WO2011083899A1 - Geothermal coil pipe header device, very deep vertical closed-type ground-coupled heat exchanger using same, and method for installing the heat exchanger - Google Patents

Geothermal coil pipe header device, very deep vertical closed-type ground-coupled heat exchanger using same, and method for installing the heat exchanger Download PDF

Info

Publication number
WO2011083899A1
WO2011083899A1 PCT/KR2010/004826 KR2010004826W WO2011083899A1 WO 2011083899 A1 WO2011083899 A1 WO 2011083899A1 KR 2010004826 W KR2010004826 W KR 2010004826W WO 2011083899 A1 WO2011083899 A1 WO 2011083899A1
Authority
WO
WIPO (PCT)
Prior art keywords
geothermal
excavation hole
rope
heat exchanger
coil pipe
Prior art date
Application number
PCT/KR2010/004826
Other languages
French (fr)
Korean (ko)
Inventor
조희남
Original Assignee
지앤지테크놀러지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020100002071A external-priority patent/KR100981527B1/en
Priority claimed from KR1020100068687A external-priority patent/KR101025018B1/en
Application filed by 지앤지테크놀러지 filed Critical 지앤지테크놀러지
Publication of WO2011083899A1 publication Critical patent/WO2011083899A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • F24T10/15Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using bent tubes; using tubes assembled with connectors or with return headers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T2010/50Component parts, details or accessories
    • F24T2010/53Methods for installation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Definitions

  • the present invention relates to a high-depth vertically sealed underground heat exchanger and installation method as a closed underground heat exchanger device capable of using underground heat without taking ground water. More specifically, in order to use geothermal heat, anchors connected with ropes are installed inside the high-depth (200-500 m) geothermal excavation hole, and a header device is installed at the end of the U-band geothermal coil pipe, and then the ropes are coupled to the ground. By pulling the rope, the rigid polyethylene (PE) U-band geothermal coiled pipe was installed to the bottom of the geothermal excavation hole without obstacles to make the construction of the underground heat exchanger convenient.
  • PE polyethylene
  • Geothermal heat is divided into open underground heat exchanger and closed underground heat exchanger.
  • Open underground underground heat exchanger has the same structure and facilities as general groundwater core wells, and it takes the form of pumping groundwater without using a net and using geothermal power of groundwater only and then injecting it back into the groundwater well which was pumped again. Exposed to the ground part is a way of high groundwater contamination.
  • the closed underground heat exchanger is installed by inserting two strands of geothermal coil pipes connected with U-bands to the bottom to perform underground heat exchange in the excavated geothermal drilling holes, and then grouting between the excavation wall and the geothermal coil pipes. It is fixed by filling with.
  • the closed underground heat exchanger only functions to exchange heat retained by heat exchanged from the ground through the geothermal coil pipe to the ground without directly pumping and exposing the groundwater.
  • the brine for heat exchange in the closed circulation pipe is always provided by the circulation pump. As it is circulated but not in direct contact with the groundwater, the groundwater pollution may not be greatly concerned as compared with the open underground heat exchanger.
  • a groundwater core pump is installed inside the geothermal digging hole to pump groundwater, and when the natural water level is particularly low, the energy saving effect is low due to the excessive driving power cost to pump the groundwater. There was also a losing issue. Moreover, the groundwater returned to the geothermal rig will erode the excavation wall as it flows down inside the geothermal rig, and the soils flowing with the groundwater coming from the crushed or rock aquifer will continue to be geothermally excavated over a long period of time. Accumulation occurred inside the ball, and eventually there was a management difficulty in performing a surging operation, which is a cleaning operation using compressed air.
  • the brine circulating the heat exchanger and the circulating water pipe (in this case, brine uses clean fresh water added with antifreeze to prevent freezing in the winter, and inside the brine tube, the heat exchanger, and the geothermal excavator) It is a heat exchange medium that circulates inside the installed geothermal coil pipe.) Because it does not come in direct contact with the groundwater, the groundwater is less likely to be contaminated and the circulation head can be significantly lowered.Inside the system for the heat exchange of brine only by the circulation pump installed on the ground. It has the advantage of achieving a cycle of.
  • the geothermal system composed of such a closed underground heat exchanger has a U-band vertical hermetic type, which is installed by inserting and installing a U-band geothermal coil tube into a geothermal excavation hole, and inserts an external circulation tube into the geothermal excavation hole first, and then inside
  • the double pipe tube type formed by inserting the inner circulation tube and the energy pile type with geothermal coil tube installed inside the foundation pile are being developed and operated as representative types.
  • the surface soil is excavated to a depth of about 2m, then the geothermal coil pipe is laid horizontally and buried, and the horizontally sealed type that constitutes the system is also included in the category of closed underground heat exchanger.
  • the geothermal coil tube is produced in a circular wound state and brought into the site to be inserted into the geothermal excavation hole.
  • the U band part of the geothermal coil pipe is hit by the hollow wall of the geothermal drilling rig or the entire geothermal coil pipe is bent in a circular shape. do.
  • the insertion depth is generally installed by inserting a limit of 100 ⁇ 150m.
  • the actual depth of insertion had a problem that was difficult to confirm until the supervising supervisor visited the site.
  • the surface of the geothermal coil pipe may be damaged by friction with the digging hole wall due to the long-term pulsation generated by the operation of the circulation pump.
  • the leakage of circulating water caused high levels of groundwater contamination as well as serious damage to the geothermal system.
  • the heat transfer area of the underground heat exchanger installed in the individual geothermal excavation hole is not large.
  • the U-band vertical hermetic type requires a large amount of geothermal excavation holes and is a site for digging a large amount of geothermal excavation holes, compared to the geothermal excavation hole of the open type underground heat exchanger operated by excavating a high depth at the same heat transfer amount.
  • the area also had to be secured. Due to the problem of securing the site area, in case of U-band vertical sealed type, geothermal coil pipe is installed in the inside of the foundation file or the geothermal coil pipe is excavated densely in the bottom part where the building is built before building. After installing and installing the underground heat exchanger, the pipes were connected to the total heat exchanger of the heat pump installed in the machine room.
  • the U-band vertical hermetic geothermal facility which has the advantage of convenient facility operation when the site area is narrow, had a problem in that the installation capacity could not be sufficiently installed.
  • geothermal coil pipes are generally formed in the lower part of the building construction area, and numerous geothermal coil pipes are connected by horizontal pipes and finished by building floors. Sometimes it becomes a serious problem to close the coil pipe.
  • the U-band vertical sealed type is also excavated to the bottom of the rock line, and in order to prevent groundwater contamination due to the inflow of the upper contaminated groundwater according to the Attachment 1 of Rule 2 of the Groundwater Act and Groundwater Conservation, etc.
  • U-band vertical sealed type which must form a large amount of geothermal excavation hole by installing a casing up to 1m deep and grouting with a thickness of 5 centimeters along the outer periphery of the casing
  • a large amount of facility cost for the facility was to be additionally input, so the economy was inevitably lose competitiveness compared to other facility methods.
  • the same purpose may be achieved through the installation of a plurality of geothermal coil pipe inside a single geothermal excavation hole, but in this case, the U band is located at the bottom of the geothermal excavation hole while being located at the tip of the geothermal coil pipe
  • the diameter of the geothermal excavation hole must be required to insert it into the geothermal excavation hole.
  • the geothermal coil tube increases in size due to the minimum radius of curvature required to form the U-band, the radius of curvature of the U-band forming becomes more proportionately, resulting in an excessively large geothermal excavation hole.
  • the present invention is a closed underground heat exchanger device that allows underground heat to be used without groundwater intake.
  • the U-band vertical hermetic geothermal coil pipe which had to be constructed at a depth of about 150 m, was obstructed to a high depth of about 500 m.
  • the primary challenge is to maximize the heat transfer area per underground heat exchanger and to increase the use efficiency of the facility's site.
  • the purpose of the present invention is to develop a technology to remove and remove the ground and rehabilitation facilities when the geothermal coil pipe of the underground heat exchanger, such as leakage.
  • the present invention is a closed underground heat exchanger device that can use underground heat without taking ground water, and in a high depth vertically sealed underground heat exchanger,
  • the conventional U-band vertical hermetic type has a large amount of geothermal excavation holes, so a large amount of facility costs have to be put in for groundwater pollution prevention facilities, but in the case of high-depth U-band vertical hermetic type, the number of geothermal digging holes can be greatly reduced. As a result, the reduction of groundwater pollution prevention facility costs is also great.
  • sand in the case of high-depth U-band vertical hermetic type, sand can be filled into the underground heat exchanger instead of grouting by bentonite or cement injection. It can be removed by drawing, which has a dramatic effect on maintenance and maintenance.
  • the number of geothermal excavation hole is small and the underground heat exchanger can be installed on the outside of the site, so that individual management is possible, so that it is possible to check and manage the efficiency of each underground heat exchanger.
  • FIG. 1 is a cross-sectional view showing the installation of the underground heat exchanger installed by the present invention.
  • FIG. 2 is a cross-sectional view of an underground heat exchanger according to the present invention.
  • Figure 3 is a cross-sectional view showing a rope release function and rope clamp functional state according to the present invention.
  • Figure 4 is a cross-sectional view showing a state in which the rope is separated from the rope clamp according to the present invention
  • FIG. 5 is a cross-sectional view showing an anchor according to the present invention.
  • Figure 6 is a perspective view of a rope breaker according to the present invention.
  • Figure 7 is a cross-sectional view showing the insertion of the double tube tube type according to the present invention.
  • Fig. 8 is a cross-sectional view showing that the anchor according to the present invention is installed as an anchor rod to constitute a cured product.
  • FIG. 9 is a cross-sectional view showing the anchor operating state of the present invention.
  • Figure 10 is a perspective view of the guide coupling state of the present invention.
  • FIG. 11 is a cross-sectional view showing a coupling state of the header device and the U-band and the geothermal coil pipe of the present invention.
  • FIG. 12 is a front view of a geothermal coil pipe header device according to the present invention.
  • Figure 13 is a perspective view of the collecting tube applied to the geothermal coil tube header device according to the present invention.
  • FIG. 14 is a cross-sectional view of the collecting tube applied to the geothermal coil tube header device according to the present invention.
  • 15 is a plan view of another example applied to the geothermal coil pipe header device according to the present invention.
  • Figure 16 is a perspective view of the collecting tube fixture applied to the geothermal coil tube header device according to the present invention.
  • the present invention is a closed underground heat exchanger device that can use underground heat without taking ground water, and in a high depth vertically sealed underground heat exchanger,
  • Figure 2 is formed by excavating the geothermal excavation hole (1) below the ground surface 40, and then installed the geothermal coil pipe 20 to the lower excavation hole inside the geothermal excavation hole (1) and connected to the ground brine pipe
  • High-depth geothermal coil pipe 20 is generally composed of 200 ⁇ 500 m depth and the diameter is excavated to 100 ⁇ 200 mm.
  • the space between the geothermal excavation hole 1 and the geothermal coil pipe 20 is filled with sand or filled with a filler 10 composed of bentonite or cement solution. When the sand is used as the filler 10, there is no curing effect and has the advantage of drawing the geothermal coil pipe 20 in the future without inhibiting the flow of the groundwater aquifer.
  • the geothermal excavation hole (1) also excavates to the bottom of the rock bed so that the contaminated groundwater in the upper layer can contaminate the clean rock groundwater that is formed below the rock bed. 4) Insert and grout (3) to form a cement solution with a thickness of 5 cm or more.
  • the secondary grouting (3) can also be performed, or the excavation is carried out with a large diameter below the rock line first, and then the casing (4) is installed and the grouting (3) is performed.
  • the geothermal excavation hole (1) may be formed by excavating to a second planned depth.
  • Such a process should be understood as an essential process regardless of the order and should be understood as the scope of the present invention.
  • the grouting (3) process may be omitted, and additional excavation may be made to form a different excavation depth.
  • Anchor 50 is installed down to the geothermal excavation hole (1).
  • Anchor 50 is divided into a large part of the roller 55, the fixed base 52, and the latch 51, the rope breaker 53.
  • the roller 55 is rotatable over the rope 4 and is combined with the fixing roller 52 and the conventional roller pin 46c to facilitate rotation without being separated.
  • the catch 51 is provided with two or more blades facing each other and is composed of one or two or more stages. Of course, three blades can be installed by dividing the circumference length evenly.
  • the anchor 50 is made of a metal material having a large weight, so that it can be easily inserted into the geothermal excavation hole (1) and the latch 51 is a clearance gap with a roller pin (46b) to the holder (52) There is no obstacle in the movement of being folded or spread outward to the center of the fixing table 52.
  • the spring 63b is installed between the clasp 51 and the clasp 51 or the clasp 51 ) And the mounting table 52 can also be configured.
  • the fixing unit 52, the fixing unit 52 and the rope detacher 53 is integrally fixed and installed.
  • the rope breaker 53 constituted the inclined portion 59 and the blade portion 54 at the end thereof.
  • a rope groove 42b was processed so that the rope 40 penetrated and wound around the roller 55, thereby inserting the rope 40 into the inside.
  • Blade portion 54 is composed of two blades (77a), (77b) and beneath the inclined portion (59) is configured.
  • the rope protection pipe 47 is installed on the rope 40 opposite to the rope breaker 53.
  • the rope protection tube 47 may be understood to utilize a conventional wire protection tube or nylon tube.
  • one side of the rope protection pipe 47 may be cut in the longitudinal direction to install the rope 40 through the cut portion.
  • the rope 40 is used to select the material and thickness according to the site conditions, such as a rope made of wire rope or synthetic resin.
  • the anchor 50 is installed by winding the rope 40 into the geothermal excavation hole 1 as described above.
  • the fastener 51 installed in the anchor 50 has a structure that can be freely squeezed inside the holder 52 so that the anchor 50 naturally slides into the geothermal excavation hole 1 due to its own weight. As it descends, it will settle to the floor. It is possible to check whether the length of the rope 40 introduced from the ground and the bottom of the geothermal excavation hole 1 by the loading load on the rope 40 is reached, and if necessary, an underwater camera (not shown) is put together or After the input, it can be checked through the shooting and the monitor (not shown) screen installed on the ground.
  • the latch 51 When the anchor 50, which is seated on the floor, pulls the rope 40 in two lines repeatedly, the latch 51 is formed with its own center of gravity outward so that it extends outward of the fixing table 52. Of course, when the spring 63b is installed, the clarity of operation can be ensured.
  • the latch 51 is sharply formed at its end, as shown in FIG. 4, so as to penetrate into the excavation wall surface of the geothermal excavation hole 1, and cannot move beyond the angle of the locking jaw 99, even when pulled from the ground. Will be maintained.
  • Such an effect is that the hollow wall excavation surface shape of the geothermal excavation hole (1) is not as smooth as the glass surface, but a rough excavation surface is formed due to the impact impact during the excavation process, so that the locking effect of the latch 51 may be high.
  • the geothermal excavation hole (1) after installing the anchor rod 97, which formed the protrusions 98, so as not to easily fall off when pulling the rope 40, the geothermal excavation hole (1) after the installation of the cemented carbide through the injection hose (not shown), etc. Or by using a chemical material such as cement or epoxy to the top of the anchor (50) to make a hardened body 100, and then fixed and operated to obtain the same function can be obtained all the acts also the installation of the anchor (50) It is natural that it should be regarded as a scope.
  • Rope clamp 43 configured in the header device 60 is composed of a blade processed into two thick steel plate and the teeth 46 inclined inward are uniformly processed on both blades. This is similar to the principle that the saw blade-shaped protrusion formed in the automatic belt does not push the belt out.
  • the corrugated node rope 48 may be attached and operated by binding to the joint 49.
  • Clamp inclined surface 45 is formed below the saw blade 46 and was coupled to the header device 60 using a roller pin 46a to move two blades of the rope clamp 43.
  • the central portion of the header device 60 is also configured with a rope groove 42a to be inserted into the rope 40 of the extra portion passed through the rope clamp 43.
  • the header device 60 is composed of two symmetrical plate shapes, and functions to couple together while being fixed together with the geothermal coil pipe 20 and the U band 21.
  • the upper end of the header device 60 is formed long.
  • the header device 60 is composed of a metal material to have a sufficient weight and its lower end is conical so that there is no jamming phenomenon when inserted into the geothermal excavation hole (1).
  • the header device 60 consisting of two plates were to use a plurality of coupling bolts 88 and the portion to be bonded to the geothermal coil pipe 20 to form a bite wrinkles 82 so that a solid bond is formed so that there is no slipping It was.
  • the other end of the rope 40 is integrated with a roller and a motor to rotate the roller.
  • the winch 91 is rotated by fixing to the configured winch 91.
  • the winch 91 is equipped with an inverter panel (not shown) to adjust the rpm (rpm) was able to adjust the insertion speed of the geothermal coil pipe 20 is inserted.
  • the geothermal coil pipe 20 is pulled through the device 60 so that the geothermal coil pipe 20 is inserted into the geothermal drilling hole 1.
  • the phenomenon that the geothermal coil pipe 20 is rapidly introduced into the geothermal drilling hole 1 regardless of the number of revolutions of the winch 91 The winch 91 and the coiled tube roller 130 may be generated while the operation is performed while controlling the mutual speed.
  • a separate wire rope (not shown) is bound to the lower end of the geothermal coil pipe 20, and the end thereof is fixed to a wire rope winch (not shown) to be wound or operated. It may be additionally installed to assist the insertion work of the geothermal coil pipe (20) to loosen and in this case should be appropriately applied depending on site conditions.
  • the geothermal coil pipe 20 to be inserted usually represents two strands of geothermal coil pipes 22a and 22b connected to the U band 21, but inserts a large diameter geothermal coil pipe 20b as shown in FIG. After that, it can be applied to a double tube tubular vertical hermetic underground heat exchanger facility having an internal circulation pipe (not shown) inside.
  • the diameter of the two strands of the geothermal coil pipe 20 is configured differently with the U band 21 as the boundary. I could do it.
  • geothermal coil tube 20 in the process of inserting the geothermal coil tube 20 into the geothermal excavation hole (1), if the failure occurs due to sand or slime introduced from the wall or vein of the geothermal excavation hole (1) geothermal coil tube (20)
  • the compressed air injection hose 150 may be installed to inject high-pressure compressed air and discharge the sand or slime to the outside.
  • the inclined portion 59 of the rope breaker 53 is dug into the clamp inclined surface 45 of the rope clamp 43 first, the blade The two blades 77a and 77b of the portion 54 cut the band 44 fixed so that the two blades of the rope clamp 43 do not open.
  • the band 44 is cut, the two blades of the rope clamp 43 are opened to both sides by the elasticity of the spring 63a and the entry force of the inclined portion 59 of the rope breaker 53.
  • the rope 40 fixed by the teeth 46 processed on the two blades of the rope clamp 43 is released from the bond between the two blades of the rope clamp 43 and pulled out from the ground. All are withdrawn.
  • the rope 40 is drawn out of the rope protection tube 47, all out of the geothermal coil pipe 20 due to the friction of the geothermal coil pipe 20 is not fundamentally generated and is safely kept as well as geothermal It is also possible to solve the problem that is difficult to pull out because it is sandwiched between the excavation hole (1) and the geothermal coil pipe (20).
  • the rope protection pipe 47 is also withdrawn to remove all possible outside.
  • the method of staying inside the geothermal excavation hole (1) without performing the withdrawal of the rope 40 can also be operated, and by connecting the rope 40 to an underwater winch (not shown) installed in the anchor 50 at all.
  • the geothermal coil pipe 20 is inserted into the geothermal excavation hole (1) is the interior of the geothermal excavation hole (1) inside the groundwater is usually filled with a depth of 10 ⁇ 20m from the ground surface When the depth of the geothermal excavation hole (1) reaches 500 m, the internal water pressure reaches 50 kg / cm2. As a result, the geothermal coil pipe (20) is recessed inward, thereby failing to function. Even if you apply hydraulic pressure after filling the inside with brine, the crushed area is not restored to its original state, so the circulation diameter is greatly narrowed and occluded, which can cause severe circulation disorder. In order to solve this problem, all geothermal coil pipes 20 before the geothermal excavation hole (1) was inserted to be filled through the supplemental water pipe 161 using the supplemental water pump 161.
  • the supplemental water may also be inserted and appended while filling the geothermal excavation hole (1) during insertion, and this act should also be understood as a process of supplementation.
  • the pressure inside the geothermal coil pipe 20 and the geothermal excavation hole 1 is deep, the pressure can be similarly matched, so that the geothermal coil pipe 20 is blocked or damaged by water pressure. It is possible to insert without installation.
  • the guide (70) is installed so that the geothermal coil pipe 20 is located at the central portion of the geothermal excavation hole (1).
  • 70 is provided with an open line 120 so that one side can be opened, and one side is configured to be connected to the yaw groove 71 formed in the center part after covering the geothermal coil pipe 20 as if it is overlaid.
  • Tie band 72 for tying the wires or pipes together to make it possible to be fixed by tightening strongly.
  • the filling material (10) filled with sand or bentonite, or cement solution was injected into the interior.
  • the filler 10 is sand
  • the geothermal coil pipe 20 installed in the underground heat exchanger 110 is blocked or leaks, sand is removed by using high pressure compressed air and the geothermal coil pipe 20 is external. Can be removed with the advantage that rehabilitation installation is possible.
  • the U-band (21) of the geothermal coil pipe (20) falls off the ground geothermal nose
  • compressed air into the coherent (20) to reach the bottom
  • the sealed upper protection hole suggested by the groundwater method is installed to prevent surface water or pollutants from entering the surface of the ground.
  • a cement solution such as sand
  • the geothermal coil pipe 20 is characterized by consisting of a step of coupling to the connecting pipe of the heat exchanger (7) installed on the ground.
  • the method comprising the step of filling the replenishment water in the geothermal coil pipe (20), using a large diameter drilling bit to excavate the geothermal excavation hole (1) to the bottom of the rock to prevent contamination; A step of inserting and installing the casing 4 into the large-diameter geothermal excavation hole 1 and then performing grouting 3; Digging the geothermal excavation hole (1) to a predetermined depth by using a small diameter drilling bit; A step of installing and fixing the anchor 50 connected to the bottom of the geothermal excavation hole 1 excavated with a small diameter by connecting the rope 40; Replenishing the replenishment water in the geothermal coil pipe (20); Inserting and installing the geothermal coil pipe 20 to which the rope 40 is connected into the geothermal excavation hole 1; Extracting and removing the rope 40 from the geothermal excavation hole 1; Filling the filler 10 into the geothermal excavation hole 1;
  • the geothermal coil pipe 20 is characterized by consisting of a step of coupling to the connecting pipe of the heat exchanger (7) installed on the ground
  • the method in the case of filling and filling the filler 10 without removing the rope 40, using a large diameter drilling bit to excavate the geothermal excavation hole (1) down to the rock line to prevent contamination; A step of inserting and installing the casing 4 into the large-diameter geothermal excavation hole 1 and then performing grouting 3; Digging the geothermal excavation hole (1) to a predetermined depth by using a small diameter drilling bit; A step of installing and fixing the anchor 50 connected to the bottom of the geothermal excavation hole 1 excavated with a small diameter by connecting the rope 40; Inserting and installing the geothermal coil pipe 20 to which the rope 40 is connected into the geothermal excavation hole 1; Filling the filler 10 into the geothermal excavation hole 1;
  • the geothermal coil pipe 20 is characterized by consisting of a step of coupling to the connecting pipe of the heat exchanger (7) installed on the ground.
  • the geothermal coil pipe 20 is characterized by consisting of a step of coupling to the connecting pipe of the heat exchanger (7) installed on the ground.
  • the geothermal coil pipe 20 is characterized by consisting of a step of coupling to the connecting pipe of the heat exchanger (7) installed on the ground.
  • Reference numeral 8 is a refrigerant pipe of the heat pump, and 80 is an earth surface.
  • the U-shaped geothermal coil pipe 20 has been described as the header device 60.
  • the geothermal coil pipe header device according to the present invention configured to circulate the linear geothermal coil pipe will be described.
  • the geothermal coil pipe header device As shown in FIG. 12, the geothermal coil pipe header device according to the present invention is inserted into a geothermal excavation hole 1 formed in the ground in a state in which two or more geothermal coil pipes 20 through which a heat exchange medium flows are assembled into one.
  • the heat exchange medium has a collection tube 200 to return to the ground heat exchanger after heat exchange with the geothermal heat.
  • the collection pipe 200 is the collection pipe body 210, the collection portion 220 formed in the interior of the collection pipe body 210, the collection pipe body 220 while being opened toward one side to the collection pipe body 210 It is formed to communicate with the geothermal coil pipe 20 is composed of a plurality of pipe joints 230, the pipe joint.
  • the collection tube body 210 is formed in a shape that can be smoothly inserted into the geothermal excavation hole (1), for example, a circular cross section, and a circular to streamlined sharp portion 211 is formed at the bottom of the installation state.
  • the sharp part 211 may be connected to the rope 320 to be described later.
  • a stopper 212 is formed in the collecting tube body 210 so that the geothermal coil tube 20 can be inserted into the tube fitting portion 230 of the collecting tube body 210 at a predetermined depth.
  • the stopper 212 is not limited to the shape of the jaw formed integrally with the collecting tube body 210, and all of them may be restricted to the insertion of the geothermal coil tube 20.
  • the collecting part 220 is, for example, a space formed inside the collecting tube body 210, and a plurality of pipe fittings 230 are formed in communication so that the heat exchange medium introduced by the geothermal coil pipe 20 has different geothermal heat exchange. Circulation through the tube (20). That is, two geothermal coil tubes 10 may be configured in one set for circulation of the heat exchange medium, and thus, two pipe joints 230 may be configured in one set.
  • the pipe joint 230 may be configured as four, as shown in Figure 3, in this case, all four pipe joints 230 may be in communication with one catcher 220, otherwise the catcher 220 is 2
  • Two pipe joints 230 may be formed in communication with the water collecting units 220 partitioned into two spaces.
  • the pipe sets 230 of different sets may have different diameters. Therefore, since the supply amount of the heat exchange medium and the heat exchange efficiency with the ground water will vary depending on the diameter of the pipe fitting 230, a pipe fitting 230 having a diameter suitable for the construction conditions or the load used may be selected and used.
  • only two pipe joints 230 may be formed in the collecting pipe 200.
  • the geothermal coil pipe 20 is tightly fixed to the pipe joint 230 by heat welding.
  • the pipe joint 230 may be composed of one large diameter supply port and two small diameter return port or two small diameter supply port and one large diameter return port to secure the maximum circulation flow rate within the limited excavation hole diameter. .
  • Cap 240 is combined with all the ways to prevent the groundwater flowing into the water collecting unit 220 and the heat exchange medium outflow, and with the packing so that the geothermal coil pipe 20 can be easily used later It can be screwed in.
  • Geothermal coil pipe 20 may be made of a high density polyethylene (PE) material, heat wire that is supplied with power so that the geothermal coil pipe 20 of such material can be coupled to the assembly pipe 200 without a separate welding machine ( 250) may be applied. Since the heating wire 250 is for the coupling of the geothermal coil pipe 20, the connector is provided with a detachable power line. According to the hot wire 250, when a power source is connected to the hot wire 250, a high temperature heat is generated from the hot wire 25, and the geothermal coil pipe 10 is fixed to the collecting pipe 20 by this heat.
  • PE high density polyethylene
  • Collecting tube 200 is to be installed in the water of the groundwater is composed of a material that is not corroded by water.
  • the assembly tube 200 and the geothermal coil tube 20 assembly are inserted and used in the geothermal excavation hole (1), may be inserted without additional equipment, for example, in the geothermal excavation hole (1) of 300 ⁇ 500m high depth A separate assembly pipe installation port 300 may be applied to insert the installation.
  • Collection tube 200 may be made of a variety of materials, the weight may be applied to be easily inserted into the geothermal excavation hole (1).
  • the weight body may be used to be detachably connected to the collection pipe 200 through a ring, fasteners and the like.
  • the collecting pipe installation unit 300 may include a pulley 310 and a rope 320 (eg, a rope in a double row).
  • the rope 320 pulls the assembly tube 200 having a plurality of geothermal coil tubes 20 fixed from the ground into the geothermal excavation hole 1 to insert the geothermal coil tube 20 to a high depth of 300 to 500 m. It is possible to install, and to maintain the set pipe 200 to a certain height and to freely adjust the height of the set pipe 200, one side is connected to the collection pipe 200 and the other side is connected to the ground winding machine and the like.
  • the pulley 310 supports the rope 320 so that the collecting pipe 200 to which the geothermal coil pipe 20 is coupled can be smoothly lowered when the wire 320 is wound up by installing a winding machine (not shown) on the ground. It is a general term for all the configurations that change direction.
  • the pulley 310 may be inserted into the box 330 and used.
  • the box 330 is a rope insertion hole 331 and the outlet 332 is formed to be open toward the top and the space is formed inside.
  • the rope insertion hole 331 and the outlet 332 may pass through the rope 320 but a brush or the like may be installed to prevent foreign substances such as sand from penetrating.
  • At least one of the rope outlet 332 and the rope insertion hole 331 of the box 330 in which the pulley 310 is built is formed with an induction part 350 (see FIG. 12) having a light beam narrowing structure having a wider cross-sectional area toward an upper portion thereof. .
  • the rope 320 penetrated and installed down the center of the induction part 350 is pulled up by the force of a winding machine (not shown) installed on the ground and slowly wound around the winding machine, and the rope 32 is pulled through the pulley 31.
  • the collection pipe 200 is pulled down in the changed direction.
  • the geothermal coil pipe 20 is inserted into the geothermal excavation hole (1) at a high speed, a large amount of the rope (320) comes down as if it is wound toward the box (330), and the rope (320) is tangled. Even pulling from the ground may loosen and make it difficult to pull normally.
  • the induction part 350 receives the rope 320 falling down in sequence and functions to smoothly release the rope 320 according to the force pulled from the ground through a narrow outlet.
  • the anchor 400 may be applied to fix the collection pipe 200 in the geothermal excavation hole (1).
  • Anchor 400 is detachably connected to the bottom of the box 330 through a pin or the like is inserted into the geothermal excavation hole (1) and fixed to the assembly tube 200 does not move, the folding anchor wing is provided Consisting of, when installed, the anchor wings are folded and do not interfere with the geothermal excavation hole (1) after the installation is completed, the anchor wings can be unfolded and fixed in the geothermal excavation hole (1).
  • the geothermal coil pipe 20 When the geothermal coil pipe 20 is constructed, the geothermal coil pipe 20 is connected to the pipe joint 230 of the collecting pipe 200.
  • the geothermal coil pipe 20 is composed of two sets for circulation of the heat exchange medium, and thus, for example, two geothermal coil pipes 20 are thermally welded to two pipe joints 230 of the collecting pipe 200. Secure with a back.
  • the assembly tube 200 and the geothermal coil tube 20 assembly are inserted into the geothermal excavation hole 1, and the rope 320 is released to release the assembly. Insert into ball (1).
  • the anchor 400 of the assembly touches the bottom of the geothermal excavation hole 1, the anchor 400 is fixed to complete the installation of the assembly.
  • the heat exchange medium circulates the ground heat exchanger and the ground through the geothermal coil pipe 20, and heat exchange between the heat exchange medium and the geothermal heat is performed in this process. That is, the heat exchange medium circulates through the geothermal coil tube 20 (inlet side)-the collecting section 220 of the collecting tube 200-the geothermal coil tube 20 (outflow side).
  • One line flow path is formed and used by two geothermal coil pipes 20, and when the geothermal coil pipe 20 is required to be added, the cap 240 is removed and two pipe joints 230 are provided.
  • the geothermal coil pipe 20 is connected to form another flow path. That is, two lines of geothermal heat exchange passages are made in one drilling hole and one header device.
  • the assembly pipe fixture 300 and the anchor 400 described in the geothermal coil pipe header device may be the same as the rope 40 and the anchor 50 described above.
  • the present invention may be variously modified and may take various forms in applying the above configuration.
  • the conventional U-band vertical hermetic type has a large amount of geothermal excavation holes, so a large amount of facility costs have to be put in for groundwater pollution prevention facilities, but in the case of high-depth U-band vertical hermetic type, the number of geothermal digging holes can be greatly reduced. As a result, the reduction of groundwater pollution prevention facility costs is also great.
  • sand in the case of high-depth U-band vertical hermetic type, sand can be filled into the underground heat exchanger instead of grouting by bentonite or cement injection. It can be removed by drawing, which has a dramatic effect on maintenance and maintenance.
  • the number of geothermal excavation hole is small and the underground heat exchanger can be installed on the outside of the site, so that individual management is possible, so that it is possible to check and manage the efficiency of each underground heat exchanger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Earth Drilling (AREA)

Abstract

The present invention relates to a very deep vertical closed-type ground-coupled heat exchanger that uses geothermal energy without taking in underground water, and to a method for installing the heat exchanger. More particularly, an anchor connected to a rope is disposed in a very deep geothermal excavation hole formed to use geothermal energy, then a header device is installed on one end of a U-bend geothermal coil pipe, then the geothermal coil pipe is coupled to the rope, and then the rope is pulled and wound using a winch on the ground. Accordingly, the U-bend geothermal coil pipe, which is made of polyethylene (PE) and has poor rigidity, can be forcibly inserted down to the very deep bottom of the geothermal excavation hole, thereby increasing the heat transfer area of the heat exchanger.

Description

지열코일관 헤더장치와, 이를 이용한 고심도 수직밀폐형 지중 열교환기 및 설치방법Geothermal coil pipe header device, high depth vertical hermetic underground heat exchanger and installation method
본 발명은 지하수를 취수하지 않은 상태에서 지중 열을 이용할 수 있도록 한 폐쇄형 지중열교환기장치로서 고심도 수직밀폐형 지중 열교환기 및 설치방법에 관한 것이다. 더욱 상세하게는 지열을 이용하기 위해 굴착된 고심도(200~500 m) 지열굴착공 내부에 로프가 연결된 앵커를 설치하고 U밴드 지열코일관 끝단에 헤더장치를 설치한 후 로프를 결합하여 지상에서 로프를 당김으로써 경직성이 약한 폴리에칠렌(PE) U밴드 지열코일관을 지열굴착공 하단부까지 장애없이 설치하여 지중 열교환기의 구성을 편리하게 한 것이다.The present invention relates to a high-depth vertically sealed underground heat exchanger and installation method as a closed underground heat exchanger device capable of using underground heat without taking ground water. More specifically, in order to use geothermal heat, anchors connected with ropes are installed inside the high-depth (200-500 m) geothermal excavation hole, and a header device is installed at the end of the U-band geothermal coil pipe, and then the ropes are coupled to the ground. By pulling the rope, the rigid polyethylene (PE) U-band geothermal coiled pipe was installed to the bottom of the geothermal excavation hole without obstacles to make the construction of the underground heat exchanger convenient.
지열은 크게 개방형 지중 열교환기와 폐쇄형 지중 열교환기로 구분되어 시설되어지고 있다. 개방형 지중 열교환기는 일반 지하수 심정과 동일한 구조와 시설을 갖추고 있으며 단지 지하수를 양수하여 그물을 사용하지 않고 단지 지하수가 가지고 있는 지열을 이용한 다음 다시금 양수하였던 지하수 심정 내부로 되돌려 주입하는 형태를 취하고 있어 지하수가 지상 부분에서 노출되어짐으로써 지하수 오염의 우려가 높은 방식이라 할 수 있다.Geothermal heat is divided into open underground heat exchanger and closed underground heat exchanger. Open underground underground heat exchanger has the same structure and facilities as general groundwater core wells, and it takes the form of pumping groundwater without using a net and using geothermal power of groundwater only and then injecting it back into the groundwater well which was pumped again. Exposed to the ground part is a way of high groundwater contamination.
반면 폐쇄형 지중 열교환기는 굴착된 지열 굴착공 내부에 지중 열교환을 할 수 있도록 하부가 U밴드로 연결된 두가닥의 지열코일관을 바닥까지 삽입하여 설치한 다음 굴착공벽과 지열코일관들 사이를 그라우팅액으로 충진하여 고정한 것이다. 폐쇄형 지중 열교환기는 지하수를 직접 양수하여 노출시키지 않고 지열코일관을 통해 지상에서 열교환되어 보유한 열을 지중에 다시금 교환하는 기능만을 하게 됨으로서 항시 폐쇄된 순환배관 내부에 열교환을 위한 브라인이 순환펌프에 의해 순환될 뿐 지하수와 직접 접촉되지는 않게 됨으로써 개방형 지중 열교환기에 비해서는 지하수 오염을 크게 우려하지 않을 수 있어 지하수 환경보전적인 측면에서는 적극 권장되어져야 할 시스템이라 할 수 있다.On the other hand, the closed underground heat exchanger is installed by inserting two strands of geothermal coil pipes connected with U-bands to the bottom to perform underground heat exchange in the excavated geothermal drilling holes, and then grouting between the excavation wall and the geothermal coil pipes. It is fixed by filling with. The closed underground heat exchanger only functions to exchange heat retained by heat exchanged from the ground through the geothermal coil pipe to the ground without directly pumping and exposing the groundwater. The brine for heat exchange in the closed circulation pipe is always provided by the circulation pump. As it is circulated but not in direct contact with the groundwater, the groundwater pollution may not be greatly concerned as compared with the open underground heat exchanger.
특히 저탄소 녹색성장 추진과 석유가격의 급등으로 인해 신재생에너지의 확대공급 정책에 따라 지열의 수요는 지속적으로 증가되어질 수 있는 여지가 높아진 반면 지열 시스템의 운용에 따른 지하수 오염 우려로 인해 환경 행정 규제 또한 점차 강화되어져 가고 있는 추세이다. 지열시스템에 의한 지하수 오염 우려는 일반 지하수 굴착공과 동일한 시설 형태를 취하면서 열교환된 지하수가 직접 굴착공내에 유동하고 있는 암반대수층의 지하수와 접촉될 수 밖에 없는 개방형 지중 열교환기의 경우가 심각하여 개방형 지중 열교환기와 대체될 수 있는 장치와 공법의 필요성이 크게 대두되어지고 있다. 또한, 개방형 지중 열교환기의 경우에는 지하수를 양수하기 위한 지하수 심정 펌프를 지열 굴착공 내부에 설치하게 됨으로써 자연수위가 특히 낮을 경우에는 지하수를 양수하기 위해 지나친 운전 동력비를 부담하게 됨으로써 에너지 절감효과가 낮아지는 문제점 또한 있었다. 더구나 지열 굴착공 내부로 환수되는 지하수는 지열 굴착공 내부에서 흘러 내리면서 굴착공벽을 침식하게 되고 침식되어 떨어지는 암편과, 파쇄대 또는 암반대수층에서 유입되는 지하수와 함께 유입되는 토사류는 장기간에 걸쳐 꾸준히 지열 굴착공 내부에 축적이 이루어지게 되고 결국은 압축공기를 이용한 청소인 써징작업을 정기적으로 시행해 주어야 하는 관리상의 어려움 또한 있었다.In particular, due to low carbon green growth and soaring oil prices, the demand for geothermal energy will continue to increase according to the expanded supply of renewable energy. The trend is gradually strengthening. Concerns about groundwater contamination caused by geothermal systems are the same as those of general groundwater rigs, and the open underground underground heat exchanger, which has no choice but to come into contact with the groundwater in the rock aquifer, where the heat exchanged groundwater flows directly into the rig, There is a great need for devices and methods that can be replaced with heat exchangers. In addition, in the case of an open underground heat exchanger, a groundwater core pump is installed inside the geothermal digging hole to pump groundwater, and when the natural water level is particularly low, the energy saving effect is low due to the excessive driving power cost to pump the groundwater. There was also a losing issue. Moreover, the groundwater returned to the geothermal rig will erode the excavation wall as it flows down inside the geothermal rig, and the soils flowing with the groundwater coming from the crushed or rock aquifer will continue to be geothermally excavated over a long period of time. Accumulation occurred inside the ball, and eventually there was a management difficulty in performing a surging operation, which is a cleaning operation using compressed air.
또한, 다수개의 지열 굴착공을 함께 운용시 순환수량의 차이로 인해 각 지열 굴착공에 환수되는 지하수의 수량에 편차가 발생되어지게 되고 결국 일부 지열 굴착공은 심하게 지하수가 지열 굴착공 외부로 넘쳐 올라 시스템 운전에 장애를 발생시키기도 하는 문제를 가지고 있다. 또한, 지하수 자체가 가지고 있는 수질 특성상 모래등 토사류가 함유되어 있을 수 있고 칼슘,마그네슘등 배관이나 열교환기 내에서 스케일을 형성할 수 있는 물질을 다수 함유하고 있어 열교환 효율저하와 순환수배관의 폐색등이 발생될 우려가 높은 문제점을 가지고 있다.In addition, when a plurality of geothermal drilling rigs are operated together, there is a variation in the amount of groundwater returned to each geothermal drilling rig due to the difference in the circulation water quantity. Finally, some geothermal drilling rigs cause the groundwater to overflow to the outside of the geothermal drilling rig. There is a problem that may cause the operation of the system. In addition, due to the water quality of groundwater itself, it may contain soil such as sand, and it contains many substances that can form scale in pipes and heat exchangers such as calcium and magnesium. There is a high problem that this is likely to occur.
폐쇄형 지중 열교환기의 경우에는 열교환기와 순환수배관을 순환하는 브라인(여기에서 브라인은 동절기에 동결되지 않도록 부동액을 첨가한 깨끗한 청수를 사용하게 되며 브라인관 내부와 열교환기, 그리고 지열굴착공 내부에 설치된 지열코일관 내부를 순환하는 열교환 매체이다.)이 지하수와 직접 접촉하지 않음으로써 지하수의 오염 우려가 낮음은 물론 순환수두를 크게 낮출 수 있어 지상에 설치되는 순환펌프만으로 브라인의 열교환을 위한 시스템 내부의 순환을 달성할 수 있는 장점을 가지고 있다. 이러한 폐쇄형 지중 열교환기로 구성된 지열시스템은 현재 수직밀폐형으로서는 U밴드 지열코일관을 지열굴착공에 삽입 설치하여 구성된 U밴드 수직밀폐형이 있으며 외부순환관을 지열굴착공 내부에 먼저 삽입한 후 그 내부에 내부순환관을 삽입하여 구성한 이중관 튜브형, 그리고 기초 파일 내부에 지열코일관을 설치한 에너지 파일형이 대표적 형식으로 개발되어 운용 중에 있다. 한편 지표 토양을 2m 내외의 깊이로 굴삭한 다음 지열코일관을 수평으로 포설하여 매설한 후 시스템을 구성한 수평밀폐형도 폐쇄형 지중 열교환기의 범주에 포함된다 하겠다.In the case of closed underground heat exchangers, the brine circulating the heat exchanger and the circulating water pipe (in this case, brine uses clean fresh water added with antifreeze to prevent freezing in the winter, and inside the brine tube, the heat exchanger, and the geothermal excavator) It is a heat exchange medium that circulates inside the installed geothermal coil pipe.) Because it does not come in direct contact with the groundwater, the groundwater is less likely to be contaminated and the circulation head can be significantly lowered.Inside the system for the heat exchange of brine only by the circulation pump installed on the ground. It has the advantage of achieving a cycle of. The geothermal system composed of such a closed underground heat exchanger has a U-band vertical hermetic type, which is installed by inserting and installing a U-band geothermal coil tube into a geothermal excavation hole, and inserts an external circulation tube into the geothermal excavation hole first, and then inside The double pipe tube type formed by inserting the inner circulation tube and the energy pile type with geothermal coil tube installed inside the foundation pile are being developed and operated as representative types. On the other hand, the surface soil is excavated to a depth of about 2m, then the geothermal coil pipe is laid horizontally and buried, and the horizontally sealed type that constitutes the system is also included in the category of closed underground heat exchanger.
그러나, 두가닥의 지열코일관 끝에 U밴드를 열 융착 연결하여 형성한 U밴드 지열코일관의 경우 지열코일관이 원형으로 감겨진 상태로 생산되고 그 형태로 현장에 반입됨으로써 지열굴착공 내부에 삽입하는 경우 지열코일관의 끝부분인 U밴드부분이 지열굴착공의 공벽에 부딪히거나 지열코일관 전체가 원형으로 구부러져 있엇던 중이라 현장에서 펼친다할 지라도 직진성을 확보하기가 어려운 상태여서 삽입 장애가 일어나게 된다. 또한, 통상 폴리에칠렌(PE)관의 특성 상 강관파이프처럼 경직된 직진성을 확보하기 어려워 강제적인 삽입력 확보가 불가능하여 대체적으로 삽입깊이는 100~150m를 한계로 삽입하여 시설되어 지고 있다.However, in the case of a U-band geothermal coil tube formed by thermally fusion-connecting a U-band at the end of two geothermal coil tubes, the geothermal coil tube is produced in a circular wound state and brought into the site to be inserted into the geothermal excavation hole. In this case, the U band part of the geothermal coil pipe is hit by the hollow wall of the geothermal drilling rig or the entire geothermal coil pipe is bent in a circular shape. do. In addition, due to the nature of the polyethylene pipe (PE) pipe is difficult to secure rigid straightness, like a steel pipe pipe, it is impossible to secure a compulsory insertion force, the insertion depth is generally installed by inserting a limit of 100 ~ 150m.
또한, 그 실제적인 삽입 깊이를 현장에서 감독 감리자가 직접 참관하며 확인하기 전에는 확인하기가 어려운 문제점 또한 가지고 있었다. 더구나 지열 굴착공 내부에 지열코일관을 붙들어주고 빈 공간의 유동을 줄이기 위해 주입되는 그라우팅이 부실하게 되는 경우 순환펌프의 작동시 발생되는 장기간의 맥동으로 인해 지열코일관의 표면이 굴착공벽과의 마찰등에 의해 손상될 경우 순환수의 누수로 인해 지하수 오염은 물론 지열시스템에 심각한 장애를 발생시킬 수 있는 우려 또한 높은 처지에 있었다. 또한, 시설 깊이가 얕음으로써 결과적으로 개별 지열굴착공에 시설된 지중 열교환기의 열전달면적이 크지 않음으로써 개방형 지중 열교환기에 비해 지중 열교환 효율이 비교적 낮은 문제점을 안고 있었다.In addition, the actual depth of insertion had a problem that was difficult to confirm until the supervising supervisor visited the site. In addition, when the grouting injected to hold the geothermal coil pipe inside the geothermal digging hole and reduce the flow of empty space becomes poor, the surface of the geothermal coil pipe may be damaged by friction with the digging hole wall due to the long-term pulsation generated by the operation of the circulation pump. In case of damage, the leakage of circulating water caused high levels of groundwater contamination as well as serious damage to the geothermal system. In addition, because the depth of the facility is shallow, as a result, the heat transfer area of the underground heat exchanger installed in the individual geothermal excavation hole is not large.
이로 인해 동일한 전열량이라 할 때 고심도를 굴착하여 운용하는 개방형 지중 열교환기의 지열굴착공과 비교하여 U밴드 수직밀폐형의 경우 다량의 지열굴착공이 필요하게 되었고 자연히 다량의 지열굴착공을 굴착하기 위한 부지면적 또한 보다 넓게 확보하여야 하였다. 이러한 부지 면적의 확보 문제로 인해 U밴드 수직밀폐형의 경우 대체적으로 건물을 짓기 전에 기초 화일의 내부에 지열코일관을 설치하거나 건물이 지어지는 바닥부분에 조밀하게 지열굴착공을 굴착한 후 지열코일관을 삽입 설치하여 지중 열교환기를 구성한 후 기계실 내에 설치되는 히트펌프의 전열교환기로 배관을 연결하여 왔다. 결국 부지면적이 좁은 경우 시설운용이 편리한 장점을 가지고 있는 U밴드 수직밀폐형 지열 설비는 시설용량을 충분히 설치할 수 없는 문제점을 가지고 있었다.As a result, the U-band vertical hermetic type requires a large amount of geothermal excavation holes and is a site for digging a large amount of geothermal excavation holes, compared to the geothermal excavation hole of the open type underground heat exchanger operated by excavating a high depth at the same heat transfer amount. The area also had to be secured. Due to the problem of securing the site area, in case of U-band vertical sealed type, geothermal coil pipe is installed in the inside of the foundation file or the geothermal coil pipe is excavated densely in the bottom part where the building is built before building. After installing and installing the underground heat exchanger, the pipes were connected to the total heat exchanger of the heat pump installed in the machine room. In the end, the U-band vertical hermetic geothermal facility, which has the advantage of convenient facility operation when the site area is narrow, had a problem in that the installation capacity could not be sufficiently installed.
이러한 문제점을 해결하기 위해 강관파이프를 이용하여 지열코일관을 삽입하는데 도움이 되도록 한다 할지라도 삽입이 완료되고 난 후 강관파이프를 지상으로 뽑아 내는 과정에서 강관파이프와 지열코일관의 외주면이 지속적으로 마찰을 일으켜 마모에 의한 천공이 발생될 수 있는 여지가 높아 활용될 수 없었다.In order to solve this problem, even though it is helpful to insert the geothermal coil pipe by using the steel pipe pipe, the outer peripheral surfaces of the steel pipe pipe and the geothermal coil pipe continuously friction during the extraction of the steel pipe pipe to the ground after the insertion is completed. It could not be utilized because there is a high possibility that a perforation may occur due to wear.
또한, U밴드 수직밀폐형의 경우 오염방지를 위한 그라우팅을 벤토나이트를 주입하게 됨으로써 지열코일관이 파손되어 누설이 발생되는 경우 해당 지열코일관을 찾기가 어려울 뿐 아니라 지열코일관을 인발하여 제거하고 지열굴착공을 다시 재활용하는 것이 불가능하였다. 물론 지열코일관을 대체적으로 건물 건축면적 아래 부분에 구성하고 수많은 지열코일관을 수평배관으로 연결한 후 건물 바닥으로 마감하여 형성되어짐으로써 한 개의 지열코일관이 누설등 문제가 발생되었을 경우에는 전체 지열코일관을 폐쇄하여야하는 중대한 문제로 대두될 경우도 있다 하겠다.In addition, in the case of the U-band vertical sealed type, bentonite is injected into the grouting to prevent contamination, so if the geothermal coil pipe is broken and leaks, it is difficult to find the geothermal coil pipe, and the geothermal coil pipe is drawn out to remove and geothermal excavation. It was not possible to recycle the ball again. Of course, geothermal coil pipes are generally formed in the lower part of the building construction area, and numerous geothermal coil pipes are connected by horizontal pipes and finished by building floors. Sometimes it becomes a serious problem to close the coil pipe.
또한, U밴드 수직밀폐형의 경우도 암반선 아래까지 굴착하는 경우로서 지하수법 및 지하수의 수질보전등에 관한 규칙 제2조 별표1에 따라 상층 오염지 하수의 유입에 따른 지하수 오염을 방지하기 위해 암반선 1m 이상 깊이까지 케이싱을 설치하고 케이싱 외주연을 따라 두께 5센티메터로 그라우팅을 시행하는 지하수 오염방지시설을 설치하여야 함으로써 다량의 지열굴착공을 형성할 수 밖에 없는 U밴드 수직밀폐형의 경우 지하수 오염방지시설을 위한 고액의 시설비가 추가적으로 투입되어지게 될 수 밖에 없어 경제성에서 타시설방법들에 비해 경쟁력을 잃을 수 밖에 없었다.In addition, the U-band vertical sealed type is also excavated to the bottom of the rock line, and in order to prevent groundwater contamination due to the inflow of the upper contaminated groundwater according to the Attachment 1 of Rule 2 of the Groundwater Act and Groundwater Conservation, etc. In case of U-band vertical sealed type, which must form a large amount of geothermal excavation hole by installing a casing up to 1m deep and grouting with a thickness of 5 centimeters along the outer periphery of the casing In addition, a large amount of facility cost for the facility was to be additionally input, so the economy was inevitably lose competitiveness compared to other facility methods.
한편, 단일 지열 굴착공 내부에 다수개의 지열코일관을 설치하는 형태를 통해 동일한 목적을 달성하고자 하는 경우도 있으나, 이러한 경우 지열코일관의 선단에 위치하면서 지열 굴착공 맨 하부에 위치하게 되는 U밴드가 서로 겹쳐지게 되어 지열 굴착공 내부에 이를 삽입하기 위해서는 과도한 지열굴착공의 직경이 요구될 수 밖에 없는 문제점이 있었다. 또한 U밴드를 형성하기 위해 요구되는 최소 곡률반경으로 인해 지열코일관의 크기가 커짐에 따라 이러한 U밴드 형성 곡률반경은 더욱 비례해서 커지게 되고 이로 인해 지열 굴착공의 크기를 과대하게 크게 형성하여야 하는 문제점이 발생되고 지열코일관을 2줄로 설치하던 것을 3줄 또는 4줄 이상 설치시에는 이러한 문제로 인해 현실적 적용이 문제로 봉착될 수밖에 없었다.On the other hand, the same purpose may be achieved through the installation of a plurality of geothermal coil pipe inside a single geothermal excavation hole, but in this case, the U band is located at the bottom of the geothermal excavation hole while being located at the tip of the geothermal coil pipe To overlap with each other there is a problem that the diameter of the geothermal excavation hole must be required to insert it into the geothermal excavation hole. In addition, as the geothermal coil tube increases in size due to the minimum radius of curvature required to form the U-band, the radius of curvature of the U-band forming becomes more proportionately, resulting in an excessively large geothermal excavation hole. When a problem occurred and the installation of two lines of geothermal coil pipes more than three lines or four lines, due to this problem, the practical application was bound to be a problem.
본 발명은 지하수를 취수하지 않은 상태에서 지중 열을 이용할 수 있도록 한 폐쇄형 지중 열교환기장치로서 종래 150m 전후의 깊이로 시공할 수 밖에 없었던 U밴드 수직밀폐형 지열코일관을 500m 내외의 고심도까지 장애없이 시설될 수 있도록 하여 지중 열교환기 1개소당 전열면적을 최대화 하여 시설 부지면적의 사용 효율성을 높이고자 하는 것이 일차적인 해결과제이다.The present invention is a closed underground heat exchanger device that allows underground heat to be used without groundwater intake. The U-band vertical hermetic geothermal coil pipe, which had to be constructed at a depth of about 150 m, was obstructed to a high depth of about 500 m. The primary challenge is to maximize the heat transfer area per underground heat exchanger and to increase the use efficiency of the facility's site.
또한, 지중 열교환기의 지열코일관에 누설등 장애가 발생하였을 때 지상으로 인발하여 제거하고 새롭게 갱생 시설할 수 있도록 하는 기술을 개발하고자 하는데 그 목적이 있다.In addition, the purpose of the present invention is to develop a technology to remove and remove the ground and rehabilitation facilities when the geothermal coil pipe of the underground heat exchanger, such as leakage.
본 발명은 지하수를 취수하지 않은 상태에서 지중 열을 이용할 수 있도록 한 폐쇄형 지중열교환기장치로서 고심도 수직밀폐형 지중 열교환기에 있어서,The present invention is a closed underground heat exchanger device that can use underground heat without taking ground water, and in a high depth vertically sealed underground heat exchanger,
지열을 이용하기 위해 암반 깊숙이 굴착된 지열 굴착공; 지열 굴착공 하부에 로프로 연결되어 설치되는 앵커(anchor); 지열굴착공에 삽입 설치되는 지열코일관; 앵커와 지열코일관 하단을 연결하여 이를 당김으로써 지열코일관이 지열굴착공으로 강제삽입이 이루어지도록 구성한 로프로 구성된 것을 특징으로 하고 있다.Geothermal rigs drilled deep into the rock to use geothermal; Anchors (anchor) connected to the bottom of the geothermal excavation hole is installed by a rope; Geothermal coil pipe inserted into the geothermal excavation hole; By connecting the anchor and the bottom of the geothermal coil pipe and pulling it, the geothermal coil pipe is characterized by consisting of a rope configured to be forced into the geothermal excavation hole.
또한, 고심도 수직밀폐형 지중 열교환기 구성 방법으로서는,In addition, as a method for constructing a high depth vertical hermetic underground heat exchanger,
지표면으로부터 굴착하여 계획된 깊이까지 굴착하여 지열굴착공을 형성하는 공정과; 케이싱을 대구경 굴착공 내부에 삽입 설치한 후 그라우팅을 시행하는 공정과; 지열굴착공 바닥에 로프가 연결된 앵커를 내려 설치하는 공정과; 로프를 연결한 지열코일관을 지열굴착공 내부에 삽입하여 설치하는 공정과; 로프를 지열굴착공 내부에서 인출하여 제거하는 공정과; 지열굴착공 내부에 모래 또는 그라우팅재를 충진하는 공정과; 지열코일관을 지상에 설치된 열교환기 연결 배관에 결합하는 공정으로 이루어진 것을 특징으로 하고 있다.Excavating from the ground surface to a predetermined depth to form a geothermal excavation hole; Grouting the casing by inserting the casing into a large diameter hole; Installing a rope connected to the ground of the geothermal excavation hole; Inserting and installing a geothermal coiled pipe connecting the rope into the geothermal excavation hole; Removing the rope by removing the inside of the geothermal excavation hole; Filling sand or grouting material in the geothermal excavation hole; Geothermal coil pipe is characterized in that the process consisting of coupling to the heat exchanger connection pipe installed on the ground.
200~500m에 이르는 고심도 지열굴착공 내부에 U밴드 수직밀폐형 지열코일관을 삽입하여 지중 열교환기를 구성할 수 있게 됨으로써 지열굴착공의 굴착수량을 소량으로 할 수 있어 부지활용성을 크게 높히면서 신재생에너지인 지열 활용의 효율성을 증대시킬 수 있게 되었다. 또한, 종래 U밴드 수직밀폐형 지중 열교환기의 경우에는 다량의 지열굴착공을 시설하여야 함으로써 기존 건축물 바닥 하부에서는 작업이 불가능하고 여유있는 부지가 없는 경우 시설 검토 자체가 불가능하였으나 굴착 장비의 진입이 가능한 부지가 있을 경우에는 기존건축물이라 할지라도 고심도 U밴드 수직밀폐형 지중 열교환기 시설이 가능하게 되는 효과가 있다.By inserting U-band vertical hermetic geothermal coil pipe inside the high-depth geothermal excavation hole of 200 ~ 500m, it is possible to construct underground heat exchanger. The efficiency of utilizing geothermal energy, renewable energy, can be increased. In addition, in the case of the conventional U-band vertically sealed underground heat exchanger, since a large amount of geothermal excavation holes must be installed, work is not possible under the existing building floor, and if there is no spare site, it is impossible to review the facility itself, but it is possible to enter excavation equipment. If there is an existing building, the high-depth U-band vertical hermetic underground heat exchanger facility is possible.
이와 마찬가지로 종래의 U밴드 수직밀폐형 지중 열교환기를 적용하여 시설원예 비닐하우스에 지열 시스템을 시설하는 경우 역시 기존 비닐하우스를 철거하고 다량의 지열굴축공을 굴착하여 시설을 마친 후 비닐하우스를 재건축하여야 하는 문제로 인해 시설기피의 한 이유가 되었으나 본 고심도 U밴드 수직밀폐형의 경우 비닐하우스와 비닐하우스사이의 공간에 장비를 투입하여 지열 굴착공을 개발하여 지중 열교환기를 시설할 수 잇게 됨으로써 적용확대가 용이하게 되는 효과가 있게 되었다.Similarly, if a geothermal system is installed in a horticulture vinyl house by applying a conventional U-band vertically sealed underground heat exchanger, it is also necessary to dismantle the existing vinyl house and excavate a large amount of geothermal excavation holes and then rebuild the vinyl house. However, this high-depth U-band vertical hermetic type can be installed in the space between the vinyl house and the vinyl house to develop a geothermal excavation hole so that the underground heat exchanger can be installed to easily expand the application. It became effective.
또한, 종래 U밴드 수직밀폐형의 경우 지열 굴착공의 수량이 많아 지하수 오염방지시설을 위해 고액의 시설비가 투입될 수 밖에 없었으나 고심도 U밴드 수직밀폐형의 경우에는 지열굴착공의 수량을 크게 줄일 수 있게 되어 결과적으로 지하수 오염방지시설비의 절감 효과 또한 크다 하겠다.In addition, the conventional U-band vertical hermetic type has a large amount of geothermal excavation holes, so a large amount of facility costs have to be put in for groundwater pollution prevention facilities, but in the case of high-depth U-band vertical hermetic type, the number of geothermal digging holes can be greatly reduced. As a result, the reduction of groundwater pollution prevention facility costs is also great.
또한, 고심도 U밴드 수직밀폐형의 경우에는 지중 열교환기 내부에 벤토나이트나 시멘트 주입에 의한 그라우팅 대신 모래를 채울 수 있어 지중 열교환기에 누설등 장애가 발생하였을 때에는 압축공기를 주입하면서 지열코일관을 외부로 모두 인발하여 제거가 가능하여 보수와 유지관리에 획기적인 효과를 갖게 되었다.In addition, in the case of high-depth U-band vertical hermetic type, sand can be filled into the underground heat exchanger instead of grouting by bentonite or cement injection. It can be removed by drawing, which has a dramatic effect on maintenance and maintenance.
또한, 지열굴착공의 수량이 작고 부지 외곽등에 지중 열교환기를 시설할 수 있게 되어 개별관리가 가능하게 되어 각 지중 열교환기의 효율을 점검 관리가 가능하게 되는 효과가 있다.In addition, the number of geothermal excavation hole is small and the underground heat exchanger can be installed on the outside of the site, so that individual management is possible, so that it is possible to check and manage the efficiency of each underground heat exchanger.
또한, U밴드를 사용하지 않고 직선형 지열코일관을 헤더장치로 연결함으로써 지열 굴착공 내부에 다수의 수직밀폐형 지열코일관을 삽입하여 지중 열교환기를 구성할 수 있게 되므로 단일 지열굴착공당 지열 전열량의 크기를 크게 할 수 있어 지열 굴착공의 굴착수량을 크게 줄일 수 있는 효과가 있다. 이로 인해 부지활용성을 크게 높이면서 신재생에너지의 지열 활용의 효용성을 증대할 수 있다.In addition, by connecting a linear geothermal coiled tube with a header device without using a U-band, it is possible to construct an underground heat exchanger by inserting a number of vertically sealed geothermal coiled tubes into a geothermal excavation hole. Since it can be enlarged has an effect that can greatly reduce the amount of excavation of geothermal excavation hole. As a result, it is possible to increase the utility of geothermal utilization of renewable energy while greatly improving the site utilization.
도 1은 본 발명에 의한 해 시설된 지중 열교환기의 설치상태를 나타낸 단면도.1 is a cross-sectional view showing the installation of the underground heat exchanger installed by the present invention.
도 2는 본 발명에 의한 지중 열교환기 단면도.2 is a cross-sectional view of an underground heat exchanger according to the present invention.
도 3은 본 발명에 의한 로프이탈기와 로프클램프 기능상태를 표현한 단면도.Figure 3 is a cross-sectional view showing a rope release function and rope clamp functional state according to the present invention.
도 4는 본 발명에 의한 로프가 로프클램프로부터 이탈된 상태를 표현한 단면도Figure 4 is a cross-sectional view showing a state in which the rope is separated from the rope clamp according to the present invention
도 5는 본 발명에 의한 앵커를 표현한 단면도.5 is a cross-sectional view showing an anchor according to the present invention.
도 6는 본 발명에 의한 로프이탈기를 표현한 사시도.Figure 6 is a perspective view of a rope breaker according to the present invention.
도 7은 본 발명에 의한 이중관 튜브형의 삽입설치를 표현한 단면도.Figure 7 is a cross-sectional view showing the insertion of the double tube tube type according to the present invention.
도 8은 본 발명에 의한 앵커를 앵커봉으로 설치하고 경화체를 구성하게 한 것을 표현한 단면도.Fig. 8 is a cross-sectional view showing that the anchor according to the present invention is installed as an anchor rod to constitute a cured product.
도 9는 본 발명의 앵커 작동상태를 표현한 단면도.9 is a cross-sectional view showing the anchor operating state of the present invention.
도 10은 본 발명의 가이드 결합상태를 표현한 사시도.Figure 10 is a perspective view of the guide coupling state of the present invention.
도 11은 본 발명의 헤더장치와 U밴드 그리고 지열코일관 결합상태를 표현한 단면도.11 is a cross-sectional view showing a coupling state of the header device and the U-band and the geothermal coil pipe of the present invention.
도 12는 본 발명에 의한 지열코일관 헤더장치의 정면도.12 is a front view of a geothermal coil pipe header device according to the present invention.
도 13은 본 발명에 의한 지열코일관 헤더장치에 적용된 집합관의 사시도.Figure 13 is a perspective view of the collecting tube applied to the geothermal coil tube header device according to the present invention.
도 14는 본 발명에 의한 지열코일관 헤더장치에 적용된 집합관의 단면도.14 is a cross-sectional view of the collecting tube applied to the geothermal coil tube header device according to the present invention.
도 15는 본 발명에 의한 지열코일관 헤더장치에 적용된 다른 예의 평면도.15 is a plan view of another example applied to the geothermal coil pipe header device according to the present invention.
도 16은 본 발명에 의한 지열코일관 헤더장치에 적용된 집합관 고정구의 사시도.Figure 16 is a perspective view of the collecting tube fixture applied to the geothermal coil tube header device according to the present invention.
본 발명은 지하수를 취수하지 않은 상태에서 지중 열을 이용할 수 있도록 한 폐쇄형 지중열교환기장치로서 고심도 수직밀폐형 지중 열교환기에 있어서,The present invention is a closed underground heat exchanger device that can use underground heat without taking ground water, and in a high depth vertically sealed underground heat exchanger,
지열을 이용하기 위해 암반 깊숙이 굴착된 지열 굴착공; 지열 굴착공 하부에 로프로 연결되어 설치되는 앵커(anchor); 지열굴착공에 삽입 설치되는 지열코일관; 앵커와 지열코일관 하단을 연결하여 이를 당김으로써 지열코일관이 지열굴착공으로 강제삽입이 이루어지도록 구성한 로프로 구성된 것을 특징으로 하고 있다.Geothermal rigs drilled deep into the rock to use geothermal; Anchors (anchor) connected to the bottom of the geothermal excavation hole is installed by a rope; Geothermal coil pipe inserted into the geothermal excavation hole; By connecting the anchor and the bottom of the geothermal coil pipe and pulling it, the geothermal coil pipe is characterized by consisting of a rope configured to be forced into the geothermal excavation hole.
또한, 고심도 수직밀폐형 지중 열교환기 구성 방법으로서는,In addition, as a method for constructing a high depth vertical hermetic underground heat exchanger,
지표면으로부터 굴착하여 계획된 깊이까지 굴착하여 지열굴착공을 형성하는 공정과; 케이싱을 대구경 굴착공 내부에 삽입 설치한 후 그라우팅을 시행하는 공정과; 지열굴착공 바닥에 로프가 연결된 앵커를 내려 설치하는 공정과; 로프를 연결한 지열코일관을 지열굴착공 내부에 삽입하여 설치하는 공정과; 로프를 지열굴착공 내부에서 인출하여 제거하는 공정과; 지열굴착공 내부에 모래 또는 그라우팅재를 충진하는 공정과; 지열코일관을 지상에 설치된 열교환기 연결 배관에 결합하는 공정으로 이루어진 것을 특징으로 하고 있다.Excavating from the ground surface to a predetermined depth to form a geothermal excavation hole; Grouting the casing by inserting the casing into a large diameter hole; Installing a rope connected to the ground of the geothermal excavation hole; Inserting and installing a geothermal coiled pipe connecting the rope into the geothermal excavation hole; Removing the rope by removing the inside of the geothermal excavation hole; Filling sand or grouting material in the geothermal excavation hole; Geothermal coil pipe is characterized in that the process consisting of coupling to the heat exchanger connection pipe installed on the ground.
본 발명을 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
하기에서 본 발명을 설명함에 있어, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다.In the following description of the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted.
그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 설정된 용어들로서 이는 생산자의 의도 또는 관례에 따라 달라질 수 있으므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.The following terms are terms set in consideration of functions in the present invention, which may vary depending on the intention or custom of the producer, and their definitions should be made based on the contents throughout the specification.
도 2는 지표면(40) 아래 쪽으로 지열굴착공(1)을 굴착하여 형성한 다음 지열굴착공(1) 내부의 굴착공 하부까지 지열코일관(20)을 삽입 설치하고 지상으로 연결한 브라인관(9)을 히트펌프(미도시)와 결합된 열교환기(7)에 연결하여 구성된 지중 열교환기를 도시한 단면도이다. 고심도 지열코일관(20)은 대체적으로 200~500 m 깊이로 구성되며 그 직경은 100~200 mm로 굴착되어진다. 지열굴착공(1)과 지열코일관(20) 사이 공간은 모래로 채우거나 벤토나이트 또는 시멘트액으로 조성된 충진재(10)로 충진하게 된다. 모래를 충진재(10)로 사용하게 될 경우에는 경화효과가 없고 지하수 대수층의 흐름을 저해하지 않으면서 향후 지열코일관(20)을 인발할 수도 있는 장점을 가지게 된다.Figure 2 is formed by excavating the geothermal excavation hole (1) below the ground surface 40, and then installed the geothermal coil pipe 20 to the lower excavation hole inside the geothermal excavation hole (1) and connected to the ground brine pipe ( 9 is a cross-sectional view showing an underground heat exchanger configured by connecting a heat pump (7) to a heat exchanger (7) coupled with a heat pump (not shown). High-depth geothermal coil pipe 20 is generally composed of 200 ~ 500 m depth and the diameter is excavated to 100 ~ 200 mm. The space between the geothermal excavation hole 1 and the geothermal coil pipe 20 is filled with sand or filled with a filler 10 composed of bentonite or cement solution. When the sand is used as the filler 10, there is no curing effect and has the advantage of drawing the geothermal coil pipe 20 in the future without inhibiting the flow of the groundwater aquifer.
지열굴착공(1) 역시 암반선 하부까지를 굴착하게 되어 상층의 오염된 지하수가 암반선 아래 부분에 형성되어있는 깨끗한 암반지하수를 오염시킬 수 있어 지하수법에 따라 암반선 이하 1m 이상깊이로 케이싱(4)을 삽입하고 5cm 이상 두께로 시멘트액을 조성하여 그라우팅(3)을 시행하게 된다. 물론 계획된 깊이까지 굴착을 완료한 후 이차적으로 그라우팅(3)을 시행할 수도 있고 우선적으로 암반선 아래까지 대구경으로 굴착한 후 케이싱(4)을 설치하고 그라우팅(3)을 시행한 다음 그라우팅(3) 구간이 경화된 후 이차적으로 계획된 깊이까지 굴착하여 지열굴착공(1)을 형성시킬 수도 있다. 이러한 공정은 순서와는 관계없이 필수적인 공정으로 이해하여 본 발명의 범위로 이해되어져야 할 것이다.The geothermal excavation hole (1) also excavates to the bottom of the rock bed so that the contaminated groundwater in the upper layer can contaminate the clean rock groundwater that is formed below the rock bed. 4) Insert and grout (3) to form a cement solution with a thickness of 5 cm or more. Of course, after completion of the excavation to the planned depth, the secondary grouting (3) can also be performed, or the excavation is carried out with a large diameter below the rock line first, and then the casing (4) is installed and the grouting (3) is performed. After the section is cured, the geothermal excavation hole (1) may be formed by excavating to a second planned depth. Such a process should be understood as an essential process regardless of the order and should be understood as the scope of the present invention.
물론 기존 지열굴착공(1)에 대한 시설을 개선하기 위해 시설되는 경우에는 그라우팅(3) 공정이 생략될 수도 있으며 추가 굴착이 이루어져 굴착깊이를 달리 구성할 수도 있다.Of course, if the facility is installed to improve the existing geothermal excavation hole (1), the grouting (3) process may be omitted, and additional excavation may be made to form a different excavation depth.
지열굴착공(1)이 완성된 후 앵커(anchor)에 구성 설치된 로울러(55)에 로프(40), 또는 마디로프(48)의 끝부분을 통과 시킨 다음 그 끝을 지상에서 잡고 두 줄의 로프(40)에 달린 앵커(50)를 지열굴착공(1) 하부까지 내려 설치하게 된다. 앵커(50)는 그 구성부분이 로울러(55)와 고정대(52), 그리고 걸림쇠(51), 로프이탈기(53) 부분으로 크게 나뉘어지게 된다. 로울러(55)는 로프(4)를 걸쳐 회전할 수 있도록 되어 있으며 고정대(52)와 통상의 로울러핀(46c)으로 결합되어 이탈되지 않으면서 회전이 용이하도록 하였다.After the geothermal excavation hole (1) is completed, pass the end of the rope 40, or the node rope 48 to the roller (55) installed in the anchor (anchor) and then hold the end from the ground and hold two ropes The anchor 50 attached to the 40 is installed down to the geothermal excavation hole (1). Anchor 50 is divided into a large part of the roller 55, the fixed base 52, and the latch 51, the rope breaker 53. The roller 55 is rotatable over the rope 4 and is combined with the fixing roller 52 and the conventional roller pin 46c to facilitate rotation without being separated.
걸림쇠(51)는 두 개이상의 날이 서로 대향하여 설치하게 되며 1단 또는 2단 이상으로 구성되어 지게 된다. 물론 3개의 날을 원주길이를 균등 분할하여 설치할 수도 있다. 앵커(50)는 대체적으로 자중을 갖는 금속재료를 사용하여 쉽게 지열굴착공(1) 내부에 투입이 가능하게 하였으며 걸림쇠(51)는 고정대((52)에 로울러핀(46b)으로 여유있는 간극으로 결합되어 고정대(52)의 중심으로 오무려지거나 바깥쪽으로 펼쳐지는 동작에 아무런 장애가 없도록 하였다. 물론 작동의 명확성을 위해 스프링(63b)을 걸림쇠(51)와 걸림쇠(51) 사이에 설치하거나 걸림쇠(51)와 고정대(52) 사이에 설치하여 구성할 수도 있다.The catch 51 is provided with two or more blades facing each other and is composed of one or two or more stages. Of course, three blades can be installed by dividing the circumference length evenly. The anchor 50 is made of a metal material having a large weight, so that it can be easily inserted into the geothermal excavation hole (1) and the latch 51 is a clearance gap with a roller pin (46b) to the holder (52) There is no obstacle in the movement of being folded or spread outward to the center of the fixing table 52. Of course, for the sake of clarity, the spring 63b is installed between the clasp 51 and the clasp 51 or the clasp 51 ) And the mounting table 52 can also be configured.
한편, 고정대(52) 상부에는 고정대(52)와 일체로 로프이탈기(53)를 고정하여 결합 설치하였다. 로프이탈기(53)는 경사부(59)와 그 끝단에 칼날부(54)를 구성하였다. 로프이탈기(53) 중앙부분에는 로프(40)가 관통하여 로울러(55)에 감길 수 있도록 로프홈(42b)을 가공하여 이 내부로 로프(40)를 삽입하여 설치되도록 하였다. 칼날부(54)는 두 개의 칼날(77a),(77b)로 구성되며 그 아래로는 급하게 경사부(59)가 구성되도록 하였다.On the other hand, the fixing unit 52, the fixing unit 52 and the rope detacher 53 is integrally fixed and installed. The rope breaker 53 constituted the inclined portion 59 and the blade portion 54 at the end thereof. In the central part of the rope remover 53, a rope groove 42b was processed so that the rope 40 penetrated and wound around the roller 55, thereby inserting the rope 40 into the inside. Blade portion 54 is composed of two blades (77a), (77b) and beneath the inclined portion (59) is configured.
또한, 앵커(50)의 로울러(55)에 감겨져 지열굴착공(1) 내부로 내려지는 로프(40) 중 로프이탈기(53) 반대편 쪽 로프(40)에는 로프보호관(47)을 씌워 설치되도록 하였다. 로프보호관(47)은 통상의 전선보호관이나 나일론 튜브등을 활용하는 것으로 이해하면 된다. 로프(40)에 끼우는 작업의 편리성을 위해 로프보호관(47)의 한 측면을 길이방향으로 절개하여 이 절개된 부분을 통해 로프(40)를 삽입하여 설치할 수도 있다. 물론 로프(40)는 와이어로프나 합성수지로 제작된 로프등 현장 여건에 맞춰 재질과 굵기를 선택하여 사용하게 된다.In addition, among the ropes 40 wound around the roller 55 of the anchor 50 and lowered into the geothermal excavation hole 1, the rope protection pipe 47 is installed on the rope 40 opposite to the rope breaker 53. . The rope protection tube 47 may be understood to utilize a conventional wire protection tube or nylon tube. For convenience of the work to be fitted to the rope 40, one side of the rope protection pipe 47 may be cut in the longitudinal direction to install the rope 40 through the cut portion. Of course, the rope 40 is used to select the material and thickness according to the site conditions, such as a rope made of wire rope or synthetic resin.
이렇게 구성된 앵커(50)는 전술한 바와 같이 로프(40)를 감아 지열굴착공(1) 내부로 투입하여 설치하게 된다. 이때 앵커(50)에 설치된 걸림쇠(51)는 고정대(52) 안쪽으로는 자유스럽게 오무려질 수 있는 구조로 되어 있어 앵커(50)는 자체 무게로 인해 자연스럽게 지열굴착공(1)내부로 미끄러져 내려가면서 바닥까지 안착되어 지게 된다. 지상에서 투입된 로프(40)의 길이와 로프(40)에 걸리는 투입하중에 의해 지열굴착공(1) 바닥까지 도달되었는지의 여부에 대하여는 확인이 가능하며 필요할 경우 수중카메라(미도시)를 함께 투입하거나 투입 후 촬영과 지상에 설치된 모니터(미도시) 화면을 통해 확인도 가능하다 하겠다.As described above, the anchor 50 is installed by winding the rope 40 into the geothermal excavation hole 1 as described above. At this time, the fastener 51 installed in the anchor 50 has a structure that can be freely squeezed inside the holder 52 so that the anchor 50 naturally slides into the geothermal excavation hole 1 due to its own weight. As it descends, it will settle to the floor. It is possible to check whether the length of the rope 40 introduced from the ground and the bottom of the geothermal excavation hole 1 by the loading load on the rope 40 is reached, and if necessary, an underwater camera (not shown) is put together or After the input, it can be checked through the shooting and the monitor (not shown) screen installed on the ground.
바닥에 안착된 앵커(50)를 두줄의 로프(40)을 반복해서 잡아당기게 되면 걸림쇠(51)는 자체 무게 중심이 바깥 쪽으로 형성되어 있어 고정대(52)의 바깥쪽으로 펼쳐지게 된다. 물론 스프링(63b)이 설치되어있을 경우에는 작동의 명확성은 담보될 수 있다 하겠다. 걸림쇠(51)는 도4에서와 같이 그 끝이 날카롭게 형성되어 지열굴착공(1)의 굴착 벽면에 파고들게 되고 걸림턱(99) 이상의 각도를 벗어날 수가 없어 지상에서 잡아당긴다 할지라도 움직이지 않은 상태를 유지하게 된다. 이러한 효과는 지열 굴착공(1)의 공벽 굴착면 형태가 유리면처럼 매끄럽지가 않고 굴착과정에서의 타격 충격으로 인해 거칠게 굴착면이 형성되어 있어 걸림쇠(51)의 걸림 효과가 높게 나타날 수 있게 된다.When the anchor 50, which is seated on the floor, pulls the rope 40 in two lines repeatedly, the latch 51 is formed with its own center of gravity outward so that it extends outward of the fixing table 52. Of course, when the spring 63b is installed, the clarity of operation can be ensured. The latch 51 is sharply formed at its end, as shown in FIG. 4, so as to penetrate into the excavation wall surface of the geothermal excavation hole 1, and cannot move beyond the angle of the locking jaw 99, even when pulled from the ground. Will be maintained. Such an effect is that the hollow wall excavation surface shape of the geothermal excavation hole (1) is not as smooth as the glass surface, but a rough excavation surface is formed due to the impact impact during the excavation process, so that the locking effect of the latch 51 may be high.
앵커(50)를 지열굴착공(1) 내부에 투입할 때 걸림쇠(51)가 순간 순간 펼쳐짐으로써 투입시 장애가 일어나는 것을 방지하기 위해 걸림쇠(51) 외주연으로 로프(40)에 당김줄(미도시)을 연결한 보호통(미도시)을 씌운 후 설치하거나 또는 걸림쇠(51) 외주연에 띠밴드(미도시)를 결속한 다음 컷팅날(미도시)을 로프(40)에 당김줄(미도시)로 연결하여 지열굴착공(1) 바닥에 앵커(50)가 도달되었을 때 지상에서 로프(40)를 잡아당겨 작동시킴으로써 보호통(미도시)을 벗겨내거나 띠밴드(미도시)를 끊어 내어 걸림쇠(51)가 펼쳐질 수 있도록 할 수도 있다.When the anchor 50 is inserted into the geothermal excavation hole 1, the catch 51 is unfolded at the moment, so that the rope 40 is pulled on the rope 40 with the outer periphery of the catch 51 to prevent an obstacle from occurring. ) After installing the protective tube (not shown) connected to the installation or binding the band band (not shown) to the outer periphery of the latch (51) and then pulling the cutting blade (not shown) to the rope 40 (not shown) When the anchor 50 is reached at the bottom of the geothermal excavation hole (1) by operating by pulling the rope 40 from the ground to remove the protective canister (not shown) or to cut off the band band (not shown) ) Can be expanded.
물론 별도로 로프(40)를 당길시 쉽게 빠지지 않도록 돌설부(98)를 형성시킨 앵커봉(97)을 지열굴착공(1) 하부에 설치하고 난 후 주입호스(미도시)등을 통해 초속경 시멘트 또는 시멘트, 또는 에폭시등 화학제재를 이용하여 이를 앵커(50) 상부까지 투입하여 경화체(100)를 만들어 고착시킨 후 고정하여 운용함으로써 동일한 기능을 얻을 수도 있다 하겠으며 이러한 모든 행위 역시 앵커(50)의 설치범위로 간주되어져야 할 것은 당연하다 하겠다.Of course, after installing the anchor rod 97, which formed the protrusions 98, so as not to easily fall off when pulling the rope 40, the geothermal excavation hole (1) after the installation of the cemented carbide through the injection hose (not shown), etc. Or by using a chemical material such as cement or epoxy to the top of the anchor (50) to make a hardened body 100, and then fixed and operated to obtain the same function can be obtained all the acts also the installation of the anchor (50) It is natural that it should be regarded as a scope.
앵커(50) 설치가 완료되면 로프(40)의 한쪽 끝단을 지열코일관(20)의 U밴드(21) 상부에 고정한 헤더장치(60)의 하단에 구성한 로프클램프(43)에 고정하게 된다. 헤더장치(60)에 구성된 로프클램프(43)는 두 개의 두터운 철판으로 가공된 날로 구성되며 안쪽으로 기울어진 톱니(46)가 균일하게 양쪽날에 가공되어 있다. 이는 마치 자동혁대에 구성된 톱날형 돌출물이 혁대를 밀려나가지 않도록 잡아주는 원리와 유사하다 보면 될 것이다.When the installation of the anchor 50 is completed, one end of the rope 40 is fixed to the rope clamp 43 configured at the lower end of the header device 60 fixed to the upper portion of the U band 21 of the geothermal coil pipe 20. Rope clamp 43 configured in the header device 60 is composed of a blade processed into two thick steel plate and the teeth 46 inclined inward are uniformly processed on both blades. This is similar to the principle that the saw blade-shaped protrusion formed in the automatic belt does not push the belt out.
물론 톱니(46)의 고정력을 더 높이기 위해 주름이 가공된 마디로프(48)를 접합부(49)로 결속시켜 부착하여 운용할 수도 있다.Of course, in order to further increase the fixing force of the teeth 46, the corrugated node rope 48 may be attached and operated by binding to the joint 49.
톱날(46) 아래쪽에는 클램프경사면(45)이 형성되어 있으며 로프클램프(43)의 두 날이 움직일 수 있도록 로울러핀(46a)을 이용하여 헤더장치(60)에 결합하였다.Clamp inclined surface 45 is formed below the saw blade 46 and was coupled to the header device 60 using a roller pin 46a to move two blades of the rope clamp 43.
헤더장치(60)의 중앙부에는 또한 로프클램프(43)를 통과하여 나온 여유분의 로프(40)를 삽입되어질 수 있도록 로프홈(42a)을 구성하였다. 헤더장치(60)는 두 개의 대칭된 판형으로 구성되며 지열코일관(20)과 U밴드(21)와 함께 고정하면서 일체가 될 수 있도록 결합하는 기능을 하며 헤더장치(60)의 상단부는 길게 형성하여 지열코일관(20)을 20 cm 이상 물고 있을 수 있도록 함으로써 헤더장치(60)에 당겨지는 인발력이 열접착된 U밴드(21)에 직접적으로 가해지지 않도록 함으로써 U밴드(21)가 지열코일관(20)으로부터 탈리되는 사고가 없도록 하였다.The central portion of the header device 60 is also configured with a rope groove 42a to be inserted into the rope 40 of the extra portion passed through the rope clamp 43. The header device 60 is composed of two symmetrical plate shapes, and functions to couple together while being fixed together with the geothermal coil pipe 20 and the U band 21. The upper end of the header device 60 is formed long. By allowing the geothermal coil pipe 20 to be bitten by 20 cm or more, the U-band 21 is applied to the geothermal coil pipe by preventing the pull force pulled by the header device 60 from being applied directly to the heat-bonded U-band 21. There was no accident detaching from (20).
또한 헤더장치(60)는 충분한 무게를 갖도록 금속재질로 구성되며 그 하단부는 원추형으로 하여 지열굴착공(1)에 삽입시 걸림현상이 없도록 하였다. 한편, 두 개의 판으로 구성된 헤더장치(60)는 다수개의 결합볼트(88)를 이용하도록 하였으며 지열코일관(20)과 접합되는 부분에는 물림주름(82)을 형성하여 단단한 결속이 이루어져 미끄러짐이 없도록 하였다.In addition, the header device 60 is composed of a metal material to have a sufficient weight and its lower end is conical so that there is no jamming phenomenon when inserted into the geothermal excavation hole (1). On the other hand, the header device 60 consisting of two plates were to use a plurality of coupling bolts 88 and the portion to be bonded to the geothermal coil pipe 20 to form a bite wrinkles 82 so that a solid bond is formed so that there is no slipping It was.
지열코일관(20)의 U밴드(21)에 채워진 헤더장치(60)에 로프(40)를 고정하고 난 뒤 로프(40)의 다른 한쪽 끝을 로울러와 모터를 일체화 하여 로울러를 회전시킬 수 있도록 구성된 윈치(91)에 고정하여 윈치(91)를 회전시키게 된다. 윈치(91)는 인버터판넬(미도시)를 장착하여 분당회전수(rpm)를 조정할 수 있게 하여 삽입되는 지열코일관(20)의 삽입속도를 조절할 수 있게 하였다. 로프윈치(91)를 회전시키면서 코일관로울러(130)를 작동시키면 로프(40)를 지상에서 잡아 당기는 힘이 그대로 앵커(50)의 로울러(55)를 거쳐 지열코일관(20)과 결합된 헤더장치(60)를 통해 지열코일관(20)을 끌어당기게 되어 지열코일관(20)은 지열굴착공(1) 내부로 삽입이 이루어지게 된다. 이때 어느 정도 작업이 진행되어지면 지열코일관(20)의 무게로 인해 윈치(91)의 회전수와는 관계없이 지열코일관(20)이 빠르게 지열굴착공(1) 내부로 투입이 일어나는 현상이 발생될 수 있어 윈치(91)와 코일관로울러(130)는 상호 속도를 조정 제어하면서 작업이 이루어지게 된다. 물론 이때 지열코일관(20)의 하중을 고려하여 별도의 와이어로프(미도시)를 지열코일관(20) 하단부에 결속하고 그 끝을 와이어로프윈치(미도시)에 고정하여 이를 작동시킴으로써 감거나 풀어주어 지열코일관(20)의 삽입작업을 보조할 수 있도록 추가로 시설할 수도 있으며 이러한 경우 현장 여건에 따라 적의 적용되어져야 할 것이다.After fixing the rope 40 to the header device 60 filled in the U-band 21 of the geothermal coil pipe 20, the other end of the rope 40 is integrated with a roller and a motor to rotate the roller. The winch 91 is rotated by fixing to the configured winch 91. The winch 91 is equipped with an inverter panel (not shown) to adjust the rpm (rpm) was able to adjust the insertion speed of the geothermal coil pipe 20 is inserted. When the coil winch roller 130 is operated while rotating the rope winch 91, the force pulling the rope 40 from the ground is directly passed through the roller 55 of the anchor 50 and coupled with the geothermal coil pipe 20. The geothermal coil pipe 20 is pulled through the device 60 so that the geothermal coil pipe 20 is inserted into the geothermal drilling hole 1. At this time, if the work is carried out to some extent, due to the weight of the geothermal coil pipe 20, the phenomenon that the geothermal coil pipe 20 is rapidly introduced into the geothermal drilling hole 1 regardless of the number of revolutions of the winch 91 The winch 91 and the coiled tube roller 130 may be generated while the operation is performed while controlling the mutual speed. Of course, at this time, in consideration of the load of the geothermal coil pipe 20, a separate wire rope (not shown) is bound to the lower end of the geothermal coil pipe 20, and the end thereof is fixed to a wire rope winch (not shown) to be wound or operated. It may be additionally installed to assist the insertion work of the geothermal coil pipe (20) to loosen and in this case should be appropriately applied depending on site conditions.
삽입설치되는 지열코일관(20)은 통상 U밴드(21)로 연결된 두 가닥의 지열코일관(22a),(22b)을 표현하고 있으나 도 3에서와 같이 대구경의 지열코일관(20b)을 삽입하고 난 뒤 그 내부에 내부순환관(미도시)을 시설하는 이중관 튜브형의 수직밀폐형 지중 열교환기 시설에서도 적용할 수 있음은 당연하다 하겠다. 또한, 마찰저항의 감소를 통해 순환수두의 저감효과와 그 결과 운전동력비의 절감을 위해 두 가닥의 지열코일관(20)의 경우 그 직경의 크기를 U밴드(21)를 경계로 하여 각각 다르게 구성할 수도 있게 하였다.The geothermal coil pipe 20 to be inserted usually represents two strands of geothermal coil pipes 22a and 22b connected to the U band 21, but inserts a large diameter geothermal coil pipe 20b as shown in FIG. After that, it can be applied to a double tube tubular vertical hermetic underground heat exchanger facility having an internal circulation pipe (not shown) inside. In addition, in order to reduce the circulation head through the reduction of frictional resistance and consequently the driving power ratio, the diameter of the two strands of the geothermal coil pipe 20 is configured differently with the U band 21 as the boundary. I could do it.
또한, 지열코일관(20)을 지열굴착공(1) 내부에 삽입하는 과정에서 지열굴착공(1)의 벽체나 수맥에서 유입되는 모래 또는 슬라임등으로 인해 장애가 발생되는 경우에는 지열코일관(20)과 함께 압축공기 주입호스(150)를 설치하여 고압의 압축공기를 주입하여 이들 모래 또는 슬라임등을 외부로 배출시켜 가면서 작업을 진행할 수도 있다.In addition, in the process of inserting the geothermal coil tube 20 into the geothermal excavation hole (1), if the failure occurs due to sand or slime introduced from the wall or vein of the geothermal excavation hole (1) geothermal coil tube (20) In addition, the compressed air injection hose 150 may be installed to inject high-pressure compressed air and discharge the sand or slime to the outside.
지열코일관(20)이 지열굴착공(1)에 삽입이 완료되어지면 로프클램프(43)의 클램프경사면(45) 안쪽으로 로프이탈기(53)의 경사부(59)가 파고 들어가게 되면서 먼저 칼날부(54)의 두 개의 칼날(77a),(77b)이 로프클램프(43)의 두날이 벌어지지 않도록 고정한 밴드(44)를 절단하게 된다. 밴드(44)가 절단되면 스프링(63a)의 탄성과 로프이탈기(53)의 경사부(59)의 진입력에 의해 로프클램프(43)의 두날은 양쪽으로 벌어지게 된다. 결과적으로 로프클램프(43)의 두날에 가공된 톱니(46)에 의해 고정되었던 로프(40)는 결속이 해지되어지게 되어 로프클램프(43)의 두날 사이를 빠져 나오게 되어 지상에서 잡아당기는 대로 외부로 모두 인출되어진다.When the geothermal coil tube 20 is inserted into the geothermal excavation hole (1) is completed, the inclined portion 59 of the rope breaker 53 is dug into the clamp inclined surface 45 of the rope clamp 43 first, the blade The two blades 77a and 77b of the portion 54 cut the band 44 fixed so that the two blades of the rope clamp 43 do not open. When the band 44 is cut, the two blades of the rope clamp 43 are opened to both sides by the elasticity of the spring 63a and the entry force of the inclined portion 59 of the rope breaker 53. As a result, the rope 40 fixed by the teeth 46 processed on the two blades of the rope clamp 43 is released from the bond between the two blades of the rope clamp 43 and pulled out from the ground. All are withdrawn.
이때 인출되는 로프(40)는 로프보호관(47) 내부에서 모두 빠져 나오게 되어 지열코일관(20)과의 마찰로 인해 지열코일관(20)의 손상은 근본적으로 발생되지 않고 안전하게 지켜지게 됨은 물론 지열굴착공(1)과 지열코일관(20) 사이에 끼워져 인출이 어려운 문제 또한 해결이 가능하게 된다. 로프(40)의 인출이 모두 끝나면 로프보호관(47) 역시 가능한 외부로 모두 인출하여 제거하게 된다. 물론 이러한 로프(40)의 인출행위를 시행하지 않고 지열굴착공(1) 내부에 존치하는 방법도 운용될 수 있으며 아예 로프(40)를 앵커(50)에 설치된 수중윈치(미도시)에 연결하여 지상에서의 전기적인 조작을 통해 작동시켜 지열코일관(20)을 삽입되도록 할 수도 있다 하겠으며 이 경우 지상에서 로프(40)의 한쪽 끝을 잡아 당기는 과정은 생략되어도 될 것이다. 당연히 로프(40)를 인출하기 위해 설치되는 로프이탈기(53)와 로프클램프(43)의 구성은 하나의 실시예로 이해되어져야 하며 로프(40)를 이용한 지열코일관(20) 삽입을 위한 다양한 방식이 적용되어질 수 있으나 모두 본 발명의 범위로 간주되어져야 할 것이다.At this time, the rope 40 is drawn out of the rope protection tube 47, all out of the geothermal coil pipe 20 due to the friction of the geothermal coil pipe 20 is not fundamentally generated and is safely kept as well as geothermal It is also possible to solve the problem that is difficult to pull out because it is sandwiched between the excavation hole (1) and the geothermal coil pipe (20). When all the withdrawal of the rope 40 is finished, the rope protection pipe 47 is also withdrawn to remove all possible outside. Of course, the method of staying inside the geothermal excavation hole (1) without performing the withdrawal of the rope 40 can also be operated, and by connecting the rope 40 to an underwater winch (not shown) installed in the anchor 50 at all. It is also possible to operate through the electrical operation on the ground to insert the geothermal coil pipe 20, in which case the process of pulling one end of the rope 40 from the ground may be omitted. Naturally, the configuration of the rope remover 53 and the rope clamp 43, which are installed to pull out the rope 40, should be understood as an embodiment, and for the geothermal coil pipe 20 insertion using the rope 40. Various methods may be applied but all should be considered as the scope of the present invention.
한편, 도 4에서와 같이 지열코일관(20)을 지열굴착공(1) 하부에 명확히 붙들어 고정하기 위해서는 로프클램프(43)의 두날 안쪽에 형성된 톱니(46)와 짝이 맞도록 로프이탈기(53)의 경사부(59)에 고정톱니(58)를 형성시켜서 두 구성품이 접촉되었을 대 상호 맞물려 결합될 수 있도록 함으로써 기능이 확보될 수 있도록 하였다.On the other hand, as shown in Figure 4 in order to securely hold the geothermal coiled pipe 20 to the geothermal excavation hole (1) lower to secure the rope to remove the paired to match the teeth 46 formed on the inner side of the two blades of the rope clamp (43) ( A fixed tooth 58 is formed on the inclined portion 59 of 53 to allow the two components to be engaged with each other when they are in contact with each other so that the function can be secured.
한편, 지열굴착공(1) 내부에 삽입되어지는 지열코일관(20)은 그 내부가 비어 있게 되는 반면 지열굴착공(1) 내부에는 통상적으로 지하수가 지표면으로부터 10~20m 깊이로 채워져 있게 되는 자연수위를 형성하고 있어 지열굴착공(1)의 깊이가 500 m에 이르게 되면 그 내부의 수압은 50 kg/㎠ 안팎에 이르게 되어 결과적으로 지열코일관(20)이 안쪽으로 함몰되어 기능을 못하거나 그 내부에 브라인을 채운 후 수압을 걸더라도 함몰되어 찌그러진 부위가 원상회복되지 않음으로써 순환구경이 크게 좁아지고 폐색되어 심각한 순환장애가 발생될 수가 있다. 이러한 문제를 해결하기 위해 지열굴착공(1) 삽입전 모든 지열코일관(20) 내부에는 보충수펌프(161)를 이용하여 보충수배관(161)을 통해 충수하도록 하였다.On the other hand, the geothermal coil pipe 20 is inserted into the geothermal excavation hole (1) is the interior of the geothermal excavation hole (1) inside the groundwater is usually filled with a depth of 10 ~ 20m from the ground surface When the depth of the geothermal excavation hole (1) reaches 500 m, the internal water pressure reaches 50 kg / cm2. As a result, the geothermal coil pipe (20) is recessed inward, thereby failing to function. Even if you apply hydraulic pressure after filling the inside with brine, the crushed area is not restored to its original state, so the circulation diameter is greatly narrowed and occluded, which can cause severe circulation disorder. In order to solve this problem, all geothermal coil pipes 20 before the geothermal excavation hole (1) was inserted to be filled through the supplemental water pipe 161 using the supplemental water pump 161.
동절기 시공 중에는 충수된 보충수의 동결을 방지하기 위해 부동액으로 변경하여 충수하여 사용할 수도 있다. 물론 보충수는 지열굴착공(1) 삽입 중에도 충수하면서 삽입과 충수를 병행할 수도 있으며 이러한 행위 역시 보충수 충수의 하나의 공정으로 이해되어야 할 것이다. 이러한 과정을 통해 지열코일관(20) 내부와 지열굴착공(1) 내부의 압력이 시설 깊이가 아무리 깊다 할지라도 압력을 유사하게 맞출 수 있게 되어 수압에 의한 지열코일관(20)의 폐색이나 손상없는 삽입설치가 가능하게 된다.During winter construction, it can be used by changing to antifreeze to prevent freezing of the supplemented water. Of course, the supplemental water may also be inserted and appended while filling the geothermal excavation hole (1) during insertion, and this act should also be understood as a process of supplementation. Through this process, even if the pressure inside the geothermal coil pipe 20 and the geothermal excavation hole 1 is deep, the pressure can be similarly matched, so that the geothermal coil pipe 20 is blocked or damaged by water pressure. It is possible to insert without installation.
지열굴착공(1) 내부에 지열코일관(20)의 설치시에는 지열굴착공(1) 중앙부위에 지열코일관(20)이 위치할 수 있도록 가이드((70)를 설치하게 된다. 가이드(70)는 한쪽 면은 개방될 수 있도록 개방선(120)을 두고 한쪽 면은 연결될 수 있도록 구성되어 지열코일관(20)을 감싸 듯 덧 씌운 후 가운데 부분에 형성한 요(凹)홈부(71)에 통상의 전선이나 배관 결속용 타이밴드(72)를 이용하여 강하게 조임으로써 고정될 수 있도록 하였다.When the geothermal coil pipe 20 is installed inside the geothermal excavation hole (1), the guide (70) is installed so that the geothermal coil pipe 20 is located at the central portion of the geothermal excavation hole (1). 70 is provided with an open line 120 so that one side can be opened, and one side is configured to be connected to the yaw groove 71 formed in the center part after covering the geothermal coil pipe 20 as if it is overlaid. Tie band 72 for tying the wires or pipes together to make it possible to be fixed by tightening strongly.
지열굴착공(1) 내부에 지열코일관(20)의 설치가 종료되면 그 내부에 모래를 채우거나 벤토나이트, 또는 시멘트액으로 조성한 충진재(10)를 주입하도록 하였다. 충진재(10)가 모래인 경우에는 지중 열교환기(110)에 설치된 지열코일관(20)이 폐색되거나 누설이 발생되는 경우 고압의 압축공기를 이용하여 모래를 제거하고 지열코일관(20)을 외부로 제거할 수 있어 갱생 설치가 가능한 장점을 갖게 된다. 별도의 압축공기 주입호스가 필요없이 지열코일관(20) 내부에 소형 폭약을 바닥까지 내려 설치한 후 폭발시키게 되면 지열코일관(20)의 U밴드(21)부분이 떨어져 나가면서 지상에서 지열코일관(20) 내부로 직접 압축공기를 주입하여 바닥까지 도달시킬 수 있게 되어 간편하게 지열굴착공(1) 내부의 모래와 슬라임등을 제거할 수 있게 된다. 물론 극소형 절단 로봇(미도시)를 투입하여 U밴드(21) 부분을 절단하여 개구부를 확보한 상태에서도 동일한 효과를 얻을 수 있으며 모두 지열코일관(20)의 하부에 개구부를 형성하는 것으로 이해되어야 할 것이다.When the installation of the geothermal coil pipe 20 in the geothermal excavation hole (1) is completed, the filling material (10) filled with sand or bentonite, or cement solution was injected into the interior. When the filler 10 is sand, when the geothermal coil pipe 20 installed in the underground heat exchanger 110 is blocked or leaks, sand is removed by using high pressure compressed air and the geothermal coil pipe 20 is external. Can be removed with the advantage that rehabilitation installation is possible. If you explode after installing a small explosive to the ground inside the geothermal coil pipe (20) without the need for a separate compressed air injection hose, the U-band (21) of the geothermal coil pipe (20) falls off the ground geothermal nose By directly injecting compressed air into the coherent (20) to reach the bottom it is possible to easily remove the sand and slime inside the geothermal excavation (1). Of course, the same effect can be obtained even when the opening is secured by cutting the U-band 21 by inserting a very small cutting robot (not shown), and all of them should be understood to form an opening in the lower portion of the geothermal coil pipe 20. something to do.
충진재(10)의 채움이 완료되어지게 되면 지표면 상부에는 지표수나 오염물질이 유입되지 않도록 지하수법에서 제시한 밀폐식 상부보호공을 설치하도록 하였다. 물론 충진재(10)를 모래가 아닌 시멘트액등을 이용하여 경화시키게 되는 경우에는 밀폐식상부보호공을 생략할 수도 있다 하겠다.When the filling of the filling material 10 is completed, the sealed upper protection hole suggested by the groundwater method is installed to prevent surface water or pollutants from entering the surface of the ground. Of course, when the filler 10 is to be hardened using a cement solution, such as sand, it is possible to omit the sealed upper protection hole.
한편, 고심도 수직밀폐형 지중 열교환기의 설치방법에 있어서는,On the other hand, in the installation method of the high depth vertical hermetic underground heat exchanger,
대구경의 굴착비트를 이용하여 오염방지를 위해 암반선 아래까지 지열굴착공(1)을 굴착하는 공정과; 케이싱(4)을 대구경 지열굴착공(1) 내부에 삽입 설치한 후 그라우팅(3)을 시행하는 공정과; 소구경의 굴착비트를 이용하여 계획된 깊이까지 지열굴착공(1)을 굴착하는 공정과; 소구경으로 굴착된 지열굴착공(1) 바닥에 로프(40)가 연결된 앵커(50)를 내려 설치하여 고착하는 공정과; 로프(40)를 연결한 지열코일관(20)을 지열굴착공(1) 내부에 삽입하여 설치하는 공정과; 로프(40)를 지열굴착공(1) 내부에서 인출하여 제거하는 공정과; 지열굴착공(1) 내부에 충진재(10)를 충진하는 공정과; 지열코일관(20)을 지상에 설치된 열교환기(7)의 연결 배관에 결합하는 공정으로 이루어진 것을 특징으로 하고 있다.Digging the geothermal excavation hole (1) to the bottom of the rock to prevent contamination by using a large diameter drilling bit; A step of inserting and installing the casing 4 into the large-diameter geothermal excavation hole 1 and then performing grouting 3; Digging the geothermal excavation hole (1) to a predetermined depth by using a small diameter drilling bit; A step of installing and fixing the anchor 50 connected to the bottom of the geothermal excavation hole 1 excavated with a small diameter by connecting the rope 40; Inserting and installing the geothermal coil pipe 20 to which the rope 40 is connected into the geothermal excavation hole 1; Extracting and removing the rope 40 from the geothermal excavation hole 1; Filling the filler 10 into the geothermal excavation hole 1; The geothermal coil pipe 20 is characterized by consisting of a step of coupling to the connecting pipe of the heat exchanger (7) installed on the ground.
또한, 지열코일관(20) 내부에 보충수를 충진하는 공정을 포함하는 방법으로서는, 대구경의 굴착비트를 이용하여 오염방지를 위해 암반선 아래까지 지열굴착공(1)을 굴착하는 공정과; 케이싱(4)을 대구경 지열굴착공(1) 내부에 삽입 설치한 후 그라우팅(3)을 시행하는 공정과; 소구경의 굴착비트를 이용하여 계획된 깊이까지 지열굴착공(1)을 굴착하는 공정과; 소구경으로 굴착된 지열굴착공(1) 바닥에 로프(40)가 연결된 앵커(50)를 내려 설치하여 고착하는 공정과; 지열코일관(20) 내부에 보충수를 충수하는 공정과; 로프(40)를 연결한 지열코일관(20)을 지열굴착공(1) 내부에 삽입하여 설치하는 공정과; 로프(40)를 지열굴착공(1) 내부에서 인출하여 제거하는 공정과; 지열굴착공(1) 내부에 충진재(10)를 충진하는 공정과; 지열코일관(20)을 지상에 설치된 열교환기(7)의 연결 배관에 결합하는 공정으로 이루어진 것을 특징으로 하고 있다.In addition, the method comprising the step of filling the replenishment water in the geothermal coil pipe (20), using a large diameter drilling bit to excavate the geothermal excavation hole (1) to the bottom of the rock to prevent contamination; A step of inserting and installing the casing 4 into the large-diameter geothermal excavation hole 1 and then performing grouting 3; Digging the geothermal excavation hole (1) to a predetermined depth by using a small diameter drilling bit; A step of installing and fixing the anchor 50 connected to the bottom of the geothermal excavation hole 1 excavated with a small diameter by connecting the rope 40; Replenishing the replenishment water in the geothermal coil pipe (20); Inserting and installing the geothermal coil pipe 20 to which the rope 40 is connected into the geothermal excavation hole 1; Extracting and removing the rope 40 from the geothermal excavation hole 1; Filling the filler 10 into the geothermal excavation hole 1; The geothermal coil pipe 20 is characterized by consisting of a step of coupling to the connecting pipe of the heat exchanger (7) installed on the ground.
또한, 로프(40)의 제거없이 충진재(10)를 채워 마감하는 경우의 방법으로서는, 대구경의 굴착비트를 이용하여 오염방지를 위해 암반선 아래까지 지열굴착공(1)을 굴착하는 공정과; 케이싱(4)을 대구경 지열굴착공(1) 내부에 삽입 설치한 후 그라우팅(3)을 시행하는 공정과; 소구경의 굴착비트를 이용하여 계획된 깊이까지 지열굴착공(1)을 굴착하는 공정과; 소구경으로 굴착된 지열굴착공(1) 바닥에 로프(40)가 연결된 앵커(50)를 내려 설치하여 고착하는 공정과; 로프(40)를 연결한 지열코일관(20)을 지열굴착공(1) 내부에 삽입하여 설치하는 공정과; 지열굴착공(1) 내부에 충진재(10)를 충진하는 공정과; 지열코일관(20)을 지상에 설치된 열교환기(7)의 연결 배관에 결합하는 공정으로 이루어진 것을 특징으로 하고 있다.In addition, the method in the case of filling and filling the filler 10 without removing the rope 40, using a large diameter drilling bit to excavate the geothermal excavation hole (1) down to the rock line to prevent contamination; A step of inserting and installing the casing 4 into the large-diameter geothermal excavation hole 1 and then performing grouting 3; Digging the geothermal excavation hole (1) to a predetermined depth by using a small diameter drilling bit; A step of installing and fixing the anchor 50 connected to the bottom of the geothermal excavation hole 1 excavated with a small diameter by connecting the rope 40; Inserting and installing the geothermal coil pipe 20 to which the rope 40 is connected into the geothermal excavation hole 1; Filling the filler 10 into the geothermal excavation hole 1; The geothermal coil pipe 20 is characterized by consisting of a step of coupling to the connecting pipe of the heat exchanger (7) installed on the ground.
또한, 기존 지열굴착공(1)을 개선하여 사용하기 위해 본 발명을 적용하는 방법으로서는,In addition, as a method of applying the present invention for improving the existing geothermal excavation hole (1),
굴착비트를 이용하여 계획된 깊이까지 지열굴착공(1)을 추가 굴착하는 공정과; 굴착된 지열굴착공(1) 바닥에 로프(40)가 연결된 앵커(50)를 내려 설치하여 고착하는 공정과; 로프(40)를 연결한 지열코일관(20)을 지열굴착공(1) 내부에 삽입하여 설치하는 공정과; 지열굴착공(1) 내부에 충진재(10)를 충진하는 공정과; 지열코일관(20)을 지상에 설치된 열교환기(7)의 연결 배관에 결합하는 공정으로 이루어진 것을 특징으로 하고 있다.Further drilling the geothermal excavation hole (1) to a predetermined depth by using the excavation bit; Installing and fixing the anchors 50 connected to the bottom of the excavated geothermal excavation hole 1 to which the rope 40 is connected; Inserting and installing the geothermal coil pipe 20 to which the rope 40 is connected into the geothermal excavation hole 1; Filling the filler 10 into the geothermal excavation hole 1; The geothermal coil pipe 20 is characterized by consisting of a step of coupling to the connecting pipe of the heat exchanger (7) installed on the ground.
또한, 기존 지열굴착공(1) 내부에 지열코일관(20)의 누설로 인한 인발 및 재설치를 위해 본 발명을 적용하여 갱생하는 방법은,In addition, the method of rehabilitation by applying the present invention for drawing and reinstallation due to leakage of the geothermal coil pipe 20 inside the existing geothermal excavation hole (1),
지열코일관(20)의 하부에 개구부를 형성하는 공정과; 지열코일관(20) 내부에 고압의 압축공기 또는 압축수를 주입하여 모래를 외부로 배출시키는 공정과; 지열코일관(20)을 외부로 인출하여 제거하며 지열굴착공(1) 내부에 설치된 시설을 비우는 공정과; 지열굴착공(1) 바닥에 로프(40)가 연결된 앵커(50)를 내려 설치하여 고착하는 공정과; 지열코일관(20) 내부에 보충수를 충수하는 공정과; 로프(40)를 연결한 지열코일관(20)을 지열굴착공(1) 내부에 삽입하여 설치하는 공정과; 로프(40)를 지열굴착공(1) 내부에서 인출하여 제거하는 공정과; 지열굴착공(1) 내부에 충진재(10)를 충진하는 공정과; 지열코일관(20)을 지상에 설치된 열교환기(7)의 연결 배관에 결합하는 공정으로 이루어진 것을 특징으로 하고 있다.Forming an opening in a lower portion of the geothermal coil pipe (20); Injecting high-pressure compressed air or compressed water into the geothermal coil pipe 20 to discharge sand to the outside; Removing the geothermal coil pipe (20) by drawing it to the outside and emptying the facilities installed inside the geothermal excavation hole (1); Installing and fixing the anchor 50 connected to the bottom of the geothermal excavation hole 1 to which the rope 40 is connected; Replenishing the replenishment water in the geothermal coil pipe (20); Inserting and installing the geothermal coil pipe 20 to which the rope 40 is connected into the geothermal excavation hole 1; Extracting and removing the rope 40 from the geothermal excavation hole 1; Filling the filler 10 into the geothermal excavation hole 1; The geothermal coil pipe 20 is characterized by consisting of a step of coupling to the connecting pipe of the heat exchanger (7) installed on the ground.
미설명 부호 8은 히트펌프의 냉매관이며 80은 지표면이다.Reference numeral 8 is a refrigerant pipe of the heat pump, and 80 is an earth surface.
지금까지는 U 형태의 지열코일관(20)을 헤더장치(60)로 사용하는 것으로 설명하였으며, 이하에서는 직선형의 지열코일관을 순환가능하도록 구성된 본 발명에 의한 지열코일관 헤더장치를 설명한다.So far, the U-shaped geothermal coil pipe 20 has been described as the header device 60. Hereinafter, the geothermal coil pipe header device according to the present invention configured to circulate the linear geothermal coil pipe will be described.
도 12에서 보이는 바와 같이, 본 발명에 의한 지열코일관 헤더장치는, 내부에 열교환매체가 흐르는 2개 이상의 지열코일관(20)을 하나로 집합한 상태로 지중에 형성된 지열굴착공(1)에 삽입하여 상기 열교환매체가 지열과 열교환한 후 지상의 열교환기로 복귀하도록 하는 집합관(200)을 갖는다.As shown in FIG. 12, the geothermal coil pipe header device according to the present invention is inserted into a geothermal excavation hole 1 formed in the ground in a state in which two or more geothermal coil pipes 20 through which a heat exchange medium flows are assembled into one. Thus, the heat exchange medium has a collection tube 200 to return to the ground heat exchanger after heat exchange with the geothermal heat.
도 13과 도 14에서처럼, 집합관(200)은 집합관 몸체(210), 집합관 몸체(210)의 내부에 형성되는 집수부(220), 집합관 몸체(210)에 일측을 향해 개방되면서 집수부(220)와 연통하도록 형성되며 지열코일관(20)이 관이음되는 다수의 관이음부(230)로 구성된다.13 and 14, the collection pipe 200 is the collection pipe body 210, the collection portion 220 formed in the interior of the collection pipe body 210, the collection pipe body 220 while being opened toward one side to the collection pipe body 210 It is formed to communicate with the geothermal coil pipe 20 is composed of a plurality of pipe joints 230, the pipe joint.
집합관 몸체(210)는 지열굴착공(1)에 원활하게 삽입될 수 있는 형상 예컨대 원형 단면적으로 형성되며 설치 상태 기준으로 하부에 원형 내지 유선형의 첨예부(211)가 형성된다. 첨예부(211)에는 후술하는 로프(320)가 연결될 수 있다. The collection tube body 210 is formed in a shape that can be smoothly inserted into the geothermal excavation hole (1), for example, a circular cross section, and a circular to streamlined sharp portion 211 is formed at the bottom of the installation state. The sharp part 211 may be connected to the rope 320 to be described later.
지열코일관(20)을 집합관 몸체(210)의 관이음부(230)에 일정한 깊이로 삽입하여 연결할 수 있도록 집합관 몸체(210)에는 스토퍼(212)가 형성된다. 스토퍼(212)는 집합관 몸체(210)에 일체로 형성되는 턱의 형태로 한정되지 않고 지열코일관(20)의 삽입을 구속하는 모든 것이 가능하다. A stopper 212 is formed in the collecting tube body 210 so that the geothermal coil tube 20 can be inserted into the tube fitting portion 230 of the collecting tube body 210 at a predetermined depth. The stopper 212 is not limited to the shape of the jaw formed integrally with the collecting tube body 210, and all of them may be restricted to the insertion of the geothermal coil tube 20.
집수부(220)는 집합관 몸체(210)의 내부에 형성되는 예컨대 하나의 공간으로서, 다수의 관이음부(230)가 연통 형성되어 지열코일관(20)에 의해 유입된 열교환매체가 다른 지열교환관(20)을 통해 순환하도록 한다. 즉, 지열코일관(10)은 열교환매체의 순환을 위하여 2개가 1셋트로 구성될 수 있으며, 따라서, 관이음부(230)도 2개가 1셋트로 구성된다. 관이음부(230)는 도 3에서처럼 4개로 구성될 수 있으며, 이때, 4개의 관이음부(230) 모두가 하나의 집수부(220)에 연통할 수도 있고 다르게는 집수부(220)가 2개의 공간으로 구획되어 각각으로 구획된 집수부(220)에 2개의 관이음부(230)가 연통 형성될 수 있다.The collecting part 220 is, for example, a space formed inside the collecting tube body 210, and a plurality of pipe fittings 230 are formed in communication so that the heat exchange medium introduced by the geothermal coil pipe 20 has different geothermal heat exchange. Circulation through the tube (20). That is, two geothermal coil tubes 10 may be configured in one set for circulation of the heat exchange medium, and thus, two pipe joints 230 may be configured in one set. The pipe joint 230 may be configured as four, as shown in Figure 3, in this case, all four pipe joints 230 may be in communication with one catcher 220, otherwise the catcher 220 is 2 Two pipe joints 230 may be formed in communication with the water collecting units 220 partitioned into two spaces.
다수의 관이음부(230)가 다수의 셋트를 구성하는 경우 서로 다른 셋트의 관이음부(230)는 직경이 서로 다르게 형성될 수도 있다. 따라서, 관이음부(230)의 직경에 따라 열교환매체의 공급량 및 지하수와의 열교환 효율이 달라질 것이므로 시공 여건이나 사용부하 등에 맞는 직경의 관이음부(230)가 선택되어 사용될 수 있다.When the plurality of pipe joints 230 constitute a plurality of sets, the pipe sets 230 of different sets may have different diameters. Therefore, since the supply amount of the heat exchange medium and the heat exchange efficiency with the ground water will vary depending on the diameter of the pipe fitting 230, a pipe fitting 230 having a diameter suitable for the construction conditions or the load used may be selected and used.
즉, 도 15에서처럼, 집합관(200)에는 2개의 관이음부(230)만 형성될 수도 있다.That is, as shown in FIG. 15, only two pipe joints 230 may be formed in the collecting pipe 200.
관이음부(230)에는 지열코일관(20)이 열용접 등으로 수밀하게 고정된다.The geothermal coil pipe 20 is tightly fixed to the pipe joint 230 by heat welding.
또한, 한정된 굴착공 직경 내 최대한 순환유량 확보를 위하여 관이음부(230)는 대구경 1개의 공급포트와 소구경 2개의 환수포트 또는 소구경 2개의 공급포트와 대구경 1개의 환수포트로 구성될 수도 있다.In addition, the pipe joint 230 may be composed of one large diameter supply port and two small diameter return port or two small diameter supply port and one large diameter return port to secure the maximum circulation flow rate within the limited excavation hole diameter. .
다수의 관이음부(230) 중에 일부 관이음부(230)를 사용하지 않는 경우 사용되지 않는 관이음부(230)를 통해 지하수가 유입되어 열교환매체와 열교환하지 않도록 사용되지 않는 관이음부(230)의 입구에는 캡(240)이 결합된다. 캡(240)은 지하수가 집수부(220)에 유입되는 것과 열교환매체가 외부로 유출되는 것을 막을 수 있는 모든 방법으로 결합되며 단 추후 지열코일관(20)을 쉽게 추가로 사용할 수 있도록 패킹과 함께 나사식으로 체결될 수 있다.If some of the pipe joints 230 are not used, some of the pipe joints 230 are not used so that the groundwater flows through the unused pipe joints 230 so as not to exchange heat with the heat exchange medium. At the inlet of the cap 240 is coupled. Cap 240 is combined with all the ways to prevent the groundwater flowing into the water collecting unit 220 and the heat exchange medium outflow, and with the packing so that the geothermal coil pipe 20 can be easily used later It can be screwed in.
지열코일관(20)은 고밀도폴리에칠렌(PE)을 재질로 할 수 있으며, 이러한 재질의 지열코일관(20)을 별도의 용접기 없이 집합관(200)에 결합할 수 있도록 전원을 공급받아 발열하는 열선(250)이 적용될 수 있다. 열선(250)은 지열코일관(20)의 결합을 위한 것이므로 전원선이 탈부착되는 커넥터가 구비된다. 열선(250)에 따르면, 열선(250)에 전원을 연결하면 열선(25)에서 고온의 열이 발열되며, 이 열에 의해 지열코일관(10)이 집합관(20)에 고정된다. Geothermal coil pipe 20 may be made of a high density polyethylene (PE) material, heat wire that is supplied with power so that the geothermal coil pipe 20 of such material can be coupled to the assembly pipe 200 without a separate welding machine ( 250) may be applied. Since the heating wire 250 is for the coupling of the geothermal coil pipe 20, the connector is provided with a detachable power line. According to the hot wire 250, when a power source is connected to the hot wire 250, a high temperature heat is generated from the hot wire 25, and the geothermal coil pipe 10 is fixed to the collecting pipe 20 by this heat.
집합관(200)은 지하수의 수중에 설치되는 것이므로 물에 의해 부식되지 않는 재질로 구성된다.Collecting tube 200 is to be installed in the water of the groundwater is composed of a material that is not corroded by water.
집합관(200)과 지열코일관(20) 조립체는 지열굴착공(1)에 삽입되어 사용되며, 별도의 장비없이 삽입될 수도 있고, 예를 들어 300~500m 고심도의 지열굴착공(1)에 삽입 설치할 수 있도록 별도의 집합관 설치구(300)가 적용될 수 있다.The assembly tube 200 and the geothermal coil tube 20 assembly are inserted and used in the geothermal excavation hole (1), may be inserted without additional equipment, for example, in the geothermal excavation hole (1) of 300 ~ 500m high depth A separate assembly pipe installation port 300 may be applied to insert the installation.
집합관(200)은 다양한 재질로 이루어질 수 있고, 지열굴착공(1)에 용이하게 삽입할 수 있도록 중량체가 적용될 수 있다. 중량체는 고리, 체결구 등을 통해 집합관(200)에 분리 가능하게 연결되어 사용될 수 있다. Collection tube 200 may be made of a variety of materials, the weight may be applied to be easily inserted into the geothermal excavation hole (1). The weight body may be used to be detachably connected to the collection pipe 200 through a ring, fasteners and the like.
도 16에서와 같이, 집합관 설치구(300)는 풀리(310) 및 로프(320)(예컨대, 겹줄의 로프)로 구성될 수 있다.As shown in FIG. 16, the collecting pipe installation unit 300 may include a pulley 310 and a rope 320 (eg, a rope in a double row).
로프(320)는 다수의 지열코일관(20)이 고정된 집합관(200)을 지상으로부터 지열굴착공(1) 내부로 끌어당겨 300~500 m 에 이르는 고심도까지 지열코일관(20)을 삽입설치할 수 있도록 하며, 집합관(200)을 일정 높이로 유지함과 아울러 집합관(200)의 높이를 자유롭게 조정할 수 있는 것으로, 일측이 집합관(200)에 연결되고 타측이 지상의 권선기 등에 연결된다.The rope 320 pulls the assembly tube 200 having a plurality of geothermal coil tubes 20 fixed from the ground into the geothermal excavation hole 1 to insert the geothermal coil tube 20 to a high depth of 300 to 500 m. It is possible to install, and to maintain the set pipe 200 to a certain height and to freely adjust the height of the set pipe 200, one side is connected to the collection pipe 200 and the other side is connected to the ground winding machine and the like.
풀리(310)는 지상에서 권선기(미도시)를 설치하여 로프(320)를 감아 올릴 때 지열코일관(20)이 결합되어 있는 집합관(200)이 순조롭게 하강할 수 있도록 로프(320)를 지탱하면서 방향을 전환시켜주는 모든 구성의 총칭이라 할 것이다.The pulley 310 supports the rope 320 so that the collecting pipe 200 to which the geothermal coil pipe 20 is coupled can be smoothly lowered when the wire 320 is wound up by installing a winding machine (not shown) on the ground. It is a general term for all the configurations that change direction.
풀리(310)는 박스(330)의 내부에 삽입되어 사용될 수 있다.The pulley 310 may be inserted into the box 330 and used.
박스(330)는 로프 삽입구(331)와 인출구(332)가 상부를 향해 개방 형성되며 내부에 공간이 형성된 구조이다.The box 330 is a rope insertion hole 331 and the outlet 332 is formed to be open toward the top and the space is formed inside.
로프 삽입구(331)와 인출구(332)는 로프(320)는 통과할 수 있지만 모래 등 이물질은 침투하지 못하도록 브러쉬 등이 설치될 수 있다.The rope insertion hole 331 and the outlet 332 may pass through the rope 320 but a brush or the like may be installed to prevent foreign substances such as sand from penetrating.
풀리(310)가 내장된 박스(330)의 로프 인출구(332)와 로프 삽입구(331) 중 하나 이상에는 상부를 향해 단면적이 넓어지는 상광하협 구조의 유도부(350)(도 12참고)가 형성된다.At least one of the rope outlet 332 and the rope insertion hole 331 of the box 330 in which the pulley 310 is built is formed with an induction part 350 (see FIG. 12) having a light beam narrowing structure having a wider cross-sectional area toward an upper portion thereof. .
유도부(350)의 중심으로 관통해 설치되어 내려간 로프(320)는 지상에 설치된 권선기(미도시)의 힘에 의해 당겨져 올라 상기 권선기에 천천히 감겨지게 되고 이때 로프(32)는 풀리(31)를 통해 방향이 전환된 상태에서 집합관(200)을 끌어 내리게 된다. 이때 갑자기 지열굴착공(1) 내부로 지열코일관(20)이 빠른 속도로 삽입이 이루어지게 되면 다량의 로프(320)가 박스(330)쪽으로 감기듯 내려오게 되고 자칫 로프(320)가 헝클어져 지상에서 잡아당긴다 할지라도 풀어져 정상적으로 당김 작업이 어렵게 될 수도 있다. 이러한 경우 유도부(350)는 떨어지듯 내려오는 로프(320)를 순차적으로 받아 주면서 좁은 출구를 통해 지상에서 잡아당기는 힘에 따라 로프(320)를 순조롭게 풀어 공급해 주는 기능을 하게 된다.The rope 320 penetrated and installed down the center of the induction part 350 is pulled up by the force of a winding machine (not shown) installed on the ground and slowly wound around the winding machine, and the rope 32 is pulled through the pulley 31. The collection pipe 200 is pulled down in the changed direction. At this time, when the geothermal coil pipe 20 is inserted into the geothermal excavation hole (1) at a high speed, a large amount of the rope (320) comes down as if it is wound toward the box (330), and the rope (320) is tangled. Even pulling from the ground may loosen and make it difficult to pull normally. In this case, the induction part 350 receives the rope 320 falling down in sequence and functions to smoothly release the rope 320 according to the force pulled from the ground through a narrow outlet.
집합관(200)을 지열굴착공(1) 내에서 고정할 수 있도록 앵커(400)가 적용될 수 있다.The anchor 400 may be applied to fix the collection pipe 200 in the geothermal excavation hole (1).
앵커(400)는 박스(330)의 저부에 핀 등을 통해 분리 가능하게 연결되어 지열 굴착공(1)에 삽입되며 집합관(200)이 움직이지 않도록 고정하는 것으로, 절첩형 앵커날개가 구비되는 방식으로 이루어져, 설치시에는 앵커날개가 접혀 지열굴착공(1)에 간섭되지 않고 설치 완료후에는 앵커날개가 펼쳐져 지열굴착공(1)에 정착될 수 있다. Anchor 400 is detachably connected to the bottom of the box 330 through a pin or the like is inserted into the geothermal excavation hole (1) and fixed to the assembly tube 200 does not move, the folding anchor wing is provided Consisting of, when installed, the anchor wings are folded and do not interfere with the geothermal excavation hole (1) after the installation is completed, the anchor wings can be unfolded and fixed in the geothermal excavation hole (1).
지열코일관(20)의 시공시 지열코일관(20)을 집합관(200)의 관이음부(230)에 연결한다. 지열코일관(20)은 열교환매체의 순환을 위하여 2개가 셋트로 구성되며, 따라서, 예를 들어 2개의 지열코일관(20)을 집합관(200)의 2개의 관이음부(230)에 열용접 등으로 고정한다. When the geothermal coil pipe 20 is constructed, the geothermal coil pipe 20 is connected to the pipe joint 230 of the collecting pipe 200. The geothermal coil pipe 20 is composed of two sets for circulation of the heat exchange medium, and thus, for example, two geothermal coil pipes 20 are thermally welded to two pipe joints 230 of the collecting pipe 200. Secure with a back.
지열코일관(20)과 집합관(200)의 연결이 완료되면 집합관(200)과 지열코일관(20) 조립체를 지열굴착공(1)에 삽입하고, 로프(320)를 풀어 상기 조립체를 지열굴착공(1)에 삽입한다. 상기 조립체의 앵커(400)가 지열굴착공(1)의 바닥에 닿게 되면 앵커(400)가 정착되어 상기 조립체의 설치가 완료된다.When the connection between the geothermal coil tube 20 and the collecting tube 200 is completed, the assembly tube 200 and the geothermal coil tube 20 assembly are inserted into the geothermal excavation hole 1, and the rope 320 is released to release the assembly. Insert into ball (1). When the anchor 400 of the assembly touches the bottom of the geothermal excavation hole 1, the anchor 400 is fixed to complete the installation of the assembly.
열교환매체는 지열코일관(20)을 통해 지상의 열교환기와 지중을 순환하게 되며, 이 과정에서 열교환매체와 지열의 열교환이 이루어진다. 즉 열교환매체는 지열코일관(20)(유입측) - 집합관(200)의 집수부(220) - 지열코일관(20)(유출측)을 순환한다.The heat exchange medium circulates the ground heat exchanger and the ground through the geothermal coil pipe 20, and heat exchange between the heat exchange medium and the geothermal heat is performed in this process. That is, the heat exchange medium circulates through the geothermal coil tube 20 (inlet side)-the collecting section 220 of the collecting tube 200-the geothermal coil tube 20 (outflow side).
2개의 지열코일관(20)에 의해 1라인의 유로가 형성되어 사용되다가 지열코일관(20)의 추가를 요하는 경우 캡(240)을 제거하고 나머지 2개의 관이음부(230)에 2개의 지열코일관(20)을 연결하여 또 다른 유로를 형성한다. 즉, 하나의 굴착공, 하나의 헤더장치에 2라인의 지열교환 유로가 만들어지는 것이다.One line flow path is formed and used by two geothermal coil pipes 20, and when the geothermal coil pipe 20 is required to be added, the cap 240 is removed and two pipe joints 230 are provided. The geothermal coil pipe 20 is connected to form another flow path. That is, two lines of geothermal heat exchange passages are made in one drilling hole and one header device.
지열코일관 헤더장치에서 설명된 집합관 고정구(300)와 앵커(400)는 전술한 로프(40) 및 앵커(50)와 동일한 것일 수 있다.The assembly pipe fixture 300 and the anchor 400 described in the geothermal coil pipe header device may be the same as the rope 40 and the anchor 50 described above.
한편, 본 발명은 상기의 구성부를 적용함에 있어 다양하게 변형될 수 있고 여러 가지 형태를 취할 수 있다.On the other hand, the present invention may be variously modified and may take various forms in applying the above configuration.
그리고, 본 발명은 상기의 상세한 설명에서 언급되는 특별한 형태로 한정되는 것이 아닌 것으로 이해되어야 하며, 오히려 첨부된 청구범위에 의해 정의되는 본 발명의 정신과 범위 내에 있는 모든 변형물과 균등물 및 대체물을 포함하는 것으로 이해되어야 한다.And, it is to be understood that the invention is not limited to the specific forms referred to in the above description, but rather includes all modifications, equivalents, and substitutions within the spirit and scope of the invention as defined by the appended claims. It should be understood to do.
200~500m에 이르는 고심도 지열굴착공 내부에 U밴드 수직밀폐형 지열코일관을 삽입하여 지중 열교환기를 구성할 수 있게 됨으로써 지열굴착공의 굴착수량을 소량으로 할 수 있어 부지활용성을 크게 높히면서 신재생에너지인 지열 활용의 효율성을 증대시킬 수 있게 되었다. 또한, 종래 U밴드 수직밀폐형 지중 열교환기의 경우에는 다량의 지열굴착공을 시설하여야 함으로써 기존 건축물 바닥 하부에서는 작업이 불가능하고 여유있는 부지가 없는 경우 시설 검토 자체가 불가능하였으나 굴착 장비의 진입이 가능한 부지가 있을 경우에는 기존건축물이라 할지라도 고심도 U밴드 수직밀폐형 지중 열교환기 시설이 가능하게 되는 효과가 있다.By inserting U-band vertical hermetic geothermal coil pipe inside the high-depth geothermal excavation hole of 200 ~ 500m, it is possible to construct underground heat exchanger. The efficiency of utilizing geothermal energy, renewable energy, can be increased. In addition, in the case of the conventional U-band vertically sealed underground heat exchanger, since a large amount of geothermal excavation holes must be installed, work is not possible under the existing building floor, and if there is no spare site, it is impossible to review the facility itself, but it is possible to enter excavation equipment. If there is an existing building, the high-depth U-band vertical hermetic underground heat exchanger facility is possible.
이와 마찬가지로 종래의 U밴드 수직밀폐형 지중 열교환기를 적용하여 시설원예 비닐하우스에 지열 시스템을 시설하는 경우 역시 기존 비닐하우스를 철거하고 다량의 지열굴축공을 굴착하여 시설을 마친 후 비닐하우스를 재건축하여야 하는 문제로 인해 시설기피의 한 이유가 되었으나 본 고심도 U밴드 수직밀폐형의 경우 비닐하우스와 비닐하우스사이의 공간에 장비를 투입하여 지열 굴착공을 개발하여 지중 열교환기를 시설할 수 잇게 됨으로써 적용확대가 용이하게 되는 효과가 있게 되었다.Similarly, if a geothermal system is installed in a horticulture vinyl house by applying a conventional U-band vertically sealed underground heat exchanger, it is also necessary to dismantle the existing vinyl house and excavate a large amount of geothermal excavation holes and then rebuild the vinyl house. However, this high-depth U-band vertical hermetic type can be installed in the space between the vinyl house and the vinyl house to develop a geothermal excavation hole so that the underground heat exchanger can be installed to easily expand the application. It became effective.
또한, 종래 U밴드 수직밀폐형의 경우 지열 굴착공의 수량이 많아 지하수 오염방지시설을 위해 고액의 시설비가 투입될 수 밖에 없었으나 고심도 U밴드 수직밀폐형의 경우에는 지열굴착공의 수량을 크게 줄일 수 있게 되어 결과적으로 지하수 오염방지시설비의 절감 효과 또한 크다 하겠다.In addition, the conventional U-band vertical hermetic type has a large amount of geothermal excavation holes, so a large amount of facility costs have to be put in for groundwater pollution prevention facilities, but in the case of high-depth U-band vertical hermetic type, the number of geothermal digging holes can be greatly reduced. As a result, the reduction of groundwater pollution prevention facility costs is also great.
또한, 고심도 U밴드 수직밀폐형의 경우에는 지중 열교환기 내부에 벤토나이트나 시멘트 주입에 의한 그라우팅 대신 모래를 채울 수 있어 지중 열교환기에 누설등 장애가 발생하였을 때에는 압축공기를 주입하면서 지열코일관을 외부로 모두 인발하여 제거가 가능하여 보수와 유지관리에 획기적인 효과를 갖게 되었다.In addition, in the case of high-depth U-band vertical hermetic type, sand can be filled into the underground heat exchanger instead of grouting by bentonite or cement injection. It can be removed by drawing, which has a dramatic effect on maintenance and maintenance.
또한, 지열굴착공의 수량이 작고 부지 외곽등에 지중 열교환기를 시설할 수 있게 되어 개별관리가 가능하게 되어 각 지중 열교환기의 효율을 점검 관리가 가능하게 되는 효과가 있다.In addition, the number of geothermal excavation hole is small and the underground heat exchanger can be installed on the outside of the site, so that individual management is possible, so that it is possible to check and manage the efficiency of each underground heat exchanger.
또한, U밴드를 사용하지 않고 직선형 지열코일관을 헤더장치로 연결함으로써 지열 굴착공 내부에 다수의 수직밀폐형 지열코일관을 삽입하여 지중 열교환기를 구성할 수 있게 되므로 단일 지열굴착공당 지열 전열량의 크기를 크게 할 수 있어 지열 굴착공의 굴착수량을 크게 줄일 수 있는 효과가 있다. 이로 인해 부지활용성을 크게 높이면서 신재생에너지의 지열 활용의 효용성을 증대할 수 있다.In addition, by connecting a linear geothermal coiled tube with a header device without using a U-band, it is possible to construct an underground heat exchanger by inserting a number of vertically sealed geothermal coiled tubes into a geothermal excavation hole. Since it can be enlarged has an effect that can greatly reduce the amount of excavation of geothermal excavation hole. As a result, it is possible to increase the utility of geothermal utilization of renewable energy while greatly improving the site utilization.

Claims (26)

  1. 집합관 몸체(210), 상기 집합관 몸체의 내부에 형성되며 열교환매체가 집수되는 집수부(220), 상기 집합관 몸체에 일측을 향해 개방되면서 상기 집수부와 연통하도록 형성되며 내부에 열교환매체가 흐르는 다수의 지열코일관(20)이 관이음되는 다수의 관이음부(230)를 포함하는 집합관(200)으로 구성된 것을 특징으로 하는 지열코일관 헤더장치.Collecting tube body 210, formed in the interior of the collecting tube body and the heat collecting medium 220, the heat exchange medium is collected, the open side toward the collecting tube body is formed so as to communicate with the water collecting portion and a plurality of heat exchange medium flowing therein Geothermal coil pipe header device, characterized in that consisting of a collection pipe (200) comprising a plurality of pipe joints 230, the pipe joint.
  2. 청구항 1에 있어서, 내부에 공간이 형성된 박스(330), 상기 박스에 설치되는 풀리(310) 및 상기 풀리에 감겨 방향 전환되면서 일측이 상기 집합관에 연결되며 타측이 지상의 권선기에 연결되어 상기 권선기에 의해 상기 집합관을 상기 굴착공의 바닥측으로 유도함과 아울러 상기 집합관의 깊이를 조절하는 로프(320)를 포함하는 것을 포함하는 것을 특징으로 하는 지열코일관 헤더장치.The method of claim 1, wherein the box is formed in the space 330, the pulley 310 is installed in the box and the winding wound around the pulley one side is connected to the collection pipe and the other side is connected to the ground winding machine to the winding machine By the guide tube to the bottom side of the excavation hole by the geothermal coil tube header device comprising a rope (320) for adjusting the depth of the collecting tube.
  3. 청구항 2에 있어서, 상기 박스에 연결되며 상기 집합관을 상기 굴착공에 고정하는 앵커(400)를 포함하는 것을 특징으로 하는 지열코일관 헤더장치.The geothermal coil pipe header device according to claim 2, further comprising an anchor (400) connected to the box and fixing the collection pipe to the excavation hole.
  4. 청구항 1 내지 청구항 3 중 어느 한 항에 있어서, 상기 집합관에 형성된 관이음부에는 열선(250)을 설치한 것을 특징으로 하는 지열코일관 헤더장치.The geothermal coil pipe header device according to any one of claims 1 to 3, wherein a hot wire (250) is provided at the pipe joint formed in the collection pipe.
  5. 청구항 1 내지 청구항 3 중 어느 한 항에 있어서, 상기 박스의 로프 인출구와 로프 삽입구 중 하나 이상은 상부를 향해 단면적이 넓어지는 상광하협 구조의 유도부(350)가 구비된 것을 특징으로 하는 지열코일관 헤더장치.The geothermal coil pipe header according to any one of claims 1 to 3, wherein at least one of the rope outlet and the rope insertion hole of the box is provided with an induction part 350 having a light beam narrowing structure having a wide cross-sectional area toward an upper portion thereof. Device.
  6. 청구항 1에 있어서, 상기 관이음부의 입구에 분리 가능하게 결합되며 상기 관이음부를 수밀하게 밀폐하는 캡(240)이 포함된 것을 특징으로 하는 지열코일관 헤더장치.The geothermal coil pipe header device according to claim 1, wherein a cap (240) is detachably coupled to the inlet of the pipe joint and tightly seals the pipe joint.
  7. 청구항 1에 있어서, 상기 관이음부는 대구경 1개의 공급포트와 소구경 2개의 환수포트 또는 소구경 2개의 공급포트와 대구경 1개의 환수포트로 구성되는 것을 특징으로 하는 지열코일관 헤더장치.The geothermal coil tube header device according to claim 1, wherein the pipe joint is composed of one large diameter supply port and two small diameter return ports or two small diameter supply ports and one large diameter return ports.
  8. 청구항 1에 있어서, 상기 집합관에 분리 가능하게 결합되어 상기 집합관의 삽입을 원활하게 하는 중량체가 포함된 것을 특징으로 하는 지열코일관 헤더장치.The geothermal coil tube header device of claim 1, further comprising a weight body detachably coupled to the collecting tube to facilitate insertion of the collecting tube.
  9. 지열을 이용하기 위해 암반선 아래까지 굴착된 지열굴착공(1); Geothermal excavation hole (1) excavated to the bottom of the rock to use geothermal;
    지열굴착공(1)하부에 로프(40)에 연결되어 설치되는 앵커(50); An anchor 50 connected to the rope 40 under the geothermal excavation hole 1;
    지열굴착공(1)에 삽입설치되는 지열코일관(20); 앵커(50)와 지열코일관(20) 하단을 연결하여 이를 당김으로써 지열코일관(20)이 지열굴착공(1)으로 강제삽입이 이루어지도록 구성한 로프(40)로 구성된 것을 특징으로 하는 고심도 수직밀폐형 지중 열교환기.Geothermal coil pipe 20 is inserted into the geothermal excavation hole (1); By connecting the anchor 50 and the bottom of the geothermal coil pipe 20 and pulling it, the geothermal coil pipe 20 is characterized by consisting of a rope 40 configured to be forced to be inserted into the geothermal excavation hole (1) Vertically sealed underground heat exchanger.
  10. 청구항 9에 있어서,The method according to claim 9,
    상기 앵커(50)는 고정대(52)의 상단에 로울러(55)를 구성하고 하단에는 걸림쇠(51)를 구성한 것을 특징으로 하는 고심도 수직밀폐형 지중 열교환기.The anchor 50 is a high-depth vertically sealed underground heat exchanger, characterized in that the roller 55 is configured at the upper end of the fixing base 52 and the latch 51 is formed at the lower end thereof.
  11. 청구항 9에 있어서,The method according to claim 9,
    상기 앵커(50)에는 로프이탈기((53)를 구성한 것을 특징으로 하는 고심도 수직밀폐형 지중 열교환기.The anchor 50 is a high depth vertical hermetic underground heat exchanger, characterized in that the rope breaker (53) is configured.
  12. 청구항 9에 있어서,The method according to claim 9,
    상기 앵커(50)는 앵커봉(97)을 지열굴착공(1) 하부에 설치하고 난 후 초속경 시멘트 또는 시멘트, 또는 에폭시등 화학제재를 이용하여 이를 앵커봉(97) 상부까지 투입하여 경화체(100)를 만들어 고착시킨 것을 특징으로 하는 고심도 수직밀폐형 지중 열교환기.The anchor 50 is installed under the geothermal excavation hole (1) after the anchor rod (97) by using a cemented carbide cement or cement, or epoxy chemicals such as to the top of the anchor rod (97) hardened body ( High depth vertical hermetic underground heat exchanger, characterized in that 100) made and fixed.
  13. 청구항 9에 있어서,The method according to claim 9,
    지열코일관(20)은 하단에 U밴드를 융착하여 두 줄로 구성된 것을 특징으로 하는 고심도 수직밀폐형 지중 열교환기.Geothermal coil pipe 20 is a high-depth vertically sealed underground heat exchanger, characterized in that consisting of two lines by fusion of the U-band at the bottom.
  14. 청구항 13에 있어서,The method according to claim 13,
    지열코일관(20)은 그 직경의 크기가 각각 다르게 두줄로 구성된 것을 특징으로 하는 고심도 수직밀폐형 지중 열교환기.Geothermal coil pipe 20 is a high-depth vertical hermetic underground heat exchanger, characterized in that the diameter of each consisting of two different lines.
  15. 청구항 9에 있어서,The method according to claim 9,
    상기 지열코일관(20)은 대구경으로 구성되고 그 내부에 내부순환관을 시설하는 이중관 튜브형으로 구성된 것을 특징으로 하는 고심도 수직밀폐형 지중 열교환기.The geothermal coil tube 20 is a high-depth vertical hermetic underground heat exchanger, characterized in that consisting of a large diameter and consisting of a double tube tube type inside the inner circulation pipe.
  16. 청구항 9에 있어서,The method according to claim 9,
    상기 지열코일관(20)은 U형태로 형성되며 헤더장치(60)에 의해 설치되는 것을 특징으로 하는 고심도 수직밀폐형 지중 열교환기.The geothermal coil pipe 20 is formed in a U-shape high depth vertically sealed underground heat exchanger, characterized in that installed by the header device (60).
  17. 청구항 16에 있어서,The method according to claim 16,
    상기 헤더장치(60)에는 로프클램프(43)를 구성한 것을 특징으로 하는 고심도 수직밀폐형 지중 열교환기.The header device 60 is a high depth vertical hermetic underground heat exchanger, characterized in that the rope clamp 43 is configured.
  18. 청구항 9에 있어서,The method according to claim 9,
    상기 지열코일관(20) 내부에는 보충수를 충수하여 지열굴착공(1) 내부에 삽입 설치되는 것을 특징으로 하는 고심도 수직밀폐형 지중 열교환기.The geothermal coil tube 20 is filled with supplemental water in the high depth vertically sealed underground heat exchanger, characterized in that inserted into the geothermal excavation hole (1).
  19. 청구항 9에 있어서,The method according to claim 9,
    상기 로프(40)의 외주연에는 로프보호관(47)을 설치한 것을 특징으로 하는 고심도 수직밀폐형 지중 열교환기.High depth vertically sealed underground heat exchanger, characterized in that the rope protection tube 47 is installed on the outer periphery of the rope (40).
  20. 청구항 9에 있어서,The method according to claim 9,
    상기 로프(40)는 윈치를 설치하여 감을 수 있도록 구성한 것을 특징으로 하는 고심도 수직밀폐형 지중 열교환기.The rope 40 is a high depth vertical hermetic underground heat exchanger, characterized in that configured to be wound by installing a winch.
  21. 청구항 9에 있어서,The method according to claim 9,
    상기 지열코일관(20)은 직선형으로 형성되며, 청구항 1에 의한 지열코일관 헤더장치에 의해 설치되는 것을 특징으로 하는 고심도 수직밀폐형 지중 열교환기.The geothermal coil tube 20 is formed in a straight line, high depth vertically sealed underground heat exchanger, characterized in that installed by the geothermal coil tube header device according to claim 1.
  22. 대구경의 굴착비트를 이용하여 오염방지를 위해 암반선 아래까지 지열굴착공(1)을 굴착하는 공정과; 케이싱(4)을 대구경 지열굴착공(1) 내부에 삽입 설치한 후 그라우팅(3)을 시행하는 공정과; 소구경의 굴착비트를 이용하여 계획된 깊이까지 지열굴착공(1)을 굴착하는 공정과; 소구경으로 굴착된 지열굴착공(1) 바닥에 로프(40)가 연결된 앵커(50)를 내려 설치하여 고착하는 공정과; 로프(40)를 연결한 지열코일관(20)을 지열굴착공(1) 내부에 삽입하여 설치하는 공정과; 로프(40)를 지열굴착공(1) 내부에서 인출하여 제거하는 공정과; 지열굴착공(1) 내부에 충진재(10)를 충진하는 공정과; 지열코일관(20)을 지상에 설치된 열교환기(7)의 연결 배관에 결합하는 공정으로 이루어진 것을 특징으로 하는 고심도 수직밀폐형 지중 열교환기 설치방법.Digging the geothermal excavation hole (1) to the bottom of the rock to prevent contamination by using a large diameter drilling bit; A step of inserting and installing the casing 4 into the large-diameter geothermal excavation hole 1 and then performing grouting 3; Digging the geothermal excavation hole (1) to a predetermined depth by using a small diameter drilling bit; A step of installing and fixing the anchor 50 connected to the bottom of the geothermal excavation hole 1 excavated with a small diameter by connecting the rope 40; Inserting and installing the geothermal coil pipe 20 to which the rope 40 is connected into the geothermal excavation hole 1; Extracting and removing the rope 40 from the geothermal excavation hole 1; Filling the filler 10 into the geothermal excavation hole 1; Method for installing a high-definition vertically sealed underground heat exchanger, characterized in that the geothermal coil pipe 20 is made of a process of coupling to the connection pipe of the heat exchanger (7) installed on the ground.
  23. 지열코일관(20) 내부에 보충수를 충진하는 공정을 포함하는 방법으로서는, 대구경의 굴착비트를 이용하여 오염방지를 위해 암반선 아래까지 지열굴착공(1)을 굴착하는 공정과; 케이싱(4)을 대구경 지열굴착공(1) 내부에 삽입 설치한 후 그라우팅(3)을 시행하는 공정과; 소구경의 굴착비트를 이용하여 계획된 깊이까지 지열굴착공(1)을 굴착하는 공정과; 소구경으로 굴착된 지열굴착공(1) 바닥에 로프(40)가 연결된 앵커(50)를 내려 설치하여 고착하는 공정과; 지열코일관(20) 내부에 보충수를 충진하는 공정과; 로프(40)를 연결한 지열코일관(20)을 지열굴착공(1) 내부에 삽입하여 설치하는 공정과; 로프(40)를 지열굴착공(1) 내부에서 인출하여 제거하는 공정과; 지열굴착공(1) 내부에 충진재(10)를 충진하는 공정과; 지열코일관(20)을 지상에 설치된 열교환기(7)의 연결 배관에 결합하는 공정으로 이루어진 것을 특징으로 하는 고심도 수직밀폐형 지중 열교환기 설치방법.As a method comprising a step of filling supplementary water into the geothermal coil pipe (20), using a large diameter drilling bit to excavate the geothermal excavation hole (1) to the bottom of the rock to prevent contamination; A step of inserting and installing the casing 4 into the large-diameter geothermal excavation hole 1 and then performing grouting 3; Digging the geothermal excavation hole (1) to a predetermined depth by using a small diameter drilling bit; A step of installing and fixing the anchor 50 connected to the bottom of the geothermal excavation hole 1 excavated with a small diameter by connecting the rope 40; Filling the inside of the geothermal coil pipe (20) with supplemental water; Inserting and installing the geothermal coil pipe 20 to which the rope 40 is connected into the geothermal excavation hole 1; Extracting and removing the rope 40 from the geothermal excavation hole 1; Filling the filler 10 into the geothermal excavation hole 1; Method for installing a high-definition vertically sealed underground heat exchanger, characterized in that the geothermal coil pipe 20 is made of a process of coupling to the connection pipe of the heat exchanger (7) installed on the ground.
  24. 대구경의 굴착비트를 이용하여 오염방지를 위해 암반선 아래까지 지열굴착공(1)을 굴착하는 공정과; 케이싱(4)을 대구경 지열굴착공(1) 내부에 삽입 설치한 후 그라우팅(3)을 시행하는 공정과; 소구경의 굴착비트를 이용하여 계획된 깊이까지 지열굴착공(1)을 굴착하는 공정과; 소구경으로 굴착된 지열굴착공(1) 바닥에 로프(40)가 연결된 앵커(50)를 내려 설치하여 고착하는 공정과; 로프(40)를 연결한 지열코일관(20)을 지열굴착공(1) 내부에 삽입하여 설치하는 공정과; 지열굴착공(1) 내부에 충진재(10)를 충진하는 공정과; 지열코일관(20)을 지상에 설치된 열교환기(7)의 연결 배관에 결합하는 공정으로 이루어진 것을 특징으로 하는 고심도 수직밀폐형 지중 열교환기 설치방법.Digging the geothermal excavation hole (1) to the bottom of the rock to prevent contamination by using a large diameter drilling bit; A step of inserting and installing the casing 4 into the large-diameter geothermal excavation hole 1 and then performing grouting 3; Digging the geothermal excavation hole (1) to a predetermined depth by using a small diameter drilling bit; A step of installing and fixing the anchor 50 connected to the bottom of the geothermal excavation hole 1 excavated with a small diameter by connecting the rope 40; Inserting and installing the geothermal coil pipe 20 to which the rope 40 is connected into the geothermal excavation hole 1; Filling the filler 10 into the geothermal excavation hole 1; Method for installing a high-definition vertically sealed underground heat exchanger, characterized in that the geothermal coil pipe 20 is made of a process of coupling to the connection pipe of the heat exchanger (7) installed on the ground.
  25. 굴착비트를 이용하여 계획된 깊이까지 지열굴착공(1)을 추가 굴착하는 공정과; 굴착된 지열굴착공(1) 바닥에 로프(40)가 연결된 앵커(50)를 내려 설치하여 고착하는 공정과; 로프(40)를 연결한 지열코일관(20)을 지열굴착공(1) 내부에 삽입하여 설치하는 공정과; 지열굴착공(1) 내부에 충진재(10)를 충진하는 공정과; 지열코일관(20)을 지상에 설치된 열교환기(7)의 연결 배관에 결합하는 공정으로 이루어진 것을 특징으로 하는 고심도 수직밀폐형 지중 열교환기 설치방법.Further drilling the geothermal excavation hole (1) to a predetermined depth by using the excavation bit; Installing and fixing the anchors 50 connected to the bottom of the excavated geothermal excavation hole 1 to which the rope 40 is connected; Inserting and installing the geothermal coil pipe 20 to which the rope 40 is connected into the geothermal excavation hole 1; Filling the filler 10 into the geothermal excavation hole 1; Method for installing a high-definition vertically sealed underground heat exchanger, characterized in that the geothermal coil pipe 20 is made of a process of coupling to the connection pipe of the heat exchanger (7) installed on the ground.
  26. 지열코일관(20)의 하부에 개구부를 형성하는 공정과; 지열코일관(20) 내부에 고압의 압축공기 또는 압축수를 주입하여 모래를 외부로 배출시키는 공정과; 지열코일관(20)을 외부로 인출하여 제거하며 지열굴착공(1) 내부에 설치된 시설을 비우는 공정과; 지열굴착공(1) 바닥에 로프(40)가 연결된 앵커(50)를 내려 설치하여 고착하는 공정과; 지열코일관(20) 내부에 보충수를 충진하는 공정과; 로프(40)를 연결한 지열코일관(20)을 지열굴착공(1) 내부에 삽입하여 설치하는 공정과; 로프(40)를 지열굴착공(1) 내부에서 인출하여 제거하는 공정과; 지열굴착공(1) 내부에 충진재(10)를 충진하는 공정과; 지열코일관(20)을 지상에 설치된 열교환기(7)의 연결 배관에 결합하는 공정으로 이루어진 것을 특징으로 하는 고심도 수직밀폐형 지중 열교환기 설치방법.Forming an opening in a lower portion of the geothermal coil pipe (20); Injecting high-pressure compressed air or compressed water into the geothermal coil pipe 20 to discharge sand to the outside; Removing the geothermal coil pipe (20) by drawing it to the outside and emptying the facilities installed inside the geothermal excavation hole (1); Installing and fixing the anchor 50 connected to the bottom of the geothermal excavation hole 1 to which the rope 40 is connected; Filling the inside of the geothermal coil pipe (20) with supplemental water; Inserting and installing the geothermal coil pipe 20 to which the rope 40 is connected into the geothermal excavation hole 1; Extracting and removing the rope 40 from the geothermal excavation hole 1; Filling the filler 10 into the geothermal excavation hole 1; Method for installing a high-definition vertically sealed underground heat exchanger, characterized in that the geothermal coil pipe 20 is made of a process of coupling to the connection pipe of the heat exchanger (7) installed on the ground.
PCT/KR2010/004826 2010-01-11 2010-07-23 Geothermal coil pipe header device, very deep vertical closed-type ground-coupled heat exchanger using same, and method for installing the heat exchanger WO2011083899A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020100002071A KR100981527B1 (en) 2010-01-11 2010-01-11 High depth vertical hermetic underground heat exchanger device and construction method
KR10-2010-0002071 2010-01-11
KR1020100068687A KR101025018B1 (en) 2010-07-15 2010-07-15 Header apparatus of geothermy coil pipe
KR10-2010-0068687 2010-07-15

Publications (1)

Publication Number Publication Date
WO2011083899A1 true WO2011083899A1 (en) 2011-07-14

Family

ID=44305626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/004826 WO2011083899A1 (en) 2010-01-11 2010-07-23 Geothermal coil pipe header device, very deep vertical closed-type ground-coupled heat exchanger using same, and method for installing the heat exchanger

Country Status (1)

Country Link
WO (1) WO2011083899A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014059066A (en) * 2012-08-21 2014-04-03 Japan Pile Corp Precast pile installation device for earth thermal utilizing heat exchange tube
CN106593337A (en) * 2017-02-20 2017-04-26 吉林大学 Hot water core bit for drilling polar ice and snow
CN107906789A (en) * 2017-12-18 2018-04-13 湖南中大经纬地热开发科技有限公司 A kind of embedded device of Buried heat exchanger
CN108050733A (en) * 2017-12-18 2018-05-18 湖南中大经纬地热开发科技有限公司 The embedded device and method for embedding of a kind of Buried heat exchanger
CN112683562A (en) * 2020-12-07 2021-04-20 扬州大学 Energy pile heat-flow-force coupling characteristic experiment test system and test method
WO2023126348A1 (en) * 2021-12-28 2023-07-06 Muovitech Ab Collector
EP4137753A4 (en) * 2019-06-26 2024-05-15 G&G Technology Co., Ltd. Geothermal system comprising multitube vertically-sealed underground heat-exchanger and method for installing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06117706A (en) * 1992-10-05 1994-04-28 Mutou Kensetsu Kogyo Kk High depth pit for melting snow
JP2004233031A (en) * 2002-12-05 2004-08-19 Nippon Steel Corp Underground heat exchanger by hollow tubular body embedded by rotating press-fitting method, and highly efficient energy system using the same
US20080016894A1 (en) * 2006-07-07 2008-01-24 Wiggs B R Advanced Direct Exchange Geothermal Heating/Cooling System Design

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06117706A (en) * 1992-10-05 1994-04-28 Mutou Kensetsu Kogyo Kk High depth pit for melting snow
JP2004233031A (en) * 2002-12-05 2004-08-19 Nippon Steel Corp Underground heat exchanger by hollow tubular body embedded by rotating press-fitting method, and highly efficient energy system using the same
US20080016894A1 (en) * 2006-07-07 2008-01-24 Wiggs B R Advanced Direct Exchange Geothermal Heating/Cooling System Design

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014059066A (en) * 2012-08-21 2014-04-03 Japan Pile Corp Precast pile installation device for earth thermal utilizing heat exchange tube
CN106593337A (en) * 2017-02-20 2017-04-26 吉林大学 Hot water core bit for drilling polar ice and snow
CN107906789A (en) * 2017-12-18 2018-04-13 湖南中大经纬地热开发科技有限公司 A kind of embedded device of Buried heat exchanger
CN108050733A (en) * 2017-12-18 2018-05-18 湖南中大经纬地热开发科技有限公司 The embedded device and method for embedding of a kind of Buried heat exchanger
EP4137753A4 (en) * 2019-06-26 2024-05-15 G&G Technology Co., Ltd. Geothermal system comprising multitube vertically-sealed underground heat-exchanger and method for installing same
US12025350B2 (en) 2019-06-26 2024-07-02 G&G Technology Co., Ltd. Geothermal system comprising multitube vertically-sealed underground heat-exchanger and method for installing same
CN112683562A (en) * 2020-12-07 2021-04-20 扬州大学 Energy pile heat-flow-force coupling characteristic experiment test system and test method
CN112683562B (en) * 2020-12-07 2023-01-03 扬州大学 Energy pile heat-flow-force coupling characteristic experiment test system and test method
WO2023126348A1 (en) * 2021-12-28 2023-07-06 Muovitech Ab Collector

Similar Documents

Publication Publication Date Title
WO2011083899A1 (en) Geothermal coil pipe header device, very deep vertical closed-type ground-coupled heat exchanger using same, and method for installing the heat exchanger
KR100981527B1 (en) High depth vertical hermetic underground heat exchanger device and construction method
KR100880675B1 (en) Closed type underground heat exchanger device and construction method using double insertion geothermal tube
KR101554668B1 (en) Underground water circulator of Geohill open type geothermal system and method for constructing the same
US5758724A (en) Underground heat exchange system
US8127865B2 (en) Method of drilling from a shaft for underground recovery of hydrocarbons
KR101425632B1 (en) Underground Heat Exchanger Coil Weighing Device and Installation Method for High Precision
EP2334993A1 (en) System and method for geothermal conduit loop in-ground installation and soil penetrating head therefor
KR101403041B1 (en) Open type geothermal system unit
US8256531B1 (en) Vertizontal geothermal loop and installation method
WO2019169734A1 (en) Integrated apparatus and method for long-distance downhole drilling and fracturing
CN101126304A (en) Waterproof casing mounting method-immersed tube drilling method
CN103134236A (en) Construction method of tilted burying of underground heat exchanger of ground source heat pump
KR20140132118A (en) Apparatus for installation of coil type geothermal heat exchanger and method for construction of geothermal heat exchanger using the same
CN108361466A (en) A kind of municipal pipeline maintenance construction technique
KR101621751B1 (en) Underground heat exchanger insertion method before excavation using a guide
JP2013124535A (en) Excavation apparatus and method for forming underground heat exchanger installation hole
KR100758502B1 (en) Entrance machine for driving waterwork pipe and method for constructing it
CN109736329B (en) Automatic anti-bulge energy foundation pit support structure and construction method
CN105927271A (en) Grouting backfilling system and grouting backfilling method for vertical shafts in vertical heat exchangers
KR101303575B1 (en) Combined type geothermal system and construction method using large aperture punchung
KR101968143B1 (en) A method for protecting geothermal heat exchanging pipe
JPH1089538A (en) Connecting method for conduit
JP6796689B1 (en) How to install the heat collection tube
KR20190021122A (en) A method for protecting geothermal heat exchanging pipe by using protective pipe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10842279

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10842279

Country of ref document: EP

Kind code of ref document: A1