supérieur à l'angle d'entrée (a) et les dits demi-troncs de cône obliques (9, 9') étant disposés de manière à ce que le bord (10, 10') d'entrée de l'un des demi-troncs de cône obliques soit en regard du bord (1 1 , 1 1 ') de sortie de l'autre demi-tronc de cône oblique. 8. Device according to any one of the preceding claims, characterized in that the means for rotating and accelerating the second fraction (16) of the main gas flow comprises two oblique half-truncated cones (9, 9 '). ) each comprising an input edge (10, 10 ') forming an input angle (a) and an output edge (1 1, 1 1') forming an exit angle (β), the exit angle (β) being greater than the entry angle (a) and said oblique tapered half-truncks (9, 9 ') being arranged in such a way that the edge (10, 10') of the inlet of the one of the oblique half-truncated cones is opposite the exit edge (11, 11 ') of the other oblique conical half-trunk.
9. Dispositif selon la revendication 8, caractérisé en ce que l'angle de sortie (β) est compris entre l'angle d'entrée (a) plus cinq degrés et deux fois l'angle d'entrée (a) et de préférence sensiblement égal à l'angle d'entrée (a) plus 8 degrés. 9. Device according to claim 8, characterized in that the exit angle (β) is between the entry angle (a) plus five degrees and twice the entry angle (a) and preferably substantially equal to the entry angle (a) plus 8 degrees.
10. Dispositif selon l'une quelconque des revendications 1 à 7, caractérisé en ce le moyen de mise en rotation et d'accélération de la seconde fraction (16) de flux gazeux principal comprend deux demi-tuyères. 10. Device according to any one of claims 1 to 7, characterized in that the means for rotating and accelerating the second fraction (16) of the main gas stream comprises two half-nozzles.
1 1 . Dispositif selon l'une quelconque des revendication 8 à 10, caractérisé en ce le moyen de mise en rotation et d'accélération de la seconde fraction (16) de flux gazeux comprend un diffuseur (12) présentant la forme d'une couronne sensiblement circulaire disposé en sortie dudit moyen de mise en rotation et d'accélération et destiné à canaliser la seconde fraction (16) de flux gazeux vers la première fraction (15) de flux gazeux principal. 1 1. Device according to any one of claims 8 to 10, characterized in that the means for rotating and accelerating the second fraction (16) of gaseous flow comprises a diffuser (12) having the shape of a substantially circular ring disposed at the outlet of said means for rotating and accelerating and for channeling the second fraction (16) of gas flow to the first fraction (15) of main gas flow.
12. Ligne d'échappement de gaz de combustion produits par un moteur à combustion interne, caractérisée en ce qu'elle comprend un dispositif selon l'une quelconque des revendications précédentes. 12. exhaust line of combustion gases produced by an internal combustion engine, characterized in that it comprises a device according to any one of the preceding claims.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1050287 | 2010-01-18 | ||
FR1050287A FR2955266B1 (en) | 2010-01-18 | 2010-01-18 | DEVICE FOR MIXING BETWEEN A MAJOR GAS FLOW AND AN AUXILIARY GAS FLOW |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011086259A1 true WO2011086259A1 (en) | 2011-07-21 |
Family
ID=42727674
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2010/052738 WO2011086259A1 (en) | 2010-01-18 | 2010-12-15 | Device for mixing a main gas flow and a secondary gas flow |
Country Status (2)
Country | Link |
---|---|
FR (1) | FR2955266B1 (en) |
WO (1) | WO2011086259A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH710416A1 (en) * | 2014-11-27 | 2016-05-31 | Liebherr Machines Bulle Sa | Device for an internal combustion engine exhaust gas aftertreatment with a Abgasstromverwirbler. |
CN117919977A (en) * | 2024-03-20 | 2024-04-26 | 山西众智科技有限责任公司 | Gas mixing device |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2984953B1 (en) * | 2011-12-23 | 2015-04-10 | Faurecia Systemes Dechappement | MODULE FOR INJECTING AND DISPENSING AN ADDITIVE IN A GAS STREAM |
DE102014006491B3 (en) * | 2014-05-06 | 2015-05-28 | Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr | Static mixer |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1050287A (en) | 1951-06-20 | 1954-01-06 | Process and installation for the treatment of textile plants | |
JPS6078628A (en) * | 1983-10-03 | 1985-05-04 | Sasakura Eng Co Ltd | Liquid mixing method and apparatus |
JPS6157225A (en) * | 1984-08-30 | 1986-03-24 | Gadelius Kk | Mixing apparatus |
US20070222107A1 (en) * | 2006-03-23 | 2007-09-27 | Fujifilm Corporation | Production method of polymer film |
JP2008049306A (en) | 2006-08-28 | 2008-03-06 | Hitachi Ltd | Apparatus for mixing gas |
DE102007012790A1 (en) * | 2007-03-16 | 2008-09-18 | Audi Ag | Static mixer for exhaust gas system of internal combustion engine, has carrier elements arranged around mixing axis, and flow control elements formed on carrier elements in blade-like manner, where control elements comprise slot-like notch |
US20090266064A1 (en) * | 2008-04-25 | 2009-10-29 | Tenneco Automotive Operating Company Inc. | Exhaust gas additive/treatment system and mixer for use therein |
-
2010
- 2010-01-18 FR FR1050287A patent/FR2955266B1/en not_active Expired - Fee Related
- 2010-12-15 WO PCT/FR2010/052738 patent/WO2011086259A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1050287A (en) | 1951-06-20 | 1954-01-06 | Process and installation for the treatment of textile plants | |
JPS6078628A (en) * | 1983-10-03 | 1985-05-04 | Sasakura Eng Co Ltd | Liquid mixing method and apparatus |
JPS6157225A (en) * | 1984-08-30 | 1986-03-24 | Gadelius Kk | Mixing apparatus |
US20070222107A1 (en) * | 2006-03-23 | 2007-09-27 | Fujifilm Corporation | Production method of polymer film |
JP2008049306A (en) | 2006-08-28 | 2008-03-06 | Hitachi Ltd | Apparatus for mixing gas |
DE102007012790A1 (en) * | 2007-03-16 | 2008-09-18 | Audi Ag | Static mixer for exhaust gas system of internal combustion engine, has carrier elements arranged around mixing axis, and flow control elements formed on carrier elements in blade-like manner, where control elements comprise slot-like notch |
US20090266064A1 (en) * | 2008-04-25 | 2009-10-29 | Tenneco Automotive Operating Company Inc. | Exhaust gas additive/treatment system and mixer for use therein |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH710416A1 (en) * | 2014-11-27 | 2016-05-31 | Liebherr Machines Bulle Sa | Device for an internal combustion engine exhaust gas aftertreatment with a Abgasstromverwirbler. |
CN117919977A (en) * | 2024-03-20 | 2024-04-26 | 山西众智科技有限责任公司 | Gas mixing device |
Also Published As
Publication number | Publication date |
---|---|
FR2955266B1 (en) | 2012-02-03 |
FR2955266A1 (en) | 2011-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2539638B1 (en) | Injection system for a turbine engine combustion chamber, including air injection means improving the air-fuel mixture | |
EP2551481B1 (en) | Assembly for treating exhaust gas from a combustion engine comprising a housing for injecting and pre-mixing a fluid | |
EP2529091B1 (en) | Exhaust gas aftertreatment device of an internal combustion engine | |
EP3134627B1 (en) | Internal combustion engine having a double angled direct injection to produce a fuel mixture in a combustion chamber with a double combustion zone and a low compression ratio and method for its use in an engine. | |
FR2891305A1 (en) | Motor vehicle engine exhaust system with fuel injector after catalyser has unit to rotate fluid after injector and before filter | |
EP3117083A1 (en) | Method for monitoring the fuel injection of an internal combustion engine with direct injection, in particular with compression ignition, and engine using such a method | |
WO2011086259A1 (en) | Device for mixing a main gas flow and a secondary gas flow | |
EP3060774A1 (en) | Direct-fuel-injection diesel engine and fuel injection method for such an engine | |
EP3408513A1 (en) | Variable compression ratio internal combustion engine with two mixing zones, notably for a motor vehicle, and method of injection for such a vehicle | |
CA2907533A1 (en) | Injection system for a combustion chamber of a turbine engine, comprising an annular wall having a convergent inner cross-section | |
FR2945576A1 (en) | Mixer for mixing fuel e.g. diesel, injected into exhaust line with exhaust gas produced by internal combustion of car, has deflector whose length along path is greater or equal to half of large transverse dimension of inner periphery | |
EP2076659B1 (en) | Exhaust line fitted with a fuel injector and means for homogenizing burnt gases | |
FR2977913A1 (en) | Device for introducing and mixing liquid e.g. ammonia, in exhaust pipe portion of combustion engine of car, has impactors formed of plates fixed in portion and distributed three-dimensionally in portion for being impacted by injected liquid | |
FR2958015A1 (en) | Air and fuel injecting system for annular combustion chamber of turbomachine of aircraft, has air intake annular space arranged radially and inwardly relative to ejecting units for admission of air flow to mix with fuel in annular channel | |
EP2348204A1 (en) | Gas injecting device and exhaust line comprising such a device | |
WO2015071093A1 (en) | Method for mixing at lest one oxidant and at least one fuel in the combustion chamber of a compression-ignition direct-injection internal combustion engine, and engine using such a method | |
FR2956698A1 (en) | Exhaust element for exhaust line utilized to circulate exhaust gas produced by engine of motor vehicle for treating pollutants, has opening by which stream of gaseous reducing agent is introduced during rotation of vanes | |
WO2008142324A1 (en) | System for treating nitrogen oxides for an internal combustion engine | |
FR2957659A1 (en) | Air and fuel injecting system for base of combustion annular chamber of turbine engine of aircraft, has fuel ejection opening with ejection axis passed in downstream of downstream end of partition wall with reference to flow of air stream | |
WO2011095734A1 (en) | Exhaust line for an internal combustion engine | |
FR2952699A1 (en) | Fuel and air injection system for annular combustion chamber of turbomachine of aircraft, has space allowing air flow to be mixed with fuel in system, and fuel injection unit with injection channels to inject one type of fuel in space | |
WO2007118952A1 (en) | Method for mixing at least one gaseous fluid and a fuel in the combustion chamber of a direct injection internal combustion engine, and engine using said method | |
FR2937082A1 (en) | BURNER FOR REGENERATING PARTICLE FILTERS OF INTERNAL COMBUSTION ENGINE AND CATALYTIC SYSTEM TEMPERATURE AND EXHAUST LINE INTEGRATING SUCH BURNER. | |
WO2016203137A1 (en) | Optimized system for reducing the pollution of exhaust gases | |
FR2957118A1 (en) | Mixing chamber for reducing product and exhaust fumes of catalytic converter of internal combustion engine of motor vehicle, has flow passage section defined at level of concave wall at level of median part of guidance conduit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10809020 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10809020 Country of ref document: EP Kind code of ref document: A1 |