WO2011083779A1 - Optical element and light-emitting device - Google Patents

Optical element and light-emitting device Download PDF

Info

Publication number
WO2011083779A1
WO2011083779A1 PCT/JP2011/050007 JP2011050007W WO2011083779A1 WO 2011083779 A1 WO2011083779 A1 WO 2011083779A1 JP 2011050007 W JP2011050007 W JP 2011050007W WO 2011083779 A1 WO2011083779 A1 WO 2011083779A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting device
incident
prism
optical element
Prior art date
Application number
PCT/JP2011/050007
Other languages
French (fr)
Japanese (ja)
Inventor
恵一 望月
Original Assignee
日東光学株式会社
小池 康博
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東光学株式会社, 小池 康博 filed Critical 日東光学株式会社
Publication of WO2011083779A1 publication Critical patent/WO2011083779A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0091Reflectors for light sources using total internal reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0061Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
    • G02B19/0066Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED in the form of an LED array
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0226Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures having particles on the surface
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0294Diffusing elements; Afocal elements characterized by the use adapted to provide an additional optical effect, e.g. anti-reflection or filter
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2103/00Elongate light sources, e.g. fluorescent tubes
    • F21Y2103/10Elongate light sources, e.g. fluorescent tubes comprising a linear array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems

Definitions

  • the present invention relates to an optical element and a light emitting device.
  • LEDs Light Emitting Diodes
  • a plurality of LEDs are arranged at a predetermined interval, and a long transparent body is arranged close to the LEDs along the direction in which the LEDs are arranged.
  • a light scattering layer for scattering light is applied.
  • This light-emitting device is supposed to be able to uniformly irradiate light from an LED (see Patent Document 1).
  • an object of the present invention is to provide an optical element and a light-emitting device that can make the illuminance of illumination light more uniform and reduce glare when a plurality of light sources such as LEDs are used as the light source.
  • an optical element of the present invention has a light guide part that exhibits a triangular prism, and one of the three side surfaces of the light guide part is an incident surface on which light is incident, and the other one
  • the light incident on the side surface is a total reflection surface that totally reflects the light, and the remaining one side surface is the light output surface that emits the light that is totally reflected.
  • the incident surface includes a plane including the total reflection surface and a plane including the output surface.
  • a first prism portion including a plurality of first triangular prisms having a ridge portion with a ridge line direction in a direction intersecting with.
  • the base angle ⁇ 1 of the first triangular prism is not less than 20 degrees and not more than 70 degrees, and the interval P1 between adjacent ridges of the plurality of first triangular prisms is from the bottom surface of the first triangular prism.
  • the height to the ridge is H1, it is preferable that (2 ⁇ H1 / tan ⁇ 1) ⁇ P1 ⁇ (10 ⁇ H1 / tan ⁇ 1).
  • the light scattering particles are translucent silicone particles having a particle size of 2 ⁇ m to 9 ⁇ m, and have a scattering parameter corresponding to a scattering coefficient by the light scattering particles.
  • turbidity it is preferable that ⁇ > 0.01.
  • a second prism portion including a plurality of second triangular prisms arranged along the arrangement direction of the plurality of first triangular prisms is provided on the emission surface.
  • the base angle ⁇ 2 of the second triangular prism portion is not less than 50 degrees and less than 90 degrees, and the interval P2 between adjacent ridge portions of the plurality of second triangular prisms is from the bottom surface of the second triangular prism.
  • H2 the height to the ridge of the second triangular prism
  • a light-emitting device of the present invention has a light guide unit that exhibits a triangular prism, and one of the three side surfaces of the light guide unit is an incident surface on which light is incident, and the other one The light incident on the side surface is a total reflection surface that totally reflects the light, and the remaining one side surface is the light output surface that emits the light that is totally reflected.
  • the incident surface includes a plane including the total reflection surface and a plane including the output surface.
  • a plurality of light sources including a first prism portion including a plurality of first triangular prisms having a ridge portion with a ridge line direction in a direction intersecting with the light source, and a plurality of light sources that allow light to enter the incident surface. Are arranged in the arrangement direction of the first triangular prism.
  • a portion where the first prism portion is not provided exists in a portion of the incident surface that does not face the light source.
  • the emission colors of the plurality of light sources can be different.
  • the optical element contains light scattering particles that multiple-scatter incident light, and the light scattering particles are translucent silicone particles having a particle size of 2 ⁇ m to 9 ⁇ m, which correspond to the scattering coefficient of the light scattering particles.
  • turbidity that is a scattering parameter is ⁇ , it is preferable that ⁇ > 0.01.
  • the base angle ⁇ 1 of the first triangular prism is not less than 20 degrees and not more than 70 degrees, and the interval P1 between adjacent ridge portions of the plurality of first triangular prisms is ridged from the bottom surface of the first triangular prism.
  • the height to the portion is H1
  • the light scattering particles are translucent silicone particles having a particle size of 2 ⁇ m to 9 ⁇ m, and the optical element has ⁇ > when turbidity, which is a scattering parameter corresponding to the scattering coefficient by the light scattering particles, is ⁇ > It is preferable that it is 0.01.
  • a second prism portion including a plurality of second triangular prisms arranged along the arrangement direction of the plurality of first triangular prisms is provided on the emission surface.
  • the base angle ⁇ 2 of the second triangular prism portion is not less than 50 degrees and less than 90 degrees, and the interval P2 between adjacent ridge portions of the plurality of second triangular prisms is from the bottom surface of the second triangular prism.
  • H2 the height to the ridge of the second triangular prism
  • the present invention when a plurality of light sources such as LEDs are used as the light source, it is possible to provide an optical element and a light emitting device capable of making the illuminance and luminance of illumination light more uniform and reducing glare.
  • FIG. 2 is a simplified diagram of the light emitting device according to the first embodiment of the present invention, and is a diagram showing a positional relationship between the light guide and the LED shown in FIG. 1.
  • a light-emitting device similar to the light-emitting device according to the first embodiment of the present invention is configured using a light guide that omits the first prism portion and the light scattering particles from the light guide. It is a figure which shows the luminance distribution of the surface equivalent to an output surface.
  • the light emitting device according to the first embodiment of the present invention which emits light under the same conditions as the light emitting device of the comparative example shown in FIG. 9, and uses the light guide that does not contain light scattering particles, the luminance of the exit surface It is a figure which shows distribution.
  • the light emitting device according to the first embodiment of the present invention which emits light under the same conditions as the light emitting device of the comparative example shown in FIG.
  • FIG. 9 is a view showing a modification of the light emitting device according to the first embodiment of the present invention in a state where a reflecting member that covers the left end surface, the right end surface, the incident surface, and the total reflection surface of the light guide is attached to the light emitting device. is there.
  • FIG. 1 is a perspective view showing a configuration of a light guide 1 which is an optical element according to the first embodiment of the present invention.
  • a light guide 1 (optical element) having a light guide portion 1A, which is a resin molded body made of transparent polymethyl methacrylate (hereinafter abbreviated as “PMMA”), has a planar left end. It has a long triangular prism shape in a direction from the surface 2 toward the planar right end surface 3.
  • the three side surfaces of the light guide section 1 ⁇ / b> A presenting a triangular prism are an incident surface 4 on which light is incident, a total reflection surface 5 that totally reflects incident light, and an output surface 6 that emits the totally reflected light to the outside.
  • the light guide 1 contains the light-scattering particle
  • the incident surface 4 is provided with a first prism portion 7 composed of three first triangular prisms 7A that spread incident light in the longitudinal direction.
  • the first triangular prism 7 ⁇ / b> A has a ridge portion 12 whose ridge line direction is directed in a direction intersecting a plane including the total reflection surface 5 and a plane including the exit surface 6. That is, the first triangular prism 7A has the ridge line direction oriented in a direction perpendicular to the ridge 4A where the incident surface 4 and the total reflection surface 5 intersect and the ridge 4B where the incident surface 4 and the exit surface 6 intersect. It has a ridge 12.
  • the angle ⁇ formed by the incident surface 4 and the total reflection surface 5 is 40 degrees
  • the angle ⁇ formed by the total reflection surface 5 and the output surface 6 is 50 degrees
  • is 90 degrees.
  • a plurality of first prism portions 7 are provided at regular intervals along the longitudinal direction of the light guide 1 (the direction parallel to the ridge portions 4A and 4B), and between the first prism portions 7, The first prism portion 7 is not formed on the prism non-formed portion 8.
  • FIG. 2 is a view of the first prism portion 7 as viewed from the exit surface 6 side shown in FIG.
  • the first prism portion 7 has a plurality of first triangular prisms 7A. These first triangular prisms 7A are formed by zigzag irregularities formed by intersecting a plurality of slopes 11 adjacent in a V shape. Each inclined surface 11 extends along the short direction of the light guide 1 (the direction connecting the ridge 4A and the ridge 4B). A ridge line including the vertex of the convex portion is the ridge portion 12.
  • the angle ⁇ 1 formed by the inclined surface 11 and the bottom surface 13 is 45 degrees.
  • the distance P1 between the adjacent ridges 12 is within the range of (2 ⁇ H1 / tan ⁇ 1) ⁇ P ⁇ (10 ⁇ H1 / tan ⁇ 1), where the height from the bottom surface 13 to the ridge 12 is H1.
  • P1 2 ⁇ H1 / tan ⁇ 1
  • the inclined surfaces 11 intersect each other on the concave side.
  • H1 0.25
  • P1 is 0.5 mm.
  • This silicone particle is a light guide provided with a volumetric uniform scattering ability, and includes a large number of spherical particles as scattering fine particles. When light enters the light guide 1, the light is scattered by the scattering fine particles.
  • Mie scattering theory is the solution of Maxwell's electromagnetic equation for the case where spherical particles (scattering fine particles) having a refractive index different from that of the medium exist in a medium (matrix) having a uniform refractive index. .
  • the intensity distribution I ( ⁇ , ⁇ ) depending on the angle of the scattered light scattered by the scattering fine particles corresponding to the light scattering particles is expressed by the following equation (1).
  • is a size parameter indicating the optical size of the scattering fine particles, and is an amount corresponding to the radius r of the spherical particles (scattering fine particles) normalized by the wavelength ⁇ of light in the matrix.
  • i 1 and i 2 in the formula (1) are represented by the formula (4).
  • a and b with the subscript ⁇ in the expressions (2) to (4) are expressed by the expression (5).
  • P (cos ⁇ ) with superscript 1 and subscript ⁇ is Legendre's polynomial
  • a and b with subscript ⁇ are first- and second-order Recati-Bessel functions ⁇ * and ⁇ * (where “*” Means the subscript ⁇ ) and its derivative.
  • m is the relative refractive index of the scattering fine particles based on the matrix
  • m nscatter / nmattrix.
  • FIG. 3 is a graph showing the intensity distribution I ( ⁇ , ⁇ ) by a single true spherical particle based on the above equations (1) to (5).
  • FIG. 3 shows an angular distribution I ( ⁇ , ⁇ ) of scattered light intensity when there is a true spherical particle as a scattering fine particle at the position of the origin G and incident light is incident from below.
  • the distance from the origin G to each of the curves S1 to S3 is the scattered light intensity in each scattering angle direction.
  • Curve S1 shows the scattered light intensity when ⁇ is 1.7
  • curve S2 shows the scattered light intensity when ⁇ is 11.5
  • curve S3 shows the scattered light intensity when ⁇ is 69.2. Yes.
  • the scattered light intensity is shown on a logarithmic scale. For this reason, the portion that appears as a slight difference in intensity in FIG. 3 is actually a very large difference.
  • the larger the size parameter ⁇ (the larger the particle size of the true spherical particle when considered at a certain wavelength ⁇ ), the higher the directivity with respect to the upper side (front of the irradiation direction). It can be seen that light is highly scattered. Actually, the angle distribution I ( ⁇ , ⁇ ) of the scattered light intensity is controlled by using the radius r of the scatterer and the relative refractive index m of the medium and the scattered fine particles as parameters if the incident light wavelength ⁇ is fixed. can do. In addition, the light guide 1 has a large forward scattering.
  • I ( ⁇ ) in the equation (6) is the scattering intensity of the true spherical particle having the size parameter ⁇ represented by the equation (1). If light of intensity Io enters the light scattering light guide and passes through the distance y, then the intensity of the light is attenuated to I by scattering, and these relationships are expressed by the following equation (7).
  • ⁇ in the equation (7) is called turbidity and corresponds to the scattering coefficient of the medium, and is proportional to the number N of particles as in the following equation (8).
  • ⁇ s is a scattering cross section.
  • the degree of multiple scattering in the light scattering light guide can be controlled by changing the turbidity ⁇ .
  • the light scattering particles contained in the light guide 1 are translucent silicone particles having an average particle diameter of 2.4 ⁇ m.
  • FIG. 4 is a simplified diagram of the light emitting device 21 according to the first embodiment of the present invention, and is a diagram showing a positional relationship between the light guide 1 and the LEDs 22 shown in FIG.
  • the LED 22 as a light source is a chip type chip that emits white light and has a diameter of 2.4 mm, and its luminous flux is 9 lm.
  • the LED 22 is disposed at a position facing each first prism portion 7. In the present embodiment, for example, they are arranged at intervals of 25 mm, and light is emitted toward the first prism portions 7.
  • FIG. 5 is a diagram showing the simplification of the light path (light path when the light emitted from the LED 22 passes through the light guide 1) L of the light emitting device 21, and is a view seen from the right end face 3 side.
  • the light emitted from the LED 22 passes through the incident surface 4, is totally reflected by the total reflection surface 5, and is emitted from the emission surface 6.
  • FIG. 6 is a diagram showing the state of light refraction when the light emitted from the LED 22 passes through the first prism unit 7 in the light emitting device 21.
  • the light L1 emitted from the LED 22 is incident on the inclined surface 11 of the first prism portion 7 (first triangular prism 7A).
  • the light L1 incident on the slope 11 on the left end surface 2 side of the ridge 12 is refracted on the right end surface 3 side, and the light L1 incident on the slope 11 on the right end surface 3 of the ridge 12 is the left end. Refracts to the surface 2 side.
  • the light emitted from the LED 22 and incident on the first prism portion 7 as a whole is compared with the case where the light is incident on a plane where the first prism portion 7 is not formed. Is diverged to the side.
  • the inclined surface 11 is not inclined with respect to the short direction of the incident surface 4. Therefore, the incident light L ⁇ b> 1 is difficult to diverge in the short direction of the light guide 1. Further, the light L1 incident on the light guide 1 is multiple-scattered by the light scattering particles.
  • FIG. 7 is a perspective view showing a configuration of a light guide 31 which is an optical element according to the second embodiment of the present invention.
  • the difference between the light guide 31 and the light guide 1 is that the second prism portion 32 that refracts the emitted light in the longitudinal direction of the light guide 31 and brings the emission direction closer to the direction orthogonal to the emission surface is emitted.
  • This is a point provided on the entire surface 6.
  • the light emitting device 41 described later using the light guide 31 and the light emitting device 21 have no structural difference except for this point. Therefore, members or elements that are common to the light guide 1 and the light guide 31, and members or elements that are common to the light emitting device 21 and the light emitting device 41 are denoted by the same reference numerals and described below. Detailed description is omitted.
  • FIG. 8 is a view of the second prism portion 32 viewed from the incident surface 4 side shown in FIG. 7 in the light emitting device 41.
  • the second prism portion 32 has a plurality of second triangular prisms 32A. These second triangular prisms 32A are formed by zigzag irregularities formed by intersecting a plurality of second inclined surfaces 42 adjacent to each other in a V shape. Each second inclined surface 42 extends along the short direction of the light guide 31 (the direction connecting the ridge 4A and the ridge 4B). The ridge line including the vertex of the second convex portion is the second ridge portion 43.
  • the angle ⁇ 2 formed by the second inclined surface 42 and the second bottom surface 44 is 80 degrees.
  • the interval P2 between the adjacent second ridges 43 is (2 ⁇ H2 / tan ⁇ 2) ⁇ P2 ⁇ (20, where the height from the second bottom surface 44 to the second ridge 43 is H2.
  • XH2 / tan ⁇ 2) is set to be within a range.
  • P2 2 ⁇ H2 / tan ⁇ 2
  • the second slope 42 intersects on the concave side.
  • H2 0.3 mm and P2 is 0.2 mm.
  • FIG. 8 shows an optical path of the light L2 emitted from the emission surface 6.
  • the light L2 incident on the second inclined surface 42 on the right end surface 3 side with respect to the ridge 43 is refracted toward the right end surface 3 and the second inclined surface 42 on the left end surface 2 with respect to the ridge 43.
  • the light L2 incident on is refracted toward the left end face 2 side. That is, the light exiting from the exit surface 6 is refracted so that the exit direction is closer to the direction orthogonal to the exit surface 6 as a whole compared to when exiting from a plane on which the second prism portion 32 is not formed. To do.
  • the light guides 1, 31 and the light emitting devices 21, 41 using the light guides 1, 31 have a plurality of first light that can diverge (expand) incident light on the incident surface 4 of the light guides 1, 31 in the longitudinal direction.
  • a first prism portion 7 composed of a triangular prism 7A is provided. Therefore, the light guides 1 and 31 and the light emitting devices 21 and 41 using the light guides 1 and 31 can make the illumination light illuminance more uniform and reduce glare even when a plurality of light sources such as the LEDs 22 are used as the light source. .
  • FIG. 9 shows a surface corresponding to the emission surface 6 when a light-emitting device similar to the light-emitting device 21 is configured by using a light-guiding body in which the prism portion 7 and the light scattering particles are omitted from the light-guiding body 1 as a comparative example. It is a figure which shows the luminance distribution in. In the light guide of the comparative example, the portion corresponding to the first prism portion 7 is planar. The diagram on the left represents the luminance distribution on the surface corresponding to the exit surface 6 by the color shading, and shows that the luminance decreases as the color approaches black and increases as the color approaches white.
  • the figure on the right side is a graph showing the luminance distribution of the middle line in the short direction of the surface corresponding to the exit surface 6 of the light guide of the comparative example. It can be seen that the light emitting device of the comparative example has light emitting portions in the form of stripes arranged in the longitudinal direction of the surface corresponding to the emission surface 6, and the difference in luminance between the dark portion and the bright portion is about 12000 cd / m 2 .
  • FIG. 10 is a light-emitting device 21 according to an embodiment of the present invention that emits light under the same conditions as the light-emitting device of the comparative example, and uses a light guide that does not contain light scattering particles.
  • FIG. The diagram on the left shows the luminance distribution on the exit surface 6 with shades of color
  • the diagram on the right is a graph showing the brightness distribution of the middle line of the exit surface 6 in the short direction.
  • the light emitting device 21 has light emitting portions in the longitudinal direction of the emission surface 6 in stripes arranged more finely than the light emitting device of the comparative example.
  • the difference in luminance between the dark part and the bright part is about 5000 cd / m 2 . This shows that the light-emitting device 21 can irradiate light more uniformly than the light-emitting device of the comparative example.
  • the light guides 1 and 31 are such that the first triangular prism 7A constituting the first prism unit 7 has an angle ⁇ 1 formed by the inclined surface 11 and the bottom surface 13 of 45 degrees of 20 degrees or more and 70 degrees or less.
  • the light guides 1 and 31 contain light scattering particles that multiple-scatter the emitted light, and the light scattering particles are translucent silicone particles having a particle diameter of 2 ⁇ m to 9 ⁇ m. By setting it as this particle size range, the forward scattering of the incident light of the light guide 1 can be increased within an appropriate range.
  • turbidity which is a scattering parameter corresponding to a scattering coefficient by light scattering particles
  • FIG. 11 shows a light emitting device 21 according to an embodiment of the present invention that emits light under the same conditions as the light emitting device of the comparative example, and uses a light guide that does not contain light scattering particles 40 mm above the emission surface 6.
  • the diagram on the left represents the illuminance distribution in shades of color as in FIG. 9, and the diagram on the right shows the longitudinal direction of the light guide 1 at the center of the irradiation area of the light irradiated from the exit surface 6.
  • FIG. 11 shows a light emitting device 21 according to an embodiment of the present invention that emits light under the same conditions as the light emitting device of the comparative example, and uses a light guide that does not contain light scattering particles 40 mm above the emission surface 6.
  • the diagram on the left represents the illuminance distribution in shades of color as in
  • FIG. 12 is a diagram showing the illuminance distribution of a portion 40 mm above the exit surface 6 of the light emitting device 21 according to the embodiment of the present invention that emits light under the same conditions as the light emitting device of the comparative example.
  • It is a graph which shows the illuminance distribution of the direction along a direction. The illuminance is evaluated at a position 40 mm away from the emission surface 6.
  • the light-emitting body 1 contains light scattering particles shown in FIG.
  • the illuminated portion is not striped and is uniform.
  • the light guide 31 is composed of a plurality of second triangular prisms 32A made of a plurality of second triangular prisms 32A that refract the light emitted to the emission surface 6 in the longitudinal direction and refract the emission direction so as to approach the direction orthogonal to the emission surface 6.
  • Two prism portions 32 are provided. Therefore, it is possible to prevent the light emission direction from extending in the longitudinal direction from the emission surface 6, and the light emission direction of the light emitting device 41 can be brought closer to the direction orthogonal to the emission surface 6.
  • FIG. 13 is a diagram showing a luminance distribution on the exit surface 6 of the light emitting device 21 according to the embodiment of the present invention that emits light under the same conditions as the light emitting device of the comparative example.
  • the diagram on the left shows the luminance distribution in shades of color
  • the diagram on the right is a graph showing the luminance distribution of the middle line in the short direction of the surface corresponding to the exit surface 6 of the light guide of the comparative example. is there.
  • FIG. 14 is a diagram showing a luminance distribution of the emission surface 6 of the light emitting device 41 according to the embodiment of the present invention that emits light under the same conditions as the light emitting device of the comparative example. As shown in FIG.
  • the luminance of the bright portion is about 11000 cd / m 2 , which indicates that the luminance is higher than that of the light emitting device 21.
  • the second triangular prism 32A constituting the second prism portion 32 has an angle ⁇ 2 formed by the second inclined surface 42 and the second bottom surface 44 of 80 degrees within a range of 50 degrees or more and less than 90 degrees.
  • the interval P2 between the adjacent ridges 43 is H2 from the bottom 44 to the ridge 43, It is set to be in the range of (2 ⁇ H2 / tan ⁇ 2) ⁇ P2 ⁇ (20 ⁇ H2 / tan ⁇ 2).
  • P2 2 ⁇ H2 / tan ⁇ 2
  • the inclined surfaces 42 intersect with each other on the concave side.
  • H2 0.3 mm and P2 is 0.2 mm.
  • the reason why the angle ⁇ 2 is set to 50 degrees or more is to make it easier to refract the emitted light in the direction orthogonal to the emission surface 6 and to make the luminance of the emission surface 6 more uniform.
  • the reason why the angle ⁇ 2 is less than 90 degrees and the reason why (2 ⁇ H / tan ⁇ 2) ⁇ P2 are due to physical restrictions. If P2 ⁇ (20 ⁇ H2 / tan ⁇ 2), the interval between the adjacent second triangular prisms 32 is widened, and a plane portion is formed between the adjacent second triangular prisms 32. Further, it is possible to suppress the emission direction of the light emitted from the emission surface 6 from spreading in the longitudinal direction, and the light emission direction of the light emitting device 41 can be brought close to the direction orthogonal to the emission surface 6.
  • the LEDs 22 are arranged at a plurality of equal intervals in the longitudinal direction of the light guides 1, 31, and the prism-unformed portion 8 in which the first prism portion 7 is not provided in the portion of the incident surface 4 that does not face the LED 22. Is present.
  • a part of the light that spreads in the lateral direction and cannot enter the first prism 7 is incident on the light guides 1 and 31 in the prism non-formation portion 8.
  • Light that spreads in the lateral direction and enters the prism-unformed portion 8 has already spread in the longitudinal direction of the light guides 1 and 31, and therefore does not need to be further refracted by the first prism 7. Therefore, the formation place of the 1st prism 7 can be reduced, and the process at the time of manufacture, etc. can be simplified.
  • the angle ⁇ formed between the incident surface 4 and the total reflection surface 5 of the light guides 1 and 31 is 40 degrees, and the angle ⁇ formed between the total reflection surface 5 and the output surface 6 is 50 degrees, and the output surface 6 and the incident surface 6 are incident.
  • the angle ⁇ made with the surface 4 is 90 degrees. That is, the width dimension of the exit surface 6 is made smaller than the width dimension of the entrance surface 4. Therefore, the light guides 1 and 31 have an advantageous shape when the width dimension of the emission surface 6 must be reduced due to the installation environment of the light emitting devices 21 and 41.
  • the light guides 1 and 31 have triangular prism side surfaces that are long in the direction from the planar left end surface 2 to the right end surface 3, and the three side surfaces are respectively an incident surface 4 on which light is incident and incident light. Is a total reflection surface 5 that totally reflects light, and an emission surface 6 that emits the totally reflected light to the outside.
  • the incident surface 4 includes a first triangular prism 7A that spreads incident light in the longitudinal direction.
  • the prism portion 7 is provided, and the first triangular prism 7A is formed by a zigzag uneven portion (saw-toothed prism portion) formed by crossing a plurality of slopes 11 adjacent to each other in a V shape.
  • the angle ⁇ 1 formed by the inclined surface 11 and the bottom surface 13 is 20 degrees or more.
  • the interval P1 between the adjacent ridges 12 is 70 degrees or less. If from the bottom surface 13 to the ridge 12 height was H1, a (2 ⁇ H1 / tan ⁇ 1) ⁇ P1 ⁇ (10 ⁇ H1 / tan ⁇ 1).
  • the left end surface 2, the right end surface 3, the entrance surface 4 and the exit surface 6 do not have to be flat, and may be, for example, rounded convex shapes.
  • the angle ⁇ 1 formed by the slope 11 and the bottom surface 13 is set to 20 degrees or more and 70 degrees or less, and the interval P1 between the ridge portions 12 of the first triangular prism 7A is a height from the bottom surface 13 to the ridge portion 12.
  • H1 is H1
  • either or both of (2 ⁇ H1 / tan ⁇ 1) ⁇ P1 ⁇ (10 ⁇ H1 / tan ⁇ 1) may not be adopted.
  • the light guides 1 and 31 contain light scattering particles that multiple-scatter incident light.
  • the light scattering particles have a light-transmitting property with a particle diameter of 2.4 ⁇ m within a range of 2 ⁇ m to 9 ⁇ m.
  • turbidity which is a silicone particle and is a scattering parameter corresponding to the scattering coefficient by the light scattering particles
  • the light scattering particles may not be contained in the light guides 1 and 31. Even if it is included, any one of the two of the light scattering particles having a particle diameter of 2 ⁇ m to 9 ⁇ m, a translucent silicone particle, and ⁇ > 0.01. Or not all.
  • the light guide 31 refracts outgoing light on the outgoing surface 6 in the longitudinal direction, and a second prism composed of a plurality of second triangular prisms 32A that brings the outgoing direction closer to a direction orthogonal to the outgoing surface.
  • a portion 32 is provided.
  • the second prism portion 32 may not be provided like the light guide 1.
  • the light guide 31 has a zigzag uneven portion (sawtooth shape) formed by intersecting a plurality of second inclined surfaces 42 adjacent to each other in a V shape. And a ridge line including the apex of the second convex portion as a ridge portion 43, and a surface including a portion where the inclined surface 42 intersects on the second concave portion side is a second bottom surface of the second prism. 44, the angle ⁇ 2 formed by the second inclined surface 42 and the second bottom surface 44 is not less than 50 degrees and less than 90 degrees, and the interval P2 between the adjacent second ridges 43 is the second bottom surface.
  • the angle ⁇ 2 formed by the second inclined surface 42 and the second bottom surface 44 is set to 50 degrees or more and less than 90 degrees, and (2 ⁇ H2 / tan ⁇ 2) ⁇ P2 ⁇ (20 ⁇ H2 / tan ⁇ 2). Either or both of these may not be adopted.
  • the light emitting devices 21 and 41 have triangular prism side surfaces extending in a direction from the planar left end surface 2 to the planar right end surface 3, and the three side surfaces are incident surfaces 4 on which light is incident.
  • the incident surface 4 has a prism portion 7 composed of a plurality of prisms that spread the incident light in the longitudinal direction. Are provided, and an LED 22 that emits light toward the incident surface 6 is disposed at a position facing the prism portion 7 on the incident surface 4 side.
  • the left end surface 2 and the right end surface 3 do not have to be flat, and may be, for example, rounded convex shapes.
  • another light source for example, discharge light (xenon lamp, mercury lamp) or laser with high light density may be used.
  • a plurality of LEDs 22 are arranged at equal intervals in the longitudinal direction of the light guides 1 and 31.
  • the LEDs 22 do not have to be arranged at equal intervals and may be unevenly distributed.
  • the first prism portion 7 may be formed over the entire incident surface 4 without the prism-unformed portion 8 being present.
  • the emission color of the plurality of LEDs 22 is white, the emission color of the plurality of LEDs 22 may be different. Then, the light guides 1 and 31 may be mixed in color, and the mixed color light may be emitted from the emission surface 6. Further, the LED 22 is not limited to a chip type but can be a discrete type LED or the like.
  • the light guides 1 and 31 are made of PMMA, but other acrylic ester or methacrylic ester polymer, which is an acrylic resin that is a highly transparent amorphous resin, Other light-transmitting resins such as polystyrene and polycarbonate, and those made of glass can be used.
  • FIG. 15 is a modification of the light emitting device 21 according to the first embodiment of the present invention, and shows a reflecting member 51 that covers the left end surface 2, the right end surface 3, the incident surface 4, and the total reflection surface 5 of the light guide 1. It is a figure which shows the state attached to the light-emitting device 21.
  • the reflecting member 51 includes a material having a high light reflectivity, for example, a mirror surface material, a metal material, a white ceramic material, and the like, and reflects light leaking from other than the exit surface 6 of the light guide 1 to thereby reflect the inside of the light guide 1. Play the role of returning to.
  • the reflecting member 51 has a hole 52 for fitting and fixing the LED 22. For this reason, the hole part 52 hold
  • the hole 52 may not be provided, and the LED 22 may be fixed to the inner surface of the reflecting member 51, or the reflecting member 51 may not fix the LED 22.
  • the reflecting member 51 may be attached to the light emitting device 41. Further, the reflecting member 51 covers the entire left end surface 2, right end surface 3, incident surface 4 and total reflection surface 5 of the light guide 1, but covers any one, two or three of these.
  • the left end surface 2, the right end surface 3, the incident surface 4, and the total reflection surface 5 may be partially covered.
  • the reflecting member 51 increases the light reflectance of the portion facing the left end surface 2 and the right end surface 3 in order to suppress the light spread by the prism portion 7 from being emitted from the left end surface 2 and the right end surface 3. Also good.

Abstract

Disclosed are an optical element and a light-emitting device both for making the illuminant of illuminating light more uniform and reducing the glare when a plurality of light sources such as LEDs are used as light sources. The light-emitting device (21) is provided with a light guide (1) which comprises a light guide section (1A) having a shape of a triangular prism. Of the three side surfaces of the light guide section (1A), a side surface is made to serve as an entrance surface (4) through which light enters, another side surface is made to serve as a total reflection surface (5) which totally reflects the light having entered, and the other side surface is made to serve as an exit surface (6) from which the totally reflected light is allowed to exit outside. On the entrance surface (4), provided is a first prism section (7) composed of a plurality of first triangular prisms (7A) having edge sections (12) the edge direction of which crosses the plane including the total reflection surface (5) and the plane including the exit surface (6). A plurality of light sources (22) for allowing light to enter through the entrance surface (4) are arranged in the direction in which the first triangular prisms (7A) are arranged.

Description

光学素子および発光装置Optical element and light emitting device
 本発明は、光学素子および発光装置に関する。 The present invention relates to an optical element and a light emitting device.
 LED(Light Emitting Diode)を光源に用いた発光装置としては、以下のものが提案されている。すなわち、複数のLEDを所定間隔に並べ、そのLEDの並ぶ方向に沿って長尺な透明体をLEDに近接させて配置し、その透明体においてLEDの光が通過する光照射面に、LEDの光を散乱させる光散乱層が塗布されたものである。この発光装置は、LEDの光を均一に照射することが可能であるとされている(特許文献1参照)。 The following are proposed as light emitting devices using LEDs (Light Emitting Diodes) as light sources. That is, a plurality of LEDs are arranged at a predetermined interval, and a long transparent body is arranged close to the LEDs along the direction in which the LEDs are arranged. A light scattering layer for scattering light is applied. This light-emitting device is supposed to be able to uniformly irradiate light from an LED (see Patent Document 1).
特開2009-32563号公報JP 2009-32563 A
 しかしながら、特許文献1に記載されている発光装置によっても、光散乱層の散乱能のみだけでは光を均一に照射するのが不十分なことがある。すると光の照射密度の高い部分ではグレアが発生する。また、この発光装置の製造の際には、光散乱層の塗布工程を要し、煩雑である。 However, even with the light-emitting device described in Patent Document 1, it may be insufficient to irradiate light uniformly only with the scattering ability of the light scattering layer. Then, glare occurs in a portion where the light irradiation density is high. Further, when manufacturing the light emitting device, a light scattering layer coating process is required, which is complicated.
 そこで、本発明の目的は、光源としてLED等の光源を複数用いた場合に、照明光の照度をより均一にし、グレアを低減することが可能な光学素子および発光装置を提供することである。 Therefore, an object of the present invention is to provide an optical element and a light-emitting device that can make the illuminance of illumination light more uniform and reduce glare when a plurality of light sources such as LEDs are used as the light source.
 上記目的を達成するため、本発明の光学素子は、三角柱を呈する導光部を有し、導光部の3つの側面のうち、1つの側面を光が入射する入射面とし、他の1つの側面を入射した光を全反射する全反射面とし、残りの1つの側面を全反射した光を外部へ出射する出射面とし、入射面には、全反射面を含む平面と出射面を含む平面とに交差する方向に稜線方向を向けた稜部を有する複数の第1の三角プリズムからなる第1のプリズム部が設けられている。 In order to achieve the above object, an optical element of the present invention has a light guide part that exhibits a triangular prism, and one of the three side surfaces of the light guide part is an incident surface on which light is incident, and the other one The light incident on the side surface is a total reflection surface that totally reflects the light, and the remaining one side surface is the light output surface that emits the light that is totally reflected. The incident surface includes a plane including the total reflection surface and a plane including the output surface. And a first prism portion including a plurality of first triangular prisms having a ridge portion with a ridge line direction in a direction intersecting with.
 ここで、第1の三角プリズムの底角θ1が20度以上70度以下であり、かつ、複数の第1の三角プリズムの隣り合う稜部間の間隔P1が、第1の三角プリズムの底面から稜部までの高さをH1とした場合、(2×H1/tanθ1)≦P1<(10×H1/tanθ1)であることが好ましい。 Here, the base angle θ1 of the first triangular prism is not less than 20 degrees and not more than 70 degrees, and the interval P1 between adjacent ridges of the plurality of first triangular prisms is from the bottom surface of the first triangular prism. When the height to the ridge is H1, it is preferable that (2 × H1 / tan θ1) ≦ P1 <(10 × H1 / tan θ1).
 また、入射した光を多重散乱させる光散乱粒子を含有し、光散乱粒子は、粒径が2μm~9μmの透光性のシリコーン粒子であり、光散乱粒子による散乱係数に相当する散乱パラメータである濁度をτとした場合、τ>0.01であることが好ましい。 Further, it contains light scattering particles for multiply scattering incident light. The light scattering particles are translucent silicone particles having a particle size of 2 μm to 9 μm, and have a scattering parameter corresponding to a scattering coefficient by the light scattering particles. When turbidity is τ, it is preferable that τ> 0.01.
 また、出射面には複数の第1の三角プリズムの配置方向に沿って配置される複数の第2の三角プリズムからなる第2のプリズム部が設けられていることが好ましい。 Further, it is preferable that a second prism portion including a plurality of second triangular prisms arranged along the arrangement direction of the plurality of first triangular prisms is provided on the emission surface.
 また、第2の三角プリズム部の底角θ2が50度以上90度未満であり、かつ、複数の第2の三角プリズムの隣り合う稜部間の間隔P2が、第2の三角プリズムの底面から第2の三角プリズムの稜部までの高さをH2とした場合、(2×H2/tanθ2)≦P2<(20×H2/tanθ2)であることが好ましい。 Further, the base angle θ2 of the second triangular prism portion is not less than 50 degrees and less than 90 degrees, and the interval P2 between adjacent ridge portions of the plurality of second triangular prisms is from the bottom surface of the second triangular prism. When the height to the ridge of the second triangular prism is H2, it is preferable that (2 × H2 / tan θ2) ≦ P2 <(20 × H2 / tan θ2).
 上記目的を達成するため、本発明の発光装置は、三角柱を呈する導光部を有し、導光部の3つの側面のうち、1つの側面を光が入射する入射面とし、他の1つの側面を入射した光を全反射する全反射面とし、残りの1つの側面を全反射した光を外部へ出射する出射面とし、入射面には、全反射面を含む平面と出射面を含む平面とに交差する方向に稜線方向を向けた稜部を有する複数の第1の三角プリズムからなる第1のプリズム部が設けられる光学素子を備え、入射面に光を入射させる複数の光源が、複数の第1の三角プリズムの配置方向に配置されている。 In order to achieve the above object, a light-emitting device of the present invention has a light guide unit that exhibits a triangular prism, and one of the three side surfaces of the light guide unit is an incident surface on which light is incident, and the other one The light incident on the side surface is a total reflection surface that totally reflects the light, and the remaining one side surface is the light output surface that emits the light that is totally reflected. The incident surface includes a plane including the total reflection surface and a plane including the output surface. A plurality of light sources including a first prism portion including a plurality of first triangular prisms having a ridge portion with a ridge line direction in a direction intersecting with the light source, and a plurality of light sources that allow light to enter the incident surface. Are arranged in the arrangement direction of the first triangular prism.
 ここで、入射面の光源と対向しない部分には、第1のプリズム部が設けられない部分が存在することが好ましい。 Here, it is preferable that a portion where the first prism portion is not provided exists in a portion of the incident surface that does not face the light source.
 また、複数の光源の発光色が異なることとすることができる。 Also, the emission colors of the plurality of light sources can be different.
 また、光学素子は、入射した光を多重散乱させる光散乱粒子を含有し、光散乱粒子は、粒径が2μm~9μmの透光性のシリコーン粒子であり、光散乱粒子による散乱係数に相当する散乱パラメータである濁度をτとした場合、τ>0.01であることが好ましい。 The optical element contains light scattering particles that multiple-scatter incident light, and the light scattering particles are translucent silicone particles having a particle size of 2 μm to 9 μm, which correspond to the scattering coefficient of the light scattering particles. When turbidity that is a scattering parameter is τ, it is preferable that τ> 0.01.
 また、第1の三角プリズムの底角θ1が20度以上70度以下であり、かつ、複数の第1の三角プリズムの隣り合う稜部間の間隔P1が、第1の三角プリズムの底面から稜部までの高さをH1とした場合、(2×H1/tanθ1)≦P1<(10×H1/tanθ1)であることが好ましい。 In addition, the base angle θ1 of the first triangular prism is not less than 20 degrees and not more than 70 degrees, and the interval P1 between adjacent ridge portions of the plurality of first triangular prisms is ridged from the bottom surface of the first triangular prism. When the height to the portion is H1, it is preferable that (2 × H1 / tan θ1) ≦ P1 <(10 × H1 / tan θ1).
 また、光散乱粒子は、粒径が2μm~9μmの透光性のシリコーン粒子であり、光学素子は、光散乱粒子による散乱係数に相当する散乱パラメータである濁度をτとした場合、τ>0.01であることが好ましい。 Further, the light scattering particles are translucent silicone particles having a particle size of 2 μm to 9 μm, and the optical element has τ> when turbidity, which is a scattering parameter corresponding to the scattering coefficient by the light scattering particles, is τ> It is preferable that it is 0.01.
 また、出射面には前記複数の第1の三角プリズムの配置方向に沿って配置される複数の第2の三角プリズムからなる第2のプリズム部が設けられていることが好ましい。 Further, it is preferable that a second prism portion including a plurality of second triangular prisms arranged along the arrangement direction of the plurality of first triangular prisms is provided on the emission surface.
 また、第2の三角プリズム部の底角θ2が50度以上90度未満であり、かつ、複数の第2の三角プリズムの隣り合う稜部間の間隔P2が、第2の三角プリズムの底面から第2の三角プリズムの稜部までの高さをH2とした場合、(2×H2/tanθ2)≦P2<(20×H2/tanθ2)であることが好ましい。 Further, the base angle θ2 of the second triangular prism portion is not less than 50 degrees and less than 90 degrees, and the interval P2 between adjacent ridge portions of the plurality of second triangular prisms is from the bottom surface of the second triangular prism. When the height to the ridge of the second triangular prism is H2, it is preferable that (2 × H2 / tan θ2) ≦ P2 <(20 × H2 / tan θ2).
 本発明では、光源としてLED等の光源を複数用いた場合に、照明光の照度や輝度をより均一にし、グレアを低減することが可能な光学素子および発光装置を提供することができる。 In the present invention, when a plurality of light sources such as LEDs are used as the light source, it is possible to provide an optical element and a light emitting device capable of making the illuminance and luminance of illumination light more uniform and reducing glare.
本発明の第1の実施の形態に係る光学素子である導光体の構成を示す斜視図である。It is a perspective view which shows the structure of the light guide which is an optical element which concerns on the 1st Embodiment of this invention. 図1に示す出射面の側から第1のプリズム部を見た部分拡大図である。It is the elements on larger scale which looked at the 1st prism part from the outgoing radiation side shown in FIG. 図1および図2に示す導光体中の光散乱粒子となるシリコーン粒子の散乱原理を示す図で、単一真球粒子による散乱光強度の角度分布(Α、Θ)を示すグラフである。It is a figure which shows the scattering principle of the silicone particle | grains used as the light-scattering particle | grains in the light guide shown in FIG. 1 and FIG. 2, and is a graph which shows angle distribution (Α, Θ) of the scattered light intensity by a single true spherical particle. 本発明の第1の実施の形態に係る発光装置の簡略図であり、図1に示した導光体とLEDとの位置関係を示す図である。FIG. 2 is a simplified diagram of the light emitting device according to the first embodiment of the present invention, and is a diagram showing a positional relationship between the light guide and the LED shown in FIG. 1. 本発明の第1の実施の形態に係る発光装置の光路の簡略図であって、右端面から見た図である。It is the simplified view of the optical path of the light-emitting device which concerns on the 1st Embodiment of this invention, Comprising: It is the figure seen from the right end surface. 発光装置において、LEDから発せられた光が第1のプリズム部を透過する際の光の屈折の状況を示す図である。In a light-emitting device, it is a figure which shows the refraction | bending state of the light at the time of the light emitted from LED transmitting the 1st prism part. 本発明の第2の実施の形態に係る光学光学素子である導光体の構成を示す斜視図である。It is a perspective view which shows the structure of the light guide which is an optical optical element which concerns on the 2nd Embodiment of this invention. 図7に示す入射面の側から第2のプリズム部を見た部分拡大図である。It is the elements on larger scale which looked at the 2nd prism part from the entrance plane side shown in FIG. 比較例として、導光体から第1のプリズム部及び光散乱粒子を省略した導光体を用いて、本発明の第1の実施の形態に係る発光装置と同様の発光装置を構成した場合の、出射面に相当する面の輝度分布を示す図である。As a comparative example, when a light-emitting device similar to the light-emitting device according to the first embodiment of the present invention is configured using a light guide that omits the first prism portion and the light scattering particles from the light guide. It is a figure which shows the luminance distribution of the surface equivalent to an output surface. 図9に示す比較例の発光装置と同条件で発光させた本発明の第1の実施の形態に係る発光装置であって、光散乱粒子を含有させない導光体を用いたものの出射面の輝度分布を示す図である。The light emitting device according to the first embodiment of the present invention, which emits light under the same conditions as the light emitting device of the comparative example shown in FIG. 9, and uses the light guide that does not contain light scattering particles, the luminance of the exit surface It is a figure which shows distribution. 図9に示す比較例の発光装置と同条件で発光させた本発明の第1の実施の形態に係る発光装置であって、光散乱粒子を含有させない導光体を用いたものの出射面から40mm上方に離れた部分の照度分布を示す図である。The light emitting device according to the first embodiment of the present invention, which emits light under the same conditions as the light emitting device of the comparative example shown in FIG. 9, using a light guide that does not contain light scattering particles, is 40 mm from the emission surface. It is a figure which shows the illumination intensity distribution of the part away upwards. 図9に示す比較例の発光装置と同条件で発光させた本発明の第1の実施の形態に係る発光装置の出射面から40mm上方に離れた部分の照度分布を示す図である。It is a figure which shows the illuminance distribution of the part 40 mm away from the output surface of the light-emitting device based on the 1st Embodiment of this invention light-emitted on the same conditions as the light-emitting device of the comparative example shown in FIG. 図9に示す比較例の発光装置と同条件で発光させた本発明の第1の実施の形態に係る発光装置の出射面の輝度分布を示す図である。It is a figure which shows the luminance distribution of the output surface of the light-emitting device which concerns on the 1st Embodiment of this invention light-emitted on the same conditions as the light-emitting device of the comparative example shown in FIG. 図9に示す比較例の発光装置と同条件で発光させた本発明の第2の実施の形態に係る発光装置の出射面の輝度分布を示す図である。It is a figure which shows the luminance distribution of the output surface of the light-emitting device based on the 2nd Embodiment of this invention light-emitted on the same conditions as the light-emitting device of the comparative example shown in FIG. 本発明の第1の実施の形態に係る発光装置の変形例で、導光体の左端面、右端面、入射面および全反射面を覆う反射部材を、発光装置に取り付けた状態を示す図である。FIG. 9 is a view showing a modification of the light emitting device according to the first embodiment of the present invention in a state where a reflecting member that covers the left end surface, the right end surface, the incident surface, and the total reflection surface of the light guide is attached to the light emitting device. is there.
 以下、本発明の実施の形態に係る光学素子および発光装置の構成、ならびにそれらの作用について、図面を参照しながら説明する。 Hereinafter, the configuration of the optical element and the light-emitting device according to the embodiment of the present invention and the operation thereof will be described with reference to the drawings.
(第1の実施の形態の光学素子の構成)
 図1は、本発明の第1の実施の形態に係る光学素子である導光体1の構成を示す斜視図である。
(Configuration of Optical Element of First Embodiment)
FIG. 1 is a perspective view showing a configuration of a light guide 1 which is an optical element according to the first embodiment of the present invention.
 図1に示すように、透明のポリメチルメタクリレート(以下、「PMMA」と略記する。)からなる樹脂成形体である導光部1Aを有する導光体1(光学素子)は、平面状の左端面2から平面状の右端面3に向かう方向に長尺な三角柱状を呈している。三角柱を呈する導光部1Aの3つの側面は、それぞれ、光が入射する入射面4、入射した光を全反射する全反射面5、全反射した光を外部へ出射する出射面6である。そして、導光体1は、入射した光を多重散乱させる光散乱粒子を含有している。そして、入射面4には入射する光を長尺方向に広げる3つの第1の三角プリズム7Aからなる第1のプリズム部7が設けられている。第1の三角プリズム7Aは、全反射面5を含む平面と出射面6を含む平面とに交差する方向に稜線方向を向けた稜部12を有している。すなわち、第1の三角プリズム7Aは、入射面4と全反射面5とが交差する稜部4Aおよび入射面4と出射面6とが交差する稜部4Bに直交する方向に稜線方向を向けた稜部12を有する。ここで、入射面4と全反射面5とのなす角αは、40度、全反射面5と出射面6とのなす角βは、50度、出射面6と入射面4とのなす角γは、90度とされている。第1のプリズム部7は、導光体1の長尺方向(稜部4Aおよび稜部4Bに平行な方向)に沿って一定間隔に複数設けられ、各第1のプリズム部7の間は、第1のプリズム部7が形成されていないプリズム未形成部8となっている。 As shown in FIG. 1, a light guide 1 (optical element) having a light guide portion 1A, which is a resin molded body made of transparent polymethyl methacrylate (hereinafter abbreviated as “PMMA”), has a planar left end. It has a long triangular prism shape in a direction from the surface 2 toward the planar right end surface 3. The three side surfaces of the light guide section 1 </ b> A presenting a triangular prism are an incident surface 4 on which light is incident, a total reflection surface 5 that totally reflects incident light, and an output surface 6 that emits the totally reflected light to the outside. And the light guide 1 contains the light-scattering particle | grains which carry out multiple scattering of the incident light. The incident surface 4 is provided with a first prism portion 7 composed of three first triangular prisms 7A that spread incident light in the longitudinal direction. The first triangular prism 7 </ b> A has a ridge portion 12 whose ridge line direction is directed in a direction intersecting a plane including the total reflection surface 5 and a plane including the exit surface 6. That is, the first triangular prism 7A has the ridge line direction oriented in a direction perpendicular to the ridge 4A where the incident surface 4 and the total reflection surface 5 intersect and the ridge 4B where the incident surface 4 and the exit surface 6 intersect. It has a ridge 12. Here, the angle α formed by the incident surface 4 and the total reflection surface 5 is 40 degrees, the angle β formed by the total reflection surface 5 and the output surface 6 is 50 degrees, and the angle formed by the output surface 6 and the input surface 4. γ is 90 degrees. A plurality of first prism portions 7 are provided at regular intervals along the longitudinal direction of the light guide 1 (the direction parallel to the ridge portions 4A and 4B), and between the first prism portions 7, The first prism portion 7 is not formed on the prism non-formed portion 8.
 図2は、図1に示す出射面6の側から第1のプリズム部7を見た図である。第1のプリズム部7は、複数の第1の三角プリズム7Aを有している。これらの第1の三角プリズム7Aは、V字状に隣接する複数の斜面11が交差して形成されるジクザグ状の凹凸部により形成されている。そして、各斜面11は、導光体1の短尺方向(稜部4Aと稜部4Bを結ぶ方向)に沿って伸びている。凸部の頂点を含む稜線が稜部12である。凹部側において斜面11が交差する部分を含む面を第1のプリズム7の底面13としたとき、斜面11と底面13とのなす角度θ1が45度である。そして、隣り合う稜部12間の間隔P1は、底面13から稜部12までの高さをH1とした場合、(2×H1/tanθ1)≦P<(10×H1/tanθ1)の範囲内となるように設定する。本実施の形態では、P1=2×H1/tanθ1とされ、凹部側において斜面11が交差するように構成されている。具体的には、たとえば、H1=0.25とし、P1が0.5mmとされている。 FIG. 2 is a view of the first prism portion 7 as viewed from the exit surface 6 side shown in FIG. The first prism portion 7 has a plurality of first triangular prisms 7A. These first triangular prisms 7A are formed by zigzag irregularities formed by intersecting a plurality of slopes 11 adjacent in a V shape. Each inclined surface 11 extends along the short direction of the light guide 1 (the direction connecting the ridge 4A and the ridge 4B). A ridge line including the vertex of the convex portion is the ridge portion 12. When the surface including the portion where the inclined surface 11 intersects on the concave side is the bottom surface 13 of the first prism 7, the angle θ1 formed by the inclined surface 11 and the bottom surface 13 is 45 degrees. The distance P1 between the adjacent ridges 12 is within the range of (2 × H1 / tan θ1) ≦ P <(10 × H1 / tan θ1), where the height from the bottom surface 13 to the ridge 12 is H1. Set as follows. In the present embodiment, P1 = 2 × H1 / tan θ1, and the inclined surfaces 11 intersect each other on the concave side. Specifically, for example, H1 = 0.25 and P1 is 0.5 mm.
 以下、導光体1に含有されているシリコーン粒子について説明する。このシリコーン粒子は、体積的に一様な散乱能が与えられた導光体であり、散乱微粒子としての球形粒子を多数含んでいる。導光体1の内部に光が入射すると、その光は散乱微粒子によって散乱することになる。 Hereinafter, the silicone particles contained in the light guide 1 will be described. This silicone particle is a light guide provided with a volumetric uniform scattering ability, and includes a large number of spherical particles as scattering fine particles. When light enters the light guide 1, the light is scattered by the scattering fine particles.
 ここで、シリコーン粒子の理論的な基礎を与えるMie散乱理論について説明する。Mie散乱理論は、一様な屈折率を有する媒体(マトリックス)中に該媒体と異なる屈折率を有する球形粒子(散乱微粒子)が存在するケースについてマックスウェルの電磁方程式の解を求めたものである。光散乱粒子に相当する散乱微粒子によって散乱した散乱光の角度に依存した強度分布I(Α、Θ)は下記(1)式で表される。Αは、散乱微粒子の光学的大きさを示すサイズパラメータであり、マトリックス中での光の波長λで規格化された球形粒子(散乱微粒子)の半径rに相当する量である。角度Θは散乱角で、入射光の進行方向と同一方向をΘ=180°にとる。 Here, the Mie scattering theory that gives the theoretical basis of silicone particles will be described. Mie scattering theory is the solution of Maxwell's electromagnetic equation for the case where spherical particles (scattering fine particles) having a refractive index different from that of the medium exist in a medium (matrix) having a uniform refractive index. . The intensity distribution I (Α, Θ) depending on the angle of the scattered light scattered by the scattering fine particles corresponding to the light scattering particles is expressed by the following equation (1). Α is a size parameter indicating the optical size of the scattering fine particles, and is an amount corresponding to the radius r of the spherical particles (scattering fine particles) normalized by the wavelength λ of light in the matrix. The angle Θ is a scattering angle, and the same direction as the traveling direction of incident light is Θ = 180 °.
 また、(1)式中のi、iは(4)式で表される。そして、(2)~(4)式中の下添字ν付のaおよびbは(5)式で表される。上添字1および下添字νを付したP(cosΘ)は、Legendreの多項式、下添字ν付のa、bは1次、2次のRecatti-Bessel関数Ψ、ζ(ただし、「*」は下添字νを意味する。)とその導関数とからなる。mはマトリックスを基準にした散乱微粒子の相対屈折率で、m=nscatter/nmatrixである。 Further, i 1 and i 2 in the formula (1) are represented by the formula (4). Then, a and b with the subscript ν in the expressions (2) to (4) are expressed by the expression (5). P (cos Θ) with superscript 1 and subscript ν is Legendre's polynomial, and a and b with subscript ν are first- and second-order Recati-Bessel functions Ψ * and ζ * (where “*” Means the subscript ν) and its derivative. m is the relative refractive index of the scattering fine particles based on the matrix, and m = nscatter / nmattrix.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 図3は、上記(1)~(5)式に基づいて、単一真球粒子による強度分布I(Α、Θ)を示すグラフである。この図3では、原点Gの位置に散乱微粒子としての真球粒子があり、下方から入射光が入射した場合の散乱光強度の角度分布I(Α、Θ)を示している。そして、原点Gから各曲線S1~S3までの距離が、それぞれの散乱角方向の散乱光強度である。曲線S1はΑが1.7であるときの散乱光強度、曲線S2はΑが11.5であるときの散乱光強度、曲線S3はΑが69.2であるときの散乱光強度を示している。なお、図3においては、散乱光強度を対数目盛で示している。このため、図3では僅かな強度差として見える部分が、実際には非常に大きな差となる。 FIG. 3 is a graph showing the intensity distribution I (Α, Θ) by a single true spherical particle based on the above equations (1) to (5). FIG. 3 shows an angular distribution I (Α, Θ) of scattered light intensity when there is a true spherical particle as a scattering fine particle at the position of the origin G and incident light is incident from below. The distance from the origin G to each of the curves S1 to S3 is the scattered light intensity in each scattering angle direction. Curve S1 shows the scattered light intensity when Α is 1.7, curve S2 shows the scattered light intensity when Α is 11.5, and curve S3 shows the scattered light intensity when Α is 69.2. Yes. In FIG. 3, the scattered light intensity is shown on a logarithmic scale. For this reason, the portion that appears as a slight difference in intensity in FIG. 3 is actually a very large difference.
 この図3に示すように、サイズパラメータΑが大きくなればなるほど(ある波長λで考えた場合は真球粒子の粒径が大きくなればなるほど)、上方(照射方向の前方)に対して指向性高く光が散乱されていることがわかる。また、実際のところ、散乱光強度の角度分布I(Α、Θ)は、入射光波長λを固定すれば、散乱子の半径rと、媒体および散乱微粒子の相対屈折率mとをパラメータとして制御することができる。なお、導光体1は、前方散乱が大きいものである。 As shown in FIG. 3, the larger the size parameter Α (the larger the particle size of the true spherical particle when considered at a certain wavelength λ), the higher the directivity with respect to the upper side (front of the irradiation direction). It can be seen that light is highly scattered. Actually, the angle distribution I (Α, Θ) of the scattered light intensity is controlled by using the radius r of the scatterer and the relative refractive index m of the medium and the scattered fine particles as parameters if the incident light wavelength λ is fixed. can do. In addition, the light guide 1 has a large forward scattering.
 このような、単一真球粒子がN個含まれる光散乱導光体に光を入射させると、光は真球粒子により散乱される。散乱光は光散乱導光体中を進み、他の真球粒子により再度散乱される。ある程度以上の体積濃度で粒子を添加した場合には、このような散乱が逐次的に複数回行われた後、光が光散乱導光体から出射する。このような散乱光がさらに散乱されるような現象を多重散乱現象と呼ぶ。このような多重散乱においては、透明ポリマーでの光線追跡法による解析は容易ではない。しかし、モンテカルロ法により光の挙動を追跡し、その特性を解析することはできる。それによると、入射光が無偏光の場合、散乱角の累積分布関数F(Θ)は下記の(6)式で表される。 When light is incident on such a light scattering light guide containing N single true spherical particles, the light is scattered by the true spherical particles. Scattered light travels through the light scattering light guide and is again scattered by other spherical particles. When particles are added at a volume concentration of a certain level or more, such scattering is sequentially performed a plurality of times, and then light is emitted from the light scattering light guide. A phenomenon in which such scattered light is further scattered is called a multiple scattering phenomenon. In such multiple scattering, analysis by a ray tracing method with a transparent polymer is not easy. However, the behavior of light can be traced by the Monte Carlo method and its characteristics can be analyzed. According to this, when the incident light is non-polarized light, the cumulative distribution function F (Θ) of the scattering angle is expressed by the following equation (6).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで(6)式中のI(Θ)は、(1)式で表されるサイズパラメータΑの真球粒子の散乱強度である。強度Iの光が光散乱導光体に入射し、距離yを透過した後、光の強度が散乱によりIに減衰したとすると、これらの関係は下記の(7)式で表される。 Here, I (Θ) in the equation (6) is the scattering intensity of the true spherical particle having the size parameter 表 represented by the equation (1). If light of intensity Io enters the light scattering light guide and passes through the distance y, then the intensity of the light is attenuated to I by scattering, and these relationships are expressed by the following equation (7).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 この(7)式中のτは濁度と呼ばれ、媒体の散乱係数に相当するものであり、下記の(8)式のように粒子数Nに比例する。なお、(8)式中、σは散乱断面積である。 Τ in the equation (7) is called turbidity and corresponds to the scattering coefficient of the medium, and is proportional to the number N of particles as in the following equation (8). In the equation (8), σ s is a scattering cross section.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 (7)式から長さLの光散乱導光体を散乱せずに透過する確率P(L)は下記の(9)式で表される。 From the equation (7), the probability P t (L) of transmitting through the light-scattering light guide of length L without scattering is expressed by the following equation (9).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 反対に光路長Lまでに散乱される確率Ps(L)は下記の(10)式で表される。
Figure JPOXMLDOC01-appb-M000006
On the other hand, the probability Ps (L) scattered up to the optical path length L is expressed by the following equation (10).
Figure JPOXMLDOC01-appb-M000006
 これらの式からわかるように、濁度τを変えることにより、光散乱導光体内での多重散乱の度合いを制御することができる。 As can be seen from these equations, the degree of multiple scattering in the light scattering light guide can be controlled by changing the turbidity τ.
 以上の関係式により、散乱微粒子のサイズパラメータΑと濁度τとの少なくとも1つをパラメータとして、光散乱導光体内での多重散乱を制御可能であり、出射面6における出射光強度と散乱角も適正に設定可能である。 By the above relational expression, it is possible to control multiple scattering in the light scattering light guide using at least one of the size parameter Α and turbidity τ of the scattering fine particles as a parameter, and the outgoing light intensity and scattering angle on the outgoing surface 6 can be controlled. Can also be set appropriately.
 ここで、導光体1に含有されている光散乱粒子は、平均粒径が2.4μmの透光性のシリコーン粒子である。また、光散乱粒子による散乱係数に相当する散乱パラメータである濁度τは、τ=0.49(λ=550nm)である。 Here, the light scattering particles contained in the light guide 1 are translucent silicone particles having an average particle diameter of 2.4 μm. The turbidity τ, which is a scattering parameter corresponding to the scattering coefficient by the light scattering particles, is τ = 0.49 (λ = 550 nm).
(第1の実施の形態の発光装置の構成)
 図4は、本発明の第1の実施の形態に係る発光装置21の簡略図であり、図1に示した導光体1とLED22との位置関係を示す図である。光源としてのLED22は、白色光を発する直径2.4mmのチップ型のものであり、その光束は、9lmである。LED22は、各第1のプリズム部7に対向する位置に配置されている。本実施の形態では、たとえば、25mm間隔で配置され、各第1のプリズム部7に向けて発光される。
(Configuration of Light Emitting Device of First Embodiment)
FIG. 4 is a simplified diagram of the light emitting device 21 according to the first embodiment of the present invention, and is a diagram showing a positional relationship between the light guide 1 and the LEDs 22 shown in FIG. The LED 22 as a light source is a chip type chip that emits white light and has a diameter of 2.4 mm, and its luminous flux is 9 lm. The LED 22 is disposed at a position facing each first prism portion 7. In the present embodiment, for example, they are arranged at intervals of 25 mm, and light is emitted toward the first prism portions 7.
 図5は、発光装置21の光路(LED22から照射された光が導光体1を透過する際の光路)Lの簡略を示す図であって、右端面3側から見た図である。LED22から出射された光が入射面4を透過し、全反射面5にて全反射して、出射面6から出射する。 FIG. 5 is a diagram showing the simplification of the light path (light path when the light emitted from the LED 22 passes through the light guide 1) L of the light emitting device 21, and is a view seen from the right end face 3 side. The light emitted from the LED 22 passes through the incident surface 4, is totally reflected by the total reflection surface 5, and is emitted from the emission surface 6.
 図6は、発光装置21において、LED22から発せられた光が第1のプリズム部7を透過する際の光の屈折の状況を示す図である。図6に示すように、LED22から出射した光L1は、第1のプリズム部7(第1の三角プリズム7A)の斜面11に入射する。そして、稜部12よりも左端面2側にある斜面11に入射した光L1は、右端面3側に屈折し、稜部12よりも右端面3にある斜面11に入射した光L1は、左端面2側に屈折する。つまり、LED22から出射し第1のプリズム部7に入射した光は、第1のプリズム部7が形成されていない平面に入射したときに比べて、全体的に、左端面2と右端面3との側に発散させられる。なお、斜面11は、入射面4の短尺方向に対しては傾斜していない。そのため、入光した光L1は、導光体1の短尺方向については、発散し難くなっている。また、導光体1に入光した光L1は、光散乱粒子によって多重散乱する。 FIG. 6 is a diagram showing the state of light refraction when the light emitted from the LED 22 passes through the first prism unit 7 in the light emitting device 21. As shown in FIG. 6, the light L1 emitted from the LED 22 is incident on the inclined surface 11 of the first prism portion 7 (first triangular prism 7A). The light L1 incident on the slope 11 on the left end surface 2 side of the ridge 12 is refracted on the right end surface 3 side, and the light L1 incident on the slope 11 on the right end surface 3 of the ridge 12 is the left end. Refracts to the surface 2 side. That is, the light emitted from the LED 22 and incident on the first prism portion 7 as a whole is compared with the case where the light is incident on a plane where the first prism portion 7 is not formed. Is diverged to the side. The inclined surface 11 is not inclined with respect to the short direction of the incident surface 4. Therefore, the incident light L <b> 1 is difficult to diverge in the short direction of the light guide 1. Further, the light L1 incident on the light guide 1 is multiple-scattered by the light scattering particles.
(第2の実施の形態の光学素子および発光装置の構成)
 図7は、本発明の第2の実施の形態に係る光学素子である導光体31の構成を示す斜視図である。導光体31と導光体1との差異は、出射する光を導光体31の長尺方向に屈折させ、出射方向を出射面と直交する方向に近づける第2のプリズム部32が、出射面6の全面に設けられている点である。その点を除いては、導光体31と導光体1とでは構成上の差異がない。また導光体31を用いた後述する発光装置41と、発光装置21とでもその点を除き、構成上の差異がない。よって、導光体1と導光体31の共通する部材または要素、発光装置21と発光装置41の共通する部材または要素については、同一の符号を付して以下説明し、それらの共通部分の詳細な説明は省略する。
(Configuration of optical element and light-emitting device of second embodiment)
FIG. 7 is a perspective view showing a configuration of a light guide 31 which is an optical element according to the second embodiment of the present invention. The difference between the light guide 31 and the light guide 1 is that the second prism portion 32 that refracts the emitted light in the longitudinal direction of the light guide 31 and brings the emission direction closer to the direction orthogonal to the emission surface is emitted. This is a point provided on the entire surface 6. Except for this point, there is no structural difference between the light guide 31 and the light guide 1. Further, the light emitting device 41 described later using the light guide 31 and the light emitting device 21 have no structural difference except for this point. Therefore, members or elements that are common to the light guide 1 and the light guide 31, and members or elements that are common to the light emitting device 21 and the light emitting device 41 are denoted by the same reference numerals and described below. Detailed description is omitted.
 図8は、発光装置41において、図7に示す入射面4の側から第2のプリズム部32を見た図である。第2のプリズム部32は、複数の第2の三角プリズム32Aを有している。これらの第2の三角プリズム32Aは、V字状に隣接する複数の第2の斜面42が交差して形成されるジクザグ状の凹凸部により形成されている。そして、各第2の斜面42は、導光体31の短尺方向(稜部4Aと稜部4Bを結ぶ方向)に沿って伸びている。第2の凸部の頂点を含む稜線が第2の稜部43である。第2の凹部側において第2の斜面42が交差する部分を含む面を第2のプリズムの第2の底面44としたとき、第2の斜面42と第2の底面44とのなす角度θ2が80度である。そして、隣り合う第2の稜部43間の間隔P2は、第2の底面44から第2の稜部43までの高さをH2とした場合、(2×H2/tanθ2)≦P2<(20×H2/tanθ2)の範囲内となるように設定する。本実施の形態では、P2=2×H2/tanθ2とされ、凹部側において第2の斜面42が交差するように構成されている。具体的には、たとえば、H2=0.3mmとし、P2が0.2mmとされている。 FIG. 8 is a view of the second prism portion 32 viewed from the incident surface 4 side shown in FIG. 7 in the light emitting device 41. The second prism portion 32 has a plurality of second triangular prisms 32A. These second triangular prisms 32A are formed by zigzag irregularities formed by intersecting a plurality of second inclined surfaces 42 adjacent to each other in a V shape. Each second inclined surface 42 extends along the short direction of the light guide 31 (the direction connecting the ridge 4A and the ridge 4B). The ridge line including the vertex of the second convex portion is the second ridge portion 43. When the surface including the portion where the second inclined surface 42 intersects on the second concave portion side is the second bottom surface 44 of the second prism, the angle θ2 formed by the second inclined surface 42 and the second bottom surface 44 is 80 degrees. The interval P2 between the adjacent second ridges 43 is (2 × H2 / tan θ2) ≦ P2 <(20, where the height from the second bottom surface 44 to the second ridge 43 is H2. XH2 / tan θ2) is set to be within a range. In the present embodiment, P2 = 2 × H2 / tan θ2, and the second slope 42 intersects on the concave side. Specifically, for example, H2 = 0.3 mm and P2 is 0.2 mm.
 LED22から発せられた光の多くは、上述のように第1のプリズム部7により長手方向に向けて発散されて導光体31に入射し、導光体31の長手方向に広がりつつ全反射面5に入射する。そして、全反射面5にて全反射し、出射面6から出射する。導光体31に入射した光は、多重散乱しながら導光体31内を進む。図8は、出射面6から出射する光L2の光路を示している。光L2は、稜部43よりも右端面3側にある第2の斜面42に入射した光L2は、右端面3側に屈折し、稜部43よりも左端面2にある第2の斜面42に入射した光L2は、左端面2側に屈折する。つまり、出射面6から出射する光は、第2のプリズム部32が形成されていない平面から出射するときに比べて、全体的に、出射方向が出射面6と直交する方向に近づくように屈折する。 Most of the light emitted from the LED 22 is diverged in the longitudinal direction by the first prism portion 7 as described above, enters the light guide 31, spreads in the longitudinal direction of the light guide 31, and is totally reflected. 5 is incident. Then, the light is totally reflected by the total reflection surface 5 and is emitted from the emission surface 6. The light incident on the light guide 31 travels through the light guide 31 while being multiple scattered. FIG. 8 shows an optical path of the light L2 emitted from the emission surface 6. The light L2 incident on the second inclined surface 42 on the right end surface 3 side with respect to the ridge 43 is refracted toward the right end surface 3 and the second inclined surface 42 on the left end surface 2 with respect to the ridge 43. The light L2 incident on is refracted toward the left end face 2 side. That is, the light exiting from the exit surface 6 is refracted so that the exit direction is closer to the direction orthogonal to the exit surface 6 as a whole compared to when exiting from a plane on which the second prism portion 32 is not formed. To do.
(本発明の実施の形態によって得られる主な効果)
 導光体1,31およびそれを用いた発光装置21,41は、導光体1,31の入射面4には入射する光を長尺方向に発散する(広げる)ことができる複数の第1の三角プリズム7Aからなる第1のプリズム部7が設けられている。そのため、導光体1,31およびそれを用いた発光装置21,41は、光源としてLED22等の光源を複数用いた場合にも、照明光の照度をより均一にし、グレアを低減することができる。
(Main effects obtained by the embodiment of the present invention)
The light guides 1, 31 and the light emitting devices 21, 41 using the light guides 1, 31 have a plurality of first light that can diverge (expand) incident light on the incident surface 4 of the light guides 1, 31 in the longitudinal direction. A first prism portion 7 composed of a triangular prism 7A is provided. Therefore, the light guides 1 and 31 and the light emitting devices 21 and 41 using the light guides 1 and 31 can make the illumination light illuminance more uniform and reduce glare even when a plurality of light sources such as the LEDs 22 are used as the light source. .
 図9は、比較例として、導光体1からプリズム部7及び光散乱粒子を省略した導光体を用いて、発光装置21と同様の発光装置を構成した場合の出射面6に相当する面における輝度分布を示す図である。比較例の導光体は、第1のプリズム部7に相当する部分が平面状となっている。左側の図は、出射面6に相当する面における輝度の分布を色の濃淡で表わしており、色が黒に近づくほど輝度が小さく、色が白に近づくほど輝度が大きいことを示している。右側の図は、比較例の導光体の出射面6に相当する面の短尺方向の真ん中のラインの輝度分布を示すグラフである。比較例の発光装置は、出射面6に相当する面の長手方向に並ぶ縞状に発光部分が存在し、暗い部分と明るい部分との輝度の差が約12000cd/mであることがわかる。 FIG. 9 shows a surface corresponding to the emission surface 6 when a light-emitting device similar to the light-emitting device 21 is configured by using a light-guiding body in which the prism portion 7 and the light scattering particles are omitted from the light-guiding body 1 as a comparative example. It is a figure which shows the luminance distribution in. In the light guide of the comparative example, the portion corresponding to the first prism portion 7 is planar. The diagram on the left represents the luminance distribution on the surface corresponding to the exit surface 6 by the color shading, and shows that the luminance decreases as the color approaches black and increases as the color approaches white. The figure on the right side is a graph showing the luminance distribution of the middle line in the short direction of the surface corresponding to the exit surface 6 of the light guide of the comparative example. It can be seen that the light emitting device of the comparative example has light emitting portions in the form of stripes arranged in the longitudinal direction of the surface corresponding to the emission surface 6, and the difference in luminance between the dark portion and the bright portion is about 12000 cd / m 2 .
 図10は、比較例の発光装置と同条件で発光させた本発明の実施の形態に係る発光装置21であって、光散乱粒子を含有させない導光体を用いたものの出射面6の輝度分布を示す図である。左側の図は、出射面6における輝度の分布を色の濃淡で表わしており、右側の図は、出射面6の短尺方向の真ん中のラインの輝度分布を示すグラフである。図10に示すように、発光装置21は、出射面6の長手方向に、比較例の発光装置よりも細かく並ぶ縞状に発光部分が存在する。そして、暗い部分と明るい部分との輝度の差が約5000cd/mである。このことから、発光装置21は、比較例の発光装置に比べて光を均一に照射することができることがわかる。 FIG. 10 is a light-emitting device 21 according to an embodiment of the present invention that emits light under the same conditions as the light-emitting device of the comparative example, and uses a light guide that does not contain light scattering particles. FIG. The diagram on the left shows the luminance distribution on the exit surface 6 with shades of color, and the diagram on the right is a graph showing the brightness distribution of the middle line of the exit surface 6 in the short direction. As shown in FIG. 10, the light emitting device 21 has light emitting portions in the longitudinal direction of the emission surface 6 in stripes arranged more finely than the light emitting device of the comparative example. The difference in luminance between the dark part and the bright part is about 5000 cd / m 2 . This shows that the light-emitting device 21 can irradiate light more uniformly than the light-emitting device of the comparative example.
 また、導光体1,31は、第1のプリズム部7を構成する第1の三角プリズム7Aは、斜面11と底面13とのなす角度θ1を20度以上70度以下の45度としており、かつ隣接する稜部12の間の間隔P1が、底面13から稜部12までの高さをH1とした場合、(2×H1/tanθ1)≦P1<(10×H1/tanθ1)の範囲となるように設定している。本実施の形態では、P1=2×H1/tanθ1とされ、凹部側において斜面11が交差するように構成されている。具体的には、たとえば、H1=0.25とし、P1が0.5mmとされている。ここで、角度θ1を20度以上とすることによって、十分に光を広げる効果が得られる。また、角度θ1を70度以下とすることにより、隣接するプリズム同士での光の干渉を抑制でき、より光を広げる効果が得られる。なお、(2×h/tanθ)≦Pとしているのは、物理的制約によるものであり、P1=2×H1/tanθ1とすることで、LED22から照射された光を最も効率よく長尺方向に向けて発散させることができる。また、P1<(10×H1/tanθ1)の範囲であれば、隣接する第1の三角プリズム7A間の間隔が開き、隣接する第1の三角プリズム7Aとの間に平面部が形成されても、LED22から照射された光を効率よく長尺方向に向けて発散させることができる。 In addition, the light guides 1 and 31 are such that the first triangular prism 7A constituting the first prism unit 7 has an angle θ1 formed by the inclined surface 11 and the bottom surface 13 of 45 degrees of 20 degrees or more and 70 degrees or less. Further, the interval P1 between the adjacent ridges 12 is in the range of (2 × H1 / tan θ1) ≦ P1 <(10 × H1 / tan θ1) where the height from the bottom surface 13 to the ridge 12 is H1. It is set as follows. In the present embodiment, P1 = 2 × H1 / tan θ1, and the inclined surfaces 11 intersect on the concave side. Specifically, for example, H1 = 0.25 and P1 is 0.5 mm. Here, by setting the angle θ1 to 20 degrees or more, an effect of sufficiently spreading light can be obtained. In addition, by setting the angle θ1 to 70 degrees or less, it is possible to suppress the interference of light between adjacent prisms and to obtain an effect of further spreading the light. Note that (2 × h / tan θ) ≦ P is due to physical restrictions. By setting P1 = 2 × H1 / tan θ1, the light emitted from the LED 22 is most efficiently transmitted in the long direction. Can diverge towards. If P1 <(10 × H1 / tan θ1), the interval between the adjacent first triangular prisms 7A is increased, and a plane portion is formed between the adjacent first triangular prisms 7A. The light emitted from the LED 22 can be efficiently diverged in the longitudinal direction.
 また、導光体1,31は、出射した光を多重散乱させる光散乱粒子を含有し、光散乱粒子は、粒径が2μm~9μmの透光性のシリコーン粒子である。この粒径範囲とすることで、導光体1の入射光の前方散乱を適切な範囲で大きくすることができる。そして、光散乱粒子による散乱係数に相当する散乱パラメータである濁度をτとした場合、τ>0.01の範囲である0.49(λ=550nm)としている。濁度τをこの範囲とすることによって、入射光の多重散乱をより活発化させることができる。 The light guides 1 and 31 contain light scattering particles that multiple-scatter the emitted light, and the light scattering particles are translucent silicone particles having a particle diameter of 2 μm to 9 μm. By setting it as this particle size range, the forward scattering of the incident light of the light guide 1 can be increased within an appropriate range. When turbidity, which is a scattering parameter corresponding to a scattering coefficient by light scattering particles, is τ, 0.49 (λ = 550 nm) is set in a range of τ> 0.01. By setting the turbidity τ within this range, multiple scattering of incident light can be further activated.
 図11は、比較例の発光装置と同条件で発光させた本発明の実施の形態に係る発光装置21であって、光散乱粒子を含有させない導光体を用いたものの出射面6から40mm上方に離れた部分の出射した光の照度分布を示す図である。左側の図は、図9と同様に照度の分布を色の濃淡で表わしており、右側の図は、出射面6から照射された光の照射域の中央部について導光体1の長尺方向に沿う方向の照度分布を示すグラフである。図12は、比較例の発光装置と同条件で発光させた本発明の実施の形態に係る発光装置21の出射面6から40mm上方に離れた部分の照度分布を示す図であり、左側の図は、出射面6から出射された光の照度の分布を色の濃淡で表わしており、右側の図は、出射面6から照射された光の照射域の中央部について導光体1の長尺方向に沿う方向の照度分布を示すグラフである。なお、照度は、出射面6から40mm離れた位置で評価している。図11に示す光散乱粒子を含有させない導光体を用いた発光装置は、照光部分が若干縞状となっているのに対して、図12に示す光散乱粒子を含有させた導光体1を用いた発光装置21は、照光部分が縞状となっておらず、均一となっている。 FIG. 11 shows a light emitting device 21 according to an embodiment of the present invention that emits light under the same conditions as the light emitting device of the comparative example, and uses a light guide that does not contain light scattering particles 40 mm above the emission surface 6. It is a figure which shows the illuminance distribution of the light which the part which left | separated to [in FIG. The diagram on the left represents the illuminance distribution in shades of color as in FIG. 9, and the diagram on the right shows the longitudinal direction of the light guide 1 at the center of the irradiation area of the light irradiated from the exit surface 6. It is a graph which shows the illumination intensity distribution of the direction in alignment with. FIG. 12 is a diagram showing the illuminance distribution of a portion 40 mm above the exit surface 6 of the light emitting device 21 according to the embodiment of the present invention that emits light under the same conditions as the light emitting device of the comparative example. Represents the distribution of the illuminance of the light emitted from the emission surface 6 in shades of color, and the figure on the right side shows the length of the light guide 1 at the center of the irradiation area of the light emitted from the emission surface 6. It is a graph which shows the illuminance distribution of the direction along a direction. The illuminance is evaluated at a position 40 mm away from the emission surface 6. In the light emitting device using the light guide that does not contain the light scattering particles shown in FIG. 11, the light-emitting body 1 contains light scattering particles shown in FIG. In the light emitting device 21 using, the illuminated portion is not striped and is uniform.
 また、導光体31は、出射面6に出射する光を長尺方向に屈折させ、出射方向を出射面6と直交する方向に近づけるように屈折させる複数の第2の三角プリズム32Aからなる第2のプリズム部32が設けられている。そのため、光の出射方向を出射面6から長尺方向に広がった方向とするのを抑制でき、発光装置41の光の出射方向を出射面6と直交する方向に近づけることができる。 The light guide 31 is composed of a plurality of second triangular prisms 32A made of a plurality of second triangular prisms 32A that refract the light emitted to the emission surface 6 in the longitudinal direction and refract the emission direction so as to approach the direction orthogonal to the emission surface 6. Two prism portions 32 are provided. Therefore, it is possible to prevent the light emission direction from extending in the longitudinal direction from the emission surface 6, and the light emission direction of the light emitting device 41 can be brought closer to the direction orthogonal to the emission surface 6.
 図13は、比較例の発光装置と同条件で発光させた本発明の実施の形態に係る発光装置21の出射面6の輝度分布を示す図である。左側の図は、輝度の分布を色の濃淡で表わしており、右側の図は、比較例の導光体の出射面6に相当する面の短尺方向の真ん中のラインの輝度分布を示すグラフである。図14は、比較例の発光装置と同条件で発光させた本発明の実施の形態に係る発光装置41の出射面6の輝度分布を示す図である。第2のプリズム部32が無い発光装置21は、図13に示すように、輝度の高い部分と低い部分が縞状に表れている。ただし、光散乱粒子が含有されていない導光体を用いた図10に示す輝度分布より輝度は均一である。また、明るい部分の輝度が約6000cd/mである。一方、図14に示すように、第2のプリズム部32がある発光装置41は、輝度の高い部分と低い部分が縞状に表れておらず、輝度が均一である。また、明るい部分の輝度が約11000cd/mであり、発光装置21に比べて、輝度が大きいことがわかる。 FIG. 13 is a diagram showing a luminance distribution on the exit surface 6 of the light emitting device 21 according to the embodiment of the present invention that emits light under the same conditions as the light emitting device of the comparative example. The diagram on the left shows the luminance distribution in shades of color, and the diagram on the right is a graph showing the luminance distribution of the middle line in the short direction of the surface corresponding to the exit surface 6 of the light guide of the comparative example. is there. FIG. 14 is a diagram showing a luminance distribution of the emission surface 6 of the light emitting device 41 according to the embodiment of the present invention that emits light under the same conditions as the light emitting device of the comparative example. As shown in FIG. 13, in the light emitting device 21 without the second prism portion 32, a high luminance portion and a low luminance portion appear in stripes. However, the luminance is more uniform than the luminance distribution shown in FIG. 10 using a light guide that does not contain light scattering particles. Further, the brightness of the bright part is about 6000 cd / m 2 . On the other hand, as shown in FIG. 14, in the light emitting device 41 having the second prism portion 32, the high luminance portion and the low luminance portion do not appear in stripes, and the luminance is uniform. In addition, the luminance of the bright portion is about 11000 cd / m 2 , which indicates that the luminance is higher than that of the light emitting device 21.
 また、第2のプリズム部32を構成する第2の三角プリズム32Aは、第2の斜面42と第2の底面44とのなす角度θ2が50度以上90度未満の範囲内の80度であり、かつ隣接する稜部43間の間隔P2が、底面44から稜部43までの高さをH2とした場合、
(2×H2/tanθ2)≦P2<(20×H2/tanθ2) の範囲内となるように設定している。本実施の形態では、P2=2×H2/tanθ2とされ、凹部側において斜面42が交差するように構成されている。具体的には、たとえば、H2=0.3mmとし、P2が0.2mmとされている。角度θ2を50度以上としているのは、出射光を出射面6に対して直交する方向に向けて屈折させ易くし、出射面6の輝度をより均一にするためである。なお、角度θ2を90度未満としている理由、および(2×H/tanθ2)≦P2としている理由は、物理的制約によるものである。また、P2<(20×H2/tanθ2)の範囲であれば、隣接する第2の三角プリズム32間の間隔が開き、隣接する第2の三角プリズム32との間に平面部が形成されても、出射面6から出射する光の出射方向を長尺方向に広がることを抑制でき、発光装置41の光の出射方向を出射面6と直交する方向に近づけることができる。
The second triangular prism 32A constituting the second prism portion 32 has an angle θ2 formed by the second inclined surface 42 and the second bottom surface 44 of 80 degrees within a range of 50 degrees or more and less than 90 degrees. And when the interval P2 between the adjacent ridges 43 is H2 from the bottom 44 to the ridge 43,
It is set to be in the range of (2 × H2 / tan θ2) ≦ P2 <(20 × H2 / tan θ2). In the present embodiment, P2 = 2 × H2 / tan θ2, and the inclined surfaces 42 intersect with each other on the concave side. Specifically, for example, H2 = 0.3 mm and P2 is 0.2 mm. The reason why the angle θ2 is set to 50 degrees or more is to make it easier to refract the emitted light in the direction orthogonal to the emission surface 6 and to make the luminance of the emission surface 6 more uniform. The reason why the angle θ2 is less than 90 degrees and the reason why (2 × H / tan θ2) ≦ P2 are due to physical restrictions. If P2 <(20 × H2 / tan θ2), the interval between the adjacent second triangular prisms 32 is widened, and a plane portion is formed between the adjacent second triangular prisms 32. Further, it is possible to suppress the emission direction of the light emitted from the emission surface 6 from spreading in the longitudinal direction, and the light emission direction of the light emitting device 41 can be brought close to the direction orthogonal to the emission surface 6.
 また、LED22は、導光体1,31の長尺方向に複数等間隔に配置され、入射面4のLED22と対向しない部分には、第1のプリズム部7が設けられないプリズム未形成部8が存在している。LED22から発せられる光のうち、横方向に広がり第1のプリズム7に入射することができない光の一部は、プリズム未形成部8にて導光体1,31へと入射される。横方向に広がってプリズム未形成部8に入射する光は、既に導光体1,31の長尺方向に広がっているため、第1のプリズム7にてさらに屈折させる必要はない。したがって、第1のプリズム7の形成箇所を減らすことができ、製造時の工程等を簡略化することができる。 Further, the LEDs 22 are arranged at a plurality of equal intervals in the longitudinal direction of the light guides 1, 31, and the prism-unformed portion 8 in which the first prism portion 7 is not provided in the portion of the incident surface 4 that does not face the LED 22. Is present. Of the light emitted from the LED 22, a part of the light that spreads in the lateral direction and cannot enter the first prism 7 is incident on the light guides 1 and 31 in the prism non-formation portion 8. Light that spreads in the lateral direction and enters the prism-unformed portion 8 has already spread in the longitudinal direction of the light guides 1 and 31, and therefore does not need to be further refracted by the first prism 7. Therefore, the formation place of the 1st prism 7 can be reduced, and the process at the time of manufacture, etc. can be simplified.
 また、導光体1,31の入射面4と全反射面5とのなす角αは、40度、全反射面5と出射面6とのなす角βは、50度、出射面6と入射面4とのなす角γは、90度とされている。すなわち、出射面6の幅寸法が入射面4の幅寸法よりも小さくされている。そのため、発光装置21,41の設置環境の関係で、出射面6の幅寸法を小さくしなければならない場合に、導光体1,31は有利な形状である。 The angle α formed between the incident surface 4 and the total reflection surface 5 of the light guides 1 and 31 is 40 degrees, and the angle β formed between the total reflection surface 5 and the output surface 6 is 50 degrees, and the output surface 6 and the incident surface 6 are incident. The angle γ made with the surface 4 is 90 degrees. That is, the width dimension of the exit surface 6 is made smaller than the width dimension of the entrance surface 4. Therefore, the light guides 1 and 31 have an advantageous shape when the width dimension of the emission surface 6 must be reduced due to the installation environment of the light emitting devices 21 and 41.
(他の形態)
 導光体1,31は、平面状の左端面2から右端面3に向かう方向に長尺な三角柱の側面を有し、その3つの側面がそれぞれ、光が入射する入射面4、入射した光を全反射する全反射面5、全反射した光を外部へ出射する出射面6であり、入射面4には入射する光を長尺方向に広げる複数の第1の三角プリズム7Aからなる第1のプリズム部7が設けられ、第1の三角プリズム7AはV字状に隣接する複数の斜面11が交差して形成されるジクザグ状の凹凸部(鋸歯状のプリズム部)により形成され、凸部の頂点を含む稜線を稜部12とし、凹部側において斜面11が交差する部分を含む面を第1のプリズム7の底面13としたとき、斜面11と底面13とのなす角度θ1が20度以上70度以下であり、かつ隣り合う稜部12間の間隔P1が、底面13から稜部12までの高さをH1とした場合、(2×H1/tanθ1)≦P1<(10×H1/tanθ1)である。
(Other forms)
The light guides 1 and 31 have triangular prism side surfaces that are long in the direction from the planar left end surface 2 to the right end surface 3, and the three side surfaces are respectively an incident surface 4 on which light is incident and incident light. Is a total reflection surface 5 that totally reflects light, and an emission surface 6 that emits the totally reflected light to the outside. The incident surface 4 includes a first triangular prism 7A that spreads incident light in the longitudinal direction. The prism portion 7 is provided, and the first triangular prism 7A is formed by a zigzag uneven portion (saw-toothed prism portion) formed by crossing a plurality of slopes 11 adjacent to each other in a V shape. When the ridge line including the apex of the first prism 7 is defined as the ridge portion 12 and the surface including the portion where the inclined surface 11 intersects on the concave side is the bottom surface 13 of the first prism 7, the angle θ1 formed by the inclined surface 11 and the bottom surface 13 is 20 degrees or more. The interval P1 between the adjacent ridges 12 is 70 degrees or less. If from the bottom surface 13 to the ridge 12 height was H1, a (2 × H1 / tanθ1) ≦ P1 <(10 × H1 / tanθ1).
 ここで、左端面2、右端面3、入射面4および出射面6は、平面状とされていなくてもよく、たとえば、丸みを帯びた凸形状とされていても良い。また、斜面11と底面13とのなす角度θ1を20度以上70度以下とすること、および第1の三角プリズム7Aの稜部12間の間隔P1が、底面13から稜部12までの高さをH1とした場合、(2×H1/tanθ1)≦P1<(10×H1/tanθ1)とすることのいずれか一方または双方を採用しないこととしてもよい。 Here, the left end surface 2, the right end surface 3, the entrance surface 4 and the exit surface 6 do not have to be flat, and may be, for example, rounded convex shapes. In addition, the angle θ1 formed by the slope 11 and the bottom surface 13 is set to 20 degrees or more and 70 degrees or less, and the interval P1 between the ridge portions 12 of the first triangular prism 7A is a height from the bottom surface 13 to the ridge portion 12. When H1 is H1, either or both of (2 × H1 / tan θ1) ≦ P1 <(10 × H1 / tan θ1) may not be adopted.
 また、導光体1,31は、入射した光を多重散乱させる光散乱粒子を含有し、光散乱粒子は、粒径が2μm~9μmの範囲内の粒径が2.4μmの透光性のシリコーン粒子であり、光散乱粒子による散乱係数に相当する散乱パラメータである濁度をτとした場合、τ>0.01の範囲内であるτ=0.49(λ=550nm)である。しかし、光散乱粒子は導光体1,31に含有させないこととしても良い。また、含有させる場合であっても、光散乱粒子の粒径を2μm~9μmとすること、透光性のシリコーン粒子とすること、τ>0.01とすることのいずれか1つ、2つまたは全部は必要ない。たとえば、光の前方散乱を適切な範囲で大きくするためには、粒子径が5μmから9μmの球状かつ透光性のシリコーン粒子を用いることがより好ましい場合がある。 In addition, the light guides 1 and 31 contain light scattering particles that multiple-scatter incident light. The light scattering particles have a light-transmitting property with a particle diameter of 2.4 μm within a range of 2 μm to 9 μm. When turbidity, which is a silicone particle and is a scattering parameter corresponding to the scattering coefficient by the light scattering particles, is τ, τ = 0.49 (λ = 550 nm) which is in the range of τ> 0.01. However, the light scattering particles may not be contained in the light guides 1 and 31. Even if it is included, any one of the two of the light scattering particles having a particle diameter of 2 μm to 9 μm, a translucent silicone particle, and τ> 0.01. Or not all. For example, in order to increase the forward scattering of light within an appropriate range, it may be more preferable to use spherical and translucent silicone particles having a particle diameter of 5 μm to 9 μm.
 また、導光体31は、出射面6には出射する光を前記長尺方向に屈折させ、出射方向を出射面と直交する方向に近づける複数の第2の三角プリズム32Aからなる第2のプリズム部32を設けている。しかし、導光体1のように第2のプリズム部32は、設けなくても良い。 In addition, the light guide 31 refracts outgoing light on the outgoing surface 6 in the longitudinal direction, and a second prism composed of a plurality of second triangular prisms 32A that brings the outgoing direction closer to a direction orthogonal to the outgoing surface. A portion 32 is provided. However, the second prism portion 32 may not be provided like the light guide 1.
 また、導光体31は、第2のプリズム部を構成する第2のプリズム32はV字状に隣接する複数の第2の斜面42が交差して形成されるジクザグ状の凹凸部(鋸歯状のプリズム部)により形成され、第2の凸部の頂点を含む稜線を稜部43とし、第2の凹部の側において斜面42が交差する部分を含む面を第2のプリズムの第2の底面44としたとき、第2の斜面42と第2の底面44とのなす角度θ2が50度以上90度未満であり、かつ隣り合う第2の稜部43間の間隔P2が、第2の底面44から第2の稜部43までの高さをH2とした場合、(2×H2/tanθ2)≦P2<(20×H2/tanθ2)としている。しかし、第2の斜面42と第2の底面44とのなす角度θ2を50度以上90度未満としていること、および(2×H2/tanθ2)≦P2<(20×H2/tanθ2)とすることのいずれか一方または双方を採用しないこととしてもよい。 The light guide 31 has a zigzag uneven portion (sawtooth shape) formed by intersecting a plurality of second inclined surfaces 42 adjacent to each other in a V shape. And a ridge line including the apex of the second convex portion as a ridge portion 43, and a surface including a portion where the inclined surface 42 intersects on the second concave portion side is a second bottom surface of the second prism. 44, the angle θ2 formed by the second inclined surface 42 and the second bottom surface 44 is not less than 50 degrees and less than 90 degrees, and the interval P2 between the adjacent second ridges 43 is the second bottom surface. When the height from 44 to the second ridge 43 is H2, (2 × H2 / tan θ2) ≦ P2 <(20 × H2 / tan θ2). However, the angle θ2 formed by the second inclined surface 42 and the second bottom surface 44 is set to 50 degrees or more and less than 90 degrees, and (2 × H2 / tan θ2) ≦ P2 <(20 × H2 / tan θ2). Either or both of these may not be adopted.
 また、発光装置21,41は、平面状の左端面2から平面状の右端面3に向かう方向に長尺な三角柱の側面を有し、その3つの側面がそれぞれ、光が入射する入射面4、入射した光を全反射する全反射面5、全反射した光を外部へ出射する出射面6であり、入射面4には入射する光を長尺方向に広げる複数のプリズムからなるプリズム部7が設けられた導光体1,31を備え、入射面4側には、プリズム部7と対向する位置に入射面6に向かって発光するLED22が配置されている。 The light emitting devices 21 and 41 have triangular prism side surfaces extending in a direction from the planar left end surface 2 to the planar right end surface 3, and the three side surfaces are incident surfaces 4 on which light is incident. A total reflection surface 5 that totally reflects the incident light, and an exit surface 6 that emits the totally reflected light to the outside. The incident surface 4 has a prism portion 7 composed of a plurality of prisms that spread the incident light in the longitudinal direction. Are provided, and an LED 22 that emits light toward the incident surface 6 is disposed at a position facing the prism portion 7 on the incident surface 4 side.
 ここで、左端面2および右端面3は、平面状とされていなくてもよく、たとえば、丸みを帯びた凸形状とされていても良い。また、LED22に代えて他の光源、たとえば光密度の高い放電光(キセノンランプ、水銀灯)やレーザを用いても良い。 Here, the left end surface 2 and the right end surface 3 do not have to be flat, and may be, for example, rounded convex shapes. Further, instead of the LED 22, another light source, for example, discharge light (xenon lamp, mercury lamp) or laser with high light density may be used.
 また、発光装置21,41は、LED22が導光体1,31の長尺方向に複数等間隔に配置されている。しかし、LED22は、等間隔に配置されている必要はなく、偏在していても良い。また、導光体1,31の入射面4のLED22と対向しない部分には、第1のプリズム部7が設けられないプリズム未形成部8が存在している。しかし、プリズム未形成部8は存在させずに入射面4全域に第1のプリズム部7を形成しても良い。 Further, in the light emitting devices 21 and 41, a plurality of LEDs 22 are arranged at equal intervals in the longitudinal direction of the light guides 1 and 31. However, the LEDs 22 do not have to be arranged at equal intervals and may be unevenly distributed. Further, in the portion of the incident surface 4 of the light guides 1, 31 that does not face the LED 22, there is a prism non-formed portion 8 where the first prism portion 7 is not provided. However, the first prism portion 7 may be formed over the entire incident surface 4 without the prism-unformed portion 8 being present.
 また、複数のLED22の発光色は、白色としているが、複数のLED22の発光色を異ならせても良い。そして、導光体1,31内で混色させ、出射面6からその混色光を発するようにしても良い。また、LED22は、チップ型のものに限らずディスクリート型のLED等を採用できる。 Further, although the emission color of the plurality of LEDs 22 is white, the emission color of the plurality of LEDs 22 may be different. Then, the light guides 1 and 31 may be mixed in color, and the mixed color light may be emitted from the emission surface 6. Further, the LED 22 is not limited to a chip type but can be a discrete type LED or the like.
 さらに、導光体1、31には、PMMA製のものを用いているが、その他のアクリル酸エステルあるいはメタクリル酸エステルの重合体で、透明性の高い非晶質の合成樹脂であるアクリル樹脂、ポリスチレン、ポリカーボネート等の他の透光性樹脂やガラス等を材質としたものを用いることができる。 Further, the light guides 1 and 31 are made of PMMA, but other acrylic ester or methacrylic ester polymer, which is an acrylic resin that is a highly transparent amorphous resin, Other light-transmitting resins such as polystyrene and polycarbonate, and those made of glass can be used.
 図15は、本発明の第1の実施の形態に係る発光装置21の変形例で、導光体1の左端面2、右端面3、入射面4および全反射面5を覆う反射部材51を、発光装置21に取り付けた状態を示す図である。この反射部材51は、光反射率の高い材料、たとえば鏡面材料、金属材料、白色セラミック材料等を有し、導光体1の出射面6以外から漏れ出る光を反射させて導光体1内へと戻す役割をする。すると、導光体1の出射面6以外から漏れ出ることのある光を出射面6から出射できるため、発光効率の高い発光装置を提供できる。また、反射部材51はLED22をはめ込み固定する孔部52を有している。このため、孔部52がLED22を保持し、LED22の位置決めをすることができる。なお、孔部52は設けず、反射部材51の内面にLED22を固定することとしても良いし、反射部材51は、LED22を固定しないこととしても良い。また、反射部材51は、発光装置41に取り付けることとしても良い。さらに、反射部材51は、導光体1の左端面2、右端面3、入射面4および全反射面5の全体を覆っているが、これらのいずれか1つ、2つまたは3つを覆わないようにしたり、左端面2、右端面3、入射面4および全反射面5のそれぞれの一部を覆うようにしても良い。たとえば、反射部材51は、プリズム部7によって広げられた光が左端面2、右端面3から出射するのを抑えるため、左端面2、右端面3に対向する部分の光反射率を高めることとしても良い。 FIG. 15 is a modification of the light emitting device 21 according to the first embodiment of the present invention, and shows a reflecting member 51 that covers the left end surface 2, the right end surface 3, the incident surface 4, and the total reflection surface 5 of the light guide 1. It is a figure which shows the state attached to the light-emitting device 21. FIG. The reflecting member 51 includes a material having a high light reflectivity, for example, a mirror surface material, a metal material, a white ceramic material, and the like, and reflects light leaking from other than the exit surface 6 of the light guide 1 to thereby reflect the inside of the light guide 1. Play the role of returning to. Then, since light that may leak from other than the emission surface 6 of the light guide 1 can be emitted from the emission surface 6, a light emitting device with high luminous efficiency can be provided. The reflecting member 51 has a hole 52 for fitting and fixing the LED 22. For this reason, the hole part 52 hold | maintains LED22 and can position LED22. The hole 52 may not be provided, and the LED 22 may be fixed to the inner surface of the reflecting member 51, or the reflecting member 51 may not fix the LED 22. Further, the reflecting member 51 may be attached to the light emitting device 41. Further, the reflecting member 51 covers the entire left end surface 2, right end surface 3, incident surface 4 and total reflection surface 5 of the light guide 1, but covers any one, two or three of these. Alternatively, the left end surface 2, the right end surface 3, the incident surface 4, and the total reflection surface 5 may be partially covered. For example, the reflecting member 51 increases the light reflectance of the portion facing the left end surface 2 and the right end surface 3 in order to suppress the light spread by the prism portion 7 from being emitted from the left end surface 2 and the right end surface 3. Also good.
 1,31 導光体(光学素子)
 2 左端面
 3 右端面
 4 入射面
 5 全反射面
 6 出射面
 7 プリズム部
 7A 第1の三角プリズム
 8 プリズム部未形成部(プリズム部が設けられない部分)
11 斜面
12 稜部
13 底面
21,41 発光装置
22 LED(光源)
32 第2のプリズム部
32A 第2の三角プリズム
42 第2の斜面
43 第2の稜部
44 第2の底面
 τ 濁度
 θ1 第1の三角プリズムの底角
 θ2 第2の三角プリズムの底角
 P1 隣り合う稜部間の間隔(第1の三角プリズムの隣り合う稜部間の間隔)
 P2 第2の頂点間ピッチ(第2の三角プリズムの隣り合う稜部間の間隔)
 H1 底面から稜部までの高さ(第2の三角プリズムの底面から第2の三角プリズムの稜部までの高さ)
 H2 第2の底面から第2の稜部までの高さ(第2の三角プリズムの底面から第2の三角プリズムの稜部までの高さ)
1,31 Light guide (optical element)
2 Left end surface 3 Right end surface 4 Incident surface 5 Total reflection surface 6 Outgoing surface 7 Prism portion 7A First triangular prism 8 Prism portion unformed portion (portion where no prism portion is provided)
11 Slope 12 Ridge 13 Bottom 21, 41 Light Emitting Device 22 LED (Light Source)
32 Second prism portion 32A Second triangular prism 42 Second slope 43 Second ridge portion 44 Second bottom surface τ Turbidity θ1 Base angle of first triangular prism θ2 Base angle of second triangular prism P1 Interval between adjacent ridges (interval between adjacent ridges of the first triangular prism)
P2 Pitch between second vertices (space between adjacent ridges of the second triangular prism)
H1 Height from the bottom to the ridge (height from the bottom of the second triangular prism to the ridge of the second triangular prism)
H2 Height from the second bottom surface to the second ridge (height from the bottom surface of the second triangular prism to the ridge portion of the second triangular prism)

Claims (13)

  1.  三角柱を呈する導光部を有し、
     上記導光部の3つの側面のうち、1つの側面を光が入射する入射面とし、他の1つの側面を上記入射した光を全反射する全反射面とし、残りの1つの側面を上記全反射した光を外部へ出射する出射面とし、
     上記入射面には、上記全反射面を含む平面と上記出射面を含む平面とに交差する方向に稜線方向を向けた稜部を有する複数の第1の三角プリズムからなる第1のプリズム部が設けられる、
    ことを特徴とする光学素子。
    Having a light guide that presents a triangular prism;
    Of the three side surfaces of the light guide unit, one side surface is an incident surface on which light is incident, the other one side surface is a total reflection surface that totally reflects the incident light, and the remaining one side surface is the entire surface. Let the reflected light be an exit surface that exits to the outside,
    The incident surface includes a first prism portion including a plurality of first triangular prisms having a ridge portion whose ridge line direction is directed in a direction intersecting the plane including the total reflection surface and the plane including the emission surface. Provided,
    An optical element.
  2.  請求項1に記載の光学素子において、
     前記第1の三角プリズムの底角θ1が20度以上70度以下であり、かつ、前記複数の第1の三角プリズムの隣り合う稜部間の間隔P1が、前記第1の三角プリズムの底面から前記稜部までの高さをH1とした場合、
     (2×H1/tanθ1)≦P1<(10×H1/tanθ1)
    であることを特徴とする光学素子。
    The optical element according to claim 1,
    The base angle θ1 of the first triangular prism is not less than 20 degrees and not more than 70 degrees, and the interval P1 between adjacent ridges of the plurality of first triangular prisms is from the bottom surface of the first triangular prism. When the height to the ridge is H1,
    (2 × H1 / tan θ1) ≦ P1 <(10 × H1 / tan θ1)
    An optical element characterized by the above.
  3.  請求項1記載の光学素子において、
     入射した光を多重散乱させる光散乱粒子を含有し、
     上記光散乱粒子は、粒径が2μm~9μmの透光性のシリコーン粒子であり、
     上記光散乱粒子による散乱係数に相当する散乱パラメータである濁度をτとした場合、τ>0.01であることを特徴とする光学素子。
    The optical element according to claim 1, wherein
    Contains light scattering particles that scatter incident light multiple times,
    The light scattering particles are translucent silicone particles having a particle size of 2 μm to 9 μm,
    An optical element, wherein τ> 0.01 when turbidity which is a scattering parameter corresponding to a scattering coefficient by the light scattering particles is τ.
  4.  請求項1記載の光学素子において、
     前記出射面には前記複数の第1の三角プリズムの配置方向に沿って配置される複数の第2の三角プリズムからなる第2のプリズム部が設けられていることを特徴とする光学素子。
    The optical element according to claim 1, wherein
    An optical element, wherein a second prism portion comprising a plurality of second triangular prisms arranged along the arrangement direction of the plurality of first triangular prisms is provided on the emission surface.
  5.  請求項4記載の光学素子において、
     前記第2の三角プリズム部の底角θ2が50度以上90度未満であり、かつ、上記複数の第2の三角プリズムの隣り合う稜部間の間隔P2が、上記第2の三角プリズムの底面から上記第2の三角プリズムの稜部までの高さをH2とした場合、
     (2×H2/tanθ2)≦P2<(20×H2/tanθ2)
    であることを特徴とする光学素子。
    The optical element according to claim 4.
    The base angle θ2 of the second triangular prism portion is not less than 50 degrees and less than 90 degrees, and the interval P2 between adjacent ridge portions of the plurality of second triangular prisms is the bottom surface of the second triangular prism. When the height from the second triangular prism to the ridge is H2,
    (2 × H2 / tan θ2) ≦ P2 <(20 × H2 / tan θ2)
    An optical element characterized by the above.
  6.  三角柱を呈する導光部を有し、
     上記導光部の3つの側面のうち、1つの側面を光が入射する入射面とし、他の1つの側面を上記入射した光を全反射する全反射面とし、残りの1つの側面を上記全反射した光を外部へ出射する出射面とし、
    上記入射面には、上記全反射面を含む平面と上記出射面を含む平面とに交差する方向に稜線方向を向けた稜部を有する複数の第1の三角プリズムからなる第1のプリズム部が設けられる光学素子を備え、
     上記入射面に光を入射させる複数の光源が、上記複数の第1の三角プリズムの配置方向に配置されている、
    ことを特徴とする発光装置。
    Having a light guide that presents a triangular prism;
    Of the three side surfaces of the light guide unit, one side surface is an incident surface on which light is incident, the other one side surface is a total reflection surface that totally reflects the incident light, and the remaining one side surface is the entire surface. Let the reflected light be an exit surface that exits to the outside,
    The incident surface includes a first prism portion including a plurality of first triangular prisms having a ridge portion whose ridge line direction is directed in a direction intersecting the plane including the total reflection surface and the plane including the emission surface. Comprising an optical element provided;
    A plurality of light sources that cause light to enter the incident surface are arranged in an arrangement direction of the plurality of first triangular prisms,
    A light emitting device characterized by that.
  7.  請求項6記載の発光装置において、
     前記入射面の前記光源と対向しない部分には、前記第1のプリズム部が設けられない部分が存在することを特徴とする発光装置。
    The light-emitting device according to claim 6.
    The light emitting device according to claim 1, wherein a portion of the incident surface that does not face the light source includes a portion where the first prism portion is not provided.
  8.  請求項6記載の発光装置において、
     前記複数の光源の発光色が異なることを特徴とする発光装置。
    The light-emitting device according to claim 6.
    A light emitting device characterized in that light emission colors of the plurality of light sources are different.
  9.  請求項6記載の発光装置において、
     上記光学素子は、入射した光を多重散乱させる光散乱粒子を含有し、
     上記光散乱粒子は、粒径が2μm~9μmの透光性のシリコーン粒子であり、
     上記光散乱粒子による散乱係数に相当する散乱パラメータである濁度をτとした場合、τ>0.01であることを特徴とする発光装置。
    The light-emitting device according to claim 6.
    The optical element contains light scattering particles that multiple-scatter incident light,
    The light scattering particles are translucent silicone particles having a particle size of 2 μm to 9 μm,
    A light-emitting device, wherein τ> 0.01 when turbidity which is a scattering parameter corresponding to a scattering coefficient by the light scattering particles is τ.
  10.  請求項6記載の発光装置において、
     前記第1の三角プリズムの底角θ1が20度以上70度以下であり、かつ、前記複数の第1の三角プリズムの隣り合う稜部間の間隔P1が、前記第1の三角プリズムの底面から前記稜部までの高さをH1とした場合、
     (2×H1/tanθ1)≦P1<(10×H1/tanθ1)
    であることを特徴とする発光装置。
    The light-emitting device according to claim 6.
    The base angle θ1 of the first triangular prism is not less than 20 degrees and not more than 70 degrees, and the interval P1 between adjacent ridges of the plurality of first triangular prisms is from the bottom surface of the first triangular prism. When the height to the ridge is H1,
    (2 × H1 / tan θ1) ≦ P1 <(10 × H1 / tan θ1)
    A light emitting device characterized by the above.
  11.  請求項6記載の発光装置において、
     前記光散乱粒子は、粒径が2μm~9μmの透光性のシリコーン粒子であり、
     前記光学素子は、前記光散乱粒子による散乱係数に相当する散乱パラメータである濁度をτとした場合、τ>0.01であることを特徴とする発光装置。
    The light-emitting device according to claim 6.
    The light scattering particles are translucent silicone particles having a particle size of 2 μm to 9 μm,
    The optical element is characterized in that τ> 0.01 when turbidity, which is a scattering parameter corresponding to a scattering coefficient by the light scattering particles, is τ.
  12.  請求項6記載の発光装置において、
     前記出射面には前記複数の第1の三角プリズムの配置方向に沿って配置される複数の第2の三角プリズムからなる第2のプリズム部が設けられていることを特徴とする発光装置。
    The light-emitting device according to claim 6.
    2. A light emitting device according to claim 1, wherein a second prism portion comprising a plurality of second triangular prisms arranged along the arrangement direction of the plurality of first triangular prisms is provided on the emission surface.
  13.  請求項12記載の発光装置において、
     前記第2の三角プリズム部の底角θ2が50度以上90度未満であり、かつ、上記複数の第2の三角プリズムの隣り合う稜部間の間隔P2が、上記第2の三角プリズムの底面から上記第2の三角プリズムの稜部までの高さをH2とした場合、
     (2×H2/tanθ2)≦P2<(20×H2/tanθ2)
    であることを特徴とする発光装置。
    The light-emitting device according to claim 12.
    The base angle θ2 of the second triangular prism portion is not less than 50 degrees and less than 90 degrees, and the interval P2 between adjacent ridge portions of the plurality of second triangular prisms is the bottom surface of the second triangular prism. When the height from the second triangular prism to the ridge is H2,
    (2 × H2 / tan θ2) ≦ P2 <(20 × H2 / tan θ2)
    A light emitting device characterized by the above.
PCT/JP2011/050007 2010-01-05 2011-01-04 Optical element and light-emitting device WO2011083779A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010000666A JP5401331B2 (en) 2010-01-05 2010-01-05 Optical element and light emitting device
JP2010-000666 2010-01-05

Publications (1)

Publication Number Publication Date
WO2011083779A1 true WO2011083779A1 (en) 2011-07-14

Family

ID=44305515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050007 WO2011083779A1 (en) 2010-01-05 2011-01-04 Optical element and light-emitting device

Country Status (2)

Country Link
JP (1) JP5401331B2 (en)
WO (1) WO2011083779A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI615642B (en) * 2011-10-27 2018-02-21 住友化學股份有限公司 Optical sheet, surface light source device, and transmissive image display device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6143725B2 (en) * 2014-10-06 2017-06-07 シャープ株式会社 Propeller fan, fluid feeder and mold
KR101908001B1 (en) 2016-07-18 2018-10-15 (주) 부성엘이디 Double Side Projected Signboard using Back Light Unit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002260427A (en) * 2001-03-05 2002-09-13 Olympus Optical Co Ltd Lighting device
JP2004319322A (en) * 2003-04-17 2004-11-11 Bridgestone Corp Planar light-emitting device
JP2007115451A (en) * 2005-10-18 2007-05-10 Omron Corp Planar light source device
JP2009277641A (en) * 2007-12-27 2009-11-26 Fujifilm Corp Surface lighting device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005353406A (en) * 2004-06-10 2005-12-22 Toyota Industries Corp Light guide plate
KR101587558B1 (en) * 2008-02-07 2016-01-21 소니 주식회사 Light guide plate surface illumination device liquid crystal display device and manufacturing method for the light guide plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002260427A (en) * 2001-03-05 2002-09-13 Olympus Optical Co Ltd Lighting device
JP2004319322A (en) * 2003-04-17 2004-11-11 Bridgestone Corp Planar light-emitting device
JP2007115451A (en) * 2005-10-18 2007-05-10 Omron Corp Planar light source device
JP2009277641A (en) * 2007-12-27 2009-11-26 Fujifilm Corp Surface lighting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI615642B (en) * 2011-10-27 2018-02-21 住友化學股份有限公司 Optical sheet, surface light source device, and transmissive image display device

Also Published As

Publication number Publication date
JP5401331B2 (en) 2014-01-29
JP2011141964A (en) 2011-07-21

Similar Documents

Publication Publication Date Title
JP5656461B2 (en) Light emitting device
US7777955B2 (en) Rippled mixers for uniformity and color mixing
US8820964B2 (en) Linear lighting system
JP6334498B2 (en) Lighting module
JP5172592B2 (en) Optical element and light emitting device
US8616746B2 (en) Optical element and light-emitting device
JP5543157B2 (en) Optical element and light emitting device
WO2010098036A1 (en) Light emitting device and light emitting element
JP5306799B2 (en) Optical element and light emitting device
US20100098377A1 (en) Light confinement using diffusers
JP2009516893A (en) Lighting device
JP2011249141A (en) Light emitting device
JP5401331B2 (en) Optical element and light emitting device
JP6309660B2 (en) Light guide and light emitting device
JP5363884B2 (en) Light emitting device and optical element
JP6310683B2 (en) Light guide plate, lighting device
JP6012972B2 (en) Lighting device
US20200200344A1 (en) Daylighting member and daylighting device
TWI588401B (en) Direct type of lighting
JP7297071B2 (en) lighting equipment
WO2015122434A1 (en) Light guide plate, and lighting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11731777

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11731777

Country of ref document: EP

Kind code of ref document: A1