WO2011084553A2 - Compositions and uses of cis-1,1,1,4,4,4-hexafluoro-2-butene - Google Patents
Compositions and uses of cis-1,1,1,4,4,4-hexafluoro-2-butene Download PDFInfo
- Publication number
- WO2011084553A2 WO2011084553A2 PCT/US2010/060646 US2010060646W WO2011084553A2 WO 2011084553 A2 WO2011084553 A2 WO 2011084553A2 US 2010060646 W US2010060646 W US 2010060646W WO 2011084553 A2 WO2011084553 A2 WO 2011084553A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hfo
- 1336mzzm
- hfc
- chf2
- ch2f
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 361
- NLOLSXYRJFEOTA-UPHRSURJSA-N (z)-1,1,1,4,4,4-hexafluorobut-2-ene Chemical compound FC(F)(F)\C=C/C(F)(F)F NLOLSXYRJFEOTA-UPHRSURJSA-N 0.000 title claims abstract description 5
- 150000001875 compounds Chemical class 0.000 claims abstract description 80
- 239000006260 foam Substances 0.000 claims description 162
- 239000004604 Blowing Agent Substances 0.000 claims description 122
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 claims description 48
- MSSNHSVIGIHOJA-UHFFFAOYSA-N pentafluoropropane Chemical compound FC(F)CC(F)(F)F MSSNHSVIGIHOJA-UHFFFAOYSA-N 0.000 claims description 45
- 239000012530 fluid Substances 0.000 claims description 36
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 claims description 33
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 claims description 28
- 229920005862 polyol Polymers 0.000 claims description 28
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 claims description 24
- 150000003077 polyols Chemical class 0.000 claims description 22
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 claims description 20
- 229930195733 hydrocarbon Natural products 0.000 claims description 20
- 150000002430 hydrocarbons Chemical class 0.000 claims description 20
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 claims description 18
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 15
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 claims description 14
- CRSOQBOWXPBRES-UHFFFAOYSA-N neopentane Chemical compound CC(C)(C)C CRSOQBOWXPBRES-UHFFFAOYSA-N 0.000 claims description 14
- 238000004140 cleaning Methods 0.000 claims description 13
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 13
- RWRIWBAIICGTTQ-UHFFFAOYSA-N difluoromethane Chemical compound FCF RWRIWBAIICGTTQ-UHFFFAOYSA-N 0.000 claims description 12
- 239000007921 spray Substances 0.000 claims description 11
- CDOOAUSHHFGWSA-UPHRSURJSA-N (z)-1,3,3,3-tetrafluoroprop-1-ene Chemical compound F\C=C/C(F)(F)F CDOOAUSHHFGWSA-UPHRSURJSA-N 0.000 claims description 10
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 10
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 claims description 10
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 claims description 10
- KFUSEUYYWQURPO-OWOJBTEDSA-N trans-1,2-dichloroethene Chemical group Cl\C=C\Cl KFUSEUYYWQURPO-OWOJBTEDSA-N 0.000 claims description 10
- 239000001294 propane Substances 0.000 claims description 9
- NPNPZTNLOVBDOC-UHFFFAOYSA-N 1,1-difluoroethane Chemical compound CC(F)F NPNPZTNLOVBDOC-UHFFFAOYSA-N 0.000 claims description 8
- 239000000356 contaminant Substances 0.000 claims description 8
- 150000001298 alcohols Chemical class 0.000 claims description 7
- 239000001282 iso-butane Substances 0.000 claims description 7
- WZLFPVPRZGTCKP-UHFFFAOYSA-N 1,1,1,3,3-pentafluorobutane Chemical compound CC(F)(F)CC(F)(F)F WZLFPVPRZGTCKP-UHFFFAOYSA-N 0.000 claims description 6
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 claims description 6
- 238000010792 warming Methods 0.000 claims description 6
- 239000001273 butane Substances 0.000 claims description 5
- 239000001569 carbon dioxide Substances 0.000 claims description 5
- 150000002170 ethers Chemical class 0.000 claims description 5
- YFMFNYKEUDLDTL-UHFFFAOYSA-N 1,1,1,2,3,3,3-heptafluoropropane Chemical compound FC(F)(F)C(F)C(F)(F)F YFMFNYKEUDLDTL-UHFFFAOYSA-N 0.000 claims description 4
- NSGXIBWMJZWTPY-UHFFFAOYSA-N 1,1,1,3,3,3-hexafluoropropane Chemical compound FC(F)(F)CC(F)(F)F NSGXIBWMJZWTPY-UHFFFAOYSA-N 0.000 claims description 4
- UJPMYEOUBPIPHQ-UHFFFAOYSA-N 1,1,1-trifluoroethane Chemical compound CC(F)(F)F UJPMYEOUBPIPHQ-UHFFFAOYSA-N 0.000 claims description 4
- 150000001299 aldehydes Chemical class 0.000 claims description 4
- 150000002576 ketones Chemical class 0.000 claims description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 claims description 4
- GTLACDSXYULKMZ-UHFFFAOYSA-N pentafluoroethane Chemical compound FC(F)C(F)(F)F GTLACDSXYULKMZ-UHFFFAOYSA-N 0.000 claims description 4
- LVGUZGTVOIAKKC-UHFFFAOYSA-N 1,1,1,2-tetrafluoroethane Chemical compound FCC(F)(F)F LVGUZGTVOIAKKC-UHFFFAOYSA-N 0.000 claims description 3
- RIQRGMUSBYGDBL-UHFFFAOYSA-N 1,1,1,2,2,3,4,5,5,5-decafluoropentane Chemical compound FC(F)(F)C(F)C(F)C(F)(F)C(F)(F)F RIQRGMUSBYGDBL-UHFFFAOYSA-N 0.000 claims description 2
- WXGNWUVNYMJENI-UHFFFAOYSA-N 1,1,2,2-tetrafluoroethane Chemical compound FC(F)C(F)F WXGNWUVNYMJENI-UHFFFAOYSA-N 0.000 claims description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 claims description 2
- UHCBBWUQDAVSMS-UHFFFAOYSA-N fluoroethane Chemical compound CCF UHCBBWUQDAVSMS-UHFFFAOYSA-N 0.000 claims description 2
- 235000019253 formic acid Nutrition 0.000 claims description 2
- 150000001336 alkenes Chemical class 0.000 claims 2
- 150000007524 organic acids Chemical class 0.000 claims 2
- 235000005985 organic acids Nutrition 0.000 claims 2
- FYIRUPZTYPILDH-UHFFFAOYSA-N 1,1,1,2,3,3-hexafluoropropane Chemical compound FC(F)C(F)C(F)(F)F FYIRUPZTYPILDH-UHFFFAOYSA-N 0.000 claims 1
- ZDCWZRQSHBQRGN-UHFFFAOYSA-N 1,1,1,2,3-pentafluoropropane Chemical compound FCC(F)C(F)(F)F ZDCWZRQSHBQRGN-UHFFFAOYSA-N 0.000 claims 1
- AWTOFSDLNREIFS-UHFFFAOYSA-N 1,1,2,2,3-pentafluoropropane Chemical compound FCC(F)(F)C(F)F AWTOFSDLNREIFS-UHFFFAOYSA-N 0.000 claims 1
- FXRLMCRCYDHQFW-UHFFFAOYSA-N 2,3,3,3-tetrafluoropropene Chemical compound FC(=C)C(F)(F)F FXRLMCRCYDHQFW-UHFFFAOYSA-N 0.000 claims 1
- MEUAVGJWGDPTLF-UHFFFAOYSA-N 4-(5-benzenesulfonylamino-1-methyl-1h-benzoimidazol-2-ylmethyl)-benzamidine Chemical compound N=1C2=CC(NS(=O)(=O)C=3C=CC=CC=3)=CC=C2N(C)C=1CC1=CC=C(C(N)=N)C=C1 MEUAVGJWGDPTLF-UHFFFAOYSA-N 0.000 claims 1
- 150000001335 aliphatic alkanes Chemical class 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 66
- 239000003507 refrigerant Substances 0.000 description 38
- 239000000463 material Substances 0.000 description 33
- 239000000314 lubricant Substances 0.000 description 31
- 239000000443 aerosol Substances 0.000 description 23
- 239000003380 propellant Substances 0.000 description 21
- 210000004027 cell Anatomy 0.000 description 20
- 239000003795 chemical substances by application Substances 0.000 description 19
- -1 HFOs Chemical class 0.000 description 18
- 230000001954 sterilising effect Effects 0.000 description 14
- 238000009472 formulation Methods 0.000 description 13
- 238000005187 foaming Methods 0.000 description 12
- 239000007789 gas Substances 0.000 description 12
- 239000000047 product Substances 0.000 description 12
- 238000005057 refrigeration Methods 0.000 description 11
- 239000004094 surface-active agent Substances 0.000 description 11
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 10
- 239000003814 drug Substances 0.000 description 10
- 239000003921 oil Substances 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 239000002904 solvent Substances 0.000 description 10
- 238000004659 sterilization and disinfection Methods 0.000 description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 230000008901 benefit Effects 0.000 description 9
- 150000002148 esters Chemical class 0.000 description 9
- 239000002480 mineral oil Substances 0.000 description 9
- 229920001515 polyalkylene glycol Polymers 0.000 description 9
- 229920002635 polyurethane Polymers 0.000 description 9
- 239000004814 polyurethane Substances 0.000 description 9
- 229920001169 thermoplastic Polymers 0.000 description 9
- 239000004215 Carbon black (E152) Substances 0.000 description 8
- 239000004594 Masterbatch (MB) Substances 0.000 description 8
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 8
- 230000003466 anti-cipated effect Effects 0.000 description 8
- 230000009257 reactivity Effects 0.000 description 8
- 150000004996 alkyl benzenes Chemical class 0.000 description 7
- 239000006071 cream Substances 0.000 description 7
- 239000000796 flavoring agent Substances 0.000 description 7
- 235000019634 flavors Nutrition 0.000 description 7
- 239000012948 isocyanate Substances 0.000 description 7
- 150000002513 isocyanates Chemical class 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 239000004416 thermosoftening plastic Substances 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 6
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 6
- 239000003063 flame retardant Substances 0.000 description 6
- 239000003205 fragrance Substances 0.000 description 6
- 239000000446 fuel Substances 0.000 description 6
- 238000009413 insulation Methods 0.000 description 6
- 235000010446 mineral oil Nutrition 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 239000003206 sterilizing agent Substances 0.000 description 6
- 230000001629 suppression Effects 0.000 description 6
- 239000006269 thermoset foam Substances 0.000 description 6
- 239000002918 waste heat Substances 0.000 description 6
- 238000005273 aeration Methods 0.000 description 5
- 230000032683 aging Effects 0.000 description 5
- 238000004378 air conditioning Methods 0.000 description 5
- 235000013844 butane Nutrition 0.000 description 5
- NKDDWNXOKDWJAK-UHFFFAOYSA-N dimethoxymethane Chemical compound COCOC NKDDWNXOKDWJAK-UHFFFAOYSA-N 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 229920000582 polyisocyanurate Polymers 0.000 description 5
- 239000011495 polyisocyanurate Substances 0.000 description 5
- 239000011493 spray foam Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 239000012815 thermoplastic material Substances 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- OHMHBGPWCHTMQE-UHFFFAOYSA-N 2,2-dichloro-1,1,1-trifluoroethane Chemical compound FC(F)(F)C(Cl)Cl OHMHBGPWCHTMQE-UHFFFAOYSA-N 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 230000006835 compression Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 229940060367 inert ingredients Drugs 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 229920001187 thermosetting polymer Polymers 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- 229920005830 Polyurethane Foam Polymers 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000001088 anti-asthma Effects 0.000 description 3
- 239000000924 antiasthmatic agent Substances 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000002537 cosmetic Substances 0.000 description 3
- 239000002781 deodorant agent Substances 0.000 description 3
- 239000012973 diazabicyclooctane Substances 0.000 description 3
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 3
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000008266 hair spray Substances 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 239000002304 perfume Substances 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 239000011496 polyurethane foam Substances 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- CYRMSUTZVYGINF-UHFFFAOYSA-N trichlorofluoromethane Chemical compound FC(Cl)(Cl)Cl CYRMSUTZVYGINF-UHFFFAOYSA-N 0.000 description 3
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 description 3
- AHSZBZTYLKTYJI-UHFFFAOYSA-N (2,2-dimethyl-3-nonanoyloxypropyl) nonanoate Chemical compound CCCCCCCCC(=O)OCC(C)(C)COC(=O)CCCCCCCC AHSZBZTYLKTYJI-UHFFFAOYSA-N 0.000 description 2
- 229940051271 1,1-difluoroethane Drugs 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 2
- JKTORXLUQLQJCM-UHFFFAOYSA-N 4-phosphonobutylphosphonic acid Chemical compound OP(O)(=O)CCCCP(O)(O)=O JKTORXLUQLQJCM-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 2
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 2
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 2
- 239000005662 Paraffin oil Substances 0.000 description 2
- 101100273357 Pisum sativum AB80 gene Proteins 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 101100214695 Staphylococcus aureus aacA-aphD gene Proteins 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 150000001491 aromatic compounds Chemical class 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 210000003850 cellular structure Anatomy 0.000 description 2
- 239000002666 chemical blowing agent Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 239000012459 cleaning agent Substances 0.000 description 2
- DALFCXLZHYUQSU-UHFFFAOYSA-N cyclopentane 2-methylbutane Chemical compound CCC(C)C.C1CCCC1 DALFCXLZHYUQSU-UHFFFAOYSA-N 0.000 description 2
- OSVXSBDYLRYLIG-UHFFFAOYSA-N dioxidochlorine(.) Chemical compound O=Cl=O OSVXSBDYLRYLIG-UHFFFAOYSA-N 0.000 description 2
- 229910001651 emery Inorganic materials 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- IYRWEQXVUNLMAY-UHFFFAOYSA-N fluoroketone group Chemical group FC(=O)F IYRWEQXVUNLMAY-UHFFFAOYSA-N 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 239000002917 insecticide Substances 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 238000002483 medication Methods 0.000 description 2
- 229940043265 methyl isobutyl ketone Drugs 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000003607 modifier Substances 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 239000002667 nucleating agent Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 150000003014 phosphoric acid esters Chemical class 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920013639 polyalphaolefin Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- DYLIWHYUXAJDOJ-OWOJBTEDSA-N (e)-4-(6-aminopurin-9-yl)but-2-en-1-ol Chemical compound NC1=NC=NC2=C1N=CN2C\C=C\CO DYLIWHYUXAJDOJ-OWOJBTEDSA-N 0.000 description 1
- BSRRYOGYBQJAFP-UHFFFAOYSA-N 1,1,1,2,2,3-hexafluorobutane Chemical compound CC(F)C(F)(F)C(F)(F)F BSRRYOGYBQJAFP-UHFFFAOYSA-N 0.000 description 1
- NVSXSBBVEDNGPY-UHFFFAOYSA-N 1,1,1,2,2-pentafluorobutane Chemical compound CCC(F)(F)C(F)(F)F NVSXSBBVEDNGPY-UHFFFAOYSA-N 0.000 description 1
- CXIGIYYQHHRBJC-UHFFFAOYSA-N 1,1,1,4,4,4-hexafluorobutane Chemical compound FC(F)(F)CCC(F)(F)F CXIGIYYQHHRBJC-UHFFFAOYSA-N 0.000 description 1
- AJDIZQLSFPQPEY-UHFFFAOYSA-N 1,1,2-Trichlorotrifluoroethane Chemical compound FC(F)(Cl)C(F)(Cl)Cl AJDIZQLSFPQPEY-UHFFFAOYSA-N 0.000 description 1
- LGXVIGDEPROXKC-UHFFFAOYSA-N 1,1-dichloroethene Chemical group ClC(Cl)=C LGXVIGDEPROXKC-UHFFFAOYSA-N 0.000 description 1
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- 206010006326 Breath odour Diseases 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004155 Chlorine dioxide Substances 0.000 description 1
- 208000006545 Chronic Obstructive Pulmonary Disease Diseases 0.000 description 1
- 239000005696 Diammonium phosphate Substances 0.000 description 1
- 239000004338 Dichlorodifluoromethane Substances 0.000 description 1
- 208000032139 Halitosis Diseases 0.000 description 1
- XMLSXPIVAXONDL-PLNGDYQASA-N Jasmone Chemical compound CC\C=C/CC1=C(C)CCC1=O XMLSXPIVAXONDL-PLNGDYQASA-N 0.000 description 1
- XOBKSJJDNFUZPF-UHFFFAOYSA-N Methoxyethane Chemical compound CCOC XOBKSJJDNFUZPF-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 206010042496 Sunburn Diseases 0.000 description 1
- PQYJRMFWJJONBO-UHFFFAOYSA-N Tris(2,3-dibromopropyl) phosphate Chemical compound BrCC(Br)COP(=O)(OCC(Br)CBr)OCC(Br)CBr PQYJRMFWJJONBO-UHFFFAOYSA-N 0.000 description 1
- 229920013701 VORANOL™ Polymers 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 230000007059 acute toxicity Effects 0.000 description 1
- 231100000403 acute toxicity Toxicity 0.000 description 1
- RREGISFBPQOLTM-UHFFFAOYSA-N alumane;trihydrate Chemical class O.O.O.[AlH3] RREGISFBPQOLTM-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910000410 antimony oxide Inorganic materials 0.000 description 1
- 208000006673 asthma Diseases 0.000 description 1
- 229940127225 asthma medication Drugs 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 150000001555 benzenes Chemical class 0.000 description 1
- 229940125388 beta agonist Drugs 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 235000019398 chlorine dioxide Nutrition 0.000 description 1
- HRYZWHHZPQKTII-UHFFFAOYSA-N chloroethane Chemical compound CCCl HRYZWHHZPQKTII-UHFFFAOYSA-N 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 239000003246 corticosteroid Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 230000000779 depleting effect Effects 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- 229910000388 diammonium phosphate Inorganic materials 0.000 description 1
- 235000019838 diammonium phosphate Nutrition 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- KLKFAASOGCDTDT-UHFFFAOYSA-N ethoxymethoxyethane Chemical compound CCOCOCC KLKFAASOGCDTDT-UHFFFAOYSA-N 0.000 description 1
- 229960003750 ethyl chloride Drugs 0.000 description 1
- 229920001038 ethylene copolymer Polymers 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- UKACHOXRXFQJFN-UHFFFAOYSA-N heptafluoropropane Chemical compound FC(F)C(F)(F)C(F)(F)F UKACHOXRXFQJFN-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000003589 local anesthetic agent Substances 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 210000004379 membrane Anatomy 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- SNMVRZFUUCLYTO-UHFFFAOYSA-N n-propyl chloride Chemical compound CCCCl SNMVRZFUUCLYTO-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001272 nitrous oxide Substances 0.000 description 1
- RMLFHPWPTXWZNJ-UHFFFAOYSA-N novec 1230 Chemical compound FC(F)(F)C(F)(F)C(=O)C(F)(C(F)(F)F)C(F)(F)F RMLFHPWPTXWZNJ-UHFFFAOYSA-N 0.000 description 1
- 239000002417 nutraceutical Substances 0.000 description 1
- 235000021436 nutraceutical agent Nutrition 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical class [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920005903 polyol mixture Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Chemical class 0.000 description 1
- 229920000915 polyvinyl chloride Chemical class 0.000 description 1
- 229920001289 polyvinyl ether Polymers 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 230000001141 propulsive effect Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000006254 rheological additive Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000008137 solubility enhancer Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 239000002937 thermal insulation foam Substances 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
- XMLSXPIVAXONDL-UHFFFAOYSA-N trans-jasmone Natural products CCC=CCC1=C(C)CCC1=O XMLSXPIVAXONDL-UHFFFAOYSA-N 0.000 description 1
- 229940029284 trichlorofluoromethane Drugs 0.000 description 1
- VPAYJEUHKVESSD-UHFFFAOYSA-N trifluoroiodomethane Chemical compound FC(F)(F)I VPAYJEUHKVESSD-UHFFFAOYSA-N 0.000 description 1
- DHNUXDYAOVSGII-UHFFFAOYSA-N tris(1,3-dichloropropyl) phosphate Chemical compound ClCCC(Cl)OP(=O)(OC(Cl)CCCl)OC(Cl)CCCl DHNUXDYAOVSGII-UHFFFAOYSA-N 0.000 description 1
- HQUQLFOMPYWACS-UHFFFAOYSA-N tris(2-chloroethyl) phosphate Chemical compound ClCCOP(=O)(OCCCl)OCCCl HQUQLFOMPYWACS-UHFFFAOYSA-N 0.000 description 1
- GTRSAMFYSUBAGN-UHFFFAOYSA-N tris(2-chloropropyl) phosphate Chemical compound CC(Cl)COP(=O)(OCC(C)Cl)OCC(C)Cl GTRSAMFYSUBAGN-UHFFFAOYSA-N 0.000 description 1
- RMLPZKRPSQVRAB-UHFFFAOYSA-N tris(3-methylphenyl) phosphate Chemical compound CC1=CC=CC(OP(=O)(OC=2C=C(C)C=CC=2)OC=2C=C(C)C=CC=2)=C1 RMLPZKRPSQVRAB-UHFFFAOYSA-N 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000000341 volatile oil Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/30—Materials not provided for elsewhere for aerosols
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C21/00—Acyclic unsaturated compounds containing halogen atoms
- C07C21/02—Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
- C07C21/18—Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N29/00—Biocides, pest repellants or attractants, or plant growth regulators containing halogenated hydrocarbons
- A01N29/02—Acyclic compounds or compounds containing halogen attached to an aliphatic side-chain of a cycloaliphatic ring system
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L27/00—Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
- A23L27/10—Natural spices, flavouring agents or condiments; Extracts thereof
- A23L27/11—Natural spices, flavouring agents or condiments; Extracts thereof obtained by solvent extraction
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L27/00—Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
- A23L27/20—Synthetic spices, flavouring agents or condiments
- A23L27/202—Aliphatic compounds
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62D—CHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
- A62D1/00—Fire-extinguishing compositions; Use of chemical substances in extinguishing fires
- A62D1/0028—Liquid extinguishing substances
- A62D1/0057—Polyhaloalkanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/14—Manufacture of cellular products
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/4009—Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
- C08G18/4018—Mixtures of compounds of group C08G18/42 with compounds of group C08G18/48
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/74—Polyisocyanates or polyisothiocyanates cyclic
- C08G18/76—Polyisocyanates or polyisothiocyanates cyclic aromatic
- C08G18/7657—Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
- C08G18/7664—Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/12—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
- C08J9/127—Mixtures of organic and inorganic blowing agents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/12—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
- C08J9/14—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
- C08J9/141—Hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/12—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
- C08J9/14—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
- C08J9/143—Halogen containing compounds
- C08J9/144—Halogen containing compounds containing carbon, halogen and hydrogen only
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/12—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
- C08J9/14—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
- C08J9/143—Halogen containing compounds
- C08J9/144—Halogen containing compounds containing carbon, halogen and hydrogen only
- C08J9/146—Halogen containing compounds containing carbon, halogen and hydrogen only only fluorine as halogen atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/12—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
- C08J9/14—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
- C08J9/149—Mixtures of blowing agents covered by more than one of the groups C08J9/141 - C08J9/143
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K21/00—Fireproofing materials
- C09K21/06—Organic materials
- C09K21/08—Organic materials containing halogen
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/02—Materials undergoing a change of physical state when used
- C09K5/04—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
- C09K5/041—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
- C09K5/044—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/02—Materials undergoing a change of physical state when used
- C09K5/04—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
- C09K5/041—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
- C09K5/044—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
- C09K5/045—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M131/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing halogen
- C10M131/02—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing halogen containing carbon, hydrogen and halogen only
- C10M131/04—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing halogen containing carbon, hydrogen and halogen only aliphatic
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M171/00—Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
- C10M171/008—Lubricant compositions compatible with refrigerants
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11B—PRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
- C11B9/00—Essential oils; Perfumes
- C11B9/02—Recovery or refining of essential oils from raw materials
- C11B9/025—Recovery by solvent extraction
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/24—Organic compounds containing halogen
- C11D3/245—Organic compounds containing halogen containing fluorine
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D7/00—Compositions of detergents based essentially on non-surface-active compounds
- C11D7/02—Inorganic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D7/00—Compositions of detergents based essentially on non-surface-active compounds
- C11D7/22—Organic compounds
- C11D7/24—Hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D7/00—Compositions of detergents based essentially on non-surface-active compounds
- C11D7/22—Organic compounds
- C11D7/26—Organic compounds containing oxygen
- C11D7/263—Ethers
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D7/00—Compositions of detergents based essentially on non-surface-active compounds
- C11D7/22—Organic compounds
- C11D7/26—Organic compounds containing oxygen
- C11D7/264—Aldehydes; Ketones; Acetals or ketals
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D7/00—Compositions of detergents based essentially on non-surface-active compounds
- C11D7/50—Solvents
- C11D7/5004—Organic solvents
- C11D7/5018—Halogenated solvents
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23V—INDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
- A23V2002/00—Food compositions, function of food ingredients or processes for food or foodstuffs
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2203/00—Foams characterized by the expanding agent
- C08J2203/14—Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2203/00—Foams characterized by the expanding agent
- C08J2203/16—Unsaturated hydrocarbons
- C08J2203/162—Halogenated unsaturated hydrocarbons, e.g. H2C=CF2
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2203/00—Foams characterized by the expanding agent
- C08J2203/18—Binary blends of expanding agents
- C08J2203/182—Binary blends of expanding agents of physical blowing agents, e.g. acetone and butane
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2203/00—Foams characterized by the expanding agent
- C08J2203/18—Binary blends of expanding agents
- C08J2203/184—Binary blends of expanding agents of chemical foaming agent and physical blowing agent, e.g. azodicarbonamide and fluorocarbon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2375/00—Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
- C08J2375/04—Polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2375/00—Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
- C08J2375/04—Polyurethanes
- C08J2375/08—Polyurethanes from polyethers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2205/00—Aspects relating to compounds used in compression type refrigeration systems
- C09K2205/10—Components
- C09K2205/11—Ethers
- C09K2205/112—Halogenated ethers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2205/00—Aspects relating to compounds used in compression type refrigeration systems
- C09K2205/10—Components
- C09K2205/12—Hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2205/00—Aspects relating to compounds used in compression type refrigeration systems
- C09K2205/10—Components
- C09K2205/12—Hydrocarbons
- C09K2205/122—Halogenated hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2205/00—Aspects relating to compounds used in compression type refrigeration systems
- C09K2205/22—All components of a mixture being fluoro compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2211/00—Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
- C10M2211/02—Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only
- C10M2211/022—Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only aliphatic
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/30—Refrigerators lubricants or compressors lubricants
Definitions
- compositions, methods and systems having utility in numerous applications, and in particular, uses for compositions containing the compound cis-l,l,l,4,4,4-hexafluoro-2-butene (Z-HFO-1336mzzm), which has the following structure:
- compositions of the present invention are part of a continued search for the next generation of low global warming potential materials. Such materials must have low environmental impact, as measured by ultra-low global warming potential and zero ozone depletion potential.
- compositions, methods and systems having utility in numerous applications, and in particular, uses for compositions containing the compound cis-l,l,l,4,4,4-hexafluoro-2-butene (Z-HFO-1336mzzm), which has the following structure:
- Embodiments of the present invention comprise the compound Z-HFO- 1336mzzm, either alone or in combination with one or more other compounds as described in detail herein below.
- mixtures containing the compound Z- HFO-1336mzzm are non-azeotropic.
- compositions of the present invention may be used in a wide variety of applications such as blowing agents, refrigerants, heating agents, power cycle agents, cleaning agents, aerosol propellants, sterilization agents, lubricants, flavor and fragrance extractants, flammability reducing agents, and flame suppression agents, to name a few preferred uses.
- blowing agents refrigerants, heating agents, power cycle agents, cleaning agents, aerosol propellants, sterilization agents, lubricants, flavor and fragrance extractants, flammability reducing agents, and flame suppression agents.
- compositions of the present invention all include the compound Z-HFO- 1336mzzm.
- Certain embodiments of the invention particularly those employed as blowing agent compositions or foamable compositions, can optionally include other ingredients, some of which are described in detail below.
- certain embodiments of the present invention are directed to compositions comprising, or consisting essentially of, at least one additional fluoroalkene containing from 2 to 6, preferably 3 to 5 carbon atoms, more preferably 3 to 4 carbon atoms, and in certain embodiments most preferably three carbon atoms, and at least one carbon-carbon double bond.
- the fluoroalkene compounds of the present invention are sometimes referred to herein for the purpose of convenience as hydrofluoro-olefins or "HFOs" if they contain at least one hydrogen.
- compositions which include as an essential component the compound Z-HFO-1336mzzm and at least one additional compound such as HFOs, HFCs, HFEs, hydrocarbons, ethers, aldehydes, ketones, and others such as methyl formate, formic acid, trans- 1,2 dichloroethylene, carbon dioxide, cis- HFO-1234ze + HFO-1225yez; mixtures of these plus water; mixtures of these plus C02; mixtures of these trans 1 ,2-dichloroethylene (DCE); mixtures of these plus methyl formate; mixtures with cis-HFO-1234ze + C02; mixtures with cis-HFO- 1234ze + HFO-1225yez + C02; and mixtures with cis-HFO-1234ze + HFC-245fa.
- the amount of the compound Z-HFO-1336mzzm may vary widely, including in all cases constituting the balance of the composition after all other components in composition are accounted for.
- the amount of the compound Z-HFO- 1336mzzm in the composition can be in accordance with the following ranges: from about 1 wt % to about 99 wt %; from about 30 wt % to about 99 wt %; from about 50 wt % to about 99 wt %; from about 75 wt % to about 99 wt %; from about 85 wt % to about 99 wt %; from about 20 wt % to about 80 wt %; from about 90 wt % to about 99 wt %; from about 95 wt % to about 99 wt %; from about 1 wt % to about 20 wt %; from about 1 wt % to about 40 wt %; from about 1 wt % to about 50 wt %; from about 5 wt % to about 20 wt %; from about 5 wt % to about 40 wt %
- the preferred compositions of the present invention are environmentally acceptable and do not to contribute to the depletion of the earth's stratospheric ozone layer.
- the compounds and compositions of the present invention have no substantial ozone depletion potential (ODP), preferably an ODP of not greater than about 0.5 and even more preferably an ODP of not greater than about 0.25, most preferably an ODP of not greater than about 0.1; and/or a global warming potential (GWP) of not greater than about 150, and even more preferably, a GWP of not greater than about 50.
- ODP ozone depletion potential
- GWP global warming potential
- ODP is defined in the "Scientific Assessment of Ozone Depletion, 2002," a report of the World Meteorological association, incorporated here by reference.
- GWP is defined relative to that of carbon dioxide and over a 100 year time horizon, and defined in the same reference as for the ODP mentioned above.
- compositions of this type are described below in Table 1 (with all percentages being in percent by weight and being understood to be proceeded by the word "about”).
- neopentane 1 to 99 l to 30 1 to 20
- compositions of the present invention may be used in a wide variety of applications as substitutes for CFCs and for compositions containing less desirable HCFCs.
- the present compositions are useful as blowing agents, refrigerants, heating agents, power cycle agents, cleaning agents, aerosol propellants, sterilization agents, lubricants, flavor and fragrance extractants, flammability reducing agents, and flame suppression agents, to name a few preferred uses. Each of these uses will be discussed in greater detail below.
- the present invention includes methods and systems which include using Z-HFO-1336mzzm as a blowing agent, optionally with one or more optional additional compounds which include, but are not limited to, other compounds which also act as blowing agents (hereinafter referred to for convenience but not by way of limitation as co-blowing agents), surfactants, polyols, catalysts, flame retardants, polymer modifiers, colorants, dyes, solubility enhancers, rheology modifiers, plasticizing agents, fillers, nucleating agents, viscosity reduction agents, vapor pressure modifiers, stabilizers, and the like.
- co-blowing agents include, but are not limited to, other compounds which also act as blowing agents (hereinafter referred to for convenience but not by way of limitation as co-blowing agents), surfactants, polyols, catalysts, flame retardants, polymer modifiers, colorants, dyes, solubility enhancers, rheology modifiers, plasticizing agents, fillers, nucleating agents, viscosity reduction agents
- Preferred blends for blowing agents used for foams, especially spray foams and panel foams include blends of Z-HFO- 1336mzzm with hydrocarbons (especially the pentanes, including cyclopentane), and with each of 245fa, 365mfc and 1233zd. While the cis isomer of HFO-1336mzzm is preferred, it is anticipated that the trans isomer and/or mixtures of the isomers, including the racemate, will be useful in certain foam types.
- the amount of the compound Z-HFO-1336mzzm in the composition of the invention can be in accordance with the following ranges: from about 1 wt % to about 99 wt %; from about 30 wt % to about 99 wt %; from about 50 wt % to about 99 wt %; from about 75 wt % to about 99 wt %; from about 85 wt % to about 99 wt %; from about 20 wt % to about 80 wt %; from about 90 wt % to about 99 wt %; from about 95 wt % to about 99 wt %; from about 1 wt % to about 20 wt %; from about 1 wt % to about 40 wt %; from about 1 wt % to about 50 wt %; from about 5 wt % to about 20 wt %; from about 5 wt % to about 40 wt %
- dispersing agents may also be incorporated into the blowing agent compositions of the present invention.
- Certain surfactants are optionally but preferably added to serve as cell stabilizers.
- Some representative materials are sold under the names of DC-193, B-8404, and L-5340 which are, generally, polysiloxane polyoxyalkylene block co-polymers such as those disclosed in U.S. Pat. Nos.
- blowing agent mixture may include flame retardants such as tri(2-chloroethyl)phosphate, tri(2-chloropropyl)phosphate, tri(2,3- dibromopropyl)-phosphate, tri(l ,3-dichloro-propyl)phosphate, diammonium phosphate, various halogenated aromatic compounds, antimony oxide, aluminum trihydrate, polyvinyl chloride, and the like.
- flame retardants such as tri(2-chloroethyl)phosphate, tri(2-chloropropyl)phosphate, tri(2,3- dibromopropyl)-phosphate, tri(l ,3-dichloro-propyl)phosphate, diammonium phosphate, various halogenated aromatic compounds, antimony oxide, aluminum trihydrate, polyvinyl chloride, and the like.
- nucleating agents all known compounds and materials having nucleating functionality are available for use in the present invention, including particularly talc.
- the co-blowing agent in accordance with the present invention can comprise a physical blowing agent, a chemical blowing agent (which preferably in certain embodiments comprises water) or a blowing agent having a combination of physical and chemical blowing agent properties.
- blowing agent compositions of the present invention include one or more HFCs as co-blowing agents, more preferably one or more C1-C4 HFCs, and/or one or more hydrocarbons, more preferably C4-C6 hydrocarbons.
- the present blowing agent compositions may include one or more of difluoromethane (HFC-32), fluoroethane (HFC- 161), difluoro ethane (HFC- 152), trifluoroethane (HFC- 143), tetrafluoroethane (HFC- 134), pentafluoroethane (HFC- 125), pentafluoropropane (HFC-245), hexafluoropropane (HFC-236),
- HFC-356 hexafluorobutane
- the present blowing agent compositions may include in certain preferred embodiments, for example, iso, normal and/or
- thermoset foams and butane or isobutane for thermoplastic foams.
- CFCs such as trichlorofluoromethane (CFC-11) and dichlorodifluoromethane (CFC-12)
- HCCs hydrochlorocarbons
- C1-C5 alcohols such as, for example, ethanol and/or propanol and/or butanol
- C1-C4 aldehydes such as, for example, ethanol and/or propanol and/or butanol
- C1-C4 ketones C1-C4 ethers (including ethers (such as dimethyl ether and diethyl ether), diethers (such as dimethoxy methane and diethoxy methane)), and methyl formate including combinations of any of these may be included, although such components are contemplated to be not preferred in many embodiments
- HFC isomers are preferred for use as co-blowing agents in the compositions of the present invention:
- the blowing agent composition of the present invention comprise at least one co-blowing agent and an amount of Z- HFO-1336mzzm sufficient to produce a blowing agent composition which is overall nonflammable.
- the blowing agent compositions of the present invention may include the compound Z-HFO-1336mzzm in widely ranging amounts. It is generally preferred, however, that for preferred compositions for use as blowing agents in accordance with the present invention, Z-HFO-1336mzzm is present in an amount that is at least about 1% by weight, more preferably at least about 5% by weight, and even more preferably at least about 15% by weight, of the composition.
- the blowing agent comprises at least about 50%) by weight of the present blowing agent compound(s), and in certain embodiments
- the blowing agent consists essentially of Z-HFO-1336mzzm.
- co-blowing agents are consistent with the novel and basic features of the present invention.
- water will be used as either a co-blowing or in combination with other co-blowing agents (such as, for example, pentane, particularly cyclopentane) in a large number of embodiments.
- the blowing agent composition comprises from about 30% to about 95% by weight of Z-HFO-1336mzzm and from about 5% to about 90%) by weight, more preferably from about 5%> to about 65% by weight of co- blowing agent.
- the co-blowing agent comprises, and preferably consists essentially of, H20, HFCs, hydrocarbons, alcohols (preferably C2, C3 and/or C4 alcohols), C02, and combinations of these.
- the composition comprises H20 in an amount of from about 5% by weight to about 50% by weight of the total blowing agent composition, more preferably from about 10% by weight to about 40% by weight, and even more preferably of from about 10% to about 20% by weight of the total blowing agent.
- the composition comprises C02 in an amount of from about 5% by weight to about 60% by weight of the total blowing agent composition, more preferably from about 20% by weight to about 50%> by weight, and even more preferably of from about 40%> to about 50% by weight of the total blowing agent.
- the co-blowing agent comprises alcohols, (preferably C2, C3 and/or C4 alcohols)
- the composition comprises alcohol in an amount of from about 5% by weight to about 40% by weight of the total blowing agent composition, more preferably from about 10% by weight to about 40% by weight, and even more preferably of from about 15% to about 25% by weight of the total blowing agent.
- the HFC co-blowing agent preferably C2, C3, C4 and/or C5 HFC, and even more preferably
- HFC- 152a difluoromethane
- HFC- 152a being particularly preferred for extruded thermoplastics
- pentafluoropropane HFC-245
- the HFC is preferably C2-C4 HFC, and even more preferably C3 HFC, with penta-fluorinated C3 HFC, such as HFC-245fa, being highly preferred in certain embodiments.
- the HC co-blowing agent (preferably C3, C4 and/or C5 HC) is preferably present in the composition in amounts of from of from about 5% by weight to about 80% by weight of the total blowing agent composition, and even more preferably from about 20% by weight to about 60% by weight of the total blowing agent.
- This example demonstrates the performance of Z-HFO-1336mzzm used in combination with hydrocarbon co-blowing agents, and in particular the utility of compositions comprising, or consisting essentially of, Z-HFO-1336mzzm and cyclopentane co-blowing agents in rigid polyurethane insulation foams.
- a generic refrigerator appliance-type polyurethane foam formulation (foam forming mixture) is provided.
- the polyol blend consisted of commercial polyol(s), catalyst(s), surfactant(s), and water. Standard commercial polyurethane processing equipment is used for the foam forming process.
- a blowing agent combination is formed comprising, or consisting essentially of, Z-HFO-1336mzzm in a concentration of approximately 50 mole percent, and cyclopentane in a concentration of
- the physical blowing agents can be added individually to the polyol blend or can be pre-blended prior to introduction to the polyol blend.
- foamable compositions generally include one or more components capable of forming foam.
- foam foaming agent is used to refer to a component, or a combination on components, which are capable of forming a foam structure, preferably a generally cellular foam structure.
- the foamable compositions of the present invention include such component(s) and a blowing agent compound, preferably Z-HFO-1336mzzm.
- the amount of the compound Z-HFO-1336mzzm in the composition of the invention can be in accordance with the following ranges: from about 1 wt % to about 99 wt %; from about 30 wt % to about 99 wt %; from about 50 wt % to about 99 wt %; from about 75 wt % to about 99 wt %; from about 85 wt % to about 99 wt %; from about 20 wt % to about 80 wt %; from about 90 wt % to about 99 wt %; from about 95 wt % to about 99 wt %; from about 1 wt % to about 20 wt %; from about 1 wt % to about 40 wt %; from about 1 wt % to about 50 wt %; from about 5 wt % to about 20 wt %; from about 5 wt % to about 40 wt %
- the one or more components capable of forming foam comprise a thermosetting composition capable of forming foam and/or foamable compositions.
- thermosetting compositions include polyurethane and polyisocyanurate foam compositions, and also phenolic foam compositions.
- This reaction and foaming process may be enhanced through the use of various additives such as catalysts and surfactant materials that serve to control and adjust cell size and to stabilize the foam structure during formation.
- any one or more of the additional components described above with respect to the blowing agent compositions of the present invention could be incorporated into the foamable composition of the present invention.
- one or more of the present compositions are included as or part of a blowing agent in a foamable composition, or as a part of a two or more part foamable composition, which preferably includes one or more of the components capable of reacting and/or foaming under the proper conditions to form a foam or cellular structure.
- the one or more components capable of foaming comprise thermoplastic materials, particularly thermoplastic polymers and/or resins.
- thermoplastic foam components include polyolefins, such as for example monovinyl aromatic compounds of the formula Ar-CHCH2 wherein Ar is an aromatic hydrocarbon radical of the benzene series such as polystyrene (PS).
- PS polystyrene
- suitable polyolefin resins in accordance with the invention include the various ethylene resins including the ethylene homopolymers such as polyethylene and ethylene copolymers,
- thermoplastic foamable composition is an extrudable composition.
- the methods of the present invention generally require incorporating a blowing agent in accordance with the present invention into a foamable or foam forming composition and then foaming the composition, preferably by a step or series of steps which include causing volumetric expansion of the blowing agent in accordance with the present invention.
- blowing agent and for foaming are readily adaptable for use in accordance with the present invention.
- one advantage of the present invention is the provision of an improved blowing agent which is generally compatible with existing foaming methods and systems.
- the present invention comprises methods and systems for foaming all types of foams, including thermosetting foams, thermoplastic foams and formed-in-place foams.
- one aspect of the present invention is the use of the present blowing agents in connection conventional foaming equipment, such as polyurethane foaming equipment, at conventional processing conditions.
- the present methods therefore include polyol premix type operations, blending type operations, third stream blowing agent addition, and blowing agent addition at the foam head.
- the preferred methods generally comprise introducing a blowing agent in accordance with the present invention into a thermoplastic material, preferably thermoplastic polymer such as polyolefin, and then subjecting the thermoplastic material to conditions effective to cause foaming.
- a blowing agent in accordance with the present invention into a thermoplastic material, preferably thermoplastic polymer such as polyolefin
- the step of introducing the blowing agent into the thermoplastic material may comprise introducing the blowing agent into a screw extruder containing the thermoplastic
- the step of causing foaming may comprise lowering the pressure on the thermoplastic material and thereby causing expansion of the blowing agent and contributing to the foaming of the material.
- blowing agent of the present invention does not generally affect the operability of the present invention.
- the various components of the blowing agent, and even the components of the foamable composition be not be mixed in advance of introduction to the extrusion equipment, or even that the components are not added to the same location in the extrusion equipment.
- the blowing agent can be introduced either directly or as part of a premix, which is then further added to other parts of the foamable composition.
- one or more components of the blowing agent at first location in the extruder, which is upstream of the place of addition of one or more other components of the blowing agent, with the expectation that the components will come together in the extruder and/or operate more effectively in this manner.
- two or more components of the blowing agent are combined in advance and introduced together into the foamable composition, either directly or as part of premix which is then further added to other parts of the foamable composition.
- One embodiment of the present invention relates to methods of forming foams, especially panel foams and spray foams, and preferably such foams made from polyurethane and polyisocyanurate.
- the methods generally comprise providing a blowing agent composition of the present inventions, adding (directly or indirectly) the blowing agent composition to a foamable composition, and reacting the foamable composition under the conditions effective to form a foam or cellular structure, as is well known in the art.
- the amount of the compound Z-HFO-1336mzzm in the composition of the invention can be in accordance with the following ranges: from about 1 wt % to about 99 wt %; from about 30 wt % to about 99 wt %; from about 50 wt % to about 99 wt %; from about 75 wt % to about 99 wt %; from about 85 wt % to about 99 wt %; from about 20 wt % to about 80 wt %; from about 90 wt % to about 99 wt %; from about 95 wt % to about 99 wt %; from about 1 wt % to about 20 wt %; from about 1 wt % to about 40 wt %; from about 1 wt % to about 50 wt %; from about 5 wt % to about 20 wt %; from about 5 wt % to about 40 wt %
- such preferred methods comprise preparing polyurethane or polyisocyanurate foams by combining an isocyanate, a polyol or mixture of polyols, a blowing agent or mixture of blowing agents comprising one or more of the present compositions, and other materials such as catalysts, surfactants, and optionally, flame retardants, colorants, or other additives.
- the foam formulation is pre-blended into two components.
- the isocyanate and optionally certain surfactants and blowing agents comprise the first component, commonly referred to as the "A" component.
- the polyol or polyol mixture, surfactant, catalysts, blowing agents, flame retardant, and other isocyanate reactive components comprise the second component, commonly referred to as the "B" component.
- polyurethane or polyisocyanurate foams are readily prepared by bringing together the A and B side components either by hand mix for small preparations and, preferably, machine mix techniques to form blocks, slabs, laminates, pour-in-place panels and other items, spray applied foams, froths, and the like.
- other ingredients such as fire retardants, colorants, auxiliary blowing agents, and even other polyols can be added as one or more additional streams to the mix head or reaction site. Most preferably, however, they are all incorporated into one B-component as described above.
- the present methods and systems also include forming a one component foam, preferably polyurethane foam, containing a blowing agent in accordance with the present invention.
- a portion of the blowing agent is contained in the foam forming agent, preferably by being dissolved in a foam forming agent which is liquid at the pressure within the container, a second portion of the blowing agent is present as a separate gas phase.
- contained/dissolved blowing agent performs, in large part, to cause the expansion of the foam, and the separate gas phase operates to impart propulsive force to the foam forming agent.
- Such one component systems are typically and preferably packaged in a container, such as an aerosol type can, and the blowing agent of the present invention thus preferably provides for expansion of the foam and/or the energy to transport the foam/foamable material from the package, and preferably both.
- a container such as an aerosol type can
- the blowing agent of the present invention thus preferably provides for expansion of the foam and/or the energy to transport the foam/foamable material from the package, and preferably both.
- such systems and methods comprise charging the package with a fully formulated system (preferably isocyanate/polyol system) and incorporating a gaseous blowing agent in accordance with the present invention into the package, preferably an aerosol type can.
- a fully formulated system preferably isocyanate/polyol system
- a gaseous blowing agent in accordance with the present invention into the package, preferably an aerosol type can.
- the present invention also relates to all foams, including but not limited to closed cell foam, open cell foam, spray foams, panel foams, rigid foam, flexible foam, integral skin and the like, prepared from a polymer foam formulation containing a blowing agent comprising, or consisting essentially of, Z-HFO-1336mzzm, either alone or in combination with one or more other compounds.
- a blowing agent comprising, or consisting essentially of, Z-HFO-1336mzzm, either alone or in combination with one or more other compounds.
- thermoset foams such as polyurethane foams
- the present foams, particularly thermoset foams of the present invention may be used in a wide variety of applications, in certain preferred embodiments the present invention comprises appliance foams in accordance with the present invention, including refrigerator foams, freezer foams, refrigerator/freezer foams, panel foams, and other cold or cryogenic manufacturing applications.
- the foams in accordance with the present invention provide one or more exceptional features, characteristics and/or properties, including: thermal insulation efficiency (particularly for thermoset foams), dimensional stability, compressive strength, aging of thermal insulation properties, all in addition to the low ozone depletion potential and low global warming potential associated with many of the preferred blowing agents of the present invention.
- the present invention provides thermoset foam, including such foam formed into foam articles, which exhibit improved thermal conductivity relative to foams made using the same blowing agent (or a commonly used blowing agent HFC-245fa) in the same amount but without the compound Z- HFO-1336mzzm.
- the present foams exhibit improved mechanical properties relative to foams produced with blowing agents outside the scope of the present invention.
- certain preferred embodiments of the present invention provide foams and foam articles having a compressive strength which is superior to, and preferably at least about 10 relative percent, and even more preferably at least about 15 relative percent greater than a foam produced under substantially identical conditions by utilizing a blowing agent consisting of cyclopentane.
- the foams produced in accordance with the present invention have compressive strengths that are on a commercial basis comparable to the compressive strength produced by making a foam under substantially the same conditions except wherein the blowing agent consists of HFC-245fa.
- the foams of the present invention exhibit a compressive strength of at least about 12.5% yield (in the parallel and perpendicular directions), and even more preferably at least about 13% yield in each of said directions.
- Panel foams made using a 80/20 wt% Z-HFO-1336mzzm/cyclopentane blend as the blowing agent provides significantly better physical property and thermal insulation value than foams made with either Z-HFO-1336mzzm/iso-pentane blend or Z-HFO-1336mzzm/n-pentane blends as the blowing agent.
- panel foams made with a blowing agent blend of 80/20 wt % Z-HFO-1336mzzm/cyclopentane had considerably shorter tack free time. With nearly identical foam density, foam made with Z-HFO-1336mzzm/cyclopentane blend had the highest compressive strength.
- Foams made with the Z-HFO-1336mzzm/cyclopentane blend also demonstrated lower thermal conductivity and better retention of thermal insulation value after aging than foam with either Z-HFO-1336mzzm/isopentane blend or Z-HFO-1336mzzm/n- pentane blend.
- Panel foams made with 80/20 wt% of Z-HFO-1336mzzm and hydrocarbons as the blowing agent were prepared as follows.
- the polyol master batch composition is shown in Table 2 while the generic panel foam formulations with corresponding amounts of blowing agents are listed in Table 3.
- the perpendicular-to-parallel compressive strength ratios of all three foams are similar; however, the perpendicular compressive strength to density ratio and the parallel compressive strength to density ratio of the foam with Z-HFO- 1336mzzm/cyclopentane blend are significantly higher than the other two foams.
- foam with Z-HFO-1336mzzm/cyclopentane blend demonstrates slightly better insulation value than the other two foams at all temperatures evaluated. After the foams were aged for 8 days, the difference in thermal conductivity appears to be more significant. Compared to the foams with Z-HFO-1336mzzm/isopentane or Z-HFO-1336mzzm/n-pentane blend, foam with Z-HFO-1336mzzm/cyclopentane blend provides better retention of insulation value after aging.
- Spray prepared with Z-HFO-1336mzzm, 1233zd(E), 30/70 mole % blend of 1233zd(E) /1336mzzm and 70/30 mole % blend of 1233zd(E)/1336mzzm had equivalent density.
- the thermal conductivity data from these foams do not demonstrate the anticipated linear relationship.
- foam prepared with a 70/30 mole % 1233zd(E)/1336mzzm and 30/70 mole % 1233zd(E)/1336mzzm have improved k-factors and superior aging to those made with 1233zd(E). This is an unanticipated result.
- Spray foams with Z-HFO-1336mzzm, 1233zd(E), 30/70 mole % blend of 1233zd(E)/1336mzzm and 70/30 mole % blend of 1233zd(E)/1336mzzm as blowing agent were prepared as follows.
- the polyol master batch composition is shown in Table 5 while the generic spray foam formulations with corresponding amounts of blowing agents are listed in Table 6.
- the foams were prepared with a 3 second pour time and 8 second mix time. The raw materials temperatures were 50 °F polyol/ 70°F MDI.
- the foams prepared were well mixed and equivalent in quality.
- the block density of the foams produced is similar as is the ratio of block to core density.
- Block density is density of the squared foam prior to sample cutting.
- Core density is density of the k- factor sample taken from the middle of the sample. This is anticipated since the foams were prepared with equivalent moles of blowing agents.
- the thermal conductivity of foams prepared with these blends are significantly improved over those made with 1233zd(E). Not only are they improved, the improvement is nonlinear in relationship to the amount of Z-HFO-1336mzzm added to the blowing agent blend. It is particularly interesting that the improvement at the low mean temperatures is significant and not 1233zd(E) concentration dependant. In addition, it is notable that the foam prepared from the blends age slower than the 1233zd(E) and the Z-HFO-1336mzzm foams.
- Foams prepared with Z-HFO-1336mzzm, 245 fa, 30/70 mole % blend of 245 fa / Z-HFO-1336mzzm and 70/30 mole % blend of 245fa/Z-HFO-1336mzzm had equivalent density.
- the dimensional stability and thermal conductivity data form these foams do not demonstrate the anticipated linear relationship.
- foam prepared with a 70/30 mole % 245fa/ Z-HFO-1336mzzm have improved k-factors and superior aging to those made with 245fa. This is an unexpected result.
- Foams were prepared with Z-HFO-1336mzzm, 245 fa, 30/70 mole % blend of 245fa/ Z-HFO-1336mzzm and 70/30 mole % blend of 245fa/ Z-HFO-1336mzzm as the blowing agents.
- the polyol master batch composition is shown above in Table 5 while the generic spray foam formulations with corresponding amounts of blowing agents are listed below in Table 12.
- the foams were prepared with and 3 second pour time and 8 second mix time. The raw materials temperatures were 50 °F polyol/ 70°F MDI. Table 12 - Polyol Master Batch Composition
- the foams prepared were well mixed and equivalent in quality.
- the block density of the foams produced is similar as is the ratio of block to core density. This is anticipated since the foams were prepared with equivalent moles of blowing agents.
- foam produced with Z-HFO-1336mzzm and the 70/30 mole % Z- HFO-1336mzzm/245fa blend show the "hockey stick" curve shape traditionally found with high boiling blowing agents. This is attributed to the condensation of the blowing agent in the foam matrix at temperatures below the boiling point of the blowing agent. It is unanticipated that the 30/70 mole % Z-HFO-1336mzzm/245fa blend does not show the same curve shape since this is not an azeotropic composition. In addition the thermal conductivity of foams prepared with this blend is equivalent or slightly improved over those made with 245fa. The foam prepared of the 70/30 mole % 245fa/ Z-HFO-1336mzzm blend age slower than the 245 fa and the Z-HFO-1336mzzm foams.
- compositions of this invention which comprise, or consist essentially of Z-HFO-1336mzzm. These compositions are useful in connection with numerous methods and systems, including as heat transfer fluids in methods and systems for transferring heat, such as refrigerants used in refrigeration, air
- compositions of this invention are also advantageous for in use in systems and methods of generating aerosols, preferably comprising or consisting of the aerosol propellant in such systems and methods. Methods of forming foams and methods of extinguishing and suppressing fire are also included as embodiments of this invention.
- the present invention also provides in certain aspects methods of removing residue from articles in which the present compositions are used as solvent compositions in such methods and systems.
- the preferred heat transfer methods generally comprise providing a composition comprising, or consisting essentially of Z-HFO-1336mzzm, particularly blends as described in Table 1 , and causing heat to be transferred to or from the composition changing the phase of the composition.
- the present methods provide cooling by absorbing heat from a fluid or article, preferably by evaporating the present refrigerant composition in the vicinity of the body or fluid to be cooled to produce vapor comprising, or consisting essentially of, Z-HFO- 1336mzzm.
- the amount of the compound Z-HFO-1336mzzm in the composition of the invention can be in accordance with the following ranges: from about 1 wt % to about 99 wt %; from about 30 wt % to about 99 wt %; from about 50 wt % to about 99 wt %; from about 75 wt % to about 99 wt %; from about 85 wt % to about 99 wt %; from about 20 wt % to about 80 wt %; from about 90 wt % to about 99 wt %; from about 95 wt % to about 99 wt %; from about 1 wt % to about 20 wt %; from about 1 wt % to about 40 wt %; from about 1 wt % to about 50 wt %; from about 5 wt % to about 20 wt %; from about 5 wt % to about 40 wt %
- the methods include the further step of compressing the refrigerant vapor, usually with a compressor or similar equipment to produce vapor of the present composition at a relatively elevated pressure.
- the step of compressing the vapor results in the addition of heat to the vapor, thus causing an increase in the temperature of the relatively high-pressure vapor.
- the present methods include removing from this relatively high temperature, high pressure vapor at least a portion of the heat added by the evaporation and compression steps.
- the heat removal step preferably includes condensing the high temperature, high-pressure vapor while the vapor is in a relatively high-pressure condition to produce a relatively high- pressure liquid comprising, or consisting essentially of, Z-HFO-1336mzzm.
- This relatively high-pressure liquid preferably then undergoes a nominally isoenthalpic reduction in pressure to produce a relatively low temperature, low-pressure liquid.
- this reduced temperature refrigerant liquid which is then vaporized by heat transferred from the body or fluid to be cooled.
- compositions of the invention may be used in a method for producing heating which comprises condensing a refrigerant comprising, or consisting essentially of, Z-HFO-1336mzzm, particularly blends as described in Table 1 , in the vicinity of a liquid or body to be heated.
- a refrigerant comprising, or consisting essentially of, Z-HFO-1336mzzm, particularly blends as described in Table 1 , in the vicinity of a liquid or body to be heated.
- the amount of the compound Z-HFO-1336mzzm in the composition of the invention can be in accordance with the following ranges: from about 1 wt % to about 99 wt %; from about 30 wt % to about 99 wt %; from about 50 wt % to about 99 wt %; from about 75 wt % to about 99 wt %; from about 85 wt % to about 99 wt %; from about 20 wt % to about 80 wt %; from about 90 wt % to about 99 wt %; from about 95 wt % to about 99 wt %; from about 1 wt % to about 20 wt %; from about 1 wt % to about 40 wt %; from about 1 wt % to about 50 wt %; from about 5 wt % to about 20 wt %; from about 5 wt % to about 40 wt %
- REFRIGERANT COMPOSITIONS The present methods, systems and compositions comprising, or consisting essentially of Z-HFO-1336mzzm, and in particular, blends as described in Table 1, are thus adaptable for use in connection with automotive air conditioning systems and devices, commercial refrigeration systems and devices, chillers, residential refrigerator and freezers, general air conditioning systems, heat pumps, and the like.
- compositions of the present invention are believed to be adaptable for use in many of such systems, either with or without system modification.
- the compositions of the present invention may provide an advantage as a replacement in systems, which are currently based on refrigerants having a relatively high capacity.
- embodiments where it is desired to use a lower capacity refrigerant composition of the present invention for reasons of efficiency for example, to replace a refrigerant of higher capacity, such embodiments of the present compositions provide a potential advantage.
- compositions comprising, or consisting essentially of, Z-HFO-1336mzzm, either alone or in combination with one or more other compounds, particularly blends as described in Table 1, as a replacement for existing refrigerants, such as HCFC-123 or HFC- 134a.
- the refrigerants of the present invention potentially permit the beneficial use of larger displacement compressors, thereby resulting in better energy efficiency than other refrigerants, such as HCFC-123 or HFC- 134a. Therefore the refrigerant compositions of the present invention, particularly compositions comprising, or consisting essentially of, Z-HFO-1336mzzm, provide the possibility of achieving a competitive advantage on an energy basis for refrigerant replacement applications.
- compositions of the present invention may include the compounds of the present invention in widely ranging amounts, it is generally preferred that refrigerant compositions of the present invention comprise Z-HFO-1336mzzm, in an amount that is at least about 50% by weight, and even more preferably at least about 70% by weight, of the composition.
- the compositions of the present invention may include other components for the purpose of enhancing or providing certain functionality to the composition, or in some cases to reduce the cost of the composition.
- refrigerant compositions according to the present invention especially those used in vapor compression systems, include a lubricant, generally in amounts of from about 30 to about 50 percent by weight of the composition.
- compositions may also include a compatibilizer, such as propane, for the purpose of aiding compatibility and/or solubility of the lubricant.
- a compatibilizer such as propane
- propane propane, butanes and pentanes
- Such compatibilizers are preferably present in amounts of from about 0.5 to about 5 percent by weight of the composition.
- Combinations of surfactants and solubilizing agents may also be added to the present compositions to aid oil solubility, as disclosed by U.S. Pat. No. 6,516,837, the disclosure of which is incorporated by reference.
- Commonly used refrigeration lubricants such as Polyol Esters (POEs) and Poly Alkylene Glycols (PAGs), silicone oil, mineral oil, alkyl benzenes (ABs) and poly(alpha-olefin) (PAO) that are used in refrigeration machinery with hydrofluorocarbon (HFC) refrigerants may be used with the refrigerant compositions of the present invention.
- compositions of the present including particularly those comprising, or consisting essentially of, Z-HFO-1336mzzm, and particularly blends as set forth in Table 1 , also have advantage (either in original systems or when used as a replacement for refrigerants such as R-12 and R-500), in chillers typically used in connection with commercial air conditioning systems.
- refrigerants such as R-12 and R-500
- chillers typically used in connection with commercial air conditioning systems.
- compositions from about 0.5 to about 5% of a flammability suppressant, such as CF3I.
- the compositions of the present invention further comprise a lubricant.
- a lubricant Any of a variety of conventional lubricants may be used in the compositions of the present invention.
- An important requirement for the lubricant is that, when in use in a refrigerant system, there must be sufficient lubricant returning to the compressor of the system such that the compressor is lubricated.
- suitability of a lubricant for any given system is determined partly by the refrigerant/lubricant characteristics and partly by the characteristics of the system in which it is intended to be used.
- suitable lubricants include mineral oil, alkyl benzenes, polyol esters, including polyalkylene glycols, PAG oil, and the like.
- Mineral oil which comprises paraffin oil or naphthenic oil, is commercially available.
- mineral oils include Witco LP 250 (registered trademark) from Witco, Zerol 300 (registered trademark) from Shrieve Chemical, Sunisco 3GS from Witco, and Calumet R015 from Calumet.
- commercially available alkyl benzene lubricants include Zerol 150 (registered trademark).
- commercially available esters include neopentyl glycol dipelargonate which is available as Emery 2917 (registered trademark) and Hatcol 2370 (registered trademark).
- Other useful esters include phosphate esters, dibasic acid esters, and fluoroesters.
- Preferred lubricants include polyalkylene glycols and esters. Certain more preferred lubricants include
- any of a wide range of methods for introducing the present refrigerant compositions to a refrigeration system can be used in the present invention.
- one method comprises attaching a refrigerant container to the low-pressure side of a refrigeration system and turning on the refrigeration system compressor to pull the refrigerant into the system.
- the refrigerant container may be placed on a scale such that the amount of refrigerant composition entering the system can be monitored.
- charging is stopped.
- a wide range of charging tools known to those of skill in the art, is commercially available.
- compositions of the present invention for use as a refrigerant composition.
- the fluid of choice for centrifugal chillers is 2,2-dichloro-l,l,l-trifluoroethane (R123). Due to the ozone depletion potential of R123 it is currently banned under the Montreal protocol. It is important to maintain the high coefficient of performance (COP) when finding a replacement fluid for R123.
- a single stage chiller consists if a compressor which pressurizes a low pressure gas and delivers it to the evaporator. The high pressure fluid is then condensed at a relatively high temperature, for this case the condenser is maintained at 40°C. The condensed fluid is then passed through an expansion device which lowers both the temperature and pressure of the fluid and is introduced into the evaporator; in this case the evaporator is maintained at 2°C.
- thermodynamic performance of a refrigerant can be calculated using standard refrigerant cycle analysis techniques outlined in thermodynamic texts such as R.C. Downing,
- the COP of a single compressor chiller was determined at a condenser temperature of 2°C, evaporator temperature of 40°C, and a compressor efficiency of 0.75.
- the COPs of HCFC-123 and Z-HFO-1336mzzm in a single compressor system are both 4.6.
- the ability to maintain a COP equal to that of HCFC-123 while being non-ozone depleting and having very low GWP makes Z-HFO-1336mzzm a very fluid for a centrifugal chiller.
- Rankine cycle systems are known to be a simple and reliable means to convert heat energy into mechanical shaft power.
- Organic working fluids are useful in place of water/steam when low-grade thermal energy is encountered.
- Water/steam systems operating with low-grade thermal energy typically 400°F and lower
- organic working fluids with boiling points near room temperature are employed.
- Such fluids would have higher gas densities lending to higher capacity and favorable transport and heat transfer properties lending to higher efficiency as compared to water at low operating temperatures.
- flammable working fluids such as toluene and pentane, particularly when the industrial setting has large quantities of flammables already on site in processes or storage.
- the organic working fluid should be environmentally acceptable, non-flammable, of a low order of toxicity, and operate at positive pressures.
- Organic Rankine Cycle (ORC) systems are often used to recover waste heat from industrial processes.
- ORC Organic Rankine Cycle
- combined heat and power (cogeneration) applications waste heat from combustion of fuel used to drive the prime mover of a generator set is recovered and used to make hot water for building heat, for example, or for supplying heat to operate an absorption chiller to provide cooling.
- the demand for hot water is small or does not exist.
- the most difficult case is when the thermal requirement is variable and load matching becomes difficult, confounding efficient operation of the combined heat and power system.
- it is more useful to convert the waste heat to shaft power by using an organic Rankine cycle system.
- the shaft power can be used to operate pumps, for example, or it may be used to generate electricity. By using this approach, the overall system efficiency is higher and fuel utilization is greater. Air emissions from fuel combustion can be decreased since more electric power can be generated for the same amount of fuel input.
- the process that produces waste heat is at least one selected from the group consisting of fuel cells, internal combustion engines, internal compression engines, external combustion engines, and turbines.
- Other sources of waste heat can be found in association with operations at oil refineries, petrochemical plants, oil and gas pipelines, chemical industry, commercial buildings, hotels, shopping malls, supermarkets, bakeries, food processing industries, restaurants, paint curing ovens, furniture making, plastics molders, cement kilns, lumber kilns (drying), calcining operations, steel industry, glass industry, foundries, smelting, air-conditioning, refrigeration, and central heating. See U.S. Patent No. 7,428,816, the disclosure of which is hereby incorporated herein by reference.
- neopentane 1 to 99 l to 30 1 to 20
- One specific embodiment of a power cycle use of this compound is a process for recovering waste heat in an Organic Rankine Cycle system in which the working fluid is a composition comprising, or consisting essentially of, Z-HFO-1336mzzm and optionally, one or more additional compounds, as set forth above in Table 19.
- the conditions used in the organic Rankine cycle calculations in this example are a pump efficiency of 75%, expander efficiency of 80%, boiler temperature of 190°C, condenser temperature of 45°C and 1000 W of heat supplied to the boiler.
- the performance of Z-HFO-1336mzzm is compared to the commercially available fluid HFC-245fa (available from Honeywell).
- the thermal efficiency of HFC-245fa and Z-HFO- 1336mzzm at the conditions specified is 0.142 and 0.145, respectively.
- the present invention also provides methods of removing containments from a product, part, component, substrate, or any other article or portion thereof by applying to the article a composition of the present invention comprising, or consisting essentially of, Z-HFO-1336mzzm, and in particular, the blends set forth in Table 1.
- a composition of the present invention comprising, or consisting essentially of, Z-HFO-1336mzzm, and in particular, the blends set forth in Table 1.
- the term “article” is used herein to refer to all such products, parts, components, substrates, and the like and is further intended to refer to any surface or portion thereof.
- the term "contaminant” is intended to refer to any unwanted material or substance present on the article, even if such substance is placed on the article intentionally.
- contaminant is intended to cover and encompass such a photo resist material.
- the amount of the compound Z-HFO-1336mzzm in the composition of the invention can be in accordance with the following ranges: from about 1 wt % to about 99 wt %; from about 30 wt % to about 99 wt %; from about 50 wt % to about 99 wt %; from about 75 wt % to about 99 wt %; from about 85 wt % to about 99 wt %; from about 20 wt % to about 80 wt %; from about 90 wt % to about 99 wt %; from about 95 wt % to about 99 wt %; from about 1 wt % to about 20 wt %; from about 1 wt % to about 40 wt %; from about 1 wt % to about 50 wt %; from about 5 wt % to about 20 wt %; from about 5 wt % to about 40 wt %
- Preferred methods of the present invention comprise applying the present composition to the article. Although it is contemplated that numerous and varied cleaning techniques can employ the compositions of the present invention to good advantage, it is considered to be particularly advantageous to use the present compositions in connection with supercritical cleaning techniques. Supercritical cleaning is disclosed in U.S. Pat. No. 6,589,355, which is incorporated herein by reference.
- compositions containing the compound Z-HFO-1336mzzm may preferably be blended with one or more of the following compounds; cis-1234ze, cis-1233zd, HFC-245fa, Methylal
- blends comprise Z-HFO-1336mzzm blended with one or more of the following compounds; pentanes, hexanes, HFC-365, C 4 F 9 -0-CH 3 , C 4 F 9 -0-C 2 H 5 , propane, butane, isobutane, and/or dimethylether.
- Most preferred blends comprise Z- HFO-1336mzzm blended with one or more of the following compounds; trans- 1,2- dichloroethylene, trans-1234ze, trans-1233zd, trans-1336, HFC-43-10, HFC-152a, methanol, ethanol, isopropanol, and/or acetone.
- Another cleaning embodiment of the invention comprises the removal of contaminants from vapor compression systems and their ancillary components when these systems are manufactured and serviced.
- contaminants refers to processing fluids, lubricants, particulates, sludge, and/or other materials that are used in the manufacture of these systems or generated during their use.
- these contaminants comprise compounds such as alkylbenzenes, mineral oils, esters, polyalkyleneglycols, polyvinylethers and other compounds that are made primarily of carbon, hydrogen and oxygen.
- the compositions of the present invention will be useful for this purpose.
- compositions of the present invention comprising, or consisting essentially of Z-HFO-1336mzzm, and in particular, blends as described in Table 1 , for use as a cleaning composition.
- the amount of the compound Z-HFO-1336mzzm in the composition of the invention can be in accordance with the following ranges: from about 1 wt % to about 99 wt %; from about 30 wt % to about 99 wt %; from about 50 wt % to about 99 wt %; from about 75 wt % to about 99 wt %; from about 85 wt % to about 99 wt %; from about 20 wt % to about 80 wt %; from about 90 wt % to about 99 wt %; from about 95 wt % to about 99 wt %; from about 1 wt % to about 20 wt %; from about 1 wt % to about 40 w
- compositions of this invention comprising, or consisting essentially of, Z-HFO-1336mzzm, and in particular, blends as described in Table 1 , may be used as propellants in sprayable compositions, either alone or in combination with known propellants.
- the amount of the compound Z- HFO-1336mzzm in the composition of the invention can be in accordance with the following ranges: from about 1 wt % to about 99 wt %; from about 30 wt % to about 99 wt %; from about 50 wt % to about 99 wt %; from about 75 wt % to about 99 wt %; from about 85 wt % to about 99 wt %; from about 20 wt % to about 80 wt %; from about 90 wt % to about 99 wt %; from about 95 wt % to about 99 wt %; from about 1 wt % to about 20 wt %; from about 1 wt % to about 40 wt %; from about 1 wt % to about 50 wt %; from about 5 wt % to about 20 wt %; from about 5 wt % to about 40 wt %
- the sprayable composition includes a material to be sprayed and a propellant comprising, or consisting essentially of Z-HFO-1336mzzm, and in particular, blends as described in Table 1. Inert ingredients, solvents, and other materials may also be present in the sprayable mixture.
- the sprayable composition is an aerosol. Suitable materials to be sprayed include, without limitation, cosmetic materials such as deodorants, perfumes, hair sprays, cleansers, and polishing agents as well as medicinal materials such as anti-asthma and anti-halitosis medications.
- compositions containing the compound cis- 1,1, 1,4,4,4- hexafluoro-2-butene may preferably be blended with one or more of the following compounds; cis-1234ze, cis-1233zd, HFC-245fa, Methylal (dimethoxymethane), methylethylketone, methylisobutylketone, and/or HFC- 134a.
- More preferred blends comprise Z-HFO-1336mzzm blended with one or more of the following compounds; pentanes, hexanes, HFC-365, C 4 F 9 -O-CH 3 , C 4 F 9 -O-C 2 H 5 , propane, butane, isobutane, and/or dimethylether. Most preferred blends comprise Z- HFO-1336mzzm blended with one or more of the following compounds; trans- 1,2- dichloroethylene, trans-1234ze, trans-1233zd, trans-1336, HFC-43-10, HFC-152a, methanol, ethanol, isopropanol, and/or acetone.
- the active ingredient to be sprayed is mixed with inert ingredients, solvents, and other materials may also be present in the sprayable mixture.
- the sprayable composition is an aerosol.
- Suitable active materials to be sprayed include, without limitation, lubricants, insecticides, cleaners, cosmetic materials such as deodorants, perfumes and hair sprays, polishing agents, as well as medicinal materials such as skin cooling agents (sunburn treatment), topical anesthetics and anti- asthma medications.
- the present invention provides propellant comprising, or consisting essentially of, Z-HFO-1336mzzm, either alone or in combination with one or more other compounds, in particular blends as set forth in Table 1, such propellant composition preferably being a sprayable composition.
- the propellant compositions of the present invention preferably comprise a material to be sprayed and a propellant comprising, or consisting essentially of, Z-HFO-1336mzzm. Inert ingredients, solvents, and other materials may also be present in the sprayable mixture.
- the sprayable composition is an aerosol.
- Suitable materials to be sprayed include, without limitation, lubricants, insecticides, cleaners, cosmetic materials such as deodorants, perfumes and hair sprays, polishing agents as well as medicinal materials such as anti-asthma components, and any other medication or the like, including preferably any other medicament or agent intended to be inhaled.
- the medicament or other therapeutic agent is preferably present in the composition in a therapeutic amount, with a substantial portion of the balance of the composition comprising, or consisting essentially of, Z-HFO-1336mzzm.
- Aerosol products for industrial, consumer or medical use typically contain one or more propellants along with one or more active ingredients, inert ingredients or solvents.
- the propellant provides the force that expels the product in aerosolized form. While some aerosol products are propelled with compressed gases like carbon dioxide, nitrogen, nitrous oxide and even air, most commercial aerosols use liquefied gas propellants.
- the most commonly used liquefied gas propellants are hydrocarbons such as butane, isobutane, and propane. Dimethyl ether and HFC- 152a (1,1- difluoroethane) are also used, either alone or in blends with the hydrocarbon propellants. Unfortunately, all of these liquefied gas propellants are highly flammable and their incorporation into aerosol formulations will often result in flammable aerosol products.
- compositions of the present invention particularly and preferably compositions comprising, or consisting essentially of, Z-HFO-1336mzzm, and in particular, those blends set forth in Table 1 , for use in certain industrial aerosol products, including for example spray cleaners, lubricants, and the like, and in medicinal aerosols, including for example to deliver medications to the lungs or mucosal membranes.
- this includes metered dose inhalers (MDIs) for the treatment of asthma and other chronic obstructive pulmonary diseases and for delivery of medicaments to accessible mucous membranes or intranasally.
- MDIs metered dose inhalers
- the present invention thus includes methods for treating ailments, diseases and similar health related problems of an organism (such as a human or animal) comprising applying a composition of the present invention containing a medicament or other therapeutic component to the organism in need of treatment.
- the step of applying the present composition comprises providing a MDI containing the composition of the present invention (for example, introducing the composition into the MDI) and then discharging the present composition from the MDI.
- nonflammable refers to compounds and compositions of the present invention which do not exhibit a flashpoint as measured by one of the standard flash point methods, for example ASTM-1310-86 "Flash point of liquids by tag Open-cup apparatus.”
- the present compositions can be used to formulate a variety of industrial aerosols or other sprayable compositions such as contact cleaners, dusters, lubricant sprays, and the like, and consumer aerosols such as personal care products, household products and automotive products.
- Z-HFO-1336mzzm is particularly preferred for use as an important component of propellant compositions for in medicinal aerosols such as metered dose inhalers.
- compositions of the present invention in many applications include, in addition to Z- HFO-1336mzzm, a medicament such as a beta-agonist, a corticosteroid or other medicament, and, optionally, other ingredients, such as surfactants, solvents, other propellants, flavorants and other excipients.
- a medicament such as a beta-agonist, a corticosteroid or other medicament
- other ingredients such as surfactants, solvents, other propellants, flavorants and other excipients.
- the present invention provides methods of sterilizing comprising contacting the articles, devices or material to be sterilized with a composition of the present invention comprising, or consisting essentially of, Z- HFO-1336mzzm, and in particular, the blends defined in Table 1, and optionally in combination with one or more additional sterilizing agents.
- the amount of the compound Z-HFO-1336mzzm in the composition of the invention can be in accordance with the following ranges: from about 1 wt % to about 99 wt %; from about 30 wt % to about 99 wt %; from about 50 wt % to about 99 wt %; from about 75 wt % to about 99 wt %; from about 85 wt % to about 99 wt %; from about 20 wt % to about 80 wt %; from about 90 wt % to about 99 wt %; from about 95 wt % to about 99 wt %; from about 1 wt % to about 20 wt %; from about 1 wt % to about 40 wt %; from about 1 wt % to about 50 wt %; from about 5 wt % to about 20 wt %; from about 5 wt % to about 40 wt %
- sterilizing agent comprises ethylene oxide, formaldehyde, hydrogen peroxide, chlorine dioxide, ozone and combinations of these.
- ethylene oxide is the preferred sterilizing agent.
- sterilizing agents such as ethylene oxide
- the compound(s) in accordance with the present invention are included in the present compositions in amounts effective, together with other components present in the composition, to reduce the flammability of the sterilizing composition to acceptable levels.
- the sterilization methods of the present invention may be either high or low-temperature sterilization of the present invention involves the use of a compound or composition of the present invention at a temperature of from about 250°F to about 270°F, preferably in a substantially sealed chamber. The process can be completed usually in less than about two hours.
- some articles, such as plastic articles and electrical components cannot withstand such high temperatures and require low- temperature sterilization.
- the article to be sterilized is exposed to a fluid comprising, or consisting essentially of, Z-HFO-1336mzzm at a temperature of from about room temperature to about 200°F, more preferably at a temperature of from about room temperature to about 100°F.
- the low-temperature sterilization of the present invention is preferably at least a two-step process performed in a substantially sealed, preferably air tight, chamber. In the first step (the sterilization step), the articles having been cleaned and wrapped in gas permeable bags are placed in the chamber.
- Air is then evacuated from the chamber by pulling a vacuum and perhaps by displacing the air with steam.
- the sterilant and steam are evacuated from the chamber.
- the articles are aerated to remove sterilant residues. Removing such residues is particularly important in the case of toxic sterilants, although it is optional in those cases in which the substantially non-toxic compounds of the present invention are used.
- Typical aeration processes include air washes, continuous aeration, and a combination of the two.
- An air wash is a batch process and usually comprises evacuating the chamber for a relatively short period, for example, 12 minutes, and then introducing air at atmospheric pressure or higher into the chamber.
- non-toxic refers to compounds and compositions of the present invention which have an acute toxicity level substantially less than, and preferably at least about 30 relative percent less than, the toxicity level of HFO- 1223xd, as measured by the method published in Anesthesiology, Vol. 14, pp. 466- 472, 1953, incorporated here by reference.
- Continuous aeration typically involves introducing air through an inlet at one side of the chamber and then drawing it out through an outlet on the other side of the chamber by applying a slight vacuum to the outlet. Frequently, the two approaches are combined. For example, a common approach involves performing air washes and then an aeration cycle.
- compositions of the present invention comprising, or consisting essentially of, Z-HFO-1336mzzm, and in particular, the blends defined in Table 1 , may further comprise a lubricant.
- a lubricant Any of a variety of conventional lubricants may be used in the compositions of the present invention.
- An important requirement for the lubricant is that, when in use in a refrigerant system, there must be sufficient lubricant returning to the compressor of the system such that the compressor is lubricated.
- suitability of a lubricant for any given system is determined partly by the refrigerant/lubricant characteristics and partly by the characteristics of the system in which it is intended to be used.
- suitable lubricants include mineral oil, alkyl benzenes, polyol esters, including polyalkylene glycols, PAG oil, and the like.
- Mineral oil which comprises paraffin oil or naphthenic oil, is commercially available.
- Commercially available mineral oils include Witco LP 250 (registered trademark) from Witco, Zerol 300 (registered trademark) from Shrieve Chemical, Sunisco 3GS from Witco, and Calumet R015 from Calumet.
- Commercially available alkyl benzene lubricants include Zerol 150 (registered trademark).
- commercially available esters include neopentyl glycol dipelargonate which is available as Emery 2917 (registered trademark) and Hatcol 2370 (registered trademark).
- Other useful esters include phosphate esters, dibasic acid esters, and fluoroesters.
- Preferred lubricants include polyalkylene glycols and esters. Certain more preferred lubricants include
- compositions of the present invention comprising, or consisting essentially of Z-HFO-1336mzzm, and in particular, the blends as described in Table 1 , also provide advantage when used to carry, extract or separate desirable materials from biomass.
- materials include, but are not limited to, essential oils such as flavors and fragrances, oils which may be used as fuel, medicinals, nutraceuticals, etc.
- the amount of the compound Z-HFO-1336mzzm in the composition of the invention can be in accordance with the following ranges: from about 1 wt % to about 99 wt %; from about 30 wt % to about 99 wt %; from about 50 wt % to about 99 wt %; from about 75 wt % to about 99 wt %; from about 85 wt % to about 99 wt %; from about 20 wt % to about 80 wt %; from about 90 wt % to about 99 wt %; from about 95 wt % to about 99 wt %; from about 1 wt % to about 20 wt %; from about 1 wt % to about 40 wt %; from about 1 wt % to about 50 wt %; from about 5 wt % to about 20 wt %; from about 5 wt % to about 40 wt %
- the present invention provides methods for reducing the flammability of fluids, said methods comprising adding a Z-HFO-1336mzzm containing composition, such as the blends defined in Table 1 , to said fluid.
- a Z-HFO-1336mzzm containing composition such as the blends defined in Table 1
- the flammability associated with any of a wide range of otherwise flammable fluids may be reduced according to the present invention.
- the flammability associated with fluids such as ethylene oxide, flammable hydro fluorocarbons and hydrocarbons, including: HFC- 152a, 1,1,1-trifluoroethane (HFC-143a), difluoromethane (HFC-32), propane, hexane, octane, and the like
- a flammable fluid may be any fluid exhibiting flammability ranges in air as measured via any standard conventional test method, such as ASTM E-681, and the like.
- the amount of the compound Z-HFO-1336mzzm in the composition of the invention can be in accordance with the following ranges: from about 1 wt % to about 99 wt %; from about 30 wt % to about 99 wt %; from about 50 wt % to about 99 wt %; from about 75 wt % to about 99 wt %; from about 85 wt % to about 99 wt %; from about 20 wt % to about 80 wt %; from about 90 wt % to about 99 wt %; from about 95 wt % to about 99 wt %; from about 1 wt % to about 20 wt %; from about 1 wt % to about 40 wt %; from about 1 wt % to about 50 wt %; from about 5 wt % to about 20 wt %; from about 5 wt % to about 40 wt %
- any suitable amounts of the present compounds or compositions may be added to reduce flammability of a fluid according to the present invention.
- the amount added will depend, at least in part, on the degree to which the subject fluid is flammable and the degree to which it is desired to reduce the flammability thereof.
- the amount of compound or composition added to the flammable fluid is effective to render the resulting fluid substantially non-flammable.
- compositions of the present invention for reduction of flammability of another composition.
- the present invention further provides methods of suppressing a flame, said methods comprising contacting a flame with a Z-HFO-1336mzzm containing composition of the present invention, particularly the blends described in Table 1.
- additional flame suppressing agents can also be used with the composition of the present invention, either in admixture, or as a secondary flame suppressing agent.
- One class of compounds for this purpose is the fluoroketones.
- One especially preferred fluoroketone is dodecafluoro-2-methylpentan-3-one, which is sold by the 3M Company under the trade name Novec 1230.
- the amount of the compound Z-HFO-1336mzzm in the composition of the invention can be in accordance with the following ranges: from about 1 wt % to about 99 wt %; from about 30 wt % to about 99 wt %; from about 50 wt % to about 99 wt %; from about 75 wt % to about 99 wt %; from about 85 wt % to about 99 wt %; from about 20 wt % to about 80 wt %; from about 90 wt % to about 99 wt %; from about 95 wt % to about 99 wt %; from about 1 wt % to about 20 wt %; from about 1 wt % to about 40 wt %; from about 1 wt % to about 50 wt %; from about 5 wt % to about 20 wt %; from about 5 wt % to about 40 wt %
- a composition of the present invention may be sprayed, poured, and the like onto the flame, or at least a portion of the flame may be immersed in the composition.
- compositions comprising, or consisting essentially of Z-HFO-1336mzzm, and in particular, the blends as described in Table 1 , for use as a flame suppression composition.
- the amount of the compound Z-HFO-1336mzzm in the composition of the invention can be in accordance with the following ranges: from about 1 wt % to about 99 wt %; from about 30 wt % to about 99 wt %; from about 50 wt % to about 99 wt %; from about 75 wt % to about 99 wt %; from about 85 wt % to about 99 wt %; from about 20 wt % to about 80 wt %; from about 90 wt % to about 99 wt %; from about 95 wt % to about 99 wt %; from about 1 wt % to about 20 wt %; from about 1 wt % to about 40 wt %; from about 1 wt % to about 50 wt %; from about 5 wt % to about 20 wt %; from about 5 wt % to about 40 wt %
- NFPA 2001 cup burner is typically used.
- a small fire of heptane is located in a chimney which has air flowing around the flame to supply the needed oxygen.
- Z- HFO-1336mzzm is added until the flame is extinguished.
- the concentration obtain thusly with appropriate safety factor as outlined in NFPA 2001 can be used to extinguish fires.
- Fires can be extinguished locally using portable fire extinguishers. Such applications are classified as streaming applications. Using UL 711 a wood crib fire is started and extinguished using Z-HFO-1336mzzm. Secondly a heptane pan fire is tested using Z-HFO-1336mzzm. The results of this UL 711 testing give one the rating for the fire extinguisher tested.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Materials Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Combustion & Propulsion (AREA)
- Thermal Sciences (AREA)
- Emergency Medicine (AREA)
- Nutrition Science (AREA)
- Food Science & Technology (AREA)
- Dispersion Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Dentistry (AREA)
- Pest Control & Pesticides (AREA)
- General Health & Medical Sciences (AREA)
- Zoology (AREA)
- Environmental Sciences (AREA)
- Agronomy & Crop Science (AREA)
- Emergency Management (AREA)
- Manufacturing & Machinery (AREA)
- Business, Economics & Management (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Detergent Compositions (AREA)
- Polyurethanes Or Polyureas (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES10842581T ES2761933T3 (en) | 2009-12-16 | 2010-12-16 | Compositions and uses of cis-1,1,1,4,4,4-hexafluoro-2-butene |
PL10842581T PL2513023T3 (en) | 2009-12-16 | 2010-12-16 | Compositions and uses of cis-1,1,1,4,4,4-hexafluoro-2-butene |
EP10842581.0A EP2513023B1 (en) | 2009-12-16 | 2010-12-16 | Compositions and uses of cis-1,1,1,4,4,4-hexafluoro-2-butene |
EP17196370.5A EP3342840A3 (en) | 2009-12-16 | 2010-12-16 | Compositions and uses of cis-1,1,1,4,4,4-hexafluoro-2-butene |
DK10842581.0T DK2513023T3 (en) | 2009-12-16 | 2010-12-16 | COMPOSITIONS AND APPLICATIONS OF CIS-1,1,1,4,4,4-HEXAFLUOR-2-BUTEN |
JP2012544806A JP2013514450A (en) | 2009-12-16 | 2010-12-16 | Compositions and uses of cis-1,1,1,4,4,4-hexafluoro-2-butene |
CN201080063844.0A CN102741204B (en) | 2009-12-16 | 2010-12-16 | The composition of cis-1,1,1,4,4,4-hexafluoro-2-butene and purposes |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US28703309P | 2009-12-16 | 2009-12-16 | |
US61/287,033 | 2009-12-16 | ||
US12/968,506 | 2010-12-15 | ||
US12/968,506 US20110144216A1 (en) | 2009-12-16 | 2010-12-15 | Compositions and uses of cis-1,1,1,4,4,4-hexafluoro-2-butene |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2011084553A2 true WO2011084553A2 (en) | 2011-07-14 |
WO2011084553A3 WO2011084553A3 (en) | 2011-10-13 |
Family
ID=44143648
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2010/060646 WO2011084553A2 (en) | 2009-12-16 | 2010-12-16 | Compositions and uses of cis-1,1,1,4,4,4-hexafluoro-2-butene |
Country Status (8)
Country | Link |
---|---|
US (3) | US20110144216A1 (en) |
EP (2) | EP2513023B1 (en) |
JP (4) | JP2013514450A (en) |
CN (2) | CN105859515A (en) |
DK (1) | DK2513023T3 (en) |
ES (1) | ES2761933T3 (en) |
PL (1) | PL2513023T3 (en) |
WO (1) | WO2011084553A2 (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012106305A1 (en) * | 2011-01-31 | 2012-08-09 | E.I. Du Pont De Nemours And Company | Producing heating using working fluids comprising z 1,1,1,4,4,4-hexafluoro-2-butene |
WO2012106565A3 (en) * | 2011-02-04 | 2013-02-28 | E. I. Du Pont De Nemours And Company | Azeotropic and azeotrope-like compositions involving certain haloolefins and uses thereof |
JP2014500904A (en) * | 2010-11-25 | 2014-01-16 | アルケマ フランス | Composition of chlorotrifluoropropene and hexafluorobutene |
WO2014030654A1 (en) * | 2012-08-21 | 2014-02-27 | 東ソー株式会社 | Raw material blended composition for producing polyurethane foam and method for producing polyurethane foam or isocyanurate-modified polyurethane foam |
CN104263323A (en) * | 2014-09-09 | 2015-01-07 | 西安交通大学 | Mixed refrigerant replacing HCFC-22 as well as preparation method and application thereof |
US9145507B2 (en) | 2011-07-01 | 2015-09-29 | Arkema France | Compositions of 2,4,4,4-tetrafluorobut-1-ene and cis-1,1,1,4,4,4-hexafluorobut-2-ene |
JP2015533029A (en) * | 2012-10-30 | 2015-11-16 | レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | Fluorocarbon molecules for high aspect ratio oxide etching |
US9267066B2 (en) | 2010-11-25 | 2016-02-23 | Arkema France | Refrigerants containing (E)-1,1,1,4,4,4-hexafluorobut-2-ene |
EP2438135B1 (en) | 2009-06-03 | 2016-03-02 | E. I. du Pont de Nemours and Company | Chiller apparatus containing cis-1,1,1,4,4,4-hexafluoro-2 butene and methods of producing cooling therein |
EP2885345B1 (en) | 2012-08-15 | 2016-05-25 | E. I. du Pont de Nemours and Company | Azeotropic and azeotrope-like compositions of 2,3,3,4,4,4-hexafluoro-1-butene and 1,1,1,2,3,3-hexafluoropropane and uses thereof |
JP2017201022A (en) * | 2017-05-30 | 2017-11-09 | アルケマ フランス | Composition of chlorotrifluoropropene and hexafluorobutene |
US9909045B2 (en) | 2012-04-04 | 2018-03-06 | Arkema France | Compositions based on 2,3,3,4,4,4-hexafluorobut-1-ene |
US10023681B2 (en) | 2012-10-24 | 2018-07-17 | Evonik Degussa Gmbh | Delay action catalyst for improving the stability of polyurethane systems having halogen containing blowing agents |
WO2018209072A1 (en) * | 2017-05-10 | 2018-11-15 | The Chemours Company Fc, Llc | Z-hfo-1336mzz blowing agent blends for foaming thermoplastic polymer comprising polystyrene |
WO2018213011A1 (en) * | 2017-05-19 | 2018-11-22 | The Chemours Company Fc, Llc | Fluorinated compounds useful as foam expansion agents |
US10150901B2 (en) | 2010-12-03 | 2018-12-11 | Arkema France | Compositions containing 1,1,1,4,4,4-hexafluorobut-2-ene and 3,3,4,4,4-petrafluorobut-1-ene |
KR20190068512A (en) * | 2010-10-28 | 2019-06-18 | 허니웰 인터내셔널 인코포레이티드 | Mixtures containing 1,1,1,4,4,4-hexafluorobutene and 1-chloro-3,3,3-trifluoropropene |
AU2018236730B2 (en) * | 2010-04-28 | 2019-08-01 | The Chemours Company Fc, Llc. | Foam expansion agent compositions containing hydrohaloolefin and water and their uses in the preparation of polyurethane and polyisocyanurate polymer foams |
EP3433093B1 (en) | 2016-07-20 | 2019-09-04 | Brugg Rohr Ag Holding | Thermally insulated medium pipes having hfo-containing cell gas |
WO2019231874A1 (en) * | 2018-05-28 | 2019-12-05 | Chemours-Mitsui Fluoroproducts Co., Ltd | Non-azeotropic cleaning composition |
WO2020106930A1 (en) * | 2018-11-21 | 2020-05-28 | Honeywell International Inc. | Nonflammable refrigerants having low gwp, and systems for and methods of providing refrigeration |
Families Citing this family (76)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8463441B2 (en) | 2002-12-09 | 2013-06-11 | Hudson Technologies, Inc. | Method and apparatus for optimizing refrigeration systems |
KR101656109B1 (en) * | 2008-05-07 | 2016-09-08 | 이 아이 듀폰 디 네모아 앤드 캄파니 | Compositions comprising 2,3-dichloro-1,1,1-trifluoropropane, 2-chloro-1,1,1-trifluoropropene, 2-chloro-1,1,1,2-tetrafluoropropane or 2,3,3,3-tetrafluoropropene |
WO2009154151A1 (en) * | 2008-06-16 | 2009-12-23 | 三菱電機株式会社 | Scroll compressor |
MX337646B (en) * | 2009-02-03 | 2016-03-14 | Du Pont | Foam-forming compositions containing mixtures of cis-1,1,1,4,4,4-hexafluoro-2-butene and 1,1,1,3,3-pentafluoropro pane and their uses in the preparation of polyisocyanate-based foams. |
FR2948679B1 (en) * | 2009-07-28 | 2011-08-19 | Arkema France | HEAT TRANSFER METHOD |
US8821749B2 (en) | 2010-04-26 | 2014-09-02 | E I Du Pont De Nemours And Company | Azeotrope-like compositions of E-1,1,1,4,4,4-hexafluoro-2-butene and 1-chloro-3,3,3-trifluoropropene |
JP6158182B2 (en) * | 2011-08-19 | 2017-07-05 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company | Method and composition for organic Rankine cycle for generating mechanical energy from heat |
US20130104575A1 (en) * | 2011-11-02 | 2013-05-02 | E I Du Pont De Nemours And Company | Use of compositions comprising 1,1,1,2,3-pentafluoropropane and optionally z-1,1,1,4,4,4-hexafluoro-2-butene in high temperature heat pumps |
US20130104573A1 (en) * | 2011-11-02 | 2013-05-02 | E I Du Pont De Nemours And Company | Use of compositions comprising 1,1,1,2,3-pentafluoropropane and optionally z-1,1,1,4,4,4-hexafluoro-2-butene in chillers |
US9003797B2 (en) * | 2011-11-02 | 2015-04-14 | E L Du Pont De Nemours And Company | Use of compositions comprising 1,1,1,2,3-pentafluoropropane and optionally Z-1,1,1,4,4,4-hexafluoro-2-butene in power cycles |
MX344116B (en) | 2011-11-10 | 2016-12-06 | Joseph Nappa Mario | Catalytic fluorination process of making hydrohaloalkane. |
EP2785777A1 (en) * | 2011-12-02 | 2014-10-08 | E. I. Du Pont de Nemours and Company | Foam expansion agent compositions containing z-1,1,1,4,4,4-hexafluoro-2-butene and their uses in the preparation of polyurethane and polyisocyanurate polymer foams |
WO2013096426A1 (en) * | 2011-12-21 | 2013-06-27 | E. I. Du Pont De Nemours And Company | Use of e-1,1,1,4,4,5,5,5-octafluoro-2-pentene and optionally 1,1,1,2,3-pentafluoropropane in chillers |
CN104114243A (en) * | 2012-02-17 | 2014-10-22 | 纳幕尔杜邦公司 | Azeotrope-like compositions of Z-1,1,1,4,4,4-hexafluoro-2-butene and E-1,1,1,4,4,4-hexafluoro-2-butene and uses thereof |
CN102675579A (en) * | 2012-05-07 | 2012-09-19 | 南京宝新聚氨酯有限公司 | Polyurethane reaction composition and method for preparing hard foam by using same |
US20150191576A1 (en) * | 2012-08-01 | 2015-07-09 | E I Du Pont De Nemours And Company | Azeotropic and azeotrope-like compositions of e-1,3,4,4,4-pentafluoro-3-trifluoromethyl-1-butene and z-1,1,1,4,4,4-hexafluoro-2-butene and uses thereof |
CN113897181A (en) | 2013-01-25 | 2022-01-07 | 特灵国际有限公司 | Refrigerant additives and compositions |
GB2510911A (en) * | 2013-02-19 | 2014-08-20 | Mexichem Amanco Holding Sa | Heat transfer compositions |
KR20180039771A (en) * | 2014-01-24 | 2018-04-18 | 아사히 가세이 겐자이 가부시키가이샤 | Phenol resin foam body and method for producing same |
US20150210818A1 (en) * | 2014-01-27 | 2015-07-30 | E I Du Pont De Nemours And Company | Cryogenic insulation foam |
WO2015140827A1 (en) * | 2014-03-17 | 2015-09-24 | 三菱電機株式会社 | Heat pump device |
CN103965836B (en) * | 2014-04-02 | 2017-04-19 | 浙江大学 | Environment-friendly refrigerant for automobile air conditioner and preparation method of refrigerant |
JP6391998B2 (en) * | 2014-06-09 | 2018-09-19 | 株式会社カネカ | Blowing agent |
DE102014220985A1 (en) * | 2014-07-03 | 2016-01-07 | Siemens Aktiengesellschaft | Apparatus and method for using 1,1,1,4,4,4-hexafluoro-2-butene as a gaseous, electrically insulating and / or arc-extinguishing medium |
CN106795310A (en) * | 2014-07-10 | 2017-05-31 | 欧文斯科宁知识产权资产有限公司 | The method for manufacturing extruded polystyrene foam body as main foaming agent using carbon dioxide |
US10188887B2 (en) * | 2014-08-12 | 2019-01-29 | The Chemours Company Fc, Llc | Azeotropic and azeotrope-like compositions of HFO-E-1,3,4,4,4-PENTAFLUORO-3-trifluoromethyl-1-butene and uses thereof |
US9650596B2 (en) * | 2014-08-27 | 2017-05-16 | Illinois Tool Works Inc. | Non-flammable ternary cleaning compositions |
CN116042183A (en) | 2014-09-26 | 2023-05-02 | 大金工业株式会社 | Halogenated alkene composition and use thereof |
ES2774378T3 (en) | 2014-09-26 | 2020-07-20 | Daikin Ind Ltd | Haloolefin based composition |
CN107207948B (en) * | 2015-02-06 | 2021-08-06 | 科慕埃弗西有限公司 | Compositions comprising Z-1, 1, 1, 4, 4, 4-hexafluoro-2-butene and uses thereof |
US10759920B2 (en) * | 2015-02-06 | 2020-09-01 | The Chemours Company Fc, Llc | Compositions comprising E-1,1,1,4,4,4-hexafluoro-2-butene and uses thereof |
EP3265508A1 (en) * | 2015-03-02 | 2018-01-10 | The Chemours Company FC, LLC | Azeotropic and azeotrope-like compositions of z-1-chloro-3,3,3-trifluoropropene |
WO2016176369A1 (en) | 2015-04-27 | 2016-11-03 | Schultz Kenneth J | Improving glide in refrigerant blends and/or azeotopic blends, alternatives to r123 refrigerant, and refrigerant compositions, methods, and systems thereof |
FR3040525B1 (en) * | 2015-08-28 | 2017-08-11 | Arkema France | USE OF HEXAFLUOROBUTENES FOR THE INSULATION OR EXTINCTION OF ELECTRIC ARCS |
JP6599749B2 (en) * | 2015-12-14 | 2019-10-30 | 三井・ケマーズ フロロプロダクツ株式会社 | Azeotrope-like composition |
JP6713776B2 (en) * | 2016-01-14 | 2020-06-24 | フマキラー株式会社 | Pest control agent |
JP6915816B2 (en) * | 2016-01-14 | 2021-08-04 | フマキラー株式会社 | Pest control agent |
JP6914264B2 (en) | 2016-01-22 | 2021-08-04 | ザ ケマーズ カンパニー エフシー リミテッド ライアビリティ カンパニー | Effervescence of polyisocyanate / active hydrogen-containing compound reaction product |
EP3452537B1 (en) * | 2016-05-06 | 2024-08-21 | The Chemours Company FC, LLC | Foaming of styrene polymer |
US10612825B2 (en) | 2016-05-10 | 2020-04-07 | Trane International Inc. | Lubricant blends to reduce refrigerant solubility |
US20180022884A1 (en) * | 2016-07-25 | 2018-01-25 | Honeywell International Inc. | Polyester polyol compositions containing hfo-1336mzzm (z) |
MX2019002462A (en) * | 2016-09-23 | 2019-07-15 | Chemours Co Fc Llc | Novel foams with z-1,1,1,4,4,4-hexafluoro-2-butene. |
CN108285775B (en) * | 2017-01-09 | 2020-10-16 | 浙江省化工研究院有限公司 | Composition containing 1,1,1,4,4, 4-hexafluoro-2-butene |
CA2963751A1 (en) * | 2017-02-13 | 2018-08-13 | Honeywell International Inc. | Compositions and uses of cis-1,1,1,4,4,4-hexafluoro-2-butene |
JPWO2018159430A1 (en) * | 2017-03-01 | 2019-12-19 | パナソニックIpマネジメント株式会社 | Insulation, insulation box, insulation door and refrigerator |
ES2982187T3 (en) * | 2017-03-20 | 2024-10-15 | The Chemours Company Fc Llc | Compositions and uses of trans-1,1,1,4,4,4-hexafluoro-2-butene |
US10920181B2 (en) | 2017-05-03 | 2021-02-16 | Illinois Tool Works Inc. | Aerosol cleaning composition |
JP7308153B2 (en) * | 2017-05-08 | 2023-07-13 | ハネウェル・インターナショナル・インコーポレーテッド | Fire extinguishing composition, system and method |
US11083921B2 (en) * | 2017-05-08 | 2021-08-10 | Honeywell International Inc. | Fire extinguishing compositions, systems and methods |
WO2018218102A1 (en) * | 2017-05-26 | 2018-11-29 | Honeywell International Inc. | Compositions and uses of cis-1,1,1,4,4,4-hexafluoro-2-butene and cyclopentane |
AT17135U3 (en) * | 2017-07-11 | 2021-09-15 | Brugg Rohr Ag Holding | Thermally insulated carrier pipes with cell gas containing HFO |
WO2019096763A1 (en) * | 2017-11-17 | 2019-05-23 | Covestro Deutschland Ag | Polyurethane foam composite panel |
US20200399515A1 (en) * | 2017-11-27 | 2020-12-24 | The Chemours Company Fc, Llc | Aerosol compositions |
US10407602B2 (en) * | 2017-11-30 | 2019-09-10 | Trane International Inc. | Low global warming potential refrigerants in liquid chillers |
CN108129631A (en) * | 2017-12-28 | 2018-06-08 | 青岛海尔股份有限公司 | Polyurethane rigid foam plastic and preparation method thereof |
FR3079359B1 (en) | 2018-03-22 | 2020-10-09 | Arkema France | USE OF 1-CHLORO-2,3,3,3-TETRAFLUOROPROPENE FOR INSULATING OR EXTINGUISHING ELECTRIC ARCS |
JP7555268B2 (en) * | 2018-05-04 | 2024-09-24 | ザ ケマーズ カンパニー エフシー リミテッド ライアビリティ カンパニー | Foam with improved thermal insulation properties |
WO2019232038A1 (en) * | 2018-05-29 | 2019-12-05 | Owens Corning Intellectual Capital, Llc | Blowing agent compositions for insulating foams |
US20210253817A1 (en) * | 2018-08-23 | 2021-08-19 | The Chemours Company Fc, Llc | Azeotropic and azeotrope-like compositions of z-1,1,1,4,4,4-hexafluorobut-2-ene |
US20220002582A1 (en) * | 2018-09-25 | 2022-01-06 | Sekisui Chemical Co., Ltd. | Mixed liquid agent, polyurethane composition, polyurethane foam, spray can, and mixing system |
KR102122945B1 (en) * | 2018-10-11 | 2020-06-15 | 한국과학기술원 | Transcritical carbon dioxide power generation system |
CN109762199B (en) * | 2018-12-18 | 2022-04-01 | 浙江巨化新材料研究院有限公司 | Polymer blowing agent for thermoset foam and method for producing thermoset foam |
WO2020180839A1 (en) * | 2019-03-04 | 2020-09-10 | The Chemours Company Fc, Llc | Heat transfer compositions comprising r-1225ye(e), hfo-1234yf, r-32, r-125, and co2 |
EP3976700A1 (en) * | 2019-05-29 | 2022-04-06 | The Chemours Company FC, LLC | Blowing agent blends for thermoplastic polymers |
US20220235193A1 (en) * | 2019-06-24 | 2022-07-28 | The Chemours Company Fc, Llc | Blowing agent blends for thermoplastic polymers |
EP4041841A1 (en) * | 2019-10-10 | 2022-08-17 | The Chemours Company FC, LLC | Azeotrope and azeotrope-like compositions comprising neopentane and isomers of hfo-1336mzz |
JP7535380B2 (en) * | 2020-02-05 | 2024-08-16 | 株式会社ダイゾー | Aerosol Composition |
JP2023532875A (en) | 2020-06-25 | 2023-08-01 | ビーエーエスエフ ソシエタス・ヨーロピア | Polyisocyanurate resin foam with high compressive strength, low thermal conductivity and high surface quality |
US11655328B2 (en) | 2020-09-02 | 2023-05-23 | Ventrex Systems, LLC | Dimensionally stable closed-cell and rigid foams produced with methylal blowing agent |
CN113667455B (en) * | 2021-05-24 | 2022-06-28 | 浙江大学 | Mixed refrigerant containing trans-1, 1,1,4,4, 4-hexafluoro-2-butene and application thereof |
US20240158597A1 (en) | 2021-06-09 | 2024-05-16 | The Chemours Company Fc, Llc | Compositions comprising e-hfo-1336mzz and methyl formate and their use as expansion agents for thermoplastic foam |
CA3228703A1 (en) * | 2021-08-16 | 2023-02-23 | Hayim Abrevaya | Foamable thermoplastic compositions, thermoplastic foams and methods of making same |
CN113789155B (en) * | 2021-09-16 | 2022-06-28 | 珠海格力电器股份有限公司 | Mixed refrigerant and air conditioning system |
US20230203259A1 (en) * | 2021-12-27 | 2023-06-29 | Icp Construction, Inc. | Open Cell Polyurethane Flame-Retardant Foams |
CN114507508B (en) * | 2022-03-15 | 2023-03-21 | 浙江大学 | Application of heat pump mixed working medium |
WO2024075802A1 (en) * | 2022-10-04 | 2024-04-11 | ダイキン工業株式会社 | Fluorine-containing ether compound and method for producing same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060243945A1 (en) * | 2005-03-04 | 2006-11-02 | Minor Barbara H | Compositions comprising a fluoroolefin |
US20070010592A1 (en) * | 2002-10-25 | 2007-01-11 | Honeywell International Inc. | Foaming agents and compositions containing fluorine substituted olefins and methods of foaming |
WO2008121776A1 (en) * | 2007-03-29 | 2008-10-09 | Arkema Inc. | Hydrofluoropropene blowing agents for thermoplastics |
WO2008154612A1 (en) * | 2007-06-12 | 2008-12-18 | E.I. Du Pont De Nemours And Company | Azeotropic and azeotrope-like compositions of e-1,1,1,4,4,4-hexafluoro-2-butene |
Family Cites Families (79)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE536296A (en) * | 1954-03-22 | |||
IT535373A (en) * | 1954-06-10 | |||
US2846458A (en) * | 1956-05-23 | 1958-08-05 | Dow Corning | Organosiloxane ethers |
DE3725213A1 (en) * | 1987-07-30 | 1989-02-09 | Bayer Ag | PRODUCTION OF POLYFLUORBUTENES |
JPH05179043A (en) * | 1991-11-18 | 1993-07-20 | Daikin Ind Ltd | Blowing agent comprising fluorobutene and production of plastic foam |
DE4237617A1 (en) * | 1992-11-06 | 1994-05-11 | Bayer Ag | Use of substituted benzimidazoles |
DE4237597A1 (en) * | 1992-11-06 | 1994-05-11 | Bayer Ag | Substituted benzimidazoles |
US5516951A (en) * | 1992-11-20 | 1996-05-14 | Daikin Industries Ltd. | Process for preparing 1,1,1,4,4,4-hexafluoro-2-butene and 1,1,1,4,4,4-hexafluorobutane |
JP3304468B2 (en) * | 1993-01-29 | 2002-07-22 | ダイキン工業株式会社 | Methods for producing 1,1,1,4,4,4-hexafluoro-2-butenes and 1,1,1,4,4,4-hexafluorobutane |
US5539008A (en) * | 1993-12-29 | 1996-07-23 | Minnesota Mining And Manufacturing Company | Foamable composition containing unsaturated perfluorochemical blowing agent |
US5900342A (en) * | 1996-04-26 | 1999-05-04 | Eastman Kodak Company | Photoconductive element having an outermost layer of a fluorinated diamond-like carbon and method of making the same |
WO1997040679A1 (en) * | 1996-05-01 | 1997-11-06 | Imarx Pharmaceutical Corp. | Methods for delivering compounds into a cell |
DE19630283A1 (en) * | 1996-07-26 | 1998-01-29 | Basf Ag | Process for the production of rigid polyurethane foams |
US6120751A (en) * | 1997-03-21 | 2000-09-19 | Imarx Pharmaceutical Corp. | Charged lipids and uses for the same |
US5849443A (en) * | 1998-02-13 | 1998-12-15 | Eastman Kodak Company | Method of making multilayer electrophotographic elements |
US5849445A (en) * | 1998-02-13 | 1998-12-15 | Eastman Kodak Company | Multilayer photoconductive elements having low dark decay |
US6053008A (en) * | 1998-12-30 | 2000-04-25 | Praxair Technology, Inc. | Method for carrying out subambient temperature, especially cryogenic, separation using refrigeration from a multicomponent refrigerant fluid |
US6589355B1 (en) * | 1999-10-29 | 2003-07-08 | Alliedsignal Inc. | Cleaning processes using hydrofluorocarbon and/or hydrochlorofluorocarbon compounds |
US7077960B2 (en) * | 2000-03-07 | 2006-07-18 | Solvay (Societe Anonyme) | Method for obtaining a purified hydrofluoroalkane, purified hydrofluoroalkane, use of same and method for analysing same |
FR2806077B1 (en) * | 2000-03-07 | 2004-01-30 | Solvay | PROCESS FOR OBTAINING A PURE HYDROFLUOROALKANE, PURE HYDROFLUOROALKANE, USE OF THE HYDROFLUOROALKANE AND METHOD OF ANALYSIS OF A HYDROFLUOROALKANE |
US6516837B2 (en) * | 2000-09-27 | 2003-02-11 | Honeywell International Inc. | Method of introducing refrigerants into refrigeration systems |
WO2003099955A1 (en) * | 2002-05-24 | 2003-12-04 | Matsumoto Yushi-Seiyaku Co., Ltd. | Heat-expanding microcapsule and use thereof |
US7279451B2 (en) * | 2002-10-25 | 2007-10-09 | Honeywell International Inc. | Compositions containing fluorine substituted olefins |
US7161049B2 (en) * | 2002-12-13 | 2007-01-09 | E. I. Du Pont De Nemours And Company | Process for purifying hydrofluoropropanes |
JP2006521460A (en) * | 2002-12-17 | 2006-09-21 | ハネウェル・インターナショナル・インコーポレーテッド | Compositions and methods for cleaning contaminated articles |
US7582715B2 (en) * | 2002-12-20 | 2009-09-01 | Exxonmobil Chemical Patents Inc. | Polymers substantially free of long chain branching |
US7723447B2 (en) * | 2002-12-20 | 2010-05-25 | Exxonmobil Chemical Patents Inc. | Polymerization processes |
CA2510860C (en) * | 2002-12-20 | 2012-10-09 | Exxonmobil Chemical Patents Inc. | Polymerization process utilizing hydrofluorocarbons as diluents |
US7425601B2 (en) * | 2002-12-20 | 2008-09-16 | Exxonmobil Chemical Patents Inc. | Polymers with new sequence distributions |
JP4604524B2 (en) * | 2004-03-16 | 2011-01-05 | 味の素株式会社 | Mutant aldolase, and optically active IHOG and optically active monatin production method using the same |
US20070258909A1 (en) * | 2004-03-17 | 2007-11-08 | Solvay S.A. | Method for the Analysis of 1,1,1,2-Tetrafluoroethane |
US9102579B2 (en) * | 2004-04-29 | 2015-08-11 | Honeywell International Inc. | Method for producing fluorinated organic compounds |
US8084653B2 (en) * | 2004-04-29 | 2011-12-27 | Honeywell International, Inc. | Method for producing fluorinated organic compounds |
JP5134952B2 (en) * | 2004-06-23 | 2013-01-30 | エクソンモービル・ケミカル・パテンツ・インク | Process using extractive distillation |
US7428816B2 (en) * | 2004-07-16 | 2008-09-30 | Honeywell International Inc. | Working fluids for thermal energy conversion of waste heat from fuel cells using Rankine cycle systems |
US7897823B2 (en) * | 2004-10-29 | 2011-03-01 | E. I. Du Pont De Nemours And Company | Process for production of azeotrope compositions comprising hydrofluoroolefin and hydrogen fluoride and uses of said azeotrope compositions in separation processes |
US7429557B2 (en) * | 2005-01-27 | 2008-09-30 | Mainstream Engineering Corporation | Replacement solvents having improved properties and methods of using the same |
US20060179852A1 (en) * | 2005-02-16 | 2006-08-17 | Honeywell International Inc. | Compositions and methods for cleaning vapor compression systems |
AR052585A1 (en) * | 2005-03-04 | 2007-03-21 | Du Pont | COOLING / AIR CONDITIONING DEVICE OPERATED BY A TURBINE DRIVEN BY EXHAUST GAS OF A MOTOR, METHOD FOR CONTROLLING THE COMPRESSOR OVERLOAD, METHOD FOR PROVIDING POWER TO A COMPRESSOR. |
US20060245944A1 (en) * | 2005-03-21 | 2006-11-02 | Leck Thomas J | Cooling apparatus powered by a ratioed gear drive assembly |
TW201815923A (en) * | 2005-06-24 | 2018-05-01 | 美商哈尼威爾國際公司 | Foaming agents and compositions containing fluorine substituted olefins, and methods of foaming |
US8420706B2 (en) * | 2005-06-24 | 2013-04-16 | Honeywell International Inc. | Foaming agents, foamable compositions, foams and articles containing halogen substituted olefins, and methods of making same |
MY151990A (en) * | 2005-11-01 | 2014-07-31 | Du Pont | Solvent compositions comprising unsaturated fluorinated hydrocarbons |
US7708903B2 (en) * | 2005-11-01 | 2010-05-04 | E.I. Du Pont De Nemours And Company | Compositions comprising fluoroolefins and uses thereof |
US20070100010A1 (en) * | 2005-11-01 | 2007-05-03 | Creazzo Joseph A | Blowing agents for forming foam comprising unsaturated fluorocarbons |
CA3148429A1 (en) * | 2005-11-01 | 2007-05-10 | The Chemours Company Fc, Llc | Compositions comprising fluoroolefins and uses thereof |
US7759532B2 (en) * | 2006-01-13 | 2010-07-20 | E.I. Du Pont De Nemours And Company | Refrigerant additive compositions containing perfluoropolyethers |
US7498296B2 (en) * | 2006-02-28 | 2009-03-03 | E. I. Dupont De Nemours And Company | Azeotropic compositions comprising fluorinated compounds for cleaning applications |
US8148450B2 (en) * | 2006-06-23 | 2012-04-03 | Exxonmobil Chemical Patents Inc. | Process to produce a hydrocarbon rubber cement utilizing a hydrofluorocarbon diluent |
US7629397B2 (en) * | 2006-06-23 | 2009-12-08 | Exxonmobil Chemical Patents Inc. | Phase separation process utilizing a hydrofluorocarbon |
US20080003127A1 (en) * | 2006-07-03 | 2008-01-03 | Honeywell International Inc. | Non-Ferrous Metal Cover Gases |
US20080000647A1 (en) * | 2006-07-03 | 2008-01-03 | Honeywell International Inc. | Non-Ferrous Metal Cover Gases |
US7803975B2 (en) * | 2006-07-13 | 2010-09-28 | E.I. Du Pont De Nemours And Company | Process for separating a fluoroolefin from HF by liquid-liquid extraction |
WO2008033568A2 (en) * | 2006-09-15 | 2008-03-20 | E.I. Du Pont De Nemours And Company | Determination of the components of a fluoroolefin composition |
EP2064533A2 (en) * | 2006-09-15 | 2009-06-03 | E.I. Du Pont De Nemours And Company | Method of detecting leaks of fluoroolefin compositions and sensors used therefor |
US20080191163A1 (en) * | 2007-02-09 | 2008-08-14 | Mocella Michael T | Laser-Assisted Etching Using Gas Compositions Comprising Unsaturated Fluorocarbons |
JP2008239864A (en) * | 2007-03-28 | 2008-10-09 | National Institute Of Advanced Industrial & Technology | Foaming agent composition, composition for foam, and method for producing foam |
US8618339B2 (en) * | 2007-04-26 | 2013-12-31 | E I Du Pont De Nemours And Company | High selectivity process to make dihydrofluoroalkenes |
WO2008134061A2 (en) * | 2007-04-27 | 2008-11-06 | E. I. Du Pont De Nemours And Company | Azeotropic and azeotrope-like compositions of z-1,1,1,4,4,4-hexafluoro-2-butene |
US7795482B2 (en) * | 2007-07-03 | 2010-09-14 | E. I. Du Pont De Nemours And Company | Method of hydrodechlorination to produce dihydrofluorinated olefins |
CA2688087C (en) * | 2007-07-20 | 2014-09-09 | E. I. Du Pont De Nemours And Company | Compositions and use of cis-1,1,1,4,4,4-hexafluoro-2-butene foam-forming composition in the preparation of polyisocyanate-based foams |
CA2693203A1 (en) * | 2007-07-20 | 2009-01-29 | E.I. Du Pont De Nemours And Company | Compositions and use of trans-1,1,1,4,4,4-hexafluoro-2-butene foam-forming composition in the preparation of polyisocyanate-based foams |
US7795480B2 (en) * | 2007-07-25 | 2010-09-14 | Honeywell International Inc. | Method for producing 2-chloro-3,3,3,-trifluoropropene (HCFC-1233xf) |
BRPI0815462A2 (en) * | 2007-09-06 | 2015-02-18 | Du Pont | "COMPOSITION, PROCESSES FOR PREPARATION OF A THERMOPLASTIC OR THERMO-RETRACTABLE FOAM, REFRIGERATION PRODUCTION, MANUFACTURE OF AN AEROSOL PRODUCT, FIRE EXTINCTION OR EXPRESSION" |
US9550854B2 (en) * | 2007-10-12 | 2017-01-24 | Honeywell International Inc. | Amine catalysts for polyurethane foams |
US9453115B2 (en) * | 2007-10-12 | 2016-09-27 | Honeywell International Inc. | Stabilization of polyurethane foam polyol premixes containing halogenated olefin blowing agents |
CA2941024C (en) * | 2007-12-19 | 2018-12-04 | E. I. Du Pont De Nemours And Company | Foam-forming compositions containing azeotropic or azeotrope-like mixtures containing z-1,1,1,4,4,4-hexafluoro-2-butene and their uses in the preparation of polyisocyanate-based foams |
US20090204443A1 (en) * | 2008-02-08 | 2009-08-13 | Honeywell International Inc. | Integrated roof wind risk mitigation method and system |
CN101546415A (en) * | 2008-03-11 | 2009-09-30 | 霍尼韦尔国际公司 | Method and system for mitigating risk in issuing insurance |
US7829747B2 (en) * | 2008-04-24 | 2010-11-09 | Honeywell International Inc. | Process for dehydrofluorination of 3-chloro-1,1,1,3-tetrafluoropropane to 1-chloro-3,3,3-trifluoropropene |
CA2723125C (en) * | 2008-05-12 | 2016-09-13 | Arkema Inc. | Compositions of hydrochlorofluoroolefins |
MX2010014094A (en) * | 2008-06-20 | 2011-01-21 | Du Pont | Azeotropic and azeotrope-like compositions of z-1,1,1,4,4,4-hexafluoro-2-butene. |
AU2009319848A1 (en) * | 2008-11-26 | 2010-06-03 | E. I. Du Pont De Nemours And Company | Absorption cycle system having dual absorption circuits |
US20100154419A1 (en) * | 2008-12-19 | 2010-06-24 | E. I. Du Pont De Nemours And Company | Absorption power cycle system |
SG176231A1 (en) * | 2009-06-02 | 2011-12-29 | Du Pont | Azeotropic and azeotrope-like compositions of z-1,1,1,4,4,4-hexafluoro-2-butene |
US20110147638A1 (en) * | 2009-06-26 | 2011-06-23 | E.I. Du Pont De Nemours And Company | Azeotropic and azeotrope-like compositions of z-1,1,1,4,4,4-hexafluoro-2-butene, trans-1,2-dichloroethylene, and cyclopentane |
MX365490B (en) * | 2009-09-16 | 2019-06-05 | E I Du Pont De Nemours And Company Star | Composition comprising cis-1,1,1,4,4,4-hexafluoro-2-butene and trans-1,2-dichloroethylene, apparatus containing same and methods of producing cooling therein. |
WO2011038081A1 (en) * | 2009-09-25 | 2011-03-31 | Arkema Inc. | Biodegradable foams with improved dimensional stability |
US20110269860A1 (en) * | 2010-04-28 | 2011-11-03 | E.I. Du Pont De Nemours And Company | Foam expansion agent compositions containing hydrohaloolefin butene and water and their uses in the preparation of polyurethane and polyisocyanurate polymer foams |
-
2010
- 2010-12-15 US US12/968,506 patent/US20110144216A1/en not_active Abandoned
- 2010-12-16 JP JP2012544806A patent/JP2013514450A/en active Pending
- 2010-12-16 WO PCT/US2010/060646 patent/WO2011084553A2/en active Application Filing
- 2010-12-16 CN CN201610096274.4A patent/CN105859515A/en active Pending
- 2010-12-16 EP EP10842581.0A patent/EP2513023B1/en active Active
- 2010-12-16 EP EP17196370.5A patent/EP3342840A3/en not_active Withdrawn
- 2010-12-16 PL PL10842581T patent/PL2513023T3/en unknown
- 2010-12-16 DK DK10842581.0T patent/DK2513023T3/en active
- 2010-12-16 CN CN201080063844.0A patent/CN102741204B/en active Active
- 2010-12-16 ES ES10842581T patent/ES2761933T3/en active Active
-
2015
- 2015-11-30 JP JP2015233333A patent/JP2016074912A/en active Pending
-
2016
- 2016-07-13 US US15/209,306 patent/US20170009116A1/en not_active Abandoned
-
2017
- 2017-03-17 JP JP2017052877A patent/JP2017141457A/en not_active Withdrawn
-
2018
- 2018-08-21 JP JP2018154549A patent/JP2019031671A/en active Pending
-
2019
- 2019-06-27 US US16/454,948 patent/US20200017740A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070010592A1 (en) * | 2002-10-25 | 2007-01-11 | Honeywell International Inc. | Foaming agents and compositions containing fluorine substituted olefins and methods of foaming |
US20060243945A1 (en) * | 2005-03-04 | 2006-11-02 | Minor Barbara H | Compositions comprising a fluoroolefin |
WO2008121776A1 (en) * | 2007-03-29 | 2008-10-09 | Arkema Inc. | Hydrofluoropropene blowing agents for thermoplastics |
WO2008154612A1 (en) * | 2007-06-12 | 2008-12-18 | E.I. Du Pont De Nemours And Company | Azeotropic and azeotrope-like compositions of e-1,1,1,4,4,4-hexafluoro-2-butene |
Non-Patent Citations (1)
Title |
---|
See also references of EP2513023A2 * |
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2438135B1 (en) | 2009-06-03 | 2016-03-02 | E. I. du Pont de Nemours and Company | Chiller apparatus containing cis-1,1,1,4,4,4-hexafluoro-2 butene and methods of producing cooling therein |
EP2438135B2 (en) † | 2009-06-03 | 2019-03-13 | The Chemours Company FC, LLC | Chiller apparatus containing cis-1,1,1,4,4,4-hexafluoro-2 butene and methods of producing cooling therein |
AU2018236730B2 (en) * | 2010-04-28 | 2019-08-01 | The Chemours Company Fc, Llc. | Foam expansion agent compositions containing hydrohaloolefin and water and their uses in the preparation of polyurethane and polyisocyanurate polymer foams |
KR20190068512A (en) * | 2010-10-28 | 2019-06-18 | 허니웰 인터내셔널 인코포레이티드 | Mixtures containing 1,1,1,4,4,4-hexafluorobutene and 1-chloro-3,3,3-trifluoropropene |
KR102120908B1 (en) | 2010-10-28 | 2020-06-09 | 허니웰 인터내셔널 인코포레이티드 | Mixtures containing 1,1,1,4,4,4-hexafluorobutene and 1-chloro-3,3,3-trifluoropropene |
JP2014500904A (en) * | 2010-11-25 | 2014-01-16 | アルケマ フランス | Composition of chlorotrifluoropropene and hexafluorobutene |
US9528039B2 (en) | 2010-11-25 | 2016-12-27 | Arkema France | Refrigerants containing (E)-1,1,1,4,4,4-hexafluorobut-2-ene |
US9982178B2 (en) | 2010-11-25 | 2018-05-29 | Arkema France | Compositions of chloro-trifluoropropene and hexafluorobutene |
US9157018B2 (en) | 2010-11-25 | 2015-10-13 | Arkema France | Compositions of chloro-trifluoropropene and hexafluorobutene |
US9528038B2 (en) | 2010-11-25 | 2016-12-27 | Arkema France | Compositions of chloro-trifluoropropene and hexafluorobutene |
US9267066B2 (en) | 2010-11-25 | 2016-02-23 | Arkema France | Refrigerants containing (E)-1,1,1,4,4,4-hexafluorobut-2-ene |
US10407603B2 (en) | 2010-11-25 | 2019-09-10 | Arkema France | Compositions of chloro-trifluoropropene and hexafluorobutene |
US10150901B2 (en) | 2010-12-03 | 2018-12-11 | Arkema France | Compositions containing 1,1,1,4,4,4-hexafluorobut-2-ene and 3,3,4,4,4-petrafluorobut-1-ene |
US9745496B2 (en) | 2011-01-31 | 2017-08-29 | The Chemours Company Fc, Llc | Producing heating using working fluids comprising Z-1,1,1,4,4,4-hexafluoro-2-butene |
WO2012106305A1 (en) * | 2011-01-31 | 2012-08-09 | E.I. Du Pont De Nemours And Company | Producing heating using working fluids comprising z 1,1,1,4,4,4-hexafluoro-2-butene |
CN103517963A (en) * | 2011-02-04 | 2014-01-15 | 纳幕尔杜邦公司 | Azeotropic and azeotrope-like compositions involving certain haloolefins and uses thereof |
CN103517963B (en) * | 2011-02-04 | 2016-11-09 | 纳幕尔杜邦公司 | Azeotropic and Azeotrope-like compositions of relating to some alkenyl halide and application thereof |
AU2012212084B2 (en) * | 2011-02-04 | 2016-03-10 | The Chemours Company Fc, Llc. | Azeotropic and azeotrope-like compositions involving certain haloolefins and uses thereof |
US9085721B2 (en) | 2011-02-04 | 2015-07-21 | E I Du Pont De Nemours And Company | Azeotropic and azeotrope-like compositions involving certain haloolefins and uses thereof |
JP2014504675A (en) * | 2011-02-04 | 2014-02-24 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Azeotropic and azeotrope-like compositions containing certain haloolefins and their use |
WO2012106565A3 (en) * | 2011-02-04 | 2013-02-28 | E. I. Du Pont De Nemours And Company | Azeotropic and azeotrope-like compositions involving certain haloolefins and uses thereof |
US9359541B2 (en) | 2011-07-01 | 2016-06-07 | Arkema France | Compositions of 2,4,4,4-tetrafluorobut-1-ene and cis-1,1,1,4,4,4-hexafluorobut-2-ene |
US9145507B2 (en) | 2011-07-01 | 2015-09-29 | Arkema France | Compositions of 2,4,4,4-tetrafluorobut-1-ene and cis-1,1,1,4,4,4-hexafluorobut-2-ene |
US9909045B2 (en) | 2012-04-04 | 2018-03-06 | Arkema France | Compositions based on 2,3,3,4,4,4-hexafluorobut-1-ene |
EP2885345B1 (en) | 2012-08-15 | 2016-05-25 | E. I. du Pont de Nemours and Company | Azeotropic and azeotrope-like compositions of 2,3,3,4,4,4-hexafluoro-1-butene and 1,1,1,2,3,3-hexafluoropropane and uses thereof |
WO2014030654A1 (en) * | 2012-08-21 | 2014-02-27 | 東ソー株式会社 | Raw material blended composition for producing polyurethane foam and method for producing polyurethane foam or isocyanurate-modified polyurethane foam |
US10023681B2 (en) | 2012-10-24 | 2018-07-17 | Evonik Degussa Gmbh | Delay action catalyst for improving the stability of polyurethane systems having halogen containing blowing agents |
US10196476B2 (en) | 2012-10-24 | 2019-02-05 | Evonik Degussa Gmbh | Amine catalyst for improving the stability of polyurethane systems having halogen containing blowing agents |
JP2015533029A (en) * | 2012-10-30 | 2015-11-16 | レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | Fluorocarbon molecules for high aspect ratio oxide etching |
CN104263323B (en) * | 2014-09-09 | 2017-06-06 | 西安交通大学 | A kind of mix refrigerant of replacement HCFC 22 and its preparation method and application |
CN104263323A (en) * | 2014-09-09 | 2015-01-07 | 西安交通大学 | Mixed refrigerant replacing HCFC-22 as well as preparation method and application thereof |
EP3433093B1 (en) | 2016-07-20 | 2019-09-04 | Brugg Rohr Ag Holding | Thermally insulated medium pipes having hfo-containing cell gas |
WO2018209072A1 (en) * | 2017-05-10 | 2018-11-15 | The Chemours Company Fc, Llc | Z-hfo-1336mzz blowing agent blends for foaming thermoplastic polymer comprising polystyrene |
CN110582531A (en) * | 2017-05-10 | 2019-12-17 | 科慕埃弗西有限公司 | Z-HFO-1336mzz blowing agent blends for foaming polystyrene-containing thermoplastic polymers |
KR20190142408A (en) * | 2017-05-10 | 2019-12-26 | 더 케무어스 컴퍼니 에프씨, 엘엘씨 | Z-HFO-1336mzz Blower Blend for Foaming Thermoplastic Polymers Containing Polystyrene |
KR102579812B1 (en) | 2017-05-10 | 2023-09-20 | 더 케무어스 컴퍼니 에프씨, 엘엘씨 | Z-HFO-1336mzz blowing agent blend for foaming thermoplastic polymers containing polystyrene |
WO2018213011A1 (en) * | 2017-05-19 | 2018-11-22 | The Chemours Company Fc, Llc | Fluorinated compounds useful as foam expansion agents |
CN110662797A (en) * | 2017-05-19 | 2020-01-07 | 科慕埃弗西有限公司 | Fluorinated compounds useful as foam expansion agents |
JP2017201022A (en) * | 2017-05-30 | 2017-11-09 | アルケマ フランス | Composition of chlorotrifluoropropene and hexafluorobutene |
WO2019231874A1 (en) * | 2018-05-28 | 2019-12-05 | Chemours-Mitsui Fluoroproducts Co., Ltd | Non-azeotropic cleaning composition |
WO2020106930A1 (en) * | 2018-11-21 | 2020-05-28 | Honeywell International Inc. | Nonflammable refrigerants having low gwp, and systems for and methods of providing refrigeration |
Also Published As
Publication number | Publication date |
---|---|
EP2513023A2 (en) | 2012-10-24 |
US20110144216A1 (en) | 2011-06-16 |
EP3342840A3 (en) | 2018-11-14 |
US20170009116A1 (en) | 2017-01-12 |
EP2513023A4 (en) | 2014-06-18 |
EP2513023B1 (en) | 2019-11-13 |
US20200017740A1 (en) | 2020-01-16 |
JP2016074912A (en) | 2016-05-12 |
EP3342840A2 (en) | 2018-07-04 |
JP2019031671A (en) | 2019-02-28 |
JP2013514450A (en) | 2013-04-25 |
PL2513023T3 (en) | 2020-05-18 |
JP2017141457A (en) | 2017-08-17 |
DK2513023T3 (en) | 2020-01-13 |
WO2011084553A3 (en) | 2011-10-13 |
CN102741204B (en) | 2016-03-23 |
ES2761933T3 (en) | 2020-05-21 |
CN105859515A (en) | 2016-08-17 |
CN102741204A (en) | 2012-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11986692B2 (en) | Compositions and uses of trans-1,1,1,4,4,4-hexafluoro-2-butene | |
US20200017740A1 (en) | Compositions and uses of cis-1,1,1,4,4,4-hexafluoro-2-butene | |
ES2945641T3 (en) | Compositions and uses of Z-1-chloro-2,3,3,3-tetrafluoroprop-1-ene | |
US10828579B2 (en) | Monochlorotrifluoropropene compounds and compositions and methods using same | |
JP6266147B2 (en) | An azeotrope-like composition of cis-1,1,1,4,4,4-hexafluoro-2-butene | |
JP6074459B2 (en) | Compositions containing fluorine-substituted olefins | |
US20110037016A1 (en) | Fluoropropene compounds and compositions and methods using same | |
US20150231527A1 (en) | Monochlorotrifluoropropene compounds and compositions and methods using same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080063844.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10842581 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010842581 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012544806 Country of ref document: JP Ref document number: 5289/DELNP/2012 Country of ref document: IN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112012014397 Country of ref document: BR |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01E Ref document number: 112012014397 Country of ref document: BR Free format text: APRESENTE A TRADUCAO SIMPLES DA FOLHA DE ROSTO DA CERTIDAO DE DEPOSITO DAS PRIORIDADES REIVINDICADAS; OU DECLARACAO DE QUE OS DADOS DO PEDIDO INTERNACIONAL ESTAO FIELMENTE CONTIDOS NA PRIORIDADE REIVINDICADA, CONTENDO TODOS OS DADOS IDENTIFICADORES (NUMERO DA PRIORIDADE, DATA, DEPOSITANTE E INVENTORES). CABE SALIENTAR NAO FOI POSSIVEL INDIVIDUALIZAR OS TITULARES DA PRIORIDADE, INFORMACAO NECESSARIA PARA O EXAME DA CESSAO DO DOCUMENTO DE PRIORIDADE. A EXIGENCIA DEVE SER RESPONDIDA EM ATE 60 (SESSENTA) DIAS DE SUA PUBLICACAO E DEVE SER REALIZADA POR MEIO DA PETICAO GRU CODIGO DE SERVICO 207. |
|
ENP | Entry into the national phase |
Ref document number: 112012014397 Country of ref document: BR Kind code of ref document: A2 Effective date: 20120614 |