WO2011083819A1 - Corrosion prevention structure for flexible pipe - Google Patents

Corrosion prevention structure for flexible pipe Download PDF

Info

Publication number
WO2011083819A1
WO2011083819A1 PCT/JP2011/050107 JP2011050107W WO2011083819A1 WO 2011083819 A1 WO2011083819 A1 WO 2011083819A1 JP 2011050107 W JP2011050107 W JP 2011050107W WO 2011083819 A1 WO2011083819 A1 WO 2011083819A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexible pipe
reinforcing layer
reinforcing
pipe
prevention structure
Prior art date
Application number
PCT/JP2011/050107
Other languages
French (fr)
Japanese (ja)
Inventor
裕章 羽上田
木村 秀雄
Original Assignee
新日鉄エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄エンジニアリング株式会社 filed Critical 新日鉄エンジニアリング株式会社
Publication of WO2011083819A1 publication Critical patent/WO2011083819A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L58/00Protection of pipes or pipe fittings against corrosion or incrustation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/08Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall
    • F16L11/081Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall comprising one or more layers of a helically wound cord or wire
    • F16L11/083Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall comprising one or more layers of a helically wound cord or wire three or more layers

Definitions

  • the present invention relates to a structure for preventing corrosion of a flexible pipe for discharging corrosive gas in a reinforcing layer between an inner tube and an outer sheath from the distal side toward the proximal side in the pipe axial direction.
  • Flexible pipe is used as a riser pipe that is used from the offshore platform to the wellhead of the seabed in the work of extracting oil and natural gas from the seabed oil field.
  • flexible pipes that can support oil field development in waters exceeding 2000 m are available. It has come to be required.
  • Such a flexible pipe has a general structure in which an interlock pipe, an inner pipe, an internal pressure reinforcing strip, an axial force reinforcing strip, and an outer sheath are arranged in this order from the inside.
  • the oil to be collected contains corrosive gases such as carbon dioxide (CO 2 ) and hydrogen sulfide (H 2 S), and the crude oil to be collected from a deep sea area also contains these corrosive gases.
  • the innermost interlock pipe of the flexible pipe has a caulking structure and has a certain buckling strength, but is not liquid-tight, and leakage of oil in the pipe is prevented by the inner pipe having liquid-tightness.
  • the inner pipe is made of a resin material, it is generally known that the corrosive gas contained in the oil cannot be completely blocked and the corrosive gas permeates with a certain value of transmittance.
  • the corrosive gas that has permeated the inner tube stays in the space between the outer sheath and the inner tube, that is, in the reinforcing layer.
  • the corrosive gas in the reinforcing layer flows to the pipe end side through a gap provided between the reinforcing strips of the internal pressure reinforcing strip or the axial force reinforcing strip and is discharged to the atmosphere.
  • the resistance of the corrosive gas to flow through the gap provided between the reinforcing strips increases, and it becomes difficult to discharge the corrosive gas accumulated on the seabed side.
  • the discharge mechanism receives a larger pressure than the sea (for example, a pressure of 30 MPa at a depth of 3000 m)
  • the retained corrosive gas does not flow to the sea surface unless a gas pressure exceeding this pressure is applied.
  • the corrosive gas accumulates on the seabed side and accumulates. Since steel is used for both the internal pressure reinforcing strip and the axial force reinforcing strip, as described above, if corrosive gas accumulates in the reinforcing layer of the flexible pipe, these reinforcing strips are exposed to the corrosive environment and deteriorated. Progresses, and the malfunction that the lifetime of a flexible pipe falls arises.
  • Patent Document 1 A gas removing method for releasing the gas in the reinforcing layer from the other end to the outside of the pipe is disclosed in Patent Document 1.
  • the conventional flexible pipe has the following problems. That is, in Patent Document 1, for example, when applying at a deep water depth of 3000 m, in order to discharge the corrosive gas from the seabed-side discharge mechanism, the carrier gas is sent to the reinforcing layer near the seabed where corrosive gas tends to accumulate. Since it is necessary to send the carrier gas at a pressure exceeding 30 MPa, it is assumed that the outer sheath swells and bursts at that pressure.
  • the present invention has been made in view of the above-described problems. It is possible to reliably replace the corrosive gas in the reinforcing layer with fresh air even under a large depth of water.
  • An object of the present invention is to provide a flexible pipe corrosion prevention structure that can prevent corrosion and increase strength.
  • a corrosion prevention structure for a flexible pipe comprises a liquid-tight inner tube, an outer sheath, and a plurality of spirally twisted strip members.
  • a reinforcing strip disposed in a reinforcing layer between an inner tube and the outer sheath, and discharges corrosive gas in the reinforcing layer from the distal side to the proximal side of the flexible pipe in the pipe axial direction.
  • the reinforcing layer is provided with a small-diameter tube continuously extending along the pipe axial direction.
  • a space connecting the proximal side to the proximal side of the reinforcing layer can be secured in the range where the small diameter tube is disposed, so suction means such as a vacuum pump is provided at the proximal end of the small diameter tube.
  • the position of the end of the small-diameter tube, that is, the corrosive gas sucking position is specified, so that the gas concentration accumulated in the reinforcing layer at the sucking position can be accurately grasped.
  • the small-diameter tube may be disposed in a spiral gap provided between the reinforcing strip members.
  • the space which connects the base end side from the terminal end side of a reinforcement layer is securable by incorporating a small diameter tube along the clearance gap between the strip members of a reinforcement strip.
  • a plurality of small-diameter tubes may be arranged at predetermined intervals in the circumferential direction of the reinforcing strip.
  • the corrosion prevention structure of the flexible pipe which concerns on the 1st aspect of this invention, you may make it each terminal position of several small diameter tubes differ in a pipe axial direction.
  • the corrosive gas can be discharged for each end position of each small diameter tube. Therefore, by measuring the amount of corrosive gas discharged from each small diameter tube, the flexible pipe The gas concentration at a plurality of positions can be accurately confirmed in the axial direction.
  • a suction port that communicates with the gap and is open to the atmosphere may be provided on the proximal end side of the reinforcing layer.
  • fresh air can surely flow into the reinforcing layer from the suction port opened to the atmosphere on the base end side of the reinforcing layer.
  • one or several small diameter tubes may be used for suction, and the proximal end side may be opened to the atmosphere. In this case, even when the gap provided between the reinforcing strips is clogged somewhere, fresh air can surely flow into the end side.
  • the corrosion prevention structure of the flexible pipe of the present invention corrosive gas that permeates the inner pipe and stays in the reinforcing layer is released to the atmosphere or a recovery tank, etc. Since the corrosive gas can be surely replaced with fresh air and the corrosive gas concentration in the reinforcing layer can be reduced, the corrosive environment in the reinforcing layer is improved, and the reinforcing strip in the reinforcing layer is improved. Corrosion of can be prevented. In addition, the corrosive gas in the reinforcing layer can be surely removed, and the occurrence of hydrogen embrittlement can be effectively prevented, making it possible to use a high-strength reinforcing strip and the long distance of the flexible pipe. It is possible to improve the applicability in use over a wide area or in deep water.
  • the corrosion prevention structure for a flexible pipe according to the first embodiment of the present invention is applied to a flexible pipe 1 that is used to extract oil and natural gas by connecting a recovery vessel 2 on the sea and the sea floor.
  • a flexible pipe 1 that is used to extract oil and natural gas by connecting a recovery vessel 2 on the sea and the sea floor.
  • the flexible pipe 1 will be described below with the recovery ship 2 side as the base end side and the seabed side as the end in the length direction.
  • the flexible pipe 1 includes an interlock pipe 10, an inner pipe 11, an internal pressure reinforcing strip 12 made of a C-shaped strip having a C-shaped cross section, and a pair of flat strips.
  • Axial force reinforcing strips 13 and 14 (inner and outer peripheral sides) and an outer sheath 15 for preventing seawater intrusion are arranged in a multi-layer structure arranged in the order from the inner side to the outer side in the radial direction. .
  • a resin sheet 16 is provided on the inner peripheral side and the outer peripheral side of the inner axial force reinforcing strip 13 and the outer axial force reinforcing strip 14 to reduce wear of the axial force reinforcing strips 13 and 14.
  • the inner tube 11 and the outer sheath 15 are made of plastic, and the inner pressure reinforcing strip 12 and the axial force reinforcing strips 13 and 14 are made of a metal steel material.
  • the inner pressure reinforcing strip 12 reinforces the pressure inside the pipe, and the inner axial force reinforcing strip 13 and the outer axial force reinforcing strip 14 reinforce the axial force of the pipe.
  • a space in which the internal pressure reinforcing strip 12, the inner axial force reinforcing strip 13, and the outer axial force reinforcing strip 14 are disposed between the inner tube 11 and the outer sheath 15 is referred to as a reinforcing layer T.
  • the inner axial force reinforcing strip 13 is composed of a plurality of strip members 13 ⁇ / b> A arranged in a spiral shape along the longitudinal direction (axial direction).
  • a gap 13a is provided between the strip members 13A and 13A adjacent in the circumferential direction.
  • the outer axial force reinforcing strip 14 is twisted and arranged in a spiral direction opposite to the spiral direction of the inner axial force reinforcing strip 13 along the longitudinal direction (axial direction). It consists of a plurality of strip members 14A.
  • a gap 14a is provided between the strip members 14A and 14A adjacent to each other in the circumferential direction, and an enlarged gap 14b in which the gap between the strip members 14A and 14A is larger than the gap 14a at three predetermined positions (the present invention).
  • the enlarged gaps 14b are provided at three locations at a constant interval (that is, a pitch of 120 degrees) in the circumferential direction.
  • each enlarged gap 14b continuous in the axial direction of the flexible pipe 1 is provided with a small-diameter tube 17 made of metal such as stainless steel over almost the entire length of the flexible pipe 1.
  • the three small-diameter tubes 17A, 17B, and 17C have a base end portion 17a that is an open end and is connected to a recovery tank 4 that will be described later, and a terminal end 17b that is a predetermined position P1 near the pipe terminal end 1b. Is located.
  • the upper end portion of the small-diameter tube 17 is connected to a recovery tank 4 that is provided on the recovery vessel 2 (FIG. 1) at sea and connected to suction means (not shown) such as a vacuum pump.
  • suction means such as a vacuum pump.
  • the base end portion 17a of the small-diameter tube 17 can be inserted into the upper end portion 1a of the flexible pipe 1, and each of the inner pressure reinforcing strip 12, the inner axial force reinforcing strip 13, and the outer axial force reinforcing strip 14 is provided.
  • the end structure 3 having a plurality of air pipes 5 connected to the gap formed in the space 3a through the space 3a is fixed.
  • the air pipe 5 has an opening 5a (suction port) that is open to the atmosphere at one end, and the other end 5b is connected to a space 3a that communicates with the gaps between the reinforcing strips 12, 13, and 14.
  • the small-diameter tube 17 is assembled by incorporating the small-diameter tube along the gap (enlarged gap 14 b) between the strip members 14 ⁇ / b> A and 14 ⁇ / b> A of the outer axial force reinforcing strip 14.
  • a space connecting the base end side to the base end side of the reinforcing layer T can be ensured in the range where is disposed.
  • the corrosive gas G accumulated in the reinforcing layer T is moved from the distal end of the small diameter tube 17 toward the proximal end side by connecting the collection tank 4 to the proximal end portion 17a of the small diameter tube 17 and performing vacuum suction. Can be forcibly discharged.
  • the internal pressure reinforcing strip 12 and the axial force reinforcing strip 13 are opened by opening the proximal end side of the reinforcing layer T to the atmosphere.
  • the fresh air E flows into the reinforcing layer T through the gaps provided in. Therefore, it is possible to perform ventilation by replacing the corrosive gas G with fresh air E. Therefore, the corrosive gas concentration in the reinforcing layer T is reduced, and the internal pressure reinforcing strips 12 and the axial force reinforcing strips 13 and 14 made of steel are not exposed to a corrosive environment. Corrosion can be suppressed, and the durability of the flexible pipe can be improved.
  • the air containing the corrosive gas G of high partial pressure can be directly sucked out. Is possible.
  • air containing a large amount of corrosive gas on the end side is sucked up to the base end through the small-diameter tube, it can be discharged separately from the middle and upper reinforcing strips during the discharge process. Damage to the reinforcing strip due to gas stagnation can be avoided.
  • the suction method since the suction method is used, the pressure in the reinforcing layer T is not increased, and the external sheath 15 is not subjected to a pressure load, so that a problem such as breakage of the flexible pipe 1 can be prevented. This eliminates the need for a design associated with the shift to cost and can reduce costs. Further, by providing the small-diameter tube 17, the position of the end of the small-diameter tube 17, that is, the sucking position of the corrosive gas G is specified. Therefore, the gas concentration accumulated in the reinforcing layer T at the sucking position P1 (FIG. 5). Can be grasped accurately.
  • a plurality (three) of small-diameter tubes 17 (17A, 17B, 17C) are arranged at predetermined intervals in the circumferential direction of the outer axial force reinforcing strip 14, when the reinforcing layer T is ventilated, the plurality of small-diameter tubes 17 (17A, 17B, 17C) are arranged.
  • the tubes 17A, 17B, and 17C By simultaneously sucking out using the tubes 17A, 17B, and 17C, a larger amount of air in the reinforcing layer T containing corrosive gas can be sucked, and the ventilation time can be shortened. Can be achieved.
  • the corrosive gas G that permeates the inner pipe 11 and stays in the reinforcing layer T is discharged to the recovery tank 4, so
  • the corrosive gas G in the reinforcing layer T can be surely replaced with fresh air E, and the corrosive gas concentration in the reinforcing layer T can be reduced.
  • the corrosive environment in the reinforcing layer T is improved, and corrosion of the internal pressure reinforcing strips 12 and the axial force reinforcing strips 13 and 14 in the reinforcing layer T can be prevented.
  • the corrosive gas G in the reinforcing layer T can be surely removed, and hydrogen brittle fracture can be effectively prevented, so that a high strength reinforcing strip can be used.
  • the applicability in use over a long distance, or applicability under deep water can be improved.
  • the time required to ventilate the gap in the reinforcing layer was calculated, and the feasibility of discharging corrosive gas and the ventilation effect were confirmed.
  • the time required to ventilate the air volume in the reinforcing layer is calculated based on the following conditions using the Darcy-Weissbach formula, which is a known pressure loss calculation formula shown in Formula (1). did.
  • the flexible pipe was calculated for the case where three small-diameter tubes were arranged in the circumferential direction at regular intervals in the outer axial force reinforcing strip as in the first embodiment described above, and in the case of one and two flexible pipes.
  • h f (L / d) (v 2 / 2g)
  • the small-diameter tube has an inner diameter d of 3 mm and a length L arranged along the spiral of the axial force reinforcing strip, so that the length of the flexible pipe of 3000 m (loss head h) is 6000 m, and the roughness f is 0.015.
  • the capacity of the vacuum pump was 95% in terms of ultimate vacuum.
  • the physical properties of air are 1.165 kgf / m 3 at a density of 30 ° C. and 1 atm, and a viscosity coefficient of 0.0182 ⁇ 10 ⁇ 3 Pa ⁇ s at 25 ° C.
  • the thickness of the reinforcing layer is 16 mm
  • the porosity in the reinforcing layer is 3%
  • the outer diameter of the inner tube is 166.4 mm
  • the amount of air in the reinforcing layer at 30 ° C. and 1 atm was 1.644 m 3 .
  • the average flow velocity v in the small diameter tube is 0.245 m / s
  • the gravitational acceleration g is 9.8 m / s 2 . It should be noted that the pressure in the reinforcing layer at the end of the seabed is equal to the atmospheric pressure.
  • the ventilation time is 264 hours when one small-diameter tube is used, 132 hours when two tubes are used, and 88 hours when three tubes are used. It became.
  • three small diameter tubes it is possible to perform ventilation work for 3 to 4 days continuously and replace the corrosive gas accumulated in the reinforcing layer with clean air. I can confirm. Further, if the number of small-diameter tubes is increased within a range that does not reduce the reinforcing performance of the reinforcing strip, the ventilation work time can be further shortened.
  • the corrosion prevention structure for the flexible pipe 1 ⁇ / b> A has a small-diameter tube 17 in the inner axial force reinforcement strip 13 in addition to the outer axial force reinforcement strip 14 of the first embodiment described above.
  • the inner axial force reinforcing strip 13 is provided with enlarged gaps 13b (corresponding to the gaps of the present invention) in which the space between the strip members 13A and 13A is larger than the gap 13a at predetermined three locations.
  • the enlarged gaps 13b are provided at three locations at a constant interval (that is, a pitch of 120 degrees) in the circumferential direction, and the small-diameter tubes 17 are provided over the entire length of the flexible pipe 1 in each enlarged gap 13b.
  • the small-diameter tube 17 of the inner axial force reinforcing strip 13 is arranged at a position shifted in the circumferential direction with respect to the small-diameter tube 17 of the outer axial force reinforcing strip 14. Moreover, in order to give the resin sheet 16 air permeability, it is also possible to efficiently ventilate the reinforcing strips by using a porous sheet or by winding with a gap.
  • the corrosion preventing structure for the flexible pipe 1 ⁇ / b> B includes three small-diameter tubes 17 (17 ⁇ / b> A, 17 ⁇ / b> B, 17 ⁇ / b> C) in the outer axial force reinforcing strip 14. It is the structure arrange
  • the positions of the ends 17b of the three small diameter tubes 17 (17A, 17B, 17C) are different in the pipe axial direction (X direction). It has a configuration.
  • the distal end 17b of the first small-diameter tube 17A is provided at a position near the pipe distal end 1b (first position P1), and the distal end 17b of the second small-diameter tube 17B is a predetermined position on the base end side by a predetermined distance from the first position P1.
  • the distal end 17b of the third small diameter tube 17C is provided at a predetermined position (third position P3) on the base end side by a predetermined distance further than the second position P2.
  • the corrosive gas is discharged using the collection tank 4 (see FIG. 6) of the first embodiment for each of the positions P1, P2, and P3 of the ends 17b of the small diameter tubes 17A, 17B, and 17C. Therefore, it is possible to accurately confirm the gas concentration at a plurality of positions in the axial direction X of the flexible pipe 1 by measuring the amount of corrosive gas discharged from each of the small diameter tubes 17A, 17B, and 17C. Can do.
  • the corrosion prevention structure of the flexible pipe by this invention was described, this invention is not limited to said embodiment, In the range which does not deviate from the meaning, it can change suitably.
  • positioning location of the small diameter tube 17 provided in the reinforcement layer T is not limited to embodiment mentioned above.
  • the small-diameter tube 17 may be disposed only on the inner axial force reinforcing strip 13, or the small-diameter tube 17 may be disposed along the gap of the internal pressure reinforcing strip 12 formed of a C-shaped strip.
  • the recovery tank 4 is provided on the sea, and the corrosive gas sucked out by the small diameter tube 17 is released to the recovery tank 4, but not limited to this, the base end portion 17a of the small diameter tube 17 is opened to the atmosphere.
  • the gas may be directly released to the atmosphere without using the recovery tank 4.
  • the configuration of the small diameter tube 17 such as the inner diameter, the material, the number, the arrangement interval, and the position of the end portion 17b can be arbitrarily set according to conditions such as the type of reinforcing strip, the configuration and length of the flexible pipe, and the like. It is. In addition, it is possible to appropriately replace the constituent elements in the above-described embodiments with well-known constituent elements without departing from the spirit of the present invention, and the above-described embodiments may be appropriately combined.
  • the corrosive gas accumulated in the reinforcing layer can be forcibly discharged by moving from the end of the small diameter tube toward the base end. Further, the concentration of the corrosive gas in the reinforcing layer can be lowered by ventilating the corrosive gas with fresh air. As a result, corrosion of the reinforcing strip made of steel can be suppressed, and the durability of the flexible pipe can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

Disclosed is a corrosion prevention structure such that even in very deep water, corrosive gas in a reinforcing layer can be reliably replaced with fresh air, that corrosion of reinforcing bar assemblies in the reinforcing layer can be prevented, and that it is possible to achieve high strength by using carbon. A flexible pipe (1) is provided with an inner pipe (11) having liquid-tightness; an outer sheath (15); and an inner axial force reinforcing bar assembly (13) and an outer axial force reinforcing bar assembly (14) both of which consist of a plurality of spirally twisted bar members and are disposed in a reinforcing layer (T) between the inner pipe (11) and the outer sheath (15). Said flexible pipe (1) constitutes the corrosion prevention structure such that the corrosive gas in the reinforcing layer (T), which is disposed between the inner pipe (11) and the outer sheath (15), is discharged axially from the tip end side to the base end side. Furthermore, the flexible pipe (1) is configured in such a way that a plurality of small diameter tubes (17) are installed which are disposed in spiral enlarged gaps (14b) that are provided between the bar members of the outer axial force reinforcing bar assembly (14), and which extend continuously along the pipe axial direction.

Description

フレキシブルパイプの腐食防止構造Corrosion prevention structure for flexible pipes
 本発明は、内管と外部シースとの間の補強層内の腐食性ガスをパイプ軸方向で末端側から基端側に向けて排出するためのフレキシブルパイプの腐食防止構造に関する。
 本願は、2010年1月8日に、日本に出願された特願2010-002970号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a structure for preventing corrosion of a flexible pipe for discharging corrosive gas in a reinforcing layer between an inner tube and an outer sheath from the distal side toward the proximal side in the pipe axial direction.
This application claims priority based on Japanese Patent Application No. 2010-002970 filed in Japan on January 8, 2010, the contents of which are incorporated herein by reference.
 海底油田から石油や天然ガスを揚収する作業において、海上のプラットホーム等から海底のウェルヘッド等までの間に使用するライザー管として、フレキシブルパイプを使用している。そして、これまでは、水深数百m程度の海域での海底油田開発が進められてきたが、近年の海底油田開発の大水深化に伴い2000mを超える海域での油田開発に対応できるフレキシブルパイプが求められるようになっている。このようなフレキシブルパイプとしては、内側から順にインターロック管、内管、内圧補強条、軸力補強条、外部シースが配置されているのが一般的な構造となっている。 フ レ キ シ ブ ル Flexible pipe is used as a riser pipe that is used from the offshore platform to the wellhead of the seabed in the work of extracting oil and natural gas from the seabed oil field. Until now, the development of submarine oil fields in waters with a depth of several hundreds of meters has been promoted, but with the recent deepening of subsea oil field development, flexible pipes that can support oil field development in waters exceeding 2000 m are available. It has come to be required. Such a flexible pipe has a general structure in which an interlock pipe, an inner pipe, an internal pressure reinforcing strip, an axial force reinforcing strip, and an outer sheath are arranged in this order from the inside.
 また、近年、フレキシブルパイプの大水深対応に加えて、耐用年数の改善が求められている。揚収する油は二酸化炭素(CO)や硫化水素(HS)などの腐食性ガスを含んでおり、大水深の海域から揚収される原油もこれら腐食性ガスを含んでいる。
 そして、フレキシブルパイプの最も内側のインターロック管は、カシメ構造で一定の座屈強度はあるものの液密性は無く、管内の油の漏出は液密性を有する内管により防止されている。
 ところが、この内管は樹脂材から成るため、油に含まれた腐食性ガスを完全に遮断することができず、ある値の透過率をもって腐食性ガスが透過することが一般に知られている。内管を透過した腐食性ガスは、外部シースと内管の間の空間、すなわち補強層内に滞留する。この補強層内の腐食性ガスは、内圧補強条或いは軸力補強条の補強条間に設けられる隙間を通じて、パイプ端部側へ流れて大気に排出される。しかし、水深が深くなりフレキシブルパイプの全長が長くなると補強条間に設けられる隙間を腐食性ガスが流れる抵抗が大きくなり、海底側に溜まった腐食性ガスの排出が困難となる。また、補強条の隙間には、フレキシブルパイプの組み立て時の潤滑油が残っている場合、腐食性ガスの流通の抵抗は一層大きくなり、補強層内での腐食性ガスの滞留が促進されるため、海底側の補強層内の腐食環境がさらに厳しくなる。さらに、下端が海底に設置されるフレキシブルパイプでは、補強条間に設けられる隙間がどこかで目詰まりを起こした場合、パイプの海底側に滞留した腐食性ガスは、海底部に設けた排出機構から排出されることになる。しかし、排出機構は海上に比べて大きな圧力(例えば3000m水深下で30MPaの圧力)を受けているため、この圧力を超えるガス圧力をかけないと、滞留した腐食性ガスは海面側に流れない。以上の理由で、腐食性ガスは、海底側に溜まった状態となり蓄積されてしまう。
 内圧補強条および軸力補強条には共に鋼材が用いられているので、以上のように、フレキシブルパイプの補強層に腐食性ガスが蓄積されると、これら補強条が腐食環境に曝されて劣化が進み、フレキシブルパイプの寿命が低下するという不具合が生じる。
In addition, in recent years, in addition to flexible pipes capable of handling deep water, there has been a demand for improved service life. The oil to be collected contains corrosive gases such as carbon dioxide (CO 2 ) and hydrogen sulfide (H 2 S), and the crude oil to be collected from a deep sea area also contains these corrosive gases.
The innermost interlock pipe of the flexible pipe has a caulking structure and has a certain buckling strength, but is not liquid-tight, and leakage of oil in the pipe is prevented by the inner pipe having liquid-tightness.
However, since the inner pipe is made of a resin material, it is generally known that the corrosive gas contained in the oil cannot be completely blocked and the corrosive gas permeates with a certain value of transmittance. The corrosive gas that has permeated the inner tube stays in the space between the outer sheath and the inner tube, that is, in the reinforcing layer. The corrosive gas in the reinforcing layer flows to the pipe end side through a gap provided between the reinforcing strips of the internal pressure reinforcing strip or the axial force reinforcing strip and is discharged to the atmosphere. However, when the water depth becomes deeper and the total length of the flexible pipe becomes longer, the resistance of the corrosive gas to flow through the gap provided between the reinforcing strips increases, and it becomes difficult to discharge the corrosive gas accumulated on the seabed side. Also, if lubricating oil remains in the gap between the reinforcing strips when the flexible pipe is assembled, the resistance of the corrosive gas flow is further increased, and the retention of the corrosive gas in the reinforcing layer is promoted. The corrosive environment in the reinforcing layer on the seabed side becomes even more severe. Furthermore, in the case of a flexible pipe with its lower end installed on the seabed, if the gap provided between the reinforcing strips is clogged somewhere, the corrosive gas that has accumulated on the seabed side of the pipe is discharged from the seabed. Will be discharged from. However, since the discharge mechanism receives a larger pressure than the sea (for example, a pressure of 30 MPa at a depth of 3000 m), the retained corrosive gas does not flow to the sea surface unless a gas pressure exceeding this pressure is applied. For the above reasons, the corrosive gas accumulates on the seabed side and accumulates.
Since steel is used for both the internal pressure reinforcing strip and the axial force reinforcing strip, as described above, if corrosive gas accumulates in the reinforcing layer of the flexible pipe, these reinforcing strips are exposed to the corrosive environment and deteriorated. Progresses, and the malfunction that the lifetime of a flexible pipe falls arises.
 このような不具合に対応するための、補強層内に流入する腐食性ガスを取り除く手段として、可撓性複合管の一端から内管と外部シースとの間の補強層にキャリアガスを供給し、補強層内のガスを他端から管外へ放出するガス除去方法が、特許文献1に開示されている。 As a means for removing the corrosive gas flowing into the reinforcing layer in order to cope with such problems, a carrier gas is supplied from one end of the flexible composite tube to the reinforcing layer between the inner tube and the outer sheath, A gas removing method for releasing the gas in the reinforcing layer from the other end to the outside of the pipe is disclosed in Patent Document 1.
特開昭63-83486号公報JP-A-63-83486
 しかしながら、従来のフレキシブルパイプでは、以下のような問題があった。
 すなわち、特許文献1では、例えば3000mもの大水深で適用する場合において、腐食性ガスが溜まり易い海底付近の補強層にキャリアガスを送り、海底側の排出機構から腐食性ガスを排出するためには30MPaを超える圧力でキャリアガスを送る必要があるため、その圧力で外部シースが膨れて破裂するという不具合が想定される。
However, the conventional flexible pipe has the following problems.
That is, in Patent Document 1, for example, when applying at a deep water depth of 3000 m, in order to discharge the corrosive gas from the seabed-side discharge mechanism, the carrier gas is sent to the reinforcing layer near the seabed where corrosive gas tends to accumulate. Since it is necessary to send the carrier gas at a pressure exceeding 30 MPa, it is assumed that the outer sheath swells and bursts at that pressure.
 一方で、水深2000mを超える大水深に対応するためには、内圧補強条、軸力補強条に用いる金属材料を高強度化する必要がある。しかし、内圧補強条、軸力補強条に用いる金属材料を高強度化すると、水素脆性破壊が発生しやすくなり、その結果フレキシブルパイプの寿命が低下する。そのため、硫化水素(腐食性ガス)を減らす必要があるが、上述したように大水深において海底付近に溜まった補強層内の腐食性ガスを取り除く好適な方法がないという問題があった。
 したがって、腐食性の問題と大水深化に伴う高強度化とをバランスよく達成することができない現状があり、その点で改良の余地があった。
On the other hand, in order to cope with a deep water depth exceeding 2000 m, it is necessary to increase the strength of the metal material used for the internal pressure reinforcing strip and the axial force reinforcing strip. However, when the strength of the metal material used for the internal pressure reinforcing strip and the axial force reinforcing strip is increased, hydrogen brittle fracture tends to occur, and as a result, the life of the flexible pipe is reduced. Therefore, it is necessary to reduce hydrogen sulfide (corrosive gas). However, as described above, there is a problem that there is no suitable method for removing the corrosive gas in the reinforcing layer accumulated near the sea bottom at a large depth.
Therefore, there is a current situation where the corrosive problem and the high strength accompanying the deepening of water cannot be achieved in a well-balanced manner, and there is room for improvement in that respect.
 本発明は、上述する問題点に鑑みてなされたもので、大水深下においても補強層内の腐食性ガスを確実に新鮮な空気に置換することが可能であり、補強層内の補強条の腐食を防止することができ、且つ高強度化が図れるフレキシブルパイプの腐食防止構造を提供することを目的とする。 The present invention has been made in view of the above-described problems. It is possible to reliably replace the corrosive gas in the reinforcing layer with fresh air even under a large depth of water. An object of the present invention is to provide a flexible pipe corrosion prevention structure that can prevent corrosion and increase strength.
 上記目的を達成するため、本発明の第一の態様に係るフレキシブルパイプの腐食防止構造は、液密性を有する内管と、外部シースと、螺旋状に捩られた複数の条部材からなり前記内管と前記外部シースとの間の補強層に配置される補強条とを備え、前記補強層内の腐食性ガスをパイプ軸方向で前記フレキシブルパイプの末端側から基端側に向けて排出するためのフレキシブルパイプの腐食防止構造であって、前記補強層には、前記パイプ軸方向に沿って連続して延びる小径チューブが配設されている。 In order to achieve the above object, a corrosion prevention structure for a flexible pipe according to a first aspect of the present invention comprises a liquid-tight inner tube, an outer sheath, and a plurality of spirally twisted strip members. A reinforcing strip disposed in a reinforcing layer between an inner tube and the outer sheath, and discharges corrosive gas in the reinforcing layer from the distal side to the proximal side of the flexible pipe in the pipe axial direction. In this structure, the reinforcing layer is provided with a small-diameter tube continuously extending along the pipe axial direction.
 本発明の第一の態様では、小径チューブが配設されている範囲において補強層の末端側から基端側を繋ぐ空間を確保できるので、小径チューブの基端部に真空ポンプ等の吸引手段を接続して真空吸引することで、補強層内に溜まった腐食性ガスを小径チューブの末端から基端側へ向けて移動させて強制的に排出することができる。一方で、真空吸引することにより補強層内の末端側で負圧となるので、補強層の基端側を大気中に開放しておくことで、補強条に設けられる隙間を通じて新鮮な空気が補強層内に流入する。そのため、腐食性ガスを新鮮な空気に置換した換気を行うことができる。したがって、補強層内の腐食性ガス濃度が低下して、鋼材からなる補強条が腐食性環境下に曝されなくなるので、補強条の腐食が抑えられ、耐久性を向上させることができる。 In the first aspect of the present invention, a space connecting the proximal side to the proximal side of the reinforcing layer can be secured in the range where the small diameter tube is disposed, so suction means such as a vacuum pump is provided at the proximal end of the small diameter tube. By connecting and vacuum-sucking, the corrosive gas accumulated in the reinforcing layer can be forcibly discharged by moving from the distal end to the proximal end side of the small-diameter tube. On the other hand, since negative pressure is generated at the distal end side in the reinforcing layer by vacuum suction, the fresh air is reinforced through the gap provided in the reinforcing strip by opening the proximal end side of the reinforcing layer to the atmosphere. Flows into the bed. Therefore, it is possible to perform ventilation by replacing the corrosive gas with fresh air. Therefore, the corrosive gas concentration in the reinforcing layer is reduced, and the reinforcing strip made of steel is not exposed to the corrosive environment. Therefore, the corrosion of the reinforcing strip can be suppressed and the durability can be improved.
 そして、加圧ポンプによって基端側から新鮮な空気を補強層内に封入する方法でなく、小径チューブから吸い出す方法であるので、高い分圧の腐食性ガスを含む空気を直接吸い出すことが可能である。また、吸い出す方法であるため、補強層内の圧力を高めることがなく、外部シースに圧力の負担を与えないので、フレキシブルパイプが破損するといった不具合を防止することができる。結果として、高圧化に伴った設計が不要になり、コストの低減を図ることが可能となる。
 さらに、小径チューブを設けることで、小径チューブの末端の位置、すなわち腐食性ガスの吸出し位置が特定されるので、その吸出し位置における補強層内に溜まったガス濃度を正確に把握することができる。
And, since it is a method of sucking out fresh air from the proximal end side with a pressurizing pump in a reinforcing layer, it is a method of sucking out from a small diameter tube, so it is possible to directly suck out air containing corrosive gas of high partial pressure. is there. Moreover, since it is a suction method, the pressure in a reinforcement layer is not raised and the burden of a pressure is not given to an outer sheath, Therefore The malfunction that a flexible pipe is damaged can be prevented. As a result, the design accompanying the increase in pressure becomes unnecessary, and the cost can be reduced.
Furthermore, by providing the small-diameter tube, the position of the end of the small-diameter tube, that is, the corrosive gas sucking position is specified, so that the gas concentration accumulated in the reinforcing layer at the sucking position can be accurately grasped.
 本発明の第一の態様に係るフレキシブルパイプの腐食防止構造では、小径チューブは、補強条の条部材どうしの間に設けられる螺旋状の隙間に配置されていてもよい。
 本発明の上記態様では、補強条の条部材どうしの隙間に沿って小径チューブを組み込むことで、補強層の末端側から基端側を繋ぐ空間を確保できる。
In the corrosion prevention structure for a flexible pipe according to the first aspect of the present invention, the small-diameter tube may be disposed in a spiral gap provided between the reinforcing strip members.
In the said aspect of this invention, the space which connects the base end side from the terminal end side of a reinforcement layer is securable by incorporating a small diameter tube along the clearance gap between the strip members of a reinforcement strip.
 また、本発明の第一の態様に係るフレキシブルパイプの腐食防止構造では、小径チューブは、補強条の周方向に所定間隔をもって複数本配置されてもよい。
 本発明の上記態様では、補強層の換気の際、複数の小径チューブを使って同時に吸い出すことで、腐食性ガスを含む補強層内の空気をより大量に吸引することができるので、換気時間を短縮することが可能となり、換気作業の効率化を図ることができる。
In the flexible pipe corrosion prevention structure according to the first aspect of the present invention, a plurality of small-diameter tubes may be arranged at predetermined intervals in the circumferential direction of the reinforcing strip.
In the above aspect of the present invention, when the reinforcing layer is ventilated, a large amount of air in the reinforcing layer containing corrosive gas can be sucked simultaneously by using a plurality of small-diameter tubes. It is possible to shorten the time and improve the efficiency of the ventilation work.
 また、本発明の第一の態様に係るフレキシブルパイプの腐食防止構造では、複数本の小径チューブのそれぞれの末端位置がパイプ軸方向で異なるようにしてもよい。
 本発明の上記態様では、各小径チューブの末端位置毎に腐食性ガスを排出することができるので、各小径チューブのそれぞれから排出される腐食性ガスのガス量を測定することで、フレキシブルパイプの軸方向で複数位置におけるガス濃度を正確に確認することができる。
Moreover, in the corrosion prevention structure of the flexible pipe which concerns on the 1st aspect of this invention, you may make it each terminal position of several small diameter tubes differ in a pipe axial direction.
In the above aspect of the present invention, the corrosive gas can be discharged for each end position of each small diameter tube. Therefore, by measuring the amount of corrosive gas discharged from each small diameter tube, the flexible pipe The gas concentration at a plurality of positions can be accurately confirmed in the axial direction.
 また、本発明の第一の態様に係るフレキシブルパイプの腐食防止構造では、補強層の基端側には、隙間に連通するとともに大気開放された吸込口が設けられていてもよい。
 本発明の上記態様では、補強層の基端側で大気開放された吸込口から補強層内により確実に新鮮な空気を流入させることができる。
 さらに、小径チューブの1本乃至数本を吸込用として、基端側を大気開放してもよい。
 この場合、補強条間に設けられる隙間がどこかで目詰まりを起こしている場合にも確実に新鮮な空気を末端側に流入させることができる。
In the corrosion prevention structure for a flexible pipe according to the first aspect of the present invention, a suction port that communicates with the gap and is open to the atmosphere may be provided on the proximal end side of the reinforcing layer.
In the above aspect of the present invention, fresh air can surely flow into the reinforcing layer from the suction port opened to the atmosphere on the base end side of the reinforcing layer.
Further, one or several small diameter tubes may be used for suction, and the proximal end side may be opened to the atmosphere.
In this case, even when the gap provided between the reinforcing strips is clogged somewhere, fresh air can surely flow into the end side.
 本発明のフレキシブルパイプの腐食防止構造によれば、内管を透過して補強層内に滞留する腐食性ガスを大気もしくは回収槽等に放出することで、大水深下においても補強層内の腐食性ガスを確実に新鮮な空気に置換することができ、補強層内の腐食性ガス濃度を低減することが可能となるので、補強層内の腐食性環境が良好となり、補強層内の補強条の腐食を防止することができる。
 また、補強層内の腐食性ガスを確実に取り除くことが可能であり、水素脆性破壊の発生を効果的に防ぐことができるので、高強度の補強条の使用が可能となり、フレキシブルパイプの長距離に渡る使用での適用性、或いは大水深下での適用性を向上させることができる。
According to the corrosion prevention structure of the flexible pipe of the present invention, corrosive gas that permeates the inner pipe and stays in the reinforcing layer is released to the atmosphere or a recovery tank, etc. Since the corrosive gas can be surely replaced with fresh air and the corrosive gas concentration in the reinforcing layer can be reduced, the corrosive environment in the reinforcing layer is improved, and the reinforcing strip in the reinforcing layer is improved. Corrosion of can be prevented.
In addition, the corrosive gas in the reinforcing layer can be surely removed, and the occurrence of hydrogen embrittlement can be effectively prevented, making it possible to use a high-strength reinforcing strip and the long distance of the flexible pipe. It is possible to improve the applicability in use over a wide area or in deep water.
本発明の第1の実施形態によるフレキシブルパイプの腐食防止構造を示す一部破断斜視図である。It is a partially broken perspective view which shows the corrosion prevention structure of the flexible pipe by the 1st Embodiment of this invention. フレキシブルパイプの腐食防止構造を別の角度から見た一部破断斜視図である。It is the partially broken perspective view which looked at the corrosion prevention structure of the flexible pipe from another angle. フレキシブルパイプの断面図である。It is sectional drawing of a flexible pipe. 図3に示すフレキシブルパイプの補強層の要部拡大図である。It is a principal part enlarged view of the reinforcement layer of the flexible pipe shown in FIG. 小径チューブの配置状態を示す模式図である。It is a schematic diagram which shows the arrangement | positioning state of a small diameter tube. フレキシブルパイプの基端部の構成を示す側断面図である。It is a sectional side view which shows the structure of the base end part of a flexible pipe. 第2の実施形態によるフレキシブルパイプの断面図であって、図3に対応する図である。It is sectional drawing of the flexible pipe by 2nd Embodiment, Comprising: It is a figure corresponding to FIG. 第3の実施形態によるフレキシブルパイプの補強層の要部拡大図であって、図4に対応する図である。It is a principal part enlarged view of the reinforcement layer of the flexible pipe by 3rd Embodiment, Comprising: It is a figure corresponding to FIG. 図8に示すフレキシブルパイプの断面図であって、図3に対応する図である。It is sectional drawing of the flexible pipe shown in FIG. 8, Comprising: It is a figure corresponding to FIG. 第4の実施形態による小径チューブの配置状態を示す模式図であって、図5に対応する図である。It is a schematic diagram which shows the arrangement | positioning state of the small diameter tube by 4th Embodiment, Comprising: It is a figure corresponding to FIG.
 以下、本発明の第1の実施形態によるフレキシブルパイプの腐食防止構造について、図面に基づいて説明する。 Hereinafter, a corrosion prevention structure for a flexible pipe according to a first embodiment of the present invention will be described with reference to the drawings.
 図1に示すように、本発明の第1の実施形態によるフレキシブルパイプの腐食防止構造は、海上の回収船2と海底とを繋いで石油や天然ガスを採取するために用いるフレキシブルパイプ1に適用されている。
 ここで、フレキシブルパイプ1において、長さ方向で回収船2側を基端側とし、海底側を末端として以下説明する。
As shown in FIG. 1, the corrosion prevention structure for a flexible pipe according to the first embodiment of the present invention is applied to a flexible pipe 1 that is used to extract oil and natural gas by connecting a recovery vessel 2 on the sea and the sea floor. Has been.
Here, the flexible pipe 1 will be described below with the recovery ship 2 side as the base end side and the seabed side as the end in the length direction.
 図1から図3に示すように、フレキシブルパイプ1は、インターロック管10と、内管11と、C字形状の断面を持つC型条からなる内圧補強条12と、平型条からなる一対(内周側および外周側)の軸力補強条13、14と、海水の浸入を防止するための外部シース15とが半径方向で内側から外側に向かう順序で配置された多層構造をなしている。そして、内側軸力補強条13および外側軸力補強条14の内周側及び外周側には、各軸力補強条13、14の摩耗を低減させるための樹脂シート16が設けられている。 As shown in FIGS. 1 to 3, the flexible pipe 1 includes an interlock pipe 10, an inner pipe 11, an internal pressure reinforcing strip 12 made of a C-shaped strip having a C-shaped cross section, and a pair of flat strips. Axial force reinforcing strips 13 and 14 (inner and outer peripheral sides) and an outer sheath 15 for preventing seawater intrusion are arranged in a multi-layer structure arranged in the order from the inner side to the outer side in the radial direction. . A resin sheet 16 is provided on the inner peripheral side and the outer peripheral side of the inner axial force reinforcing strip 13 and the outer axial force reinforcing strip 14 to reduce wear of the axial force reinforcing strips 13 and 14.
 内管11および外部シース15はプラスチック製であり、内圧補強条12と軸力補強条13、14は金属製の鋼材から形成されている。内圧補強条12はパイプ内部の圧力に対して補強するものであり、内側軸力補強条13および外側軸力補強条14はパイプの軸力を補強するものである。
 そして、内管11と外部シース15との間の内圧補強条12、内側軸力補強条13および外側軸力補強条14が配置される空間を補強層Tという。
The inner tube 11 and the outer sheath 15 are made of plastic, and the inner pressure reinforcing strip 12 and the axial force reinforcing strips 13 and 14 are made of a metal steel material. The inner pressure reinforcing strip 12 reinforces the pressure inside the pipe, and the inner axial force reinforcing strip 13 and the outer axial force reinforcing strip 14 reinforce the axial force of the pipe.
A space in which the internal pressure reinforcing strip 12, the inner axial force reinforcing strip 13, and the outer axial force reinforcing strip 14 are disposed between the inner tube 11 and the outer sheath 15 is referred to as a reinforcing layer T.
 図1から図4に示すように、内側軸力補強条13は、長手方向(軸方向)に沿って螺旋状に配置された複数条の条部材13Aからなる。円周方向に隣り合う条部材13A、13Aどうしの間には隙間13aが設けられている。 As shown in FIGS. 1 to 4, the inner axial force reinforcing strip 13 is composed of a plurality of strip members 13 </ b> A arranged in a spiral shape along the longitudinal direction (axial direction). A gap 13a is provided between the strip members 13A and 13A adjacent in the circumferential direction.
 図1から図4に示すように、外側軸力補強条14は、長手方向(軸方向)に沿って内側軸力補強条13の螺旋方向とは逆方向の螺旋状に捩られて配置された複数条の条部材14Aからなる。円周方向に隣り合う条部材14A、14Aどうしの間には隙間14aが設けられるとともに、所定3箇所で条部材14A、14Aどうしの間が前記隙間14aよりも大きく広げた拡大隙間14b(本発明の隙間に相当する)が設けられている。その拡大隙間14bは、周方向に一定の間隔(すなわち、120度ピッチ)で3箇所設けられている。 As shown in FIGS. 1 to 4, the outer axial force reinforcing strip 14 is twisted and arranged in a spiral direction opposite to the spiral direction of the inner axial force reinforcing strip 13 along the longitudinal direction (axial direction). It consists of a plurality of strip members 14A. A gap 14a is provided between the strip members 14A and 14A adjacent to each other in the circumferential direction, and an enlarged gap 14b in which the gap between the strip members 14A and 14A is larger than the gap 14a at three predetermined positions (the present invention). Corresponding to the gaps). The enlarged gaps 14b are provided at three locations at a constant interval (that is, a pitch of 120 degrees) in the circumferential direction.
 図3および図4に示すように、フレキシブルパイプ1の軸方向に連続する各拡大隙間14bには、フレキシブルパイプ1のほぼ全長にわたって、例えばステンレス等の金属製の小径チューブ17が設けられている。そして、図5に示すように、3本の小径チューブ17A、17B、17Cは、基端部17aが開放端であり後述する回収槽4に接続し、末端17bがパイプ末端1b付近の所定位置P1に位置している。 As shown in FIGS. 3 and 4, each enlarged gap 14b continuous in the axial direction of the flexible pipe 1 is provided with a small-diameter tube 17 made of metal such as stainless steel over almost the entire length of the flexible pipe 1. As shown in FIG. 5, the three small- diameter tubes 17A, 17B, and 17C have a base end portion 17a that is an open end and is connected to a recovery tank 4 that will be described later, and a terminal end 17b that is a predetermined position P1 near the pipe terminal end 1b. Is located.
 図6に示すように、小径チューブ17の上端部は、海上の回収船2(図1)に設けられ、真空ポンプ等の図示しない吸引手段に接続された回収槽4に接続されている。
 具体的な構成として、フレキシブルパイプ1の上端部1aには、小径チューブ17の基端部17aを挿通可能で、且つ内圧補強条12、内側軸力補強条13および外側軸力補強条14のそれぞれに形成される隙間に空間3aを介して繋がる複数のエアパイプ5を備えた端部構造3が固定されている。エアパイプ5は、一端が大気開放された開口部5a(吸込口)を有し、他端5bが各補強条12、13、14の隙間に連通する空間3aに連結されている。
As shown in FIG. 6, the upper end portion of the small-diameter tube 17 is connected to a recovery tank 4 that is provided on the recovery vessel 2 (FIG. 1) at sea and connected to suction means (not shown) such as a vacuum pump.
As a specific configuration, the base end portion 17a of the small-diameter tube 17 can be inserted into the upper end portion 1a of the flexible pipe 1, and each of the inner pressure reinforcing strip 12, the inner axial force reinforcing strip 13, and the outer axial force reinforcing strip 14 is provided. The end structure 3 having a plurality of air pipes 5 connected to the gap formed in the space 3a through the space 3a is fixed. The air pipe 5 has an opening 5a (suction port) that is open to the atmosphere at one end, and the other end 5b is connected to a space 3a that communicates with the gaps between the reinforcing strips 12, 13, and 14.
 次に、上述した構成のフレキシブルパイプ1を用いた換気方法とフレキシブルパイプ1の作用について図面に基づいて説明する。
 図1から図6に示すように、本フレキシブルパイプ1では、外側軸力補強条14の条部材14A、14Aどうしの隙間(拡大隙間14b)に沿って小径チューブを組み込むことで、その小径チューブ17が配設されている範囲において補強層Tの末端側から基端側を繋ぐ空間を確保することができる。よって、小径チューブ17の基端部17aに回収槽4を接続して真空吸引することで、補強層T内に溜まった腐食性ガスGを小径チューブ17の末端から基端側へ向けて移動させて強制的に排出することができる。
Next, the ventilation method using the flexible pipe 1 having the above-described configuration and the operation of the flexible pipe 1 will be described with reference to the drawings.
As shown in FIGS. 1 to 6, in the flexible pipe 1, the small-diameter tube 17 is assembled by incorporating the small-diameter tube along the gap (enlarged gap 14 b) between the strip members 14 </ b> A and 14 </ b> A of the outer axial force reinforcing strip 14. A space connecting the base end side to the base end side of the reinforcing layer T can be ensured in the range where is disposed. Therefore, the corrosive gas G accumulated in the reinforcing layer T is moved from the distal end of the small diameter tube 17 toward the proximal end side by connecting the collection tank 4 to the proximal end portion 17a of the small diameter tube 17 and performing vacuum suction. Can be forcibly discharged.
 一方で、真空吸引することにより補強層T内の末端側で負圧となるので、補強層Tの基端側を大気中に開放しておくことで、内圧補強条12や軸力補強条13、14に設けられる隙間を通じて新鮮な空気Eが補強層T内に流入することになる。そのため、腐食性ガスGを新鮮な空気Eに置換した換気を行うことができる。したがって、補強層T内の腐食性ガス濃度が低下して、鋼材からなる内圧補強条12や軸力補強条13、14が腐食性環境下に曝されなくなるので、これら補強条12、13、14の腐食が抑えられ、フレキシブルパイプの耐久性を向上させることができる。 On the other hand, since negative pressure is generated at the distal end side in the reinforcing layer T by vacuum suction, the internal pressure reinforcing strip 12 and the axial force reinforcing strip 13 are opened by opening the proximal end side of the reinforcing layer T to the atmosphere. The fresh air E flows into the reinforcing layer T through the gaps provided in. Therefore, it is possible to perform ventilation by replacing the corrosive gas G with fresh air E. Therefore, the corrosive gas concentration in the reinforcing layer T is reduced, and the internal pressure reinforcing strips 12 and the axial force reinforcing strips 13 and 14 made of steel are not exposed to a corrosive environment. Corrosion can be suppressed, and the durability of the flexible pipe can be improved.
 そして、加圧ポンプによって基端側から新鮮な空気を補強層内に封入する方法でなく、小径チューブ17から吸い出す方法であるので、高い分圧の腐食性ガスGを含む空気を直接吸い出すことが可能である。また、末端側の腐食性ガスを多く含む空気を小径チューブ内を通して基端部に吸い上げるため、排出過程において中間及び上部の補強条と隔離して排出することが可能であり、排出中において腐食性ガスの滞留による補強条の損傷を回避できる。さらに、吸い出す方法であるため、補強層T内の圧力を高めることがなく、外部シース15に圧力の負担を与えることがないので、フレキシブルパイプ1が破損するといった不具合を防止することができ、高圧化に伴った設計が不要になり、コストの低減を図ることが可能である。
 さらに、小径チューブ17を設けることで、小径チューブ17の末端の位置、すなわち腐食性ガスGの吸出し位置が特定されるので、その吸出し位置P1(図5)における補強層T内に溜まったガス濃度を正確に把握することができる。
And since it is the method of sucking out from the small diameter tube 17 not the method of enclosing fresh air in a reinforcement layer from a base end side with a pressurization pump, the air containing the corrosive gas G of high partial pressure can be directly sucked out. Is possible. In addition, since air containing a large amount of corrosive gas on the end side is sucked up to the base end through the small-diameter tube, it can be discharged separately from the middle and upper reinforcing strips during the discharge process. Damage to the reinforcing strip due to gas stagnation can be avoided. Further, since the suction method is used, the pressure in the reinforcing layer T is not increased, and the external sheath 15 is not subjected to a pressure load, so that a problem such as breakage of the flexible pipe 1 can be prevented. This eliminates the need for a design associated with the shift to cost and can reduce costs.
Further, by providing the small-diameter tube 17, the position of the end of the small-diameter tube 17, that is, the sucking position of the corrosive gas G is specified. Therefore, the gas concentration accumulated in the reinforcing layer T at the sucking position P1 (FIG. 5). Can be grasped accurately.
 また、小径チューブ17(17A、17B、17C)が外側軸力補強条14の周方向に所定間隔をもって複数本(3本)配置されているので、補強層Tの換気の際、これら複数の小径チューブ17A、17B、17Cを使って同時に吸い出すことで、腐食性ガスを含む補強層T内の空気をより大量に吸引することができ、換気時間を短縮することが可能となり、換気作業の効率化を図ることができる。 Further, since a plurality (three) of small-diameter tubes 17 (17A, 17B, 17C) are arranged at predetermined intervals in the circumferential direction of the outer axial force reinforcing strip 14, when the reinforcing layer T is ventilated, the plurality of small-diameter tubes 17 (17A, 17B, 17C) are arranged. By simultaneously sucking out using the tubes 17A, 17B, and 17C, a larger amount of air in the reinforcing layer T containing corrosive gas can be sucked, and the ventilation time can be shortened. Can be achieved.
 上述のように第1の実施形態によるフレキシブルパイプの腐食防止構造では、内管11を透過して補強層T内に滞留する腐食性ガスGを回収槽4に放出することで、大水深下においても補強層T内の腐食性ガスGを確実に新鮮な空気Eに置換することができ、補強層T内の腐食性ガス濃度を低減することが可能となる。結果として、補強層T内の腐食性環境が良好となり、補強層T内の内圧補強条12や軸力補強条13、14の腐食を防止することができる。
 また、補強層T内の腐食性ガスGを確実に取り除くことが可能であり、水素脆性破壊の発生を効果的に防ぐことができるので、高強度の補強条の使用が可能となり、フレキシブルパイプの長距離に渡る使用での適用性、或いは大水深下での適用性を向上させることができる。
As described above, in the flexible pipe corrosion prevention structure according to the first embodiment, the corrosive gas G that permeates the inner pipe 11 and stays in the reinforcing layer T is discharged to the recovery tank 4, so In addition, the corrosive gas G in the reinforcing layer T can be surely replaced with fresh air E, and the corrosive gas concentration in the reinforcing layer T can be reduced. As a result, the corrosive environment in the reinforcing layer T is improved, and corrosion of the internal pressure reinforcing strips 12 and the axial force reinforcing strips 13 and 14 in the reinforcing layer T can be prevented.
In addition, the corrosive gas G in the reinforcing layer T can be surely removed, and hydrogen brittle fracture can be effectively prevented, so that a high strength reinforcing strip can be used. The applicability in use over a long distance, or applicability under deep water can be improved.
 次に、上述した実施形態によるフレキシブルパイプの腐食防止構造の効果を裏付けるために行った実施例について以下説明する。 Next, examples carried out to support the effects of the corrosion prevention structure for flexible pipes according to the above-described embodiment will be described below.
 本実施例では、フレキシブルパイプを水深3000mに適用した場合に、補強層内の隙間を換気するために必要な時間を算出し、腐食性ガスの排出の実現性と換気効果を確認した。
 具体的には、式(1)に示す公知の圧力損失算定式であるダルシー・ワイスバッハの式を用い、以下の条件に基づいて補強層内の空気量を換気するために必要な時間を算出した。
 なお、フレキシブルパイプは、上述した第1の実施形態と同様で外側軸力補強条に小径チューブを周方向に一定間隔をもって3本配置させた場合と、1本および2本の場合について算出した。
    h=f(L/d)(v/2g) 式(1)
In this example, when the flexible pipe was applied at a water depth of 3000 m, the time required to ventilate the gap in the reinforcing layer was calculated, and the feasibility of discharging corrosive gas and the ventilation effect were confirmed.
Specifically, the time required to ventilate the air volume in the reinforcing layer is calculated based on the following conditions using the Darcy-Weissbach formula, which is a known pressure loss calculation formula shown in Formula (1). did.
The flexible pipe was calculated for the case where three small-diameter tubes were arranged in the circumferential direction at regular intervals in the outer axial force reinforcing strip as in the first embodiment described above, and in the case of one and two flexible pipes.
h = f (L / d) (v 2 / 2g) Formula (1)
 小径チューブは、内径dを3mmとし、長さLを軸力補強条の螺旋に沿って配置されるので3000m(損失水頭h)のフレキシブルパイプの長さの2倍として6000mとし、粗度fを0.015とした。真空ポンプの能力は、到達真空度で95%とした。そして、空気の物性は、密度が30℃、1atmで1.165kgf/mであり、粘性係数が25℃において0.0182×10-3Pa・sである。また、補強層の厚さを16mmとし、補強層内の空隙率を3%とし、内管外径を166.4mmとし、補強層内の空隙量を1.644m(全長=6000m)とし、30℃で1atmでの補強層内の空気量を1.644mとした。そして、小径チューブ内の平均流速vは、0.245m/s、重力加速度gは9.8m/sである。なお、海底端部の補強層内圧力は大気圧に等しいものとした。 The small-diameter tube has an inner diameter d of 3 mm and a length L arranged along the spiral of the axial force reinforcing strip, so that the length of the flexible pipe of 3000 m (loss head h) is 6000 m, and the roughness f is 0.015. The capacity of the vacuum pump was 95% in terms of ultimate vacuum. The physical properties of air are 1.165 kgf / m 3 at a density of 30 ° C. and 1 atm, and a viscosity coefficient of 0.0182 × 10 −3 Pa · s at 25 ° C. Further, the thickness of the reinforcing layer is 16 mm, the porosity in the reinforcing layer is 3%, the outer diameter of the inner tube is 166.4 mm, the amount of voids in the reinforcing layer is 1.644 m 3 (total length = 6000 m), The amount of air in the reinforcing layer at 30 ° C. and 1 atm was 1.644 m 3 . The average flow velocity v in the small diameter tube is 0.245 m / s, and the gravitational acceleration g is 9.8 m / s 2 . It should be noted that the pressure in the reinforcing layer at the end of the seabed is equal to the atmospheric pressure.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示す上記算出の結果によると、換気時間は、小径チューブを1本とした場合には換気時間が264時間であり、2本の場合には132時間、3本の場合には88時間となった。つまり、小径チューブを3本配置しておくことで、3~4日間連続して換気作業を行って、補強層内に溜まっている腐食性ガスをきれいな空気に置換することが可能であることが確認できる。また、補強条の補強性能を低下させない範囲で小径チューブの本数を増やせば、さらに換気作業時間の短縮することができる。 According to the calculation results shown in Table 1, the ventilation time is 264 hours when one small-diameter tube is used, 132 hours when two tubes are used, and 88 hours when three tubes are used. It became. In other words, by arranging three small diameter tubes, it is possible to perform ventilation work for 3 to 4 days continuously and replace the corrosive gas accumulated in the reinforcing layer with clean air. I can confirm. Further, if the number of small-diameter tubes is increased within a range that does not reduce the reinforcing performance of the reinforcing strip, the ventilation work time can be further shortened.
 次に、本発明のフレキシブルパイプの腐食防止構造による他の実施形態について、添付図面に基づいて説明するが、上述の第1の実施形態と同一又は同様な部材、部分には同一の符号を用いて説明を省略し、実施形態と異なる構成について説明する。 Next, another embodiment of the flexible pipe corrosion prevention structure of the present invention will be described with reference to the accompanying drawings. The same reference numerals are used for members and parts that are the same as or similar to those of the first embodiment. Description is omitted, and a configuration different from the embodiment will be described.
 図7に示すように、第2の実施形態によるフレキシブルパイプ1Aの腐食防止構造は、上述した第1の実施形態の外側軸力補強条14に加え、内側軸力補強条13にも小径チューブ17を設けている。すなわち、内側軸力補強条13は、所定3箇所で条部材13A、13Aどうしの間が隙間13aよりも大きく広げた拡大隙間13b(本発明の隙間に相当する)が設けられている。その拡大隙間13bは、周方向に一定の間隔(すなわち、120度ピッチ)で3箇所設けられ、各拡大隙間13bには、フレキシブルパイプ1のほぼ全長にわたって小径チューブ17が設けられている。そして、内側軸力補強条13の小径チューブ17は、外側軸力補強条14の小径チューブ17に対して周方向にずれた位置に配置されている。
 また、樹脂シート16に通気性を持たせるため、多孔性シートを使用したり、隙間を開けて巻きつけることで補強条間の換気を効率的に行うことも可能である。
As shown in FIG. 7, the corrosion prevention structure for the flexible pipe 1 </ b> A according to the second embodiment has a small-diameter tube 17 in the inner axial force reinforcement strip 13 in addition to the outer axial force reinforcement strip 14 of the first embodiment described above. Is provided. That is, the inner axial force reinforcing strip 13 is provided with enlarged gaps 13b (corresponding to the gaps of the present invention) in which the space between the strip members 13A and 13A is larger than the gap 13a at predetermined three locations. The enlarged gaps 13b are provided at three locations at a constant interval (that is, a pitch of 120 degrees) in the circumferential direction, and the small-diameter tubes 17 are provided over the entire length of the flexible pipe 1 in each enlarged gap 13b. The small-diameter tube 17 of the inner axial force reinforcing strip 13 is arranged at a position shifted in the circumferential direction with respect to the small-diameter tube 17 of the outer axial force reinforcing strip 14.
Moreover, in order to give the resin sheet 16 air permeability, it is also possible to efficiently ventilate the reinforcing strips by using a porous sheet or by winding with a gap.
 次に、図8および図9に示すように、第3の実施形態によるフレキシブルパイプ1Bの腐食防止構造は、外側軸力補強条14において、3本の小径チューブ17(17A、17B、17C)を周方向に隣接させて配置した構成となっている。この場合、外側軸力補強条14の条部材14A、14Aどうし間の隙間(拡大隙間14c)は、3本の小径チューブ17A、17B、17Cが配置可能な広さとなっている。 Next, as shown in FIGS. 8 and 9, the corrosion preventing structure for the flexible pipe 1 </ b> B according to the third embodiment includes three small-diameter tubes 17 (17 </ b> A, 17 </ b> B, 17 </ b> C) in the outer axial force reinforcing strip 14. It is the structure arrange | positioned adjacent to the circumferential direction. In this case, the gap (enlarged gap 14c) between the strip members 14A, 14A of the outer axial force reinforcing strip 14 is wide enough to arrange the three small- diameter tubes 17A, 17B, 17C.
 次に、図10に示す第4の実施形態によるフレキシブルパイプ1Cの腐食防止構造は、3本の小径チューブ17(17A、17B、17C)の末端17bの位置がパイプ軸方向(X方向)で異なる構成となっている。符号17Aの第1小径チューブの末端17bはパイプ末端1b付近の位置(第1位置P1)に設けられ、第2小径チューブ17Bの末端17bは第1位置P1より所定距離だけ基端側の所定位置(第2位置P2)に設けられ、第3小径チューブ17Cの末端17bは第2位置P2よりさらに所定距離だけ基端側の所定位置(第3位置P3)に設けられている。
 本フレキシブルパイプ1Cでは、各小径チューブ17A、17B、17Cの末端17bの位置P1、P2、P3毎に、腐食性ガスを第1の実施形態の回収槽4(図6参照)を使って排出することができるので、各小径チューブ17A、17B、17Cのそれぞれから排出される腐食性ガスのガス量を測定することで、フレキシブルパイプ1の軸方向Xで複数位置におけるガス濃度を正確に確認することができる。
Next, in the corrosion prevention structure for the flexible pipe 1C according to the fourth embodiment shown in FIG. 10, the positions of the ends 17b of the three small diameter tubes 17 (17A, 17B, 17C) are different in the pipe axial direction (X direction). It has a configuration. The distal end 17b of the first small-diameter tube 17A is provided at a position near the pipe distal end 1b (first position P1), and the distal end 17b of the second small-diameter tube 17B is a predetermined position on the base end side by a predetermined distance from the first position P1. Provided at (second position P2), the distal end 17b of the third small diameter tube 17C is provided at a predetermined position (third position P3) on the base end side by a predetermined distance further than the second position P2.
In the flexible pipe 1C, the corrosive gas is discharged using the collection tank 4 (see FIG. 6) of the first embodiment for each of the positions P1, P2, and P3 of the ends 17b of the small diameter tubes 17A, 17B, and 17C. Therefore, it is possible to accurately confirm the gas concentration at a plurality of positions in the axial direction X of the flexible pipe 1 by measuring the amount of corrosive gas discharged from each of the small diameter tubes 17A, 17B, and 17C. Can do.
 以上、本発明によるフレキシブルパイプの腐食防止構造の実施形態について説明したが、本発明は上記の実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。
 例えば、補強層Tに設けられる小径チューブ17の配置箇所は、上述した実施形態に限定されることはない。例えば、内側軸力補強条13のみに小径チューブ17を配置させてもよく、また、C型条からなる内圧補強条12の隙間に沿って小径チューブ17を配置させる構造であってもかまわない。
As mentioned above, although embodiment of the corrosion prevention structure of the flexible pipe by this invention was described, this invention is not limited to said embodiment, In the range which does not deviate from the meaning, it can change suitably.
For example, the arrangement | positioning location of the small diameter tube 17 provided in the reinforcement layer T is not limited to embodiment mentioned above. For example, the small-diameter tube 17 may be disposed only on the inner axial force reinforcing strip 13, or the small-diameter tube 17 may be disposed along the gap of the internal pressure reinforcing strip 12 formed of a C-shaped strip.
 また、本実施形態では海上に回収槽4を設け、小径チューブ17によって吸い出した腐食性ガスを回収槽4に放出しているが、これに限らず、小径チューブ17の基端部17aを大気開放し、回収槽4を用いずに大気に直接ガスを放出するようにしても良い。 Further, in the present embodiment, the recovery tank 4 is provided on the sea, and the corrosive gas sucked out by the small diameter tube 17 is released to the recovery tank 4, but not limited to this, the base end portion 17a of the small diameter tube 17 is opened to the atmosphere. However, the gas may be directly released to the atmosphere without using the recovery tank 4.
 さらに、小径チューブ17の内径、材質、本数、配置間隔、末端部17bの位置などの構成は、補強条の種類、フレキシブルパイプの構成や長さ等の条件に応じて任意に設定することが可能である。
 その他、本発明の趣旨を逸脱しない範囲で、上記した実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した実施形態を適宜組み合わせてもよい。
Further, the configuration of the small diameter tube 17 such as the inner diameter, the material, the number, the arrangement interval, and the position of the end portion 17b can be arbitrarily set according to conditions such as the type of reinforcing strip, the configuration and length of the flexible pipe, and the like. It is.
In addition, it is possible to appropriately replace the constituent elements in the above-described embodiments with well-known constituent elements without departing from the spirit of the present invention, and the above-described embodiments may be appropriately combined.
 補強層内に溜まった腐食性ガスを小径チューブの末端から基端側へ向けて移動させて強制的に排出することができる。さらに、腐食性ガスを新鮮な空気に置換した換気し補強層内の腐食性ガスの濃度を低下することができる。その結果、鋼材からなる補強条の腐食が抑えられ、フレキシブルパイプの耐久性を向上させることができる。 The corrosive gas accumulated in the reinforcing layer can be forcibly discharged by moving from the end of the small diameter tube toward the base end. Further, the concentration of the corrosive gas in the reinforcing layer can be lowered by ventilating the corrosive gas with fresh air. As a result, corrosion of the reinforcing strip made of steel can be suppressed, and the durability of the flexible pipe can be improved.
 1  フレキシブルパイプ
 2  回収船
 3  端部構造
 4  回収槽
 5  エアパイプ
 5a  開口部(吸込部)
 11  内管
 12  内圧補強条
 13  内側軸力補強条
 13a  隙間
 13b  拡大隙間
 14  外側軸力補強条
 14a  隙間
 14b、14c  拡大隙間
 15  外部シース
 17、17A、17B、17C  小径チューブ
 17a  基端部
 17b  末端部
 T  補強層
DESCRIPTION OF SYMBOLS 1 Flexible pipe 2 Recovery ship 3 End part structure 4 Recovery tank 5 Air pipe 5a Opening part (suction part)
DESCRIPTION OF SYMBOLS 11 Inner tube 12 Internal pressure reinforcement strip 13 Inner axial force reinforcement strip 13a Clearance 13b Expansion gap 14 Outer axial force reinforcement strip 14a Clearance 14b, 14c Expansion clearance 15 Outer sheath 17, 17A, 17B, 17C Small diameter tube 17a Base end portion 17b End portion T reinforcement layer

Claims (7)

  1.  フレキシブルパイプの腐食防止構造であって、
     液密性を有する内管と、
     外部シースと、
     螺旋状に捩られた複数の条部材からなり前記内管と前記外部シースとの間の補強層に配置される補強条とを備え、
     前記補強層内の腐食性ガスをパイプ軸方向で前記フレキシブルパイプの末端側から基端側に向けて排出するためのフレキシブルパイプの腐食防止構造であって、
     前記補強層には、前記パイプ軸方向に沿って連続して延びる小径チューブが配設されるフレキシブルパイプの腐食防止構造。
    A corrosion prevention structure for flexible pipes,
    An inner tube having liquid tightness;
    An outer sheath,
    Comprising a plurality of spirally twisted strip members and disposed on a reinforcing layer between the inner tube and the outer sheath,
    A structure for preventing corrosion of a flexible pipe for discharging corrosive gas in the reinforcing layer from the distal side to the proximal side of the flexible pipe in the axial direction of the pipe,
    A corrosion prevention structure for a flexible pipe, wherein the reinforcing layer is provided with a small-diameter tube continuously extending along the pipe axial direction.
  2.  請求項1に記載のフレキシブルパイプの腐食防止構造であって、
     前記小径チューブは、前記補強条の条部材どうしの間に設けられる螺旋状の隙間に配置されているフレキシブルパイプの腐食防止構造。
    The structure for preventing corrosion of a flexible pipe according to claim 1,
    The said small diameter tube is a corrosion prevention structure of the flexible pipe arrange | positioned in the helical clearance gap provided between the strip members of the said reinforcing strip.
  3.  請求項1又は2に記載のフレキシブルパイプの腐食防止構造であって、
     前記小径チューブは、前記補強条の周方向に所定間隔をもって複数本配置されているフレキシブルパイプの腐食防止構造。
    The flexible pipe corrosion prevention structure according to claim 1 or 2,
    The said small diameter tube is a corrosion prevention structure of the flexible pipe arrange | positioned with predetermined spacing in the circumferential direction of the said reinforcing strip.
  4.  請求項3に記載のフレキシブルパイプの腐食防止構造であって、
     前記複数本の小径チューブのそれぞれの末端位置が前記パイプ軸方向で異なっているフレキシブルパイプの腐食防止構造。
    The structure for preventing corrosion of a flexible pipe according to claim 3,
    A corrosion prevention structure for a flexible pipe, wherein the end positions of the plurality of small-diameter tubes are different in the pipe axial direction.
  5.  請求項1又は2に記載のフレキシブルパイプの腐食防止構造であって、
     前記補強層の基端側には、前記隙間に連通するとともに大気開放された吸込口が設けられているフレキシブルパイプの腐食防止構造。
    The flexible pipe corrosion prevention structure according to claim 1 or 2,
    A structure for preventing corrosion of a flexible pipe, wherein a suction port that is communicated with the gap and opened to the atmosphere is provided on a proximal end side of the reinforcing layer.
  6.  請求項3に記載のフレキシブルパイプの腐食防止構造であって、
     前記補強層の基端側には、前記隙間に連通するとともに大気開放された吸込口が設けられているフレキシブルパイプの腐食防止構造。
    The structure for preventing corrosion of a flexible pipe according to claim 3,
    A structure for preventing corrosion of a flexible pipe, wherein a suction port that is communicated with the gap and opened to the atmosphere is provided on a proximal end side of the reinforcing layer.
  7.  請求項4に記載のフレキシブルパイプの腐食防止構造であって、
     前記補強層の基端側には、前記隙間に連通するとともに大気開放された吸込口が設けられているフレキシブルパイプの腐食防止構造。
    The flexible pipe corrosion prevention structure according to claim 4,
    A structure for preventing corrosion of a flexible pipe, wherein a suction port that is communicated with the gap and opened to the atmosphere is provided on a proximal end side of the reinforcing layer.
PCT/JP2011/050107 2010-01-08 2011-01-06 Corrosion prevention structure for flexible pipe WO2011083819A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010002970A JP2011141004A (en) 2010-01-08 2010-01-08 Corrosion preventive structure of flexible pipe
JP2010-002970 2010-01-08

Publications (1)

Publication Number Publication Date
WO2011083819A1 true WO2011083819A1 (en) 2011-07-14

Family

ID=44305556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050107 WO2011083819A1 (en) 2010-01-08 2011-01-06 Corrosion prevention structure for flexible pipe

Country Status (2)

Country Link
JP (1) JP2011141004A (en)
WO (1) WO2011083819A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012092931A1 (en) * 2011-01-06 2012-07-12 National Oilwell Varco Denmark I/S An unbonded flexible pipe
WO2013152770A1 (en) * 2012-04-12 2013-10-17 National Oilwell Varco Denmark I/S A method of producing an unbonded flexible pipe and an unbonded flexible pipe
WO2015121616A1 (en) * 2014-02-11 2015-08-20 Ge Oil & Gas Uk Limited Provision of predetermined fluid
WO2019141326A1 (en) * 2018-01-18 2019-07-25 National Oilwell Varco Denmark I/S A method and a system for circulating a rinse liquid in a flexible pipe
WO2020099228A1 (en) * 2018-11-13 2020-05-22 National Oilwell Varco Denmark I/S A method for flushing a flexible pipe and an assembly of a flexible pipe and an end-fitting

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5739764B2 (en) * 2011-08-10 2015-06-24 古河電気工業株式会社 Flexible pipe for fluid transportation, corrosive gas extraction method, fluid transportation system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59226787A (en) * 1983-06-09 1984-12-19 横浜ゴム株式会社 High pressure rubber hose
JPS60118080U (en) * 1984-01-19 1985-08-09 古河電気工業株式会社 composite pipe
JPS6383486A (en) * 1986-09-22 1988-04-14 古河電気工業株式会社 Permeable-gas removing method of flexible composite pipe
JPH01171989U (en) * 1988-05-24 1989-12-06

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59226787A (en) * 1983-06-09 1984-12-19 横浜ゴム株式会社 High pressure rubber hose
JPS60118080U (en) * 1984-01-19 1985-08-09 古河電気工業株式会社 composite pipe
JPS6383486A (en) * 1986-09-22 1988-04-14 古河電気工業株式会社 Permeable-gas removing method of flexible composite pipe
JPH01171989U (en) * 1988-05-24 1989-12-06

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012092931A1 (en) * 2011-01-06 2012-07-12 National Oilwell Varco Denmark I/S An unbonded flexible pipe
US9523446B2 (en) 2011-01-06 2016-12-20 National Oilwell Varco Denmark I/S Unbonded flexible pipe
WO2013152770A1 (en) * 2012-04-12 2013-10-17 National Oilwell Varco Denmark I/S A method of producing an unbonded flexible pipe and an unbonded flexible pipe
US9796148B2 (en) 2012-04-12 2017-10-24 National Oilwell Varco Denmark I/S Method of producing an unbonded flexible pipe
WO2015121616A1 (en) * 2014-02-11 2015-08-20 Ge Oil & Gas Uk Limited Provision of predetermined fluid
US10139021B2 (en) 2014-02-11 2018-11-27 Ge Oil & Gas Uk Limited Provision of predetermined fluid
WO2019141326A1 (en) * 2018-01-18 2019-07-25 National Oilwell Varco Denmark I/S A method and a system for circulating a rinse liquid in a flexible pipe
WO2020099228A1 (en) * 2018-11-13 2020-05-22 National Oilwell Varco Denmark I/S A method for flushing a flexible pipe and an assembly of a flexible pipe and an end-fitting

Also Published As

Publication number Publication date
JP2011141004A (en) 2011-07-21

Similar Documents

Publication Publication Date Title
WO2011083819A1 (en) Corrosion prevention structure for flexible pipe
EP2661578B1 (en) An unbonded flexible pipe
US6634387B1 (en) Reinforced flexible tubular pipe with conveying back of leak fluid
US8857521B2 (en) Venting gas
US8256469B2 (en) Method for removal of permeate gases from a flexible tubular pipe and pipe embodied for carrying out the same
US9546751B2 (en) Gas venting
US8820412B2 (en) Methods, systems and apparatus for circulating fluid within the annulus of a flexible pipe riser
US9909368B2 (en) Flexible pipe and a method for providing buoyancy to a jumper or riser assembly
WO2013039575A1 (en) Methods and systems for circulating fluid within the annulus of a flexible pipe riser
US10139021B2 (en) Provision of predetermined fluid
WO2019239093A1 (en) Venting apparatus and method
US20140305531A1 (en) Flexible pipe
JP3125884U (en) Edge mask for continuous electroplating equipment
JP2007146891A (en) Marine hose
WO2020099228A1 (en) A method for flushing a flexible pipe and an assembly of a flexible pipe and an end-fitting
JP2006077906A (en) Fluid transport pipe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11731817

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11731817

Country of ref document: EP

Kind code of ref document: A1