WO2011086216A1 - Bacteria-detecting inductive device - Google Patents

Bacteria-detecting inductive device Download PDF

Info

Publication number
WO2011086216A1
WO2011086216A1 PCT/ES2011/070012 ES2011070012W WO2011086216A1 WO 2011086216 A1 WO2011086216 A1 WO 2011086216A1 ES 2011070012 W ES2011070012 W ES 2011070012W WO 2011086216 A1 WO2011086216 A1 WO 2011086216A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
inductance
coils
bacteria
coil
Prior art date
Application number
PCT/ES2011/070012
Other languages
Spanish (es)
French (fr)
Inventor
Eva Baldrich Rubio
Francisco Javier MUÑOZ PASCUAL
Susanna MARTÍNEZ MENDIZABAL
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic) filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Publication of WO2011086216A1 publication Critical patent/WO2011086216A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48707Physical analysis of biological material of liquid biological material by electrical means
    • G01N33/48735Investigating suspensions of cells, e.g. measuring microbe concentration
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • C12M1/3407Measure of electrical or magnetical factor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/74Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables of fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48707Physical analysis of biological material of liquid biological material by electrical means
    • G01N33/48714Physical analysis of biological material of liquid biological material by electrical means for determining substances foreign to the organism, e.g. drugs or heavy metals

Definitions

  • a first object of the present invention is an inductive device for detecting bacterial presence in a sample quickly and easily.
  • a second object of the present invention is a method for detecting bacterial presence in a sample using the above detection device.
  • the determination of the conductivity of bacterial particles is an important source of information about the physiological state of the cell.
  • the conductivity of the bacterial particles is mainly determined by the number of charged groups present in the cell wall (gel-porous structure) and by the mobility of the counterions from / to it. Their experimental values have been obtained by different techniques, among which the article by A. Vander Wal, M. Minor, W. Norde, A.J.B. Zehnder and J. Lyklema, J. Colloid Interface Sci., 1997, 186, 71-79. VanderWal and colleagues observed that the surface conductivity of bacteria in suspension tends to increase slightly with the concentration of electrolyte in solution.
  • the conductivity of the cells was insignificant compared to the electrolyte solution at both the highest and the lowest electrolyte concentrations tested. While the first is the expected behavior for dilute suspensions of non-conductive and non-charged spherical particles, the second observation was attributed to ion leakage through the cytoplasmic membrane. Consequently, the estimates of these authors for the conductivity of the cells, which are equivalent to those of an electrolyte solution of about 1-5 mM, were more reliable measured in the presence of electrolytes at a concentration of 0.01-0.04 M.
  • the present invention describes a new strategy for the detection of bacterial presence in a solution using inductive transducers.
  • the conductivity of the bacterial wall helps to increase the overall conductivity of a solution, which causes a change of the magnetic field around the inductive transducer and, therefore, also of its inductance.
  • a simple and rapid measurement of the inductance of an inductive transducer exposed to a solution thus provides information about the conductivity of said solution.
  • the advantages of this measurement strategy are an extremely fast response time, a test format without reagent or marker, and the exploitation of highly compatible devices with mass production and low cost.
  • the inductive transducers employed in the present invention are inductive coils.
  • the inductance L of a coil depends on its composition and design, although it also changes in the presence of metals in its vicinity or when changes occur in external factors such as light or temperature. These changes in the inductance make it difficult to acquire coherent or reproducible signals over time (for example, obtained on different days or in disparate locations), thus hindering its use as a sensor in certain applications.
  • microfabricated coils using CMOS technology and located in remote positions within the same silicon wafer tend to have slight differences in composition and therefore different behavior.
  • the relationship between the inductances of adjacent coils in the wafer remains practically constant between certain temperature limits. This is due in part to the fact that adjacent coils tend to show similar characteristics as they have been manufactured at the same time and in similar conditions.
  • the effect of external factors is similar in two nearby coils and conditions the response of both in the same way, something that translates into close values of inductance and resistance.
  • the device of the present application takes advantage of these characteristics to perform differential inductance measurements: a first coil or active coil is contacted with a solution and its inductance is measured, this measurement is corrected with respect to that of a second coil or reference coil to compensate for changes in environmental conditions, and finally the inductance measurement of the active coil already corrected correlates with the concentration of bacteria in a solution.
  • a bacterial presence detection device which comprises two inductive transducers similar to each other configured so that one of them can be free while the other is exposed to a solution.
  • the inductive transducer we will refer to the inductive transducer as a reference to the transducer that remains free during the measurement procedure, while the inductive transducer exposed to the solution will be called an active transducer.
  • the device of the invention is adapted for connection to an impedance analyzer to carry out the inductance measurements of the inductive transducers from which the bacterial presence or not in the problem solution will be deduced and, where appropriate , the concentration of bacteria according to the procedure that will be described later.
  • inductive transducers are inductive coils covered by an insulating layer.
  • the inductive coils can be individualized, that is, each formed on a different substrate to facilitate the deposition of a solution only on the active coil or to allow differential immersion measurements of the two coils in a solution, or be formed adjacent and coplanar on the same substrate. It is understood that, although the basic configuration of this device is carried out with a minimum of two coils, one reference and one active, it is possible to manufacture a device that has a variable number of reference coils and a variable number of active coils to facilitate the simultaneous taking of several measures.
  • the coils of the invention can be of any size as long as they allow a volume of solution to completely cover the active coil, thus modifying its inductance to perform the measurement.
  • the distance between the two coils should be sufficient to expose the active coil to a solution without the solution affecting the reference coil.
  • the coils have a radius between 100 ⁇ and 1000 ⁇ , being in this case normally manufactured using microfabrication techniques or by usual techniques in microelectronics, such as chemical vapor deposition, sputtering or the like.
  • the device of the invention comprises a guard ring connected to ground around each coil to reduce possible current leakage.
  • a method of detecting bacterial presence in a solution is described problem using a device comprising an active coil (A) and a reference coil (B) covered by an insulating layer and connected to an impedance analyzer.
  • A active coil
  • B reference coil
  • the change of inductance of the active coil (A) is obtained by subtracting its reference inductance LAref from its corrected measurement inductance LAmed to compensate for environmental changes.
  • the LAmed measurement inductance is affected not only by the presence of the problem solution, but also by the change in environmental conditions.
  • the measurement inductance LAmed is multiplied by a factor obtained from the relationship between the values of the inductance of the reference coil (B) under the conditions of the first measurement and those of the second measure. Mathematically, it can be expressed as: ⁇ _ ⁇ - L.Aref "l-Amed " l-Bref / l-Bmed
  • the inductance measurements performed by the impedance analyzer are preferably performed at frequencies between 4 MHz and 20 MHz, and more preferably even at frequencies between 4 MHz and 10 MHz.
  • the accuracy of the measurements is made a plurality of inductance measurements with the reference solution and the reference inductances l-Aref, l-Bref are taken as the average of all of them.
  • the reference solution without bacteria is a saline solution, more preferably a PBS saline solution, or a bacterial culture medium.
  • the saline solution can be any solution whose conductivity has been adjusted by the addition of salts.
  • the test solution may be a dilution of the bacterial sample in a saline solution more preferably a PBS saline solution, or in a bacterial culture medium.
  • the saline solution can be any solution whose conductivity has been adjusted by the addition of salts.
  • the described bacterial presence detection method uses as a solution for reference the matrix of the problem solution, which has previously been subjected to bacterial presence depletion.
  • Figures 1 a and 1 b show respectively a perspective view and a cross section of the device of the invention.
  • Figures 2a and 2b show the average of the data obtained for each concentration of bacteria diluted in PBS and water respectively.
  • Figures 3a and 3b show the changes in inductance as a function of the salt concentration tested.
  • Figure 4 shows the changes in inductance as a function of the concentration of bacteria in mineral water samples, supplemented or not with salts to adjust the conductivity.
  • Fig. 1 a shows a perspective view of the device (1) of the invention where two microbobbins (2 A , 2 B ) formed on a substrate (3) can be seen.
  • the detail view of Fig. 1 b shows a sectional view of one of the microbobbins (2 A , 2 B ) where the layers that form it are observed: a silicon oxide coated silicon layer as an insulator forms the base for the microbobbins themselves (2 A , 2 B ), which are protected by an insulating coating made in this example of Si0 2 and Si 3 N 4 .
  • EXAMPLE 1 Detection of bacteria in PBS saline medium The validity of this invention has been demonstrated by determining the presence of Escherichia coli (E. coli) bacteria, a recognized indicator of faecal contamination in water sources, in a PBS saline solution. For this, serial dilutions were made in PBS or mineral water, previously sterilized, from a stock solution of known concentration. This stock solution consisted of a night culture in LB culture medium, subjected to centrifugation for 10 minutes at 12,000 rpm, removal of the supernatant medium and resuspension of the precipitate in PBS or in water.
  • E. coli Escherichia coli
  • Pairs of microbobins (2 A , 2 B ) of 500 ⁇ radius manufactured by CMOS technology were used using 2 aluminum levels with a section of 5 ⁇ (thickness) x 1 .5 ⁇ (height) and 49 turns each.
  • the two microbobbins (2 A , 2 B ) were located coplanarly and encapsulated in a T08 configuration.
  • the microbobine contacts (2 A , 2 B ) moved as far as possible (avoiding excess resistance) from their active area to facilitate the deposition of the sample to be studied.
  • Each micro coil (2 A , 2 B ) was surrounded by a protective ring (guard ring) to reduce possible current leakage.
  • the impedance of an inductive coil (2 A , 2 B ) is sensitive to a number of external factors. As described in this invention, one of these factors is the conductance / salinity of the solution that is deposited on its surface. For this reason, we decided to investigate the minimum conductivity values necessary to activate the response of the microbobins (2 A , 2 B ) described above.
  • the inductance changes recorded for serial dilution of a PBS saline solution are summarized in Figures 3a and 3b (the PBS solution contains 10 mM of PO 4 buffer, 140 mM NaCI and 3 mM KCI, at pH 7.4). As seen in Figures 3a and 3b, the changes in inductance are correlated with the salt concentration tested.
  • the linear detection range covers concentrations of PBS between 5 and 75 mM and the undiluted PBS (approximately 150 mm of salt) generates values close to the saturation of the device.
  • the lower limit of detection (LOD) for this salt mixture is 4.13 mM, calculated as the average of 10 independent targets (obtained in water without salt), plus 3 times its standard deviation.
  • EXAMPLE 3 Detection of bacteria in water samples The applicability of the invention to the study of real samples has been carried out by determining E. coli, inoculated at different concentrations (0-10 6 cells / ⁇ ), in mineral water . The samples were then supplemented with salts (concentrated PBS) to a final concentration of 0-150 mM. As illustrated in Figure 4, the bacterial presence is not directly detectable in water, nor in the most dilute saline buffers studied (1: 8 dilution of PBS, equivalent to 19 mM salt concentration).

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • Electrochemistry (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The invention relates to a novel device (1) for the detection of bacteria, comprising two similar inductive transducers configured such that one can remain idle while the other is exposed to a solution and designed to be connected to an impedance analyser, allowing the presence or absence of bacteria in a solution to be deduced on the basis of the variation in the impedance of the inductive transducer upon exposure to said solution.

Description

DISPOSIVO INDUCTIVO DETECTOR DE PRESENCIA BACTERIANA  BACTERIAL PRESENCE DETECTOR INDUCTIVE DEVICE
OBJETO DE LA INVENCIÓN Un primer objeto de la presente invención es un dispositivo inductivo para la detección de presencia bacteriana en una muestra de una forma rápida y sencilla. OBJECT OF THE INVENTION A first object of the present invention is an inductive device for detecting bacterial presence in a sample quickly and easily.
Un segundo objeto de la presente invención es un procedimiento para la detección de presencia bacteriana en una muestra empleando el dispositivo detector anterior. A second object of the present invention is a method for detecting bacterial presence in a sample using the above detection device.
ESTADO DE LA TÉCNICA La detección rápida y sensible de presencia bacteriana es un requisito clave para la prevención eficaz de un importante número de problemas sanitarios y medioambientales. Sin embargo, aunque simple en concepto, este objetivo se enfrenta todavía con grandes desafíos. La mayoría de los métodos de detección actualmente disponibles se fundamentan en técnicas clásicas como el cultivo, las pruebas bioquímicas y la enumeración por microscopía o por citometría de flujo, que aunque extremadamente sensibles, requieren de largos tiempos de ensayo, laboratorios adecuados, instrumentación costosa y personal altamente especializado. STATE OF THE TECHNIQUE Rapid and sensitive detection of bacterial presence is a key requirement for the effective prevention of a significant number of health and environmental problems. However, although simple in concept, this objective still faces great challenges. Most of the currently available detection methods are based on classical techniques such as culture, biochemical tests and enumeration by microscopy or flow cytometry, which although extremely sensitive, require long test times, adequate laboratories, expensive instrumentation and highly specialized staff.
Recientes avances en métodos alternativos, incluyendo las técnicas inmunológicas (inmunoensayos, separaciones inmunomagnéticas), reacción en cadena de la polimerasa (PCR), la espectrometría de masas, así como el floreciente campo de los microarrays de ADN, están sentando las bases para el desarrollo de kits comerciales y sistemas de detección portátiles de manejo más sencillo. Sin embargo, muchos de estos métodos complejos y requieren tiempos de análisis excesivamente largos. Recent advances in alternative methods, including immunological techniques (immunoassays, immunomagnetic separations), polymerase chain reaction (PCR), mass spectrometry, as well as the burgeoning field of DNA microarrays, are laying the groundwork for development of commercial kits and portable detection systems from easier handling. However, many of these complex methods and require excessively long analysis times.
Por otro lado, la determinación de la conductividad de las partículas bacterianas es una fuente importante de información sobre el estado fisiológico de la célula. La conductividad de las partículas bacterianas está determinada principalmente por el número de grupos cargados presente en la pared celular (de estructura gel-porosa) y por la movilidad de los contraiones desde/hacia ella. Sus valores experimentales han sido obtenidos mediante diferentes técnicas, entre las cuales se puede citar el artículo de A. Vander Wal, M. Minor, W. Norde, A.J.B. Zehnder y J. Lyklema, J. Colloid Interface Sci., 1997, 186, 71 -79. VanderWal y colaboradores observaron que la conductividad de la superficie de las bacterias en suspensión tiende a aumentar ligeramente con la concentración de electrolito en solución. Sin embargo, la conductividad de las células resultó insignificante en comparación con la solución electrolítica tanto a las más altas como a las más bajas concentraciones de electrolito ensayadas. Mientras que el primero es el comportamiento esperado para suspensiones diluidas de partículas esféricas no conductoras y no cargadas, la segunda observación se atribuyó a la fuga de iones a través de la membrana citoplasmática. En consecuencia, las estimaciones de estos autores para la conductividad de las células, que son equivalentes a las de una solución electrolítica de unos 1 -5 mM, resultaron más fiables medidas en presencia de electrolitos a concentración 0.01-0.04 M. On the other hand, the determination of the conductivity of bacterial particles is an important source of information about the physiological state of the cell. The conductivity of the bacterial particles is mainly determined by the number of charged groups present in the cell wall (gel-porous structure) and by the mobility of the counterions from / to it. Their experimental values have been obtained by different techniques, among which the article by A. Vander Wal, M. Minor, W. Norde, A.J.B. Zehnder and J. Lyklema, J. Colloid Interface Sci., 1997, 186, 71-79. VanderWal and colleagues observed that the surface conductivity of bacteria in suspension tends to increase slightly with the concentration of electrolyte in solution. However, the conductivity of the cells was insignificant compared to the electrolyte solution at both the highest and the lowest electrolyte concentrations tested. While the first is the expected behavior for dilute suspensions of non-conductive and non-charged spherical particles, the second observation was attributed to ion leakage through the cytoplasmic membrane. Consequently, the estimates of these authors for the conductivity of the cells, which are equivalent to those of an electrolyte solution of about 1-5 mM, were more reliable measured in the presence of electrolytes at a concentration of 0.01-0.04 M.
Posteriormente, se demostró que la conductividad del espacio periplásmico bacteriano aumenta con la raíz cuadrada de la fuerza iónica del medio (Hótzel, Biochim. Biophys. Acta-Mol. Cell Res., 1999, 1450, 53-60). Subsequently, it was shown that the conductivity of the bacterial periplasmic space increases with the square root of the ionic strength of the medium (Hotzel, Biochim. Biophys. Acta-Mol. Cell Res., 1999, 1450, 53-60).
Más recientemente, Suehiro detectó un aumento en la conductancia tras la concentración de E. coli por dielectrophoresis sobre la superficie de arrays de microelectrodos interdigitados (J Suehiro, R. Hamada, D. Noutomi, M. Shutou y M. Hará, J. Electrost., 2003, 57, 157-168). Además, el incremento en conductancia resultó directamente proporcional a la cantidad de bacterias capturadas. DESCRIPCIÓN DE LA INVENCIÓN More recently, Suehiro detected an increase in conductance after the concentration of E. coli by dielectrophoresis on the surface of interdigitated microelectrode arrays (J Suehiro, R. Hamada, D. Noutomi, M. Shutou and M. Hara, J. Electrost., 2003, 57, 157-168). In addition, the increase in conductance was directly proportional to the amount of bacteria captured. DESCRIPTION OF THE INVENTION
La presente invención describe una nueva estrategia para la detección de presencia bacteriana en una solución utilizando transductores inductivos. En efecto, la conductividad de la pared bacteriana contribuye a aumentar la conductividad global de una solución, lo cual provoca un cambio del campo magnético alrededor del transductor inductivo y, por tanto, también de su inductancia. Una sencilla y rápida medición de la inductancia de un transductor inductivo expuesto a una solución proporciona así información acerca de la conductividad de dicha solución. Las ventajas de esta estrategia de medida son un tiempo de respuesta extremadamente rápido, un formato de ensayo sin reactivo ni marcador, y la explotación de dispositivos altamente compatibles con la producción en masa y de bajo coste. En particular, los transductores inductivos empleados en la presente invención son bobinas inductivas. La inductancia L de una bobina depende de su composición y diseño, aunque también cambia en presencia de metales en su proximidad o cuando se producen cambios en factores externos como la luz o la temperatura. Estos cambios en la inductancia dificultan la adquisición de señales coherentes o reproducibles a lo largo del tiempo (por ejemplo, obtenidas en días diferentes o en localizaciones dispares), dificultando así su uso como sensor en determinadas aplicaciones. Además, bobinas microfabricadas mediante tecnología CMOS y situadas en posiciones alejadas dentro de una misma oblea de silicio suelen presentar ligeras diferencias de composición y por tanto distinto comportamiento. Sin embargo, se ha comprobado que la relación entre las inductancias de bobinas adyacentes en la oblea se mantiene prácticamente constante entre ciertos límites de temperatura. Esto es debido en parte al hecho de que bobinas adyacentes tienden a mostrar características similares al haber sido fabricadas a la vez y en similares condiciones. Además, el efecto de los factores externos es similar en dos bobinas cercanas y condiciona de la misma forma la respuesta de ambas, algo que se traduce en valores cercanos de la inductancia y resistencia. El dispositivo de la presente solicitud aprovecha estas características para realizar medidas diferenciales de inductancia: una primera bobina o bobina activa se pone en contacto con una solución y se mide su inductancia, esta medida se corrige respecto a la de una segunda bobina o bobina de referencia para compensar cambios en las condiciones ambientales, y finalmente la medida de inductancia de la bobina activa ya corregida se correlaciona con la concentración de bacterias en una solución. The present invention describes a new strategy for the detection of bacterial presence in a solution using inductive transducers. In fact, the conductivity of the bacterial wall helps to increase the overall conductivity of a solution, which causes a change of the magnetic field around the inductive transducer and, therefore, also of its inductance. A simple and rapid measurement of the inductance of an inductive transducer exposed to a solution thus provides information about the conductivity of said solution. The advantages of this measurement strategy are an extremely fast response time, a test format without reagent or marker, and the exploitation of highly compatible devices with mass production and low cost. In particular, the inductive transducers employed in the present invention are inductive coils. The inductance L of a coil depends on its composition and design, although it also changes in the presence of metals in its vicinity or when changes occur in external factors such as light or temperature. These changes in the inductance make it difficult to acquire coherent or reproducible signals over time (for example, obtained on different days or in disparate locations), thus hindering its use as a sensor in certain applications. In addition, microfabricated coils using CMOS technology and located in remote positions within the same silicon wafer tend to have slight differences in composition and therefore different behavior. However, it has been found that the relationship between the inductances of adjacent coils in the wafer remains practically constant between certain temperature limits. This is due in part to the fact that adjacent coils tend to show similar characteristics as they have been manufactured at the same time and in similar conditions. In addition, the effect of external factors is similar in two nearby coils and conditions the response of both in the same way, something that translates into close values of inductance and resistance. The device of the present application takes advantage of these characteristics to perform differential inductance measurements: a first coil or active coil is contacted with a solution and its inductance is measured, this measurement is corrected with respect to that of a second coil or reference coil to compensate for changes in environmental conditions, and finally the inductance measurement of the active coil already corrected correlates with the concentration of bacteria in a solution.
Según un primer aspecto de la invención, se describe un dispositivo detector de presencia bacteriana que comprende dos transductores inductivos similares entre sí configurados de modo que uno de ellos puede quedar libre a la vez que el otro es expuesto a una solución. En el presente documento, denominaremos transductor inductivo de referencia al transductor que queda libre durante el procedimiento de medida, mientras que el transductor inductivo expuesto a la solución se denominará transductor activo. Además, el dispositivo de la invención está adaptado para su conexión a un analizador de impedancias para llevar a cabo las medidas de inductancia de los transductores inductivos a partir de las cuales se deducirá la presencia bacteriana o no en la solución problema y, en su caso, la concentración de bacterias de acuerdo con el procedimiento que se describirá más adelante. According to a first aspect of the invention, a bacterial presence detection device is described which comprises two inductive transducers similar to each other configured so that one of them can be free while the other is exposed to a solution. In this document, we will refer to the inductive transducer as a reference to the transducer that remains free during the measurement procedure, while the inductive transducer exposed to the solution will be called an active transducer. In addition, the device of the invention is adapted for connection to an impedance analyzer to carry out the inductance measurements of the inductive transducers from which the bacterial presence or not in the problem solution will be deduced and, where appropriate , the concentration of bacteria according to the procedure that will be described later.
Aunque el dispositivo de la invención se puede realizar utilizando cualquier tipo de transductor inductivo cuya inductancia varíe cuando se modifica el campo magnético a su alrededor, de acuerdo con una realización preferente de la invención los transductores inductivos son bobinas inductivas cubiertas por una capa aislante. Las bobinas inductivas pueden estar individualizadas, es decir, formadas cada una sobre un sustrato diferente para facilitar la deposición de una solución solamente sobre la bobina activa o para permitir la toma de medidas por inmersión diferencial de las dos bobinas en una solución, o bien estar formadas adyacentes y coplanares sobre un mismo sustrato. Se entiende que, aunque la configuración básica de este dispositivo se realiza con un mínimo de dos bobinas, una de referencia y otra activa, es posible fabricar un dispositivo que disponga de un número variable de bobinas de referencia y de un número variable de bobinas activas para facilitar la toma simultánea de varias medidas. Por otro lado las bobinas de la invención pueden ser de cualquier tamaño siempre que permitan que un volumen de solución cubra completamente la bobina activa, modificando así su inductancia para realizar la medida. Del mismo modo, la distancia entre las dos bobinas deberá ser suficiente como para exponer la bobina activa a una solución sin que la solución afecte a la bobina de referencia. De acuerdo con una realización preferida de la invención, sin embargo, las bobinas tienen un radio de entre 100 μηι y 1000 μηπ, estando en este caso normalmente fabricadas empleando técnicas de microfabricación o mediante técnicas habituales en microelectrónica, como deposición química en fase vapor, pulverización catódica o similares. Although the device of the invention can be made using any type of inductive transducer whose inductance varies when modifies the magnetic field around it, according to a preferred embodiment of the invention inductive transducers are inductive coils covered by an insulating layer. The inductive coils can be individualized, that is, each formed on a different substrate to facilitate the deposition of a solution only on the active coil or to allow differential immersion measurements of the two coils in a solution, or be formed adjacent and coplanar on the same substrate. It is understood that, although the basic configuration of this device is carried out with a minimum of two coils, one reference and one active, it is possible to manufacture a device that has a variable number of reference coils and a variable number of active coils to facilitate the simultaneous taking of several measures. On the other hand, the coils of the invention can be of any size as long as they allow a volume of solution to completely cover the active coil, thus modifying its inductance to perform the measurement. Similarly, the distance between the two coils should be sufficient to expose the active coil to a solution without the solution affecting the reference coil. According to a preferred embodiment of the invention, however, the coils have a radius between 100 μηι and 1000 μηπ, being in this case normally manufactured using microfabrication techniques or by usual techniques in microelectronics, such as chemical vapor deposition, sputtering or the like.
Por último, en otra realización preferida más el dispositivo de la invención comprende un anillo de guarda conectado a masa alrededor de cada bobina para reducir posibles fugas de corriente. Finally, in yet another preferred embodiment, the device of the invention comprises a guard ring connected to ground around each coil to reduce possible current leakage.
Según un segundo aspecto de la invención, se describe un procedimiento de detección de presencia bacteriana en una solución problema empleando un dispositivo que comprende una bobina activa (A) y una bobina de referencia (B) cubiertas por una capa aislante y conectadas a un analizador de impedancias. En el presente documento, denominaremos "solución problema" a la solución cuya concentración bacteriana se desea medir, y "solución de referencia" a la solución sin bacterias que se emplea como referencia. El procedimiento, por tanto, comprende los siguientes pasos: According to a second aspect of the invention, a method of detecting bacterial presence in a solution is described problem using a device comprising an active coil (A) and a reference coil (B) covered by an insulating layer and connected to an impedance analyzer. In this document, we will call the solution whose bacterial concentration one wishes to measure a "problem solution", and "reference solution" the solution without bacteria used as a reference. The procedure, therefore, comprises the following steps:
1 ) Realizar al menos una medida de inductancia con ambas bobinas en contacto con una solución de referencia sin bacterias, obteniéndose las inductancias de referencia LAref, Leref- 1) Perform at least one inductance measurement with both coils in contact with a reference solution without bacteria, obtaining the reference inductances LAref, Leref-
2) Medir las inductancias LAmed, Lemed de las bobinas (2A, 2B) con la bobina activa (A) en contacto con la solución problema y la bobina de referencia (B) en contacto con la solución de referencia sin bacterias. 2) Measure the LAmed, Lemed inductances of the coils (2 A , 2 B ) with the active coil (A) in contact with the test solution and the reference coil (B) in contact with the reference solution without bacteria.
3) Deducir la presencia y/o concentración de bacterias en la solución problema en función del cambio de inductancia de la bobina activa (A). 3) Deduce the presence and / or concentration of bacteria in the test solution based on the change of inductance of the active coil (A).
Preferentemente, el cambio de inductancia de la bobina activa (A) se obtiene restando su inductancia de referencia LAref de su inductancia de medida LAmed corregida para compensar cambios ambientales. En efecto, la inductancia de medida LAmed está afectada no sólo por la presencia de la solución problema, sino también por el cambio en condiciones ambientales. Para compensar este cambio, según una realización preferente, se multiplica la inductancia de medida LAmed por un factor obtenido de la relación entre los valores de la inductancia de la bobina de referencia (B) en las condiciones de la primera medida y las de la segunda medida. Matemáticamente, se puede expresar como: ΔΙ_Α - L.Aref " l-Amed " l-Bref/l-Bmed Preferably, the change of inductance of the active coil (A) is obtained by subtracting its reference inductance LAref from its corrected measurement inductance LAmed to compensate for environmental changes. Indeed, the LAmed measurement inductance is affected not only by the presence of the problem solution, but also by the change in environmental conditions. To compensate for this change, according to a preferred embodiment, the measurement inductance LAmed is multiplied by a factor obtained from the relationship between the values of the inductance of the reference coil (B) under the conditions of the first measurement and those of the second measure. Mathematically, it can be expressed as: ΔΙ_Α - L.Aref "l-Amed " l-Bref / l-Bmed
De este modo, se comprueba que cambios en la inductancia corregida de la bobina activa LA indican la presencia de bacterias en la solución problema. Es más, es posible realizar una calibración previa de los valores de LA en presencia de soluciones con concentraciones de bacterias conocidas, pudiendo obtenerse así una estimación de la concentración de bacterias en la solución problema. Además, se ha comprobado que las medidas de inductancia realizadas por el analizador de impedancias se realizan preferentemente a frecuencias de entre 4 MHz y 20 MHz, y más preferiblemente aún a frecuencias de entre 4 MHz y 10 MHz. Preferentemente, con el objeto de mejorar la precisión de las medidas se realiza una pluralidad de medidas de inductancia con la solución de referencia y se toman las inductancias de referencia l-Aref, l-Bref como la media de todas ellas. Preferentemente la solución de referencia sin bacterias es una solución salina, más preferentemente una solución salina PBS, o un medio de cultivo bacteriano. A su vez, la solución salina puede ser cualquier solución cuya conductividad haya sido ajustada mediante la adición de sales. Similarmente, la solución problema puede ser una dilución de la muestra bacteriana en una solución salina más preferentemente una solución salina PBS, o en un medio de cultivo bacteriano. A su vez, la solución salina puede ser cualquier solución cuya conductividad haya sido ajustada mediante la adición de sales. Por último, según otra realización preferente el procedimiento de detección de presencia bacteriana descrito emplea como solución de referencia la matriz de la solución problema, que ha sido previamente sometida a depleción de presencia bacteriana. Thus, it is verified that changes in the corrected inductance of the active LA coil indicate the presence of bacteria in the test solution. Moreover, it is possible to perform a previous calibration of the LA values in the presence of solutions with known bacterial concentrations, thus being able to obtain an estimate of the concentration of bacteria in the test solution. Furthermore, it has been found that the inductance measurements performed by the impedance analyzer are preferably performed at frequencies between 4 MHz and 20 MHz, and more preferably even at frequencies between 4 MHz and 10 MHz. Preferably, in order to improve The accuracy of the measurements is made a plurality of inductance measurements with the reference solution and the reference inductances l-Aref, l-Bref are taken as the average of all of them. Preferably the reference solution without bacteria is a saline solution, more preferably a PBS saline solution, or a bacterial culture medium. In turn, the saline solution can be any solution whose conductivity has been adjusted by the addition of salts. Similarly, the test solution may be a dilution of the bacterial sample in a saline solution more preferably a PBS saline solution, or in a bacterial culture medium. In turn, the saline solution can be any solution whose conductivity has been adjusted by the addition of salts. Finally, according to another preferred embodiment, the described bacterial presence detection method uses as a solution for reference the matrix of the problem solution, which has previously been subjected to bacterial presence depletion.
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
Las Figuras 1 a y 1 b muestran respectivamente una vista en perspectiva y una sección transversal del dispositivo de la invención. Figures 1 a and 1 b show respectively a perspective view and a cross section of the device of the invention.
Las Figuras 2a y 2b muestran el promedio de los datos obtenidos para cada concentración de bacterias diluidas en PBS y agua respectivamente. Figures 2a and 2b show the average of the data obtained for each concentration of bacteria diluted in PBS and water respectively.
Las Figuras 3a y 3b muestran los cambios en inductancia en función de la concentración de sal ensayada. Figures 3a and 3b show the changes in inductance as a function of the salt concentration tested.
La Figura 4 muestra los cambios en inductancia en función de la concentración de bacterias en muestras de agua mineral, suplementada o no con sales para ajustar la conductividad. DESCRIPCIÓN DE UNA REALIZACIÓN PREFERENTE Figure 4 shows the changes in inductance as a function of the concentration of bacteria in mineral water samples, supplemented or not with salts to adjust the conductivity. DESCRIPTION OF A PREFERRED EMBODIMENT
Se describe una realización preferente de la invención haciendo referencia a las figuras adjuntas. La Fig. 1 a muestra una vista en perspectiva del dispositivo (1 ) de la invención donde se aprecian dos microbobinas (2A, 2B) formadas sobre un sustrato (3). La vista de detalle de la Fig. 1 b muestra una vista en sección de una de las microbobinas (2A, 2B) donde se observan las capas que la forman: una capa de silicio recubierta de óxido de silicio como aislante forma la base para las propias microbobinas (2A, 2B), que están protegidas por un recubrimiento aislante hecho en este ejemplo de Si02 y Si3N4. A preferred embodiment of the invention is described with reference to the attached figures. Fig. 1 a shows a perspective view of the device (1) of the invention where two microbobbins (2 A , 2 B ) formed on a substrate (3) can be seen. The detail view of Fig. 1 b shows a sectional view of one of the microbobbins (2 A , 2 B ) where the layers that form it are observed: a silicon oxide coated silicon layer as an insulator forms the base for the microbobbins themselves (2 A , 2 B ), which are protected by an insulating coating made in this example of Si0 2 and Si 3 N 4 .
EJEMPLO 1 : Detección de bacterias en medio salino PBS La validez de esta invención se ha demostrado mediante la determinación de la presencia de la bacteria Escherichia coli (E. coli), un indicador reconocido de contaminación fecal en las fuentes de agua, en una solución salina PBS. Para ello se realizaron diluciones seriadas en PBS o en agua mineral, previamente esterilizados, a partir de una solución madre de concentración conocida. Esta solución madre consistió en un cultivo de noche en medio de cultivo LB, sometido a centrifugación durante 10 minutos a 12 000 rpm, eliminación del medio sobrenadante y resuspensión del precipitado en PBS o en agua. EXAMPLE 1: Detection of bacteria in PBS saline medium The validity of this invention has been demonstrated by determining the presence of Escherichia coli (E. coli) bacteria, a recognized indicator of faecal contamination in water sources, in a PBS saline solution. For this, serial dilutions were made in PBS or mineral water, previously sterilized, from a stock solution of known concentration. This stock solution consisted of a night culture in LB culture medium, subjected to centrifugation for 10 minutes at 12,000 rpm, removal of the supernatant medium and resuspension of the precipitate in PBS or in water.
Se utilizaron pares de microbobinas (2A, 2B) de 500 μηι de radio fabricadas por tecnología CMOS usando 2 niveles de aluminio con sección de 5 μηι (grosor) x 1 .5 μΐη (altura) y 49 vueltas cada uno. Dentro de cada dispositivo, las dos microbobinas (2A, 2B) estaban situadas coplanarmente y encapsuladas en una configuración T08. Los contactos de las microbobinas (2A, 2B) se alejaron lo más posible (evitando aumentar en exceso su resistencia) de su área activa para facilitar la deposición de la muestra a estudiar. Cada microbobina (2A, 2B) estaba rodeada de un anillo protector (anillo de guarda) para reducir posibles fugas de corriente. Pairs of microbobins (2 A , 2 B ) of 500 μηι radius manufactured by CMOS technology were used using 2 aluminum levels with a section of 5 μηι (thickness) x 1 .5 μΐη (height) and 49 turns each. Within each device, the two microbobbins (2 A , 2 B ) were located coplanarly and encapsulated in a T08 configuration. The microbobine contacts (2 A , 2 B ) moved as far as possible (avoiding excess resistance) from their active area to facilitate the deposition of the sample to be studied. Each micro coil (2 A , 2 B ) was surrounded by a protective ring (guard ring) to reduce possible current leakage.
Para la obtención de medidas, se depositaba sobre la microbobina activa (2A) una gota de 0.5 μΙ de volumen de PBS o de agua estériles como solución de referencia, o de una gota de 0.5 μΙ de volumen de cada una de las concentraciones bacterianas preparada en PBS o en agua estériles. Seguidamente, se medía la inductancia en un rango de frecuencias entre 4 y 20 MHz y se calculaba el cambio en la inductancia LA / LB generada. Para cada concentración, se realizaron cuatro mediciones independientes (correspondientes a deposiciones independientes de muestra sobre la bobina sensora), y para la solución de referencia se realizaron un mínimo de 10 medidas independientes (correspondientes a un mínimo de 10 deposiciones independientes de solución de referencia sobre la bobina sensora). Cada medición era seguida de lavado con solución salina y agua, así como secado bajo un flujo de nitrógeno. El promedio de los datos obtenidos para cada concentración de bacterias se comparó entonces con los obtenidos en solución de referencia (PBS o agua estériles en la ausencia de bacterias) (Figuras 2a y 2b). To obtain measurements, a 0.5 μ 0.5 volume drop of sterile PBS or water as a reference solution, or a 0.5 μ gota volume drop of each of the bacterial concentrations was deposited on the active microcoil (2 A ) prepared in PBS or sterile water. Next, the inductance in a frequency range between 4 and 20 MHz was measured and the change in the generated inductance L A / L B was calculated. For each concentration, four independent measurements were made (corresponding to independent sample depositions on the sensor coil), and for the reference solution a minimum of 10 independent measurements were made (corresponding to a minimum of 10 independent depositions of reference solution on the coil sensor). Each measurement was followed by washing with saline and water, as well as drying under a flow of nitrogen. The average of the data obtained for each concentration of bacteria was then compared with those obtained in reference solution (PBS or sterile water in the absence of bacteria) (Figures 2a and 2b).
En todos los experimentos llevados a cabo en PBS, la presencia de bacterias en el medio se generó un aumento detectable de inductancia para concentraciones de E. coli de 500 a 1 x105 células / μΙ (Figura 2a). Teniendo en cuenta que el volumen de gota depositada es de 50 microlitros, somos capaces de detectar alrededor de 200 bacterias con este método novedoso. El cambio en la inductancia fue más evidente en las frecuencias más bajas estudiadas (4-10 MHz). Sin embargo, la presencia de bacterias en agua mineral no genera cambios en inductancia significativos. In all experiments carried out in PBS, the presence of bacteria in the medium generated a detectable increase in inductance for E. coli concentrations of 500 to 1 x 10 5 cells / μΙ (Figure 2a). Taking into account that the volume of drop deposited is 50 microliters, we are able to detect around 200 bacteria with this novel method. The change in inductance was most evident at the lowest frequencies studied (4-10 MHz). However, the presence of bacteria in mineral water does not generate significant inductance changes.
La constante dieléctrica de algunas suspensiones de partículas aumenta significativamente a medida que disminuye la frecuencia de la medida, probablemente debido al desplazamiento tangencial de los contraiones respecto a la superficie de las partículas cargadas. La "relajación" de los contraiones es uno de los mecanismos responsables del aparente comportamiento capacitivo de la membrana de las células vivas. En este sentido, las células vivas expuestas a un campo eléctrico se comportan como pequeños condensadores y acumulan cargas eléctricas en superficie. La permitividad resultante resultaría de la acumulación de cargas alrededor de las membranas celulares. Por lo tanto las superficies celulares se caracterizan en solución por un aumento de la densidad de iones en su entorno cercano. Esto se debe principalmente a las características de la pared que rodea la célula, que está básicamente compuesta de peptidoglicano, un componente que a condiciones fisiológicas está altamente cargado y contribuye de forma importante a la atracción de iones de la solución hacia su proximidad. EJEMPLO 2: Detección de la salinidad/conductancia de una solución The dielectric constant of some particle suspensions increases significantly as the measurement frequency decreases, probably due to the tangential displacement of the contractions with respect to the surface of the charged particles. The "relaxation" of the counterions is one of the mechanisms responsible for the apparent capacitive behavior of the membrane of living cells. In this sense, living cells exposed to an electric field behave like small capacitors and accumulate electrical charges on the surface. The resulting permittivity would result from the accumulation of charges around cell membranes. Therefore, cell surfaces are characterized in solution by an increase in ion density in their immediate environment. This is mainly due to the characteristics of the wall surrounding the cell, which is basically composed of peptidoglycan, a component that is highly charged to physiological conditions and contributes significantly to the ion attraction of the solution to its proximity. EXAMPLE 2: Detection of salinity / conductance of a solution
Como se ha descrito en las secciones anteriores, la impedancia de una bobina inductiva (2A, 2B) es sensible a un cierto número de factores externos. Como se describe en esta invención, uno de estos factores es la conductancia/salinidad de la solución que se deposita en su superficie. Por esta razón, decidimos investigar los valores mínimos de la conductividad necesarios para activar la respuesta de las microbobinas (2A, 2B) anteriormente descritas. En las Figura 3a y 3b se resumen los cambios de inductancia registrados para una dilución en serie de una solución salina PBS (la solución PBS contiene 10 mM de tampón PO4, NaCI 140 mM y KCI 3 mM, a pH 7,4). Como se observa en las figuras 3a y 3b, los cambios en inductancia se correlacionan con la concentración de sal ensayada. El rango de detección lineal abarca concentraciones de PBS entre 5 y 75 mM y el PBS sin diluir (150 mm de sal aproximadamente) genera valores cercanos a la saturación del dispositivo. Las diluciones de PBS por encima de 1 :64 (equivalente a una concentración de sal de 4,87 mM) no generan ningún cambio detectable en la inductancia. El límite inferior de detección (LOD) para esta mezcla de sal es de 4, 13 mM, calculado como el promedio de 10 blancos independientes (obtenidos en agua sin sal), más 3 veces su desviación estándar. As described in the previous sections, the impedance of an inductive coil (2 A , 2 B ) is sensitive to a number of external factors. As described in this invention, one of these factors is the conductance / salinity of the solution that is deposited on its surface. For this reason, we decided to investigate the minimum conductivity values necessary to activate the response of the microbobins (2 A , 2 B ) described above. The inductance changes recorded for serial dilution of a PBS saline solution are summarized in Figures 3a and 3b (the PBS solution contains 10 mM of PO 4 buffer, 140 mM NaCI and 3 mM KCI, at pH 7.4). As seen in Figures 3a and 3b, the changes in inductance are correlated with the salt concentration tested. The linear detection range covers concentrations of PBS between 5 and 75 mM and the undiluted PBS (approximately 150 mm of salt) generates values close to the saturation of the device. PBS dilutions above 1: 64 (equivalent to a salt concentration of 4.87 mM) do not generate any detectable change in inductance. The lower limit of detection (LOD) for this salt mixture is 4.13 mM, calculated as the average of 10 independent targets (obtained in water without salt), plus 3 times its standard deviation.
EJEMPLO 3: Detección de bacterias en muestras de agua La aplicabilidad de la invención al estudio de muestras reales se ha llevado a cabo mediante la determinación de E. coli, inoculada a diferentes concentraciones (0-106 células / μΙ), en agua mineral. Las muestras fueron entonces suplementadas con sales (PBS concentrado) hasta una concentración final 0-150 mM. Como se ilustra en la figura 4, la presencia bacteriana no es detectable directamente en agua, ni en los tampones salinos más diluidos estudiados (dilución 1 :8 de PBS, equivalente a concentración de sales de 19 mM). Cuando el agua es suplementada con sales hasta una concentración equivalente a PBS 1 :4 (38 mM), se puede detectar presencia de bacterias por encima de 103 células / μΙ pero el límite de detección del ensayo está por encima de 106 células / μΙ. Solamente a conductividad equivalente o por encima de la del PBS podemos detectar E. coli en un rango entre 102 y 106 células / μΙ. Por tanto, la presente invención permite el estudio de muestras de agua, una vez su conductividad ha sido ajustada adecuadamente. EXAMPLE 3: Detection of bacteria in water samples The applicability of the invention to the study of real samples has been carried out by determining E. coli, inoculated at different concentrations (0-10 6 cells / μΙ), in mineral water . The samples were then supplemented with salts (concentrated PBS) to a final concentration of 0-150 mM. As illustrated in Figure 4, the bacterial presence is not directly detectable in water, nor in the most dilute saline buffers studied (1: 8 dilution of PBS, equivalent to 19 mM salt concentration). When water is supplemented with salts up to a concentration equivalent to 1: 4 PBS (38 mM), the presence of bacteria can be detected above 10 3 cells / μΙ but the limit of detection of the assay is above 10 6 cells / μΙ. Only at equivalent conductivity or above that of the PBS can we detect E. coli in a range between 10 2 and 10 6 cells / μΙ. Therefore, the present invention allows the study of water samples, once their conductivity has been properly adjusted.

Claims

REIVINDICACIONES
1 . Dispositivo (1 ) detector de presencia bacteriana, caracterizado porque comprende dos transductores inductivos similares configurados de modo que uno de ellos puede quedar libre a la vez que el otro es expuesto a una solución, y que están adaptados para su conexión a un analizador de impedancias. one . Device (1) bacterial presence detector, characterized in that it comprises two similar inductive transducers configured so that one of them can remain free while the other is exposed to a solution, and which are adapted for connection to an impedance analyzer .
2. Dispositivo (1 ) detector de presencia bacteriana de acuerdo con la reivindicación 1 , caracterizado porque los transductores inductivos son bobinas (2A, 2B) cubiertas por una capa aislante. 2. Device (1) bacterial presence detector according to claim 1, characterized in that the inductive transducers are coils (2 A , 2 B ) covered by an insulating layer.
3. Dispositivo (1 ) detector de presencia bacteriana de acuerdo con la reivindicación 2, donde las bobinas (2A, 2B) están dispuestas adyacente y coplanarmente sobre el mismo sustrato (3). 3. Device (1) bacterial presence detector according to claim 2, wherein the coils (2 A , 2 B ) are arranged adjacently and coplanarly on the same substrate (3).
4. Dispositivo (1 ) de acuerdo con cualquiera de las reivindicaciones 2-3, que además comprende un anillo de guarda conectado a masa alrededor de cada bobina (2A, 2B) para reducir posibles fugas de corriente. 4. Device (1) according to any of claims 2-3, further comprising a guard ring connected to ground around each coil (2 A , 2 B ) to reduce possible current leakage.
5. Dispositivo (1 ) de acuerdo con cualquiera de las reivindicaciones 2-4, donde el radio de las bobinas (2A, 2B) está comprendido entre 100 μηι y 1000 μιτι. 5. Device (1) according to any of claims 2-4, wherein the radius of the coils (2 A , 2 B ) is between 100 μηι and 1000 μιτι.
6. Procedimiento de detección de presencia bacteriana en una solución problema empleando un dispositivo (1 ) que comprende un par de bobinas (2A, 2B), respectivamente bobina activa y bobina de referencia, cubiertas por una capa aislante y conectadas a un analizador de impedancias, caracterizado porque comprende los siguientes pasos: 6. Method for detecting bacterial presence in a problem solution using a device (1) comprising a pair of coils (2 A , 2 B ), respectively active coil and reference coil, covered by an insulating layer and connected to an analyzer of impedances, characterized in that it comprises the following steps:
- realizar al menos una medida de inductancia con ambas bobinas - perform at least one inductance measurement with both coils
(2A, 2B) en contacto con una solución de referencia sin bacterias, obteniéndose las inductancias de referencia l-Aref, l-Bref de las bobinas (2A, 2B); (2 A , 2 B ) in contact with a reference solution without bacteria, obtaining the reference inductances l-Aref, l-Bref of the coils (2 A , 2 B );
- realizar una medida de las inductancias l-Amed, l-Bmed de las bobinas (2A, 2B) con la bobina (2A) activa en contacto con la solución problema y la bobina (2B) de referencia en contacto con la solución de referencia sin bacterias; y - measure the inductances l-Amed, l-Bmed of the coils (2 A , 2 B ) with the active coil (2 A ) in contact with the problem solution and the reference coil (2 B ) in contact with the reference solution without bacteria; Y
- deducir la presencia y/o concentración de bacterias en la solución problema en función del cambio de inductancia de la bobina (2A) activa. - deduce the presence and / or concentration of bacteria in the test solution based on the change in inductance of the active coil (2 A ).
7. Procedimiento de acuerdo con la reivindicación 6, donde el cambio de inductancia de la bobina (2A) activa se obtiene restando su inductancia de referencia l-Aref de su inductancia de medida l-Amed corregida para compensar cambios ambientales. 7. Method according to claim 6, wherein the change of inductance of the active coil (2 A ) is obtained by subtracting its reference inductance l-Aref from its corrected l-Amed measurement inductance to compensate for environmental changes.
8. Procedimiento de acuerdo con la reivindicación 7, donde el cambio de inductancia de la bobina (2A) activa se obtiene de acuerdo con la siguiente fórmula: 8. Method according to claim 7, wherein the change of inductance of the active coil (2 A ) is obtained according to the following formula:
ΔΙ_Α = l-Aref " l-Amed " l-Bref/l-BmedΔΙ_Α = l-Aref "l-Amed " l-Bref / l-Bmed
9. Procedimiento de acuerdo con cualquiera de las reivindicaciones 6-8, donde las medidas de inductancia se realizan a frecuencias de entre 4 MHz y 20 MHz. 9. Method according to any of claims 6-8, wherein the inductance measurements are performed at frequencies between 4 MHz and 20 MHz.
10. Procedimiento de acuerdo con la reivindicación 9, donde las medidas de inductancia se realizan a frecuencias de entre 4 MHz y 10 MHz. 10. Method according to claim 9, wherein the inductance measurements are performed at frequencies between 4 MHz and 10 MHz.
1 1. Procedimiento de acuerdo con cualquiera de las reivindicaciones 6- 10, donde la solución de referencia sin bacterias es una solución salina o un medio de cultivo bacteriano. 1. Method according to any of claims 6-10, wherein the reference solution without bacteria is a saline solution or a bacterial culture medium.
12. Procedimiento de acuerdo con la reivindicación 1 1 , donde la solución salina es una solución salina PBS. 12. Method according to claim 1, wherein the saline solution is a PBS saline solution.
13. Procedimiento de acuerdo con cualquiera de las reivindicaciones 6- 12, donde la solución problema es una solución salina o un medio de cultivo bacteriano. 13. Method according to any of claims 6-12, wherein the test solution is a saline solution or a bacterial culture medium.
14. Procedimiento de acuerdo con la reivindicación 13, donde la solución salina es una solución salina PBS. 14. Method according to claim 13, wherein the saline solution is a PBS saline solution.
15. Procedimiento de acuerdo con cualquiera de las reivindicaciones 6- 14, donde la solución de referencia se obtiene a partir de la matriz de la solución problema previamente sometida a depleción de presencia bacteriana. 15. Method according to any of claims 6-14, wherein the reference solution is obtained from the matrix of the test solution previously subjected to bacterial presence depletion.
PCT/ES2011/070012 2010-01-14 2011-01-11 Bacteria-detecting inductive device WO2011086216A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201030031A ES2363289B1 (en) 2010-01-14 2010-01-14 PRESENCE DETECTOR INDUCTIVE DEVICE.
ESP201030031 2010-01-14

Publications (1)

Publication Number Publication Date
WO2011086216A1 true WO2011086216A1 (en) 2011-07-21

Family

ID=44260291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/070012 WO2011086216A1 (en) 2010-01-14 2011-01-11 Bacteria-detecting inductive device

Country Status (2)

Country Link
ES (1) ES2363289B1 (en)
WO (1) WO2011086216A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103412495A (en) * 2013-07-26 2013-11-27 常州佳讯光电产业发展有限公司 Method for scanning inverter input matrix insulation impedance in marching type

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050112544A1 (en) * 2002-12-20 2005-05-26 Xiao Xu Impedance based devices and methods for use in assays
US20050244987A1 (en) * 2004-04-28 2005-11-03 Canon Kabushiki Kaisha Detection device, detection apparatus, and detection kit employing the device and reagent
ES2280335T3 (en) * 2000-03-27 2007-09-16 Nte, S.A. METHOD FOR MEASURING THE CONCENTRATION AND COMPOSITION OF BIOMASS, PROBE AND CELL.
US20090202985A1 (en) * 2008-02-01 2009-08-13 Patrick Glenn Gulak Method and apparatus for detecting an electric field fluctuation associated with the permeabilization of a bacterial cell wall

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2280335T3 (en) * 2000-03-27 2007-09-16 Nte, S.A. METHOD FOR MEASURING THE CONCENTRATION AND COMPOSITION OF BIOMASS, PROBE AND CELL.
US20050112544A1 (en) * 2002-12-20 2005-05-26 Xiao Xu Impedance based devices and methods for use in assays
US20050244987A1 (en) * 2004-04-28 2005-11-03 Canon Kabushiki Kaisha Detection device, detection apparatus, and detection kit employing the device and reagent
US20090202985A1 (en) * 2008-02-01 2009-08-13 Patrick Glenn Gulak Method and apparatus for detecting an electric field fluctuation associated with the permeabilization of a bacterial cell wall

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103412495A (en) * 2013-07-26 2013-11-27 常州佳讯光电产业发展有限公司 Method for scanning inverter input matrix insulation impedance in marching type

Also Published As

Publication number Publication date
ES2363289A1 (en) 2011-07-28
ES2363289B1 (en) 2012-06-28

Similar Documents

Publication Publication Date Title
Shanmugam et al. A review on ZnO-based electrical biosensors for cardiac biomarker detection
JP5951527B2 (en) Specimen detection apparatus and detection method
Lei et al. Microelectrode array biosensor for the detection of Legionella pneumophila
JP4962599B2 (en) Field effect transistor biosensor
EP2807475A1 (en) Method and apparatus for detection of a biomarker by alternating current electrokinetics
Das et al. Interdigitated electrode-less high-performance macroporous silicon structure as impedance biosensor for bacteria detection
US20050266396A1 (en) Dielectric relaxation spectroscopy apparatus and methods of use
Fernández et al. Nanochannel-based electrochemical assay for transglutaminase activity
US20170212075A1 (en) Devices, systems and methods for detecting viable infectious agents in a fluid sample using an electrolyte-insulator-semiconductor sensor
WO2018111234A1 (en) DEVICES, SYSTEMS AND METHODS TO DETECT THE PRESENCE OF ß-LACTAM ANTIBIOTIC HYDROLYZING BACTERIA IN A SAMPLE
Hideshima et al. Theoretical optimization method of buffer ionic concentration for protein detection using field effect transistors
US20190128888A1 (en) Device for biological material detection, detection apparatus for biological material detection, method for measuring ion current, and method for identifying biological material
WO2011086216A1 (en) Bacteria-detecting inductive device
Braham et al. Urease capacitive biosensors using functionalized magnetic nanoparticles for atrazine pesticide detection in environmental samples
Kaur et al. On‐chip label‐free impedance‐based detection of antibiotic permeation
JP5494396B2 (en) Biosensor
JP5392344B2 (en) Field effect transistor biosensor
CN109952154A (en) Sample analysis chip and method for manufacturing same
de Araujo et al. Detection and characterization of biological cells by impedance spectroscopy
KR101484822B1 (en) Device for cell counting and method for manufacturing the same
RU178317U1 (en) FIELD TRANSISTOR FOR DETERMINING BIOLOGICALLY ACTIVE COMPOUNDS
CN108368537A (en) improved device for analyzing nucleic acid molecules
Chen et al. Optimization of nanobelt field effect transistor with a capacitive extended gate for use as a biosensor
JP2012047612A (en) Current mirror type biosensor
Ravindran et al. Biochemical sensing with an arrayed silicon nanowire platform

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11732697

Country of ref document: EP

Kind code of ref document: A1