WO2011084002A2 - Method for producing organic acids from biomass - Google Patents

Method for producing organic acids from biomass Download PDF

Info

Publication number
WO2011084002A2
WO2011084002A2 PCT/KR2011/000103 KR2011000103W WO2011084002A2 WO 2011084002 A2 WO2011084002 A2 WO 2011084002A2 KR 2011000103 W KR2011000103 W KR 2011000103W WO 2011084002 A2 WO2011084002 A2 WO 2011084002A2
Authority
WO
WIPO (PCT)
Prior art keywords
organic acid
biomass
distillation
organic acids
organic
Prior art date
Application number
PCT/KR2011/000103
Other languages
French (fr)
Korean (ko)
Other versions
WO2011084002A9 (en
WO2011084002A3 (en
Inventor
장호남
이상엽
양승만
김낙종
강종원
정창문
최진달래
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2011084002A2 publication Critical patent/WO2011084002A2/en
Publication of WO2011084002A9 publication Critical patent/WO2011084002A9/en
Publication of WO2011084002A3 publication Critical patent/WO2011084002A3/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids

Definitions

  • the present invention relates to a method for producing an organic acid from biomass, and more particularly, to produce an organic acid (volatile fatty acid) from terrestrial, aquatic, marine or biodegradable organic mixed biomass by a high concentration cell culture method, and then Concentrates and distills to produce each organic acid.
  • Biofuel is a generic term for energy obtained by using biomass as a raw material, and is obtained through direct combustion, alcohol fermentation, methane fermentation, and the like.
  • Biomass a raw material of biofuel, is divided into sugar-based (sugar cane, sugar beet, etc.), starch-based (corn, potato, sweet potato, etc.), and wood-based (wood, rice straw, waste paper, etc.).
  • sugar-based sugar cane, sugar beet, etc.
  • starch-based corn, potato, sweet potato, etc.
  • wood-based wood, rice straw, waste paper, etc.
  • raw materials can be converted into biofuels through a fermentation process that is followed by a relatively simple pretreatment process.However, in the case of starch and wood systems, biofuels are produced through fermentation process using saccharified liquid after proper pretreatment and saccharification process. can do.
  • Wood-based materials can use waste wood in the form of urban waste or forest by-products scattered throughout the forest as raw materials, and there is no useful value as food, so the stability of supply and demand of raw materials can be secured, but the lignin removal pretreatment process must be accompanied in the process. Due to the increase in the process cost, due to the crystalline structure consisting of hydrogen bonds, which is a characteristic of the wood-based cellulose substrate has a disadvantage of low economical low glycation yield.
  • One such method is anaerobic digestion of mixed biomass such as organic waste to produce organic acids, recovery and separation of the mixed alcohol to produce mixed alcohols (Hong Chapel et al., Korea Patent Publication No. 10-0321678, Korean Patent Publication No. 10-2007-0035562, 10-2008-0016523 and 10-2009-0095622). Hallchapel et al. Proposed a process for removing lignin by long-term pretreatment of lignocellulose with lime or quicklime and oxygen and using it for the production of volatile organic acids, but they have to be pretreated for a long time to remove lignin.
  • Alkali such as NaOH and ammonia
  • acids such as high pressure steam, sulfuric acid, hydrochloric acid and nitric acid are used together with high temperature for hemicellulose decomposition. Methods can be used.
  • Volatile organic acids usually contain acetic acid, propionic acid, butyric acid as major components, each of which is a very useful chemical produced by petrochemicals. Therefore, the anaerobic digestion process can have high economic efficiency only by the effective separation of these volatile organic acids.
  • organic acid salts particularly calcium salts
  • ketones may be combined with each other to form ketones through thermal conversion, and ketones may be converted into secondary alcohols through a hydrogenation reaction.
  • an ester is formed, and when the hydrocracking ester is hydrolyzed, primary alcohol may be produced.
  • ketones, esters, primary or secondary alcohols and the like can be used as useful chemicals or transportation fuels.
  • the present inventors have made diligent efforts to solve the above problems, and added a circulating pH regulator to a multi-stage bioreactor including a cell recirculation apparatus, anaerobic digestion of biomass to produce a high concentration of organic acid, and then mixed them. Concentrating more than 30% in the form of an organic acid salt, and when performing azeotropic distillation, it was confirmed that the pure organic acid can be separated and purified, to complete the present invention.
  • An object of the present invention is to provide a method for efficiently producing and concentrating an organic acid from biomass, and then separating and purifying the desired pure organic acid.
  • the present invention comprises the steps of (a) fermenting biomass to produce an organic acid; (b) concentrating the produced organic acid to at least 30%; And (c) recovering the organic acid by fractional distillation of the concentrated organic acid.
  • the biomass is selected from the group consisting of plant biomass, animal biomass, municipal waste biomass, and mixtures thereof.
  • the step (a) is characterized in that the anaerobic digestion of the biomass in a multi-stage bioreactor comprising a cell recycling device.
  • the step (a) is calcium carbonate (CaCO 3 ), ammonium bicarbonate (NH 4 HCO 3 ), ammonium carbonate ((NH 4 ) 2 CO 3 ), sodium carbonate (Na 2 CO 3 ), sodium bicarbonate (NaHCO 3 ), sodium sulfate (Na 2 SO 4 ), sodium hydroxide (NaOH), dolomite (Dolomite) and a mixture of a pH adjuster selected from the group consisting of these is added, characterized in that the fermentation at pH 5.0 ⁇ 8.0 conditions. .
  • the concentration of the organic acid to 30% or more is characterized in that water is removed from the fermentation broth or the organic acid is selectively extracted from the fermentation broth.
  • removing water from the fermentation broth is performed by a distillation method
  • the distillation method is a multi-effect distillation (MED), multiple flash distillation (MSF, Multiple Stage Flash distillation) and steam compression distillation It is characterized in that it is selected from the group consisting of (MVC, Mechanical Vapor Compression distillation).
  • removing the water from the fermentation broth is characterized in that the reverse osmosis (RO, Reverse Osmosis) or forward osmosis (FO, Forward Osmosis) is first performed, followed by distillation.
  • RO reverse osmosis
  • FO Forward Osmosis
  • the selective extraction of the organic acid is (a) dioctylamine (DOA), trioctylamine (TOA), triaurylamine, Di-tridecylamine, Alamine 336, Aliquat 336 (main component: methyltrioctylammonium chloride), trioctylphosphine oxide (TOPO), (b) Methyl isobutyl ketone (MIBK), chloroform, octanol, dodecanol, n-alkanes, xylene, oleyl alcohol, kerosene, and mixtures thereof, selected from the group consisting of tributylphosphate (TBP) and mixtures thereof.
  • the mixed solution of the diluent selected from is added to the culture solution to extract the organic acid, it is characterized in that it is carried out by the method of back extraction again.
  • the fractional distillation is characterized in that azeotropic distillation after adding an additive selected from the group consisting of ethyl acetate, iso-butyl acetate, n-butyl acetate and mixtures thereof to the concentrated organic acid.
  • 1 is an explanatory diagram showing a process for producing an organic acid from biomass according to an embodiment of the present invention.
  • Figure 2 is a schematic diagram of a high concentration multi-stage continuous fermentation tank for organic acid production according to an embodiment of the present invention.
  • Figure 3 is an explanatory diagram showing a concentration process by the forward osmosis method of the water-soluble fermentation product according to an embodiment of the present invention.
  • FIG 4 is an explanatory diagram showing an organic acid extraction and back extraction process using an extraction solvent according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a four-stage continuous fermenter for producing organic acids according to one embodiment of the present invention.
  • Figure 6 is a graph showing the concentration of the organic acid over time in the four-stage bioreactor.
  • Figure 7 is a graph showing the concentration of the organic acid by back extraction according to an embodiment of the present invention.
  • FIG. 8 is an explanatory diagram showing a fractional distillation apparatus and a process of an organic acid according to an embodiment of the present invention.
  • the organic acids can be concentrated to 30% or more and azeotropically distills the organic acids concentrated to 30% or more. It was intended to determine if it can be separated and purified to pure organic acids.
  • the present invention while producing an organic acid through a multi-stage continuous fermentation, the optimum fermentation conditions are established, water is removed by reverse osmosis, osmosis, distillation, or the like, or the organic acid is extracted using a solvent, followed by reverse extraction to concentrate the organic acid. After performing azeotropic distillation. As a result it was confirmed that the organic acid can be separated and purified by component.
  • the present invention comprises the steps of (a) fermenting the biomass to produce an organic acid; (b) concentrating the produced organic acid to at least 30%; And (c) recovering the organic acid by fractional distillation of the concentrated organic acid.
  • 1 is an explanatory view showing a process for producing an organic acid from biomass according to an embodiment of the present invention.
  • the biomass is fermented in an organic acid fermentation tank to produce an organic acid
  • the produced organic acid may be highly concentrated by various methods such as membrane concentration and distillation, and then separated through fractional distillation.
  • the biomass is selected from the group consisting of plant biomass, animal biomass, municipal waste biomass, and mixtures thereof.
  • the biomass is paper, paper products, waste paper, wood, particle board, sawdust, agricultural waste, sewage, silage, grasses, chaff, vargas, cotton, jute, hemp, flax, bamboo, sisal , Manila hemp, straw, corncob, corn trough, switchgrass, alfalfa, hay, rice husk, coconut hair, cotton, synthetic cellulose, seaweed, algae, sludge, food Organic wastes, such as a garbage and a manure, can be illustrated.
  • the step of fermenting the biomass to produce an organic acid can be carried out in a conventional bioreactor, but in a multi-stage bioreactor comprising a cell recirculation device for producing an organic acid from the biomass more economically and efficiently It is desirable to anaerobic digest biomass.
  • Anaerobic digestion is a process that has been used for the production of methane gas.It is an acidogenesis that decomposes mixtures of manure, food waste and grass into complex microbial groups to produce organic acids and hydrogen, and methanogenesis that converts the generated organic acids and hydrogen into methane. It is composed.
  • the multistage bioreactor including the cell recirculation apparatus may use a multistage CRTR bioreactor system equipped with an upstream packed tower cell recirculation apparatus described in Korean Patent No. 0834110, which is a prior patent of the present inventors.
  • FIG. 2 is a schematic diagram of a high concentration multi-stage continuous fermentation tank for organic acid production according to an embodiment of the present invention.
  • the multi-stage bioreactor recovers the cells by upstream filling tower, filtration membrane, centrifugation, sedimentation, aggregation, adsorption, etc. to reduce the escape of cells from the fermenter, and the multistage bioreactor
  • the cell recirculator is coupled to the effluent site of each end or end stage, operating without the wash-out of the cells, each stage having a separate biomass inlet.
  • each stage can be operated by Fed-batch, and the biodegradable material that takes a long time to decompose in biomass is removed from the lower layer of fermentation tank and put into reactor having a longer residence period, which is decomposed for a longer period of time to increase the yield of organic acid from biomass. It can increase.
  • Stirring of the fermentation broth in the multi-stage bioreactor fermenter is circulated by the compression and injection device of the internal air and added or discharged as necessary, thereby minimizing unnecessary gas consumption, and hydrogen and carbon dioxide produced during fermentation may be reused by microorganisms. have.
  • the step of fermenting the biomass to produce an organic acid is calcium carbonate (CaCO 3 ), ammonium bicarbonate (NH 4 HCO 3 ), ammonium carbonate ((NH 4 ) 2 CO 3 ), sodium carbonate ( PH adjuster selected from the group consisting of Na 2 CO 3 ), sodium bicarbonate (NaHCO 3 ), sodium sulfate (Na 2 SO 4 ), sodium hydroxide (NaOH), dolomite (a mixture of Dolomite, MgCO and CaCO) and mixtures thereof It is characterized by the addition of.
  • the pH adjusting agent is preferably added until the pH 5.0 to 8.0 conditions at the time of anaerobic digestion.
  • the pH adjusting agent not only adjusts the pH during fermentation, but also concentrates the organic acid in the form of a salt when the organic acid is concentrated through distillation.
  • the organic acid concentrated to 30% or more is separated by each organic acid by azeotropic distillation with desalination, or concentrated to 70% or more of the organic acid salt in the form of salt, and the organic acid is separated from the salt by adding an acid. After distillation or azeotropic distillation can be separated into each organic acid component.
  • the pH adjusting agent when ammonium carbonate ((NH 4 ) 2 CO 3 ) or ammonium bicarbonate (NH 4 HCO 3 ) is used, the organic acid and ammonium chloride produced in organic acid fermentation are separated by heating and then combined with CO 2 . It can be recycled and used.
  • the dolomite, sodium carbonate (Na 2 CO 3 ), sodium hydrogen carbonate (NaHCO 3 ) is blown with CO 2 to the organic acid produced in the calcium carbonate (CaCO 3 ) and organic acid fermentation, and then separated from the organic acid and salt and continuously
  • Organic acids can be separated by extraction with an extraction solvent, and likewise can be easily recovered by recycling CO 2 discharged during fermentation.
  • the salt in the form of ammonia can be mixed with HCl to form NH 4 Cl to liberate the organic acid and then distillate to separate the organic acid.
  • MgCl 2 can be formed by adding a salt such as Mg (OH) 2 to the remaining NH 4 Cl, and NH 4 OH can be recovered by distillation. MgCl 2 is recovered as HCl and Mg (OH) 2 by hydrolytic thermal decomposition. Can be reused, and each can be reused.
  • a culture solution containing a low concentration (about 3%) of an organic acid cannot be recovered by evaporation of the organic acid together with water during distillation. Therefore, it is desirable to concentrate the produced organic acid to 30% or more.
  • the concentration of the organic acid to 30% or more is characterized in that water is removed from the fermentation broth or the organic acid is selectively extracted from the fermentation broth.
  • Removing water from the fermentation broth is carried out by distillation, which is a multi-effect distillation (MED), multiple stage flash distillation (MSF), steam compression distillation (MVC) Compression distillation) can be used.
  • MED multi-effect distillation
  • MSF multiple stage flash distillation
  • MVC steam compression distillation
  • the present invention may also perform reverse osmosis (RO) or forward osmosis (FO) to increase energy efficiency, and then remove water from the fermentation broth by distillation.
  • RO reverse osmosis
  • FO forward osmosis
  • the organic acid is to be further concentrated from the fermentation broth, and about 3% of the organic acid may be concentrated to 6 to 10% in the fermentation broth.
  • Figure 3 is an explanatory diagram showing a concentration process by the forward osmosis method of the water-soluble fermentation product according to an embodiment of the present invention.
  • a membrane composed of the prepared osmotic pressure can be used to increase the osmotic pressure up to 249.5 atm using a high salt concentration on the permeate side (draw side), and the osmotic pressure when the concentration of the brine at the feed side is 2M. Since this is 113.8 atm, the osmotic pressure difference ( ⁇ ) between the feed side and the permeate side (draw side) can be 124.9 atm (US 7,303,674; McCutcheon et al., J. Membr. Sci . 278: 114-123, 2006 This is much higher than the osmotic pressure difference (50 atm) of the conventional reverse osmosis method.
  • the extraction solvent may be added to the culture solution to extract the organic acid, and then back extracted again to selectively extract the organic acid.
  • the degree of extraction may vary depending on the degree of lipophilicity of the organic acid, the degree of ionization (pH), the temperature, the presence of salts, the degree of other impurities, and the like.
  • pH degree of ionization
  • butyric acid in organic acids is easier to extract than acetic acid, and can be extracted at a somewhat higher pH (5.0 to 6.0).
  • FIG 4 is an explanatory diagram showing an organic acid extraction and back extraction process using an extraction solvent according to an embodiment of the present invention.
  • the VFA is extracted by mixing with the extraction solvent.
  • the extraction solvent is an organic phase and has a specific gravity smaller than that of water and is discharged from the top of the tower after phase separation.
  • the fermentation broth is discharged from the bottom of the extraction tower, can be refluxed into the fermentation tank and reused in the fermentation process.
  • the organic phase containing the extracted VFA is injected into a liquid-liquid extraction tower for back extraction of the VFA.
  • VFA is extracted back from the organic phase of the extractant into the water phase, and the basic solution (NaOH or ammonia) is continuously added to the water phase refluxed to the reverse extraction tower to maintain the pH at 10.0 or 80 If hot water is applied, the VFA can be extracted back into the water phase.
  • the basic solution NaOH or ammonia
  • water refluxed from the distillation column may be used as the water introduced into the concentration tank.
  • the extraction solvent is (a) dioctylamine (DOA), trioctylamine (TOA), triaurylamine, Di-tridecylamine, Alamine 336, Aliquat 336 (main component: methyltrioctylammonium chloride), trioctylphosphine oxide (TOPO), tributylphosphate (TBP) and mixtures thereof (B) Methyl isobutyl ketone (MIBK), chloroform, octanol, dodecanol, n-alkanes (C 6 ⁇ C 30 ), xylene, oleyl alcohol, kerosene, and mixtures thereof.
  • the mixed liquid of the diluent selected can be illustrated.
  • the extractant is preferably used with a diluent for extraction efficiency and ease of processing.
  • the diluent serves to enhance the extraction efficiency by controlling the high viscosity and specific gravity of the extraction solvent, the surface tension between the organic phase and the water phase.
  • the extractant and diluent may be selected in the range of 1: 0 to 1:20, but is preferably mixed in a ratio of 1: 1 to 1: 4, and the extraction solvent is in the range of 1 to 100 parts by weight based on 100 parts by weight of the fermentation broth. Although it may be used, it is usually preferable to apply in the range of 50 to 100 parts by weight.
  • the concentrated organic acid 30% or more can be separated and purified into each organic acid through fractional distillation.
  • Organic acids are hydrophilic in nature and are difficult to separate from water. This is because when the water evaporates, the organic acid is also evaporated together so that the organic acid is not concentrated and vaporizes together. Therefore, in the present invention, the organic acid is concentrated to a high concentration of 30% or more, and then, an additive such as ethyl acetate, iso-butyl acetate, n-butyl acetate, and the like is subjected to azeotropic distillation to separate and purify the organic acid.
  • an additive such as ethyl acetate, iso-butyl acetate, n-butyl acetate, and the like is subjected to azeotropic distillation to separate and purify the organic acid.
  • the food waste was ground finely with a mixer, and the organic acid fermentation was performed using a portion having a relatively small solid content through a sieve having a diameter of 0.5 mm.
  • Food waste contained about 50% of starch.
  • the bioreactor uses a four-stage bioreactor configured as shown in FIG. 5, and each stage is equipped with a sponge-type filter to increase cell concentration and prevent leakage of undecomposed food waste. Initially, the internal oxygen was removed by injecting nitrogen gas, and afterwards, the internal gas including carbon dioxide and hydrogen generated during organic acid production was recycled by using a compressor to minimize the inflow of external air and to agitate the culture solution. Add 25% NaHCO 3 to the dry weight of food waste and adjust the pH to 8.0.
  • Inoculate 10% (v / v) of anaerobic digestion fluid (KAIST food waste treatment system anaerobic digester), It kept above 6.5. At this time, the food waste was intermittently added to each stage, the total dilution rate was maintained at 0.2 / day, the fermentation temperature was maintained at about 40 °C.
  • Figure 6 is a graph showing the concentration of the organic acid over time in the four-stage bioreactor.
  • the total organic acid concentration was 34.6 g / L in four stages, the productivity was 6.92 g / L / day, the yield was very high, 0.49 g / g food waste.
  • the composition of organic acid: acetic acid: propionic acid: butyric acid ratio of 5: 1: 5 was found to be relatively high content of butyric acid.
  • the food waste was ground finely with a mixer, and the organic acid fermentation was performed using a portion having a relatively small solid content through a sieve having a diameter of 0.5 mm.
  • 50 g / L of food waste on a dry weight basis was placed in an anaerobic flask, 5 g / L yeast extract and a buffering agent (additive) of Table 1 were added, and the anaerobic digestion liquid was added to 10% of the final volume. After that, shaking culture was performed at 42 ° C. and 120 rpm.
  • the organic acid was concentrated using a reverse osmosis filter module composed of a polypropylene reverse osmosis membrane (Filmtech, USA).
  • the organic acid used in the experiment was used as ammonium acetate containing ammonium salt, pH was adjusted with ammonia water. Concentration was carried out by varying the volume of the acetate solution to 2L, 1.6L, 1.2L, 0.8L, respectively, and the concentration of the concentrated acetate solution was confirmed the pH, effluent volume and flow rate, and the results are shown in Table 3. .
  • the experiment was repeated three times.
  • Acetic acid was concentrated using a flat plate system equipped with a polypropylene osmotic membrane (Filmtech, USA). 3.1 g / L acetic acid solution was added to the feed side, and 30% NaCl solution was used for the draw side. The pH of the acetic acid solution in the feed side was maintained at 6.4, which is close to the general fermentation conditions, and the pH was used as ammonia water. The concentration and volume of acetic acid at the beginning and end of the feed side and draw side were measured, and the results are shown in Table 4.
  • the acetic acid could be concentrated to 3.6 g / L by removing 80 mL of water from the initial 3.1 g / L acetic acid solution.
  • the rejection ratio of acetic acid on the osmotic membrane was 88.9%.
  • the water removed from the feed side was 26.7% of the total amount, resulting in an acetic acid concentration of 116.1%.
  • the acetic acid concentration of the distilled solution was maintained below 0.1 g / L it was confirmed that most of the acetic acid remains as a residue can be concentrated in acetic acid.
  • Final acetic acid concentration in the residue was determined to be 315.8 g / L.
  • Octanol (diluent) containing 25% of Alamine 336 (extractant) was used as the organic phase.
  • the partition coefficient As shown in Table 6, as the initial VFA concentration increased, the partition coefficient tended to gradually decrease, but the extraction coefficient proceeded well with a partition coefficient of 5.8 even at a VFA concentration of 56 g / L. In particular, at 29 g / L expected to be the VFA concentration of the fermentation broth, the partition coefficient was measured to be about 10.7, and it was confirmed that more than 90% of the VFA in the water phase was extracted into the organic phase.
  • VFA was extracted under the same conditions as 6-1 while controlling the concentration of the extractant (Alamine 336) to 0 to 100% using various diluents (octanol, octane, MIBK and kerosene).
  • the simulation program Hysys was designed to separate and recover the mixture of VFA and water from the extraction process for each component.
  • the components were separated.
  • the temperature of the distillation 1 is 99 ⁇ 100 °C
  • the temperature of the distillation 2 is 99 ⁇ 100 °C
  • the temperature of the distillation 3 is 117 ⁇ 118 °C
  • the temperature of the distillation 4 was maintained at 140 ⁇ 141 °C.
  • 'distillation 2' water and acetic acid discharged to the top of 'distillation 1' are separated for each component, and the water discharged to the top of the tower is refluxed for the extraction process.
  • VFA solution consisting only of acetic acid, propionic acid and butyric acid discharged to the bottom of 'distillation 1' was injected into 'distillation 3', the remaining acetic acid was recovered to the top, and the mixture of propionic acid and butyric acid to the bottom was discharged.
  • the method of separating volatile organic acids according to the present invention not only dramatically increases the economics of the anaerobic digestion process, but also enables high value-adding through the synthesis of various compounds derived from organic acids, and is particularly economical when converting organic acids to biofuels. Economical production of liquid fuel for transportation can be improved.
  • the method of producing organic acids from the biomass according to the present invention enables not only to efficiently produce organic acids from terrestrial, aquatic, marine or biodegradable organic mixed biomass, and to economically concentrate the produced organic acids, Since fractional distillation can separate the organic acid of the desired composition, it is possible to increase the added value of the organic acid can significantly increase the economics of the organic acid bioprocess.

Abstract

The present invention relates to a method for producing organic acids from biomass, and more specifically relates to a method for producing various organic acids (volatile fatty acids) from land-based, freshwater-based, marine or biodegradable organic mixed biomass by using a high-density cell culture method, and then concentrating and distilling the same. The method for producing organic acids from biomass comprises the steps of: (a) producing organic acids by fermenting biomass; (b) concentrating the organic acids so produced by at least 30%; and (c) recovering the organic acids by fractional distillation of the concentrated organic acid. A method for isolating organic acids produced economically from biomass according to the present invention can be used to advantage in converting organic acids into fuel or compounds such as alcohols, esters and alkanes in addition to the economic use of organic acids.

Description

바이오매스로부터 유기산을 생산하는 방법How to produce organic acids from biomass
본 발명은 바이오매스로부터 유기산을 생산하는 방법에 관한 것으로, 더욱 상세하게는 고농도 세포배양 방법에 의하여 육상, 수상, 해양 또는 생분해성 유기 혼합 바이오매스로부터 유기산(volatile fatty acid)을 생산한 후, 이를 농축시키고, 증류시켜 각각의 유기산을 생산하는 방법에 관한 것이다.The present invention relates to a method for producing an organic acid from biomass, and more particularly, to produce an organic acid (volatile fatty acid) from terrestrial, aquatic, marine or biodegradable organic mixed biomass by a high concentration cell culture method, and then Concentrates and distills to produce each organic acid.
바이오 연료는 바이오매스(biomass)를 원료로 하여 얻어지는 에너지를 통칭하는 것으로서, 직접 연소, 알코올 발효, 메탄 발효 등을 통해 얻어진다. 바이오 연료의 원료가 되는 물질인 바이오매스는 크게 당질계(사탕수수, 사탕무 등), 전분질계(옥수수, 감자, 고구마 등), 목질계(나무, 볏짚, 폐지 등)로 나누어지는데, 당질계의 경우 원료를 비교적 간단한 전처리 과정 후 이어지는 발효 공정을 통해 곧바로 바이오연료로 전환이 가능하지만, 전분질계와 목질계의 경우에는 적절한 전처리 과정과 당화 공정을 거친 당화액을 이용한 발효 공정을 통해 바이오 연료를 제조할 수 있다. 목질계는 도시 폐기물 형태의 폐목재나 삼림 곳곳에 흩어져 있는 임산 부산물을 원료로 이용할 수 있으며, 식량으로서 활용가치가 없어 원료 수급의 안정성은 확보될 수 있으나, 공정상 반드시 수반되어야 하는 리그닌 제거 전처리 공정으로 인한 공정비 상승과 함께, 목질계 셀룰로오스 기질의 특징인 수소결합으로 이루어진 크리스탈린(crystalline) 구조로 인해 당화 수율이 낮아 경제성이 낮은 단점이 있다. Biofuel is a generic term for energy obtained by using biomass as a raw material, and is obtained through direct combustion, alcohol fermentation, methane fermentation, and the like. Biomass, a raw material of biofuel, is divided into sugar-based (sugar cane, sugar beet, etc.), starch-based (corn, potato, sweet potato, etc.), and wood-based (wood, rice straw, waste paper, etc.). In this case, raw materials can be converted into biofuels through a fermentation process that is followed by a relatively simple pretreatment process.However, in the case of starch and wood systems, biofuels are produced through fermentation process using saccharified liquid after proper pretreatment and saccharification process. can do. Wood-based materials can use waste wood in the form of urban waste or forest by-products scattered throughout the forest as raw materials, and there is no useful value as food, so the stability of supply and demand of raw materials can be secured, but the lignin removal pretreatment process must be accompanied in the process. Due to the increase in the process cost, due to the crystalline structure consisting of hydrogen bonds, which is a characteristic of the wood-based cellulose substrate has a disadvantage of low economical low glycation yield.
그러나, 목질계를 제외하고는 현재 상용화된 바이오연료 생산 기술은 인간이 식량으로 사용할 수 있는 당질계 또는 전분질계 원료를 사용하므로 식량을 에너지원으로 사용한다는 문제뿐만 아니라, 앞으로 식량 수요가 늘어날 경우 원료 수급 문제가 발생할 수 있으며, 경제적인 측면에서도 곡물을 사용하는 것은 원료비용 측면에서 문제가 된다. 또한, 옥수수 재배는 상당량의 농약과 질소비료를 필요로 할 뿐 아니라 다른 작물에 비해 토양을 심하게 부식시키는 환경적인 단점도 존재한다. 한정된 토지에서 식물을 재배하여 바이오매스를 생산할 때 다양한 종류의 식물이 혼합된 형태로 재배하는 것은 단위면적당 생산성을 높이는 한가지 방법이다. 바이오매스로부터 바이오연료 등을 생산할 때 한가지 바이오매스를 대상으로 하는 것은 친환경적이지 못할 뿐만 아니라 경제적이지 못하다. 따라서, 혼합 바이오매스를 이용할 수 있는 바이오연료 생산 공정은 매우 중요하다. However, except for the wood-based biofuel production technology that is currently commercialized, it uses the sugar- or starch-based raw materials that humans can use as food. Supply-demand problems can occur, and economically, using grains is a problem in terms of raw material costs. Corn cultivation also requires significant amounts of pesticides and nitrogen fertilizers, as well as environmental disadvantages that severely corrode the soil compared to other crops. When growing plants on confined lands to produce biomass, cultivation of mixed types of plants is one way to increase productivity per unit area. When producing biofuels from biomass, targeting one biomass is not eco-friendly and economical. Therefore, a biofuel production process that can utilize mixed biomass is very important.
이러한 방법의 하나로 유기성 폐기물 등의 혼합 바이오매스를 혐기성 소화하여 유기산을 생산하고 이를 회수 및 분리하여 혼합 알코올을 만드는 공정이 홀채플 등(한국등록특허 10-0321678, 한국공개특허 10-2007-0035562, 10-2008-0016523 및 10-2009-0095622)에 의해 보고되었다. 홀채플 등은 목질계 바이오매스(lignocellulose)를 석회 또는 생석회 및 산소로 장기간 전처리하여 리그닌을 제거하고, 이를 휘발성 유기산 생산에 이용하는 공정을 제시하였으나, 이들은 리그닌 제거를 위해 장시간동안 전처리를 수행하여야 할 뿐만 아니라, 전처리 수행을 위해서는 넓은 공간의 전처리 장소를 필요로 하는 문제점과 상기 방법을 이용할 경우, 초산, 프로피온산, 낙산 등으로 구성된 휘발성 유기산을 분리할 수 없으며, 원하는 조성으로의 생산이 불가능하고 혼합알코올의 형태로만 생산할 수 있는 문제점이 있었다. One such method is anaerobic digestion of mixed biomass such as organic waste to produce organic acids, recovery and separation of the mixed alcohol to produce mixed alcohols (Hong Chapel et al., Korea Patent Publication No. 10-0321678, Korean Patent Publication No. 10-2007-0035562, 10-2008-0016523 and 10-2009-0095622). Hallchapel et al. Proposed a process for removing lignin by long-term pretreatment of lignocellulose with lime or quicklime and oxygen and using it for the production of volatile organic acids, but they have to be pretreated for a long time to remove lignin. In addition, the problem of requiring a pretreatment place of a large space for performing the pretreatment and using the above method, it is not possible to separate the volatile organic acids composed of acetic acid, propionic acid, butyric acid, production of the desired composition is impossible and There was a problem that can only be produced in form.
석회에 의한 전처리 이외에 리그닌 제거를 위해서는 NaOH, 암모니아 등의 알칼리가 이용되며, 헤미셀룰로스 분해를 위해서는 고압 스팀, 황산, 염산, 질산 등의 산이 고온과 함께 이용되며, 통상의 셀룰로스 에탄올 생산시 이용되는 전처리 방법들이 이용될 수 있다.Alkali, such as NaOH and ammonia, is used to remove lignin in addition to the pretreatment by lime, and acids such as high pressure steam, sulfuric acid, hydrochloric acid and nitric acid are used together with high temperature for hemicellulose decomposition. Methods can be used.
휘발성 유기산은 통상 초산, 프로피온산, 낙산 등을 주요 성분으로 포함하는데 이들 각각은 매우 유용한 화학물질로 석유화학에 의해 생산되고 있다. 따라서, 이들 휘발성 유기산의 효과적 분리만으로도 혐기성 소화 공정은 높은 경제성을 가질 수 있다. Volatile organic acids usually contain acetic acid, propionic acid, butyric acid as major components, each of which is a very useful chemical produced by petrochemicals. Therefore, the anaerobic digestion process can have high economic efficiency only by the effective separation of these volatile organic acids.
또한, 유기산염 특히 칼슘염은 열적 전환을 통해 두 분자의 유기산이 결합하여 케톤을 형성할 수 있고, 케톤은 수소화반응을 거쳐 2차알코올로 전환이 가능하다. 정제된 유기산을 알코올과 결합하면 에스터가 형성되고, 에스터를 수소화분해반응시키면 1차알코올이 생성될 수 있다. 이들 케톤, 에스터, 1차 또는 2차 알코올 등은 유용한 화학물질 또는 수송용 연료 등으로 이용될 수 있다.In addition, organic acid salts, particularly calcium salts, may be combined with each other to form ketones through thermal conversion, and ketones may be converted into secondary alcohols through a hydrogenation reaction. When the purified organic acid is combined with alcohol, an ester is formed, and when the hydrocracking ester is hydrolyzed, primary alcohol may be produced. These ketones, esters, primary or secondary alcohols and the like can be used as useful chemicals or transportation fuels.
하지만, 유기산의 생산은 일반적으로 이들 산의 중화를 위해 다량의 알칼리가 필요하고, 대부분 2%(w/v)이하의 낮은 농도로 생산되며, 그 자체로 세포의 성장을 저해하는 특성이 있어 고농도에서 높은 생산성을 보여주지 못한다. 따라서, 경제성 있는 공정의 확립을 위해서는 유기산의 효과적인 발효공정과 함께 중화하는 물질의 효과적 재순환이 필요하고, 낮은 농도의 유기산을 농축하는 에너지 효율적인 공정의 개발의 요구된다. However, the production of organic acids generally requires a large amount of alkali to neutralize these acids, most are produced at a low concentration of less than 2% (w / v), and in itself has a characteristic of inhibiting the growth of cells, high concentration Does not show high productivity. Therefore, in order to establish an economical process, an effective fermentation process of an organic acid is required along with an effective recycling of neutralizing substances, and development of an energy efficient process for concentrating low concentrations of organic acids is required.
이에, 본 발명자들은 상기 문제점을 해결하기 위하여 예의 노력한 결과, 세포재순환 장치를 포함하는 다단계 생물반응기에 순환 가능한 pH 조절제를 첨가하고, 바이오매스를 혐기성 소화시켜, 고농도의 유기산을 생산한 후, 이를 혼합 유기산염 형태로 30% 이상 농축하고, 공비증류를 수행할 경우, 순수한 유기산을 분리 및 정제할 수 있다는 사실을 확인하고, 본 발명을 완성하게 되었다. Therefore, the present inventors have made diligent efforts to solve the above problems, and added a circulating pH regulator to a multi-stage bioreactor including a cell recirculation apparatus, anaerobic digestion of biomass to produce a high concentration of organic acid, and then mixed them. Concentrating more than 30% in the form of an organic acid salt, and when performing azeotropic distillation, it was confirmed that the pure organic acid can be separated and purified, to complete the present invention.
발명의 요약Summary of the Invention
본 발명의 목적은 효율적으로 바이오매스로부터 유기산을 생산하고 농축시킨 후, 목적하는 순수 유기산으로 분리 및 정제하는 방법을 제공하는데 있다.An object of the present invention is to provide a method for efficiently producing and concentrating an organic acid from biomass, and then separating and purifying the desired pure organic acid.
상기 목적을 달성하기 위하여, 본 발명은 (a) 바이오매스를 발효시켜 유기산을 생산하는 단계; (b) 상기 생산된 유기산을 30% 이상으로 농축하는 단계; 및 (c) 상기 농축된 유기산을 분별증류하여 유기산을 회수하는 단계를 포함하는 것을 특징으로 하는 바이오매스로부터 유기산을 생산하는 방법을 제공한다.In order to achieve the above object, the present invention comprises the steps of (a) fermenting biomass to produce an organic acid; (b) concentrating the produced organic acid to at least 30%; And (c) recovering the organic acid by fractional distillation of the concentrated organic acid.
본 발명에 있어서, 상기 바이오매스는 식물 바이오매스, 동물 바이오매스, 도시 쓰레기 바이오매스 및 이들의 혼합물로 구성된 군에서 선택되는 것을 특징으로 한다.In the present invention, the biomass is selected from the group consisting of plant biomass, animal biomass, municipal waste biomass, and mixtures thereof.
본 발명에 있어서, 상기 (a) 단계는 세포재순환 장치를 포함하는 다단계 생물반응기에서 상기 바이오매스를 혐기성 소화시키는 것을 특징으로 한다. In the present invention, the step (a) is characterized in that the anaerobic digestion of the biomass in a multi-stage bioreactor comprising a cell recycling device.
본 발명에 있어서, 상기 (a) 단계는 탄산칼슘(CaCO3), 중탄산암모늄(NH4HCO3), 탄산암모늄((NH4)2CO3), 탄산나트륨(Na2CO3), 탄산수소나트륨(NaHCO3), 황산나트륨(Na2SO4), 수산화나트륨(NaOH), 돌로마이트(Dolomite) 및 이들의 혼합물로 구성된 군에서 선택되는 pH 조절제가 첨가되어 pH 5.0 ~ 8.0 조건에서 발효되는 것을 특징으로 한다.In the present invention, the step (a) is calcium carbonate (CaCO 3 ), ammonium bicarbonate (NH 4 HCO 3 ), ammonium carbonate ((NH 4 ) 2 CO 3 ), sodium carbonate (Na 2 CO 3 ), sodium bicarbonate (NaHCO 3 ), sodium sulfate (Na 2 SO 4 ), sodium hydroxide (NaOH), dolomite (Dolomite) and a mixture of a pH adjuster selected from the group consisting of these is added, characterized in that the fermentation at pH 5.0 ~ 8.0 conditions. .
본 발명에 있어서, 상기 유기산을 30% 이상으로 농축하는 것은 발효액으로부터 물을 제거하거나 발효액으로부터 유기산을 선택적으로 추출하는 것을 특징으로 한다.In the present invention, the concentration of the organic acid to 30% or more is characterized in that water is removed from the fermentation broth or the organic acid is selectively extracted from the fermentation broth.
본 발명에 있어서, 상기 발효액으로부터 물을 제거하는 것은 증류법에 의하여 수행되며, 상기 증류법은 다중효용증류(MED, Multi-Effect Distillation), 다중플래쉬증류 (MSF, Multiple Stage Flash distillation) 및 증기압축식 증류(MVC, Mechanical Vapor Compression distillation)로 구성된 군에서 선택되는 것을 특징으로 한다.In the present invention, removing water from the fermentation broth is performed by a distillation method, the distillation method is a multi-effect distillation (MED), multiple flash distillation (MSF, Multiple Stage Flash distillation) and steam compression distillation It is characterized in that it is selected from the group consisting of (MVC, Mechanical Vapor Compression distillation).
본 발명에 있어서, 상기 발효액으로부터 물을 제거하는 것은 역삼투법(RO, Reverse Osmosis) 또는 정삼투법(FO, Forward Osmosis)을 먼저 수행한 후, 증류법에 의하여 수행되는 것을 특징으로 한다.In the present invention, removing the water from the fermentation broth is characterized in that the reverse osmosis (RO, Reverse Osmosis) or forward osmosis (FO, Forward Osmosis) is first performed, followed by distillation.
본 발명에 있어서, 상기 유기산을 선택적으로 추출하는 것은 (a) dioctylamine(DOA), trioctylamine(TOA), triaurylamine, Di-tridecylamine, Alamine 336, Aliquat 336(주성분: methyltrioctylammonium chloride), trioctylphosphine oxide(TOPO), tributylphosphate(TBP) 및 이들의 혼합물로 구성된 군에서 선택되는 추출제와 (b) Methyl isobutyl ketone(MIBK), chloroform, octanol, dodecanol, n-alkanes, xylene, oleyl alcohol, kerosene 및 이들의 혼합물로 구성된 군에서 선택되는 희석제의 혼합액을 배양액에 첨가하여 유기산을 추출한 후, 다시 역추출하는 방법으로 수행되는 것을 특징으로 한다.In the present invention, the selective extraction of the organic acid is (a) dioctylamine (DOA), trioctylamine (TOA), triaurylamine, Di-tridecylamine, Alamine 336, Aliquat 336 (main component: methyltrioctylammonium chloride), trioctylphosphine oxide (TOPO), (b) Methyl isobutyl ketone (MIBK), chloroform, octanol, dodecanol, n-alkanes, xylene, oleyl alcohol, kerosene, and mixtures thereof, selected from the group consisting of tributylphosphate (TBP) and mixtures thereof. The mixed solution of the diluent selected from is added to the culture solution to extract the organic acid, it is characterized in that it is carried out by the method of back extraction again.
본 발명에 있어서, 상기 분별증류는 상기 농축된 유기산에 에틸 아세테이트, iso-부틸 아세테이트, n-부틸 아세테이트 및 이들의 혼합물로 구성된 군에서 선택되는 첨가제를 첨가한 후, 공비증류시키는 것을 특징으로 한다.In the present invention, the fractional distillation is characterized in that azeotropic distillation after adding an additive selected from the group consisting of ethyl acetate, iso-butyl acetate, n-butyl acetate and mixtures thereof to the concentrated organic acid.
본 발명의 다른 특징 및 구현예는 다음의 상세한 설명 및 첨부된 특허청구범위로부터 더욱 명백해 질 것이다. Other features and embodiments of the present invention will become more apparent from the following detailed description and the appended claims.
도 1은 본 발명의 일 실시예에 따른 바이오매스로부터 유기산을 생산하는 공정을 나타낸 설명도이다.1 is an explanatory diagram showing a process for producing an organic acid from biomass according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 유기산 생산용 고농도 다단 연속 발효조의 도식도이다. Figure 2 is a schematic diagram of a high concentration multi-stage continuous fermentation tank for organic acid production according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 수용성 발효산물의 정삼투압법에 의한 농축 공정을 나타낸 설명도이다.Figure 3 is an explanatory diagram showing a concentration process by the forward osmosis method of the water-soluble fermentation product according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 추출용매를 이용한 유기산 추출 및 역추출 공정을 나타낸 설명도이다. 4 is an explanatory diagram showing an organic acid extraction and back extraction process using an extraction solvent according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 유기산 생산용 4단 연속 발효조의 도식도이다.5 is a schematic diagram of a four-stage continuous fermenter for producing organic acids according to one embodiment of the present invention.
도 6은 상기 4단의 생물반응기에서 시간의 흐름에 따른 유기산의 농도를 나타낸 그래프이다. Figure 6 is a graph showing the concentration of the organic acid over time in the four-stage bioreactor.
도 7는 본 발명의 일 실시예에 따른 역추출에 의한 유기산의 농축결과를 나타낸 그래프이다. Figure 7 is a graph showing the concentration of the organic acid by back extraction according to an embodiment of the present invention.
도 8은 본 발명의 일 실시예에 따른 유기산의 분별증류 장치 및 공정을 나타낸 설명도이다.8 is an explanatory diagram showing a fractional distillation apparatus and a process of an organic acid according to an embodiment of the present invention.
발명의 상세한 설명 및 구체적인 구현예Detailed Description of the Invention and Specific Embodiments
본 발명에서는 육상, 수상, 해양 또는 생분해성 유기 혼합 바이오매스의 발효액으로부터 물을 제거하거나 유기산을 선택적으로 추출하면 유기산을 30% 이상으로 농축할 수 있으며, 30% 이상으로 농축된 유기산을 공비증류시킬 경우 순수한 유기산으로 분리 및 정제할 수 있는지를 확인하고자 하였다. In the present invention, by removing water from the fermentation broth of terrestrial, aqueous, marine or biodegradable organic mixed biomass or selectively extracting organic acids, the organic acids can be concentrated to 30% or more and azeotropically distills the organic acids concentrated to 30% or more. It was intended to determine if it can be separated and purified to pure organic acids.
본 발명에서는, 다단 연속발효를 통하여 유기산을 생산하면서, 최적의 발효조건을 확립하고, 역삼투법, 삼투법, 증류법 등으로 물을 제거시키거나, 용매를 이용하여 유기산을 추출후 역추출하여 유기산을 농축시킨 후, 공비증류를 수행하였다. 그 결과 유기산을 성분별로 분리 및 정제할 수 있음을 확인하였다.In the present invention, while producing an organic acid through a multi-stage continuous fermentation, the optimum fermentation conditions are established, water is removed by reverse osmosis, osmosis, distillation, or the like, or the organic acid is extracted using a solvent, followed by reverse extraction to concentrate the organic acid. After performing azeotropic distillation. As a result it was confirmed that the organic acid can be separated and purified by component.
따라서, 본 발명은 일 관점에서, (a) 바이오매스를 발효시켜 유기산을 생산하는 단계; (b) 상기 생산된 유기산을 30% 이상으로 농축하는 단계; 및 (c) 상기 농축된 유기산을 분별증류하여 유기산을 회수하는 단계를 포함하는 것을 특징으로 하는 바이오매스로부터 유기산을 생산하는 방법에 관한 것이다.Thus, in one aspect, the present invention comprises the steps of (a) fermenting the biomass to produce an organic acid; (b) concentrating the produced organic acid to at least 30%; And (c) recovering the organic acid by fractional distillation of the concentrated organic acid.
도 1의 본 발명의 일 실시예에 따른 바이오매스로부터 유기산을 생산하는 공정을 나타낸 설명도이다.1 is an explanatory view showing a process for producing an organic acid from biomass according to an embodiment of the present invention.
도 1에 도시된 바와 같이, 바이오매스는 유기산 발효조에서 발효되어 유기산을 생산하고, 생산된 유기산은 막 농축, 증류 등의 다양한 방법으로 고농축된 후, 분별증류를 통하여 각각 분리될 수 있다. As shown in FIG. 1, the biomass is fermented in an organic acid fermentation tank to produce an organic acid, and the produced organic acid may be highly concentrated by various methods such as membrane concentration and distillation, and then separated through fractional distillation.
본 발명에 있어서, 상기 바이오매스는 식물 바이오매스, 동물 바이오매스, 도시 쓰레기 바이오매스 및 이들의 혼합물로 구성된 군에서 선택되는 것을 특징으로 한다. 상기 바이오매스는 종이, 종이제품, 폐지, 목재, 파티클 보드, 톱밥, 농업 폐기물, 오수, 사일리지, 목초(grasses), 왕겨, 바가스, 면, 황마, 대마, 아마, 대나무, 사이잘마(sisal), 마닐라삼, 짚, 옥수수 속대, 옥수수 여물, 지팽이풀(switchgrass), 자주개자리(alfalfa), 건초, 왕겨, 코코넛 헤어(coconut hair), 면, 합성 셀룰로스, 해초, 조류(algae), 슬러지, 음식물쓰레기, 분뇨 등의 유기성폐기물 등을 예시할 수 있다. In the present invention, the biomass is selected from the group consisting of plant biomass, animal biomass, municipal waste biomass, and mixtures thereof. The biomass is paper, paper products, waste paper, wood, particle board, sawdust, agricultural waste, sewage, silage, grasses, chaff, vargas, cotton, jute, hemp, flax, bamboo, sisal , Manila hemp, straw, corncob, corn trough, switchgrass, alfalfa, hay, rice husk, coconut hair, cotton, synthetic cellulose, seaweed, algae, sludge, food Organic wastes, such as a garbage and a manure, can be illustrated.
본 발명에 있어서, 상기 바이오매스를 발효시켜 유기산을 생산하는 단계는 통상의 생물 반응기에서도 수행이 가능하지만, 보다 경제적이고 효율적으로 바이오매스로부터 유기산을 생산하기 위하여 세포재순환 장치를 포함하는 다단계 생물반응기에서 바이오매스를 혐기성 소화시키는 것이 바람직하다. In the present invention, the step of fermenting the biomass to produce an organic acid can be carried out in a conventional bioreactor, but in a multi-stage bioreactor comprising a cell recirculation device for producing an organic acid from the biomass more economically and efficiently It is desirable to anaerobic digest biomass.
혐기성 소화는 종래에 메탄가스의 생산에 이용되던 공정으로 분뇨, 음식물쓰레기, 풀 등의 혼합물을 복합 미생물군으로 분해하여 유기산과 수소를 생산하는 acidogenesis와 생성된 유기산과 수소를 메탄으로 전환하는 methanogenesis로 구성된다.Anaerobic digestion is a process that has been used for the production of methane gas.It is an acidogenesis that decomposes mixtures of manure, food waste and grass into complex microbial groups to produce organic acids and hydrogen, and methanogenesis that converts the generated organic acids and hydrogen into methane. It is composed.
상기 세포재순환 장치를 포함하는 다단계 생물반응기는 본 발명자의 선행특허인 한국등록특허 제0834110호에 기재된 상류 충전탑 세포재순환 장치가 장착된 다단계 CSTR 생물반응기 시스템을 이용할 수 있다. The multistage bioreactor including the cell recirculation apparatus may use a multistage CRTR bioreactor system equipped with an upstream packed tower cell recirculation apparatus described in Korean Patent No. 0834110, which is a prior patent of the present inventors.
도 2는 본 발명의 일 실시예에 따른 유기산 생산용 고농도 다단 연속 발효조의 도식도이다. 도 2에 도시된 바와 같이, 다단계 생물반응기는 상류충전탑, 여과막, 원심분리, 침전, 응집, 흡착 등의 방법으로 세포를 회수하여 발효조로부터 세포가 빠져나가는 것은 줄임으로써 가능하며, 다단계 생물반응기는 세포 재순환장치가 각단 또는 최종 단의 배출수 부위에 결합된 형태로, 세포의 wash-out을 배제하면서 운전되며, 각 단은 별도의 바이오매스 투입구를 가질 수 있다. Figure 2 is a schematic diagram of a high concentration multi-stage continuous fermentation tank for organic acid production according to an embodiment of the present invention. As shown in Figure 2, the multi-stage bioreactor recovers the cells by upstream filling tower, filtration membrane, centrifugation, sedimentation, aggregation, adsorption, etc. to reduce the escape of cells from the fermenter, and the multistage bioreactor The cell recirculator is coupled to the effluent site of each end or end stage, operating without the wash-out of the cells, each stage having a separate biomass inlet.
따라서 각 단은 Fed-batch로 운전이 가능하며, 바이오매스 중 분해가 오래 걸리는 난분해성 물질은 발효조 하층으로부터 제거되어 보다 긴 체류기간을 가지는 반응기로 투입되어 보다 장기간 분해되어 바이오매스로부터 유기산 생산수율을 높일 수 있다. 상기 다단계 생물반응기 발효조 내의 발효액의 교반은 내부공기의 압축 및 주입장치에 의해 순환되며 필요시 투입 또는 배출되므로, 불필요한 가스 소모를 최소화할 수 있고, 발효중에 생산된 수소와 이산화탄소는 미생물이 재이용할 수도 있다. Therefore, each stage can be operated by Fed-batch, and the biodegradable material that takes a long time to decompose in biomass is removed from the lower layer of fermentation tank and put into reactor having a longer residence period, which is decomposed for a longer period of time to increase the yield of organic acid from biomass. It can increase. Stirring of the fermentation broth in the multi-stage bioreactor fermenter is circulated by the compression and injection device of the internal air and added or discharged as necessary, thereby minimizing unnecessary gas consumption, and hydrogen and carbon dioxide produced during fermentation may be reused by microorganisms. have.
포도당, 전분, 음식물쓰레기, 해조류, 목질 분해액 등 당류가 많이 포함된 배지를 혐기성 소화시켜 유기산을 생산하는 경우, 젖산 오염이 자주 발생한다. 따라서 혐기성 소화시 젖산의 형성을 억제하는 것이 중요하다. In the case of anaerobic digestion of a medium containing a large amount of saccharides such as glucose, starch, food waste, algae, and woody liquor to produce organic acids, lactic acid contamination frequently occurs. Therefore, it is important to inhibit the formation of lactic acid during anaerobic digestion.
따라서, 상기 바이오매스를 발효시켜 유기산을 생산하는 단계는 젖산 형성의 억제를 위하여 탄산칼슘(CaCO3), 중탄산암모늄(NH4HCO3), 탄산암모늄((NH4)2CO3), 탄산나트륨(Na2CO3), 탄산수소나트륨(NaHCO3), 황산나트륨(Na2SO4), 수산화나트륨(NaOH), 돌로마이트(Dolomite, MgCO와 CaCO의 혼합물) 및 이들의 혼합물로 구성된 군에서 선택되는 pH 조절제를 첨가하는 것을 특징으로 한다. 상기 pH 조절제는 혐기성 소화시 pH 5.0~8.0 조건이 될 때 까지 첨가하는 것이 바람직하다.Therefore, the step of fermenting the biomass to produce an organic acid is calcium carbonate (CaCO 3 ), ammonium bicarbonate (NH 4 HCO 3 ), ammonium carbonate ((NH 4 ) 2 CO 3 ), sodium carbonate ( PH adjuster selected from the group consisting of Na 2 CO 3 ), sodium bicarbonate (NaHCO 3 ), sodium sulfate (Na 2 SO 4 ), sodium hydroxide (NaOH), dolomite (a mixture of Dolomite, MgCO and CaCO) and mixtures thereof It is characterized by the addition of. The pH adjusting agent is preferably added until the pH 5.0 to 8.0 conditions at the time of anaerobic digestion.
상기 pH 조절제는 발효시 pH를 조절할 뿐만 아니라, 증류를 통한 유기산 농축시 염의 형태로 유기산을 농축시키도록 한다.The pH adjusting agent not only adjusts the pH during fermentation, but also concentrates the organic acid in the form of a salt when the organic acid is concentrated through distillation.
본 발명에 있어서, 30% 이상으로 농축된 유기산은 탈염과정과 함께 공비증류에 의해 각 유기산 별로 분리되거나, 염의 형태로 유기산염을 70% 이상 농축시킨 후, 산을 첨가하여 유기산을 염과 분리한 후 증류 또는 공비증류하여 각 유기산 성분으로 분리할 수 있다.In the present invention, the organic acid concentrated to 30% or more is separated by each organic acid by azeotropic distillation with desalination, or concentrated to 70% or more of the organic acid salt in the form of salt, and the organic acid is separated from the salt by adding an acid. After distillation or azeotropic distillation can be separated into each organic acid component.
상기 pH 조절제로써, 탄산암모늄((NH4)2CO3) 또는 중탄산암모늄(NH4HCO3)을 이용할 경우, 유기산 발효에서 생성된 유기산·암모늄염화물을 가열하여 분리한 후 CO2와 결합시킨 후, 재순환하여 이용할 수 있다. 또한 상기 돌로마이트, 탄산나트륨(Na2CO3), 탄산수소나트륨(NaHCO3)는 탄산칼슘(CaCO3)과 유기산 발효에서 생성된 유기산염에 CO2를 불어 넣은 후, 유기산과 염을 분리하고 연속적으로 추출용매로 추출하여 유기산을 분리할 수 있으며, 마찬가지로 발효 중 배출되는 CO2의 재순환에 의해 손쉽게 회수될 수 있다. As the pH adjusting agent, when ammonium carbonate ((NH 4 ) 2 CO 3 ) or ammonium bicarbonate (NH 4 HCO 3 ) is used, the organic acid and ammonium chloride produced in organic acid fermentation are separated by heating and then combined with CO 2 . It can be recycled and used. In addition, the dolomite, sodium carbonate (Na 2 CO 3 ), sodium hydrogen carbonate (NaHCO 3 ) is blown with CO 2 to the organic acid produced in the calcium carbonate (CaCO 3 ) and organic acid fermentation, and then separated from the organic acid and salt and continuously Organic acids can be separated by extraction with an extraction solvent, and likewise can be easily recovered by recycling CO 2 discharged during fermentation.
NaOH를 이용할 경우 생성된 유기산나트륨염을 포함하는 배양액을 증류하여 농축하고, 황산(H2SO4)을 첨가하면 유기산이 유리되고 황산나트륨(Na2SO4)가 생성되는데, 생성된 황산나트륨(Na2SO4)은 전기분해하여 NaOH와 H2SO4로 재분리가 가능하여 손쉽게 재순환이 가능하다. Na2SO4의 전기분해를 위해서는 bipolar 막을 이용하는 것이 경제적으로 바람직하다. If when using NaOH and concentrated by distilling the medium containing the produced organic acid sodium salt, and sulfuric acid (H 2 SO 4) the organic acid is free, and sodium sulfate (Na 2 SO 4) the are produced, generating sodium sulfate (Na 2 SO 4 ) is electrolyzed and can be re-divided into NaOH and H 2 SO 4 so that it can be easily recycled. It is economically preferable to use a bipolar membrane for the electrolysis of Na 2 SO 4 .
또한 다소 에너지가 많이 드는 공정이지만, NaOH는 생성된 유기산염에 HCl을 첨가하면 유기산과 NaCl이 생성되고, 생성된 NaCl을 전기분해하면 NaOH, H2 및 Cl2가 생성되며 H2와 Cl2를 다시 결합하여 HCl을 생성하여 재이용 할 수 있다. In addition, although NaOH is a somewhat energy-intensive process, the addition of HCl to the resulting organic acid yields organic acids and NaCl, and the electrolysis of NaCl produces NaOH, H 2 and Cl 2 , and H 2 and Cl 2 It can be combined again to produce HCl and reused.
암모니아 형태의 염은 HCl과 혼합되어 NH4Cl을 형성하여 유기산을 유리시킨 후 증류하여 유기산을 분리할 수 있다. 잔류 NH4Cl에 Mg(OH)2 등의 염을 첨가하여 MgCl2를 형성시킨 후 NH4OH를 증류하여 회수할 수 있고, MgCl2는 hydrolytic thermal decomposition에 의해 HCl과 Mg(OH)2로 회수 될 수 있고, 각각은 재사용 될 수 있다. The salt in the form of ammonia can be mixed with HCl to form NH 4 Cl to liberate the organic acid and then distillate to separate the organic acid. MgCl 2 can be formed by adding a salt such as Mg (OH) 2 to the remaining NH 4 Cl, and NH 4 OH can be recovered by distillation. MgCl 2 is recovered as HCl and Mg (OH) 2 by hydrolytic thermal decomposition. Can be reused, and each can be reused.
통상적으로 낮은 농도(약 3%)의 유기산을 함유하는 배양액은 증류시 물과 함께 유기산이 증발하여 회수가 불가능하다. 따라서, 생산된 유기산을 30% 이상으로 농축시키는 것이 바람직하다. In general, a culture solution containing a low concentration (about 3%) of an organic acid cannot be recovered by evaporation of the organic acid together with water during distillation. Therefore, it is desirable to concentrate the produced organic acid to 30% or more.
따라서, 본 발명에서 상기 유기산을 30% 이상으로 농축하는 것은 발효액으로부터 물을 제거하거나 발효액으로부터 유기산을 선택적으로 추출하는 것을 특징으로 한다. Therefore, in the present invention, the concentration of the organic acid to 30% or more is characterized in that water is removed from the fermentation broth or the organic acid is selectively extracted from the fermentation broth.
상기 발효액으로부터 물을 제거하는 것은 증류법에 의하여 수행되며, 상기 증류법은 다중효용증류(MED, Multi-Effect Distillation), 다중플래쉬증류 (MSF, Multiple Stage Flash distillation), 증기압축식 증류(MVC, Mechanical Vapor Compression distillation) 등의 방법을 이용할 수 있다. Removing water from the fermentation broth is carried out by distillation, which is a multi-effect distillation (MED), multiple stage flash distillation (MSF), steam compression distillation (MVC) Compression distillation) can be used.
본 발명은 또한, 에너지 효율을 높이기 위하여, 역삼투법(RO, Reverse Osmosis) 또는 정삼투법(FO, Forward Osmosis)을 먼저 수행한 후, 증류법으로 발효액으로부터 물을 제거할 수도 있다. 상기 역삼투법 또는 정삼투법을 이용할 경우, 유기산을 발효액으로부터 더욱 농축하고자 하는 것으로서, 발효액내에서 약 3% 정도의 유기산을 6~10%까지 농축시킬 수 있다.The present invention may also perform reverse osmosis (RO) or forward osmosis (FO) to increase energy efficiency, and then remove water from the fermentation broth by distillation. When the reverse osmosis method or the forward osmosis method is used, the organic acid is to be further concentrated from the fermentation broth, and about 3% of the organic acid may be concentrated to 6 to 10% in the fermentation broth.
도 3은 본 발명의 일 실시예에 따른 수용성 발효산물의 정삼투압법에 의한 농축 공정을 나타낸 설명도이다.Figure 3 is an explanatory diagram showing a concentration process by the forward osmosis method of the water-soluble fermentation product according to an embodiment of the present invention.
도 3에 도시된 바와 같이, 정삼투법의 경우 구성된 막을 제조하여 Permeate side (draw side)에 높은 염농도 등을 이용하여 삼투압을 최고 249.5atm까지 올릴 수 있고, feed side의 소금물의 농도가 2M일때 삼투압이 113.8atm가 되므로, feed side와 permeate side (draw side)의 삼투압차(Δπ)는 124.9atm가 될 수 있으며 (US 7,303,674; McCutcheon et al., J. Membr. Sci. 278:114-123, 2006), 이는 통상적인 역삼투압법의 삼투압차(50atm)에 비하여 월등히 높은 수치이다.As shown in FIG. 3, in the case of forward osmosis, a membrane composed of the prepared osmotic pressure can be used to increase the osmotic pressure up to 249.5 atm using a high salt concentration on the permeate side (draw side), and the osmotic pressure when the concentration of the brine at the feed side is 2M. Since this is 113.8 atm, the osmotic pressure difference (Δπ) between the feed side and the permeate side (draw side) can be 124.9 atm (US 7,303,674; McCutcheon et al., J. Membr. Sci . 278: 114-123, 2006 This is much higher than the osmotic pressure difference (50 atm) of the conventional reverse osmosis method.
따라서, 증류법만을 이용하여 발효액으로부터 물을 제거하는 것 보다, 먼저 정삼투법 또는 역삼투법으로 물을 제거시킨 후, 증류법을 이용할 경우, 에너지 효율면에서 바람직하다.Therefore, rather than removing water from the fermentation broth using only distillation, it is preferable from the viewpoint of energy efficiency when water is removed by forward osmosis or reverse osmosis first and then distillation is used.
유기산은 pKa값보다 많이 낮은 pH에서 비이온화된 형태로 존재하기 때문에, 추출용매를 배양액에 첨가하여 유기산을 추출한 후, 다시 역추출하여 선택적으로 추출할 수 있다. 추출 정도는 유기산의 친유성 정도, 이온화 정도(pH), 온도, 염의 존재 여부, 기타 불순물의 정도 등에 따라 달라질 수 있다. 일반적으로 유기산중 낙산은 초산보다 추출하기 쉽고, 다소 높은 pH (5.0~6.0) 이상에서 추출이 가능하다. Since the organic acid is present in a non-ionized form at a pH lower than the pKa value, the extraction solvent may be added to the culture solution to extract the organic acid, and then back extracted again to selectively extract the organic acid. The degree of extraction may vary depending on the degree of lipophilicity of the organic acid, the degree of ionization (pH), the temperature, the presence of salts, the degree of other impurities, and the like. Generally, butyric acid in organic acids is easier to extract than acetic acid, and can be extracted at a somewhat higher pH (5.0 to 6.0).
도 4는 본 발명의 일 실시예에 따른 추출용매를 이용한 유기산 추출 및 역추출 공정을 나타낸 설명도이다. 4 is an explanatory diagram showing an organic acid extraction and back extraction process using an extraction solvent according to an embodiment of the present invention.
도 4에 나타난 바와 같이, 3%의 VFA를 포함하는 발효액이 액-액 추출탑으로 주입되면, 추출용매와 혼합되어 VFA가 추출된다. 추출용매는 유기상이며, 비중이 물보다 작아 상분리 후 탑의 위쪽에서 배출된다. VFA가 추출된 후 발효액은 추출탑 아래쪽에서 배출되며, 발효조로 환류되어 발효공정에 재사용될 수 있다. As shown in Figure 4, when the fermentation broth containing 3% of VFA is injected into the liquid-liquid extraction tower, the VFA is extracted by mixing with the extraction solvent. The extraction solvent is an organic phase and has a specific gravity smaller than that of water and is discharged from the top of the tower after phase separation. After the VFA is extracted, the fermentation broth is discharged from the bottom of the extraction tower, can be refluxed into the fermentation tank and reused in the fermentation process.
추출된 VFA를 포함하는 유기상은 VFA의 역추출을 위한 액-액 추출탑으로 주입된다. pH가 높은상태에서는 VFA가 추출제의 유기상으로부터 물상으로 역추출되는 특성을 이용하여, 역추출탑으로 환류되는 물상에 지속적으로 염기성 용액(NaOH 또는 암모니아)을 투입하여 pH를 10.0 으로 높게 유지하거나 80℃정도의 온수를 가하면 VFA가 물상으로 역추출될 수 있다. 농축조에 투입되는 물은 증류탑으로부터 환류되는 물을 이용할 수 있다.The organic phase containing the extracted VFA is injected into a liquid-liquid extraction tower for back extraction of the VFA. In the high pH state, VFA is extracted back from the organic phase of the extractant into the water phase, and the basic solution (NaOH or ammonia) is continuously added to the water phase refluxed to the reverse extraction tower to maintain the pH at 10.0 or 80 If hot water is applied, the VFA can be extracted back into the water phase. As the water introduced into the concentration tank, water refluxed from the distillation column may be used.
상기 추출용매로는 (a) dioctylamine(DOA), trioctylamine(TOA), triaurylamine, Di-tridecylamine, Alamine 336, Aliquat 336(주성분: methyltrioctylammonium chloride), trioctylphosphine oxide(TOPO), tributylphosphate(TBP) 및 이들의 혼합물로 구성된 군에서 선택되는 추출제와 (b) Methyl isobutyl ketone(MIBK), chloroform, octanol, dodecanol, n-alkanes(C6~C30), xylene, oleyl alcohol, kerosene 및 이들의 혼합물로 구성된 군에서 선택되는 희석제의 혼합액을 예시할 수 있다. The extraction solvent is (a) dioctylamine (DOA), trioctylamine (TOA), triaurylamine, Di-tridecylamine, Alamine 336, Aliquat 336 (main component: methyltrioctylammonium chloride), trioctylphosphine oxide (TOPO), tributylphosphate (TBP) and mixtures thereof (B) Methyl isobutyl ketone (MIBK), chloroform, octanol, dodecanol, n-alkanes (C 6 ~ C 30 ), xylene, oleyl alcohol, kerosene, and mixtures thereof. The mixed liquid of the diluent selected can be illustrated.
상기 추출제는 추출효율 및 공정의 용이함을 위해 희석제와 함께 사용되는 것이 바람직하다. 상기 희석제는 추출용매의 높은 점도 및 비중, 유기상과 물상 사이의 표면장력 등을 조절하여 추출의 효율을 높여주는 역할을 한다. The extractant is preferably used with a diluent for extraction efficiency and ease of processing. The diluent serves to enhance the extraction efficiency by controlling the high viscosity and specific gravity of the extraction solvent, the surface tension between the organic phase and the water phase.
상기 추출제와 희석제는 1:0~1:20 범위에서 선택되어질 수 있으나 1:1~1:4 비율로 혼합되는 것이 바람직하며, 추출용매는 발효액 100중량부에 대하여 1~100중량부 범위에서 사용될 수 있으나 통상 50~100중량부의 범위로 적용하는 것이 바람직하다.The extractant and diluent may be selected in the range of 1: 0 to 1:20, but is preferably mixed in a ratio of 1: 1 to 1: 4, and the extraction solvent is in the range of 1 to 100 parts by weight based on 100 parts by weight of the fermentation broth. Although it may be used, it is usually preferable to apply in the range of 50 to 100 parts by weight.
본 발명에 있어서 30% 이상 농축된 유기산은 분별증류를 통하여 각각의 유기산으로 분리 및 정제될 수 있다. In the present invention, the concentrated organic acid 30% or more can be separated and purified into each organic acid through fractional distillation.
유기산은 그 특성상 친수성의 성질을 가지기 때문에 물로부터 분리하는 것이 쉽지 않다. 이는 물이 증발 할 때 유기산도 함께 증발하여 유기산이 농축되지 못하고 함께 기화되기 때문이다. 따라서, 본 발명에서는 유기산을 30% 이상 고농도로 농축시킨 후, 에틸 아세테이트, iso-부틸 아세테이트, n-부틸 아세테이트 등의 첨가제를 넣고, 공비증류를 수행하여 유기산을 분리 및 정제하는 것을 특징으로 한다.Organic acids are hydrophilic in nature and are difficult to separate from water. This is because when the water evaporates, the organic acid is also evaporated together so that the organic acid is not concentrated and vaporizes together. Therefore, in the present invention, the organic acid is concentrated to a high concentration of 30% or more, and then, an additive such as ethyl acetate, iso-butyl acetate, n-butyl acetate, and the like is subjected to azeotropic distillation to separate and purify the organic acid.
실시예EXAMPLE
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당 업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다. Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention, and it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as being limited by these examples.
실시예 1: 다단 연속발효에 의한 유기산의 생산Example 1 Production of Organic Acid by Multistage Continuous Fermentation
음식물 쓰레기를 믹서로 곱게 분쇄한 후 직경 0.5 mm 크기의 체로 걸러 고형분이 상대적으로 적은 부분을 이용하여 유기산 발효를 진행하였다. 음식물쓰레기에는 약 50%의 녹말이 포함되어 있었다. 생물반응기는 도 5와 같이 구성된 4단의 생물반응기를 이용하고 각단은 스폰지 형의 필터를 달아 세포농도를 높이고 미분해 음식물쓰레기의 유출을 막았다. 최초 내부 산소는 질소가스를 주입하여 제거하고, 이후에는 유기산 생산 시 발생하는 이산화탄소와 수소를 포함한 내부가스를 컴프레샤를 이용해 재순환함으로써 외부공기의 유입을 최소화하고 배양액의 교반효과를 주었다. 음식물쓰레기의 건조 중량 대비 25%의 NaHCO3를 첨가하고 pH를 8.0 근처로 조절한 후 혐기성 소화액(KAIST 음식물쓰레기 처리장치 혐기성 소화조)을 10%(v/v)를 접종하고, 배양중의 pH는 6.5 이상을 유지하였다. 이때, 음식물쓰레기는 단속적으로 각 단에 추가시켰고, 전체 dilution rate는 0.2/day로 유지하고, 발효온도는 40℃정도로 유지하였다.The food waste was ground finely with a mixer, and the organic acid fermentation was performed using a portion having a relatively small solid content through a sieve having a diameter of 0.5 mm. Food waste contained about 50% of starch. The bioreactor uses a four-stage bioreactor configured as shown in FIG. 5, and each stage is equipped with a sponge-type filter to increase cell concentration and prevent leakage of undecomposed food waste. Initially, the internal oxygen was removed by injecting nitrogen gas, and afterwards, the internal gas including carbon dioxide and hydrogen generated during organic acid production was recycled by using a compressor to minimize the inflow of external air and to agitate the culture solution. Add 25% NaHCO 3 to the dry weight of food waste and adjust the pH to 8.0. Inoculate 10% (v / v) of anaerobic digestion fluid (KAIST food waste treatment system anaerobic digester), It kept above 6.5. At this time, the food waste was intermittently added to each stage, the total dilution rate was maintained at 0.2 / day, the fermentation temperature was maintained at about 40 ℃.
도 6은 상기 4단의 생물반응기에서 시간의 흐름에 따른 유기산의 농도를 나타낸 그래프이다. Figure 6 is a graph showing the concentration of the organic acid over time in the four-stage bioreactor.
도 6에 나타난 바와 같이, 총 유기산 농도는 4단에서 34.6 g/L였으며, 생산성은 6.92 g/L/day, 수율은 음식물쓰레기 g 당 0.49g으로 매우 높았다. 이때 유기산의 조성은 초산:프로피온산:낙산의 비가 5:1:5로 상대적으로 낙산의 함량이 높은 것을 알 수 있었다.As shown in Figure 6, the total organic acid concentration was 34.6 g / L in four stages, the productivity was 6.92 g / L / day, the yield was very high, 0.49 g / g food waste. At this time, the composition of organic acid: acetic acid: propionic acid: butyric acid ratio of 5: 1: 5 was found to be relatively high content of butyric acid.
실시예 2: 젖산(lactate) 생성의 방지Example 2: Prevention of Lactic Acid Production
음식물 쓰레기를 믹서로 곱게 분쇄한 후 직경 0.5 mm 크기의 체로 걸러 고형분이 상대적으로 적은 부분을 이용하여 유기산 발효를 진행하였다. 건조중량기준 50 g/L의 음식물 쓰레기를 혐기용 플라스크에 넣고, 5 g/L의 yeast extract와 하기 표 1의 buffering agent(첨가제)를 첨가하고, 혐기소화액을 최종 부피의 10%가 되도록 첨가한 후, 42℃, 120 rpm에서 진탕배양하였다. The food waste was ground finely with a mixer, and the organic acid fermentation was performed using a portion having a relatively small solid content through a sieve having a diameter of 0.5 mm. 50 g / L of food waste on a dry weight basis was placed in an anaerobic flask, 5 g / L yeast extract and a buffering agent (additive) of Table 1 were added, and the anaerobic digestion liquid was added to 10% of the final volume. After that, shaking culture was performed at 42 ° C. and 120 rpm.
표 1
Option Na-O Na-X NH4-O NH4-X Ca-O Ca-X
Buffering agent(g/L) NaHCO3, 30g/L NaHCO3, 30g/L (NH4)2CO3, 15g/L (NH4)2CO3, 15g/L CaCO3, 30g/L CaCO3, 30g/L
Initial pH 8.0 7.5 8.0 9.0 8.0 7.0
Food waste(dry g/L) 50 50 50 50 50 50
Table 1
Option Na-O Na-X NH 4 -O NH 4 -X Ca-O Ca-X
Buffering agent (g / L) NaHCO 3 , 30 g / L NaHCO 3 , 30 g / L (NH 4 ) 2 CO 3 , 15 g / L (NH 4 ) 2 CO 3 , 15 g / L CaCO 3 , 30 g / L CaCO 3 , 30 g / L
Initial pH 8.0 7.5 8.0 9.0 8.0 7.0
Food waste (dry g / L) 50 50 50 50 50 50
발효 6일째의 최종 pH, lactate, butyrate, TVFA(락테이트를 제외한 전체 유기산)의 양 등을 확인하고, 표 2에 나타내었다.Final pH at 6 days of fermentation, lactate, butyrate, TVFA (total organic acid except lactate) and the like, and the results are shown in Table 2.
표 2
Option Na-O Na-X NH4-O NH4-X Ca-O Ca-X
Initial pH 8.0 7.5 8.0 9.0 8.0 7.0
Final pH 7.89 7.95 7.23 7.00 5.37 5.16
Total product (g/L) 29.36 29.14 27.94 25.27 32.41 29.68
TVFA(g/L) 24.26 23.80 19.77 18.54 4.79 2.88
Lactate(% of product) 0.0 0.0 0.0 4.0 79 86
Butyrate (% of product) 17.6 12.8 21.2 42.9 0.0 0.0
TABLE 2
Option Na-O Na-X NH 4 -O NH 4 -X Ca-O Ca-X
Initial pH 8.0 7.5 8.0 9.0 8.0 7.0
Final pH 7.89 7.95 7.23 7.00 5.37 5.16
Total product (g / L) 29.36 29.14 27.94 25.27 32.41 29.68
TVFA (g / L) 24.26 23.80 19.77 18.54 4.79 2.88
Lactate (% of product) 0.0 0.0 0.0 4.0 79 86
Butyrate (% of product) 17.6 12.8 21.2 42.9 0.0 0.0
TVFA: lactate를 제외한 total volatile fatty acids TVFA: total volatile fatty acids except lactate
표 2에 나타난 바와 같이, CaCO3를 이용한 실험군에서는 약 80% 이상이 젖산으로 생성된 반면, NaHCO3나 (NH4)2CO3를 이용한 실험군에서는 젖산이 거의 생성되지 않았다. 젖산 생성이 없거나 적게 생성된 실험군은 배양중에 pH가 7.0 이하로 내려가지 않았으며, 특히, NaHCO3를 첨가한 경우 pH가 7.5 이상으로 유지되었으며, 발효 6일차에 젖산이 생성되지 않았다. 이는 초기에 젖산이 일부 생성되더라도 pH가 젖산균의 생장 조건에 불리하여 젖산이 다시 유기산으로 전환되는 것으로 추측되었다.As shown in Table 2, about 80% or more of lactic acid was produced in the experimental group using CaCO 3 , whereas little lactic acid was generated in the experimental group using NaHCO 3 or (NH 4 ) 2 CO 3 . In the experimental group with little or no lactic acid production, the pH did not drop below 7.0 during incubation. In particular, when NaHCO 3 was added, the pH was maintained above 7.5, and no lactic acid was produced on the 6th day of fermentation. It was estimated that even if some lactic acid is initially produced, the pH is disadvantageous to the growth conditions of the lactic acid bacteria and the lactic acid is converted back to the organic acid.
실시예 3. 역삼투압을 이용한 유기산의 rejection 확인Example 3. Confirmation of rejection of organic acid using reverse osmosis
폴리프로필렌 재질의 역삼투압막 (Filmtech, USA)으로 구성된 역삼투압 필터 모듈을 이용하여 유기산을 농축하였다. 실험에 사용된 유기산으로는 암모늄염을 포함하는 아세트산 (Ammonium acetate)을 이용하였고, pH는 암모니아수로 조절하였다. 아세테이트 용액의 부피를 각각 2L, 1.6L, 1.2L, 0.8L로 달리하여 농축을 수행하였으며, 농축된 아세테이트의 농도 아세테이트 용액의 pH, 배출수 부피 및 유량을 확인하고, 그 결과를 표 3에 나타내었다. 실험은 3회 반복 실시하였다.The organic acid was concentrated using a reverse osmosis filter module composed of a polypropylene reverse osmosis membrane (Filmtech, USA). The organic acid used in the experiment was used as ammonium acetate containing ammonium salt, pH was adjusted with ammonia water. Concentration was carried out by varying the volume of the acetate solution to 2L, 1.6L, 1.2L, 0.8L, respectively, and the concentration of the concentrated acetate solution was confirmed the pH, effluent volume and flow rate, and the results are shown in Table 3. . The experiment was repeated three times.
표 3
Acetate용액부피(L) Acetate conc.(g/L) Acetate 용액 pH 배출수 부피(L) 배출수 유량(L/min) Rejection ratio (%) Remarks
실험1 2 1.41 6.3 0 - - 시작
1.6 1.68 6.27 0.4 0.04 78.20
1.2 2.11 6.33 0.8 0.06 77.00
0.8 3.00 6.37 1.2 0.05 75.61
실험2 2 1.38 9.02 0 - - 시작
1.6 1.50 8.93 0.4 0.10 97.17
1.2 1.92 8.92 0.8 0.09 96.03
0.8 2.76 8.79 1.2 0.08 95.77
실험3 2 1.33 10.85 0 - - 시작
1.6 1.51 10.77 0.4 0.10 97.07
1.2 1.91 10.78 0.8 0.09 96.74
0.8 2.74 10.67 1.2 0.07 96.55
TABLE 3
Acetate solution volume (L) Acetate conc. (G / L) Acetate Solution pH Effluent volume (L) Effluent Flow Rate (L / min) Rejection ratio (%) Remarks
Experiment 1 2 1.41 6.3 0 - - start
1.6 1.68 6.27 0.4 0.04 78.20
1.2 2.11 6.33 0.8 0.06 77.00
0.8 3.00 6.37 1.2 0.05 75.61
Experiment 2 2 1.38 9.02 0 - - start
1.6 1.50 8.93 0.4 0.10 97.17
1.2 1.92 8.92 0.8 0.09 96.03
0.8 2.76 8.79 1.2 0.08 95.77
Experiment 3 2 1.33 10.85 0 - - start
1.6 1.51 10.77 0.4 0.10 97.07
1.2 1.91 10.78 0.8 0.09 96.74
0.8 2.74 10.67 1.2 0.07 96.55
표 3에 나타난 바와 같이, 역삼투압 공정을 이용하여 아세트산 용액으로부터 물을 제거하여 잔류물 상의 아세트산 농도를 증가시킬 수 있었다. 각 pH에서 아세트산의 농도는 1.33-1.41에서 2.74-3.00으로 두 배 이상 농축이 가능하였다. 또한 투입되는 아세트산 용액의 pH가 6.3에서 10.85로 증가될 경우, 역삼투압막에 대한 아세트산의 rejection ratio도 78%에서 96% 이상으로 유지할 수 있었다. As shown in Table 3, water was removed from the acetic acid solution using a reverse osmosis process to increase the acetic acid concentration on the residue. At each pH the concentration of acetic acid could be more than doubled from 1.33-1.41 to 2.74-3.00. In addition, when the pH of the introduced acetic acid solution was increased from 6.3 to 10.85, the rejection ratio of acetic acid to the reverse osmosis membrane was also maintained from 78% to more than 96%.
실시예 4. 삼투압을 이용한 아세트산 rejection 확인Example 4 Acetic Acid Rejection Verification Using Osmotic Pressure
폴리프로필렌 재질의 삼투압막 (Filmtech, USA)이 장착된 평판 플레이트형 시스템을 이용하여 아세트산을 농축하였다. feed side에는 3.1 g/L의 아세트산 용액을 투입하였고, draw side에는 30%의 NaCl 용액을 이용하였다. feed side내 아세트산 용액의 pH는 일반적인 발효 조건에 가까운 6.4를 유지하였고, 이때 pH는 암모니아수를 이용하였다. Feed side 및 Draw side의 초기 및 말기 아세트산의 농도 및 부피를 측정하고, 그 결과를 표 4에 나타내었다.Acetic acid was concentrated using a flat plate system equipped with a polypropylene osmotic membrane (Filmtech, USA). 3.1 g / L acetic acid solution was added to the feed side, and 30% NaCl solution was used for the draw side. The pH of the acetic acid solution in the feed side was maintained at 6.4, which is close to the general fermentation conditions, and the pH was used as ammonia water. The concentration and volume of acetic acid at the beginning and end of the feed side and draw side were measured, and the results are shown in Table 4.
표 4
acetic acid(g/L) liquid volume(mL)
Feed side(initial) 3.1 300
Feed side(final) 3.6 220
Draw side(initial) 0 300
Draw side(final) 0.4 380
Table 4
acetic acid (g / L) liquid volume (mL)
Feed side (initial) 3.1 300
Feed side (final) 3.6 220
Draw side (initial) 0 300
Draw side (final) 0.4 380
표 4에 나타난 바와 같이, 최초 3.1 g/L의 아세트산 용액으로부터 80 mL의 물을 제거하여 3.6 g/L까지 아세트산을 농축할 수 있었다. 아세트산의 삼투압막에 대한 rejection ratio는 88.9%로 나타났다. feed side에서 제거된 물은 총량의 26.7%였으며, 이에 따른 아세트산의 농축률은 116.1%로 계산되었다.As shown in Table 4, the acetic acid could be concentrated to 3.6 g / L by removing 80 mL of water from the initial 3.1 g / L acetic acid solution. The rejection ratio of acetic acid on the osmotic membrane was 88.9%. The water removed from the feed side was 26.7% of the total amount, resulting in an acetic acid concentration of 116.1%.
실시예 5. 증류에 의한 유기산염의 농축Example 5 Concentration of Organic Acid Salts by Distillation
rotary evaporator를 이용하여 증류온도를 110~120℃로 유지하면서, 나트륨을 포함하는 염형태의 아세트산 (Sodium acetate)을 농축하였다. 초기 용액 부피는 300 mL, 유기산염 용액의 농도는 아세트산을 기준으로 26.3 g/L이었으며, 증류시간에 따른 증류량, 증류액의 아세트산의 농도, 잔류물의 아세트산 농도를 확인하고 표 5에 나타내었다.While maintaining a distillation temperature at 110 ~ 120 ℃ using a rotary evaporator, sodium acetate in a salt form containing sodium was concentrated. The initial solution volume was 300 mL, and the concentration of the organic acid solution was 26.3 g / L based on acetic acid. The distillation amount according to the distillation time, the acetic acid concentration of the distillate, and the acetic acid concentration of the residue were shown in Table 5.
표 5
증류시간(min) 증류량(mL) 증류액 중 Acetate 농도(g/L) 잔류물 중 Acetate 농도(g/L)
60 20 0.138 28.2
132 60 0.016 32.9
163 105 0.013 40.5
180 145 0.001 50.9
270 265 0.016 225.6
288 275 0.023 315.8
Table 5
Distillation time (min) Distillation amount (mL) Acetate concentration in distillate (g / L) Acetate concentration in residue (g / L)
60 20 0.138 28.2
132 60 0.016 32.9
163 105 0.013 40.5
180 145 0.001 50.9
270 265 0.016 225.6
288 275 0.023 315.8
표 5에 나타난 바와 같이, 증류된 용액의 아세트산 농도는 0.1 g/L이하로 유지되어 대부분의 아세트산이 잔류물로 남아 아세트산의 농축이 가능함을 확인할 수 있었다. 잔류물에서의 최종 아세트산 농도는 315.8 g/L로 측정되었다.As shown in Table 5, the acetic acid concentration of the distilled solution was maintained below 0.1 g / L it was confirmed that most of the acetic acid remains as a residue can be concentrated in acetic acid. Final acetic acid concentration in the residue was determined to be 315.8 g / L.
실시예 6 : VFA의 용매 추출 및 역추출에 의한 농축방법Example 6 Concentration Method by Solvent Extraction and Back Extraction of VFA
6-1: 추출용매를 이용한 유기산 추출6-1: Organic Acid Extraction Using Extraction Solvent
실험용 등급의 순수한 VFA들을 이용하여 모사된 발효액(아세트산:프로피온산:부틸산 = 6:3:4)을 제조하고, 발효액 4 ml (물상)에 4mL의 유기상을 플라스크에서 혼합한 후 수 초간 교반하고, 원심분리기를 이용하여 7000 rpm에서 3분간 분리하고, 그 결과를 표 6에 나타내었다. 유기상으로는 Alamine 336(추출제)이 25% 함유된 Octanol(희석제)을 이용하였다.A simulated fermentation broth (acetic acid: propionic acid: butyric acid = 6: 3: 4) was prepared using experimental grade pure VFAs, 4 mL of the organic phase was mixed with 4 ml of water (water phase) in a flask, followed by stirring for several seconds, Separation was carried out for 3 minutes at 7000 rpm using a centrifuge, and the results are shown in Table 6. Octanol (diluent) containing 25% of Alamine 336 (extractant) was used as the organic phase.
표 6
적용된 VFA농도(g/L) 물상(g/L) 유기상(g/L) 분배계수(유기상/물상)
4.7 0.22 4.46 20
9.6 0.59 8.98 15.3
29.0 2.48 26.5 10.7
56.0 8.30 47.7 5.8
Table 6
VFA concentration applied (g / L) Water phase (g / L) Organic phase (g / L) Distribution coefficient (organic phase / water phase)
4.7 0.22 4.46 20
9.6 0.59 8.98 15.3
29.0 2.48 26.5 10.7
56.0 8.30 47.7 5.8
표 6에 나타난 바와 같이, 초기 VFA의 농도가 증가할수록 분배계수가 차츰 낮아지는 경향을 보이고 있으나, VFA 농도 56 g/L에서도 분배계수가 5.8로서 추출이 잘 진행됨을 알 수 있었다. 특히, 발효액의 VFA 농도로 예상되는 29 g/L에서는 분배계수가 10.7 가량으로 측정되어 물상의 VFA 중 90% 이상 유기상으로 추출되는 것을 확인할 수 있었다. As shown in Table 6, as the initial VFA concentration increased, the partition coefficient tended to gradually decrease, but the extraction coefficient proceeded well with a partition coefficient of 5.8 even at a VFA concentration of 56 g / L. In particular, at 29 g / L expected to be the VFA concentration of the fermentation broth, the partition coefficient was measured to be about 10.7, and it was confirmed that more than 90% of the VFA in the water phase was extracted into the organic phase.
6-2: 다양한 희석제에 따른 VFA의 추출6-2: Extraction of VFA with Various Diluents
하기 표 7과 같이, 다양한 희석제(옥탄올, 옥탄, MIBK 및 케로신)를 이용하여 0~100%까지로 추출제(Alamine 336) 농도를 조절하면서 6-1과 동일한 조건으로 VFA를 추출하였다.As shown in Table 7, VFA was extracted under the same conditions as 6-1 while controlling the concentration of the extractant (Alamine 336) to 0 to 100% using various diluents (octanol, octane, MIBK and kerosene).
표 7
희석제 종류 추출제 농도 물상 유기상 분배계수
옥탄올 0 7.83 6.45 0.82
10 2.59 11.68 4.51
25 1.15 13.13 11.47
40 1.20 13.08 10.92
50 1.34 12.94 9.67
75 2.70 11.58 4.29
100 7.30 11.58 4.29
옥탄 0 13.69 0.59 0.04
10 11.66 2.62 0.22
25 10.07 4.21 0.42
40 9.06 5.21 0.58
50 8.54 5.73 0.67
75 8.16 6.12 0.75
100 7.30 6.98 0.96
MIBK 0 7.27 7.01 0.96
10 5.39 8.89 1.65
25 4.50 9.78 2.17
40 4.50 9.77 2.17
50 4.80 9.48 1.98
75 5.71 8.56 1.50
100 7.30 6.98 0.96
케로신 0 14.18 0.10 0.01
10 11.63 2.65 0.23
25 9.95 4.33 0.43
40 8.97 5.31 0.59
50 8.45 5.83 0.69
75 7.63 6.65 0.87
100 7.30 6.98 0.96
TABLE 7
Thinner Type Extractant Concentration Water Organic phase Distribution coefficient
Octanol
0 7.83 6.45 0.82
10 2.59 11.68 4.51
25 1.15 13.13 11.47
40 1.20 13.08 10.92
50 1.34 12.94 9.67
75 2.70 11.58 4.29
100 7.30 11.58 4.29
octane 0 13.69 0.59 0.04
10 11.66 2.62 0.22
25 10.07 4.21 0.42
40 9.06 5.21 0.58
50 8.54 5.73 0.67
75 8.16 6.12 0.75
100 7.30 6.98 0.96
MIBK 0 7.27 7.01 0.96
10 5.39 8.89 1.65
25 4.50 9.78 2.17
40 4.50 9.77 2.17
50 4.80 9.48 1.98
75 5.71 8.56 1.50
100 7.30 6.98 0.96
Kerosine 0 14.18 0.10 0.01
10 11.63 2.65 0.23
25 9.95 4.33 0.43
40 8.97 5.31 0.59
50 8.45 5.83 0.69
75 7.63 6.65 0.87
100 7.30 6.98 0.96
표 7에 나타난 바와 같이, 옥탄올 및 MIBK를 희석제로 이용한 경우 추출제 농도의 전 구간에서 1.5 이상의 분배계수를 얻을 수 있으며, 옥탄올을 희석제로 이용한 25%의 추출제 용액에서 가장 높은 분배계수(11.47)를 얻을 수 있음을 확인하였다. 반면, 옥탄 및 케로신을 희석제로 이용할 경우 추출제의 농도와 상관없이 분배계수 1 이하의 상대적으로 낮은 추출효율이 관찰되었다.As shown in Table 7, when octanol and MIBK were used as diluents, a partition coefficient of 1.5 or more was obtained in all sections of the extractant concentration, and the highest partition coefficient was obtained in a 25% extractant solution using octanol as a diluent ( 11.47) can be obtained. On the other hand, when octane and kerosene were used as diluents, relatively low extraction efficiency with a partition coefficient of 1 or less was observed regardless of the concentration of the extractant.
6-3: 추출된 유기산의 역추출6-3: Back Extraction of Extracted Organic Acids
6-1에서 추출된 VFA를 포함하는 유기상 (VFA 농도: 26.8%)으로부터 VFA를 물상으로 역추출하기 위하여 NaOH 수용액을 이용하여 증류수의 pH를 10 이상으로 증가시켰다. 유기상과 물상을 1:1의 비율로 혼합하여 VFA를 역추출한 후 물상을 다시 회수하였다. 회수된 물상은 VFA의 추출로 인해서 pH가 다시 낮아진 상태이므로, NaOH 수용액을 이용하여 pH를 다시 10 이상으로 조절하였다. pH가 조절된 물상과 VFA를 포함하는 유기상을 위와 같은 과정으로 재차 혼합한 후 물상을 회수하는 방법을 반복하여 VFA를 농축하였다.In order to extract VFA back to the water phase from the organic phase (VFA concentration: 26.8%) containing VFA extracted in 6-1, the pH of distilled water was increased to 10 or more using NaOH aqueous solution. The organic phase and the water phase were mixed at a ratio of 1: 1 to extract VFA, and the water phase was recovered again. The recovered water phase was lowered again due to the extraction of VFA, so the pH was adjusted to 10 or more using an aqueous NaOH solution. The pH-adjusted water phase and the organic phase including VFA were mixed again in the same manner as described above, and the VFA was concentrated by repeating the method of recovering the water phase.
그 결과, 도 7에 나타난 바와 같이, 총 6회의 농축과정에서 VFA는 물상에서 지속적으로 농축되었으며, 300 g/L 이상 농축됨을 알 수 있었다. As a result, as shown in Figure 7, in a total of six concentrations VFA was continuously concentrated in water, it can be seen that more than 300 g / L concentration.
실시예 7 : 증류를 이용하여 VFA를 성분별로 회수Example 7 Recovering VFA by Component Using Distillation
모사프로그램 Hysys를 이용하여 추출공정으로부터 유입되는 VFA와 물의 혼합액을 각 성분별로 분리 및 회수하는 공정을 설계하였다. 도 8에 도시된 바와 같이 아민계 용매를 이용한 추출 및 역추출 공정을 거쳐서 300 g/L 이상 농축된 VFA 용액(아세트산:프로피온산:부틸산 = 6:3:4)을 '증류1~4'로 명명된 증류탑에서 증류과정을 거쳐 성분별로 분리하였다. 이때, 증류1의 온도는 99~100℃, 증류2의 온도는 99~100℃, 증류3의 온도는 117~118℃, 증류4의 온도는 140~141℃로 유지되었다.The simulation program Hysys was designed to separate and recover the mixture of VFA and water from the extraction process for each component. As shown in FIG. 8, the VFA solution (acetic acid: propionic acid: butyric acid = 6: 3: 4) concentrated at 300 g / L or more through extraction and back extraction using an amine solvent as distillation 1-4. After distillation in the named distillation column, the components were separated. At this time, the temperature of the distillation 1 is 99 ~ 100 ℃, the temperature of the distillation 2 is 99 ~ 100 ℃, the temperature of the distillation 3 is 117 ~ 118 ℃, the temperature of the distillation 4 was maintained at 140 ~ 141 ℃.
최초 '증류1'에서 탑의 상단으로 물과 아세트산이 배출되고 탑의 하단으로 잔여 아세트산, 프로피온산 및 부틸산이 배출되었다. In the first 'distillation 1', water and acetic acid were discharged to the top of the tower and residual acetic acid, propionic acid and butyric acid were discharged to the bottom of the tower.
'증류1'에서 일어나는 물과 VFA의 증류에 있어서 각 성분의 상대 휘발도가 비슷하기 때문에 일반 증류로는 분리하기가 쉽지 않으므로, 공비증류를 위한 첨가제로서 iso-부틸 아세테이트를 유입되는 VFA농축액의 38~39%로 첨가하였다. 첨가제는 물-VFA와 함께 삼상계를 이루게되며, 탑의 하단으로 VFA, 상단으로 물과 첨가제가 이동하였다. 물과 첨가제는 섞이지 않고 상이 분리되므로, 첨가제는 계속 환류되어 증류탑내에 머물게 되고 물은 상단으로 배출되었다. 발효액에 포함된 염이나 단백질 등의 기타 잔류물들은 '증류1'에서 탑의 하단으로 배출되었다. Since the relative volatility of each component is similar in the distillation of water and VFA occurring in 'distillation 1', it is not easy to separate by general distillation, so that iso-butyl acetate is added as an additive for azeotropic distillation. Added at ˜39%. The additive forms a three-phase system with water-VFA, and VFA moves to the bottom of the tower, and water and additives move to the top. Since the water and the additives do not mix and the phases separate, the additives continue to reflux and remain in the column and the water is discharged to the top. Other residues such as salts and proteins in the fermentation broth were discharged from the distillation1 to the bottom of the tower.
'증류2'에서는 '증류1'의 상단으로 배출된 물과 아세트산이 각 성분별로 분리되는데 이때 탑 상단으로 배출되는 물은 추출공정을 위해서 환류되었다. In 'distillation 2', water and acetic acid discharged to the top of 'distillation 1' are separated for each component, and the water discharged to the top of the tower is refluxed for the extraction process.
'증류1'의 하단으로 배출되는 아세트산, 프로피온산 및 부틸산으로만 구성된 VFA용액은 '증류3'으로 주입되었고, '증류3'에서는 상단으로 잔여 아세트산이 회수되고, 하단으로 프로피온산 및 부틸산의 혼합액이 배출되었다. The VFA solution consisting only of acetic acid, propionic acid and butyric acid discharged to the bottom of 'distillation 1' was injected into 'distillation 3', the remaining acetic acid was recovered to the top, and the mixture of propionic acid and butyric acid to the bottom Was discharged.
마지막으로 '증류4'에서는 '증류3'의 하단으로 배출된 프로피온산 및 부틸산의 혼합액이 각 성분별로 분리 및 회수되며, 각 성분별 회수 수율은 95% 이상으로 유지되었다.Finally, in 'Distillation 4', a mixture of propionic acid and butyric acid discharged to the bottom of 'distillation 3' is separated and recovered for each component, and the recovery yield of each component is maintained at 95% or more.
결과적으로, 본 발명에 따른 휘발성 유기산의 분리방법은 혐기성 소화공정의 경제성을 획기적으로 높일 뿐만 아니라 유기산유래의 각종 화합물의 합성을 통해 고부가가치화 할 수 있고, 특히 유기산을 바이오연료로 전환시에 경제성 있는 수송용 액체연료 생산의 경제성을 높일 수 있다.As a result, the method of separating volatile organic acids according to the present invention not only dramatically increases the economics of the anaerobic digestion process, but also enables high value-adding through the synthesis of various compounds derived from organic acids, and is particularly economical when converting organic acids to biofuels. Economical production of liquid fuel for transportation can be improved.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시태양일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As described above in detail the specific parts of the present invention, it is apparent to those skilled in the art that such specific description is merely a preferred embodiment, thereby not limiting the scope of the present invention. something to do. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.
본 발명에 따른 바이오매스로부터 유기산을 생산하는 방법을 이용하면 육상, 수상, 해양 또는 생분해성 유기 혼합 바이오매스로부터 유기산을 효율적으로 생산하고, 생산된 유기산을 경제적으로 농축시킬 수 있을 뿐만 아니라, 후속된 분별증류를 통하여 목적하는 조성의 유기산을 분리할 수 있으므로, 유기산의 고부가가치화가 가능하여 유기산 생물공정의 경제성을 획기적으로 높일 수 있다. The method of producing organic acids from the biomass according to the present invention enables not only to efficiently produce organic acids from terrestrial, aquatic, marine or biodegradable organic mixed biomass, and to economically concentrate the produced organic acids, Since fractional distillation can separate the organic acid of the desired composition, it is possible to increase the added value of the organic acid can significantly increase the economics of the organic acid bioprocess.

Claims (10)

  1. 다음 단계를 포함하는 바이오매스로부터 유기산을 생산하는 방법:Process for producing organic acid from biomass comprising the following steps:
    (a) 바이오매스를 발효시켜 유기산을 생산하는 단계;(a) fermenting the biomass to produce organic acids;
    (b) 상기 생산된 유기산을 30% 이상으로 농축하는 단계; 및(b) concentrating the produced organic acid to at least 30%; And
    (c) 상기 농축된 유기산을 분별증류하여 유기산을 회수하는 단계.(c) recovering the organic acid by fractional distillation of the concentrated organic acid.
  2. 제1항에 있어서, 상기 바이오매스는 식물 바이오매스, 동물 바이오매스, 도시 쓰레기 바이오매스 및 이들의 혼합물로 구성된 군에서 선택되는 것을 특징으로 하는 방법.The method of claim 1 wherein the biomass is selected from the group consisting of plant biomass, animal biomass, municipal waste biomass, and mixtures thereof.
  3. 제1항에 있어서, 상기 (a) 단계는 세포재순환 장치를 포함하는 다단계 생물반응기에서 상기 바이오매스를 혐기성 소화시키는 것을 특징으로 하는 방법.The method of claim 1, wherein step (a) comprises anaerobic digestion of the biomass in a multistage bioreactor comprising a cell recirculation apparatus.
  4. 제1항에 있어서, 상기 (a) 단계는 탄산칼슘(CaCO3), 중탄산암모늄(NH4HCO3), 탄산암모늄((NH4)2CO3), 탄산나트륨(Na2CO3), 탄산수소나트륨(NaHCO3), 황산나트륨(Na2SO4), 수산화나트륨(NaOH), 돌로마이트(Dolomite) 및 이들의 혼합물로 구성된 군에서 선택되는 pH 조절제가 첨가되어 pH 5.0~8.0 조건에서 발효되는 것을 특징으로 하는 방법.According to claim 1, wherein the step (a) is calcium carbonate (CaCO 3 ), ammonium bicarbonate (NH 4 HCO 3 ), ammonium carbonate ((NH 4 ) 2 CO 3 ), sodium carbonate (Na 2 CO 3 ), hydrogen carbonate A pH adjuster selected from the group consisting of sodium (NaHCO 3 ), sodium sulfate (Na 2 SO 4 ), sodium hydroxide (NaOH), dolomite and mixtures thereof is added and fermented at pH 5.0-8.0. How to.
  5. 제1항에 있어서, 상기 유기산을 30% 이상으로 농축하는 것은 발효액으로부터 물을 제거하거나 발효액으로부터 유기산을 선택적으로 추출하는 것을 특징으로 하는 방법.The method of claim 1, wherein concentrating the organic acid to at least 30% comprises removing water from the fermentation broth or selectively extracting the organic acid from the fermentation broth.
  6. 제5항에 있어서, 상기 발효액으로부터 물을 제거하는 것은 증류법에 의하여 수행되는 것을 특징으로 하는 방법.6. The method of claim 5, wherein removing water from the fermentation broth is performed by distillation.
  7. 제6항에 있어서, 상기 증류법은 다중효용증류(MED, Multi-Effect Distillation), 다중플래쉬증류 (MSF, Multiple Stage Flash distillation) 및 증기압축식 증류 (MVC, Mechanical Vapor Compression distillation)로 구성된 군에서 선택되는 것을 특징으로 하는 방법.The method of claim 6, wherein the distillation method is selected from the group consisting of Multi-Effect Distillation (MED), Multiple Stage Flash distillation (MSF), and Mechanical Vapor Compression distillation (MVC). Characterized in that the method.
  8. 제5항에 있어서, 상기 발효액으로부터 물을 제거하는 것은 역삼투법 (RO, Reverse Osmosis) 또는 정삼투법 (FO, Forward Osmosis)을 먼저 수행한 후, 증류법에 의하여 수행되는 것을 특징으로 하는 방법.The method of claim 5, wherein the removing of water from the fermentation broth is carried out by reverse osmosis (RO) or forward osmosis (FO), followed by distillation.
  9. 제5항에 있어서, 상기 유기산을 선택적으로 추출하는 것은 (a) dioctylamine (DOA), trioctylamine (TOA), triaurylamine, Di-tridecylamine, Alamine 336, Aliquat 336, trioctylphosphine oxide (TOPO), tributylphosphate (TBP) 및 이들의 혼합물로 구성된 군에서 선택되는 추출제와 (b) Methyl isobutyl ketone (MIBK), chloroform, octanol, dodecanol, n-alkanes, xylene, oleyl alcohol, kerosene 및 이들의 혼합물로 구성된 군에서 선택되는 희석제의 혼합액을 배양액에 첨가하거나 접촉시켜 유기산을 추출한 후, 다시 역추출하는 방법으로 수행되는 것을 특징으로 하는 방법.The method of claim 5, wherein the selective extraction of the organic acid comprises (a) dioctylamine (DOA), trioctylamine (TOA), triaurylamine, Di-tridecylamine, Alamine 336, Aliquat 336, trioctylphosphine oxide (TOPO), tributylphosphate (TBP) and Extractants selected from the group consisting of mixtures thereof and (b) diluents selected from the group consisting of Methyl isobutyl ketone (MIBK), chloroform, octanol, dodecanol, n-alkanes, xylene, oleyl alcohol, kerosene and mixtures thereof The mixed solution is added to or in contact with the culture medium to extract the organic acid, and then the method is characterized in that the back extraction.
  10. 제1항에 있어서, 상기 분별증류는 상기 농축된 유기산에 에틸 아세테이트, iso-부틸 아세테이트, n-부틸 아세테이트 및 이들의 혼합물로 구성된 군에서 선택되는 첨가제를 첨가한 후, 공비증류시키는 것을 특징으로 하는 방법.The method of claim 1, wherein the fractional distillation is performed by azeotropic distillation after adding an additive selected from the group consisting of ethyl acetate, iso-butyl acetate, n-butyl acetate, and mixtures thereof to the concentrated organic acid. Way.
PCT/KR2011/000103 2010-01-08 2011-01-07 Method for producing organic acids from biomass WO2011084002A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100001719A KR101664450B1 (en) 2010-01-08 2010-01-08 Method for Preparing Volatile Fatty Acids from Biomass
KR10-2010-0001719 2010-01-08

Publications (3)

Publication Number Publication Date
WO2011084002A2 true WO2011084002A2 (en) 2011-07-14
WO2011084002A9 WO2011084002A9 (en) 2011-11-24
WO2011084002A3 WO2011084002A3 (en) 2012-01-12

Family

ID=44305964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/000103 WO2011084002A2 (en) 2010-01-08 2011-01-07 Method for producing organic acids from biomass

Country Status (2)

Country Link
KR (1) KR101664450B1 (en)
WO (1) WO2011084002A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9950297B2 (en) 2013-02-06 2018-04-24 Korea Advanced Institute Of Science And Technology Method for concentrating aqueous containing solute into high concentration by hydraulic-membrane process under no difference in osmotic pressure
KR20190115359A (en) * 2018-04-02 2019-10-11 주식회사 엘지화학 Method of preparation of 3-hydroxypropionic acid
FR3118631A1 (en) * 2021-01-07 2022-07-08 Cultimer France Producteurs Associés Device and method for the production of volatile fatty acids from shells of molluscs having soft bodies or flesh

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101843586B1 (en) 2012-05-23 2018-03-30 에스케이이노베이션 주식회사 A method for producing organic acid by fed-batch feeding of carbon source substrate and base
KR101540520B1 (en) * 2012-11-29 2015-07-30 롯데케미칼 주식회사 Method for succinic acid purification using reverse osmosis membrane
US10125344B2 (en) 2014-10-01 2018-11-13 Korea Institute Of Science And Technology Apparatus and method for bioenergy production using regenerated acid solution
KR101814492B1 (en) * 2016-11-28 2018-01-04 대호산업 주식회사 simultaneous producting system and method of various bio fuel using biomass
KR101909736B1 (en) * 2018-03-15 2018-10-18 동우바이오 주식회사 Method for producing organic carbon source using waste food leachate, and its producing organic carbon source
KR102252883B1 (en) * 2018-10-17 2021-05-14 주식회사 엘지화학 Method for purifying organic acids
KR102122433B1 (en) * 2019-07-03 2020-06-12 부경대학교 산학협력단 C2-6 Fatty acids separation equipment using extraction/distillation method with the equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5429942A (en) * 1991-12-11 1995-07-04 Sasol Industries (Proprietary) Limited Biological treatment and cultivation of microorganisms
KR100320363B1 (en) * 1999-05-14 2002-02-04 민병욱 High speed fermenting and/or drying apparatus for organic waste material
KR20040072385A (en) * 2003-02-12 2004-08-18 삼원바이오(주) Concentrative Liquid containing Oranic Acid and Using Method Thereof
WO2006086861A2 (en) * 2005-02-15 2006-08-24 Oxiteno S.A. Indústria E Comércio Acid hydrolysis process of cellulosic and lignocellulosic materials, digestion vessel and hydrolysis reactor
US20070250961A1 (en) * 2006-02-27 2007-10-25 Blaylock Michael J Energy crops for improved biofuel feedstocks
US7514246B2 (en) * 2003-08-29 2009-04-07 Fcstone Carbon, Llc Methods for increasing starch levels using sonication

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE526429C2 (en) * 2003-10-24 2005-09-13 Swedish Biofuels Ab Intensifying fermentation of carbohydrate substrate for, e.g. producing one to five carbon alcohols, involves using amino acid leucine, isoleucine, and/or valine as source of nitrogen
WO2005073161A1 (en) * 2004-01-29 2005-08-11 Zeachem Inc. Recovery of organic acids
ES2834424T3 (en) * 2007-06-29 2021-06-17 Toray Industries Procedure to produce lactic acid

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5429942A (en) * 1991-12-11 1995-07-04 Sasol Industries (Proprietary) Limited Biological treatment and cultivation of microorganisms
KR100320363B1 (en) * 1999-05-14 2002-02-04 민병욱 High speed fermenting and/or drying apparatus for organic waste material
KR20040072385A (en) * 2003-02-12 2004-08-18 삼원바이오(주) Concentrative Liquid containing Oranic Acid and Using Method Thereof
US7514246B2 (en) * 2003-08-29 2009-04-07 Fcstone Carbon, Llc Methods for increasing starch levels using sonication
WO2006086861A2 (en) * 2005-02-15 2006-08-24 Oxiteno S.A. Indústria E Comércio Acid hydrolysis process of cellulosic and lignocellulosic materials, digestion vessel and hydrolysis reactor
US20070250961A1 (en) * 2006-02-27 2007-10-25 Blaylock Michael J Energy crops for improved biofuel feedstocks

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9950297B2 (en) 2013-02-06 2018-04-24 Korea Advanced Institute Of Science And Technology Method for concentrating aqueous containing solute into high concentration by hydraulic-membrane process under no difference in osmotic pressure
KR20190115359A (en) * 2018-04-02 2019-10-11 주식회사 엘지화학 Method of preparation of 3-hydroxypropionic acid
KR102572617B1 (en) * 2018-04-02 2023-08-29 주식회사 엘지화학 Method of preparation of 3-hydroxypropionic acid
FR3118631A1 (en) * 2021-01-07 2022-07-08 Cultimer France Producteurs Associés Device and method for the production of volatile fatty acids from shells of molluscs having soft bodies or flesh

Also Published As

Publication number Publication date
KR20110081518A (en) 2011-07-14
WO2011084002A9 (en) 2011-11-24
WO2011084002A3 (en) 2012-01-12
KR101664450B1 (en) 2016-10-11

Similar Documents

Publication Publication Date Title
WO2011084002A2 (en) Method for producing organic acids from biomass
US8283139B2 (en) Method of producing xylitol using hydrolysate containing xylose and arabinose prepared from byproduct of tropical fruit biomass
US8586335B2 (en) Process for the production of ethanol and butanol
JP4272345B2 (en) Methods for converting biomass into chemicals and fuels
WO2012081931A2 (en) Method and apparatus for producing cells and fat soluble materials by cell culture
US20140024826A1 (en) Systems and methods for improving fermentation
JP2002537848A (en) Ethanol production method
JP2009501524A (en) Production plant and method for converting biomass
EP2623607A1 (en) Method and system for production of a target chemical from a cellulosic material
CN103687954A (en) Method for reducing water usage in a cellulosic conversion process
US20150087040A1 (en) Production of ethanol and recycle water in a cellulosic fermentation process
US20200156973A1 (en) Integration of fermentation and gasification
US20240110209A1 (en) Method to produce medium chain fatty acids
WO2015083285A1 (en) Method for manufacturing fermentation starting material sugar solution, and method for manufacturing chemical product obtained by fermenting said fermentation starting material sugar solution
BR102013021902A2 (en) Ethanol and biogas production method, and ethanol installation for ethanol and biogas production
US20230399665A1 (en) Method for carrying out the combined operation of a bioethanol production unit and a biogas unit
CN101705253A (en) Method for treating xylose mother solution
US20130157334A1 (en) Process for converting a lignocellulosic biomass
CN110699387B (en) Lignocellulose pretreatment method using biodegradable organic acid catalyst
KR101543067B1 (en) Biological pretreatment mehtods for sea algae using mixed microorganism
JP5901128B2 (en) Sugar production equipment using biomass as raw material
US20220364017A1 (en) Method for municipal solid waste reclamation
WO2008111857A1 (en) Treatment of organic material by digestion
CA2724832C (en) Method and apparatus for processing waste containing fermentable raw material
EP2100964A1 (en) Process for the production of ethanol and butanol from biomass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11731940

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11731940

Country of ref document: EP

Kind code of ref document: A2