WO2011086210A1 - Partículas magnético-luminiscentes para aplicaciones biomédicas - Google Patents

Partículas magnético-luminiscentes para aplicaciones biomédicas Download PDF

Info

Publication number
WO2011086210A1
WO2011086210A1 PCT/ES2010/070856 ES2010070856W WO2011086210A1 WO 2011086210 A1 WO2011086210 A1 WO 2011086210A1 ES 2010070856 W ES2010070856 W ES 2010070856W WO 2011086210 A1 WO2011086210 A1 WO 2011086210A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
magnetic
agents
silicon wafers
silicon
Prior art date
Application number
PCT/ES2010/070856
Other languages
English (en)
French (fr)
Inventor
Alvaro MUÑOZ NOVAL
Vicente Torres Costa
Darío GALLACH PÉREZ
Vanessa SÁNCHEZ-VAQUERO
Miguel José MANSO SILVÁN
Raúl José MARTÍN PALMA
Josefa P. GARCÍA RUIZ
Original Assignee
Universidad Autónoma de Madrid
Centro De Investigación Biomédica En Red En Bioingeniería, Biomateriales Y Nanomedicina
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Autónoma de Madrid, Centro De Investigación Biomédica En Red En Bioingeniería, Biomateriales Y Nanomedicina filed Critical Universidad Autónoma de Madrid
Publication of WO2011086210A1 publication Critical patent/WO2011086210A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0063Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres
    • A61K49/0069Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form
    • A61K49/0089Particulate, powder, adsorbate, bead, sphere
    • A61K49/0091Microparticle, microcapsule, microbubble, microsphere, microbead, i.e. having a size or diameter higher or equal to 1 micrometer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0063Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres
    • A61K49/0069Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form
    • A61K49/0089Particulate, powder, adsorbate, bead, sphere
    • A61K49/0091Microparticle, microcapsule, microbubble, microsphere, microbead, i.e. having a size or diameter higher or equal to 1 micrometer
    • A61K49/0093Nanoparticle, nanocapsule, nanobubble, nanosphere, nanobead, i.e. having a size or diameter smaller than 1 micrometer, e.g. polymeric nanoparticle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/183Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an inorganic material or being composed of an inorganic material entrapping the MRI-active nucleus, e.g. silica core doped with a MRI-active nucleus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/1851Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule
    • A61K49/1857Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule the organic macromolecular compound being obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. PLGA
    • A61K49/186Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule the organic macromolecular compound being obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. PLGA the organic macromolecular compound being polyethyleneglycol [PEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1887Agglomerates, clusters, i.e. more than one (super)(para)magnetic microparticle or nanoparticle are aggregated or entrapped in the same maxtrix
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5094Microcapsules containing magnetic carrier material, e.g. ferrite for drug targeting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Definitions

  • the present invention falls within the field of biosensors, more specifically it relates to nanoparticulate hybrid systems with magnetic and luminescent properties for application in imaging, monitoring, drug release and biodetection, as well as procedures for obtaining it.
  • modified bio-magnetic particles have been developed on its surface for application in immunoassays, genetic engineering, cell separation, complex purification, intracellular localization, specific cell destinies, etc.
  • These particles include oxides.
  • Porous nanostructures offer the additional advantage of having a very high specific surface area that reverts to high chemical reactivity, which greatly facilitates conjugation with molecules and biomolecules.
  • nanoparticles have been designed from a mesoporous silica structure in whose pores magnetic nanoparticles of Fe 3 0 4 and semiconductor quantum dots (QDs) are inserted, coated with an amphiphilic polymer capable of improving its biocompatibility [Sathe, T.. et al., Anal. Chem., 2006, 78, 5627-32].
  • WO2009 / 078924 describes a structure of a dimension smaller than one miera, formed by a body of porous ice silica that incorporates nanoparticles of iron oxide and fluorescent molecules inside the pores of said structure. Anionic molecules are attached to the silica body that allow the union with bio-molecules.
  • quantum dots have a multitude of advantages over organic fluorophors, such as the selection of the emission wavelength, a wide band of bsorption in the spectrum, a very narrow emission spectrum, as well as high levels of luminescent intensity and photostability, these usually result in most toxic cases because they include heavy metals such as cadmium, zinc, cobalt and the like.
  • heavy metals such as cadmium, zinc, cobalt and the like.
  • due to the process of obtaining based on the physical mixture of solutions containing the different components and subsequent precipitation it is not easy to control the final concentration of ferromagnetic metal infiltrated in the matrix, which greatly limits its subsequent application.
  • biofunctional particles comprising a nanostructured porous silicon matrix as a support material, allow to considerably improve the biocompatibility and biodegradability thereof, since they do not need to incorporate additional luminescent tracers, due to that the matrix itself presents intrinsic luminescence as a result of the presence of nanometric silicon monocrystals within the amorphous silicon structure that act as quantum dots.
  • porous silicon matrix has a higher chemical affinity and a greater biocatalytic surface than the silica matrix, which facilitates the coating with functional molecules capable of conjugating with molecules and biomolecules.
  • functionalized particles have been cultured in the presence of hMSC human mesenchymal cells, which have internalized said particles and demonstrated their non-toxicity.
  • HMSC cells are producers of immunosuppressive factors, facilitate factors that stimulate endogenous tissue repair and angiogenesis, so they are ideal for cell therapy and other biomedical applications.
  • the procedure used to obtain it has allowed the controlled incorporation of magnetic nanoparticles into the pores of the matrix.
  • silicon structures with metal channels or deposits with sizes of the order of 10 to 20 times greater than the pores of the nanostructured matrix could be obtained, for later application in the manufacture of memory storage devices and magnetic sensors.
  • the aforementioned procedure also allows controlling the size of the pores as well as that of the silicon monocrystals (also considered as quantum dots when their size is nanometric), which translates into the possibility of previously selecting the wavelength of the luminescent particles , in addition to controlling surface chemical activity.
  • the luminescence is maintained even after the self-nucleated magnetic nanoparticles have been inserted into the porous structure. Additionally, for biomedical applications, the experimental manufacturing conditions can be adjusted so that the maximum luminescence occurs in the near infrared interval of wavelengths where the tissues have high transparency.
  • the invention still governs a system of luminescent magnetic particles smaller than 3 microns, which comprise a nanostructured porous silicon matrix, wherein said matrix comprises nanoparticles of magnetic material and nanometric nanometric crystals of silicon in its pores. .
  • the invention is directed to a process for the preparation of a nanoparticle system as previously mentioned, comprising: a) subjecting silicon wafers to a galvanization process in a solution comprising a mixture of an acid strong inorganic and an alcohol, applying a current density between 10 mA / cm 2 and 150 mA / cm 2 to obtain porous silicon wafers; b) subjecting the porous silicon wafers to a process of electro infiltration of the magnetic material by means of a pulsed current-equilibrium mode by immersion of the porous silicon wafers in a resolution comprising metal salts constituting the magnetic material and Catalytes
  • a further aspect of the invention is a pharmaceutical composition comprising luminescent magnetic particles as defined above and a biologically active molecule.
  • the invention relates to the use of a particle system as defined above for the preparation of a medicament.
  • the invention relates to the use of a particle system as defined above for the preparation of a medicament for gene therapy.
  • the invention relates to the use of a particle system as defined above as cell tissue markers and migration or destination markers.
  • An additional aspect is the use of a particle system as defined above as contrast agents in nuclear magnetic resonance.
  • the invention relates to the use of a particle system as defined above for assisted magnetic separation of chemical and biochemical products.
  • FIG. 1 Schematic representation of magnetic-luminescent nanostructured porous silicon particles (PSPml) after functionalization with polyethylene glycol.
  • PSD magnetic-luminescent nanostructured porous silicon particles
  • the nanostructured porous silicon particles (scratched bottom particles) house the infiltrated ferromagnetic nanoparticles (solid bottom particles) inside. Immediately after its synthesis, the particles are covered with a biofunctional layer of Polyethylene glycol.
  • Figure 3. Magnetic response in infiltrated iron particles synthesized by the method described in example 2.
  • Figure 4. (a) Fluorescence microscope images of particles functionalized with PEG within 24 hours of their synthesis. The images were collected by excitation with ultraviolet lamp and a DAPI filter was used. (b) Temporal evolution of the luminescence of particles infiltrated with Cobalt and functionalized with PEG, excited at 420 nm. Figure. 5. Optical images of the internalized particles in the hMSCs, observed with optical microscopy and excited with UV light a) at 4 hours and b) at 72 hours of culture.
  • luminescent magnetic particles refers to substantially spherical, independent and observable physical entities, whose average diameter is less than 3 microns, and that have magnetic properties (can be manipulated by applying magnetic fields) and luminescent (they are capable to emit electromagnetic radiation of different wavelengths when excited at a certain wavelength).
  • nanostructured porous silicon refers to a structure obtained from silicon that comprises a series of pores of nanometric size (less than 1 mire) inside which are located nanometric nanometric monocrystals of silicon.
  • silicon nanometric monocrystals refers to silicon monocrystals with a size in the nanometric range, that is, with a size less than 1 mire.
  • magnetic material refers to any metal composition that has magnetic properties, that is, that allows its manipulation under the action of a magnetic field.
  • catalytes refers to any compound capable of favoring surface nucleation of silicon monocrystals.
  • the present invention provides in a first aspect a system of luminescent magnetic particles smaller than 3 microns, comprising a porous silicon matrix nanostructured, where said matrix comprises nanoparticles of magnetic material and nanometric monocrystals of silicon in its pores.
  • the particles have a structure with a controllable average size according to the method of obtaining and of dimensions smaller than one mire, more particularly between 500 and 900 nm.
  • the particles Preferably, have an average size of approximately 300-500 nm, which allows them to be internalized by the cells.
  • the pore size of the silicon matrix is between 5 and 60 nm.
  • the nanoparticles of the infiltrated magnetic material typically have an average size of less than 50 nm, preferably between 1 and 40 nm, more preferably between 5 and 30 nm.
  • the constituent material thereof includes a superparamagnetic, paramagnetic or ferromagnetic material, more preferably ferromagnetic.
  • the magnetic material is a metal oxide, such as for example cobalt oxide, iron, nickel or manganese, or a metal element such as iron and / or cobalt.
  • the porous silicon matrix is characterized by intrinsic luminescent properties. Although no theory is fully accepted, it is widely believed that the emission is due to quantum effects of bido size to carrier confinement. Such confinement results in an increase in emission energy. Thus, it presents a high efficiency luminescence in the near-infrared spectrum and in the entire visible spectrum. This wide range of emulsion energies comes from various luminescent bands at approximately 470 nm (blue-green), 400-800 nm (blue-red) and 1100-1500 nm (near IR), the band being between 400-800 nm the most characteristic.
  • the maximum of the emission band in the indicated range is usually around 650 nm (red-orange zone), however, said maximum may vary depending on the size of the silicon nanocrystals.
  • the luminescence duration usually ranges between 24-72 hours after matrix synthesis. Subsequently, in addition to losing intensity, it travels at shorter wavelengths.
  • the degradation of the luminescence in the red range is mainly attributed to the progressive oxidation of the luminescent centers of the silicon. However, although this luminescence is finally lost in the red zone, the oxidation due to the action of saline solutions where the particles are dispersed generates the appearance of new emitting luminescent centers in the blue that allow a much longer application in the weather.
  • the surface of the particles is modified to incorporate functional groups or molecules capable of covalently binding to a bio molecule or conjugated with it.
  • functional groups capable of covalently binding to a bio molecule or conjugated with it.
  • functional groups that can be incorporated into its surface include -COOH, -CHO and -NH 2 and all those that provide silane groups to said surface.
  • the functionalization of the surface of the particles also allows the luminescence duration to be increased up to one week, as is the case of the particles functionalized with aminosilane groups.
  • the nanoparticles are modified on their surface with molecules capable of binding both the porous silicon matrix and a covalently bio-molecule forming a biocompatible coating.
  • This coating also acts as a protective layer, since it allows to extend the luminescence life of the porous silicon matrix by considerably delaying the oxidation of the structure and the subsequent loss of luminescence.
  • the surface of the particles is coated with polyethylene glycol molecules or with another polymer of the polysaccharide type such as dextran. In an even more preferred embodiment, the surface is coated with polyethylene glycol molecules.
  • the particles of the invention further comprise a bio molecule bound or conjugated through the functional groups or molecules mentioned above.
  • said biomolecule is covalently linked to the functional groups or molecules located on the surface of the particles.
  • bio-molecule means any synthetic or natural molecule that plays a specific role in biological systems. Examples of bio-molecules include carbohydrates, lipids, proteins and nucleic acids, from which all high-specific cell molecules can be synthesized for energy, functions and reproduction.
  • these molecules therefore include an amino acid, a peptide, a protein, a nucleoside, a nucleotide, an oligonucleotide, a nucleic acid, a vitamin, a monosaccharide, an oligosaccharide, a carbohydrate or a lipid, among others.
  • the invention in a second aspect, relates to a process for the preparation of the particles of the invention comprising: a) subjecting silicon wafers to a galvanization process in a solution comprising a mixture of a strong inorganic acid and an alcohol , applying a current density between 10 mA / cm 2 and 150 mA / cm 2 to obtain porous silicon wafers; b) subjecting the porous silicon wafers to a process of electro infiltration of the magnetic material by means of a pulsed current-equilibrium mode by immersion of the porous silicon wafers in a solution comprising metal salts constituting the magnetic material and catalysts. c) convert the porous silicon wafers infiltrated with magnetic material into porous silicon particles.
  • Step a) of the process involves the electrochemical attack of silicon wafers or sheets by introducing them into a solution comprising the mixture of a strong inorganic acid and an alcohol, and the application of a current density between 10 mA / cm 2 and 150 mA / cm 2 .
  • p-type monocrystalline silicon wafers, monocrystalline silicon wafers nu-type multicrystalline or polycrystalline silicon wafers are employed. More preferably, p-type monocrystalline silicon wafers are used.
  • monocrystalline p-type silicon wafers doped with boron are used, and have an orientation ⁇ 100> and a resistivity between 0.1 and 0.05 ⁇ -cm. These wafers allow better control of the size of the resulting structures.
  • An inorganic strong acid is understood as that acid capable of dissociating completely in water providing H + ions and their conjugate base.
  • strong acids include hydrochloric acid, hydrofluoric acid, hydroiodic acid, hydrobromic acid, perchloric acid, nitric acid and sulfuric acid.
  • the strong acid employed is hydrofluoric acid because of its special involvement in the transfer of charge on the surface during anodic activation.
  • alcohol includes Ci-C 4 chain alcohols, such as methanol, ethanol, propanol or butanol, however, in a preferred embodiment ethanol is used.
  • the strong acid: alcohol mixture is used in a volume ratio of about 1: 1. This combination allows the manufacture of nanometric structures in depth by providing an optimized surface tension.
  • the current application is carried out under lighting conditions with a 100 W halogen lamp.
  • Step b) of the process involves the incorporation of the magnetic nanoparticles into the pores of the silicon matrix.
  • This stage is carried out by a process called electro infiltration using a pulsed mode of current-balance.
  • the porous silicon wafers previously obtained in the previous stage are immersed in a solution comprising salts of metals that will constitute the magnetic material, applying repeated pulses of current to said solution, leaving an interval between them (denominating "time of resting ") which allows the ionic rebalancing of the solution.
  • catalysts that favor the surface nucleation of the metals in the form of monocrystals are incorporated into the solution.
  • sodium saccharin is used.
  • the dissolution that comprises the salts of metal which constitute the magnetic material is a dissolution of cobalt / iron watts.
  • Said solution is widely known to an expert and consists of a mixture of sulfates and metal chlorides, together with the addition of acids or bases that control the pH.
  • Step c) of the process involves obtaining the nanostructured porous silicon particles from the porous silicon wafers infiltrated with the magnetic nanoparticles.
  • the formed and infiltrated wafers are dispersed by sonication in an ultrasonic apparatus for sufficient time to allow obtaining particles with sizes smaller than three microns. Crushing with agate mortar and a new sonication allows the average size to be reduced to 500 nm.
  • the particles can be obtained from the porous silicon sheets by other mechanical means, such as scraping or spraying in agate mortar.
  • the process of the invention may further comprise a step in which the particles are functionalized on their surface.
  • the surface of the particles is modified by the incorporation of functional groups or molecules capable of covalently binding to a bio-molecule or conjugating with it. Examples of functional groups that can be incorporated into its surface include -COOH, -CHO and -NH 2 (commercially accessible) and all those that provide silane groups to said surface.
  • the nanoparticles are modified on their surface with molecules capable of binding both the porous silicon matrix and a covalently bio-molecule forming a biocompatible coating.
  • the surface of the particles is coated with polyethylene glycol molecules.
  • the process of the invention may include an additional step in which a bio-molecule is incorporated on the surface of the particles.
  • Said molecule is bound or conjugated to the particles through the functional groups incorporated as explained above.
  • said bio-molecule is covalently linked to the functional groups located on the surface of the particles.
  • the incorporation of said bio-molecule is carried out by standard procedures known to a person skilled in the art. Once the particles are obtained, it is convenient to let them stand for a sufficient time to allow the stabilization of the luminescent centers, as a previous step to their application. In a preferred embodiment, said particles are allowed to stand for about an hour.
  • the developed luminescent magnetic particles both functionalized and not functionalized, they have not been cytotoxic after in vitro tests, showing a rate of cellular viability similar to that of the cultured control cells and a 95-98% survival rate after 72 hours of culture.
  • the system of the invention allows efficient internalization of the particles within the cells due to the interaction with specific receptors of the cell membrane, also revealing the survival of these cells after 72 hours of culture. .
  • the developed particle systems are particularly useful in the field of biomedicine.
  • the magnetic-luminescent particles can be used as cell markers with the additional possibility of allowing their manipulation with magnetic fields.
  • the implementation of these magnetic fields also allows mechanical manipulation of cells and single-celled organisms.
  • the particles of the invention can be used in hyperthermia applications with optical monitoring, as magnetic resonance contrast agents with optical tracking, or for magnetically assisted separation of chemical or biochemical products.
  • the particles of the invention are used as drug dispensers in defined areas of the organism, being possible to guide them through magnetic fields and to be located optically.
  • the biologically active drug is incorporated into the particles through the functional groups or molecules that cover its surface and subsequently released into the desired biological medium.
  • the invention relates to a pharmaceutical composition comprising the luminous magnetic particles of the invention and a biologically active molecule.
  • biologically active molecule means any substance that is used in the treatment, cure, prevention or diagnosis of a disease or that is used to improve the physical and mental well-being of humans and animals.
  • biologically active molecules include proteins, peptides, lipids, oligonucleotides, corticosteroids, vitamins, antifungal agents, bacteriostatic agents, healing agents, antihistamine agents, anesthetic agents, antibiotic agents, anti-inflammatory agents, age-related agents, immune systems, anti-inflammatory agents, among others.
  • compositions include any liquid composition (i.e. suspension or dispersion of the nanoparticles of the invention) for oral, oral, sublingual, topical, ocular, nasal or vaginal application, or any composition in the form of gel, ointment , cream or balm for topical, ocular, nasal or vaginal administration.
  • liquid composition i.e. suspension or dispersion of the nanoparticles of the invention
  • oral, oral, sublingual, topical, ocular, nasal or vaginal application or any composition in the form of gel, ointment , cream or balm for topical, ocular, nasal or vaginal administration.
  • the present invention is therefore directed to the use of a particle system as defined in the present invention for the preparation of a medicament.
  • the demonstrated ability of the particles of the invention to penetrate the cells allows these particles to be used as delivery systems for genetic material, making them especially useful in gene therapy.
  • a further aspect of the present invention is the use of the particle system of the invention in the preparation of a medicament for gene therapy.
  • the particles when they bind to negatively charged genes (such as DNA plasmids) or nucleic acids, they can penetrate the target cells, passing through the cell membrane and releasing the genetic material inside those cells.
  • negatively charged genes such as DNA plasmids
  • nucleic acids such as DNA plasmids
  • an antibody on the surface of the functionalized particles can selectively bind to certain cells, allowing the separation of said cells by inducing an external magnetic field and detecting them by fluorescence, by which are also particularly useful for application in biodetection.
  • Example 1 Preparation of the nanostructured porous silicon layers
  • the nanostructured porous silicon was synthesized by electrochemical attack of monocrystalline p-type silicon wafers (doped with boron, orientation ⁇ 100> and resistivity between 0.1 and 0.05 ⁇ -cm) in a 1: 1 solution of HF (48% wt): Ethanol (98% wt).
  • the wafers were galvanically attacked for 300-1000 s with different current densities 80 mA / cm 2 and 120 mA / cm 2 , under lighting conditions with a 100W halogen lamp.
  • Said particles are allowed to stand for an approximate period of one hour, to allow stabilization of the luminescent centers, before further application or characterization.
  • Scanning electron microscopy (SEM) characterization was used to control the electro infiltration process by observing the cross section of the samples. To this end, the samples were cross-sectioned and arranged perpendicularly to the focal plane, without requiring additional treatments. Elemental analyzes by X-ray energy dispersion spectroscopy (EDAX) were performed in the same microscope. Transmission electron microscopy (TEM) was performed in a JEOL-JEM1010 system (100 KV). A sample of PS Pml powder was given and pressed into an agate mortar and redispersed. It was then deposited in the TEM sample holders (Lacey Formvar 300 mesh copper grids-TED PELLA INC.).
  • Figure 2 (a) shows the morphology of a dried PSPml conglomerate immediately after biofunctionalization, in which the spherical shape they adopt is clearly appreciated. It has also been determined that PSPml acquire sizes that vary between 500nm and 3 microns in diameter. It was verified, thanks to images like this one, that the spherical shape is not affected when the process of biofunctionalization with PEG is carried out. The chemical analysis by EDX of the cross sections also confirmed the presence of electro-infiltrated cobalt and iron inside the nanostructured porous silicon layer. In addition, as in the general case for nanostructured porous silicon, the presence of silicon and oxygen was verified.
  • the magnetic behavior of the PSPml was analyzed qualitatively by using a magnet. As shown in Figure 3, the particles are clearly attracted by the proximity of a magnetic field. Once the magnet separates sufficiently from their vicinity, they slowly fall to the bottom of the test tube.
  • the spectrophotometric measurements show that the excitation interval is in the radius or ltraviol eta and that the spectrum of the emitted light falls into the optic, normally centered in the red, as shown in Figure 4 (b).
  • the maximum of the emission band appears in the red-orange zone (650nm, approx.)
  • day 0 the maximum of the emission band appears in the red-orange zone
  • day 2 the luminescence disappears almost completely in that range.
  • the degradation of the luminescence in the red range has originally been attributed to the progressive oxidation of the luminescent centers of the silicon.
  • Example 3 In vitro tests: internalization of PSPml and cytotoxicity analysis
  • the luminescent magnetic particles synthesized as indicated above were treated for subsequent biological tests as described below. Washing-centrifugation cycles were performed in fractions of 300 ⁇ of concentrations of 5 g / L of the PSPml. Three cycles of centrifugation (10 minutes), washing with PBS and ultrasonic redispersion were required to eliminate all possible traces of solvent and to balance the pH. The washings were then repeated using 1 ml of Dulbecco's Modified Eagle Medium [DMEM] in cycles as described above. The last wash was performed without centrifugation and allowed to stand overnight to verify that the pH was stable. The human mesenchymal cells [hMSCs] were then exposed to the prepared particles as indicated below.
  • DMEM Dulbecco's Modified Eagle Medium
  • the MSCs were used to analyze whether the nanoparticles were internalized or not by the cells and their possible cytotoxicity. To this end, 15,000 cells were seeded in glass coverslips covered with 0.5% gelatin (bovine skin, Sigma). The hMSCs were incubated with DMEM-LG with 10% FBS for 24h. Then, in the case of internalization tests, the nanoparticles dissolved in DMEM-LG were exposed to a concentration of 0.15 mg / ml. In both cases, exposed and unexposed, they were maintained at 37 Q C and at a C0 2 atmosphere of 5%, for two periods of time, 4 and 72 hours respectively.
  • the adhered cells were washed twice with PBS and fixed for 20 minutes with 3.7% formaldehyde in PBS at room temperature. After fixation, the coverslips were washed twice in PBS, the samples were dehydrated with absolute ethanol (Merck) and mounted with Mowiol / Dabco (Calbiochem). The cells were observed with a vertical fluorescence microscope (OLYMPUS 1X81) with a coupled CCD device.
  • Cytotoxicity Assays The possible cytotoxicity of the particles in culture with the hMSCs was determined after 4 and 72 hours of culture in DMEM-LG, evaluating the cell viability by the MTT (Sigma) colorimetric test. This assay is based on the ability of viable cells to convert into the mitochondria a tetrazole salt, called MTT (yellow) (3- (4,5-dimethylthiazol-2-yl) bromide -2,5- diphenyltetrazole) to a reduced form called formazan (blue).
  • MTT yellow

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Immunology (AREA)
  • Medicinal Preparation (AREA)

Abstract

La presente invención se refiere a un sistema de partículas magnético luminiscentes de tamaño inferior a 3 micras, de forma particular igual o inferior a 500 nm, que comprende una matriz de silicio poroso nanoestructurado, donde dicha matriz comprende en sus poros nanopartículas de material magnético y nanocristales de silicio, así como a un procedimiento para su preparación. Dichas partículas pueden ser funcionalizadas con grupos o moléculas que permiten la unión de bio-moléculas en su superficie, lo que les hace ser especialmente útiles en aplicaciones biomédicas.

Description

PARTÍCULAS MAGNÉTICO-LUMINISCENTES PARA APLICACIONES BIOMÉDICAS
CAMPO DE LA INVENCIÓN
La presente invención se encuadra dentro del campo de los biosensores, más concretamente se refiere a sistemas híbridos nanoparticulados con propiedades magnéticas y luminiscentes para su aplicación en imagen, monitorización, liberación de fármacos y biodetección, así como a procedimientos para su obtención.
ANTECEDENTES
La aplicación de nanoestructuras basadas en semiconductores de tamaño y composición controlada está siendo progresivamente implementada en multitud de campos pertenecientes a la biotecnología [Wang, Y. et al., Bioapplication of nanosemiconductors. Mat. Today, 2005, 8(Suppl. 1), 20-31; Jianrong, C. et al., Nanotechnology and biosensors, Biotechnol. Adv., 2004, 22, 505-518]. El control sistemático de dicha propiedades de las nanoestructuras contrasta con la naturaleza de las especies moleculares cuyas propiedades no varían sistemáticamente. Este control de las variaciones de las propiedades no sólo mejora las aplicaciones tradicionales, sino que abre las puertas a las nuevas aplicaciones más allá de los bioconjugados moleculares convencionales.
La disponibilidad de estas nuevas nanoestructuras facilita la creación de nuevos métodos de monitorización in situ y de diseño de sensores. Así, se han venido desarrollando partículas bio- magnéticas modificadas en su superficie para su aplicación en inmunoensayos, ingeniería genética, separación celular, purificación de complejos, localización intracelular, destinos específicos de cél u l as etc.. Estas pa rtícu la s com prenden óxidos ferromagnéticos, superparamagnéticos o paramagnéticos de hierro, cobalto o níquel como núcleo metálico, recubiertas por un material que presenta grupos funcionales orgánicos a los cuales se unen de forma covalente moléculas con compatibilidad biológica contrastada.
Por otra parte, es tam bién de sobra conocido en biotecnología y biología molecular las aplicaciones técnicas usando moléculas con fluorescencia. Existen numerosos materiales fluorescentes que son empleados para etiquetar células o moléculas, tales como sondas fluorescentes orgánicas, puntos cuánticos, etc. La incorporación de estos cromóforos en las partículas bio-magnéticas permite la creación de sistemas híbridos que presentan tanto propiedades magnéticas como fl uorescentes, haciendo posible el desarrollo de nuevos sistemas híbridos para imagen, monitorización, liberación de fármacos y biodetección.
Así, en los últimos años se han desarrollado sistemas híbridos nanoparticulados magnético- luminiscentes en donde el material o matriz constitutiva de los mismos es óxido de silicio. Insin, N. et al [ACS Nano, 2008, 2(2), 197-202] describen la elaboración de microesferas de s íl i ce co n p ro p i ed a d es m ag n ét ica s y l u miniscentes mediante la incorporación de nanopartículas magnéticas de Y-Fe203 y puntos cuánticos de CdSe/CdZnS en una capa de sílice que se u bica como recubrimiento sobre microesferas de sílice preformadas. Existen otros documentos que describen la preparación de partículas cuyo núcleo está constituido por material magnético recubierto por una capa de sílice, que incorporan el elemento fluorescente bien en la capa de sílice o dopando el núcleo magnético [WO2007/029980, WO2005/015213, WO2008/115854, WO03/089906].
Las nanoestructuras porosas ofrecen la ventaja adicional de poseer una muy alta superficie específica que revierte en una alta reactividad química, lo que facilita enormemente la conjugación con moléculas y biomoléculas. Así, se han diseñado nanopartículas a partir de una estructura de sílice mesoporosa en cuyos poros se insertan nanopartículas magnéticas de Fe304 y puntos cuánticos semiconductores (QDs), recubiertas con un polímero anfifílico capaz de mejorar su biocompatibilidad [Sathe, T. . et al., Anal. Chem., 2006, 78, 5627-32]. WO2009/078924 describe una estructura de dimensión menor a una miera, formada por un cuerpo de síl ice poroso que incorpora nanopartícu las de óxido de hierro y moléculas fluorescentes en el interior de los poros de la mencionada estructura. Sobre el cuerpo de sílice se encuentran unidas moléculas aniónicas que permiten la unión con bio-moléculas.
No obstante, uno de los principales inconvenientes que presentan estas estructuras se deriva de la presencia del elemento fluorescente. Aunque los puntos cuánticos presentan multitud de ventajas sobre los fluoroforos orgánicos, como pueden ser la selección de la longitud de onda de emisión, una amplia banda de a bsorción en el espectro, un espectro de emisión muy estrecho, así como altos niveles de intensidad luminiscente y fotoestabilidad, éstos suelen resultar en la mayoría de los casos tóxicos debido a que incluyen metales pesados tales como cadmio, zinc, cobalto y similares. Por otra parte, debido al procedimiento de obtención basado en la mezcla física de soluciones que contiene los distintos componentes y posterior precipitación, no es fácil controlar la concentración final de metal ferromagnético infiltrado en la matriz, lo que limita en gran medida su aplicación posterior.
A la vista de los inconvenientes señalados, se hace necesario el desarrollo de sistemas híbridos nanoparticulados con propiedades magnéticas y luminiscentes que presenten una mayor biocompatibilidad y biodegradabilidad, y que permitan un control de la concentración de material magnético con el fin de poder variar las propiedades magnéticas en función de la aplicación particular que quiera dárseles.
BREVE DESCRIPCIÓN DE LA INVENCIÓN Los autores de la presente invención han observado que partículas biofuncionales que comprenden una matriz de silicio poroso nanoestructurado como material soporte, permiten mejorar considerablemente la biocompatibilidad y biodegradabilidad de las mismas, dado que no necesitan incorporar trazadores luminiscentes adicionales, debido a que la propia matriz presenta luminiscencia intrínseca como consecuencia de la presencia de monocristales nanométricos de silicio dentro de la estructura del silicio amorfo que actúan como puntos cuánticos.
Además, la matriz de sil icio poroso presenta u na mayor afinidad qu ímica y una mayor superficie biocatalítica que la matriz de sílice, lo que facilita el recubrimiento con moléculas funcionales capaces de conjugarse con moléculas y biomoléculas. De hecho, las partículas funcionalizadas han sido cultivadas en presencia de células mesenquimáticas humanas hMSC, las cuales han internalizado dichas partículas y han demostrado su no toxicidad. Las células hMSC son productoras de factores inmunosupresores, facilitan factores que estimulan la reparación endógena de los tejidos y la angiogénesis, por lo que son idóneas para la terapia celular y demás aplicaciones biomédicas. Los ensayos experimentales llevados a cabo han mostrado que la máxima luminiscencia en el rango óptico se mantiene durante varios días gracias a su capa funcionalizada y, lo que es más importante, que una vez esta luminiscencia inicial desaparece, las partículas siguen siendo luminiscentes debido a la formación de nuevos centros emisores, lo que las convierte en marcadores celulares muy útiles.
Por otra parte, el procedimiento utilizado para su obtención, basado en un proceso de galvanización y posterior electro infiltración, ha permitido la incorporación de forma controlada de nanopartículas magnéticas dentro de los poros de la matriz. Hasta el momento, sólo se habían podido obtener estructuras de silicio con canales o depósitos metálicos con tamaños del orden de 10 a 20 veces superior el de los poros de la matriz nanoestructurada, para su posterior aplicación en la fabricación de dispositivos de almacenamiento de memoria y sensores magnéticos. El mencionado procedimiento permite además controlar el tamaño de los poros así como el de los monocristales de silicio (considerados también como puntos cuánticos cuando su tamaño es nanométrico), lo que se traduce en la posibilidad de seleccionar previamente la longitud de onda de las partículas luminiscentes, además de controlar la actividad química superficial. Se ha observado además, que la luminiscencia se mantiene incluso después de haber insertado en la estructura porosa las nanopartículas magnéticas auto-nucleadas. Adicionalmente, para aplicaciones biomédicas, las condiciones experimentales de fabricación pueden ser ajustadas de forma q ue el máximo de l uminiscencia ocurra en el interva lo infrarrojo cercano de longitudes de onda donde los tejidos presentan una alta transparencia.
Así, en u n pri mer aspecto la invención se d irige a u n sistema de partículas magnético luminiscentes de tamaño inferior a 3 mieras, que comprenden una matriz de silicio poroso nanoestructurado, donde dicha matriz comprende en sus poros nanopartículas de material magnético y monocristales nanométricos de silicio.
En un segundo aspecto, la invención se dirige a un procedimiento para la preparación de un sistema de nanopartículas como se ha mencionado previamente, que comprende: a) someter obleas de silicio a un proceso de galvanización en una disolución que comprende una mezcla de un ácido fuerte inorgánico y un alcohol, aplicando una densidad de corriente comprendida entre 10 mA/cm2 y 150 mA/cm2 para obtener obleas de silicio poroso; b) someter las obleas de silicio poroso a un proceso de electro infiltración del material magnético mediante un modo pulsado de corriente-equilibrio por inmersión de las o bleas de sil icio poroso en una d isolución que comprende sales de metales que constituyen el material magnético y catalitos.
c) convertir las obleas de silicio poroso infiltradas con material magnético en partículas de silicio poroso. Asimismo, un aspecto adicional de la invención lo constituye una composición farmacéutica que comprende partículas magnético luminiscentes como se ha definido anteriormente y una molécula biológicamente activa.
En un aspecto adicional la invención se refiere al uso de un sistema de partículas como se ha definido anteriormente para la preparación de un medicamento.
En otro aspecto, la invención se relaciona con el uso de un sistema de partículas como se ha definido anteriormente para la preparación de un medicamento para terapia génica.
En otro aspecto adicional, la invención se refiere al uso de un sistema de partículas como se ha definido anteriormente como marcadores celulares de tejidos y marcadores de migración o destino.
Un aspecto adicional lo constituye el uso de un sistema de partículas como se ha definido anteriormente como agentes de contraste en resonancia magnética nuclear.
En un último aspecto, la invención se relaciona con el uso de un sistema de partículas como se ha definido anteriormente para separación magnética asistida de productos químicos y bio- químicos.
BREVE DESCRIPCIÓN DE LAS FIGURAS
Figura 1. Representación esquemática de las partículas de silicio poroso nanoestructurado magnético-luminiscentes (PSPml) tras la funcionalización con polietilenglicol. Las partículas de silicio poroso nanoestructurado (partículas con fondo rayado) alojan en su interior las nanopartículas ferromagnéticas infiltradas (partículas de fondo sólido). Inmediatamente tras su síntesis las partículas son cubiertas con una capa biofuncional de Polietilen-glicol.
Figura 2. (a) Morfología de las PSPmls inmediatamente tras la funcionalización con PEG, en la que se observan las partículas esféricas con una distribución de tamaños comprendida entre los 500nm y las 3 mieras. El espectro inserto muestra el correspondiente espectro EDX. (b) Imagen TEM de una partícula mostrando los depósitos metálicos (en este caso cobalto) en el interior de la estructura de silicio poroso.
Figura 3. Respuesta magnética en las partículas con hierro infiltrado sintetizadas por el método descrito en el ejemplo 2. Figura 4. (a) Imágenes del microscopio de fluorescencia de las partículas funcionalizadas con PEG a las 24h de su síntesis. Las imágenes se o btuvieron por excitación con lá mpara ultravioleta y se util izó un filtro DAPI. ( b) Evol ución temporal de la luminiscencia de las partículas infiltradas con Cobalto y funcionalizadas con PEG, excitadas a 420nm. Figura. 5. Imágenes ópticas de las partículas internalizadas en las hMSCs, observadas con microscopía óptica y excitadas con luz UV a) a las 4 horas y b) a las 72 horas de cultivo.
Fig.6. Resultados del test MTT de citotoxicidad para las partículas funcionalizadas y no funcionalizadas.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
En el contexto de la presente invención, los siguientes términos tienen el significado que se detalla a continuación:
El término "partículas magnético luminiscentes" se refiere a entidades físicas independientes y observables de forma sustancialmente esférica, cuyo diámetro promedio es inferior a 3 mieras, y que presentan propiedades magnéticas (pueden ser manipuladas mediante la aplicación de campos magnéticos) y luminiscentes (son capaces de emitir radiación electromagnética de diferentes longitudes de onda al ser excitadas a una determinada longitud de onda).
El término "silicio poroso nanoestructurado" se refiere a una estructura obtenida a partir de silicio que comprende una serie de poros de tamaño nanométrico (inferior a 1 miera) en el interior de los cuales se ubican monocristales nanométricos de silicio.
El término "monocristales nanométricos de silicio" hace referencia a monocristales de silicio con un tamaño en el rango nanométrico, es decir, con un tamaño inferior a 1 miera.
El término "material magnético" se refiere a cualquier composición metálica que presente propiedades magnéticas, es decir, que permita su manipulación bajo la acción de un campo magnético.
El término "catalitos" se refiere a cualquier compuesto capaz de favorecer la nucleación en superficie de monocristales de silicio.
La presente invención proporciona en un primer aspecto un sistema de partículas magnético luminiscentes de tamaño inferior a 3 mieras, que comprenden una matriz de silicio poroso nanoestructurado, donde dicha matriz comprende en sus poros nanopartículas de material magnético y monocristales nanométricos de silicio.
En una realización particular, las partículas presentan una estructura con un tamaño medio controlable según el procedimiento de obtención y de dimensiones inferiores a una miera, más particularmente entre 500 y 900 nm. Preferentemente, las partículas presentan un tamaño medio de aproximadamente 300-500 nm, lo que les permite ser internalizadas por las células.
Una descripción más detallada de la estructura de la matriz y de los monocristales de silicio, tamaño de poros, tamaño de los monocristales, etc. puede extraerse de la literatura [Martín- Palma, R.J. et al., Applied Physics Letters, 2002, 81(1), 25-27; Martín-Palma, R.J. et al., Applied Physics Letters, 2004, 85(13), 2517-9; Bisi, O. et al., Surface Science Reports, 2000, 38, 1-126]. No obstante, en una realización particular, el tamaño de los poros de la matriz de silicio se encuentra comprendido entre 5 y 60 nm.
Las nanopartículas del material magnético infiltrado presentan típicamente un tamaño promedio inferior a 50 nm, preferiblemente entre 1 y 40 nm, más preferiblemente entre 5 y 30 nm. El material constitutivo de las mismas incluye un material superparamagnético, paramagnético o ferromagnético, más preferiblemente ferromagnético. En una realización particular, el material magnético es un óxido metálico, tal como por ejemplo óxido de cobalto, hierro, níquel o manganeso, o un elemento metálico tal como hierro y/o cobalto.
La matriz de silicio poroso se caracteriza por presentar propiedades luminiscentes intrínsecas. Aunque ninguna teoría está plenamente aceptada, se cree ampliamente que la emisión es debida a efectos cuánticos de tamaño de bido al confinamiento de portadores. Dicho confinamiento tiene como resultado un aumento de la energía de emisión. Así, presenta una luminiscencia de alta eficiencia en el espectro de infrarrojo cercano y en todo el espectro visi bl e. Este a m pl io interva lo de energías d e em isión proviene de d istintas ba ndas luminiscentes a aproximadamente 470 nm (azul-verde), 400-800 nm (azul-rojo) y 1100-1500 nm (IR cercano), siendo la banda entre 400-800 nm la más característica.
El máximo de la banda de emisión en el intervalo señalado se encuentra por lo general en torno a los 650 nm (zona del rojo-naranja), no obstante, dicho máximo puede variar en función del tamaño de los nanocristales de silicio. La duración de luminiscencia suele oscilar entre 24- 72 horas tras la síntesis de la matriz. Posteriormente, además de perder intensidad se desplaza a longitudes de onda menores. La degradación de la luminiscencia en el intervalo del rojo se atribuye fundamentalmente a la oxidación progresiva de los centros luminiscentes del silicio. No obstante, aunque esta luminiscencia se pierda finalmente en la zona del rojo, la oxidación debida a la acción de soluciones salinas donde las partículas se encuentras dispersas genera la aparición de nuevos centros luminiscentes emisores en el azul que permiten una aplicación mucho más prolongada en el tiempo. En una realización particular de la invención, la superficie de las partículas se modifica para incorporar grupos o moléculas funcionales capaces de unirse de forma covalente a una bio- molécula o de conjugarse con ella. Ejemplos de grupos funcionales que pueden incorporarse a su superficie incluyen -COOH, -CHO y -NH2 y todos aquellos que proporcionen grupos silano a dicha superficie. La fu ncional ización de la su perficie de las partículas permite además aumentar la duración de luminiscencia hasta una semana, como es el caso de las partículas funcionalizadas con grupos aminosilanos.
En una realización preferente, las nanopartículas se modifican en su superficie con moléculas capaces de unirse tanto a la matriz de silicio poroso como a una bio-molécula de forma covalente formando un recubrimiento biocompatible. Este recubrimiento actúa además de capa protectora, dado que permite alargar la vida de luminiscencia de la matriz de silicio poroso al retardar considerablemente la oxidación de la estructura y la subsiguiente pérdida de luminiscencia.
En una realización más preferente, la superficie de las partículas se recubre con moléculas de polietilenglicol o con otro polímero de tipo polisacárido como por ejemplo dextrano. En una realización aún más preferente, la superficie se recubre con moléculas de polietilenglicol.
En otra realización particular, las partículas de la invención comprenden además una bio- molécula unida o conjugada a través de los grupos o moléculas funcionales mencionados anteriormente. Preferentemente, dicha biomolécula se encuentra unida de forma covalente a los grupos o moléculas funcionales ubicados sobre la superficie de las partículas. Por el término bio-molécula se entiende cualquier molécula sintética o natural que juega un papel concreto en los sistemas biológicos. Ejemplos de bio-moléculas incluyen glúcidos, lípidos, proteínas y ácidos nucleicos, a partir de las cuales se pueden sintetizar todas las moléculas de alta especificidad de las células para conseguir energía, realizar funciones y reproducirse. Así, estas moléculas incluyen por tanto un aminoácido, un péptido, una proteína, u n nucleósido, u n n ucleótido, un oligonucleótido, un ácido nucleico, una vitamina, un monosacárido, un oligosacárido, un carbohidrato o un lípido, entre otros. En un segundo aspecto, la invención se relaciona con un procedimiento para la preparación de las partículas de la invención que comprende: a) someter obleas de silicio a un proceso de galvanización en una disolución que comprende una mezcla de un ácido fuerte inorgánico y un alcohol, aplicando una densidad de corriente comprendida entre 10 mA/cm2 y 150 mA/cm2 para obtener obleas de silicio poroso; b) someter las obleas de silicio poroso a un proceso de electro infiltración del material magnético mediante un modo pulsado de corriente-equilibrio por inmersión de las obleas de silicio poroso en una disolución que comprende sales de metales que constituyen el material magnético y catalitos. c) convertir las o bleas de silicio poroso infiltradas con material magnético en partículas de silicio poroso.
La etapa a) del procedimiento supone el ataque electroquímico de obleas o láminas de silicio mediante la introducción de éstas en una disolución que comprende la mezcla de un ácido fuerte inorgánico y un alcohol, y la aplicación de una densidad de corriente comprendida entre 10 mA/cm2 y 150 mA/cm2. En una realización particular, se emplean obleas de silicio monocristalino tipo p, obleas de silicio monocristalino tipo n u obleas de silicio multicristalino o policristalino. Más preferentemente, se emplean obleas de silicio monocristalino tipo p.
En una realización más particular, se emplean obleas de silicio tipo p monocristalino dopadas con boro, y que presentan una orientación <100> y una resistividad comprendida entre 0.1 y 0.05 Ω-cm. Estas obleas permiten un mejor control del tamaño de las estructuras resultantes.
Como ácido fuerte inorgánico se entiende aquel ácido capaz de disociarse completamente en agua proporcionando iones H+ y su base conjugada. Ejemplos de ácidos fuertes incluyen el ácido clorhídrico, ácido fluorhídrico, ácido yodhídrico, ácido bromhídrico, ácido perclórico, ácido nítrico y ácido sulfúrico. En una realización preferente de la presente invención, el ácido fuerte empleado es ácido fluorhídrico por su especial involucración en la transferencia de carga en la superficie durante la activación anódica.
Por su parte, el término alcohol incluye alcoholes de cadena Ci-C4, como metanol, etanol, propanol o butanol, no obstante, en una realización preferida se emplea etanol. En una realización particular de la invención, la mezcla ácido fuerte:alcohol se emplea en una proporción en volumen de aproximadamente 1:1. Esta combinación permite la fabricación de estructuras nanométricas en profundidad al proporcionar una tensión superficial optimizada.
Por lo que a la densidad de corriente se refiere, es preferible la aplicación de una densidad comprendida por encima de 60 mA/cm2 para generar estructuras con tamaños característicos por debajo de la miera. En una realización particular, la aplicación de corriente se realiza bajo condiciones de iluminación con lámpara halógena de 100 W.
La etapa b) del procedimiento supone la incorporación de las nanopartículas magnéticas en el interior de los poros de la matriz de silicio. Dicha etapa se lleva a cabo mediante un proceso denominado electro infiltración utilizando un modo pulsado de corriente- equilibrio. Para ello, las obleas de silicio poroso previamente obtenidas en la etapa anterior se sumergen en una disolución que comprende sales de metales que constituirán el material magnético, aplicando a dicha disolución pulsos de corriente repetidas veces, dejando un intervalo entre ellos (denominando "tiempo de reposo") que permite el reequilibrado iónico de la disolución. Adicionalmente, se incorporan a la disolución catalitos que favorecen la nucleacion en superficie de los metales en forma de monocristales. Preferentemente, se emplea la sacarina sódica.
En u na rea l ización particu la r, la disol ución q ue comprende las sal es de meta les q ue constituyen el material magnético es una disol ución de Watts de cobalto/hierro. Dicha disolución es ampliamente conocida por un experto y consiste en una mezcla de sulfatos y cloruros metálicos, junto con la adición de ácidos o bases que controlan el pH.
La etapa c) del procedimiento supone la obtención de las partículas de silicio poroso nanoestructurado a partir de las obleas de silicio poroso infiltradas con las nanopartículas magnéticas. En una realización particular, las obleas formadas e infiltradas se dispersan por sonicación en un aparato de ultrasonidos durante el tiempo suficiente para permitir la obtención de las partículas con tamaños inferiores a las tres mieras. La trituración con mortero de ágata y una nueva sonicación permite reducir el tamaño medio hasta los 500 nm.
Además de por sonicación en medio líquido, las partículas se pueden obtener a partir de las láminas de silicio poroso por otros medios mecánicos, como raspado o pulverización en mortero de ágata. El procedimiento de la invención puede comprender además una etapa en la cual las partículas son funcionalizadas en su superficie. La superficie de las partículas se modifica mediante la incorporación de grupos o moléculas funcionales capaces de unirse de forma covalente a una bio-molécula o de conjugarse con ella. Ejemplos de grupos funcionales que pueden incorporarse a su superficie incluyen -COOH, -CHO y -NH2 (accesibles comercialmente) y todos aquellos que proporcionen grupos silano a dicha superficie. La incorporación de dichos grupos se puede efectuar mediante condensación superficial de los grupos hidroxilo o intercambio de cloro siendo procesos de autoensamblado en disolución ampliamente conocidos por un experto en la materia [Youli Qi, et al ., Colloids and Surfaces A: Physicochem. Eng. Aspects, 2007, 302, 383-7, Hydrophobation and self-assembly of core-shell Au@Si02 nanoparticles].
En una realización preferente, las nanopartículas se modifican en su superficie con moléculas capaces de unirse tanto a la matriz de silicio poroso como a una bio-molécula de forma covalente formando un recubrimiento biocompatible. En una realización más preferente, la superficie de las partículas se recubre con moléculas de polietilenglicol. Para ello, las obleas obtenidas tras las etapas a) y b) del procedimiento anteriormente descrito se sumergen en una disolución que contiene polietilengl icol . Posteriormente, se lleva a ca bo la etapa c) del mencionado procedimiento.
El procedimiento de la invención puede incluir una etapa adicional en la cual se incorpora una bio-molécula sobre la superficie de las partículas. Dicha molécula queda unida o conjugada a las partículas a través de los grupos funcionales incorporados según se ha explicado anteriormente. Preferentemente, dicha bio-molécula se encuentra unida de forma covalente a los gru pos o molécu las funcionales u bicados so bre la superficie de las pa rtícu las. La incorporación de dicha bio-molécula se lleva a cabo por procedimientos estándar conocidos por un experto en la materia. Una vez obtenidas las partículas, es conveniente dejarlas reposar durante un tiempo suficiente como para permitir la esta bilización de los centros luminiscentes, como paso previo a su apl icación . En u na real ización preferente, dichas pa rtículas se dejan reposa r du ra nte aproximadamente una hora.
Suele ser también recomendable efectuar un lavado de las partículas en medio líquido antes de su aplicación en el cultivo celular.
Por otra parte, como se demuestra en los ejemplos aportados en la presente invención, las partículas magnético luminiscentes desarrolladas, tanto funcionalizadas como no funcionalizadas, no han resultado citotoxicas tras la realización de ensayos in vitro, mostrando una tasa de via bil idad cel ular similar a l de las cél ulas control cultivadas y u na tasa de supervivencia de un 95-98% tras 72 horas de cultivo. Además, se ha observado con estudios in vitro que el sistema de la invención permite la internalización eficiente de las partículas dentro de las células debido a la interacción con receptores específicos de la membrana celular, revelando además la supervivencia de estas células tras 72 horas de cultivo. A la vista de estas propiedades, los sistemas de partículas desarrollados son particularmente útiles en el campo de la biomedicina.
En una realización particular, las partículas magnético-luminiscentes pueden ser empleadas como marcadores celulares con la posibilidad adicional de permitir su manipulación con ca mpos magnéticos. La a pl icación de estos ca m pos magnéticos perm ite además la manipulación mecánica de células y organismos unicelulares.
En otra real ización particu lar, las partículas de la invención pueden ser empleadas en apl icaciones de hipertermia con mon itorización óptica, como agentes de contraste en resonancia magnética con seguimiento óptico, o para separación magnéticamente asistida de productos químicos o bioquímicos.
Todas estas aplicaciones cuentan con la ventaja añadida de poder hacer una monitorización óptica de la situación espacial de las partículas en cada proceso.
En otra realización particular, las partículas de la invención se emplean como dispensadores de fá rmacos en zonas definidas del organismo, siendo posible guiarlas mediante campos magnéticos y ser loca l izad as óptica mente. E n este sentido, el fá rmaco o mo lécu l a biológicamente activa se incorpora a las partículas a través de los gru pos o moléculas funcionales que recubren su superficie y posteriormente se libera en el medio biológico deseado. Así, en otro aspecto la invención se relaciona con una composición farmacéutica que com prende las pa rtícu l as magnético l u m i n iscentes de la inven ción y u na mol écu l a biológicamente activa. Por el término "molécula biológicamente activa" se entiende cualquier sustancia que se utiliza en el tratamiento, cura, prevención o diagnóstico de una enfermedad o que se utiliza para mejorar el bienestar físico y mental de seres humanos y animales. Ejem plos de mol écu las biológica mente activas incl uyen proteínas, péptidos, lípidos, oligonucleótidos, corticosteroides, vitaminas, agentes antifúngicos, agentes bacteriostáticos, agentes cicatrizantes, agentes antihistamínicos, agentes anestésicos, agentes antibióticos, agentes a ntivi ra l es, age ntes a nti sé pticos, age ntes i n m u n os u p reso res, agentes antiinflamatorios, entre otros.
Ejemplos de composiciones farmacéuticas incluyen cualquier composición líquida (es decir, suspensión o dispersión de la nanopartículas de la invención) para aplicación por vía oral, bucal, sublingual, tópica, ocular, nasal o vaginal, o cualquier composición en la forma de gel, pomada, crema o bálsamo para su administración por vía tópica, ocular, nasal o vaginal.
En un aspecto adicional, la presente invención se dirige por tanto al uso de un sistema de partículas como el definido en la presente invención para la preparación de un medicamento. La capacidad demostrada de las partículas de la invención para penetrar en las células permite emplear dichas partículas como sistemas de liberación de material genético, haciéndolas especialmente útiles en terapia génica. En consecuencia, un aspecto adicional de la presente invención lo constituye el uso del sistema de partículas de la invención en la preparación de un medicamento para terapia génica.
Así, cuando las partículas se unen a genes cargados negativamente (como por ejemplo plásmidos de ADN) o a ácidos nucleicos, éstas pueden penetrar en las células diana, pasando a través de la membrana celular y liberando el material genético en el interior de dichas células.
Asimismo, mediante la introducción de un anticuerpo en la superficie de las partículas funcionalizadas, éstas pueden unirse de forma selectiva a ciertas células, permitiendo la separación de dichas células mediante la inducción de un campo magnético externo y la detección de las mismas mediante fluorescencia, por lo que también son particularmente útiles para su aplicación en biodetección.
A continuación, se describen algunos ejemplos ilustrativos que revelan las características y ventajas de la invención, sin embargo, no deben interpretarse como limitantes del objeto de la invención tal como se define en las reivindicaciones.
Ejemplos
Ejemplo 1. Preparación de las capas de silicio poroso nanoestructurado El silicio poroso nanoestructurado se sintetizó por ataque electroquímico de obleas de silicio tipo p monocristalino (dopado con boro, orientación <100> y resistividad comprendida entre 0.1 y 0.05 Ω-cm) en una disolución 1:1 de HF (48% wt): Etanol (98% wt).
Las obleas fueron atacadas galvanoestáticamente durante 300-1000 s con diferentes densidades de corriente 80 mA/cm2 y 120 mA/cm2, bajo condiciones de iluminación con lámpara halógena de 100W.
Ejemplo 2. Preparación de las partículas magnético - luminiscentes (PSPml)
Para la preparación de las partículas magnético luminiscentes (PSPml), se realizó una electro infiltración de Co y Fe sobre las capas de silicio poroso anteriormente preparadas mediante un modo pulsado de corriente-equilibrio. Dicha electro infiltración fue llevada a cabo por inmersión de las obleas de silicio poroso nanoestructurado previamente atacadas, en una disolución de Watts de sales de Cobalto/ Hierro y sacarina sódica.
Las muestras así obtenidas fueron sumergidas en una disolución de Polietilenglicol (PEG) en tolueno (al 1% en volumen) y dispersadas por sonicación en un aparato de ultrasonidos durante 20 minutos. Mediante este procedimiento, se obtienen partículas funcionalizadas de silicio poroso nanoestructurado con propiedades luminiscentes y magnéticas, con tamaños comprendidos entre los 500 nm y 3 mieras. La figura 1 muestra un esquema de dichas partículas tras la funcionalización con PEG.
Dichas partículas se dejan reposar por un periodo aproximado de una hora, para permitir la estabilización de los centros luminiscentes, antes de una ulterior aplicación o caracterización.
Tanto para el cultivo celular, como para un posterior procesado, se requirió un lavado de las muestras en medio líquido. Para el lo se l levaron a ca bo cuatro ciclos de centrifugación (12krpm, 5 min), eliminación de sobrenadante y redispersión por ultrasonidos (10 min) en etanol absoluto. Caracterización
La caracterización por microscopía electrónica de barrido (SEM) se utilizó para controlar el proceso de electro infiltración mediante la observación de la sección transversal de las muestras. Con este fin las muestras fueron seccionadas transversalmente y se dispusieron perpend icularmente al plano focal, sin req uerir tratamientos adicionales. Los a nál isis elementales por espectroscopia de dispersión energética de rayos X (EDAX) se realizaron en el mismo microscopio. La microscopía electrónica de transmisión (TEM) se realizó en un sistema JEOL-JEM1010 (100 KV). U na muestra de PS Pm l en polvo se d il uyó y prensó en un mortero de ágata y se redispersó. A continuación se depositó en los portamuestras del TEM (Lacey Formvar 300 mesh copper grids- TED PELLA INC.).
La figura 2(a) muestra la morfología de un conglomerado desecado de PSPml inmediatamente tras la biofuncionalizacion, en la que se aprecia claramente la forma esférica que adoptan. Además se ha determinado que las PSPml adquieren tamaños que varían entre los 500nm y las 3 mieras de diámetro. Se verificó, gracias a imágenes como ésta, que la forma esférica no se ve afectada cuando se lleva a cabo el proceso de biofuncionalizacion con PEG. El análisis químico por EDX de las secciones transversales confirmó además la presencia de cobalto y hierro electroinfiltrados en el interior de la capa de silicio poroso nanoestructurado. Se comprobó además, al igual que en el caso general para el silicio poroso nanoestructurado, la presencia de silicio y oxígeno. Además, los análisis EDX semicuantitativos mostraron un gradiente de concentración de metal en el interior del poro que variaba desde más del 10% en concentración a poco menos del 2% a profundidades de 40 a 50micras, que constituyen la longitud total del poro. De esta forma se integró y se o btuvo u na concentración media superior al 3%.
Un punto a destacar es la no presencia de posibles impurezas procedentes de los productos de síntesis, lo cual es de vital importancia en el caso de los sistemas biológicos, dada su sensibilidad a elementos tóxicos.
La utilización de TEM se tomó como esencial para discernir claramente la estructura y configuración interna de las PSPml. Así, el análisis TEM (imagen inferior de la figura 2) confirmó la presencia de nanopartículas esféricas de los metales infiltrados en el interior de los poros del silicio poroso nanoestructurado. El rango de tamaños de las nanopartículas observadas está comprendido entre aproximadamente 5 y 30 nm.
Propiedades Magnéticas.
El comportamiento magnético de las PSPml fue analizado cualitativamente mediante la utilización de un imán. Como se muestra en la figura 3, las partículas se ven claramente atraídas por la cercanía de un campo magnético. Una vez que el imán se separa lo suficiente de la vecindad de las mismas, éstas caen lentamente al fondo del tubo de ensayo.
Fluorescencia Como muestra la figura 4, se determinó la luminiscencia de las PSPml. En primer lugar, mediante un análisis cualitativo con el microscopio de fluorescencia (figura 4 (a)). En un segundo paso, se determinaron la intensidad, el rango de excitación y de emisión, así como la estabilidad. También se estudió la degradación de los principales centros luminiscentes, mediante la medición a sucesivos tiempos de la luminiscencia. En la figura 4(b) se puede observar un espectro típico.
Las medidas espectrofotométricas demuestran que el intervalo de excitación se encuentra en el ra ngo u ltraviol eta y q ue el espectro de l a l uz emitida se encu entra en el óptico, normalmente centrado en el rojo, como muestra la figura 4 (b). El máximo de la banda de emisión aparece en la zona del rojo-naranja (650nm, aprox.) a las 24 horas de su síntesis (día 0), tras el cual, en sucesivos días además de perder intensidad se desplaza ligeramente a longitudes de onda menores, para finalmente (día 2, 72h) desaparecer casi por completo la luminiscencia en dicho rango. La degradación de la luminiscencia en el intervalo del rojo se ha atribuido originalmente a la oxidación progresiva de los centros luminiscentes del silicio. La medición de las muestras no funcionalizadas mostró una pérdida total de luminiscencia tras 24 horas, por lo que hemos concluido que la capa protectora contribuye determinantemente a retardar la oxidación de la estructura y su subsiguiente pérdida de luminiscencia. Por otro lado, si bien esta luminiscencia roja se pierde, una fuerte oxidación como la debida a la acción de una disolución altamente salina como el PBS, genera la aparición de unos nuevos centros luminiscentes emisores en el azul, que permiten que las PSPml sigan siendo útiles para las aplicaciones anteriormente expuestas.
Ejemplo 3. Ensayos in vitro: internalización de las PSPml y análisis de citotoxicidad
Las partículas magnético luminiscentes sintetizadas como se indica anteriormente se trataron para los posteriores ensayos biológicos como se describe a continuación. Se realizaron ciclos de lavado -centrifugado en fracciones de 300 μΙ de concentraciones de 5 g/L de las PSPml. Tres ciclos de centrifugado ( 10 minutos), lavado con PBS y redispersión por ultrason idos se requirieron para eliminar todas las posibles trazas de disolvente y para equilibrar el pH. A continuación se repitieron los lavados utilizando 1 mi de Dulbecco's Modified Eagle Médium [DMEM] en ciclos como el arriba descrito. El último lavado se realizó sin centrifugación y se dejó reposar una noche para comprobar que el pH era estable. Se procedió entonces a exponer las células mesenquimáticas humanas [hMSCs] a las partículas preparadas como se indica a continuación. Para el aislamiento y expansión del cultivo de las hMSCs se utilizaron de dos a cuatro mililitros de muestras de médula ósea humana, pertenecientes a donantes sanos [7, 8, 9, 10, 11]. Las células se recogieron por centrifugación en un gradiente de Percoll al 70%, y sembradas en una concentración de 200,000/cm2 en DMEM-LG (Gibco) al que se le añadió un 10% de FBS (Sigma).
Las MSCs fueron utilizadas para analizar si las nanopartículas eran internalizadas o no por las células y su posible citotoxicidad. Con este fin, se sembraron 15.000 células en cubreobjetos de vidrio cubiertos con gelatina al 0.5% (piel bovina, Sigma). Las hMSCs se incubaron con DMEM- LG con un 10% de FBS durante 24h. A continuación, en el caso de ensayos de internalización, se expusieron a las nanopartículas disueltas en DMEM-LG a una concentración de 0.15 mg/ml. En los dos casos, expuestas y no expuestas, se mantuvieron a 37QC y a una atmósfera de C02 del 5%, durante dos periodos de tiempo, 4 y 72 horas respectivamente. Posteriormente, las células adheridas se lavaron dos veces con PBS y fijadas durante 20 minutos con formaldehído al 3.7% en PBS a temperatura ambiente. Tras la fijación, los cubreobjetos se lavaron dos veces en PBS, se desh idrata ron las muestras con etanol absoluto (Merck) y montadas con Mowiol/Dabco (Calbiochem). Las células fueron observadas con un microscopio vertical de fluorescencia (OLYMPUS 1X81) con un dispositivo CCD acoplado.
Internalización de las PSPml Las hMSCs al ser expuestas a las PSPml han demostrado una clara tendencia a internalizar las partículas presentes en el medio, las cuales proporcionan al sistema célula-partícula una luminiscencia observable en el microscopio. El estudio a sucesivos tiempos de los cultivos ha revelado la supervivencia de las células que habían internalizado las partículas (figuras 5a y 5b). El hecho importante aquí es el desplazamiento de la banda de emisión de la luminiscencia al ser excitada con luz UV, que ha pasado al azul. Este cambio en la luminiscencia se debe a la rápida oxidación del silicio en presencia del medio salino PBS. Según algunos autores, el origen de esta luminiscencia puede ser debida a la formación de grupos silanoles en el silicio [Tamura, H. et al., Thin Solid Films, 1995, 255, 92-5; Kanemitsu, Y. et al., Physics eview B, 1993, 48, 2827]. Ensayos de Citotoxicidad La posible citotoxicidad de las partículas en cultivo con las hMSCs se determinó tras 4 y 72 horas de cultivo en DMEM-LG, evaluando la viabilidad celular por el test colorimétrico MTT (Sigma). Este ensayo se basa en la capacidad de las células viables de convertir dentro de la mitocondria una sal de tetrazol, denominada MTT (de color amarillo) (Bromuro de 3-(4,5- dimetiltiazol-2-ilo)-2,5-difeniltetrazol) a una forma reducida denominada formazán (de color azul).
Dicha reducción sólo es posible que ocurra cuando las enzimas succinato-deshidrogenasas están activas, por lo q ue dicha transformación está directamente relacionada con las presencia de células viables (vivas). Se añadieron 20 μΙ de una disolución de 5 mg/ml MTT en PBS en cada pocilio de una placa M96 donde las células fueron cultivadas con las PSPml. Tras 4 horas de incubación a 37QC se retiró el medio y se añadieron 150 μΙ disolución MTT (4 mM HCI, 0.1% Nonidet P-40 (NP40) en isopropanol (Merck)). Tras otros 15 minutos de solubilización, se determinó la absorbancia de cada muestra en un espectrofotómetro SmartSpec™ Plus BIO- AD a 590nm, usando un filtro de referencia a 620nm. Cada muestra se comprobó por triplicado.
El test MTT, el cual reveló que las células en presencia de las PSPml eran totalmente viables y q ue d ichas pa rtícu las no son citotóxicas. E n este caso se estudiaron tanto partículas funcionalizadas con PEG, como sin funcionalizar y ambas mostraron una altísima tasa de viabilidad, prácticamente la misma que las células control cultivadas (Fig. 6), siendo las tasas de supervivencia tan altas como de un 95-98% tras 72 horas de cultivo.

Claims

REIVINDICACIONES
1. Un sistema de partículas magnético luminiscentes de tamaño inferior a 3 mieras, que com prende u na matriz de si l icio po roso na noestructu rado, donde d icha matriz comprende en sus poros nanopartículas de materia l magn ético y monocristales nanométricos de silicio.
2. Sistema según reivindicación 1, donde el tamaño de los poros de la matriz de silicio se encuentra comprendido entre 5 nm y 60 nm.
3. Sistema según reivindicaciones 1 ó 2, donde las nanopartículas de material magnético presentan un tamaño comprendido entre 5 nm y 30 nm.
4. Sistema según reivindicació n 1, donde el tamaño de los nanocristales de silicio se encuentra comprendido entre 1 nm y 200 nm.
5. Sistema según cualquiera de las reivindicaciones 1 a 4, donde el material magnético es un metal ferromagnético.
6. Sistema según reivindicación 5, donde el metal ferromagnético es hierro y/o cobalto.
7. Sistema según cualquiera de las reivindicaciones 1 a 6, donde la superficie de las partículas comprende además moléculas o grupos funcionales capaces de unirse de forma covalente a una bio-molécula o de conjugarse con ella.
8. Sistema según reivindicación 7, donde la molécula funcional es polietilenglicol o u n polímero de tipo polisacárido.
9. Sistema según reivindicación 7, donde los grupos funcionales se seleccionan entre -COOH, -CHO, NH2 y todos aquellos que proporcionen grupos silano a la superficie de la partícula.
10. Sistema según cualquiera de las reivindicaciones 7 a 9 que comprende además una bio- molécula.
11. Sistema según reivindicación 10, donde la bio-molécula se encuentra unida a las partículas de forma covalente.
12. Sistema según reivindicaciones 10 ú 11, donde la bio-molécula se selecciona entre el grupo consistente en un aminoácido, un péptido, una proteína, un nucleósido, un nucleótido, un oligonucleótido, un ácido nucleico, una vitamina, un monosacárido, un oligosacárido, un carbohidrato y un lípido.
13. Procedimiento para la preparación de un sistema de partícu las como se define en cualquiera de las reivindicaciones 1 a 12, que comprende: a) someter obleas de silicio a un proceso de galvanización en una disolución que comprende una mezcla de un ácido fuerte inorgánico y un alcohol, aplicando una densidad de corriente comprendida entre 10 mA/cm2 y 150 mA/cm2 para obtener obleas de silicio poroso; b) someter las obleas de silicio poroso a un proceso de electro infiltración del material magnético mediante u n modo pulsado de corriente-equilibrio por inmersión de las obleas de silicio poroso en una disolución que comprende sales de metales que constituyen el material magnético y catalitos. c) convertir las obleas de silicio poroso infiltradas con material magnético en partículas de silicio poroso.
14. Procedimiento según reivindicación 13, donde las obleas de silicio son obleas de silicio monocristalino tipo p.
15. Procedimiento según reivindicación 14, donde las obleas de silicio monocristalino tipo p se encuentran dopadas con boro, presentan una orientación <100> y una resistividad comprendida entre 0.1 y 0.05 Ω-cm.
16. Procedimiento según reivindicaciones 13 a 15, donde el ácido fuerte inorgánico es HF y el alcohol es etanol.
17. Procedimiento según reivindicación 16, donde el HF y el etanol se encuentran en una proporción en volumen de aproximadamente 1:1.
18. Procedimiento según cualquiera de las reivindicaciones 13 a 17, donde la densidad de corriente en la etapa a) se lleva a cabo bajo condiciones de iluminación con lámpara halógena.
19. Procedimiento según cualquiera de las reivindicaciones 13 a 18, donde la disolución que comprende las sales de metales que constituyen el material magnético es una disolución de Watts de cobalto/hierro.
20. Procedimiento según cualquiera de las reivindicaciones 13 a 19, que además comprende una etapa de funcionalización de la superficie de las partículas. Procedimiento según reivindicación 20, donde las pa rtícul as se fu nciona l izan con polietilenglicol.
Composición farmacéutica que comprende partículas magnético luminiscentes como se define en cualquiera de las reivindicaciones 1 a 9 y una molécula biológicamente activa.
Composición según reivindicación 22, donde la molécula biológicamente activa se selecciona entre proteínas, péptidos, lípidos, ol igon ucleótidos, corticosteroides, vitaminas, agentes antifúngicos, agentes bacteriostáticos, agentes cicatrizantes, agentes antihistamínicos, agentes anestésicos, agentes antibióticos, agentes antivirales, agentes antisépticos, agentes inmunosupresores y agentes antiinflamatorios.
Uso de un sistema de partículas como se define en cualquiera de las reivindicaciones 1 a 12 para la preparación de un medicamento.
Uso de un sistema de partículas como se define en cualquiera de las reivindicaciones 1 a 12 para la preparación de un medicamento para terapia génica.
Uso de un sistema de partículas como se define en cualquiera de las reivindicaciones 1 a 12 como marcadores celulares.
Uso de un sistema de partículas como se define en cualquiera de las reivindicaciones 1 a 12 como agentes de contraste en resonancia magnética nuclear.
Uso de un sistema de partículas como se define en cualquiera de las reivindicaciones 1 a 12 para separación magnética asistida de productos químicos o bio-químicos.
PCT/ES2010/070856 2009-12-22 2010-12-21 Partículas magnético-luminiscentes para aplicaciones biomédicas WO2011086210A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200931234 2009-12-22
ES200931234A ES2367959B1 (es) 2009-12-22 2009-12-22 Particulas magnético-luminiscentes para aplicaciones biomédicas.

Publications (1)

Publication Number Publication Date
WO2011086210A1 true WO2011086210A1 (es) 2011-07-21

Family

ID=44303859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/070856 WO2011086210A1 (es) 2009-12-22 2010-12-21 Partículas magnético-luminiscentes para aplicaciones biomédicas

Country Status (2)

Country Link
ES (1) ES2367959B1 (es)
WO (1) WO2011086210A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2531220A2 (en) * 2009-12-18 2012-12-12 President and Fellows of Harvard College Active scaffolds for on-demand drug and cell delivery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080311182A1 (en) * 2006-08-08 2008-12-18 Mauro Ferrari Multistage delivery of active agents

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080311182A1 (en) * 2006-08-08 2008-12-18 Mauro Ferrari Multistage delivery of active agents

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHRISTOPHER THOMAS ET AL.: "Delivery of nanogram payloads using magnetic porous silicon microcarriers", LAB ON A CHIP., vol. 6, 2006, pages 782 - 787 *
CLIVE A. PRESTIDGE ET AL.: "Mesoporous silicon: a platfom for the delivery of therapeutics", EXPERT OPINION DRUG DELIV, vol. 4, no. 2, 2007, pages 101 - 110 *
P. GRANITZER ET AL.: "Investigation of a mesoporous silicon based ferromagnetic nanocomposite.", NANOSCALE RES LETT, vol. 5, no. 2, February 2010 (2010-02-01), pages 374 - 378, Retrieved from the Internet <URL:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2894348/?tool=pubmed> [retrieved on 20110517] *
R.J.MARTIN-PALMA ET AL.: "HRTEM analysis of the nanostructure of porous silicon", MATERIALS SCIENCE AND ENGINEERING C, vol. 26, 2006, pages 830 - 834 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2531220A2 (en) * 2009-12-18 2012-12-12 President and Fellows of Harvard College Active scaffolds for on-demand drug and cell delivery
EP2531220A4 (en) * 2009-12-18 2013-10-16 Harvard College ACTIVE SCAFFOLDS FOR DELIVERY OF MEDICATION AND CELL ON DEMAND
US9089512B2 (en) 2009-12-18 2015-07-28 President And Fellows Of Harvard College Active scaffolds for on-demand drug and cell delivery

Also Published As

Publication number Publication date
ES2367959A1 (es) 2011-11-11
ES2367959B1 (es) 2013-01-24

Similar Documents

Publication Publication Date Title
Gil et al. Nanoparticle-modified polyelectrolyte capsules
Liu et al. Simultaneous nuclear imaging and intranuclear drug delivery by nuclear-targeted multifunctional upconversion nanoprobes
Li et al. Tailoring porous silicon for biomedical applications: from drug delivery to cancer immunotherapy
Liu et al. Silica nanoparticles as promising drug/gene delivery carriers and fluorescent nano-probes: recent advances
Yang et al. Functionalized mesoporous silica materials for controlled drug delivery
AU2007333225B2 (en) Delivery of nanoparticles and/or agents to cells
Dolatabadi et al. Applications of diatoms and silica nanotechnology in biosensing, drug and gene delivery, and formation of complex metal nanostructures
Zhu et al. DNA-capped Fe 3 O 4/SiO 2 magnetic mesoporous silica nanoparticles for potential controlled drug release and hyperthermia
Li et al. Aptamer-capped multifunctional mesoporous strontium hydroxyapatite nanovehicle for cancer-cell-responsive drug delivery and imaging
Malmsten Inorganic nanomaterials as delivery systems for proteins, peptides, DNA, and siRNA
Patil et al. Nanotechnology derived nanotools in biomedical perspectives: An update
ES2657242T3 (es) Materiales para magnetizar células y manipulación magnética
Tonga et al. Inorganic nanoparticles for therapeutic delivery: Trials, tribulations and promise
Cinteza Quantum dots in biomedical applications: advances and challenges
Yan et al. Nanomaterials for drug delivery
ES2745528T3 (es) Nanopartículas magnéticas funcionalizadas con catecol, producción y uso de las mismas
Serdiuk et al. Charge-driven selective localization of fluorescent nanoparticles in live cells
Shah The nanomaterial toolkit for neuroengineering
Singh et al. Functional nanomaterials for multifarious nanomedicine
WO2011086210A1 (es) Partículas magnético-luminiscentes para aplicaciones biomédicas
CN113769111B (zh) 双重miRNA引发的万能钥匙-药物递送系统其构建方法和应用
US20150110882A1 (en) Multifunctional metallic nanostructure and method for manufacturing the same
KR102110424B1 (ko) 산화 그래핀-리포좀 복합체 및 이를 포함하는 약물전달체
AU2014202199A1 (en) Delivery of nanoparticles and/or agents to cells
Jain et al. Nanopharmaceuticals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10842926

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10842926

Country of ref document: EP

Kind code of ref document: A1