WO2011085557A1 - 光信号传感器 - Google Patents

光信号传感器 Download PDF

Info

Publication number
WO2011085557A1
WO2011085557A1 PCT/CN2010/070226 CN2010070226W WO2011085557A1 WO 2011085557 A1 WO2011085557 A1 WO 2011085557A1 CN 2010070226 W CN2010070226 W CN 2010070226W WO 2011085557 A1 WO2011085557 A1 WO 2011085557A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
diode
electrically connected
resistor
solar
Prior art date
Application number
PCT/CN2010/070226
Other languages
English (en)
French (fr)
Inventor
王训恒
Original Assignee
苏州恒阳新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州恒阳新能源科技有限公司 filed Critical 苏州恒阳新能源科技有限公司
Priority to PCT/CN2010/070226 priority Critical patent/WO2011085557A1/zh
Publication of WO2011085557A1 publication Critical patent/WO2011085557A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • G01S3/785Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system
    • G01S3/786Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically
    • G01S3/7861Solar tracking systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Definitions

  • the present invention relates to a light tracking control device.
  • Solar energy is both primary energy and renewable energy. It is rich in resources and can be used free of charge without transportation and without any pollution to the environment.
  • the solar energy that illuminates the earth is very huge.
  • the solar energy that illuminates the earth in about 40 minutes is enough for the global human energy consumption. Because of this, all countries in the world are paying more and more attention to the development and utilization of solar energy, and various solar energy utilization equipments such as solar collectors, solar water heating systems, solar greenhouses, and solar power generation have emerged.
  • the solar tracking system is a way to effectively improve the energy conversion efficiency.
  • the so-called solar tracking system uses a light tracking controller to track the direction of the sunlight, so that the lighting device Always aim at the sun to increase the efficiency of using solar energy.
  • an optical signal sensor comprising a solar cell for capturing an optical signal and converting the optical signal into an electrical signal, a sampling circuit for collecting the electrical signal, and a solar cell
  • the first solar cell and the second solar cell are composed.
  • the positive electrode of the first solar cell is electrically connected to the negative electrode of the second solar cell, and the negative electrode of the first solar cell is electrically connected to the positive electrode of the second solar cell, and the sampling circuit is connected. Between the positive and negative electrodes of the first solar cell or the second solar cell.
  • the first solar cell When the first solar cell receives more illuminance than the second solar cell receives, the first solar cell generates a voltage greater than the second solar cell generating voltage, and generates a positive voltage in the positive direction of the first solar cell;
  • the second solar cell When the illuminance of the battery is stronger than the illuminance of the first solar cell, the second solar cell generates a voltage greater than the voltage generated by the first solar cell, and generates a positive voltage in the negative direction of the first solar cell, and the sampling circuit is configured to flow through the The current direction of the circuit acts as a signal source. Since the solar cells are different in light intensity, the amount of generated electric energy will also be different. Therefore, the principle is used to connect the positive and negative electrodes of the two solar cells, and the sampling is performed by the difference in the illuminance difference between the two solar cells. , thus providing a judgment signal for the controller that tracks the sun.
  • the sampling circuit may include two bridges connected in series, and one of the bridges includes a first diode electrically connected to the anode of the first solar cell and electrically connected to the cathode of the first diode. a first diode electrically connected to the anode of the first diode, the first diode is connected in series with the first resistor, and then connected in parallel with the second diode; the other bridge
  • the circuit includes a third diode electrically connected to the negative electrode of the first solar cell, a second resistor electrically connected to the third diode negative electrode, and a fourth electrode electrically connected to the positive electrode of the third diode The diode, the third diode is connected in series with the second resistor, and then connected in parallel with the fourth diode.
  • the first resistor When the illumination of the first solar cell is stronger than the second solar cell, the first resistor has a current to pass through to generate a voltage drop. When the illumination of the first solar cell is weaker than the second solar cell, the second resistor has a current to pass through to generate a voltage. drop.
  • the present invention has the following technical advantages: the way of connecting two solar cells to each other is a bold and innovative design, because if the positive and negative poles of two conventional batteries are connected to each other, The battery will be consumed in a very short period of time and will cause damage to the battery and damage to the circuit, but solar cells can subvert this tradition.
  • the output of the solar cell is constant voltage or constant current
  • the range of signals generated by the optical signal sensor is determined to ensure the stability of the output signal.
  • two solar photovoltaic cells are used for direct comparison, the signal is better compared to the two signals after the signal is generated, and the error is avoided.
  • FIG. 1 is a schematic block diagram of an optical signal sensor in accordance with an embodiment of the present invention.
  • FIG. 2 is a signal acquisition circuit diagram of an optical signal sensor implemented by further optimizing the principle shown in FIG. 1;
  • FIG. 3 is a signal acquisition circuit diagram of another optical signal sensor implemented to further optimize the principle shown in FIG. 1;
  • FIG. 4 is an application structural diagram of an optical signal sensor according to an embodiment of the present invention.
  • sampling circuit 1, sampling circuit; 2, shielding plate; 3, mounting frame.
  • the optical signal sensor includes a first solar cell E1, a second solar cell E2, and a sampling circuit 1.
  • the positive electrode of the first solar cell E1 is electrically connected to the negative electrode of the second solar cell E2, and the first solar cell E1 is connected.
  • the negative electrode is electrically connected to the positive electrode of the second solar cell E2.
  • the first solar cell E1 may be a single solar cell or may be composed of a plurality of solar cells connected in series, and the second solar cell E2 may also be a solar cell or a plurality of solar cells connected in series.
  • the sampling circuit 1 is connected across the positive and negative electrodes of one of the solar cells, and the sampling circuit 1 is used to sample the direction of current flowing through the sampling circuit.
  • the solar cell can directly convert solar radiant energy into electric energy, when light is irradiated onto the first solar cell E1 and the second solar cell E2 shown in FIG. 1, voltage generation will occur, respectively.
  • the first solar cell E1 receives more illuminance than the second solar cell E2
  • the first solar cell E1 generates a voltage greater than the voltage generated by the second solar cell E2, and is generated in the positive direction of the first solar cell E1.
  • the second solar cell E2 receives more illuminance than the first solar cell E1, the second solar cell E2 generates a voltage greater than the voltage generated by the first solar cell E1, and is in the first solar cell E1.
  • a negative voltage is generated in the negative direction; when neither of the solar cells E1 and E2 is exposed to light or the same illuminance is received, no voltage is generated between the two solar cells E1 and E2.
  • the sampling circuit 1 is connected between the two solar cells E1 and E2. When the two solar cells have a difference in illumination, a path is formed with the sampling circuit 1, so that the signals V1 and V2 are outputted on the sampling circuit 1 for use by the subsequent tracking device. Ensure that the tracker position is adjusted correctly.
  • the sampling circuit 1 can be realized by a circuit composed of electronic components such as a resistor and a diode.
  • FIG. 2 reflects a sampling circuit composed of two bridges connected in series, one of which includes a positive electrode and a first a first diode D1 electrically connected to the positive electrode phase of the solar cell E1, a first resistor R1 electrically connected to the negative electrode of the first diode D1, and a negative electrode electrically connected to the positive electrode of the first diode D1
  • the second diode D2, the first diode D1 is connected in series with the first resistor R1, and then connected in parallel with the second diode D2; the other bridge includes the positive electrode and the negative electrode of the first solar cell E1.
  • the pole tube D3 is connected in series with the second resistor R2, and then connected in parallel with the fourth diode D4.
  • the first solar cell E1 When the first solar cell E1 receives more light than the second solar cell E2 receives, the first solar cell E1 generates a positive voltage, and the current sequentially flows through the first diode D1, the first resistor R1, and the fourth diode. a tube D4, that is, a path formed between the first solar cell E1, the first diode D1, the first resistor R1, and the fourth diode D4, such that the first resistor R1 has a current passing through to generate a voltage drop;
  • the solar cell E1 receives less light than the second solar cell E2
  • the current sequentially flows through the third diode D3, the second resistor R2, and the second diode D2, that is, the second solar cell E2 and the third diode.
  • D3, the second resistor R2, and the second diode D2 form a path, so that a current is passed through the second resistor R2 to generate a voltage drop.
  • Figure 3 shows another simplified sampling circuit consisting of two parallel-connected branches.
  • the first diode D1' one end of which is electrically connected to the positive pole of the first solar cell E1
  • the first resistor R1' is electrically connected to the first resistor R1'
  • the other end of the first resistor R1' is connected to the anode of the first solar cell E1
  • the second branch is connected to the cathode of the first solar cell E1.
  • the second diode D2' electrically connected, the second resistor R2' whose one end is electrically connected to the anode of the second diode D2', and the other end of the second resistor R2' are also connected to the cathode of the first solar cell E1. .
  • the first solar cell E1 When the illumination of the first solar cell E1 is stronger than the second solar cell E2, the first solar cell E1 generates a positive voltage, and the current flows through the first diode D1' and the first resistor R1', that is, the first solar cell E1.
  • the first diode D1' and the first resistor R1' form a path, so that a current is passed through the first resistor R1' to generate a voltage drop;
  • the first solar cell E1 is weaker than the second solar cell E2
  • the second diode D2', and the second resistor R2' form a path, so that a current flows through the second resistor R2'.
  • FIG. 4 is a schematic diagram showing the application of an optical signal sensor, in which two solar cells E1 and E2 are fixed on a mounting frame 3, and a shielding plate 2 is fixedly mounted on the mounting frame 3, and the shielding plate 2 is located Between the two solar cells, it can be seen from the figure that when there is no light or the sun is directly above the shielding plate 2, no electric energy is generated on the two solar cells E1 and E2, when the sun is located on the left or right of the shielding plate 2 On the side, an illumination difference will be generated between the first solar cell E1 and the second solar cell E2, thereby generating a voltage difference between the first solar cell E1 and the second solar cell E2.
  • the optical signal sensor described in the above embodiments utilizes the characteristics of the solar cell to connect the positive and negative phases of the two solar cells end to end, and bridges the sampling branch between the positive and negative electrodes of one of the solar cells to detect different solar energy.
  • the current signal generated by the battery breaks the battery connection in the traditional sense by connecting the positive and negative ends of the two solar cells.
  • the battery in the traditional sense is a charged container, if the two batteries are used positively
  • the negative poles are connected to each other and the battery will be consumed in a very short period of time, causing damage to the battery and damage to the circuit.
  • solar cells have revolutionized this tradition, and they can be used in the manner protected by the present invention and can be used normally.
  • the present invention is relatively advanced in the prior art.
  • the light sensing element for tracking the solar signal mostly uses a photoresistor, since the resistance of the photoresistor ranges from a fixed value to infinity, if two photosensitive photos are used The result of the resistor comparison is used as a signal source.
  • the light is good, there is no problem.
  • the resistance of the two photoresistors is infinite, it cannot be compared because the ratio may be It is 1, it may be infinity, and the output voltage of the solar cell has a certain range, which is 0V in the dark and the rated voltage in the summer when it is the maximum sun.
  • the optical signal sensor implemented according to the present invention can be mainly used in a solar power generation system. Since the time when the solar battery is illuminated is lower than the time of the solar power generation battery, it can be determined that the life of the optical signal sensor is infinite, and at the same time, the realization circuit is simple, thereby It can effectively prevent the occurrence of faults during use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Photovoltaic Devices (AREA)

Description

光信号传感器
技术领域
本发明涉及一种光跟踪控制装置。
背景技术
太阳能既是一次能源,又是可再生能源。它资源丰富,既可免费使用,又无需运输,对环境无任何污染。照射到地球上的太阳能非常巨大,大约40分钟照射在地球上的太阳能,便足以供全球人类一年能量的消费。正因为如此,世界各国都越来越重视太阳能的开发利用,也随之出现了各式各样的太阳能利用设备,如太阳能集热、太阳能热水系统、太阳能暖房、太阳能发电等。但是上述设备的能量转换效率一直是普及应用的瓶颈,太阳光跟踪系统就是为了有效提高能量转换效率一种方式,所谓的太阳光跟踪系统是利用光跟踪控制器来追踪阳光的方向,使得采光装置能始终对准太阳,从而提高利用太阳能的效率。
为了能够有效的追踪阳光,需要对阳光的位置进行正确采样,现有技术中大多是利用计算太阳轨迹来完成对阳光的跟踪的,该种跟踪方式结构复杂,计算精度不高,达不到有效追踪阳光的效果。
发明内容
本发明的目的是提供一种能够有效地捕捉光信号并可将信号传递给后续跟踪设备以保证正确调整跟踪器位置的光信号传感器。
为了达到上述发明的目的,本发明的技术方案是:一种光信号传感器,它包括用于捕捉光信号并将光信号转换为电信号的太阳能电池、用于采集电信号的采样电路,太阳能电池由第一太阳能电池和第二太阳能电池组成,第一太阳能电池的正极与第二太阳能电池的负极相电连接,第一太阳能电池的负极与第二太阳能电池的正极相电连接,采样电路跨接在第一太阳能电池或第二太阳能电池的正负极之间。当第一太阳能电池受到的光照度强于第二太阳能电池受到的光照度时,第一太阳能电池产生电压大于第二太阳能电池产生电压,且在第一太阳能电池的正极方向产生正电压;当第二太阳能电池受到的光照度强于第一太阳能电池受到的光照度时,第二太阳能电池产生电压大于第一太阳能电池产生电压,且在第一太阳能电池的负极方向产生正电压,采样电路用于采样流经该电路的电流方向作为信号源。由于太阳能电池受光照强度不同,产生的电能大小也将不同,故利用该原理将两个太阳能电池的正负极相连接,通过照射到两个太阳能电池上的光照度差产生的压差来进行采样,从而为跟踪太阳的控制器提供判断信号。
进一步地,采样电路可以包含两个相串联连接的桥路,其中一个桥路包括正极与第一太阳能电池正极相电连接的第一二极管、与第一二极管的负极相电连接的第一电阻、负极与第一二极管的正极相电连接的第二二极管,第一二极管与第一电阻相串联连接后,再与第二二极管相并联;另一个桥路包括正极与第一太阳能电池的负极相电连接的第三二极管、与第三二极管负极相电连接的第二电阻、负极与第三二极管的正极相电连接的第四二极管,第三二极管与第二电阻相串联后,再与第四二极管相并联。当第一太阳能电池的光照强于第二太阳能电池时,第一电阻有电流通过而产生压降,当第一太阳能电池的光照弱于第二太阳能电池时,第二电阻有电流通过而产生压降。
由于上述技术方案的运用,本发明有以下技术优点:将两个太阳能电池互相正负极相接的方式是一种大胆而创新的设计,因为如果将两个传统电池的正负极互相连接,电池将在极短的时间内被消耗,并会造成电池损毁和电路损毁,但是太阳能电池可以颠覆这个传统。
而且由于太阳能电池的输出是恒压或恒流,所以通过该光信号传感器所产生的信号范围是确定的,保证了输出信号的稳定性。又由于采用两个太阳能光电池进行直接比较,所以相对在产生信号后再比对两个信号有更好的稳定性,避免误差。
同时因为太阳能电池的衰减极为缓慢并有很强的规律性,即使两个太阳能电池同时衰减也不会影响该信号传感器的使用,而且整个光信号传感器电路简单,在使用时可减少故障的发生,具有推广应用价值。
附图说明
附图1为根据本发明实施的一种光信号传感器的原理框图;
附图2为进一步优化图1所示原理而实施的一种光信号传感器的信号取得电路图;
附图3为进一步优化图1所示原理而实施的另一种光信号传感器的信号取得电路图;
附图4为根据本发明实施的一种光信号传感器的应用结构图;
其中:1、采样电路;2、遮挡板;3、安装架。
具体实施方式
下面将结合附图对本发明的优选实施例进行详细说明。
如图1所示,光信号传感器包含第一太阳能电池E1、第二太阳能电池E2以及采样电路1,第一太阳能电池E1的正极与第二太阳能电池E2的负极相电连接,第一太阳能电池E1的负极与第二太阳能电池E2的正极相电连接。第一太阳能电池E1可为单独一个太阳能电池或由多个太阳能电池相串联组成,第二太阳能电池E2同样也可为一个太阳能电池或由多个太阳能电池相串联组成。采样电路1跨接在其中一个太阳能电池的正负极之间,该采样电路1用于采样流经该采样电路的电流方向。
由于太阳能电池可以将太阳辐射能直接转换成电能,因此,当有光照射到图1所示的第一太阳能电池E1和第二太阳能电池E2上时,将分别有电压产生。当第一太阳能电池E1受到的光照度强于第二太阳能电池E2受到的光照度时,第一太阳能电池E1产生的电压大于第二太阳能电池E2产生的电压,且在第一太阳能电池E1的正极方向产生正电压;当第二太阳能电池E2受到的光照度强于第一太阳能电池E1受到的光照度时,第二太阳能电池E2产生的电压大于第一太阳能电池E1产生的电压,且在第一太阳能电池E1的负极方向产生正电压;当两太阳能电池E1和E2均没有受到光照或受到的光照度相同时,两太阳能电池E1和E2之间无电压产生。采样电路1连接在上述两太阳能电池E1和E2之间,当两太阳能电池有光照差时,与采样电路1形成通路,从而在采样电路1上有信号V1、V2输出,供后续跟踪设备使用以保证正确调整跟踪器位置。
本发明中,采样电路1可通过电阻和二极管等电子元件组成的电路来实现,图2反映了一种采样电路,其由两个相串联连接的桥路组成,其中一个桥路包括正极与第一太阳能电池E1的正极相电连接的第一二极管D1、与第一二极管D1的负极相电连接的第一电阻R1、负极与第一二极管D1的正极相电连接的第二二极管D2,第一二极管D1与第一电阻R1相串联连接后,再与第二二极管D2相并联;另一个桥路包括正极与第一太阳能电池E1的负极相电连接的第三二极管D3、与第三二极管D3的负极相电连接的第二电阻R2、负极与第三二极管D3的正极相电连接的第四二极管D4,第三二极管D3与第二电阻R2相串联后,再与第四二极管D4相并联。
当第一太阳能电池E1受到的光照强于第二太阳能电池E2受到的光照时,第一太阳能电池E1产生正电压,电流依次流过第一二极管D1、第一电阻R1以及第四二极管D4,即第一太阳能电池E1、第一二极管D1、第一电阻R1、第四二极管D4之间形成通路,这样,第一电阻R1有电流通过而产生压降;当第一太阳能电池E1受到的光照弱于第二太阳能电池E2时,电流依次流过第三二极管D3、第二电阻R2、第二二极管D2,即第二太阳能电池E2、第三二极管D3、第二电阻R2以及第二二极管D2形成通路,从而第二电阻R2上有电流通过而产生压降。
图3所示为另一种更简化的采样电路,其由两相并联的支路组成,第一支路由正极与第一太阳能电池E1正极相电连接的第一二极管D1’、一端与第一二极管D1’负极相电连接的第一电阻R1’构成,第一电阻R1’的另一端与第一太阳能电池E1负极相连接,第二支路由负极与第一太阳能电池E1正极相电连接的第二二极管D2’、一端与第二二极管D2’正极相电连接的第二电阻R2’构成,第二电阻R2’的另一端也与第一太阳能电池E1负极相连接。
当第一太阳能电池E1的光照强于第二太阳能电池E2时,第一太阳能电池E1产生正电压,电流流过第一二极管D1’、第一电阻R1’,即第一太阳能电池E1、第一二极管D1’以及第一电阻R1’形成通路,这样,第一电阻R1’上有电流通过而产生压降;当第一太阳能电池E1的光照弱于第二太阳能电池E2时,电流流过第二二极管D2’、第二电阻R2’,即第二太阳能电池E2、第二二极管D2’以及第二电阻R2’形成通路,从而第二电阻R2’上有电流通过而产生压降。
图4所示为一种光信号传感器的应用示意简图,其中,两块太阳能电池E1和E2固定在一安装架3上,在安装架3上固定竖立一遮挡板2,且遮挡板2位于两块太阳能电池之间,由图中可以看出,当无光照或者太阳位于遮挡板2正上方时,两个太阳能电池E1、E2上均无电能产生,当太阳位于遮挡板2左侧或右侧时,第一太阳能电池E1与第二太阳能电池E2之间将产生光照差,从而在第一太阳能电池E1与第二太阳能电池E2之间产生压差。
上述实施例中介绍的光信号传感器,利用太阳能电池的特性,将两太阳能电池的正负极相首尾连接,并在其中一个太阳能电池正负极之间跨接采样支路,从而以检测不同太阳能电池产生的电流信号,将两太阳能电池的正负极首尾连接的方式打破了传统意义上的电池连接,我们知道,传统意义上的电池是一个装电的容器,如果采用将两个电池的正负极互相连接,电池将在极短的时间内被消耗,并会造成电池损毁和电路损毁。但太阳能电池颠覆了这个传统,它可以以本发明所保护的方式使用,并能够保证正常使用。
而且本发明相对有现有技术具有先进性,现有技术中进行太阳信号跟踪的光感应元件多采用光敏电阻,由于光敏电阻的阻值范围是从一个固定的值到无穷大,如果用两个光敏电阻比对后的结果作为信号源,在光线好的时候是没有问题的,但在光线很暗的时候,当两个光敏电阻的阻值是无穷大时就无法比对,因为这时的比值可能是1,也可能是无穷大,而太阳能电池的输出电压是有很确定的范围的,在黑暗时是0V,在夏天最大太阳时也是额定的电压。
根据本发明实施的光信号传感器主要可用在太阳能发电系统上,由于太阳能电池被光照的时间将低于太阳能发电电池的时间,因此可以认定光信号传感器寿命为无穷大,同时,其实现电路简单,从而可有效防止使用时故障的产生。
上面结合实施例对本发明的技术构思及特点进行了介绍,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,但并不能以此限制本发明的保护范围,如:采样电路可采用其它变换方式。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (2)

1、一种光信号传感器,它包括用于捕捉光信号并将光信号转换为电信号的太阳能电池、用于采集所述电信号的采样电路(1),其特征在于:所述的太阳能电池由第一太阳能电池(E1)和第二太阳能电池(E2)组成,所述的第一太阳能电池(E1)的正极与第二太阳能电池(E2)的负极相电连接,所述的第一太阳能电池(E1)的负极与所述的第二太阳能电池(E2)的正极相电连接,所述的采样电路(1)跨接在所述的第一太阳能电池(E1)或第二太阳能电池(E2)正负极之间,当第一太阳能电池(E1)受到的光照度强于第二太阳能电池(E2)受到的光照度时,第一太阳能电池(E1)产生电压大于第二太阳能电池(E2)产生电压,且在第一太阳能电池(E1)的正极方向产生正电压;当第二太阳能电池(E2)受到的光照度强于第一太阳能电池(E1)受到的光照度时,第二太阳能电池(E2)产生电压大于第一太阳能电池(E1)产生电压,且在第一太阳能电池(E1)的负极方向产生正电压,所述的采样电路(1)用于采样流经该电路的电流方向作为信号源。
2、根据权利要求1所述的光信号传感器,其特征在于:所述的采样电路(1)包括两个相串联连接的桥路,其中一个桥路包括正极与第一太阳能电池(E1)正极相电连接的第一二极管(D1)、与第一二极管(D1)的负极相电连接的第一电阻(R1)、负极与第一二极管(D1)的正极相电连接的第二二极管(D2),所述的第一二极管(D1)与第一电阻(R1)相串联连接后,再与所述的第二二极管(D2)相并联,另一个桥路包括正极与第一太阳能电池(E1)负极相电连接的第三二极管(D3)、与第三二极管(D3)的负极相电连接的第二电阻(R2)、负极与第三二极管(D3)的正极相电连接的第四二极管(D4),所述的第三二极管(D3)与第二电阻(R2)相串联后,再与所述的第四二极管(D4)相并联,当第一太阳能电池(E1)的光照强于第二太阳能电池(E2)时,第一电阻(R1)有电流通过而产生压降,当第一太阳能电池(E1)的光照弱于第二太阳能电池(E2)时,第二电阻(R2)有电流通过而产生压降。
PCT/CN2010/070226 2010-01-15 2010-01-15 光信号传感器 WO2011085557A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/070226 WO2011085557A1 (zh) 2010-01-15 2010-01-15 光信号传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/070226 WO2011085557A1 (zh) 2010-01-15 2010-01-15 光信号传感器

Publications (1)

Publication Number Publication Date
WO2011085557A1 true WO2011085557A1 (zh) 2011-07-21

Family

ID=44303813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/070226 WO2011085557A1 (zh) 2010-01-15 2010-01-15 光信号传感器

Country Status (1)

Country Link
WO (1) WO2011085557A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102591359A (zh) * 2012-02-24 2012-07-18 陕西科技大学 一种太阳跟踪控制器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11157498A (ja) * 1997-11-28 1999-06-15 Toshiba Corp 太陽電池パドル
JP2964146B2 (ja) * 1988-10-28 1999-10-18 公雄 山脇 光で極性が変わる太陽電池
US6089224A (en) * 1996-12-12 2000-07-18 Poulek; Vladislav Apparatus for orientation of solar radiation collectors
CN2636210Y (zh) * 2003-07-15 2004-08-25 于元亮 暗盒投影法太阳能自动跟踪系统光电池传感器
CN1987289A (zh) * 2005-12-23 2007-06-27 江志 太阳光跟踪传感器
CN101246371A (zh) * 2008-01-28 2008-08-20 王训恒 阳光跟踪控制器及安装了该控制器的太阳能利用设备
JP2009294739A (ja) * 2008-06-03 2009-12-17 Foundation For Promotion Of Japanese Aerospace Technology 太陽光追尾装置
CN201449559U (zh) * 2009-03-23 2010-05-05 何斌 太阳光跟踪感应器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2964146B2 (ja) * 1988-10-28 1999-10-18 公雄 山脇 光で極性が変わる太陽電池
US6089224A (en) * 1996-12-12 2000-07-18 Poulek; Vladislav Apparatus for orientation of solar radiation collectors
JPH11157498A (ja) * 1997-11-28 1999-06-15 Toshiba Corp 太陽電池パドル
CN2636210Y (zh) * 2003-07-15 2004-08-25 于元亮 暗盒投影法太阳能自动跟踪系统光电池传感器
CN1987289A (zh) * 2005-12-23 2007-06-27 江志 太阳光跟踪传感器
CN101246371A (zh) * 2008-01-28 2008-08-20 王训恒 阳光跟踪控制器及安装了该控制器的太阳能利用设备
JP2009294739A (ja) * 2008-06-03 2009-12-17 Foundation For Promotion Of Japanese Aerospace Technology 太陽光追尾装置
CN201449559U (zh) * 2009-03-23 2010-05-05 何斌 太阳光跟踪感应器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102591359A (zh) * 2012-02-24 2012-07-18 陕西科技大学 一种太阳跟踪控制器

Similar Documents

Publication Publication Date Title
Rizk et al. Solar tracking system: more efficient use of solar panels
CN113726290B (zh) 一种无需外接传感器的光伏组件积雪自动检测电路、方法
Bhuvaneswari et al. Analysis of solar energy based street light with auto tracking system
Kawata et al. Dye-sensitised and perovskite solar cells as indoor energy harvestors
WO2012163063A1 (zh) 基于反射聚光器的太阳能风能一体发电单元及其系统
CN206557616U (zh) 一种物联网架构的太阳能光伏自跟踪发电监控系统
CN207705885U (zh) 一种基于stm32的光伏充电及自动照明系统
CN201621005U (zh) 风光互补发电设备的自动监控与保护装置
CN202839677U (zh) 一种智能汇流箱及其光伏系统
CN101286532A (zh) 太阳能电池的光伏板及带有该光伏板的集光发电装置
CN103066888A (zh) 一种具有自补偿功能的光伏组件
CN104143955B (zh) 一种智能自平衡光伏串联电池组件
WO2011085557A1 (zh) 光信号传感器
CN204887541U (zh) 一种基于单片机的太阳能路灯照明控制系统
CN201584415U (zh) 光信号传感器
Rao et al. ARM based solar tracking system
CN101776480B (zh) 光信号传感器
Kim et al. A study of the photo-electric efficiency of dye-sensitized solar cells under lower light intensity
Li et al. Influence on open-circuit voltage by optical heterogeneity in three-dimensional organic photovoltaics
CN202660447U (zh) 风光互补路灯
CN203349166U (zh) 太阳光模拟器
CN204794128U (zh) 一种智能型家用光伏并网发电系统
CN103841701A (zh) 一种太阳光、市电和太阳能互补的照明系统
CN210273957U (zh) 下雪可发电的光伏组件
CN204256583U (zh) 太阳能mppt恒流源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10842841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10842841

Country of ref document: EP

Kind code of ref document: A1