WO2011084553A2 - Compositions and uses of cis-1,1,1,4,4,4-hexafluoro-2-butene - Google Patents

Compositions and uses of cis-1,1,1,4,4,4-hexafluoro-2-butene Download PDF

Info

Publication number
WO2011084553A2
WO2011084553A2 PCT/US2010/060646 US2010060646W WO2011084553A2 WO 2011084553 A2 WO2011084553 A2 WO 2011084553A2 US 2010060646 W US2010060646 W US 2010060646W WO 2011084553 A2 WO2011084553 A2 WO 2011084553A2
Authority
WO
WIPO (PCT)
Prior art keywords
hfo
1336mzzm
hfc
chf2
ch2f
Prior art date
Application number
PCT/US2010/060646
Other languages
French (fr)
Other versions
WO2011084553A3 (en
Inventor
Ryan Hulse
Gary John Zyhowski
Bjiorn Hofman
Dave Williams
Gary Knopeck
Robert G. Richard
Rajat Basu
Rajiv Ratna Singh
Original Assignee
Honeywell International Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44143648&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2011084553(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Honeywell International Inc. filed Critical Honeywell International Inc.
Priority to ES10842581T priority Critical patent/ES2761933T3/en
Priority to PL10842581T priority patent/PL2513023T3/en
Priority to EP10842581.0A priority patent/EP2513023B1/en
Priority to EP17196370.5A priority patent/EP3342840A3/en
Priority to DK10842581.0T priority patent/DK2513023T3/en
Priority to JP2012544806A priority patent/JP2013514450A/en
Priority to CN201080063844.0A priority patent/CN102741204B/en
Publication of WO2011084553A2 publication Critical patent/WO2011084553A2/en
Publication of WO2011084553A3 publication Critical patent/WO2011084553A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/30Materials not provided for elsewhere for aerosols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/18Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N29/00Biocides, pest repellants or attractants, or plant growth regulators containing halogenated hydrocarbons
    • A01N29/02Acyclic compounds or compounds containing halogen attached to an aliphatic side-chain of a cycloaliphatic ring system
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/10Natural spices, flavouring agents or condiments; Extracts thereof
    • A23L27/11Natural spices, flavouring agents or condiments; Extracts thereof obtained by solvent extraction
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/20Synthetic spices, flavouring agents or condiments
    • A23L27/202Aliphatic compounds
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D1/00Fire-extinguishing compositions; Use of chemical substances in extinguishing fires
    • A62D1/0028Liquid extinguishing substances
    • A62D1/0057Polyhaloalkanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/14Manufacture of cellular products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4018Mixtures of compounds of group C08G18/42 with compounds of group C08G18/48
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/127Mixtures of organic and inorganic blowing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/144Halogen containing compounds containing carbon, halogen and hydrogen only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/144Halogen containing compounds containing carbon, halogen and hydrogen only
    • C08J9/146Halogen containing compounds containing carbon, halogen and hydrogen only only fluorine as halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/149Mixtures of blowing agents covered by more than one of the groups C08J9/141 - C08J9/143
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/06Organic materials
    • C09K21/08Organic materials containing halogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M131/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing halogen
    • C10M131/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing halogen containing carbon, hydrogen and halogen only
    • C10M131/04Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing halogen containing carbon, hydrogen and halogen only aliphatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/008Lubricant compositions compatible with refrigerants
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B9/00Essential oils; Perfumes
    • C11B9/02Recovery or refining of essential oils from raw materials
    • C11B9/025Recovery by solvent extraction
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/24Organic compounds containing halogen
    • C11D3/245Organic compounds containing halogen containing fluorine
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/02Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/24Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/26Organic compounds containing oxygen
    • C11D7/263Ethers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/26Organic compounds containing oxygen
    • C11D7/264Aldehydes; Ketones; Acetals or ketals
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/50Solvents
    • C11D7/5004Organic solvents
    • C11D7/5018Halogenated solvents
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/16Unsaturated hydrocarbons
    • C08J2203/162Halogenated unsaturated hydrocarbons, e.g. H2C=CF2
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/18Binary blends of expanding agents
    • C08J2203/182Binary blends of expanding agents of physical blowing agents, e.g. acetone and butane
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/18Binary blends of expanding agents
    • C08J2203/184Binary blends of expanding agents of chemical foaming agent and physical blowing agent, e.g. azodicarbonamide and fluorocarbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • C08J2375/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/11Ethers
    • C09K2205/112Halogenated ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/122Halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/22All components of a mixture being fluoro compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/02Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only
    • C10M2211/022Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only aliphatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/30Refrigerators lubricants or compressors lubricants

Definitions

  • compositions, methods and systems having utility in numerous applications, and in particular, uses for compositions containing the compound cis-l,l,l,4,4,4-hexafluoro-2-butene (Z-HFO-1336mzzm), which has the following structure:
  • compositions of the present invention are part of a continued search for the next generation of low global warming potential materials. Such materials must have low environmental impact, as measured by ultra-low global warming potential and zero ozone depletion potential.
  • compositions, methods and systems having utility in numerous applications, and in particular, uses for compositions containing the compound cis-l,l,l,4,4,4-hexafluoro-2-butene (Z-HFO-1336mzzm), which has the following structure:
  • Embodiments of the present invention comprise the compound Z-HFO- 1336mzzm, either alone or in combination with one or more other compounds as described in detail herein below.
  • mixtures containing the compound Z- HFO-1336mzzm are non-azeotropic.
  • compositions of the present invention may be used in a wide variety of applications such as blowing agents, refrigerants, heating agents, power cycle agents, cleaning agents, aerosol propellants, sterilization agents, lubricants, flavor and fragrance extractants, flammability reducing agents, and flame suppression agents, to name a few preferred uses.
  • blowing agents refrigerants, heating agents, power cycle agents, cleaning agents, aerosol propellants, sterilization agents, lubricants, flavor and fragrance extractants, flammability reducing agents, and flame suppression agents.
  • compositions of the present invention all include the compound Z-HFO- 1336mzzm.
  • Certain embodiments of the invention particularly those employed as blowing agent compositions or foamable compositions, can optionally include other ingredients, some of which are described in detail below.
  • certain embodiments of the present invention are directed to compositions comprising, or consisting essentially of, at least one additional fluoroalkene containing from 2 to 6, preferably 3 to 5 carbon atoms, more preferably 3 to 4 carbon atoms, and in certain embodiments most preferably three carbon atoms, and at least one carbon-carbon double bond.
  • the fluoroalkene compounds of the present invention are sometimes referred to herein for the purpose of convenience as hydrofluoro-olefins or "HFOs" if they contain at least one hydrogen.
  • compositions which include as an essential component the compound Z-HFO-1336mzzm and at least one additional compound such as HFOs, HFCs, HFEs, hydrocarbons, ethers, aldehydes, ketones, and others such as methyl formate, formic acid, trans- 1,2 dichloroethylene, carbon dioxide, cis- HFO-1234ze + HFO-1225yez; mixtures of these plus water; mixtures of these plus C02; mixtures of these trans 1 ,2-dichloroethylene (DCE); mixtures of these plus methyl formate; mixtures with cis-HFO-1234ze + C02; mixtures with cis-HFO- 1234ze + HFO-1225yez + C02; and mixtures with cis-HFO-1234ze + HFC-245fa.
  • the amount of the compound Z-HFO-1336mzzm may vary widely, including in all cases constituting the balance of the composition after all other components in composition are accounted for.
  • the amount of the compound Z-HFO- 1336mzzm in the composition can be in accordance with the following ranges: from about 1 wt % to about 99 wt %; from about 30 wt % to about 99 wt %; from about 50 wt % to about 99 wt %; from about 75 wt % to about 99 wt %; from about 85 wt % to about 99 wt %; from about 20 wt % to about 80 wt %; from about 90 wt % to about 99 wt %; from about 95 wt % to about 99 wt %; from about 1 wt % to about 20 wt %; from about 1 wt % to about 40 wt %; from about 1 wt % to about 50 wt %; from about 5 wt % to about 20 wt %; from about 5 wt % to about 40 wt %
  • the preferred compositions of the present invention are environmentally acceptable and do not to contribute to the depletion of the earth's stratospheric ozone layer.
  • the compounds and compositions of the present invention have no substantial ozone depletion potential (ODP), preferably an ODP of not greater than about 0.5 and even more preferably an ODP of not greater than about 0.25, most preferably an ODP of not greater than about 0.1; and/or a global warming potential (GWP) of not greater than about 150, and even more preferably, a GWP of not greater than about 50.
  • ODP ozone depletion potential
  • GWP global warming potential
  • ODP is defined in the "Scientific Assessment of Ozone Depletion, 2002," a report of the World Meteorological association, incorporated here by reference.
  • GWP is defined relative to that of carbon dioxide and over a 100 year time horizon, and defined in the same reference as for the ODP mentioned above.
  • compositions of this type are described below in Table 1 (with all percentages being in percent by weight and being understood to be proceeded by the word "about”).
  • neopentane 1 to 99 l to 30 1 to 20
  • compositions of the present invention may be used in a wide variety of applications as substitutes for CFCs and for compositions containing less desirable HCFCs.
  • the present compositions are useful as blowing agents, refrigerants, heating agents, power cycle agents, cleaning agents, aerosol propellants, sterilization agents, lubricants, flavor and fragrance extractants, flammability reducing agents, and flame suppression agents, to name a few preferred uses. Each of these uses will be discussed in greater detail below.
  • the present invention includes methods and systems which include using Z-HFO-1336mzzm as a blowing agent, optionally with one or more optional additional compounds which include, but are not limited to, other compounds which also act as blowing agents (hereinafter referred to for convenience but not by way of limitation as co-blowing agents), surfactants, polyols, catalysts, flame retardants, polymer modifiers, colorants, dyes, solubility enhancers, rheology modifiers, plasticizing agents, fillers, nucleating agents, viscosity reduction agents, vapor pressure modifiers, stabilizers, and the like.
  • co-blowing agents include, but are not limited to, other compounds which also act as blowing agents (hereinafter referred to for convenience but not by way of limitation as co-blowing agents), surfactants, polyols, catalysts, flame retardants, polymer modifiers, colorants, dyes, solubility enhancers, rheology modifiers, plasticizing agents, fillers, nucleating agents, viscosity reduction agents
  • Preferred blends for blowing agents used for foams, especially spray foams and panel foams include blends of Z-HFO- 1336mzzm with hydrocarbons (especially the pentanes, including cyclopentane), and with each of 245fa, 365mfc and 1233zd. While the cis isomer of HFO-1336mzzm is preferred, it is anticipated that the trans isomer and/or mixtures of the isomers, including the racemate, will be useful in certain foam types.
  • the amount of the compound Z-HFO-1336mzzm in the composition of the invention can be in accordance with the following ranges: from about 1 wt % to about 99 wt %; from about 30 wt % to about 99 wt %; from about 50 wt % to about 99 wt %; from about 75 wt % to about 99 wt %; from about 85 wt % to about 99 wt %; from about 20 wt % to about 80 wt %; from about 90 wt % to about 99 wt %; from about 95 wt % to about 99 wt %; from about 1 wt % to about 20 wt %; from about 1 wt % to about 40 wt %; from about 1 wt % to about 50 wt %; from about 5 wt % to about 20 wt %; from about 5 wt % to about 40 wt %
  • dispersing agents may also be incorporated into the blowing agent compositions of the present invention.
  • Certain surfactants are optionally but preferably added to serve as cell stabilizers.
  • Some representative materials are sold under the names of DC-193, B-8404, and L-5340 which are, generally, polysiloxane polyoxyalkylene block co-polymers such as those disclosed in U.S. Pat. Nos.
  • blowing agent mixture may include flame retardants such as tri(2-chloroethyl)phosphate, tri(2-chloropropyl)phosphate, tri(2,3- dibromopropyl)-phosphate, tri(l ,3-dichloro-propyl)phosphate, diammonium phosphate, various halogenated aromatic compounds, antimony oxide, aluminum trihydrate, polyvinyl chloride, and the like.
  • flame retardants such as tri(2-chloroethyl)phosphate, tri(2-chloropropyl)phosphate, tri(2,3- dibromopropyl)-phosphate, tri(l ,3-dichloro-propyl)phosphate, diammonium phosphate, various halogenated aromatic compounds, antimony oxide, aluminum trihydrate, polyvinyl chloride, and the like.
  • nucleating agents all known compounds and materials having nucleating functionality are available for use in the present invention, including particularly talc.
  • the co-blowing agent in accordance with the present invention can comprise a physical blowing agent, a chemical blowing agent (which preferably in certain embodiments comprises water) or a blowing agent having a combination of physical and chemical blowing agent properties.
  • blowing agent compositions of the present invention include one or more HFCs as co-blowing agents, more preferably one or more C1-C4 HFCs, and/or one or more hydrocarbons, more preferably C4-C6 hydrocarbons.
  • the present blowing agent compositions may include one or more of difluoromethane (HFC-32), fluoroethane (HFC- 161), difluoro ethane (HFC- 152), trifluoroethane (HFC- 143), tetrafluoroethane (HFC- 134), pentafluoroethane (HFC- 125), pentafluoropropane (HFC-245), hexafluoropropane (HFC-236),
  • HFC-356 hexafluorobutane
  • the present blowing agent compositions may include in certain preferred embodiments, for example, iso, normal and/or
  • thermoset foams and butane or isobutane for thermoplastic foams.
  • CFCs such as trichlorofluoromethane (CFC-11) and dichlorodifluoromethane (CFC-12)
  • HCCs hydrochlorocarbons
  • C1-C5 alcohols such as, for example, ethanol and/or propanol and/or butanol
  • C1-C4 aldehydes such as, for example, ethanol and/or propanol and/or butanol
  • C1-C4 ketones C1-C4 ethers (including ethers (such as dimethyl ether and diethyl ether), diethers (such as dimethoxy methane and diethoxy methane)), and methyl formate including combinations of any of these may be included, although such components are contemplated to be not preferred in many embodiments
  • HFC isomers are preferred for use as co-blowing agents in the compositions of the present invention:
  • the blowing agent composition of the present invention comprise at least one co-blowing agent and an amount of Z- HFO-1336mzzm sufficient to produce a blowing agent composition which is overall nonflammable.
  • the blowing agent compositions of the present invention may include the compound Z-HFO-1336mzzm in widely ranging amounts. It is generally preferred, however, that for preferred compositions for use as blowing agents in accordance with the present invention, Z-HFO-1336mzzm is present in an amount that is at least about 1% by weight, more preferably at least about 5% by weight, and even more preferably at least about 15% by weight, of the composition.
  • the blowing agent comprises at least about 50%) by weight of the present blowing agent compound(s), and in certain embodiments
  • the blowing agent consists essentially of Z-HFO-1336mzzm.
  • co-blowing agents are consistent with the novel and basic features of the present invention.
  • water will be used as either a co-blowing or in combination with other co-blowing agents (such as, for example, pentane, particularly cyclopentane) in a large number of embodiments.
  • the blowing agent composition comprises from about 30% to about 95% by weight of Z-HFO-1336mzzm and from about 5% to about 90%) by weight, more preferably from about 5%> to about 65% by weight of co- blowing agent.
  • the co-blowing agent comprises, and preferably consists essentially of, H20, HFCs, hydrocarbons, alcohols (preferably C2, C3 and/or C4 alcohols), C02, and combinations of these.
  • the composition comprises H20 in an amount of from about 5% by weight to about 50% by weight of the total blowing agent composition, more preferably from about 10% by weight to about 40% by weight, and even more preferably of from about 10% to about 20% by weight of the total blowing agent.
  • the composition comprises C02 in an amount of from about 5% by weight to about 60% by weight of the total blowing agent composition, more preferably from about 20% by weight to about 50%> by weight, and even more preferably of from about 40%> to about 50% by weight of the total blowing agent.
  • the co-blowing agent comprises alcohols, (preferably C2, C3 and/or C4 alcohols)
  • the composition comprises alcohol in an amount of from about 5% by weight to about 40% by weight of the total blowing agent composition, more preferably from about 10% by weight to about 40% by weight, and even more preferably of from about 15% to about 25% by weight of the total blowing agent.
  • the HFC co-blowing agent preferably C2, C3, C4 and/or C5 HFC, and even more preferably
  • HFC- 152a difluoromethane
  • HFC- 152a being particularly preferred for extruded thermoplastics
  • pentafluoropropane HFC-245
  • the HFC is preferably C2-C4 HFC, and even more preferably C3 HFC, with penta-fluorinated C3 HFC, such as HFC-245fa, being highly preferred in certain embodiments.
  • the HC co-blowing agent (preferably C3, C4 and/or C5 HC) is preferably present in the composition in amounts of from of from about 5% by weight to about 80% by weight of the total blowing agent composition, and even more preferably from about 20% by weight to about 60% by weight of the total blowing agent.
  • This example demonstrates the performance of Z-HFO-1336mzzm used in combination with hydrocarbon co-blowing agents, and in particular the utility of compositions comprising, or consisting essentially of, Z-HFO-1336mzzm and cyclopentane co-blowing agents in rigid polyurethane insulation foams.
  • a generic refrigerator appliance-type polyurethane foam formulation (foam forming mixture) is provided.
  • the polyol blend consisted of commercial polyol(s), catalyst(s), surfactant(s), and water. Standard commercial polyurethane processing equipment is used for the foam forming process.
  • a blowing agent combination is formed comprising, or consisting essentially of, Z-HFO-1336mzzm in a concentration of approximately 50 mole percent, and cyclopentane in a concentration of
  • the physical blowing agents can be added individually to the polyol blend or can be pre-blended prior to introduction to the polyol blend.
  • foamable compositions generally include one or more components capable of forming foam.
  • foam foaming agent is used to refer to a component, or a combination on components, which are capable of forming a foam structure, preferably a generally cellular foam structure.
  • the foamable compositions of the present invention include such component(s) and a blowing agent compound, preferably Z-HFO-1336mzzm.
  • the amount of the compound Z-HFO-1336mzzm in the composition of the invention can be in accordance with the following ranges: from about 1 wt % to about 99 wt %; from about 30 wt % to about 99 wt %; from about 50 wt % to about 99 wt %; from about 75 wt % to about 99 wt %; from about 85 wt % to about 99 wt %; from about 20 wt % to about 80 wt %; from about 90 wt % to about 99 wt %; from about 95 wt % to about 99 wt %; from about 1 wt % to about 20 wt %; from about 1 wt % to about 40 wt %; from about 1 wt % to about 50 wt %; from about 5 wt % to about 20 wt %; from about 5 wt % to about 40 wt %
  • the one or more components capable of forming foam comprise a thermosetting composition capable of forming foam and/or foamable compositions.
  • thermosetting compositions include polyurethane and polyisocyanurate foam compositions, and also phenolic foam compositions.
  • This reaction and foaming process may be enhanced through the use of various additives such as catalysts and surfactant materials that serve to control and adjust cell size and to stabilize the foam structure during formation.
  • any one or more of the additional components described above with respect to the blowing agent compositions of the present invention could be incorporated into the foamable composition of the present invention.
  • one or more of the present compositions are included as or part of a blowing agent in a foamable composition, or as a part of a two or more part foamable composition, which preferably includes one or more of the components capable of reacting and/or foaming under the proper conditions to form a foam or cellular structure.
  • the one or more components capable of foaming comprise thermoplastic materials, particularly thermoplastic polymers and/or resins.
  • thermoplastic foam components include polyolefins, such as for example monovinyl aromatic compounds of the formula Ar-CHCH2 wherein Ar is an aromatic hydrocarbon radical of the benzene series such as polystyrene (PS).
  • PS polystyrene
  • suitable polyolefin resins in accordance with the invention include the various ethylene resins including the ethylene homopolymers such as polyethylene and ethylene copolymers,
  • thermoplastic foamable composition is an extrudable composition.
  • the methods of the present invention generally require incorporating a blowing agent in accordance with the present invention into a foamable or foam forming composition and then foaming the composition, preferably by a step or series of steps which include causing volumetric expansion of the blowing agent in accordance with the present invention.
  • blowing agent and for foaming are readily adaptable for use in accordance with the present invention.
  • one advantage of the present invention is the provision of an improved blowing agent which is generally compatible with existing foaming methods and systems.
  • the present invention comprises methods and systems for foaming all types of foams, including thermosetting foams, thermoplastic foams and formed-in-place foams.
  • one aspect of the present invention is the use of the present blowing agents in connection conventional foaming equipment, such as polyurethane foaming equipment, at conventional processing conditions.
  • the present methods therefore include polyol premix type operations, blending type operations, third stream blowing agent addition, and blowing agent addition at the foam head.
  • the preferred methods generally comprise introducing a blowing agent in accordance with the present invention into a thermoplastic material, preferably thermoplastic polymer such as polyolefin, and then subjecting the thermoplastic material to conditions effective to cause foaming.
  • a blowing agent in accordance with the present invention into a thermoplastic material, preferably thermoplastic polymer such as polyolefin
  • the step of introducing the blowing agent into the thermoplastic material may comprise introducing the blowing agent into a screw extruder containing the thermoplastic
  • the step of causing foaming may comprise lowering the pressure on the thermoplastic material and thereby causing expansion of the blowing agent and contributing to the foaming of the material.
  • blowing agent of the present invention does not generally affect the operability of the present invention.
  • the various components of the blowing agent, and even the components of the foamable composition be not be mixed in advance of introduction to the extrusion equipment, or even that the components are not added to the same location in the extrusion equipment.
  • the blowing agent can be introduced either directly or as part of a premix, which is then further added to other parts of the foamable composition.
  • one or more components of the blowing agent at first location in the extruder, which is upstream of the place of addition of one or more other components of the blowing agent, with the expectation that the components will come together in the extruder and/or operate more effectively in this manner.
  • two or more components of the blowing agent are combined in advance and introduced together into the foamable composition, either directly or as part of premix which is then further added to other parts of the foamable composition.
  • One embodiment of the present invention relates to methods of forming foams, especially panel foams and spray foams, and preferably such foams made from polyurethane and polyisocyanurate.
  • the methods generally comprise providing a blowing agent composition of the present inventions, adding (directly or indirectly) the blowing agent composition to a foamable composition, and reacting the foamable composition under the conditions effective to form a foam or cellular structure, as is well known in the art.
  • the amount of the compound Z-HFO-1336mzzm in the composition of the invention can be in accordance with the following ranges: from about 1 wt % to about 99 wt %; from about 30 wt % to about 99 wt %; from about 50 wt % to about 99 wt %; from about 75 wt % to about 99 wt %; from about 85 wt % to about 99 wt %; from about 20 wt % to about 80 wt %; from about 90 wt % to about 99 wt %; from about 95 wt % to about 99 wt %; from about 1 wt % to about 20 wt %; from about 1 wt % to about 40 wt %; from about 1 wt % to about 50 wt %; from about 5 wt % to about 20 wt %; from about 5 wt % to about 40 wt %
  • such preferred methods comprise preparing polyurethane or polyisocyanurate foams by combining an isocyanate, a polyol or mixture of polyols, a blowing agent or mixture of blowing agents comprising one or more of the present compositions, and other materials such as catalysts, surfactants, and optionally, flame retardants, colorants, or other additives.
  • the foam formulation is pre-blended into two components.
  • the isocyanate and optionally certain surfactants and blowing agents comprise the first component, commonly referred to as the "A" component.
  • the polyol or polyol mixture, surfactant, catalysts, blowing agents, flame retardant, and other isocyanate reactive components comprise the second component, commonly referred to as the "B" component.
  • polyurethane or polyisocyanurate foams are readily prepared by bringing together the A and B side components either by hand mix for small preparations and, preferably, machine mix techniques to form blocks, slabs, laminates, pour-in-place panels and other items, spray applied foams, froths, and the like.
  • other ingredients such as fire retardants, colorants, auxiliary blowing agents, and even other polyols can be added as one or more additional streams to the mix head or reaction site. Most preferably, however, they are all incorporated into one B-component as described above.
  • the present methods and systems also include forming a one component foam, preferably polyurethane foam, containing a blowing agent in accordance with the present invention.
  • a portion of the blowing agent is contained in the foam forming agent, preferably by being dissolved in a foam forming agent which is liquid at the pressure within the container, a second portion of the blowing agent is present as a separate gas phase.
  • contained/dissolved blowing agent performs, in large part, to cause the expansion of the foam, and the separate gas phase operates to impart propulsive force to the foam forming agent.
  • Such one component systems are typically and preferably packaged in a container, such as an aerosol type can, and the blowing agent of the present invention thus preferably provides for expansion of the foam and/or the energy to transport the foam/foamable material from the package, and preferably both.
  • a container such as an aerosol type can
  • the blowing agent of the present invention thus preferably provides for expansion of the foam and/or the energy to transport the foam/foamable material from the package, and preferably both.
  • such systems and methods comprise charging the package with a fully formulated system (preferably isocyanate/polyol system) and incorporating a gaseous blowing agent in accordance with the present invention into the package, preferably an aerosol type can.
  • a fully formulated system preferably isocyanate/polyol system
  • a gaseous blowing agent in accordance with the present invention into the package, preferably an aerosol type can.
  • the present invention also relates to all foams, including but not limited to closed cell foam, open cell foam, spray foams, panel foams, rigid foam, flexible foam, integral skin and the like, prepared from a polymer foam formulation containing a blowing agent comprising, or consisting essentially of, Z-HFO-1336mzzm, either alone or in combination with one or more other compounds.
  • a blowing agent comprising, or consisting essentially of, Z-HFO-1336mzzm, either alone or in combination with one or more other compounds.
  • thermoset foams such as polyurethane foams
  • the present foams, particularly thermoset foams of the present invention may be used in a wide variety of applications, in certain preferred embodiments the present invention comprises appliance foams in accordance with the present invention, including refrigerator foams, freezer foams, refrigerator/freezer foams, panel foams, and other cold or cryogenic manufacturing applications.
  • the foams in accordance with the present invention provide one or more exceptional features, characteristics and/or properties, including: thermal insulation efficiency (particularly for thermoset foams), dimensional stability, compressive strength, aging of thermal insulation properties, all in addition to the low ozone depletion potential and low global warming potential associated with many of the preferred blowing agents of the present invention.
  • the present invention provides thermoset foam, including such foam formed into foam articles, which exhibit improved thermal conductivity relative to foams made using the same blowing agent (or a commonly used blowing agent HFC-245fa) in the same amount but without the compound Z- HFO-1336mzzm.
  • the present foams exhibit improved mechanical properties relative to foams produced with blowing agents outside the scope of the present invention.
  • certain preferred embodiments of the present invention provide foams and foam articles having a compressive strength which is superior to, and preferably at least about 10 relative percent, and even more preferably at least about 15 relative percent greater than a foam produced under substantially identical conditions by utilizing a blowing agent consisting of cyclopentane.
  • the foams produced in accordance with the present invention have compressive strengths that are on a commercial basis comparable to the compressive strength produced by making a foam under substantially the same conditions except wherein the blowing agent consists of HFC-245fa.
  • the foams of the present invention exhibit a compressive strength of at least about 12.5% yield (in the parallel and perpendicular directions), and even more preferably at least about 13% yield in each of said directions.
  • Panel foams made using a 80/20 wt% Z-HFO-1336mzzm/cyclopentane blend as the blowing agent provides significantly better physical property and thermal insulation value than foams made with either Z-HFO-1336mzzm/iso-pentane blend or Z-HFO-1336mzzm/n-pentane blends as the blowing agent.
  • panel foams made with a blowing agent blend of 80/20 wt % Z-HFO-1336mzzm/cyclopentane had considerably shorter tack free time. With nearly identical foam density, foam made with Z-HFO-1336mzzm/cyclopentane blend had the highest compressive strength.
  • Foams made with the Z-HFO-1336mzzm/cyclopentane blend also demonstrated lower thermal conductivity and better retention of thermal insulation value after aging than foam with either Z-HFO-1336mzzm/isopentane blend or Z-HFO-1336mzzm/n- pentane blend.
  • Panel foams made with 80/20 wt% of Z-HFO-1336mzzm and hydrocarbons as the blowing agent were prepared as follows.
  • the polyol master batch composition is shown in Table 2 while the generic panel foam formulations with corresponding amounts of blowing agents are listed in Table 3.
  • the perpendicular-to-parallel compressive strength ratios of all three foams are similar; however, the perpendicular compressive strength to density ratio and the parallel compressive strength to density ratio of the foam with Z-HFO- 1336mzzm/cyclopentane blend are significantly higher than the other two foams.
  • foam with Z-HFO-1336mzzm/cyclopentane blend demonstrates slightly better insulation value than the other two foams at all temperatures evaluated. After the foams were aged for 8 days, the difference in thermal conductivity appears to be more significant. Compared to the foams with Z-HFO-1336mzzm/isopentane or Z-HFO-1336mzzm/n-pentane blend, foam with Z-HFO-1336mzzm/cyclopentane blend provides better retention of insulation value after aging.
  • Spray prepared with Z-HFO-1336mzzm, 1233zd(E), 30/70 mole % blend of 1233zd(E) /1336mzzm and 70/30 mole % blend of 1233zd(E)/1336mzzm had equivalent density.
  • the thermal conductivity data from these foams do not demonstrate the anticipated linear relationship.
  • foam prepared with a 70/30 mole % 1233zd(E)/1336mzzm and 30/70 mole % 1233zd(E)/1336mzzm have improved k-factors and superior aging to those made with 1233zd(E). This is an unanticipated result.
  • Spray foams with Z-HFO-1336mzzm, 1233zd(E), 30/70 mole % blend of 1233zd(E)/1336mzzm and 70/30 mole % blend of 1233zd(E)/1336mzzm as blowing agent were prepared as follows.
  • the polyol master batch composition is shown in Table 5 while the generic spray foam formulations with corresponding amounts of blowing agents are listed in Table 6.
  • the foams were prepared with a 3 second pour time and 8 second mix time. The raw materials temperatures were 50 °F polyol/ 70°F MDI.
  • the foams prepared were well mixed and equivalent in quality.
  • the block density of the foams produced is similar as is the ratio of block to core density.
  • Block density is density of the squared foam prior to sample cutting.
  • Core density is density of the k- factor sample taken from the middle of the sample. This is anticipated since the foams were prepared with equivalent moles of blowing agents.
  • the thermal conductivity of foams prepared with these blends are significantly improved over those made with 1233zd(E). Not only are they improved, the improvement is nonlinear in relationship to the amount of Z-HFO-1336mzzm added to the blowing agent blend. It is particularly interesting that the improvement at the low mean temperatures is significant and not 1233zd(E) concentration dependant. In addition, it is notable that the foam prepared from the blends age slower than the 1233zd(E) and the Z-HFO-1336mzzm foams.
  • Foams prepared with Z-HFO-1336mzzm, 245 fa, 30/70 mole % blend of 245 fa / Z-HFO-1336mzzm and 70/30 mole % blend of 245fa/Z-HFO-1336mzzm had equivalent density.
  • the dimensional stability and thermal conductivity data form these foams do not demonstrate the anticipated linear relationship.
  • foam prepared with a 70/30 mole % 245fa/ Z-HFO-1336mzzm have improved k-factors and superior aging to those made with 245fa. This is an unexpected result.
  • Foams were prepared with Z-HFO-1336mzzm, 245 fa, 30/70 mole % blend of 245fa/ Z-HFO-1336mzzm and 70/30 mole % blend of 245fa/ Z-HFO-1336mzzm as the blowing agents.
  • the polyol master batch composition is shown above in Table 5 while the generic spray foam formulations with corresponding amounts of blowing agents are listed below in Table 12.
  • the foams were prepared with and 3 second pour time and 8 second mix time. The raw materials temperatures were 50 °F polyol/ 70°F MDI. Table 12 - Polyol Master Batch Composition
  • the foams prepared were well mixed and equivalent in quality.
  • the block density of the foams produced is similar as is the ratio of block to core density. This is anticipated since the foams were prepared with equivalent moles of blowing agents.
  • foam produced with Z-HFO-1336mzzm and the 70/30 mole % Z- HFO-1336mzzm/245fa blend show the "hockey stick" curve shape traditionally found with high boiling blowing agents. This is attributed to the condensation of the blowing agent in the foam matrix at temperatures below the boiling point of the blowing agent. It is unanticipated that the 30/70 mole % Z-HFO-1336mzzm/245fa blend does not show the same curve shape since this is not an azeotropic composition. In addition the thermal conductivity of foams prepared with this blend is equivalent or slightly improved over those made with 245fa. The foam prepared of the 70/30 mole % 245fa/ Z-HFO-1336mzzm blend age slower than the 245 fa and the Z-HFO-1336mzzm foams.
  • compositions of this invention which comprise, or consist essentially of Z-HFO-1336mzzm. These compositions are useful in connection with numerous methods and systems, including as heat transfer fluids in methods and systems for transferring heat, such as refrigerants used in refrigeration, air
  • compositions of this invention are also advantageous for in use in systems and methods of generating aerosols, preferably comprising or consisting of the aerosol propellant in such systems and methods. Methods of forming foams and methods of extinguishing and suppressing fire are also included as embodiments of this invention.
  • the present invention also provides in certain aspects methods of removing residue from articles in which the present compositions are used as solvent compositions in such methods and systems.
  • the preferred heat transfer methods generally comprise providing a composition comprising, or consisting essentially of Z-HFO-1336mzzm, particularly blends as described in Table 1 , and causing heat to be transferred to or from the composition changing the phase of the composition.
  • the present methods provide cooling by absorbing heat from a fluid or article, preferably by evaporating the present refrigerant composition in the vicinity of the body or fluid to be cooled to produce vapor comprising, or consisting essentially of, Z-HFO- 1336mzzm.
  • the amount of the compound Z-HFO-1336mzzm in the composition of the invention can be in accordance with the following ranges: from about 1 wt % to about 99 wt %; from about 30 wt % to about 99 wt %; from about 50 wt % to about 99 wt %; from about 75 wt % to about 99 wt %; from about 85 wt % to about 99 wt %; from about 20 wt % to about 80 wt %; from about 90 wt % to about 99 wt %; from about 95 wt % to about 99 wt %; from about 1 wt % to about 20 wt %; from about 1 wt % to about 40 wt %; from about 1 wt % to about 50 wt %; from about 5 wt % to about 20 wt %; from about 5 wt % to about 40 wt %
  • the methods include the further step of compressing the refrigerant vapor, usually with a compressor or similar equipment to produce vapor of the present composition at a relatively elevated pressure.
  • the step of compressing the vapor results in the addition of heat to the vapor, thus causing an increase in the temperature of the relatively high-pressure vapor.
  • the present methods include removing from this relatively high temperature, high pressure vapor at least a portion of the heat added by the evaporation and compression steps.
  • the heat removal step preferably includes condensing the high temperature, high-pressure vapor while the vapor is in a relatively high-pressure condition to produce a relatively high- pressure liquid comprising, or consisting essentially of, Z-HFO-1336mzzm.
  • This relatively high-pressure liquid preferably then undergoes a nominally isoenthalpic reduction in pressure to produce a relatively low temperature, low-pressure liquid.
  • this reduced temperature refrigerant liquid which is then vaporized by heat transferred from the body or fluid to be cooled.
  • compositions of the invention may be used in a method for producing heating which comprises condensing a refrigerant comprising, or consisting essentially of, Z-HFO-1336mzzm, particularly blends as described in Table 1 , in the vicinity of a liquid or body to be heated.
  • a refrigerant comprising, or consisting essentially of, Z-HFO-1336mzzm, particularly blends as described in Table 1 , in the vicinity of a liquid or body to be heated.
  • the amount of the compound Z-HFO-1336mzzm in the composition of the invention can be in accordance with the following ranges: from about 1 wt % to about 99 wt %; from about 30 wt % to about 99 wt %; from about 50 wt % to about 99 wt %; from about 75 wt % to about 99 wt %; from about 85 wt % to about 99 wt %; from about 20 wt % to about 80 wt %; from about 90 wt % to about 99 wt %; from about 95 wt % to about 99 wt %; from about 1 wt % to about 20 wt %; from about 1 wt % to about 40 wt %; from about 1 wt % to about 50 wt %; from about 5 wt % to about 20 wt %; from about 5 wt % to about 40 wt %
  • REFRIGERANT COMPOSITIONS The present methods, systems and compositions comprising, or consisting essentially of Z-HFO-1336mzzm, and in particular, blends as described in Table 1, are thus adaptable for use in connection with automotive air conditioning systems and devices, commercial refrigeration systems and devices, chillers, residential refrigerator and freezers, general air conditioning systems, heat pumps, and the like.
  • compositions of the present invention are believed to be adaptable for use in many of such systems, either with or without system modification.
  • the compositions of the present invention may provide an advantage as a replacement in systems, which are currently based on refrigerants having a relatively high capacity.
  • embodiments where it is desired to use a lower capacity refrigerant composition of the present invention for reasons of efficiency for example, to replace a refrigerant of higher capacity, such embodiments of the present compositions provide a potential advantage.
  • compositions comprising, or consisting essentially of, Z-HFO-1336mzzm, either alone or in combination with one or more other compounds, particularly blends as described in Table 1, as a replacement for existing refrigerants, such as HCFC-123 or HFC- 134a.
  • the refrigerants of the present invention potentially permit the beneficial use of larger displacement compressors, thereby resulting in better energy efficiency than other refrigerants, such as HCFC-123 or HFC- 134a. Therefore the refrigerant compositions of the present invention, particularly compositions comprising, or consisting essentially of, Z-HFO-1336mzzm, provide the possibility of achieving a competitive advantage on an energy basis for refrigerant replacement applications.
  • compositions of the present invention may include the compounds of the present invention in widely ranging amounts, it is generally preferred that refrigerant compositions of the present invention comprise Z-HFO-1336mzzm, in an amount that is at least about 50% by weight, and even more preferably at least about 70% by weight, of the composition.
  • the compositions of the present invention may include other components for the purpose of enhancing or providing certain functionality to the composition, or in some cases to reduce the cost of the composition.
  • refrigerant compositions according to the present invention especially those used in vapor compression systems, include a lubricant, generally in amounts of from about 30 to about 50 percent by weight of the composition.
  • compositions may also include a compatibilizer, such as propane, for the purpose of aiding compatibility and/or solubility of the lubricant.
  • a compatibilizer such as propane
  • propane propane, butanes and pentanes
  • Such compatibilizers are preferably present in amounts of from about 0.5 to about 5 percent by weight of the composition.
  • Combinations of surfactants and solubilizing agents may also be added to the present compositions to aid oil solubility, as disclosed by U.S. Pat. No. 6,516,837, the disclosure of which is incorporated by reference.
  • Commonly used refrigeration lubricants such as Polyol Esters (POEs) and Poly Alkylene Glycols (PAGs), silicone oil, mineral oil, alkyl benzenes (ABs) and poly(alpha-olefin) (PAO) that are used in refrigeration machinery with hydrofluorocarbon (HFC) refrigerants may be used with the refrigerant compositions of the present invention.
  • compositions of the present including particularly those comprising, or consisting essentially of, Z-HFO-1336mzzm, and particularly blends as set forth in Table 1 , also have advantage (either in original systems or when used as a replacement for refrigerants such as R-12 and R-500), in chillers typically used in connection with commercial air conditioning systems.
  • refrigerants such as R-12 and R-500
  • chillers typically used in connection with commercial air conditioning systems.
  • compositions from about 0.5 to about 5% of a flammability suppressant, such as CF3I.
  • the compositions of the present invention further comprise a lubricant.
  • a lubricant Any of a variety of conventional lubricants may be used in the compositions of the present invention.
  • An important requirement for the lubricant is that, when in use in a refrigerant system, there must be sufficient lubricant returning to the compressor of the system such that the compressor is lubricated.
  • suitability of a lubricant for any given system is determined partly by the refrigerant/lubricant characteristics and partly by the characteristics of the system in which it is intended to be used.
  • suitable lubricants include mineral oil, alkyl benzenes, polyol esters, including polyalkylene glycols, PAG oil, and the like.
  • Mineral oil which comprises paraffin oil or naphthenic oil, is commercially available.
  • mineral oils include Witco LP 250 (registered trademark) from Witco, Zerol 300 (registered trademark) from Shrieve Chemical, Sunisco 3GS from Witco, and Calumet R015 from Calumet.
  • commercially available alkyl benzene lubricants include Zerol 150 (registered trademark).
  • commercially available esters include neopentyl glycol dipelargonate which is available as Emery 2917 (registered trademark) and Hatcol 2370 (registered trademark).
  • Other useful esters include phosphate esters, dibasic acid esters, and fluoroesters.
  • Preferred lubricants include polyalkylene glycols and esters. Certain more preferred lubricants include
  • any of a wide range of methods for introducing the present refrigerant compositions to a refrigeration system can be used in the present invention.
  • one method comprises attaching a refrigerant container to the low-pressure side of a refrigeration system and turning on the refrigeration system compressor to pull the refrigerant into the system.
  • the refrigerant container may be placed on a scale such that the amount of refrigerant composition entering the system can be monitored.
  • charging is stopped.
  • a wide range of charging tools known to those of skill in the art, is commercially available.
  • compositions of the present invention for use as a refrigerant composition.
  • the fluid of choice for centrifugal chillers is 2,2-dichloro-l,l,l-trifluoroethane (R123). Due to the ozone depletion potential of R123 it is currently banned under the Montreal protocol. It is important to maintain the high coefficient of performance (COP) when finding a replacement fluid for R123.
  • a single stage chiller consists if a compressor which pressurizes a low pressure gas and delivers it to the evaporator. The high pressure fluid is then condensed at a relatively high temperature, for this case the condenser is maintained at 40°C. The condensed fluid is then passed through an expansion device which lowers both the temperature and pressure of the fluid and is introduced into the evaporator; in this case the evaporator is maintained at 2°C.
  • thermodynamic performance of a refrigerant can be calculated using standard refrigerant cycle analysis techniques outlined in thermodynamic texts such as R.C. Downing,
  • the COP of a single compressor chiller was determined at a condenser temperature of 2°C, evaporator temperature of 40°C, and a compressor efficiency of 0.75.
  • the COPs of HCFC-123 and Z-HFO-1336mzzm in a single compressor system are both 4.6.
  • the ability to maintain a COP equal to that of HCFC-123 while being non-ozone depleting and having very low GWP makes Z-HFO-1336mzzm a very fluid for a centrifugal chiller.
  • Rankine cycle systems are known to be a simple and reliable means to convert heat energy into mechanical shaft power.
  • Organic working fluids are useful in place of water/steam when low-grade thermal energy is encountered.
  • Water/steam systems operating with low-grade thermal energy typically 400°F and lower
  • organic working fluids with boiling points near room temperature are employed.
  • Such fluids would have higher gas densities lending to higher capacity and favorable transport and heat transfer properties lending to higher efficiency as compared to water at low operating temperatures.
  • flammable working fluids such as toluene and pentane, particularly when the industrial setting has large quantities of flammables already on site in processes or storage.
  • the organic working fluid should be environmentally acceptable, non-flammable, of a low order of toxicity, and operate at positive pressures.
  • Organic Rankine Cycle (ORC) systems are often used to recover waste heat from industrial processes.
  • ORC Organic Rankine Cycle
  • combined heat and power (cogeneration) applications waste heat from combustion of fuel used to drive the prime mover of a generator set is recovered and used to make hot water for building heat, for example, or for supplying heat to operate an absorption chiller to provide cooling.
  • the demand for hot water is small or does not exist.
  • the most difficult case is when the thermal requirement is variable and load matching becomes difficult, confounding efficient operation of the combined heat and power system.
  • it is more useful to convert the waste heat to shaft power by using an organic Rankine cycle system.
  • the shaft power can be used to operate pumps, for example, or it may be used to generate electricity. By using this approach, the overall system efficiency is higher and fuel utilization is greater. Air emissions from fuel combustion can be decreased since more electric power can be generated for the same amount of fuel input.
  • the process that produces waste heat is at least one selected from the group consisting of fuel cells, internal combustion engines, internal compression engines, external combustion engines, and turbines.
  • Other sources of waste heat can be found in association with operations at oil refineries, petrochemical plants, oil and gas pipelines, chemical industry, commercial buildings, hotels, shopping malls, supermarkets, bakeries, food processing industries, restaurants, paint curing ovens, furniture making, plastics molders, cement kilns, lumber kilns (drying), calcining operations, steel industry, glass industry, foundries, smelting, air-conditioning, refrigeration, and central heating. See U.S. Patent No. 7,428,816, the disclosure of which is hereby incorporated herein by reference.
  • neopentane 1 to 99 l to 30 1 to 20
  • One specific embodiment of a power cycle use of this compound is a process for recovering waste heat in an Organic Rankine Cycle system in which the working fluid is a composition comprising, or consisting essentially of, Z-HFO-1336mzzm and optionally, one or more additional compounds, as set forth above in Table 19.
  • the conditions used in the organic Rankine cycle calculations in this example are a pump efficiency of 75%, expander efficiency of 80%, boiler temperature of 190°C, condenser temperature of 45°C and 1000 W of heat supplied to the boiler.
  • the performance of Z-HFO-1336mzzm is compared to the commercially available fluid HFC-245fa (available from Honeywell).
  • the thermal efficiency of HFC-245fa and Z-HFO- 1336mzzm at the conditions specified is 0.142 and 0.145, respectively.
  • the present invention also provides methods of removing containments from a product, part, component, substrate, or any other article or portion thereof by applying to the article a composition of the present invention comprising, or consisting essentially of, Z-HFO-1336mzzm, and in particular, the blends set forth in Table 1.
  • a composition of the present invention comprising, or consisting essentially of, Z-HFO-1336mzzm, and in particular, the blends set forth in Table 1.
  • the term “article” is used herein to refer to all such products, parts, components, substrates, and the like and is further intended to refer to any surface or portion thereof.
  • the term "contaminant” is intended to refer to any unwanted material or substance present on the article, even if such substance is placed on the article intentionally.
  • contaminant is intended to cover and encompass such a photo resist material.
  • the amount of the compound Z-HFO-1336mzzm in the composition of the invention can be in accordance with the following ranges: from about 1 wt % to about 99 wt %; from about 30 wt % to about 99 wt %; from about 50 wt % to about 99 wt %; from about 75 wt % to about 99 wt %; from about 85 wt % to about 99 wt %; from about 20 wt % to about 80 wt %; from about 90 wt % to about 99 wt %; from about 95 wt % to about 99 wt %; from about 1 wt % to about 20 wt %; from about 1 wt % to about 40 wt %; from about 1 wt % to about 50 wt %; from about 5 wt % to about 20 wt %; from about 5 wt % to about 40 wt %
  • Preferred methods of the present invention comprise applying the present composition to the article. Although it is contemplated that numerous and varied cleaning techniques can employ the compositions of the present invention to good advantage, it is considered to be particularly advantageous to use the present compositions in connection with supercritical cleaning techniques. Supercritical cleaning is disclosed in U.S. Pat. No. 6,589,355, which is incorporated herein by reference.
  • compositions containing the compound Z-HFO-1336mzzm may preferably be blended with one or more of the following compounds; cis-1234ze, cis-1233zd, HFC-245fa, Methylal
  • blends comprise Z-HFO-1336mzzm blended with one or more of the following compounds; pentanes, hexanes, HFC-365, C 4 F 9 -0-CH 3 , C 4 F 9 -0-C 2 H 5 , propane, butane, isobutane, and/or dimethylether.
  • Most preferred blends comprise Z- HFO-1336mzzm blended with one or more of the following compounds; trans- 1,2- dichloroethylene, trans-1234ze, trans-1233zd, trans-1336, HFC-43-10, HFC-152a, methanol, ethanol, isopropanol, and/or acetone.
  • Another cleaning embodiment of the invention comprises the removal of contaminants from vapor compression systems and their ancillary components when these systems are manufactured and serviced.
  • contaminants refers to processing fluids, lubricants, particulates, sludge, and/or other materials that are used in the manufacture of these systems or generated during their use.
  • these contaminants comprise compounds such as alkylbenzenes, mineral oils, esters, polyalkyleneglycols, polyvinylethers and other compounds that are made primarily of carbon, hydrogen and oxygen.
  • the compositions of the present invention will be useful for this purpose.
  • compositions of the present invention comprising, or consisting essentially of Z-HFO-1336mzzm, and in particular, blends as described in Table 1 , for use as a cleaning composition.
  • the amount of the compound Z-HFO-1336mzzm in the composition of the invention can be in accordance with the following ranges: from about 1 wt % to about 99 wt %; from about 30 wt % to about 99 wt %; from about 50 wt % to about 99 wt %; from about 75 wt % to about 99 wt %; from about 85 wt % to about 99 wt %; from about 20 wt % to about 80 wt %; from about 90 wt % to about 99 wt %; from about 95 wt % to about 99 wt %; from about 1 wt % to about 20 wt %; from about 1 wt % to about 40 w
  • compositions of this invention comprising, or consisting essentially of, Z-HFO-1336mzzm, and in particular, blends as described in Table 1 , may be used as propellants in sprayable compositions, either alone or in combination with known propellants.
  • the amount of the compound Z- HFO-1336mzzm in the composition of the invention can be in accordance with the following ranges: from about 1 wt % to about 99 wt %; from about 30 wt % to about 99 wt %; from about 50 wt % to about 99 wt %; from about 75 wt % to about 99 wt %; from about 85 wt % to about 99 wt %; from about 20 wt % to about 80 wt %; from about 90 wt % to about 99 wt %; from about 95 wt % to about 99 wt %; from about 1 wt % to about 20 wt %; from about 1 wt % to about 40 wt %; from about 1 wt % to about 50 wt %; from about 5 wt % to about 20 wt %; from about 5 wt % to about 40 wt %
  • the sprayable composition includes a material to be sprayed and a propellant comprising, or consisting essentially of Z-HFO-1336mzzm, and in particular, blends as described in Table 1. Inert ingredients, solvents, and other materials may also be present in the sprayable mixture.
  • the sprayable composition is an aerosol. Suitable materials to be sprayed include, without limitation, cosmetic materials such as deodorants, perfumes, hair sprays, cleansers, and polishing agents as well as medicinal materials such as anti-asthma and anti-halitosis medications.
  • compositions containing the compound cis- 1,1, 1,4,4,4- hexafluoro-2-butene may preferably be blended with one or more of the following compounds; cis-1234ze, cis-1233zd, HFC-245fa, Methylal (dimethoxymethane), methylethylketone, methylisobutylketone, and/or HFC- 134a.
  • More preferred blends comprise Z-HFO-1336mzzm blended with one or more of the following compounds; pentanes, hexanes, HFC-365, C 4 F 9 -O-CH 3 , C 4 F 9 -O-C 2 H 5 , propane, butane, isobutane, and/or dimethylether. Most preferred blends comprise Z- HFO-1336mzzm blended with one or more of the following compounds; trans- 1,2- dichloroethylene, trans-1234ze, trans-1233zd, trans-1336, HFC-43-10, HFC-152a, methanol, ethanol, isopropanol, and/or acetone.
  • the active ingredient to be sprayed is mixed with inert ingredients, solvents, and other materials may also be present in the sprayable mixture.
  • the sprayable composition is an aerosol.
  • Suitable active materials to be sprayed include, without limitation, lubricants, insecticides, cleaners, cosmetic materials such as deodorants, perfumes and hair sprays, polishing agents, as well as medicinal materials such as skin cooling agents (sunburn treatment), topical anesthetics and anti- asthma medications.
  • the present invention provides propellant comprising, or consisting essentially of, Z-HFO-1336mzzm, either alone or in combination with one or more other compounds, in particular blends as set forth in Table 1, such propellant composition preferably being a sprayable composition.
  • the propellant compositions of the present invention preferably comprise a material to be sprayed and a propellant comprising, or consisting essentially of, Z-HFO-1336mzzm. Inert ingredients, solvents, and other materials may also be present in the sprayable mixture.
  • the sprayable composition is an aerosol.
  • Suitable materials to be sprayed include, without limitation, lubricants, insecticides, cleaners, cosmetic materials such as deodorants, perfumes and hair sprays, polishing agents as well as medicinal materials such as anti-asthma components, and any other medication or the like, including preferably any other medicament or agent intended to be inhaled.
  • the medicament or other therapeutic agent is preferably present in the composition in a therapeutic amount, with a substantial portion of the balance of the composition comprising, or consisting essentially of, Z-HFO-1336mzzm.
  • Aerosol products for industrial, consumer or medical use typically contain one or more propellants along with one or more active ingredients, inert ingredients or solvents.
  • the propellant provides the force that expels the product in aerosolized form. While some aerosol products are propelled with compressed gases like carbon dioxide, nitrogen, nitrous oxide and even air, most commercial aerosols use liquefied gas propellants.
  • the most commonly used liquefied gas propellants are hydrocarbons such as butane, isobutane, and propane. Dimethyl ether and HFC- 152a (1,1- difluoroethane) are also used, either alone or in blends with the hydrocarbon propellants. Unfortunately, all of these liquefied gas propellants are highly flammable and their incorporation into aerosol formulations will often result in flammable aerosol products.
  • compositions of the present invention particularly and preferably compositions comprising, or consisting essentially of, Z-HFO-1336mzzm, and in particular, those blends set forth in Table 1 , for use in certain industrial aerosol products, including for example spray cleaners, lubricants, and the like, and in medicinal aerosols, including for example to deliver medications to the lungs or mucosal membranes.
  • this includes metered dose inhalers (MDIs) for the treatment of asthma and other chronic obstructive pulmonary diseases and for delivery of medicaments to accessible mucous membranes or intranasally.
  • MDIs metered dose inhalers
  • the present invention thus includes methods for treating ailments, diseases and similar health related problems of an organism (such as a human or animal) comprising applying a composition of the present invention containing a medicament or other therapeutic component to the organism in need of treatment.
  • the step of applying the present composition comprises providing a MDI containing the composition of the present invention (for example, introducing the composition into the MDI) and then discharging the present composition from the MDI.
  • nonflammable refers to compounds and compositions of the present invention which do not exhibit a flashpoint as measured by one of the standard flash point methods, for example ASTM-1310-86 "Flash point of liquids by tag Open-cup apparatus.”
  • the present compositions can be used to formulate a variety of industrial aerosols or other sprayable compositions such as contact cleaners, dusters, lubricant sprays, and the like, and consumer aerosols such as personal care products, household products and automotive products.
  • Z-HFO-1336mzzm is particularly preferred for use as an important component of propellant compositions for in medicinal aerosols such as metered dose inhalers.
  • compositions of the present invention in many applications include, in addition to Z- HFO-1336mzzm, a medicament such as a beta-agonist, a corticosteroid or other medicament, and, optionally, other ingredients, such as surfactants, solvents, other propellants, flavorants and other excipients.
  • a medicament such as a beta-agonist, a corticosteroid or other medicament
  • other ingredients such as surfactants, solvents, other propellants, flavorants and other excipients.
  • the present invention provides methods of sterilizing comprising contacting the articles, devices or material to be sterilized with a composition of the present invention comprising, or consisting essentially of, Z- HFO-1336mzzm, and in particular, the blends defined in Table 1, and optionally in combination with one or more additional sterilizing agents.
  • the amount of the compound Z-HFO-1336mzzm in the composition of the invention can be in accordance with the following ranges: from about 1 wt % to about 99 wt %; from about 30 wt % to about 99 wt %; from about 50 wt % to about 99 wt %; from about 75 wt % to about 99 wt %; from about 85 wt % to about 99 wt %; from about 20 wt % to about 80 wt %; from about 90 wt % to about 99 wt %; from about 95 wt % to about 99 wt %; from about 1 wt % to about 20 wt %; from about 1 wt % to about 40 wt %; from about 1 wt % to about 50 wt %; from about 5 wt % to about 20 wt %; from about 5 wt % to about 40 wt %
  • sterilizing agent comprises ethylene oxide, formaldehyde, hydrogen peroxide, chlorine dioxide, ozone and combinations of these.
  • ethylene oxide is the preferred sterilizing agent.
  • sterilizing agents such as ethylene oxide
  • the compound(s) in accordance with the present invention are included in the present compositions in amounts effective, together with other components present in the composition, to reduce the flammability of the sterilizing composition to acceptable levels.
  • the sterilization methods of the present invention may be either high or low-temperature sterilization of the present invention involves the use of a compound or composition of the present invention at a temperature of from about 250°F to about 270°F, preferably in a substantially sealed chamber. The process can be completed usually in less than about two hours.
  • some articles, such as plastic articles and electrical components cannot withstand such high temperatures and require low- temperature sterilization.
  • the article to be sterilized is exposed to a fluid comprising, or consisting essentially of, Z-HFO-1336mzzm at a temperature of from about room temperature to about 200°F, more preferably at a temperature of from about room temperature to about 100°F.
  • the low-temperature sterilization of the present invention is preferably at least a two-step process performed in a substantially sealed, preferably air tight, chamber. In the first step (the sterilization step), the articles having been cleaned and wrapped in gas permeable bags are placed in the chamber.
  • Air is then evacuated from the chamber by pulling a vacuum and perhaps by displacing the air with steam.
  • the sterilant and steam are evacuated from the chamber.
  • the articles are aerated to remove sterilant residues. Removing such residues is particularly important in the case of toxic sterilants, although it is optional in those cases in which the substantially non-toxic compounds of the present invention are used.
  • Typical aeration processes include air washes, continuous aeration, and a combination of the two.
  • An air wash is a batch process and usually comprises evacuating the chamber for a relatively short period, for example, 12 minutes, and then introducing air at atmospheric pressure or higher into the chamber.
  • non-toxic refers to compounds and compositions of the present invention which have an acute toxicity level substantially less than, and preferably at least about 30 relative percent less than, the toxicity level of HFO- 1223xd, as measured by the method published in Anesthesiology, Vol. 14, pp. 466- 472, 1953, incorporated here by reference.
  • Continuous aeration typically involves introducing air through an inlet at one side of the chamber and then drawing it out through an outlet on the other side of the chamber by applying a slight vacuum to the outlet. Frequently, the two approaches are combined. For example, a common approach involves performing air washes and then an aeration cycle.
  • compositions of the present invention comprising, or consisting essentially of, Z-HFO-1336mzzm, and in particular, the blends defined in Table 1 , may further comprise a lubricant.
  • a lubricant Any of a variety of conventional lubricants may be used in the compositions of the present invention.
  • An important requirement for the lubricant is that, when in use in a refrigerant system, there must be sufficient lubricant returning to the compressor of the system such that the compressor is lubricated.
  • suitability of a lubricant for any given system is determined partly by the refrigerant/lubricant characteristics and partly by the characteristics of the system in which it is intended to be used.
  • suitable lubricants include mineral oil, alkyl benzenes, polyol esters, including polyalkylene glycols, PAG oil, and the like.
  • Mineral oil which comprises paraffin oil or naphthenic oil, is commercially available.
  • Commercially available mineral oils include Witco LP 250 (registered trademark) from Witco, Zerol 300 (registered trademark) from Shrieve Chemical, Sunisco 3GS from Witco, and Calumet R015 from Calumet.
  • Commercially available alkyl benzene lubricants include Zerol 150 (registered trademark).
  • commercially available esters include neopentyl glycol dipelargonate which is available as Emery 2917 (registered trademark) and Hatcol 2370 (registered trademark).
  • Other useful esters include phosphate esters, dibasic acid esters, and fluoroesters.
  • Preferred lubricants include polyalkylene glycols and esters. Certain more preferred lubricants include
  • compositions of the present invention comprising, or consisting essentially of Z-HFO-1336mzzm, and in particular, the blends as described in Table 1 , also provide advantage when used to carry, extract or separate desirable materials from biomass.
  • materials include, but are not limited to, essential oils such as flavors and fragrances, oils which may be used as fuel, medicinals, nutraceuticals, etc.
  • the amount of the compound Z-HFO-1336mzzm in the composition of the invention can be in accordance with the following ranges: from about 1 wt % to about 99 wt %; from about 30 wt % to about 99 wt %; from about 50 wt % to about 99 wt %; from about 75 wt % to about 99 wt %; from about 85 wt % to about 99 wt %; from about 20 wt % to about 80 wt %; from about 90 wt % to about 99 wt %; from about 95 wt % to about 99 wt %; from about 1 wt % to about 20 wt %; from about 1 wt % to about 40 wt %; from about 1 wt % to about 50 wt %; from about 5 wt % to about 20 wt %; from about 5 wt % to about 40 wt %
  • the present invention provides methods for reducing the flammability of fluids, said methods comprising adding a Z-HFO-1336mzzm containing composition, such as the blends defined in Table 1 , to said fluid.
  • a Z-HFO-1336mzzm containing composition such as the blends defined in Table 1
  • the flammability associated with any of a wide range of otherwise flammable fluids may be reduced according to the present invention.
  • the flammability associated with fluids such as ethylene oxide, flammable hydro fluorocarbons and hydrocarbons, including: HFC- 152a, 1,1,1-trifluoroethane (HFC-143a), difluoromethane (HFC-32), propane, hexane, octane, and the like
  • a flammable fluid may be any fluid exhibiting flammability ranges in air as measured via any standard conventional test method, such as ASTM E-681, and the like.
  • the amount of the compound Z-HFO-1336mzzm in the composition of the invention can be in accordance with the following ranges: from about 1 wt % to about 99 wt %; from about 30 wt % to about 99 wt %; from about 50 wt % to about 99 wt %; from about 75 wt % to about 99 wt %; from about 85 wt % to about 99 wt %; from about 20 wt % to about 80 wt %; from about 90 wt % to about 99 wt %; from about 95 wt % to about 99 wt %; from about 1 wt % to about 20 wt %; from about 1 wt % to about 40 wt %; from about 1 wt % to about 50 wt %; from about 5 wt % to about 20 wt %; from about 5 wt % to about 40 wt %
  • any suitable amounts of the present compounds or compositions may be added to reduce flammability of a fluid according to the present invention.
  • the amount added will depend, at least in part, on the degree to which the subject fluid is flammable and the degree to which it is desired to reduce the flammability thereof.
  • the amount of compound or composition added to the flammable fluid is effective to render the resulting fluid substantially non-flammable.
  • compositions of the present invention for reduction of flammability of another composition.
  • the present invention further provides methods of suppressing a flame, said methods comprising contacting a flame with a Z-HFO-1336mzzm containing composition of the present invention, particularly the blends described in Table 1.
  • additional flame suppressing agents can also be used with the composition of the present invention, either in admixture, or as a secondary flame suppressing agent.
  • One class of compounds for this purpose is the fluoroketones.
  • One especially preferred fluoroketone is dodecafluoro-2-methylpentan-3-one, which is sold by the 3M Company under the trade name Novec 1230.
  • the amount of the compound Z-HFO-1336mzzm in the composition of the invention can be in accordance with the following ranges: from about 1 wt % to about 99 wt %; from about 30 wt % to about 99 wt %; from about 50 wt % to about 99 wt %; from about 75 wt % to about 99 wt %; from about 85 wt % to about 99 wt %; from about 20 wt % to about 80 wt %; from about 90 wt % to about 99 wt %; from about 95 wt % to about 99 wt %; from about 1 wt % to about 20 wt %; from about 1 wt % to about 40 wt %; from about 1 wt % to about 50 wt %; from about 5 wt % to about 20 wt %; from about 5 wt % to about 40 wt %
  • a composition of the present invention may be sprayed, poured, and the like onto the flame, or at least a portion of the flame may be immersed in the composition.
  • compositions comprising, or consisting essentially of Z-HFO-1336mzzm, and in particular, the blends as described in Table 1 , for use as a flame suppression composition.
  • the amount of the compound Z-HFO-1336mzzm in the composition of the invention can be in accordance with the following ranges: from about 1 wt % to about 99 wt %; from about 30 wt % to about 99 wt %; from about 50 wt % to about 99 wt %; from about 75 wt % to about 99 wt %; from about 85 wt % to about 99 wt %; from about 20 wt % to about 80 wt %; from about 90 wt % to about 99 wt %; from about 95 wt % to about 99 wt %; from about 1 wt % to about 20 wt %; from about 1 wt % to about 40 wt %; from about 1 wt % to about 50 wt %; from about 5 wt % to about 20 wt %; from about 5 wt % to about 40 wt %
  • NFPA 2001 cup burner is typically used.
  • a small fire of heptane is located in a chimney which has air flowing around the flame to supply the needed oxygen.
  • Z- HFO-1336mzzm is added until the flame is extinguished.
  • the concentration obtain thusly with appropriate safety factor as outlined in NFPA 2001 can be used to extinguish fires.
  • Fires can be extinguished locally using portable fire extinguishers. Such applications are classified as streaming applications. Using UL 711 a wood crib fire is started and extinguished using Z-HFO-1336mzzm. Secondly a heptane pan fire is tested using Z-HFO-1336mzzm. The results of this UL 711 testing give one the rating for the fire extinguisher tested.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Emergency Medicine (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dentistry (AREA)
  • Pest Control & Pesticides (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Emergency Management (AREA)
  • Manufacturing & Machinery (AREA)
  • Business, Economics & Management (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Detergent Compositions (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

This invention relates to compositions, methods and systems having utility in numerous applications, and in particular, uses for compositions containing the compound cis-1,1,1,4,4,4-hexafluoro-2-butene (Z-HFO-1336mzzm), which has the following structure: (formula I).

Description

PCT APPLICATION
Docket No. H0024235
COMPOSITIONS AND USES OF
CIS- 1 , 1 , 1 ,4,4,4-HEXAFLUORO-2-BUTENE
CROSS-REFERENCE TO RELATED APPLICATION
This application claims benefit of U.S. Provisional Patent Application Serial No. 61/287,033 filed December 16, 2009, the disclosure of which is hereby incorporated herein by reference.
FIELD OF THE INVENTION
This invention relates to compositions, methods and systems having utility in numerous applications, and in particular, uses for compositions containing the compound cis-l,l,l,4,4,4-hexafluoro-2-butene (Z-HFO-1336mzzm), which has the following structure:
Figure imgf000002_0001
BACKGROUND OF THE INVENTION
The compositions of the present invention are part of a continued search for the next generation of low global warming potential materials. Such materials must have low environmental impact, as measured by ultra-low global warming potential and zero ozone depletion potential. SUMMARY OF THE INVENTION
This invention relates to compositions, methods and systems having utility in numerous applications, and in particular, uses for compositions containing the compound cis-l,l,l,4,4,4-hexafluoro-2-butene (Z-HFO-1336mzzm), which has the following structure:
Figure imgf000003_0001
Embodiments of the present invention comprise the compound Z-HFO- 1336mzzm, either alone or in combination with one or more other compounds as described in detail herein below. Preferably, mixtures containing the compound Z- HFO-1336mzzm are non-azeotropic.
It should be noted that it would be common and expected for a product designated as Z-HFO-1336mzzm to include a minor percentage, for example about 0.5 wt % up to about 5 wt % of other components, including particularly E-HFO- 1336mzzm. When used herein, the term "consisting essentially of Z-HFO- 1336mzzm" is intended to generally include such compositions. The terms "consist of and "consisting of as used herein, do not include such other components. All of the embodiments of the invention described herein may, if desired, be obtained in a substantially purified form, such that these embodiments preferably consist of only the actual components designated, other than minor (e.g., ppm) impurities.
The compositions of the present invention may be used in a wide variety of applications such as blowing agents, refrigerants, heating agents, power cycle agents, cleaning agents, aerosol propellants, sterilization agents, lubricants, flavor and fragrance extractants, flammability reducing agents, and flame suppression agents, to name a few preferred uses. DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
The compositions of the present invention all include the compound Z-HFO- 1336mzzm. Certain embodiments of the invention, particularly those employed as blowing agent compositions or foamable compositions, can optionally include other ingredients, some of which are described in detail below.
In addition to the compound Z-HFO-1336mzzm, certain embodiments of the present invention are directed to compositions comprising, or consisting essentially of, at least one additional fluoroalkene containing from 2 to 6, preferably 3 to 5 carbon atoms, more preferably 3 to 4 carbon atoms, and in certain embodiments most preferably three carbon atoms, and at least one carbon-carbon double bond. The fluoroalkene compounds of the present invention are sometimes referred to herein for the purpose of convenience as hydrofluoro-olefins or "HFOs" if they contain at least one hydrogen.
Applicants have developed several compositions which include as an essential component the compound Z-HFO-1336mzzm and at least one additional compound such as HFOs, HFCs, HFEs, hydrocarbons, ethers, aldehydes, ketones, and others such as methyl formate, formic acid, trans- 1,2 dichloroethylene, carbon dioxide, cis- HFO-1234ze + HFO-1225yez; mixtures of these plus water; mixtures of these plus C02; mixtures of these trans 1 ,2-dichloroethylene (DCE); mixtures of these plus methyl formate; mixtures with cis-HFO-1234ze + C02; mixtures with cis-HFO- 1234ze + HFO-1225yez + C02; and mixtures with cis-HFO-1234ze + HFC-245fa. In such compositions, the amount of the compound Z-HFO-1336mzzm may vary widely, including in all cases constituting the balance of the composition after all other components in composition are accounted for.
In certain preferred embodiments, the amount of the compound Z-HFO- 1336mzzm in the composition can be in accordance with the following ranges: from about 1 wt % to about 99 wt %; from about 30 wt % to about 99 wt %; from about 50 wt % to about 99 wt %; from about 75 wt % to about 99 wt %; from about 85 wt % to about 99 wt %; from about 20 wt % to about 80 wt %; from about 90 wt % to about 99 wt %; from about 95 wt % to about 99 wt %; from about 1 wt % to about 20 wt %; from about 1 wt % to about 40 wt %; from about 1 wt % to about 50 wt %; from about 5 wt % to about 20 wt %; from about 5 wt % to about 40 wt %; from about 5 wt % to about 60 wt %; from about 10 wt % to about 80 wt %; from about 10 wt % to about 90 wt %; from about 20 wt % to about 80 wt %; from about 20 wt % to about 90 wt %.
The preferred compositions of the present invention are environmentally acceptable and do not to contribute to the depletion of the earth's stratospheric ozone layer. The compounds and compositions of the present invention have no substantial ozone depletion potential (ODP), preferably an ODP of not greater than about 0.5 and even more preferably an ODP of not greater than about 0.25, most preferably an ODP of not greater than about 0.1; and/or a global warming potential (GWP) of not greater than about 150, and even more preferably, a GWP of not greater than about 50.
As used herein, ODP is defined in the "Scientific Assessment of Ozone Depletion, 2002," a report of the World Meteorological association, incorporated here by reference.
As used herein, GWP is defined relative to that of carbon dioxide and over a 100 year time horizon, and defined in the same reference as for the ODP mentioned above.
Preferred compositions of this type are described below in Table 1 (with all percentages being in percent by weight and being understood to be proceeded by the word "about").
Table 1 - Blend Compositions
More Most
Compound mixed with Z-HFO- Preferred Preferred Preferred
1336mzzm Ranges Ranges Ranges
wt % wt % wt %
Figure imgf000006_0001
More Most
Compound mixed with Z-HFO- Preferred Preferred Preferred 1336mzzm Ranges Ranges Ranges wt % wt % wt %
CHF2-0-CF2-CHF2 1 to 99 1 to 70 1 to 50
CH2F-0-CF2-CHF2 1 to 99 1 to 70 1 to 50
CF3-0-CF2-CH3 1 to 99 1 to 70 1 to 50
CHF2-CHF-0-CHF2 1 to 99 1 to 70 1 to 50
CF3-0-CHF-CH2F 1 to 99 1 to 70 1 to 50
CF3-CHF-0-CH2F 1 to 99 1 to 70 1 to 50
CF3-0-CH2-CHF2 1 to 99 1 to 70 1 to 50
CHF2-0-CH2-CF3 1 to 99 1 to 70 1 to 50
CH2F-CF2-0-CH2F 1 to 99 1 to 70 1 to 50
CHF2-0-CF2-CH3 1 to 99 1 to 70 1 to 50
CHF2-CF2-0-CH3 (254pc) 1 to 99 1 to 70 1 to 50
CH2F-0-CHF-CH2F 1 to 99 1 to 70 1 to 50
CHF2-CHF-0-CH2F 1 to 99 1 to 70 1 to 50
CF3-0-CHF-CH3 1 to 99 1 to 70 1 to 50
CF3-CHF-0-CH3 1 to 99 1 to 70 1 to 50
CHF2-0-CH2-CHF2 1 to 99 1 to 70 1 to 50
CF3-0-CH2-CH2F 1 to 99 1 to 70 1 to 50
CF3-CH2-0-CH2F 1 to 99 1 to 70 1 to 50
CF2H-CF2-CF2-0-CH3 1 to 99 1 to 70 1 to 50
Hydrocarbons
Propane 1 to 99 20 to 95 40 to 95
Butane 1 to 99 20 to 95 40 to 95
Isobutane 1 to 99 20 to 95 40 to 95 n-pentane (high HFO) 1 to 99 50 to 99 60 to 99 n-pentane (high n-pentane) 1 to 99 l to 30 1 to 20
Isopentane (High HFO) 1 to 99 50 to 99 60 to 99
Isopentane (High
isopentane) 1 to 99 l to 30 1 to 20
Neopentane (High HFO) 1 to 99 50 to 99 60 to 99
Neopentane (High
neopentane) 1 to 99 l to 30 1 to 20
Cyclopentane (High HFO) 1 to 99 50 to 99 60 to 99
Cyclopentane (High
cyclopentane) 1 to 99 l to 30 1 to 20 n-hexane 1 to 99 20 to 95 40 to 95
Isohexane 1 to 99 20 to 95 40 to 95
Heptane 1 to 99 20 to 95 40 to 95
Ethers
Dimethylether 1 to 99 10 to 90 10 to 80
Methylethylether 1 to 99 10 to 90 10 to 80
Figure imgf000008_0001
Figure imgf000009_0001
USES OF THE COMPOSITIONS
As described above, the compositions of the present invention may be used in a wide variety of applications as substitutes for CFCs and for compositions containing less desirable HCFCs. For example, the present compositions are useful as blowing agents, refrigerants, heating agents, power cycle agents, cleaning agents, aerosol propellants, sterilization agents, lubricants, flavor and fragrance extractants, flammability reducing agents, and flame suppression agents, to name a few preferred uses. Each of these uses will be discussed in greater detail below.
BLOWING AGENTS
Thus, the present invention includes methods and systems which include using Z-HFO-1336mzzm as a blowing agent, optionally with one or more optional additional compounds which include, but are not limited to, other compounds which also act as blowing agents (hereinafter referred to for convenience but not by way of limitation as co-blowing agents), surfactants, polyols, catalysts, flame retardants, polymer modifiers, colorants, dyes, solubility enhancers, rheology modifiers, plasticizing agents, fillers, nucleating agents, viscosity reduction agents, vapor pressure modifiers, stabilizers, and the like. Preferred blends for blowing agents used for foams, especially spray foams and panel foams include blends of Z-HFO- 1336mzzm with hydrocarbons (especially the pentanes, including cyclopentane), and with each of 245fa, 365mfc and 1233zd. While the cis isomer of HFO-1336mzzm is preferred, it is anticipated that the trans isomer and/or mixtures of the isomers, including the racemate, will be useful in certain foam types.
For this use, the amount of the compound Z-HFO-1336mzzm in the composition of the invention can be in accordance with the following ranges: from about 1 wt % to about 99 wt %; from about 30 wt % to about 99 wt %; from about 50 wt % to about 99 wt %; from about 75 wt % to about 99 wt %; from about 85 wt % to about 99 wt %; from about 20 wt % to about 80 wt %; from about 90 wt % to about 99 wt %; from about 95 wt % to about 99 wt %; from about 1 wt % to about 20 wt %; from about 1 wt % to about 40 wt %; from about 1 wt % to about 50 wt %; from about 5 wt % to about 20 wt %; from about 5 wt % to about 40 wt %; from about 5 wt % to about 60 wt %; from about 10 wt % to about 80 wt %; from about 10 wt % to about 90 wt %; from about 20 wt % to about 80 wt %; from about 20 wt % to about 90 wt %. Other ranges of amounts are shown in Table 1, and those amounts are likewise applicable for this use of the composition of the invention.
In certain preferred embodiments, dispersing agents, cell stabilizers, surfactants and other additives may also be incorporated into the blowing agent compositions of the present invention. Certain surfactants are optionally but preferably added to serve as cell stabilizers. Some representative materials are sold under the names of DC-193, B-8404, and L-5340 which are, generally, polysiloxane polyoxyalkylene block co-polymers such as those disclosed in U.S. Pat. Nos.
2,834,748, 2,917,480, and 2,846,458, each of which is incorporated herein by reference. Other optional additives for the blowing agent mixture may include flame retardants such as tri(2-chloroethyl)phosphate, tri(2-chloropropyl)phosphate, tri(2,3- dibromopropyl)-phosphate, tri(l ,3-dichloro-propyl)phosphate, diammonium phosphate, various halogenated aromatic compounds, antimony oxide, aluminum trihydrate, polyvinyl chloride, and the like. With respect to nucleating agents, all known compounds and materials having nucleating functionality are available for use in the present invention, including particularly talc. Of course other compounds and/or components that modulate a particular property of the compositions (such as cost for example) may also be included in the present compositions, and the presence of all such compounds and components is within the broad scope of the invention.
The co-blowing agent in accordance with the present invention can comprise a physical blowing agent, a chemical blowing agent (which preferably in certain embodiments comprises water) or a blowing agent having a combination of physical and chemical blowing agent properties.
Although it is contemplated that a wide range of co-blowing agents may be used in accordance with the present invention, in certain embodiments it is preferred that the blowing agent compositions of the present invention include one or more HFCs as co-blowing agents, more preferably one or more C1-C4 HFCs, and/or one or more hydrocarbons, more preferably C4-C6 hydrocarbons. For example, with respect to HFCs, the present blowing agent compositions may include one or more of difluoromethane (HFC-32), fluoroethane (HFC- 161), difluoro ethane (HFC- 152), trifluoroethane (HFC- 143), tetrafluoroethane (HFC- 134), pentafluoroethane (HFC- 125), pentafluoropropane (HFC-245), hexafluoropropane (HFC-236),
heptafluoropropane (HFC-227ea), pentafluorobutane (HFC-365mfc),
hexafluorobutane (HFC-356) and all isomers of all such HFC's.
With respect to hydrocarbons, the present blowing agent compositions may include in certain preferred embodiments, for example, iso, normal and/or
cyclopentane for thermoset foams and butane or isobutane for thermoplastic foams. Of course other materials, such as water, C02, CFCs (such as trichlorofluoromethane (CFC-11) and dichlorodifluoromethane (CFC-12)), hydrochlorocarbons (HCCs such as dichloro-ethylene (preferably trans- 1,2-dichloroethylene), ethyl chloride and chloropropane), HCFCs, C1-C5 alcohols (such as, for example, ethanol and/or propanol and/or butanol), C1-C4 aldehydes, C1-C4 ketones, C1-C4 ethers (including ethers (such as dimethyl ether and diethyl ether), diethers (such as dimethoxy methane and diethoxy methane)), and methyl formate including combinations of any of these may be included, although such components are contemplated to be not preferred in many embodiments due to negative environmental impact.
In certain embodiments, one or more of the following HFC isomers are preferred for use as co-blowing agents in the compositions of the present invention:
1.1.1.2.2- pentafluoroethane (HFC- 125)
1 , 1 ,2,2-tetrafluoroethane (HFC- 134)
1,1,1 ,2-tetrafluoroethane (HFC- 134a)
1,1-difluoroethane (HFC- 152a)
1 , 1 ,1 ,2,3,3,3-heptafluoropropane (HFC-227ea)
1 , 1 ,1 ,3,3,3-hexafluoropropane (HFC-236fa)
1.1.1.3.3- pentafluoropropane (HFC-245fa) and
1,1,1 ,3,3-pentafluorobutane (HFC-365mfc).
The relative amount of any of the above noted additional co-blowing agents, as well as any additional components which may be included in present compositions, can vary widely within the general broad scope of the present invention according to the particular application for the composition, and all such relative amounts are considered to be within the scope hereof.
In certain embodiments it is preferred that the blowing agent composition of the present invention comprise at least one co-blowing agent and an amount of Z- HFO-1336mzzm sufficient to produce a blowing agent composition which is overall nonflammable.
The blowing agent compositions of the present invention may include the compound Z-HFO-1336mzzm in widely ranging amounts. It is generally preferred, however, that for preferred compositions for use as blowing agents in accordance with the present invention, Z-HFO-1336mzzm is present in an amount that is at least about 1% by weight, more preferably at least about 5% by weight, and even more preferably at least about 15% by weight, of the composition.
In certain preferred embodiments, the blowing agent comprises at least about 50%) by weight of the present blowing agent compound(s), and in certain
embodiments the blowing agent consists essentially of Z-HFO-1336mzzm. In this regard it is noted that the use of one or more co-blowing agents is consistent with the novel and basic features of the present invention. For example, it is contemplated that water will be used as either a co-blowing or in combination with other co-blowing agents (such as, for example, pentane, particularly cyclopentane) in a large number of embodiments.
In certain preferred embodiments, the blowing agent composition comprises from about 30% to about 95% by weight of Z-HFO-1336mzzm and from about 5% to about 90%) by weight, more preferably from about 5%> to about 65% by weight of co- blowing agent. In certain of such embodiments the co-blowing agent comprises, and preferably consists essentially of, H20, HFCs, hydrocarbons, alcohols (preferably C2, C3 and/or C4 alcohols), C02, and combinations of these.
In preferred embodiments in which the co-blowing agent comprises H20, the composition comprises H20 in an amount of from about 5% by weight to about 50% by weight of the total blowing agent composition, more preferably from about 10% by weight to about 40% by weight, and even more preferably of from about 10% to about 20% by weight of the total blowing agent.
In preferred embodiments in which the co-blowing agent comprises C02, the composition comprises C02 in an amount of from about 5% by weight to about 60% by weight of the total blowing agent composition, more preferably from about 20% by weight to about 50%> by weight, and even more preferably of from about 40%> to about 50% by weight of the total blowing agent.
In preferred embodiments in which the co-blowing agent comprises alcohols, (preferably C2, C3 and/or C4 alcohols), the composition comprises alcohol in an amount of from about 5% by weight to about 40% by weight of the total blowing agent composition, more preferably from about 10% by weight to about 40% by weight, and even more preferably of from about 15% to about 25% by weight of the total blowing agent.
For compositions which include HFC co-blowing agents, the HFC co-blowing agent (preferably C2, C3, C4 and/or C5 HFC), and even more preferably
difluoromethane (HFC- 152a) (HFC- 152a being particularly preferred for extruded thermoplastics) and/or pentafluoropropane (HFC-245)), is preferably present in the composition in amounts of from of from about 5% by weight to about 80% by weight of the total blowing agent composition, more preferably from about 10% by weight to about 75%) by weight, and even more preferably of from about 25% to about 75% by weight of the total blowing agent. Furthermore, in such embodiments, the HFC is preferably C2-C4 HFC, and even more preferably C3 HFC, with penta-fluorinated C3 HFC, such as HFC-245fa, being highly preferred in certain embodiments.
For compositions which include HC co-blowing agents, the HC co-blowing agent (preferably C3, C4 and/or C5 HC) is preferably present in the composition in amounts of from of from about 5% by weight to about 80% by weight of the total blowing agent composition, and even more preferably from about 20% by weight to about 60% by weight of the total blowing agent.
BLOWING AGENT EXAMPLE
This example demonstrates the performance of Z-HFO-1336mzzm used in combination with hydrocarbon co-blowing agents, and in particular the utility of compositions comprising, or consisting essentially of, Z-HFO-1336mzzm and cyclopentane co-blowing agents in rigid polyurethane insulation foams.
A generic refrigerator appliance-type polyurethane foam formulation (foam forming mixture) is provided. The polyol blend consisted of commercial polyol(s), catalyst(s), surfactant(s), and water. Standard commercial polyurethane processing equipment is used for the foam forming process. A blowing agent combination is formed comprising, or consisting essentially of, Z-HFO-1336mzzm in a concentration of approximately 50 mole percent, and cyclopentane in a concentration of
approximately 50 mole percent of the total physical blowing agent. The physical blowing agents can be added individually to the polyol blend or can be pre-blended prior to introduction to the polyol blend.
This example illustrates the physical the thermal conductivity properties of all the resulting foams are suitable for commercial use of these blowing agent combinations.
FOAMABLE COMPOSITIONS
One embodiment of the present invention provides foamable compositions. As is known to those skilled in the art, foamable compositions generally include one or more components capable of forming foam. As used herein, the term "foam foaming agent" is used to refer to a component, or a combination on components, which are capable of forming a foam structure, preferably a generally cellular foam structure. The foamable compositions of the present invention include such component(s) and a blowing agent compound, preferably Z-HFO-1336mzzm.
For this use, the amount of the compound Z-HFO-1336mzzm in the composition of the invention can be in accordance with the following ranges: from about 1 wt % to about 99 wt %; from about 30 wt % to about 99 wt %; from about 50 wt % to about 99 wt %; from about 75 wt % to about 99 wt %; from about 85 wt % to about 99 wt %; from about 20 wt % to about 80 wt %; from about 90 wt % to about 99 wt %; from about 95 wt % to about 99 wt %; from about 1 wt % to about 20 wt %; from about 1 wt % to about 40 wt %; from about 1 wt % to about 50 wt %; from about 5 wt % to about 20 wt %; from about 5 wt % to about 40 wt %; from about 5 wt % to about 60 wt %; from about 10 wt % to about 80 wt %; from about 10 wt % to about 90 wt %; from about 20 wt % to about 80 wt %; from about 20 wt % to about 90 wt %. Other ranges of amounts are shown in Table 1, and those amounts are likewise applicable for this use of the composition of the invention. In certain embodiments, the one or more components capable of forming foam comprise a thermosetting composition capable of forming foam and/or foamable compositions. Examples of thermosetting compositions include polyurethane and polyisocyanurate foam compositions, and also phenolic foam compositions. This reaction and foaming process may be enhanced through the use of various additives such as catalysts and surfactant materials that serve to control and adjust cell size and to stabilize the foam structure during formation. Furthermore, is contemplated that any one or more of the additional components described above with respect to the blowing agent compositions of the present invention could be incorporated into the foamable composition of the present invention. In such thermosetting foam embodiments, one or more of the present compositions are included as or part of a blowing agent in a foamable composition, or as a part of a two or more part foamable composition, which preferably includes one or more of the components capable of reacting and/or foaming under the proper conditions to form a foam or cellular structure.
In certain other embodiments of the present invention, the one or more components capable of foaming comprise thermoplastic materials, particularly thermoplastic polymers and/or resins. Examples of thermoplastic foam components include polyolefins, such as for example monovinyl aromatic compounds of the formula Ar-CHCH2 wherein Ar is an aromatic hydrocarbon radical of the benzene series such as polystyrene (PS). Other examples of suitable polyolefin resins in accordance with the invention include the various ethylene resins including the ethylene homopolymers such as polyethylene and ethylene copolymers,
polypropylene (PP) and polyethylene-terephthalate (PET). In certain embodiments, the thermoplastic foamable composition is an extrudable composition.
It is contemplated that all presently known and available methods and systems for forming foam are readily adaptable for use in connection with the present invention. For example, the methods of the present invention generally require incorporating a blowing agent in accordance with the present invention into a foamable or foam forming composition and then foaming the composition, preferably by a step or series of steps which include causing volumetric expansion of the blowing agent in accordance with the present invention.
In general, it is contemplated that the presently used systems and devices for incorporation of blowing agent and for foaming are readily adaptable for use in accordance with the present invention. In fact, it is believed that one advantage of the present invention is the provision of an improved blowing agent which is generally compatible with existing foaming methods and systems.
Thus, it will be appreciated by those skilled in the art that the present invention comprises methods and systems for foaming all types of foams, including thermosetting foams, thermoplastic foams and formed-in-place foams. Thus, one aspect of the present invention is the use of the present blowing agents in connection conventional foaming equipment, such as polyurethane foaming equipment, at conventional processing conditions. The present methods therefore include polyol premix type operations, blending type operations, third stream blowing agent addition, and blowing agent addition at the foam head.
With respect to thermoplastic foams, the preferred methods generally comprise introducing a blowing agent in accordance with the present invention into a thermoplastic material, preferably thermoplastic polymer such as polyolefin, and then subjecting the thermoplastic material to conditions effective to cause foaming. For example, the step of introducing the blowing agent into the thermoplastic material may comprise introducing the blowing agent into a screw extruder containing the thermoplastic, and the step of causing foaming may comprise lowering the pressure on the thermoplastic material and thereby causing expansion of the blowing agent and contributing to the foaming of the material.
It will be appreciated by those skilled in the art, especially in view of the disclosure contained herein, that the order and manner in which the blowing agent of the present invention is formed and/or added to the foamable composition does not generally affect the operability of the present invention. For example, in the case of extrudable foams, it is possible that the various components of the blowing agent, and even the components of the foamable composition, be not be mixed in advance of introduction to the extrusion equipment, or even that the components are not added to the same location in the extrusion equipment. Moreover, the blowing agent can be introduced either directly or as part of a premix, which is then further added to other parts of the foamable composition.
Thus, in certain embodiments it may be desired to introduce one or more components of the blowing agent at first location in the extruder, which is upstream of the place of addition of one or more other components of the blowing agent, with the expectation that the components will come together in the extruder and/or operate more effectively in this manner. Nevertheless, in certain embodiments, two or more components of the blowing agent are combined in advance and introduced together into the foamable composition, either directly or as part of premix which is then further added to other parts of the foamable composition.
FOAMS
One embodiment of the present invention relates to methods of forming foams, especially panel foams and spray foams, and preferably such foams made from polyurethane and polyisocyanurate. The methods generally comprise providing a blowing agent composition of the present inventions, adding (directly or indirectly) the blowing agent composition to a foamable composition, and reacting the foamable composition under the conditions effective to form a foam or cellular structure, as is well known in the art. Any of the methods well known in the art, such as those described in "Polyurethanes Chemistry and Technology," Volumes I and II, Saunders and Frisch, 1962, John Wiley and Sons, New York, N.Y., which is incorporated herein by reference, may be used or adapted for use in accordance with the foam embodiments of the present invention.
For this use, the amount of the compound Z-HFO-1336mzzm in the composition of the invention can be in accordance with the following ranges: from about 1 wt % to about 99 wt %; from about 30 wt % to about 99 wt %; from about 50 wt % to about 99 wt %; from about 75 wt % to about 99 wt %; from about 85 wt % to about 99 wt %; from about 20 wt % to about 80 wt %; from about 90 wt % to about 99 wt %; from about 95 wt % to about 99 wt %; from about 1 wt % to about 20 wt %; from about 1 wt % to about 40 wt %; from about 1 wt % to about 50 wt %; from about 5 wt % to about 20 wt %; from about 5 wt % to about 40 wt %; from about 5 wt % to about 60 wt %; from about 10 wt % to about 80 wt %; from about 10 wt % to about 90 wt %; from about 20 wt % to about 80 wt %; from about 20 wt % to about 90 wt %. Other ranges of amounts are shown in Table 1, and those amounts are likewise applicable for this use of the composition of the invention.
In general, such preferred methods comprise preparing polyurethane or polyisocyanurate foams by combining an isocyanate, a polyol or mixture of polyols, a blowing agent or mixture of blowing agents comprising one or more of the present compositions, and other materials such as catalysts, surfactants, and optionally, flame retardants, colorants, or other additives.
It is convenient in many applications to provide the components for polyurethane or polyisocyanurate foams in pre-blended formulations. Most typically, the foam formulation is pre-blended into two components. The isocyanate and optionally certain surfactants and blowing agents comprise the first component, commonly referred to as the "A" component. The polyol or polyol mixture, surfactant, catalysts, blowing agents, flame retardant, and other isocyanate reactive components comprise the second component, commonly referred to as the "B" component.
Accordingly, polyurethane or polyisocyanurate foams are readily prepared by bringing together the A and B side components either by hand mix for small preparations and, preferably, machine mix techniques to form blocks, slabs, laminates, pour-in-place panels and other items, spray applied foams, froths, and the like. Optionally, other ingredients such as fire retardants, colorants, auxiliary blowing agents, and even other polyols can be added as one or more additional streams to the mix head or reaction site. Most preferably, however, they are all incorporated into one B-component as described above. The present methods and systems also include forming a one component foam, preferably polyurethane foam, containing a blowing agent in accordance with the present invention. In certain preferably embodiments, a portion of the blowing agent is contained in the foam forming agent, preferably by being dissolved in a foam forming agent which is liquid at the pressure within the container, a second portion of the blowing agent is present as a separate gas phase. In such systems, the
contained/dissolved blowing agent performs, in large part, to cause the expansion of the foam, and the separate gas phase operates to impart propulsive force to the foam forming agent.
Such one component systems are typically and preferably packaged in a container, such as an aerosol type can, and the blowing agent of the present invention thus preferably provides for expansion of the foam and/or the energy to transport the foam/foamable material from the package, and preferably both. In certain
embodiments, such systems and methods comprise charging the package with a fully formulated system (preferably isocyanate/polyol system) and incorporating a gaseous blowing agent in accordance with the present invention into the package, preferably an aerosol type can.
It is contemplated also that in certain embodiments it may be desirable to utilize the present compositions when in the supercritical or near supercritical state as a blowing agent.
The present invention also relates to all foams, including but not limited to closed cell foam, open cell foam, spray foams, panel foams, rigid foam, flexible foam, integral skin and the like, prepared from a polymer foam formulation containing a blowing agent comprising, or consisting essentially of, Z-HFO-1336mzzm, either alone or in combination with one or more other compounds.
Applicants have found that one advantage of the foams, and particularly thermoset foams such as polyurethane foams, in accordance with the present invention is the ability to achieve, preferably in connection with thermoset foam embodiments, exceptional thermal performance, such as can be measured by the K- factor or lambda, particularly and preferably under low temperature conditions, as shown in Figure 1. Although it is contemplated that the present foams, particularly thermoset foams of the present invention, may be used in a wide variety of applications, in certain preferred embodiments the present invention comprises appliance foams in accordance with the present invention, including refrigerator foams, freezer foams, refrigerator/freezer foams, panel foams, and other cold or cryogenic manufacturing applications.
The foams in accordance with the present invention, in certain preferred embodiments, provide one or more exceptional features, characteristics and/or properties, including: thermal insulation efficiency (particularly for thermoset foams), dimensional stability, compressive strength, aging of thermal insulation properties, all in addition to the low ozone depletion potential and low global warming potential associated with many of the preferred blowing agents of the present invention. In certain highly preferred embodiments, the present invention provides thermoset foam, including such foam formed into foam articles, which exhibit improved thermal conductivity relative to foams made using the same blowing agent (or a commonly used blowing agent HFC-245fa) in the same amount but without the compound Z- HFO-1336mzzm.
In other preferred embodiments, the present foams exhibit improved mechanical properties relative to foams produced with blowing agents outside the scope of the present invention. For example, certain preferred embodiments of the present invention provide foams and foam articles having a compressive strength which is superior to, and preferably at least about 10 relative percent, and even more preferably at least about 15 relative percent greater than a foam produced under substantially identical conditions by utilizing a blowing agent consisting of cyclopentane.
Furthermore, it is preferred in certain embodiments that the foams produced in accordance with the present invention have compressive strengths that are on a commercial basis comparable to the compressive strength produced by making a foam under substantially the same conditions except wherein the blowing agent consists of HFC-245fa. In certain preferred embodiments, the foams of the present invention exhibit a compressive strength of at least about 12.5% yield (in the parallel and perpendicular directions), and even more preferably at least about 13% yield in each of said directions.
PANEL FOAM EXAMPLES
Panel foams made using a 80/20 wt% Z-HFO-1336mzzm/cyclopentane blend as the blowing agent provides significantly better physical property and thermal insulation value than foams made with either Z-HFO-1336mzzm/iso-pentane blend or Z-HFO-1336mzzm/n-pentane blends as the blowing agent. In addition, panel foams made with a blowing agent blend of 80/20 wt % Z-HFO-1336mzzm/cyclopentane had considerably shorter tack free time. With nearly identical foam density, foam made with Z-HFO-1336mzzm/cyclopentane blend had the highest compressive strength. Foams made with the Z-HFO-1336mzzm/cyclopentane blend also demonstrated lower thermal conductivity and better retention of thermal insulation value after aging than foam with either Z-HFO-1336mzzm/isopentane blend or Z-HFO-1336mzzm/n- pentane blend.
Panel foams made with 80/20 wt% of Z-HFO-1336mzzm and hydrocarbons as the blowing agent were prepared as follows. The polyol master batch composition is shown in Table 2 while the generic panel foam formulations with corresponding amounts of blowing agents are listed in Table 3. Table 2 - Polyol Master Batch Composition
Component Weight (%) php.
Voranol 490 Polyol 51.38 65.00
Terate 4020 Polyol 27.67 35.00
Polycat 8 Catalyst 1.58 2.00
DABCO DC- 193
1.19 1.50
Surfactant
TMCP Flame Retardant 17.39 22.00
Water 0.79 1.00
Total 100.00 126.50
Table 3 - Generic Panel Foam Formulations with Z-HFO-1336mzzm/Hydrocarbon
Cyclopentane Isopentane N-pentane
Mol.% of 1336mzzm 63.0 63.7 63.7
Mol.% of Hydrocarbon 37.0 36.3 36.3
Wt.% of 1336mzzm 80.0 80.0 80.0
Wt.% of Hydrocarbon 20.0 20.0 20.0
Polyol Blend
Master Batch 126.5 126.5 126.5
1336mzzm 20.9 21.1 21.1
Hydrocarbon 5.2 5.3 5.3
Total 152.6 152.9 152.9
Isocyanate
Lupranate M20 127.3 127.3 127.3
NCO Index 110 110 110
- Physical Properties of Z-HFO-1336mzzm/Hydrocarbon Foams
Cyclopentane Isopentane N-pentane
Reactivity, second
Cream Time 23 22 23
Gel Time 70 75 70
Tack-Free Time 103 140 140
Density, lb/ft3
Foam Density 1.88 1.89 1.91
Compressive Strength, psi
Perpendicular 24.4 22.6 23.2
Parallel 12.2 11.7 11.2
Ratio, Perpendicular/Parallel 2.0 1.9 2.1
Ratio, Perpendicular/Density 13.0 12.0 12.1
Ratio, Parallel/Density 6.5 6.2 5.9 Dimensional Stability, vol.% changed
01 Day
Cold, -29°C -0.25 -0.31 Hot/Humid,
70°C/95%R.H. 15.12 10.43 12.26
07 Day
Cold, -29°C -0.22 -0.19
Hot/Humid,
70°C/95%R.H. 26.87 20.35 15.70
Reactivity
Similar cream time and gel time are recorded for all three foams. However, the tack- free time of foam with Z-HFO-1336mzzm/cyclopentane blend is significantly shorter than foams with Z-HFO-1336mzzm/isopentane blend or Z-HFO- 1336mzzm/n-pentane blend as blowing agent. At the tack- free time, the outer surface of the foam loses its stickiness and the foam can be removed from the mold. Foam with Z-HFO- 1336mzzm/cyclopentane blend may provide faster demold time than those two foams with other hydrocarbon blends.
Compressive Strength
The perpendicular-to-parallel compressive strength ratios of all three foams are similar; however, the perpendicular compressive strength to density ratio and the parallel compressive strength to density ratio of the foam with Z-HFO- 1336mzzm/cyclopentane blend are significantly higher than the other two foams. The results indicated that, with identical foam density, foam which is blown by Z-HFO- 1336mzzm/cyclopentane blend will provide the highest compressive strength among all three foams.
Dimensional Stability
No significant difference was found in the dimensional stability evaluation at - 29°C after 7 days. The results for hot/humid dimensional stability evaluation are inconclusive at this stage. Thermal Conductivity
Initially, foam with Z-HFO-1336mzzm/cyclopentane blend demonstrates slightly better insulation value than the other two foams at all temperatures evaluated. After the foams were aged for 8 days, the difference in thermal conductivity appears to be more significant. Compared to the foams with Z-HFO-1336mzzm/isopentane or Z-HFO-1336mzzm/n-pentane blend, foam with Z-HFO-1336mzzm/cyclopentane blend provides better retention of insulation value after aging.
SPRAY FOAM EXAMPLES
Spray prepared with Z-HFO-1336mzzm, 1233zd(E), 30/70 mole % blend of 1233zd(E) /1336mzzm and 70/30 mole % blend of 1233zd(E)/1336mzzm had equivalent density. The thermal conductivity data from these foams do not demonstrate the anticipated linear relationship. In fact, foam prepared with a 70/30 mole % 1233zd(E)/1336mzzm and 30/70 mole % 1233zd(E)/1336mzzm have improved k-factors and superior aging to those made with 1233zd(E). This is an unanticipated result.
Spray foams with Z-HFO-1336mzzm, 1233zd(E), 30/70 mole % blend of 1233zd(E)/1336mzzm and 70/30 mole % blend of 1233zd(E)/1336mzzm as blowing agent were prepared as follows. The polyol master batch composition is shown in Table 5 while the generic spray foam formulations with corresponding amounts of blowing agents are listed in Table 6. The foams were prepared with a 3 second pour time and 8 second mix time. The raw materials temperatures were 50 °F polyol/ 70°F MDI. Table 5 - Polyol Master Batch Composition
Component Lot Numbers Php
Jeffol R- 470 x VC03019501 50.00
Terate 4020 MY4020-18 43.75
Diethylene glycol B 1 1+024 6.25
DABCO DC- 193 0001580875 1.25
Dabco DMEA 258009 2.00
Antiblaze AB80 122 12.50
Water 1.25
Total 117.00
Table 6 - Spray Foam Formulations
1233zd(E)/ 1233zd(E)/
1233zd(E) 1336mzzm 1336mzzm 1336mzzm
70/30 mole % 30/70 mole %
MoL% of 0 30 70 100 1336mzzm
^0/» °f 100 70 30 0 1233zd(E)
Moles of 0 0.061 0.143 0.204 1336mzzm
Moles of Λ Λ/Ι 0.143 Λ Γ. 1 n n„ 0.204 0.061 0 1233zd(E)
Polyol
Blend
Master U J Q 117.0 U J Q U J Q
Batch
1336mzzm 0 10.0 23.5 33.5
1233zd(E) 26.5 18.6 7.9 0
Total 143.5 145.6 148.4 150.5
Isocyanate
Lupranate 3g 137.38 J 3 3g ^ 3g
M20
NCO Index 1 10 1 10 1 10 1 10
Reactivity
The relationship between cream time, gel time and tack free time are anticipated. They are equivalent for all foams prepared.
Table 7 - Foam Reactivity 1233zd(E)/ 1233zd(E)/
1233zd(E) 1336mzzm 1336mzzm 1336mzzm
70/30 mole % 30/70 mole %
Reactivity, second
Cream Time 15 15 12 12
Gel Time 35 34 33 38
Tack-Free Time 45 45 44 48
Foam Quality/ Cell size/ Open Cell Content
The foams prepared were well mixed and equivalent in quality. The block density of the foams produced is similar as is the ratio of block to core density. Block density is density of the squared foam prior to sample cutting. Core density is density of the k- factor sample taken from the middle of the sample. This is anticipated since the foams were prepared with equivalent moles of blowing agents.
Table 8 - Foam Quality: Density/ Cell Size/ Open Cell Content
1233zd(E)/ 1233zd(E)/
1233zd(E) 1336mzzm 1336mzzm 1336mzzm
70/30 mole % 30/70 mole %
Density, lb/ft3
Foam Density- Block* 1.8 1.78 1.81 1.79
Foam Density- Core* 1.83 1.71 1.77 1.82 Ratio Block/ Core 1.04
Density 0.98 1.02 0.98 Open Cell Content, %
Density, lb/ft3
Average Cell Size, mm
Average Cell Size 0.2 0.2 0.2 0.2
Compressive Strength
There is not a linear relationship between blowing agent concentration and perpendicular and parallel compressive strength. However, the variance form the linear relationship is considered minimal.
Table 9 - Foam Compressive Strength 1233zd(E)/ 1233zd(E)/
i 1 I336mzzm I336mzzm
1233zd(E) 70/30 mole 30/70 mole 1336mzzm
0/
13.163 12.869 12.132 12.38 25.678 22.870 23.392 26.95
0.51 0.56 0.52 0.46
Dimensional Stability
The addition of Z-HFO-1336mzzm to 1233zd(E) foam negatively impacts the dimensional stability of the foam in both cold and hot humid environments. It increases the shrinkage in the cold environment. In the hot humid environment the foams prepared from the blends swell more that the foams prepared from either of the neat compounds.
Table 10 - Foam Dimensional Stability
1233zd(E)/ 1233zd(E)/
1233zd(E) 1336mzzm 1336mzzm 1336mzzm
70/30 mole % 30/70 mole %
Dimensional Stability, vol.% changed
Cold, -29°C
I Day 0.097 -0.115 0.067 -0.001
7 Day -0.164 -0.450 -0.514 0.608
14 Day -0.134 -0.347 -0.133 -0.108
Hot/Humid,
70°C/95%R.H.
I Day 5.950 4.804 7.458 5.326
7 Day 15.724 20.898 31.006 17.720
14 Day 23.598 30.314 45.523 28.501
Thermal Conductivity
The thermal conductivity of foams prepared with these blends are significantly improved over those made with 1233zd(E). Not only are they improved, the improvement is nonlinear in relationship to the amount of Z-HFO-1336mzzm added to the blowing agent blend. It is particularly interesting that the improvement at the low mean temperatures is significant and not 1233zd(E) concentration dependant. In addition, it is notable that the foam prepared from the blends age slower than the 1233zd(E) and the Z-HFO-1336mzzm foams.
Table 11 - Foam Thermal Conductivity
1233zd(E)/ 1233zd(E)/
1233zd(E) 1336mzzm 1336mzzm 1336mzzm
70/30 mole % 30/70 mole %
Initial
40 °F 0.1357 0.1328 0.1320 0.1356 75 °F 0.1540 0.1485 0.1459 0.1432 110 °F 0.1744 0.1667 0.1643 0.1612
8 Day
40 °F 0.1415 0.1360 0.1367 0.1397 75 °F 0.1595 0.1527 0.1506 0.1472 110 °F 0.1798 0.1719 0.1711 0.1672 14 Day
40 °F 0.1431 0.1371 0.1380 0.1421 75 °F 0.1626 0.1558 0.1505 0.1479 110 °F 0.1838 0.1772 0.1697 0.1667
Foams prepared with Z-HFO-1336mzzm, 245 fa, 30/70 mole % blend of 245 fa / Z-HFO-1336mzzm and 70/30 mole % blend of 245fa/Z-HFO-1336mzzm had equivalent density. The dimensional stability and thermal conductivity data form these foams do not demonstrate the anticipated linear relationship. In fact, foam prepared with a 70/30 mole % 245fa/ Z-HFO-1336mzzm have improved k-factors and superior aging to those made with 245fa. This is an unexpected result.
Foams were prepared with Z-HFO-1336mzzm, 245 fa, 30/70 mole % blend of 245fa/ Z-HFO-1336mzzm and 70/30 mole % blend of 245fa/ Z-HFO-1336mzzm as the blowing agents. The polyol master batch composition is shown above in Table 5 while the generic spray foam formulations with corresponding amounts of blowing agents are listed below in Table 12. The foams were prepared with and 3 second pour time and 8 second mix time. The raw materials temperatures were 50 °F polyol/ 70°F MDI. Table 12 - Polyol Master Batch Composition
Component Numbers php
Jeffol R- 470 x VC03019501 50.00
Terate 4020 MY4020-18 43.75
Diethylene glycol B 11+024 6.25
DABCO DC-193 0001580875 1.25
Dabco DMEA 258009 2.00
Antiblaze AB80 122 12.50
Water 1.25
Total 117.00
Table 13 - Generic Spray Foam Formulations
245fa/ 245fa/
245fa 1336mzzm 1336mzzm 1336mzzm
70/30 mole % 30/70 mole %
Mol.% of 30
0 70 100
1336mzzm
Mol.% of 245fa 100 70 30 0
Moles of 0.061
0 0.143 0.204 1336mzzm
Moles of 245fa 0.204 0.143 0.061 0
Polyol Blend
Master Batch 117.0 117.0 117.0 117.0 1336mzzm 0 10.0 23.5 33.5 245fa 27.3 19.2 8.2 0
Total 144.3 146.2 148.7 150.5
Isocyanate
Lupranate M20 137.38 137.38 137.38 137.38 NCO Index 10 110 1 10 110
Physical Properties
Reactivity
The relationship between cream time, gel time and tack free time are anticipated. It would be anticipated that the addition of a high boiler such as Z-HFO- 1336mzzm would extend the cream and gel time of the foam system.
Table 14 - Foam Reactivity
245fa/
245fa/
1336mzzm
245fa 1336mzzm 1336mzzm
70/30 mole
30/70 mole %
Reactivity, second
Cream Time Immediate 12 12
Gel Time 29 42 38
Tack-Free Time 43 52 48
Foam Quality/ Cell size/ Open Cell Content
The foams prepared were well mixed and equivalent in quality. The block density of the foams produced is similar as is the ratio of block to core density. This is anticipated since the foams were prepared with equivalent moles of blowing agents.
Table 15 - Foam Quality: Density/ Cell Size/ Open Cell Content
245fa/ 245fa/
245fa 1336mzzm 1336mzzm 1336mzzm
70/30 mole % 30/70 mole %
Density, lb/ft3
Foam Density- Block 1.78 1.79 1.79 1.79
Foam Density- Core 1.75 1.94 1.86 1.82
Ratio Block/ Core 0.92
Density 1.02 0.96 0.98
Open Cell Content, %
Density, lb/ft3
Average Cell Size, mm
Average Cell Size 0.2 0.2 0.2 0.2
Compressive Strength
There is a near linear relationship in the perpendicular-to-parallel compressive strength ratios. The ratio decrease with reduction in the use of 245 fa. Table 16 - Foam Compressive Strength
245fa/ 245fa/
1336mzzm 1336mzzm
245fa 1336mzzm
70/30 30/70 mole
mole % %
Compressive Strength, psi
Perpendicular 12.32 12.48 12.38
Parallel 24.78 29.25 26.95
Ratio, Perpendicular/Parallel 0.50 0.43 0.46
Dimensional Stability
The addition of Z-HFO-1336mzzm to 245 fa foam improves the dimensional stability of the foam in both cold and hot humid environments. This is most evident in the hot humid environment. In fact the blends perform better than either of the pure compounds. This is an unexpected result.
Table 17 - Foam Dimensional Stability
245fa/ 245fa/
245fa 1336mzzm 1336mzzm 1336mzzm
70/30 mole % 30/70 mole %
Dimensional Stability, vol.% changed
Cold, -29°C
1 Day -0.066 -0.245 -0.236 -0.001 7 Day 1.090 -0.111 0.010 0.608 14 Day 0.033 -0.229 -0.161 -0.108
Hot/Humid,
70°C/95%R.H.
1 Day 7.388 3.657 4.899 5.326 7 Day 21.617 14.060 16.385 17.720 14 Day 30.616 22.013 26.563 28.501 Thermal Conductivity
Initially, foam produced with Z-HFO-1336mzzm and the 70/30 mole % Z- HFO-1336mzzm/245fa blend show the "hockey stick" curve shape traditionally found with high boiling blowing agents. This is attributed to the condensation of the blowing agent in the foam matrix at temperatures below the boiling point of the blowing agent. It is unanticipated that the 30/70 mole % Z-HFO-1336mzzm/245fa blend does not show the same curve shape since this is not an azeotropic composition. In addition the thermal conductivity of foams prepared with this blend is equivalent or slightly improved over those made with 245fa. The foam prepared of the 70/30 mole % 245fa/ Z-HFO-1336mzzm blend age slower than the 245 fa and the Z-HFO-1336mzzm foams.
Table 18 - Foam Thermal Conductivity
245fa/ 245fa/
245fa 1336mzzm 1336mzzm 1336m
70/30 mole % 30/70 mole %
Initial
40 °F 0.1318 0.1319 0.1347 0.1356
75 °F 0.1481 0.1476 0.1452 0.1432
110 °F 0.1660 0.1663 0.1629 0.1612
8 Day
40 °F 0.1381 0.1365 0.1380 0.1397
75 °F 0.1555 0.1508 0.1493 0.1472
110 °F 0.1742 0.1695 0.1692 0.1672
14 Day
40 °F 0.1409 0.1376 0.1391 0.1421
75 °F 0.1585 0.1528 0.1524 0.1479
110 °F 0.1774 0.1716 0.1740 0.1667
METHODS AND SYSTEMS
Table 1 describes compositions of this invention which comprise, or consist essentially of Z-HFO-1336mzzm. These compositions are useful in connection with numerous methods and systems, including as heat transfer fluids in methods and systems for transferring heat, such as refrigerants used in refrigeration, air
conditioning, including vehicle air conditioning systems, and heat pump systems. The compositions of this invention are also advantageous for in use in systems and methods of generating aerosols, preferably comprising or consisting of the aerosol propellant in such systems and methods. Methods of forming foams and methods of extinguishing and suppressing fire are also included as embodiments of this invention. The present invention also provides in certain aspects methods of removing residue from articles in which the present compositions are used as solvent compositions in such methods and systems.
HEAT TRANSFER METHODS
The preferred heat transfer methods generally comprise providing a composition comprising, or consisting essentially of Z-HFO-1336mzzm, particularly blends as described in Table 1 , and causing heat to be transferred to or from the composition changing the phase of the composition. For example, the present methods provide cooling by absorbing heat from a fluid or article, preferably by evaporating the present refrigerant composition in the vicinity of the body or fluid to be cooled to produce vapor comprising, or consisting essentially of, Z-HFO- 1336mzzm.
For this use, the amount of the compound Z-HFO-1336mzzm in the composition of the invention can be in accordance with the following ranges: from about 1 wt % to about 99 wt %; from about 30 wt % to about 99 wt %; from about 50 wt % to about 99 wt %; from about 75 wt % to about 99 wt %; from about 85 wt % to about 99 wt %; from about 20 wt % to about 80 wt %; from about 90 wt % to about 99 wt %; from about 95 wt % to about 99 wt %; from about 1 wt % to about 20 wt %; from about 1 wt % to about 40 wt %; from about 1 wt % to about 50 wt %; from about 5 wt % to about 20 wt %; from about 5 wt % to about 40 wt %; from about 5 wt % to about 60 wt %; from about 10 wt % to about 80 wt %; from about 10 wt % to about 90 wt %; from about 20 wt % to about 80 wt %; from about 20 wt % to about 90 wt %. Other ranges of amounts are shown in Table 1, and those amounts are likewise applicable for this use of the composition of the invention.
Preferably the methods include the further step of compressing the refrigerant vapor, usually with a compressor or similar equipment to produce vapor of the present composition at a relatively elevated pressure. Generally, the step of compressing the vapor results in the addition of heat to the vapor, thus causing an increase in the temperature of the relatively high-pressure vapor. Preferably, the present methods include removing from this relatively high temperature, high pressure vapor at least a portion of the heat added by the evaporation and compression steps. The heat removal step preferably includes condensing the high temperature, high-pressure vapor while the vapor is in a relatively high-pressure condition to produce a relatively high- pressure liquid comprising, or consisting essentially of, Z-HFO-1336mzzm. This relatively high-pressure liquid preferably then undergoes a nominally isoenthalpic reduction in pressure to produce a relatively low temperature, low-pressure liquid. In such embodiments, it is this reduced temperature refrigerant liquid which is then vaporized by heat transferred from the body or fluid to be cooled.
In another process embodiment of the invention, the compositions of the invention may be used in a method for producing heating which comprises condensing a refrigerant comprising, or consisting essentially of, Z-HFO-1336mzzm, particularly blends as described in Table 1 , in the vicinity of a liquid or body to be heated. Such methods, as mentioned hereinbefore, frequently are reverse cycles to the refrigeration cycle described above.
For this use, the amount of the compound Z-HFO-1336mzzm in the composition of the invention can be in accordance with the following ranges: from about 1 wt % to about 99 wt %; from about 30 wt % to about 99 wt %; from about 50 wt % to about 99 wt %; from about 75 wt % to about 99 wt %; from about 85 wt % to about 99 wt %; from about 20 wt % to about 80 wt %; from about 90 wt % to about 99 wt %; from about 95 wt % to about 99 wt %; from about 1 wt % to about 20 wt %; from about 1 wt % to about 40 wt %; from about 1 wt % to about 50 wt %; from about 5 wt % to about 20 wt %; from about 5 wt % to about 40 wt %; from about 5 wt % to about 60 wt %; from about 10 wt % to about 80 wt %; from about 10 wt % to about 90 wt %; from about 20 wt % to about 80 wt %; from about 20 wt % to about 90 wt %. Other ranges of amounts are shown in Table 1, and those amounts are likewise applicable for this use of the composition of the invention.
REFRIGERANT COMPOSITIONS The present methods, systems and compositions comprising, or consisting essentially of Z-HFO-1336mzzm, and in particular, blends as described in Table 1, are thus adaptable for use in connection with automotive air conditioning systems and devices, commercial refrigeration systems and devices, chillers, residential refrigerator and freezers, general air conditioning systems, heat pumps, and the like.
Many existing refrigeration systems are currently adapted for use in connection with existing refrigerants, and the compositions of the present invention are believed to be adaptable for use in many of such systems, either with or without system modification. In many applications the compositions of the present invention may provide an advantage as a replacement in systems, which are currently based on refrigerants having a relatively high capacity. Furthermore, in embodiments where it is desired to use a lower capacity refrigerant composition of the present invention, for reasons of efficiency for example, to replace a refrigerant of higher capacity, such embodiments of the present compositions provide a potential advantage. Thus, it is preferred in certain embodiments to use compositions comprising, or consisting essentially of, Z-HFO-1336mzzm, either alone or in combination with one or more other compounds, particularly blends as described in Table 1, as a replacement for existing refrigerants, such as HCFC-123 or HFC- 134a. In certain applications, the refrigerants of the present invention potentially permit the beneficial use of larger displacement compressors, thereby resulting in better energy efficiency than other refrigerants, such as HCFC-123 or HFC- 134a. Therefore the refrigerant compositions of the present invention, particularly compositions comprising, or consisting essentially of, Z-HFO-1336mzzm, provide the possibility of achieving a competitive advantage on an energy basis for refrigerant replacement applications.
Although, as described above, it is contemplated that the compositions of the present invention may include the compounds of the present invention in widely ranging amounts, it is generally preferred that refrigerant compositions of the present invention comprise Z-HFO-1336mzzm, in an amount that is at least about 50% by weight, and even more preferably at least about 70% by weight, of the composition. The compositions of the present invention may include other components for the purpose of enhancing or providing certain functionality to the composition, or in some cases to reduce the cost of the composition. For example, refrigerant compositions according to the present invention, especially those used in vapor compression systems, include a lubricant, generally in amounts of from about 30 to about 50 percent by weight of the composition. Furthermore, the present compositions may also include a compatibilizer, such as propane, for the purpose of aiding compatibility and/or solubility of the lubricant. Such compatibilizers, including propane, butanes and pentanes, are preferably present in amounts of from about 0.5 to about 5 percent by weight of the composition.
Combinations of surfactants and solubilizing agents may also be added to the present compositions to aid oil solubility, as disclosed by U.S. Pat. No. 6,516,837, the disclosure of which is incorporated by reference. Commonly used refrigeration lubricants such as Polyol Esters (POEs) and Poly Alkylene Glycols (PAGs), silicone oil, mineral oil, alkyl benzenes (ABs) and poly(alpha-olefin) (PAO) that are used in refrigeration machinery with hydrofluorocarbon (HFC) refrigerants may be used with the refrigerant compositions of the present invention.
It is contemplated that the compositions of the present, including particularly those comprising, or consisting essentially of, Z-HFO-1336mzzm, and particularly blends as set forth in Table 1 , also have advantage (either in original systems or when used as a replacement for refrigerants such as R-12 and R-500), in chillers typically used in connection with commercial air conditioning systems. In certain of such embodiments it is preferred to including in the present Z-HFO-1336mzzm
compositions from about 0.5 to about 5% of a flammability suppressant, such as CF3I.
In certain preferred embodiments, the compositions of the present invention further comprise a lubricant. Any of a variety of conventional lubricants may be used in the compositions of the present invention. An important requirement for the lubricant is that, when in use in a refrigerant system, there must be sufficient lubricant returning to the compressor of the system such that the compressor is lubricated. Thus, suitability of a lubricant for any given system is determined partly by the refrigerant/lubricant characteristics and partly by the characteristics of the system in which it is intended to be used. Examples of suitable lubricants include mineral oil, alkyl benzenes, polyol esters, including polyalkylene glycols, PAG oil, and the like. Mineral oil, which comprises paraffin oil or naphthenic oil, is commercially available. Commercially available mineral oils include Witco LP 250 (registered trademark) from Witco, Zerol 300 (registered trademark) from Shrieve Chemical, Sunisco 3GS from Witco, and Calumet R015 from Calumet. Commercially available alkyl benzene lubricants include Zerol 150 (registered trademark). Commercially available esters include neopentyl glycol dipelargonate which is available as Emery 2917 (registered trademark) and Hatcol 2370 (registered trademark). Other useful esters include phosphate esters, dibasic acid esters, and fluoroesters. Preferred lubricants include polyalkylene glycols and esters. Certain more preferred lubricants include
polyalkylene glycols.
Any of a wide range of methods for introducing the present refrigerant compositions to a refrigeration system can be used in the present invention. For example, one method comprises attaching a refrigerant container to the low-pressure side of a refrigeration system and turning on the refrigeration system compressor to pull the refrigerant into the system. In such embodiments, the refrigerant container may be placed on a scale such that the amount of refrigerant composition entering the system can be monitored. When a desired amount of refrigerant composition has been introduced into the system, charging is stopped. Alternatively, a wide range of charging tools, known to those of skill in the art, is commercially available.
Accordingly, in light of the above disclosure, those of skill in the art will be readily able to introduce the refrigerant compositions of the present invention into
refrigeration systems according to the present invention without undue
experimentation. REFRIGERANT EXAMPLE
This example demonstrates the use of the compositions of the present invention for use as a refrigerant composition.
The fluid of choice for centrifugal chillers is 2,2-dichloro-l,l,l-trifluoroethane (R123). Due to the ozone depletion potential of R123 it is currently banned under the Montreal protocol. It is important to maintain the high coefficient of performance (COP) when finding a replacement fluid for R123. A single stage chiller consists if a compressor which pressurizes a low pressure gas and delivers it to the evaporator. The high pressure fluid is then condensed at a relatively high temperature, for this case the condenser is maintained at 40°C. The condensed fluid is then passed through an expansion device which lowers both the temperature and pressure of the fluid and is introduced into the evaporator; in this case the evaporator is maintained at 2°C. The cold low pressure gas is then used to transfer heat away from the body which requires cooling by evaporating the fluid in the evaporator. The thermodynamic performance of a refrigerant can be calculated using standard refrigerant cycle analysis techniques outlined in thermodynamic texts such as R.C. Downing,
Fluorocarbon Refrigerants Handbook, Chapter 3, Prentice-Hall. 1988. The COP of a single compressor chiller was determined at a condenser temperature of 2°C, evaporator temperature of 40°C, and a compressor efficiency of 0.75. The COPs of HCFC-123 and Z-HFO-1336mzzm in a single compressor system are both 4.6. The ability to maintain a COP equal to that of HCFC-123 while being non-ozone depleting and having very low GWP makes Z-HFO-1336mzzm a very fluid for a centrifugal chiller.
POWER CYCLE USE
Rankine cycle systems are known to be a simple and reliable means to convert heat energy into mechanical shaft power. Organic working fluids are useful in place of water/steam when low-grade thermal energy is encountered. Water/steam systems operating with low-grade thermal energy (typically 400°F and lower) will have associated high volumes and low pressures. To keep system size small and efficiency high, organic working fluids with boiling points near room temperature are employed. Such fluids would have higher gas densities lending to higher capacity and favorable transport and heat transfer properties lending to higher efficiency as compared to water at low operating temperatures. In industrial settings there are more opportunities to use flammable working fluids such as toluene and pentane, particularly when the industrial setting has large quantities of flammables already on site in processes or storage. For instances where the risk associated with use of a flammable working fluid is not acceptable, such as power generation in populous areas or near buildings, other fluids such as CFC-113 and CFC-11 were used. Although these materials were nonflammable, they were a risk to the environment because of their ozone-depletion potential. Ideally, the organic working fluid should be environmentally acceptable, non-flammable, of a low order of toxicity, and operate at positive pressures.
Organic Rankine Cycle (ORC) systems are often used to recover waste heat from industrial processes. In combined heat and power (cogeneration) applications, waste heat from combustion of fuel used to drive the prime mover of a generator set is recovered and used to make hot water for building heat, for example, or for supplying heat to operate an absorption chiller to provide cooling. In some cases, the demand for hot water is small or does not exist. The most difficult case is when the thermal requirement is variable and load matching becomes difficult, confounding efficient operation of the combined heat and power system. In such an instance, it is more useful to convert the waste heat to shaft power by using an organic Rankine cycle system. The shaft power can be used to operate pumps, for example, or it may be used to generate electricity. By using this approach, the overall system efficiency is higher and fuel utilization is greater. Air emissions from fuel combustion can be decreased since more electric power can be generated for the same amount of fuel input.
The process that produces waste heat is at least one selected from the group consisting of fuel cells, internal combustion engines, internal compression engines, external combustion engines, and turbines. Other sources of waste heat can be found in association with operations at oil refineries, petrochemical plants, oil and gas pipelines, chemical industry, commercial buildings, hotels, shopping malls, supermarkets, bakeries, food processing industries, restaurants, paint curing ovens, furniture making, plastics molders, cement kilns, lumber kilns (drying), calcining operations, steel industry, glass industry, foundries, smelting, air-conditioning, refrigeration, and central heating. See U.S. Patent No. 7,428,816, the disclosure of which is hereby incorporated herein by reference.
Preferred compositions for ORC power cycle use are described below in Table 19 (with all percentages being in percent by weight and being understood to be proceeded by the word "about").
Table 19 - ORC Blends
Figure imgf000041_0001
More Most
Compound mixed with Z-HFO- Preferred Preferred Preferred
1336mzzm Ranges Ranges Ranges wt % wt % wt %
HFC-365mfc 1 to 99 1 to 70 1 to 25
HFC-43-10mee 1 to 99 1 to 70 1 to 15
HFEs
CHF2-0-CHF2 1 to 99 1 to 70 1 to 50
CHF2-0-CH2F 1 to 99 1 to 70 1 to 50
CH2F-0-CH2F 1 to 99 1 to 70 1 to 50
CH2F-0-CH3 1 to 99 1 to 70 1 to 50
CYCLO-CF2-CH2-CF2-0 1 to 99 1 to 70 1 to 50
CYCLO-CF2-CF2-CH2-0 1 to 99 1 to 70 1 to 50
CHF2-0-CF2-CHF2 1 to 99 1 to 70 1 to 50
CF3-CF2-0-CH2F 1 to 99 1 to 70 1 to 50
CHF2-0-CHF-CF3 1 to 99 1 to 70 1 to 50
CHF2-0-CF2-CHF2 1 to 99 1 to 70 1 to 50
CH2F-0-CF2-CHF2 1 to 99 1 to 70 1 to 50
CF3-0-CF2-CH3 1 to 99 1 to 70 1 to 50
CHF2-CHF-0-CHF2 1 to 99 1 to 70 1 to 50
CF3-0-CHF-CH2F 1 to 99 1 to 70 1 to 50
CF3-CHF-0-CH2F 1 to 99 1 to 70 1 to 50
CF3-0-CH2-CHF2 1 to 99 1 to 70 1 to 50
CHF2-0-CH2-CF3 1 to 99 1 to 70 1 to 50
CH2F-CF2-0-CH2F 1 to 99 1 to 70 1 to 50
CHF2-0-CF2-CH3 1 to 99 1 to 70 1 to 50
CHF2-CF2-0-CH3 (254pc) 1 to 99 1 to 70 1 to 50
CH2F-0-CHF-CH2F 1 to 99 1 to 70 1 to 50
CHF2-CHF-0-CH2F 1 to 99 1 to 70 1 to 50
CF3-0-CHF-CH3 1 to 99 1 to 70 1 to 50
CF3-CHF-0-CH3 1 to 99 1 to 70 1 to 50
CHF2-0-CH2-CHF2 1 to 99 1 to 70 1 to 50
CF3-0-CH2-CH2F 1 to 99 1 to 70 1 to 50
CF3-CH2-0-CH2F 1 to 99 1 to 70 1 to 50
CF2H-CF2-CF2-0-CH3 1 to 99 1 to 70 1 to 50
Hydrocarbons
Propane 1 to 99 20 to 95 40 to 95
Butane 1 to 99 20 to 95 40 to 95
Isobutane 1 to 99 20 to 95 40 to 95 n-pentane (high HFO) 1 to 99 50 to 99 60 to 99 n-pentane (high n-pentane) 1 to 99 l to 30 1 to 20
Isopentane (High HFO) 1 to 99 50 to 99 60 to 99
Isopentane (High
isopentane) l to 99 l to 30 1 to 20 More Most
Compound mixed with Z-HFO- Preferred Preferred Preferred 1336mzzm Ranges Ranges Ranges
wt % wt % wt %
Neopentane (High HFO) 1 to 99 50 to 99 60 to 99
Neopentane (High
neopentane) 1 to 99 l to 30 1 to 20
Cyclopentane (High HFO) 1 to 99 50 to 99 60 to 99
Cyclopentane (High
cyclopentane) 1 to 99 l to 30 1 to 20 n-hexane l to 99 20 to 95 40 to 95
Isohexane l to 99 20 to 95 40 to 95
Heptane 1 to 99 20 to 95 40 to 95
Others
Trans- 1,2 dichloroethylene 1 to 99 1 to 50 l to 30
Mixtures with cis-HFO- 1 to 25 / 1 1 to 20 / 1 1 to 15 / 1 1234ze + HFC-245fa to 50 to 25 to 10
One specific embodiment of a power cycle use of this compound is a process for recovering waste heat in an Organic Rankine Cycle system in which the working fluid is a composition comprising, or consisting essentially of, Z-HFO-1336mzzm and optionally, one or more additional compounds, as set forth above in Table 19.
POWER CYCLE EXAMPLE
Following the procedure outlined in Smith, J. M. et al., Introduction to Chemical Engineering Thermodynamics; McGraw-Hill (1996), the effectiveness of various working fluids in an organic Rankine cycle can by compared. The conditions used in the organic Rankine cycle calculations in this example are a pump efficiency of 75%, expander efficiency of 80%, boiler temperature of 190°C, condenser temperature of 45°C and 1000 W of heat supplied to the boiler. The performance of Z-HFO-1336mzzm is compared to the commercially available fluid HFC-245fa (available from Honeywell). The thermal efficiency of HFC-245fa and Z-HFO- 1336mzzm at the conditions specified is 0.142 and 0.145, respectively. This shows that Z-HFO-1336mzzm. Z-HFO-1336mzzm is also non-flammable and has a low global warming potential. This example demonstrates the use of the compositions of the present invention for use as a Rankine power cycle composition. It has been found that using the compound Z-HFO-1336mzzm as the power cycle fluid in an organic Rankine cycle, thermal efficiency is increased by about 2% over a similar cycle using HFC- 245 fa as the power cycle fluid.
CLEANING AND CONTAMINANT REMOVAL
The present invention also provides methods of removing containments from a product, part, component, substrate, or any other article or portion thereof by applying to the article a composition of the present invention comprising, or consisting essentially of, Z-HFO-1336mzzm, and in particular, the blends set forth in Table 1. For the purposes of convenience, the term "article" is used herein to refer to all such products, parts, components, substrates, and the like and is further intended to refer to any surface or portion thereof. Furthermore, the term "contaminant" is intended to refer to any unwanted material or substance present on the article, even if such substance is placed on the article intentionally. For example, in the manufacture of semiconductor devices it is common to deposit a photoresist material onto a substrate to form a mask for the etching operation and to subsequently remove the photoresist material from the substrate. The term "contaminant" as used herein is intended to cover and encompass such a photo resist material.
For this use, the amount of the compound Z-HFO-1336mzzm in the composition of the invention can be in accordance with the following ranges: from about 1 wt % to about 99 wt %; from about 30 wt % to about 99 wt %; from about 50 wt % to about 99 wt %; from about 75 wt % to about 99 wt %; from about 85 wt % to about 99 wt %; from about 20 wt % to about 80 wt %; from about 90 wt % to about 99 wt %; from about 95 wt % to about 99 wt %; from about 1 wt % to about 20 wt %; from about 1 wt % to about 40 wt %; from about 1 wt % to about 50 wt %; from about 5 wt % to about 20 wt %; from about 5 wt % to about 40 wt %; from about 5 wt % to about 60 wt %; from about 10 wt % to about 80 wt %; from about 10 wt % to about 90 wt %; from about 20 wt % to about 80 wt %; from about 20 wt % to about 90 wt %. Other ranges of amounts are shown in Table 1, and those amounts are likewise applicable for this use of the composition of the invention.
Preferred methods of the present invention comprise applying the present composition to the article. Although it is contemplated that numerous and varied cleaning techniques can employ the compositions of the present invention to good advantage, it is considered to be particularly advantageous to use the present compositions in connection with supercritical cleaning techniques. Supercritical cleaning is disclosed in U.S. Pat. No. 6,589,355, which is incorporated herein by reference.
For supercritical cleaning applications, it is preferred in certain embodiments to include in the present cleaning compositions, in addition to the composition of the present invention, another component, such as C02 and other additional components known for use in connection with supercritical cleaning applications.
It may also be possible and desirable in certain embodiments to use the present cleaning compositions in connection with particular sub-critical vapor degreasing and solvent cleaning methods. For all solvent uses, compositions containing the compound Z-HFO-1336mzzm may preferably be blended with one or more of the following compounds; cis-1234ze, cis-1233zd, HFC-245fa, Methylal
(dimethoxymethane), methylethylketone, methylisobutylketone, and/or HFC- 134a. More preferred blends comprise Z-HFO-1336mzzm blended with one or more of the following compounds; pentanes, hexanes, HFC-365, C4F9-0-CH3, C4F9-0-C2H5, propane, butane, isobutane, and/or dimethylether. Most preferred blends comprise Z- HFO-1336mzzm blended with one or more of the following compounds; trans- 1,2- dichloroethylene, trans-1234ze, trans-1233zd, trans-1336, HFC-43-10, HFC-152a, methanol, ethanol, isopropanol, and/or acetone.
Another cleaning embodiment of the invention comprises the removal of contaminants from vapor compression systems and their ancillary components when these systems are manufactured and serviced. As used herein, the term "contaminants" refers to processing fluids, lubricants, particulates, sludge, and/or other materials that are used in the manufacture of these systems or generated during their use. In general, these contaminants comprise compounds such as alkylbenzenes, mineral oils, esters, polyalkyleneglycols, polyvinylethers and other compounds that are made primarily of carbon, hydrogen and oxygen. The compositions of the present invention will be useful for this purpose.
CLEANING COMPOSITION EXAMPLE
This example demonstrates the use of the compositions of the present invention comprising, or consisting essentially of Z-HFO-1336mzzm, and in particular, blends as described in Table 1 , for use as a cleaning composition. For this use, the amount of the compound Z-HFO-1336mzzm in the composition of the invention can be in accordance with the following ranges: from about 1 wt % to about 99 wt %; from about 30 wt % to about 99 wt %; from about 50 wt % to about 99 wt %; from about 75 wt % to about 99 wt %; from about 85 wt % to about 99 wt %; from about 20 wt % to about 80 wt %; from about 90 wt % to about 99 wt %; from about 95 wt % to about 99 wt %; from about 1 wt % to about 20 wt %; from about 1 wt % to about 40 wt %; from about 1 wt % to about 50 wt %; from about 5 wt % to about 20 wt %; from about 5 wt % to about 40 wt %; from about 5 wt % to about 60 wt %; from about 10 wt % to about 80 wt %; from about 10 wt % to about 90 wt %; from about 20 wt % to about 80 wt %; from about 20 wt % to about 90 wt %. Other ranges of amounts are shown in Table 1 , and those amounts are likewise applicable for this use of the composition of the invention.
Mixtures are prepared containing 70% by weight Z-HFO-1336mzzm with about 30% by weight trans- 1,2 dichloroethylene. Several stainless steel coupons are soiled with mineral oil, rosin flux or other contaminants. Then these coupons are then immersed in the solvent blend. The blend could remove the oils in a short period of time. The coupons are observed visually for cleanliness. Similar results are expected with the other mixtures. Similar results are also expected with silicon oil. PROPELLANTS FOR SPRAYABLE COMPOSITIONS
In another embodiment, the compositions of this invention comprising, or consisting essentially of, Z-HFO-1336mzzm, and in particular, blends as described in Table 1 , may be used as propellants in sprayable compositions, either alone or in combination with known propellants. For this use, the amount of the compound Z- HFO-1336mzzm in the composition of the invention can be in accordance with the following ranges: from about 1 wt % to about 99 wt %; from about 30 wt % to about 99 wt %; from about 50 wt % to about 99 wt %; from about 75 wt % to about 99 wt %; from about 85 wt % to about 99 wt %; from about 20 wt % to about 80 wt %; from about 90 wt % to about 99 wt %; from about 95 wt % to about 99 wt %; from about 1 wt % to about 20 wt %; from about 1 wt % to about 40 wt %; from about 1 wt % to about 50 wt %; from about 5 wt % to about 20 wt %; from about 5 wt % to about 40 wt %; from about 5 wt % to about 60 wt %; from about 10 wt % to about 80 wt %; from about 10 wt % to about 90 wt %; from about 20 wt % to about 80 wt %; from about 20 wt % to about 90 wt %. Other ranges of amounts are shown in Table 1, and those amounts are likewise applicable for this use of the composition of the invention.
The sprayable composition includes a material to be sprayed and a propellant comprising, or consisting essentially of Z-HFO-1336mzzm, and in particular, blends as described in Table 1. Inert ingredients, solvents, and other materials may also be present in the sprayable mixture. Preferably, the sprayable composition is an aerosol. Suitable materials to be sprayed include, without limitation, cosmetic materials such as deodorants, perfumes, hair sprays, cleansers, and polishing agents as well as medicinal materials such as anti-asthma and anti-halitosis medications.
For aerosol uses, compositions containing the compound cis- 1,1, 1,4,4,4- hexafluoro-2-butene (Z-HFO-1336mzzm) may preferably be blended with one or more of the following compounds; cis-1234ze, cis-1233zd, HFC-245fa, Methylal (dimethoxymethane), methylethylketone, methylisobutylketone, and/or HFC- 134a. More preferred blends comprise Z-HFO-1336mzzm blended with one or more of the following compounds; pentanes, hexanes, HFC-365, C4F9-O-CH3, C4F9-O-C2H5, propane, butane, isobutane, and/or dimethylether. Most preferred blends comprise Z- HFO-1336mzzm blended with one or more of the following compounds; trans- 1,2- dichloroethylene, trans-1234ze, trans-1233zd, trans-1336, HFC-43-10, HFC-152a, methanol, ethanol, isopropanol, and/or acetone.
In this use, the active ingredient to be sprayed is mixed with inert ingredients, solvents, and other materials may also be present in the sprayable mixture. Preferably, the sprayable composition is an aerosol. Suitable active materials to be sprayed include, without limitation, lubricants, insecticides, cleaners, cosmetic materials such as deodorants, perfumes and hair sprays, polishing agents, as well as medicinal materials such as skin cooling agents (sunburn treatment), topical anesthetics and anti- asthma medications.
In another aspect, the present invention provides propellant comprising, or consisting essentially of, Z-HFO-1336mzzm, either alone or in combination with one or more other compounds, in particular blends as set forth in Table 1, such propellant composition preferably being a sprayable composition. The propellant compositions of the present invention preferably comprise a material to be sprayed and a propellant comprising, or consisting essentially of, Z-HFO-1336mzzm. Inert ingredients, solvents, and other materials may also be present in the sprayable mixture. Preferably, the sprayable composition is an aerosol. Suitable materials to be sprayed include, without limitation, lubricants, insecticides, cleaners, cosmetic materials such as deodorants, perfumes and hair sprays, polishing agents as well as medicinal materials such as anti-asthma components, and any other medication or the like, including preferably any other medicament or agent intended to be inhaled. The medicament or other therapeutic agent is preferably present in the composition in a therapeutic amount, with a substantial portion of the balance of the composition comprising, or consisting essentially of, Z-HFO-1336mzzm.
Aerosol products for industrial, consumer or medical use typically contain one or more propellants along with one or more active ingredients, inert ingredients or solvents. The propellant provides the force that expels the product in aerosolized form. While some aerosol products are propelled with compressed gases like carbon dioxide, nitrogen, nitrous oxide and even air, most commercial aerosols use liquefied gas propellants. The most commonly used liquefied gas propellants are hydrocarbons such as butane, isobutane, and propane. Dimethyl ether and HFC- 152a (1,1- difluoroethane) are also used, either alone or in blends with the hydrocarbon propellants. Unfortunately, all of these liquefied gas propellants are highly flammable and their incorporation into aerosol formulations will often result in flammable aerosol products.
Applicants have come to appreciate the continuing need for nonflammable, liquefied gas propellants with which to formulate aerosol products. The present invention provides compositions of the present invention, particularly and preferably compositions comprising, or consisting essentially of, Z-HFO-1336mzzm, and in particular, those blends set forth in Table 1 , for use in certain industrial aerosol products, including for example spray cleaners, lubricants, and the like, and in medicinal aerosols, including for example to deliver medications to the lungs or mucosal membranes. Examples of this includes metered dose inhalers (MDIs) for the treatment of asthma and other chronic obstructive pulmonary diseases and for delivery of medicaments to accessible mucous membranes or intranasally. The present invention thus includes methods for treating ailments, diseases and similar health related problems of an organism (such as a human or animal) comprising applying a composition of the present invention containing a medicament or other therapeutic component to the organism in need of treatment. In certain preferred embodiments, the step of applying the present composition comprises providing a MDI containing the composition of the present invention (for example, introducing the composition into the MDI) and then discharging the present composition from the MDI.
As used herein, the term "nonflammable" refers to compounds and compositions of the present invention which do not exhibit a flashpoint as measured by one of the standard flash point methods, for example ASTM-1310-86 "Flash point of liquids by tag Open-cup apparatus." The present compositions can be used to formulate a variety of industrial aerosols or other sprayable compositions such as contact cleaners, dusters, lubricant sprays, and the like, and consumer aerosols such as personal care products, household products and automotive products. Z-HFO-1336mzzm is particularly preferred for use as an important component of propellant compositions for in medicinal aerosols such as metered dose inhalers. The medicinal aerosol and/or propellant and/or sprayable compositions of the present invention in many applications include, in addition to Z- HFO-1336mzzm, a medicament such as a beta-agonist, a corticosteroid or other medicament, and, optionally, other ingredients, such as surfactants, solvents, other propellants, flavorants and other excipients.
STERILIZATION
Many articles, devices and materials, particularly for use in the medical field, must be sterilized prior to use for the health and safety reasons, such as the health and safety of patients and hospital staff. The present invention provides methods of sterilizing comprising contacting the articles, devices or material to be sterilized with a composition of the present invention comprising, or consisting essentially of, Z- HFO-1336mzzm, and in particular, the blends defined in Table 1, and optionally in combination with one or more additional sterilizing agents.
For this use, the amount of the compound Z-HFO-1336mzzm in the composition of the invention can be in accordance with the following ranges: from about 1 wt % to about 99 wt %; from about 30 wt % to about 99 wt %; from about 50 wt % to about 99 wt %; from about 75 wt % to about 99 wt %; from about 85 wt % to about 99 wt %; from about 20 wt % to about 80 wt %; from about 90 wt % to about 99 wt %; from about 95 wt % to about 99 wt %; from about 1 wt % to about 20 wt %; from about 1 wt % to about 40 wt %; from about 1 wt % to about 50 wt %; from about 5 wt % to about 20 wt %; from about 5 wt % to about 40 wt %; from about 5 wt % to about 60 wt %; from about 10 wt % to about 80 wt %; from about 10 wt % to about 90 wt %; from about 20 wt % to about 80 wt %; from about 20 wt % to about 90 wt %. Other ranges of amounts are shown in Table 1, and those amounts are likewise applicable for this use of the composition of the invention.
While many sterilizing agents are known in the art and are considered to be adaptable for use in connection with the present invention, in certain preferred embodiments sterilizing agent comprises ethylene oxide, formaldehyde, hydrogen peroxide, chlorine dioxide, ozone and combinations of these. In certain embodiments, ethylene oxide is the preferred sterilizing agent. Those skilled in the art, in view of the teachings contained herein, will be able to readily determine the relative proportions of sterilizing agent and the present compound(s) to be used in connection with the present sterilizing compositions and methods, and all such ranges are within the broad scope hereof.
As is known to those skilled in the art, certain sterilizing agents, such as ethylene oxide, are extremely flammable components, and the compound(s) in accordance with the present invention are included in the present compositions in amounts effective, together with other components present in the composition, to reduce the flammability of the sterilizing composition to acceptable levels. The sterilization methods of the present invention may be either high or low-temperature sterilization of the present invention involves the use of a compound or composition of the present invention at a temperature of from about 250°F to about 270°F, preferably in a substantially sealed chamber. The process can be completed usually in less than about two hours. However, some articles, such as plastic articles and electrical components, cannot withstand such high temperatures and require low- temperature sterilization.
STERILIZATION EXAMPLES
In low temperature sterilization methods, the article to be sterilized is exposed to a fluid comprising, or consisting essentially of, Z-HFO-1336mzzm at a temperature of from about room temperature to about 200°F, more preferably at a temperature of from about room temperature to about 100°F. The low-temperature sterilization of the present invention is preferably at least a two-step process performed in a substantially sealed, preferably air tight, chamber. In the first step (the sterilization step), the articles having been cleaned and wrapped in gas permeable bags are placed in the chamber.
Air is then evacuated from the chamber by pulling a vacuum and perhaps by displacing the air with steam. In certain embodiments, it is preferable to inject steam into the chamber to achieve a relative humidity that ranges preferably from about 30% to about 70%. Such humidities may maximize the sterilizing effectiveness of the sterilant, which is introduced into the chamber after the desired relative humidity is achieved. After a period of time sufficient for the sterilant to permeate the wrapping and reach the interstices of the article, the sterilant and steam are evacuated from the chamber.
In the preferred second step of the process (the aeration step), the articles are aerated to remove sterilant residues. Removing such residues is particularly important in the case of toxic sterilants, although it is optional in those cases in which the substantially non-toxic compounds of the present invention are used. Typical aeration processes include air washes, continuous aeration, and a combination of the two. An air wash is a batch process and usually comprises evacuating the chamber for a relatively short period, for example, 12 minutes, and then introducing air at atmospheric pressure or higher into the chamber.
As used herein the term "non-toxic" refers to compounds and compositions of the present invention which have an acute toxicity level substantially less than, and preferably at least about 30 relative percent less than, the toxicity level of HFO- 1223xd, as measured by the method published in Anesthesiology, Vol. 14, pp. 466- 472, 1953, incorporated here by reference.
This cycle is repeated any number of times until the desired removal of sterilant is achieved. Continuous aeration typically involves introducing air through an inlet at one side of the chamber and then drawing it out through an outlet on the other side of the chamber by applying a slight vacuum to the outlet. Frequently, the two approaches are combined. For example, a common approach involves performing air washes and then an aeration cycle.
LUBRICANTS
In certain preferred embodiments, the compositions of the present invention comprising, or consisting essentially of, Z-HFO-1336mzzm, and in particular, the blends defined in Table 1 , may further comprise a lubricant. Any of a variety of conventional lubricants may be used in the compositions of the present invention. An important requirement for the lubricant is that, when in use in a refrigerant system, there must be sufficient lubricant returning to the compressor of the system such that the compressor is lubricated. Thus, suitability of a lubricant for any given system is determined partly by the refrigerant/lubricant characteristics and partly by the characteristics of the system in which it is intended to be used.
Examples of suitable lubricants include mineral oil, alkyl benzenes, polyol esters, including polyalkylene glycols, PAG oil, and the like. Mineral oil, which comprises paraffin oil or naphthenic oil, is commercially available. Commercially available mineral oils include Witco LP 250 (registered trademark) from Witco, Zerol 300 (registered trademark) from Shrieve Chemical, Sunisco 3GS from Witco, and Calumet R015 from Calumet. Commercially available alkyl benzene lubricants include Zerol 150 (registered trademark). Commercially available esters include neopentyl glycol dipelargonate which is available as Emery 2917 (registered trademark) and Hatcol 2370 (registered trademark). Other useful esters include phosphate esters, dibasic acid esters, and fluoroesters. Preferred lubricants include polyalkylene glycols and esters. Certain more preferred lubricants include
polyalkylene glycols. EXTRACTION OF FLAVORS AND FRAGRANCES
The compositions of the present invention comprising, or consisting essentially of Z-HFO-1336mzzm, and in particular, the blends as described in Table 1 , also provide advantage when used to carry, extract or separate desirable materials from biomass. These materials include, but are not limited to, essential oils such as flavors and fragrances, oils which may be used as fuel, medicinals, nutraceuticals, etc.
For this use, the amount of the compound Z-HFO-1336mzzm in the composition of the invention can be in accordance with the following ranges: from about 1 wt % to about 99 wt %; from about 30 wt % to about 99 wt %; from about 50 wt % to about 99 wt %; from about 75 wt % to about 99 wt %; from about 85 wt % to about 99 wt %; from about 20 wt % to about 80 wt %; from about 90 wt % to about 99 wt %; from about 95 wt % to about 99 wt %; from about 1 wt % to about 20 wt %; from about 1 wt % to about 40 wt %; from about 1 wt % to about 50 wt %; from about 5 wt % to about 20 wt %; from about 5 wt % to about 40 wt %; from about 5 wt % to about 60 wt %; from about 10 wt % to about 80 wt %; from about 10 wt % to about 90 wt %; from about 20 wt % to about 80 wt %; from about 20 wt % to about 90 wt %. Other ranges of amounts are shown in Table 1, and those amounts are likewise applicable for this use of the composition of the invention.
EXTRACTION EXAMPLE
The suitability of the present compositions for this purpose is demonstrated by a test procedure in which a sample of Jasmone is put into a heavy walled glass tube. A suitable amount of a Z-HFO-1336mzzm containing composition of the present invention is added to the glass tube. The tube is then frozen and sealed. Upon thawing the tube, when the mixture has one liquid phase containing Jasome and the Z-HFO- 1336mzzm containing composition of this invention; this test establishes the favorable use of the composition as an extractant, carrier or part of delivery system for flavor and fragrance formulations, in aerosol and other formulations. It also establishes its potential as an extractant of flavors and fragrances, including from plant matter. FLAMMABILITY REDUCTION METHODS
According to certain other preferred embodiments, the present invention provides methods for reducing the flammability of fluids, said methods comprising adding a Z-HFO-1336mzzm containing composition, such as the blends defined in Table 1 , to said fluid. The flammability associated with any of a wide range of otherwise flammable fluids may be reduced according to the present invention. For example, the flammability associated with fluids such as ethylene oxide, flammable hydro fluorocarbons and hydrocarbons, including: HFC- 152a, 1,1,1-trifluoroethane (HFC-143a), difluoromethane (HFC-32), propane, hexane, octane, and the like can be reduced according to the present invention. For the purposes of the present invention, a flammable fluid may be any fluid exhibiting flammability ranges in air as measured via any standard conventional test method, such as ASTM E-681, and the like.
For this use, the amount of the compound Z-HFO-1336mzzm in the composition of the invention can be in accordance with the following ranges: from about 1 wt % to about 99 wt %; from about 30 wt % to about 99 wt %; from about 50 wt % to about 99 wt %; from about 75 wt % to about 99 wt %; from about 85 wt % to about 99 wt %; from about 20 wt % to about 80 wt %; from about 90 wt % to about 99 wt %; from about 95 wt % to about 99 wt %; from about 1 wt % to about 20 wt %; from about 1 wt % to about 40 wt %; from about 1 wt % to about 50 wt %; from about 5 wt % to about 20 wt %; from about 5 wt % to about 40 wt %; from about 5 wt % to about 60 wt %; from about 10 wt % to about 80 wt %; from about 10 wt % to about 90 wt %; from about 20 wt % to about 80 wt %; from about 20 wt % to about 90 wt %. Other ranges of amounts are shown in Table 1, and those amounts are likewise applicable for this use of the composition of the invention.
Any suitable amounts of the present compounds or compositions may be added to reduce flammability of a fluid according to the present invention. As will be recognized by those of skill in the art, the amount added will depend, at least in part, on the degree to which the subject fluid is flammable and the degree to which it is desired to reduce the flammability thereof. In certain preferred embodiments, the amount of compound or composition added to the flammable fluid is effective to render the resulting fluid substantially non-flammable.
FLAMMABILITY REDUCTION EXAMPLE
This example demonstrates the use of the compositions of the present invention for reduction of flammability of another composition.
In an ASTM E681 apparatus at ambient conditions, one mixes isopentane vapor and Z-HFO-1336mzzm to find that the lower flammability limit (LFL) increases as more Z-HFO-1336mzzm is added. This indicates lower flammability for the blend than that of the isopentane by itself leading; a less flammable material which is easier to use safely. This higher LFL allow higher concentration in air without concern for ignition source and potential fires or explosions.
Two aerosol cans are filled with methanol/water and one is pressurized with HFC-152a while the other is pressurized with HFC-152a/ Z-HFO-1336mzzm. When the aerosols from the cans are sprayed over and into a candle flame as in the aerosol flame extension test procedure one observe less flame extension from the can that was pressured with Z-HFO-1336mzzm.
FLAME SUPPRESSION METHODS
The present invention further provides methods of suppressing a flame, said methods comprising contacting a flame with a Z-HFO-1336mzzm containing composition of the present invention, particularly the blends described in Table 1. If desired, additional flame suppressing agents can also be used with the composition of the present invention, either in admixture, or as a secondary flame suppressing agent. One class of compounds for this purpose is the fluoroketones. One especially preferred fluoroketone is dodecafluoro-2-methylpentan-3-one, which is sold by the 3M Company under the trade name Novec 1230. For this use, the amount of the compound Z-HFO-1336mzzm in the composition of the invention can be in accordance with the following ranges: from about 1 wt % to about 99 wt %; from about 30 wt % to about 99 wt %; from about 50 wt % to about 99 wt %; from about 75 wt % to about 99 wt %; from about 85 wt % to about 99 wt %; from about 20 wt % to about 80 wt %; from about 90 wt % to about 99 wt %; from about 95 wt % to about 99 wt %; from about 1 wt % to about 20 wt %; from about 1 wt % to about 40 wt %; from about 1 wt % to about 50 wt %; from about 5 wt % to about 20 wt %; from about 5 wt % to about 40 wt %; from about 5 wt % to about 60 wt %; from about 10 wt % to about 80 wt %; from about 10 wt % to about 90 wt %; from about 20 wt % to about 80 wt %; from about 20 wt % to about 90 wt %. Other ranges of amounts are shown in Table 1, and those amounts are likewise applicable for this use of the composition of the invention.
Any suitable methods for contacting the flame with the present composition may be used. For example, a composition of the present invention may be sprayed, poured, and the like onto the flame, or at least a portion of the flame may be immersed in the composition.
FLAME SUPPRESSION EXAMPLE
This example demonstrates the use of the compositions comprising, or consisting essentially of Z-HFO-1336mzzm, and in particular, the blends as described in Table 1 , for use as a flame suppression composition.
For this use, the amount of the compound Z-HFO-1336mzzm in the composition of the invention can be in accordance with the following ranges: from about 1 wt % to about 99 wt %; from about 30 wt % to about 99 wt %; from about 50 wt % to about 99 wt %; from about 75 wt % to about 99 wt %; from about 85 wt % to about 99 wt %; from about 20 wt % to about 80 wt %; from about 90 wt % to about 99 wt %; from about 95 wt % to about 99 wt %; from about 1 wt % to about 20 wt %; from about 1 wt % to about 40 wt %; from about 1 wt % to about 50 wt %; from about 5 wt % to about 20 wt %; from about 5 wt % to about 40 wt %; from about 5 wt % to about 60 wt %; from about 10 wt % to about 80 wt %; from about 10 wt % to about 90 wt %; from about 20 wt % to about 80 wt %; from about 20 wt % to about 90 wt %. Other ranges of amounts are shown in Table 1, and those amounts are likewise applicable for this use of the composition of the invention.
To evaluate total flooding fire suppression applications the NFPA 2001 cup burner is typically used. Here a small fire of heptane is located in a chimney which has air flowing around the flame to supply the needed oxygen. To this air stream Z- HFO-1336mzzm is added until the flame is extinguished. The concentration obtain thusly with appropriate safety factor as outlined in NFPA 2001 can be used to extinguish fires.
Fires can be extinguished locally using portable fire extinguishers. Such applications are classified as streaming applications. Using UL 711 a wood crib fire is started and extinguished using Z-HFO-1336mzzm. Secondly a heptane pan fire is tested using Z-HFO-1336mzzm. The results of this UL 711 testing give one the rating for the fire extinguisher tested.
While the present invention has been particularly shown and described with reference to preferred embodiments, it will be readily appreciated by those of ordinary skill in the art that various changes and modifications may be made without departing from the scope of the invention. It is intended that the claims be interpreted to cover the disclosed embodiment, those alternatives which have been discussed above and all equivalents thereto.

Claims

1. A mixture comprising the compound cis- 1,1,1 ,4,4,4-hexafluoro-2- butene and at least one additional compound selected from the group consisting of HFOs, HFCs, HFEs, CFCs, C02, olefins, organic acids, alcohols, hydrocarbons, ethers, aldehydes, ketones, and others such as methyl formate, formic acid, trans- 1,2 dichloroethylene, carbon dioxide, cis-HFO-1234ze + HFO-1225yez; mixtures of these plus water; mixtures of these plus C02; mixtures of these trans 1 ,2-dichloroethylene (DCE); mixtures of these plus methyl formate; mixtures with cis-HFO-1234ze + C02; mixtures with cis-HFO-1234ze + HFO-1225yez + C02; and mixtures with cis-HFO- 1234ze + HFC-245fa.
2. The mixture of Claim 1, wherein the additional compound comprises one or more of the compounds selected from the group consisting of trans- 1,2- dichloroethylene; carbon dioxide; cis-HFO-1234ze; HFO-1225yez; low molecular weight alcohols; low global warming potential olefins; chlorofluorocarbons; ketones; aldehydes; organic acids; and alkanes.
2. The mixture of Claim 1, wherein the additional compound comprises one or more of the compounds selected from the group consisting of cis-HFO-1234ze; HFO-1234yf; HFO 1225ye(Z); HFO 1225ye(E); HF01225yc; HFO-1233zd; HFC- 1233xf; (CF3)2CFCH=CHF (E & Z); (CF3)2CFCH=CF2; CF3CHFC=CHF (E & Z); and (C2F5)(CF3)C=CH2.
3. The mixture of Claim 1, wherein the additional compound comprises one or more of the compounds selected from the group consisting of HFC-245eb; HFC-245ca; HFC-227ea; HFC-236ea; HFC-236fa; HFC-134a; HFC-134; HFC-152a; HFC-32; HFC-125; HFC-143a; HFC-365mfc; HFC-161; and HFC-43-10mee.
4. The mixture of Claim 1, wherein the additional compound comprises one or more of the compounds selected from the group consisting of CHF2-0-CHF2; CHF2-0-CH2F; CH2F-0-CH2F; CH2F-0-CH3; cyclo-CF2-CH2-CF2-0; cyclo-CF2-CF2-CH2-0; CHF2-0-CF2-CHF2; CF3-CF2-0-CH2F;
CHF2-0-CHF-CF3; CHF2-0-CF2-CHF2; CH2F-0-CF2-CHF2; CF3-0-CF2-CH3; CHF2-CHF-0-CHF2; CF3-0-CHF-CH2F; CF3-CHF-0-CH2F; CF3-0-CH2-CHF2; CHF2-0-CH2-CF3; CH2F-CF2-0-CH2F; CHF2-0-CF2-CH3; CHF2-CF2-0-CH3; CH2F-0-CHF-CH2F; CHF2-CHF-0-CH2F; CF3-0-CHF-CH3; CF3-CHF-0-CH3; CHF2-0-CH2-CHF2; CF3-0-CH2-CH2F; CF3-CH2-0-CH2F; and
CF2H-CF2-CF2-0-CH3.
5. The mixture of Claim 1, wherein the additional compound comprises one or more of the compounds selected from the group consisting of propane; butane; isobutane; neopentane; isopentane; cyclopentane; n-hexane; isohexane; and heptane.
6. The mixture of Claim 1, for use as a blowing agent composition.
7. The blowing agent of Claim 6, useful for panel foams, comprising a mixture of HFO-1336mzzm and cyclopentane.
8. The blowing agent of Claim 6, useful for panel foams, comprising a mixture of HFO-1336mzzm and isopentane.
9. The blowing agent of Claim 6, useful for panel foams, comprising a mixture of HFO-1336mzzm and n-pentane.
10. The blowing agent of Claim 6, useful for spray foams, comprising a mixture of HFO-1336mzzm and HFC-245fa.
11. The blowing agent of Claim 6, useful for spray foams, comprising a mixture of HFO-1336mzzm and HFC-365mfc.
12. The blowing agent of Claim 6, useful for spray foams, comprising a mixture of HFO-1336mzzm and HFO-1233zd(E).
13. The mixture of Claim 1, for use as a polyol premix composition.
14. The mixture of Claim 1, for use as a foam composition.
15. The mixture of Claim 1, for use as a cleaning and contaminant removal composition.
16. The mixture of Claim 1, for use as a working fluid in an ORC power cycle.
PCT/US2010/060646 2009-12-16 2010-12-16 Compositions and uses of cis-1,1,1,4,4,4-hexafluoro-2-butene WO2011084553A2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
ES10842581T ES2761933T3 (en) 2009-12-16 2010-12-16 Compositions and uses of cis-1,1,1,4,4,4-hexafluoro-2-butene
PL10842581T PL2513023T3 (en) 2009-12-16 2010-12-16 Compositions and uses of cis-1,1,1,4,4,4-hexafluoro-2-butene
EP10842581.0A EP2513023B1 (en) 2009-12-16 2010-12-16 Compositions and uses of cis-1,1,1,4,4,4-hexafluoro-2-butene
EP17196370.5A EP3342840A3 (en) 2009-12-16 2010-12-16 Compositions and uses of cis-1,1,1,4,4,4-hexafluoro-2-butene
DK10842581.0T DK2513023T3 (en) 2009-12-16 2010-12-16 COMPOSITIONS AND APPLICATIONS OF CIS-1,1,1,4,4,4-HEXAFLUOR-2-BUTEN
JP2012544806A JP2013514450A (en) 2009-12-16 2010-12-16 Compositions and uses of cis-1,1,1,4,4,4-hexafluoro-2-butene
CN201080063844.0A CN102741204B (en) 2009-12-16 2010-12-16 The composition of cis-1,1,1,4,4,4-hexafluoro-2-butene and purposes

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US28703309P 2009-12-16 2009-12-16
US61/287,033 2009-12-16
US12/968,506 2010-12-15
US12/968,506 US20110144216A1 (en) 2009-12-16 2010-12-15 Compositions and uses of cis-1,1,1,4,4,4-hexafluoro-2-butene

Publications (2)

Publication Number Publication Date
WO2011084553A2 true WO2011084553A2 (en) 2011-07-14
WO2011084553A3 WO2011084553A3 (en) 2011-10-13

Family

ID=44143648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/060646 WO2011084553A2 (en) 2009-12-16 2010-12-16 Compositions and uses of cis-1,1,1,4,4,4-hexafluoro-2-butene

Country Status (8)

Country Link
US (3) US20110144216A1 (en)
EP (2) EP2513023B1 (en)
JP (4) JP2013514450A (en)
CN (2) CN105859515A (en)
DK (1) DK2513023T3 (en)
ES (1) ES2761933T3 (en)
PL (1) PL2513023T3 (en)
WO (1) WO2011084553A2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012106305A1 (en) * 2011-01-31 2012-08-09 E.I. Du Pont De Nemours And Company Producing heating using working fluids comprising z 1,1,1,4,4,4-hexafluoro-2-butene
WO2012106565A3 (en) * 2011-02-04 2013-02-28 E. I. Du Pont De Nemours And Company Azeotropic and azeotrope-like compositions involving certain haloolefins and uses thereof
JP2014500904A (en) * 2010-11-25 2014-01-16 アルケマ フランス Composition of chlorotrifluoropropene and hexafluorobutene
WO2014030654A1 (en) * 2012-08-21 2014-02-27 東ソー株式会社 Raw material blended composition for producing polyurethane foam and method for producing polyurethane foam or isocyanurate-modified polyurethane foam
CN104263323A (en) * 2014-09-09 2015-01-07 西安交通大学 Mixed refrigerant replacing HCFC-22 as well as preparation method and application thereof
US9145507B2 (en) 2011-07-01 2015-09-29 Arkema France Compositions of 2,4,4,4-tetrafluorobut-1-ene and cis-1,1,1,4,4,4-hexafluorobut-2-ene
JP2015533029A (en) * 2012-10-30 2015-11-16 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Fluorocarbon molecules for high aspect ratio oxide etching
US9267066B2 (en) 2010-11-25 2016-02-23 Arkema France Refrigerants containing (E)-1,1,1,4,4,4-hexafluorobut-2-ene
EP2438135B1 (en) 2009-06-03 2016-03-02 E. I. du Pont de Nemours and Company Chiller apparatus containing cis-1,1,1,4,4,4-hexafluoro-2 butene and methods of producing cooling therein
EP2885345B1 (en) 2012-08-15 2016-05-25 E. I. du Pont de Nemours and Company Azeotropic and azeotrope-like compositions of 2,3,3,4,4,4-hexafluoro-1-butene and 1,1,1,2,3,3-hexafluoropropane and uses thereof
JP2017201022A (en) * 2017-05-30 2017-11-09 アルケマ フランス Composition of chlorotrifluoropropene and hexafluorobutene
US9909045B2 (en) 2012-04-04 2018-03-06 Arkema France Compositions based on 2,3,3,4,4,4-hexafluorobut-1-ene
US10023681B2 (en) 2012-10-24 2018-07-17 Evonik Degussa Gmbh Delay action catalyst for improving the stability of polyurethane systems having halogen containing blowing agents
WO2018209072A1 (en) * 2017-05-10 2018-11-15 The Chemours Company Fc, Llc Z-hfo-1336mzz blowing agent blends for foaming thermoplastic polymer comprising polystyrene
WO2018213011A1 (en) * 2017-05-19 2018-11-22 The Chemours Company Fc, Llc Fluorinated compounds useful as foam expansion agents
US10150901B2 (en) 2010-12-03 2018-12-11 Arkema France Compositions containing 1,1,1,4,4,4-hexafluorobut-2-ene and 3,3,4,4,4-petrafluorobut-1-ene
KR20190068512A (en) * 2010-10-28 2019-06-18 허니웰 인터내셔널 인코포레이티드 Mixtures containing 1,1,1,4,4,4-hexafluorobutene and 1-chloro-3,3,3-trifluoropropene
AU2018236730B2 (en) * 2010-04-28 2019-08-01 The Chemours Company Fc, Llc. Foam expansion agent compositions containing hydrohaloolefin and water and their uses in the preparation of polyurethane and polyisocyanurate polymer foams
EP3433093B1 (en) 2016-07-20 2019-09-04 Brugg Rohr Ag Holding Thermally insulated medium pipes having hfo-containing cell gas
WO2019231874A1 (en) * 2018-05-28 2019-12-05 Chemours-Mitsui Fluoroproducts Co., Ltd Non-azeotropic cleaning composition
WO2020106930A1 (en) * 2018-11-21 2020-05-28 Honeywell International Inc. Nonflammable refrigerants having low gwp, and systems for and methods of providing refrigeration

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8463441B2 (en) 2002-12-09 2013-06-11 Hudson Technologies, Inc. Method and apparatus for optimizing refrigeration systems
KR101656109B1 (en) * 2008-05-07 2016-09-08 이 아이 듀폰 디 네모아 앤드 캄파니 Compositions comprising 2,3-dichloro-1,1,1-trifluoropropane, 2-chloro-1,1,1-trifluoropropene, 2-chloro-1,1,1,2-tetrafluoropropane or 2,3,3,3-tetrafluoropropene
WO2009154151A1 (en) * 2008-06-16 2009-12-23 三菱電機株式会社 Scroll compressor
MX337646B (en) * 2009-02-03 2016-03-14 Du Pont Foam-forming compositions containing mixtures of cis-1,1,1,4,4,4-hexafluoro-2-butene and 1,1,1,3,3-pentafluoropro pane and their uses in the preparation of polyisocyanate-based foams.
FR2948679B1 (en) * 2009-07-28 2011-08-19 Arkema France HEAT TRANSFER METHOD
US8821749B2 (en) 2010-04-26 2014-09-02 E I Du Pont De Nemours And Company Azeotrope-like compositions of E-1,1,1,4,4,4-hexafluoro-2-butene and 1-chloro-3,3,3-trifluoropropene
JP6158182B2 (en) * 2011-08-19 2017-07-05 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Method and composition for organic Rankine cycle for generating mechanical energy from heat
US20130104575A1 (en) * 2011-11-02 2013-05-02 E I Du Pont De Nemours And Company Use of compositions comprising 1,1,1,2,3-pentafluoropropane and optionally z-1,1,1,4,4,4-hexafluoro-2-butene in high temperature heat pumps
US20130104573A1 (en) * 2011-11-02 2013-05-02 E I Du Pont De Nemours And Company Use of compositions comprising 1,1,1,2,3-pentafluoropropane and optionally z-1,1,1,4,4,4-hexafluoro-2-butene in chillers
US9003797B2 (en) * 2011-11-02 2015-04-14 E L Du Pont De Nemours And Company Use of compositions comprising 1,1,1,2,3-pentafluoropropane and optionally Z-1,1,1,4,4,4-hexafluoro-2-butene in power cycles
MX344116B (en) 2011-11-10 2016-12-06 Joseph Nappa Mario Catalytic fluorination process of making hydrohaloalkane.
EP2785777A1 (en) * 2011-12-02 2014-10-08 E. I. Du Pont de Nemours and Company Foam expansion agent compositions containing z-1,1,1,4,4,4-hexafluoro-2-butene and their uses in the preparation of polyurethane and polyisocyanurate polymer foams
WO2013096426A1 (en) * 2011-12-21 2013-06-27 E. I. Du Pont De Nemours And Company Use of e-1,1,1,4,4,5,5,5-octafluoro-2-pentene and optionally 1,1,1,2,3-pentafluoropropane in chillers
CN104114243A (en) * 2012-02-17 2014-10-22 纳幕尔杜邦公司 Azeotrope-like compositions of Z-1,1,1,4,4,4-hexafluoro-2-butene and E-1,1,1,4,4,4-hexafluoro-2-butene and uses thereof
CN102675579A (en) * 2012-05-07 2012-09-19 南京宝新聚氨酯有限公司 Polyurethane reaction composition and method for preparing hard foam by using same
US20150191576A1 (en) * 2012-08-01 2015-07-09 E I Du Pont De Nemours And Company Azeotropic and azeotrope-like compositions of e-1,3,4,4,4-pentafluoro-3-trifluoromethyl-1-butene and z-1,1,1,4,4,4-hexafluoro-2-butene and uses thereof
CN113897181A (en) 2013-01-25 2022-01-07 特灵国际有限公司 Refrigerant additives and compositions
GB2510911A (en) * 2013-02-19 2014-08-20 Mexichem Amanco Holding Sa Heat transfer compositions
KR20180039771A (en) * 2014-01-24 2018-04-18 아사히 가세이 겐자이 가부시키가이샤 Phenol resin foam body and method for producing same
US20150210818A1 (en) * 2014-01-27 2015-07-30 E I Du Pont De Nemours And Company Cryogenic insulation foam
WO2015140827A1 (en) * 2014-03-17 2015-09-24 三菱電機株式会社 Heat pump device
CN103965836B (en) * 2014-04-02 2017-04-19 浙江大学 Environment-friendly refrigerant for automobile air conditioner and preparation method of refrigerant
JP6391998B2 (en) * 2014-06-09 2018-09-19 株式会社カネカ Blowing agent
DE102014220985A1 (en) * 2014-07-03 2016-01-07 Siemens Aktiengesellschaft Apparatus and method for using 1,1,1,4,4,4-hexafluoro-2-butene as a gaseous, electrically insulating and / or arc-extinguishing medium
CN106795310A (en) * 2014-07-10 2017-05-31 欧文斯科宁知识产权资产有限公司 The method for manufacturing extruded polystyrene foam body as main foaming agent using carbon dioxide
US10188887B2 (en) * 2014-08-12 2019-01-29 The Chemours Company Fc, Llc Azeotropic and azeotrope-like compositions of HFO-E-1,3,4,4,4-PENTAFLUORO-3-trifluoromethyl-1-butene and uses thereof
US9650596B2 (en) * 2014-08-27 2017-05-16 Illinois Tool Works Inc. Non-flammable ternary cleaning compositions
CN116042183A (en) 2014-09-26 2023-05-02 大金工业株式会社 Halogenated alkene composition and use thereof
ES2774378T3 (en) 2014-09-26 2020-07-20 Daikin Ind Ltd Haloolefin based composition
CN107207948B (en) * 2015-02-06 2021-08-06 科慕埃弗西有限公司 Compositions comprising Z-1, 1, 1, 4, 4, 4-hexafluoro-2-butene and uses thereof
US10759920B2 (en) * 2015-02-06 2020-09-01 The Chemours Company Fc, Llc Compositions comprising E-1,1,1,4,4,4-hexafluoro-2-butene and uses thereof
EP3265508A1 (en) * 2015-03-02 2018-01-10 The Chemours Company FC, LLC Azeotropic and azeotrope-like compositions of z-1-chloro-3,3,3-trifluoropropene
WO2016176369A1 (en) 2015-04-27 2016-11-03 Schultz Kenneth J Improving glide in refrigerant blends and/or azeotopic blends, alternatives to r123 refrigerant, and refrigerant compositions, methods, and systems thereof
FR3040525B1 (en) * 2015-08-28 2017-08-11 Arkema France USE OF HEXAFLUOROBUTENES FOR THE INSULATION OR EXTINCTION OF ELECTRIC ARCS
JP6599749B2 (en) * 2015-12-14 2019-10-30 三井・ケマーズ フロロプロダクツ株式会社 Azeotrope-like composition
JP6713776B2 (en) * 2016-01-14 2020-06-24 フマキラー株式会社 Pest control agent
JP6915816B2 (en) * 2016-01-14 2021-08-04 フマキラー株式会社 Pest control agent
JP6914264B2 (en) 2016-01-22 2021-08-04 ザ ケマーズ カンパニー エフシー リミテッド ライアビリティ カンパニー Effervescence of polyisocyanate / active hydrogen-containing compound reaction product
EP3452537B1 (en) * 2016-05-06 2024-08-21 The Chemours Company FC, LLC Foaming of styrene polymer
US10612825B2 (en) 2016-05-10 2020-04-07 Trane International Inc. Lubricant blends to reduce refrigerant solubility
US20180022884A1 (en) * 2016-07-25 2018-01-25 Honeywell International Inc. Polyester polyol compositions containing hfo-1336mzzm (z)
MX2019002462A (en) * 2016-09-23 2019-07-15 Chemours Co Fc Llc Novel foams with z-1,1,1,4,4,4-hexafluoro-2-butene.
CN108285775B (en) * 2017-01-09 2020-10-16 浙江省化工研究院有限公司 Composition containing 1,1,1,4,4, 4-hexafluoro-2-butene
CA2963751A1 (en) * 2017-02-13 2018-08-13 Honeywell International Inc. Compositions and uses of cis-1,1,1,4,4,4-hexafluoro-2-butene
JPWO2018159430A1 (en) * 2017-03-01 2019-12-19 パナソニックIpマネジメント株式会社 Insulation, insulation box, insulation door and refrigerator
ES2982187T3 (en) * 2017-03-20 2024-10-15 The Chemours Company Fc Llc Compositions and uses of trans-1,1,1,4,4,4-hexafluoro-2-butene
US10920181B2 (en) 2017-05-03 2021-02-16 Illinois Tool Works Inc. Aerosol cleaning composition
JP7308153B2 (en) * 2017-05-08 2023-07-13 ハネウェル・インターナショナル・インコーポレーテッド Fire extinguishing composition, system and method
US11083921B2 (en) * 2017-05-08 2021-08-10 Honeywell International Inc. Fire extinguishing compositions, systems and methods
WO2018218102A1 (en) * 2017-05-26 2018-11-29 Honeywell International Inc. Compositions and uses of cis-1,1,1,4,4,4-hexafluoro-2-butene and cyclopentane
AT17135U3 (en) * 2017-07-11 2021-09-15 Brugg Rohr Ag Holding Thermally insulated carrier pipes with cell gas containing HFO
WO2019096763A1 (en) * 2017-11-17 2019-05-23 Covestro Deutschland Ag Polyurethane foam composite panel
US20200399515A1 (en) * 2017-11-27 2020-12-24 The Chemours Company Fc, Llc Aerosol compositions
US10407602B2 (en) * 2017-11-30 2019-09-10 Trane International Inc. Low global warming potential refrigerants in liquid chillers
CN108129631A (en) * 2017-12-28 2018-06-08 青岛海尔股份有限公司 Polyurethane rigid foam plastic and preparation method thereof
FR3079359B1 (en) 2018-03-22 2020-10-09 Arkema France USE OF 1-CHLORO-2,3,3,3-TETRAFLUOROPROPENE FOR INSULATING OR EXTINGUISHING ELECTRIC ARCS
JP7555268B2 (en) * 2018-05-04 2024-09-24 ザ ケマーズ カンパニー エフシー リミテッド ライアビリティ カンパニー Foam with improved thermal insulation properties
WO2019232038A1 (en) * 2018-05-29 2019-12-05 Owens Corning Intellectual Capital, Llc Blowing agent compositions for insulating foams
US20210253817A1 (en) * 2018-08-23 2021-08-19 The Chemours Company Fc, Llc Azeotropic and azeotrope-like compositions of z-1,1,1,4,4,4-hexafluorobut-2-ene
US20220002582A1 (en) * 2018-09-25 2022-01-06 Sekisui Chemical Co., Ltd. Mixed liquid agent, polyurethane composition, polyurethane foam, spray can, and mixing system
KR102122945B1 (en) * 2018-10-11 2020-06-15 한국과학기술원 Transcritical carbon dioxide power generation system
CN109762199B (en) * 2018-12-18 2022-04-01 浙江巨化新材料研究院有限公司 Polymer blowing agent for thermoset foam and method for producing thermoset foam
WO2020180839A1 (en) * 2019-03-04 2020-09-10 The Chemours Company Fc, Llc Heat transfer compositions comprising r-1225ye(e), hfo-1234yf, r-32, r-125, and co2
EP3976700A1 (en) * 2019-05-29 2022-04-06 The Chemours Company FC, LLC Blowing agent blends for thermoplastic polymers
US20220235193A1 (en) * 2019-06-24 2022-07-28 The Chemours Company Fc, Llc Blowing agent blends for thermoplastic polymers
EP4041841A1 (en) * 2019-10-10 2022-08-17 The Chemours Company FC, LLC Azeotrope and azeotrope-like compositions comprising neopentane and isomers of hfo-1336mzz
JP7535380B2 (en) * 2020-02-05 2024-08-16 株式会社ダイゾー Aerosol Composition
JP2023532875A (en) 2020-06-25 2023-08-01 ビーエーエスエフ ソシエタス・ヨーロピア Polyisocyanurate resin foam with high compressive strength, low thermal conductivity and high surface quality
US11655328B2 (en) 2020-09-02 2023-05-23 Ventrex Systems, LLC Dimensionally stable closed-cell and rigid foams produced with methylal blowing agent
CN113667455B (en) * 2021-05-24 2022-06-28 浙江大学 Mixed refrigerant containing trans-1, 1,1,4,4, 4-hexafluoro-2-butene and application thereof
US20240158597A1 (en) 2021-06-09 2024-05-16 The Chemours Company Fc, Llc Compositions comprising e-hfo-1336mzz and methyl formate and their use as expansion agents for thermoplastic foam
CA3228703A1 (en) * 2021-08-16 2023-02-23 Hayim Abrevaya Foamable thermoplastic compositions, thermoplastic foams and methods of making same
CN113789155B (en) * 2021-09-16 2022-06-28 珠海格力电器股份有限公司 Mixed refrigerant and air conditioning system
US20230203259A1 (en) * 2021-12-27 2023-06-29 Icp Construction, Inc. Open Cell Polyurethane Flame-Retardant Foams
CN114507508B (en) * 2022-03-15 2023-03-21 浙江大学 Application of heat pump mixed working medium
WO2024075802A1 (en) * 2022-10-04 2024-04-11 ダイキン工業株式会社 Fluorine-containing ether compound and method for producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060243945A1 (en) * 2005-03-04 2006-11-02 Minor Barbara H Compositions comprising a fluoroolefin
US20070010592A1 (en) * 2002-10-25 2007-01-11 Honeywell International Inc. Foaming agents and compositions containing fluorine substituted olefins and methods of foaming
WO2008121776A1 (en) * 2007-03-29 2008-10-09 Arkema Inc. Hydrofluoropropene blowing agents for thermoplastics
WO2008154612A1 (en) * 2007-06-12 2008-12-18 E.I. Du Pont De Nemours And Company Azeotropic and azeotrope-like compositions of e-1,1,1,4,4,4-hexafluoro-2-butene

Family Cites Families (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE536296A (en) * 1954-03-22
IT535373A (en) * 1954-06-10
US2846458A (en) * 1956-05-23 1958-08-05 Dow Corning Organosiloxane ethers
DE3725213A1 (en) * 1987-07-30 1989-02-09 Bayer Ag PRODUCTION OF POLYFLUORBUTENES
JPH05179043A (en) * 1991-11-18 1993-07-20 Daikin Ind Ltd Blowing agent comprising fluorobutene and production of plastic foam
DE4237617A1 (en) * 1992-11-06 1994-05-11 Bayer Ag Use of substituted benzimidazoles
DE4237597A1 (en) * 1992-11-06 1994-05-11 Bayer Ag Substituted benzimidazoles
US5516951A (en) * 1992-11-20 1996-05-14 Daikin Industries Ltd. Process for preparing 1,1,1,4,4,4-hexafluoro-2-butene and 1,1,1,4,4,4-hexafluorobutane
JP3304468B2 (en) * 1993-01-29 2002-07-22 ダイキン工業株式会社 Methods for producing 1,1,1,4,4,4-hexafluoro-2-butenes and 1,1,1,4,4,4-hexafluorobutane
US5539008A (en) * 1993-12-29 1996-07-23 Minnesota Mining And Manufacturing Company Foamable composition containing unsaturated perfluorochemical blowing agent
US5900342A (en) * 1996-04-26 1999-05-04 Eastman Kodak Company Photoconductive element having an outermost layer of a fluorinated diamond-like carbon and method of making the same
WO1997040679A1 (en) * 1996-05-01 1997-11-06 Imarx Pharmaceutical Corp. Methods for delivering compounds into a cell
DE19630283A1 (en) * 1996-07-26 1998-01-29 Basf Ag Process for the production of rigid polyurethane foams
US6120751A (en) * 1997-03-21 2000-09-19 Imarx Pharmaceutical Corp. Charged lipids and uses for the same
US5849443A (en) * 1998-02-13 1998-12-15 Eastman Kodak Company Method of making multilayer electrophotographic elements
US5849445A (en) * 1998-02-13 1998-12-15 Eastman Kodak Company Multilayer photoconductive elements having low dark decay
US6053008A (en) * 1998-12-30 2000-04-25 Praxair Technology, Inc. Method for carrying out subambient temperature, especially cryogenic, separation using refrigeration from a multicomponent refrigerant fluid
US6589355B1 (en) * 1999-10-29 2003-07-08 Alliedsignal Inc. Cleaning processes using hydrofluorocarbon and/or hydrochlorofluorocarbon compounds
US7077960B2 (en) * 2000-03-07 2006-07-18 Solvay (Societe Anonyme) Method for obtaining a purified hydrofluoroalkane, purified hydrofluoroalkane, use of same and method for analysing same
FR2806077B1 (en) * 2000-03-07 2004-01-30 Solvay PROCESS FOR OBTAINING A PURE HYDROFLUOROALKANE, PURE HYDROFLUOROALKANE, USE OF THE HYDROFLUOROALKANE AND METHOD OF ANALYSIS OF A HYDROFLUOROALKANE
US6516837B2 (en) * 2000-09-27 2003-02-11 Honeywell International Inc. Method of introducing refrigerants into refrigeration systems
WO2003099955A1 (en) * 2002-05-24 2003-12-04 Matsumoto Yushi-Seiyaku Co., Ltd. Heat-expanding microcapsule and use thereof
US7279451B2 (en) * 2002-10-25 2007-10-09 Honeywell International Inc. Compositions containing fluorine substituted olefins
US7161049B2 (en) * 2002-12-13 2007-01-09 E. I. Du Pont De Nemours And Company Process for purifying hydrofluoropropanes
JP2006521460A (en) * 2002-12-17 2006-09-21 ハネウェル・インターナショナル・インコーポレーテッド Compositions and methods for cleaning contaminated articles
US7582715B2 (en) * 2002-12-20 2009-09-01 Exxonmobil Chemical Patents Inc. Polymers substantially free of long chain branching
US7723447B2 (en) * 2002-12-20 2010-05-25 Exxonmobil Chemical Patents Inc. Polymerization processes
CA2510860C (en) * 2002-12-20 2012-10-09 Exxonmobil Chemical Patents Inc. Polymerization process utilizing hydrofluorocarbons as diluents
US7425601B2 (en) * 2002-12-20 2008-09-16 Exxonmobil Chemical Patents Inc. Polymers with new sequence distributions
JP4604524B2 (en) * 2004-03-16 2011-01-05 味の素株式会社 Mutant aldolase, and optically active IHOG and optically active monatin production method using the same
US20070258909A1 (en) * 2004-03-17 2007-11-08 Solvay S.A. Method for the Analysis of 1,1,1,2-Tetrafluoroethane
US9102579B2 (en) * 2004-04-29 2015-08-11 Honeywell International Inc. Method for producing fluorinated organic compounds
US8084653B2 (en) * 2004-04-29 2011-12-27 Honeywell International, Inc. Method for producing fluorinated organic compounds
JP5134952B2 (en) * 2004-06-23 2013-01-30 エクソンモービル・ケミカル・パテンツ・インク Process using extractive distillation
US7428816B2 (en) * 2004-07-16 2008-09-30 Honeywell International Inc. Working fluids for thermal energy conversion of waste heat from fuel cells using Rankine cycle systems
US7897823B2 (en) * 2004-10-29 2011-03-01 E. I. Du Pont De Nemours And Company Process for production of azeotrope compositions comprising hydrofluoroolefin and hydrogen fluoride and uses of said azeotrope compositions in separation processes
US7429557B2 (en) * 2005-01-27 2008-09-30 Mainstream Engineering Corporation Replacement solvents having improved properties and methods of using the same
US20060179852A1 (en) * 2005-02-16 2006-08-17 Honeywell International Inc. Compositions and methods for cleaning vapor compression systems
AR052585A1 (en) * 2005-03-04 2007-03-21 Du Pont COOLING / AIR CONDITIONING DEVICE OPERATED BY A TURBINE DRIVEN BY EXHAUST GAS OF A MOTOR, METHOD FOR CONTROLLING THE COMPRESSOR OVERLOAD, METHOD FOR PROVIDING POWER TO A COMPRESSOR.
US20060245944A1 (en) * 2005-03-21 2006-11-02 Leck Thomas J Cooling apparatus powered by a ratioed gear drive assembly
TW201815923A (en) * 2005-06-24 2018-05-01 美商哈尼威爾國際公司 Foaming agents and compositions containing fluorine substituted olefins, and methods of foaming
US8420706B2 (en) * 2005-06-24 2013-04-16 Honeywell International Inc. Foaming agents, foamable compositions, foams and articles containing halogen substituted olefins, and methods of making same
MY151990A (en) * 2005-11-01 2014-07-31 Du Pont Solvent compositions comprising unsaturated fluorinated hydrocarbons
US7708903B2 (en) * 2005-11-01 2010-05-04 E.I. Du Pont De Nemours And Company Compositions comprising fluoroolefins and uses thereof
US20070100010A1 (en) * 2005-11-01 2007-05-03 Creazzo Joseph A Blowing agents for forming foam comprising unsaturated fluorocarbons
CA3148429A1 (en) * 2005-11-01 2007-05-10 The Chemours Company Fc, Llc Compositions comprising fluoroolefins and uses thereof
US7759532B2 (en) * 2006-01-13 2010-07-20 E.I. Du Pont De Nemours And Company Refrigerant additive compositions containing perfluoropolyethers
US7498296B2 (en) * 2006-02-28 2009-03-03 E. I. Dupont De Nemours And Company Azeotropic compositions comprising fluorinated compounds for cleaning applications
US8148450B2 (en) * 2006-06-23 2012-04-03 Exxonmobil Chemical Patents Inc. Process to produce a hydrocarbon rubber cement utilizing a hydrofluorocarbon diluent
US7629397B2 (en) * 2006-06-23 2009-12-08 Exxonmobil Chemical Patents Inc. Phase separation process utilizing a hydrofluorocarbon
US20080003127A1 (en) * 2006-07-03 2008-01-03 Honeywell International Inc. Non-Ferrous Metal Cover Gases
US20080000647A1 (en) * 2006-07-03 2008-01-03 Honeywell International Inc. Non-Ferrous Metal Cover Gases
US7803975B2 (en) * 2006-07-13 2010-09-28 E.I. Du Pont De Nemours And Company Process for separating a fluoroolefin from HF by liquid-liquid extraction
WO2008033568A2 (en) * 2006-09-15 2008-03-20 E.I. Du Pont De Nemours And Company Determination of the components of a fluoroolefin composition
EP2064533A2 (en) * 2006-09-15 2009-06-03 E.I. Du Pont De Nemours And Company Method of detecting leaks of fluoroolefin compositions and sensors used therefor
US20080191163A1 (en) * 2007-02-09 2008-08-14 Mocella Michael T Laser-Assisted Etching Using Gas Compositions Comprising Unsaturated Fluorocarbons
JP2008239864A (en) * 2007-03-28 2008-10-09 National Institute Of Advanced Industrial & Technology Foaming agent composition, composition for foam, and method for producing foam
US8618339B2 (en) * 2007-04-26 2013-12-31 E I Du Pont De Nemours And Company High selectivity process to make dihydrofluoroalkenes
WO2008134061A2 (en) * 2007-04-27 2008-11-06 E. I. Du Pont De Nemours And Company Azeotropic and azeotrope-like compositions of z-1,1,1,4,4,4-hexafluoro-2-butene
US7795482B2 (en) * 2007-07-03 2010-09-14 E. I. Du Pont De Nemours And Company Method of hydrodechlorination to produce dihydrofluorinated olefins
CA2688087C (en) * 2007-07-20 2014-09-09 E. I. Du Pont De Nemours And Company Compositions and use of cis-1,1,1,4,4,4-hexafluoro-2-butene foam-forming composition in the preparation of polyisocyanate-based foams
CA2693203A1 (en) * 2007-07-20 2009-01-29 E.I. Du Pont De Nemours And Company Compositions and use of trans-1,1,1,4,4,4-hexafluoro-2-butene foam-forming composition in the preparation of polyisocyanate-based foams
US7795480B2 (en) * 2007-07-25 2010-09-14 Honeywell International Inc. Method for producing 2-chloro-3,3,3,-trifluoropropene (HCFC-1233xf)
BRPI0815462A2 (en) * 2007-09-06 2015-02-18 Du Pont "COMPOSITION, PROCESSES FOR PREPARATION OF A THERMOPLASTIC OR THERMO-RETRACTABLE FOAM, REFRIGERATION PRODUCTION, MANUFACTURE OF AN AEROSOL PRODUCT, FIRE EXTINCTION OR EXPRESSION"
US9550854B2 (en) * 2007-10-12 2017-01-24 Honeywell International Inc. Amine catalysts for polyurethane foams
US9453115B2 (en) * 2007-10-12 2016-09-27 Honeywell International Inc. Stabilization of polyurethane foam polyol premixes containing halogenated olefin blowing agents
CA2941024C (en) * 2007-12-19 2018-12-04 E. I. Du Pont De Nemours And Company Foam-forming compositions containing azeotropic or azeotrope-like mixtures containing z-1,1,1,4,4,4-hexafluoro-2-butene and their uses in the preparation of polyisocyanate-based foams
US20090204443A1 (en) * 2008-02-08 2009-08-13 Honeywell International Inc. Integrated roof wind risk mitigation method and system
CN101546415A (en) * 2008-03-11 2009-09-30 霍尼韦尔国际公司 Method and system for mitigating risk in issuing insurance
US7829747B2 (en) * 2008-04-24 2010-11-09 Honeywell International Inc. Process for dehydrofluorination of 3-chloro-1,1,1,3-tetrafluoropropane to 1-chloro-3,3,3-trifluoropropene
CA2723125C (en) * 2008-05-12 2016-09-13 Arkema Inc. Compositions of hydrochlorofluoroolefins
MX2010014094A (en) * 2008-06-20 2011-01-21 Du Pont Azeotropic and azeotrope-like compositions of z-1,1,1,4,4,4-hexafluoro-2-butene.
AU2009319848A1 (en) * 2008-11-26 2010-06-03 E. I. Du Pont De Nemours And Company Absorption cycle system having dual absorption circuits
US20100154419A1 (en) * 2008-12-19 2010-06-24 E. I. Du Pont De Nemours And Company Absorption power cycle system
SG176231A1 (en) * 2009-06-02 2011-12-29 Du Pont Azeotropic and azeotrope-like compositions of z-1,1,1,4,4,4-hexafluoro-2-butene
US20110147638A1 (en) * 2009-06-26 2011-06-23 E.I. Du Pont De Nemours And Company Azeotropic and azeotrope-like compositions of z-1,1,1,4,4,4-hexafluoro-2-butene, trans-1,2-dichloroethylene, and cyclopentane
MX365490B (en) * 2009-09-16 2019-06-05 E I Du Pont De Nemours And Company Star Composition comprising cis-1,1,1,4,4,4-hexafluoro-2-butene and trans-1,2-dichloroethylene, apparatus containing same and methods of producing cooling therein.
WO2011038081A1 (en) * 2009-09-25 2011-03-31 Arkema Inc. Biodegradable foams with improved dimensional stability
US20110269860A1 (en) * 2010-04-28 2011-11-03 E.I. Du Pont De Nemours And Company Foam expansion agent compositions containing hydrohaloolefin butene and water and their uses in the preparation of polyurethane and polyisocyanurate polymer foams

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070010592A1 (en) * 2002-10-25 2007-01-11 Honeywell International Inc. Foaming agents and compositions containing fluorine substituted olefins and methods of foaming
US20060243945A1 (en) * 2005-03-04 2006-11-02 Minor Barbara H Compositions comprising a fluoroolefin
WO2008121776A1 (en) * 2007-03-29 2008-10-09 Arkema Inc. Hydrofluoropropene blowing agents for thermoplastics
WO2008154612A1 (en) * 2007-06-12 2008-12-18 E.I. Du Pont De Nemours And Company Azeotropic and azeotrope-like compositions of e-1,1,1,4,4,4-hexafluoro-2-butene

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2513023A2 *

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2438135B1 (en) 2009-06-03 2016-03-02 E. I. du Pont de Nemours and Company Chiller apparatus containing cis-1,1,1,4,4,4-hexafluoro-2 butene and methods of producing cooling therein
EP2438135B2 (en) 2009-06-03 2019-03-13 The Chemours Company FC, LLC Chiller apparatus containing cis-1,1,1,4,4,4-hexafluoro-2 butene and methods of producing cooling therein
AU2018236730B2 (en) * 2010-04-28 2019-08-01 The Chemours Company Fc, Llc. Foam expansion agent compositions containing hydrohaloolefin and water and their uses in the preparation of polyurethane and polyisocyanurate polymer foams
KR20190068512A (en) * 2010-10-28 2019-06-18 허니웰 인터내셔널 인코포레이티드 Mixtures containing 1,1,1,4,4,4-hexafluorobutene and 1-chloro-3,3,3-trifluoropropene
KR102120908B1 (en) 2010-10-28 2020-06-09 허니웰 인터내셔널 인코포레이티드 Mixtures containing 1,1,1,4,4,4-hexafluorobutene and 1-chloro-3,3,3-trifluoropropene
JP2014500904A (en) * 2010-11-25 2014-01-16 アルケマ フランス Composition of chlorotrifluoropropene and hexafluorobutene
US9528039B2 (en) 2010-11-25 2016-12-27 Arkema France Refrigerants containing (E)-1,1,1,4,4,4-hexafluorobut-2-ene
US9982178B2 (en) 2010-11-25 2018-05-29 Arkema France Compositions of chloro-trifluoropropene and hexafluorobutene
US9157018B2 (en) 2010-11-25 2015-10-13 Arkema France Compositions of chloro-trifluoropropene and hexafluorobutene
US9528038B2 (en) 2010-11-25 2016-12-27 Arkema France Compositions of chloro-trifluoropropene and hexafluorobutene
US9267066B2 (en) 2010-11-25 2016-02-23 Arkema France Refrigerants containing (E)-1,1,1,4,4,4-hexafluorobut-2-ene
US10407603B2 (en) 2010-11-25 2019-09-10 Arkema France Compositions of chloro-trifluoropropene and hexafluorobutene
US10150901B2 (en) 2010-12-03 2018-12-11 Arkema France Compositions containing 1,1,1,4,4,4-hexafluorobut-2-ene and 3,3,4,4,4-petrafluorobut-1-ene
US9745496B2 (en) 2011-01-31 2017-08-29 The Chemours Company Fc, Llc Producing heating using working fluids comprising Z-1,1,1,4,4,4-hexafluoro-2-butene
WO2012106305A1 (en) * 2011-01-31 2012-08-09 E.I. Du Pont De Nemours And Company Producing heating using working fluids comprising z 1,1,1,4,4,4-hexafluoro-2-butene
CN103517963A (en) * 2011-02-04 2014-01-15 纳幕尔杜邦公司 Azeotropic and azeotrope-like compositions involving certain haloolefins and uses thereof
CN103517963B (en) * 2011-02-04 2016-11-09 纳幕尔杜邦公司 Azeotropic and Azeotrope-like compositions of relating to some alkenyl halide and application thereof
AU2012212084B2 (en) * 2011-02-04 2016-03-10 The Chemours Company Fc, Llc. Azeotropic and azeotrope-like compositions involving certain haloolefins and uses thereof
US9085721B2 (en) 2011-02-04 2015-07-21 E I Du Pont De Nemours And Company Azeotropic and azeotrope-like compositions involving certain haloolefins and uses thereof
JP2014504675A (en) * 2011-02-04 2014-02-24 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Azeotropic and azeotrope-like compositions containing certain haloolefins and their use
WO2012106565A3 (en) * 2011-02-04 2013-02-28 E. I. Du Pont De Nemours And Company Azeotropic and azeotrope-like compositions involving certain haloolefins and uses thereof
US9359541B2 (en) 2011-07-01 2016-06-07 Arkema France Compositions of 2,4,4,4-tetrafluorobut-1-ene and cis-1,1,1,4,4,4-hexafluorobut-2-ene
US9145507B2 (en) 2011-07-01 2015-09-29 Arkema France Compositions of 2,4,4,4-tetrafluorobut-1-ene and cis-1,1,1,4,4,4-hexafluorobut-2-ene
US9909045B2 (en) 2012-04-04 2018-03-06 Arkema France Compositions based on 2,3,3,4,4,4-hexafluorobut-1-ene
EP2885345B1 (en) 2012-08-15 2016-05-25 E. I. du Pont de Nemours and Company Azeotropic and azeotrope-like compositions of 2,3,3,4,4,4-hexafluoro-1-butene and 1,1,1,2,3,3-hexafluoropropane and uses thereof
WO2014030654A1 (en) * 2012-08-21 2014-02-27 東ソー株式会社 Raw material blended composition for producing polyurethane foam and method for producing polyurethane foam or isocyanurate-modified polyurethane foam
US10023681B2 (en) 2012-10-24 2018-07-17 Evonik Degussa Gmbh Delay action catalyst for improving the stability of polyurethane systems having halogen containing blowing agents
US10196476B2 (en) 2012-10-24 2019-02-05 Evonik Degussa Gmbh Amine catalyst for improving the stability of polyurethane systems having halogen containing blowing agents
JP2015533029A (en) * 2012-10-30 2015-11-16 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Fluorocarbon molecules for high aspect ratio oxide etching
CN104263323B (en) * 2014-09-09 2017-06-06 西安交通大学 A kind of mix refrigerant of replacement HCFC 22 and its preparation method and application
CN104263323A (en) * 2014-09-09 2015-01-07 西安交通大学 Mixed refrigerant replacing HCFC-22 as well as preparation method and application thereof
EP3433093B1 (en) 2016-07-20 2019-09-04 Brugg Rohr Ag Holding Thermally insulated medium pipes having hfo-containing cell gas
WO2018209072A1 (en) * 2017-05-10 2018-11-15 The Chemours Company Fc, Llc Z-hfo-1336mzz blowing agent blends for foaming thermoplastic polymer comprising polystyrene
CN110582531A (en) * 2017-05-10 2019-12-17 科慕埃弗西有限公司 Z-HFO-1336mzz blowing agent blends for foaming polystyrene-containing thermoplastic polymers
KR20190142408A (en) * 2017-05-10 2019-12-26 더 케무어스 컴퍼니 에프씨, 엘엘씨 Z-HFO-1336mzz Blower Blend for Foaming Thermoplastic Polymers Containing Polystyrene
KR102579812B1 (en) 2017-05-10 2023-09-20 더 케무어스 컴퍼니 에프씨, 엘엘씨 Z-HFO-1336mzz blowing agent blend for foaming thermoplastic polymers containing polystyrene
WO2018213011A1 (en) * 2017-05-19 2018-11-22 The Chemours Company Fc, Llc Fluorinated compounds useful as foam expansion agents
CN110662797A (en) * 2017-05-19 2020-01-07 科慕埃弗西有限公司 Fluorinated compounds useful as foam expansion agents
JP2017201022A (en) * 2017-05-30 2017-11-09 アルケマ フランス Composition of chlorotrifluoropropene and hexafluorobutene
WO2019231874A1 (en) * 2018-05-28 2019-12-05 Chemours-Mitsui Fluoroproducts Co., Ltd Non-azeotropic cleaning composition
WO2020106930A1 (en) * 2018-11-21 2020-05-28 Honeywell International Inc. Nonflammable refrigerants having low gwp, and systems for and methods of providing refrigeration

Also Published As

Publication number Publication date
EP2513023A2 (en) 2012-10-24
US20110144216A1 (en) 2011-06-16
EP3342840A3 (en) 2018-11-14
US20170009116A1 (en) 2017-01-12
EP2513023A4 (en) 2014-06-18
EP2513023B1 (en) 2019-11-13
US20200017740A1 (en) 2020-01-16
JP2016074912A (en) 2016-05-12
EP3342840A2 (en) 2018-07-04
JP2019031671A (en) 2019-02-28
JP2013514450A (en) 2013-04-25
PL2513023T3 (en) 2020-05-18
JP2017141457A (en) 2017-08-17
DK2513023T3 (en) 2020-01-13
WO2011084553A3 (en) 2011-10-13
CN102741204B (en) 2016-03-23
ES2761933T3 (en) 2020-05-21
CN105859515A (en) 2016-08-17
CN102741204A (en) 2012-10-17

Similar Documents

Publication Publication Date Title
US11986692B2 (en) Compositions and uses of trans-1,1,1,4,4,4-hexafluoro-2-butene
US20200017740A1 (en) Compositions and uses of cis-1,1,1,4,4,4-hexafluoro-2-butene
ES2945641T3 (en) Compositions and uses of Z-1-chloro-2,3,3,3-tetrafluoroprop-1-ene
US10828579B2 (en) Monochlorotrifluoropropene compounds and compositions and methods using same
JP6266147B2 (en) An azeotrope-like composition of cis-1,1,1,4,4,4-hexafluoro-2-butene
JP6074459B2 (en) Compositions containing fluorine-substituted olefins
US20110037016A1 (en) Fluoropropene compounds and compositions and methods using same
US20150231527A1 (en) Monochlorotrifluoropropene compounds and compositions and methods using same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080063844.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10842581

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010842581

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012544806

Country of ref document: JP

Ref document number: 5289/DELNP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012014397

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112012014397

Country of ref document: BR

Free format text: APRESENTE A TRADUCAO SIMPLES DA FOLHA DE ROSTO DA CERTIDAO DE DEPOSITO DAS PRIORIDADES REIVINDICADAS; OU DECLARACAO DE QUE OS DADOS DO PEDIDO INTERNACIONAL ESTAO FIELMENTE CONTIDOS NA PRIORIDADE REIVINDICADA, CONTENDO TODOS OS DADOS IDENTIFICADORES (NUMERO DA PRIORIDADE, DATA, DEPOSITANTE E INVENTORES). CABE SALIENTAR NAO FOI POSSIVEL INDIVIDUALIZAR OS TITULARES DA PRIORIDADE, INFORMACAO NECESSARIA PARA O EXAME DA CESSAO DO DOCUMENTO DE PRIORIDADE. A EXIGENCIA DEVE SER RESPONDIDA EM ATE 60 (SESSENTA) DIAS DE SUA PUBLICACAO E DEVE SER REALIZADA POR MEIO DA PETICAO GRU CODIGO DE SERVICO 207.

ENP Entry into the national phase

Ref document number: 112012014397

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120614