WO2011083761A1 - Wireless transmission device and reference signal transmission method - Google Patents

Wireless transmission device and reference signal transmission method Download PDF

Info

Publication number
WO2011083761A1
WO2011083761A1 PCT/JP2011/000020 JP2011000020W WO2011083761A1 WO 2011083761 A1 WO2011083761 A1 WO 2011083761A1 JP 2011000020 W JP2011000020 W JP 2011000020W WO 2011083761 A1 WO2011083761 A1 WO 2011083761A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
csi
sfbc
unit
terminal
Prior art date
Application number
PCT/JP2011/000020
Other languages
French (fr)
Japanese (ja)
Inventor
中尾正悟
福岡将
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011083761A1 publication Critical patent/WO2011083761A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0678Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using different spreading codes between antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/068Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using space frequency diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows

Definitions

  • the present invention relates to a wireless transmission device and a reference signal transmission method.
  • a reference signal is also used in LTE (Long Term Evolution) of the next generation communication system established by 3GPP (3rd Generation Partnership Project) which is an international standardization organization for mobile communication.
  • reference signals transmitted from a transmitting apparatus (base station) to a receiving apparatus (terminal) mainly include (1) channel estimation for demodulation and (2) frequency scheduling and adaptive MCS. (Modulation and Coding ⁇ Scheme) Used for quality measurement for control.
  • a reference signal is transmitted in units of predetermined radio resources in a multi-antenna system for applying MIMO (Multiple ⁇ Input Multiple Output).
  • the LTE frame has a configuration as shown in FIG.
  • the minimum unit of frequency scheduling and adaptive MCS control (that is, control of coding rate and multi-level modulation number) is called a resource block (RB) (hereinafter also referred to as RB).
  • RB resource block
  • 1 RB is a group of 12 subcarriers in the frequency direction and 14 OFDM symbols in the time direction.
  • Reference signal RS is arranged on a specific subcarrier in a specific OFDM symbol in 1 RB.
  • a unit specified by one OFDM symbol and one subcarrier is called a resource element (RE: Resource : Element, hereinafter also referred to as RE). That is, since 1 RB includes 12 subcarriers and 14 OFDM symbols, 168 REs are included.
  • RE Resource element
  • Non-Patent Document 1 when there are a plurality of LTE base station antennas, SFBC (Space-Frequency Block Coding) as shown in FIG. 2 is applied to downlink data.
  • FIG. 2 shows a conceptual diagram when the number of antennas of the base station is two.
  • an SFBC result unit (hereinafter referred to as “SFBC group”) obtained by performing SFBC on the block code processing unit of SFBC (the whole of S1 and S2 in FIG. 2).
  • S1, S2, -S2 *, S1 * constitute an SFBC group) and are mapped to one resource group (hereinafter referred to as "SFBC resource group") in the resource block.
  • the SFBC resource group is a resource unit to which the SFBC result unit is mapped, and one SFBC resource group is composed of two REs adjacent on the frequency axis.
  • one SFBC resource group is transmitted from both antenna 1 and antenna 2, and S1 and S2 are arranged in the first RE and second RE of the SFBC resource group transmitted from antenna 1, respectively, while antenna 2 -S2 * and S1 * are arranged in the first RE and the second RE of the SFBC resource group to be transmitted, respectively.
  • S2 * and S1 * represent the complex conjugate of S2 and S1.
  • the diversity gain is obtained by transmitting the frame in which the SFBC group is mapped to the SFBC resource group.
  • the LTE terminal When receiving downlink data encoded by SFBC, the LTE terminal collectively receives the SFBC resource group, and combines the signal components received by the SFBC resource group by a known decoding method, so that S1 , S2.
  • LTE-A LTE-Advanced
  • LTE-A LTE-Advanced
  • introduction of higher-order MIMO for example, eight transmission antennas
  • CoMP coordinated multipoint transmission / reception
  • Non-Patent Document 2 in LTE-A, two types of reference signals are examined for the above-mentioned uses.
  • DM RS Demodulation RS
  • PDSCH Physical downlink shared channel
  • precoding is also applied.
  • This is a UE-specific reference signal for a terminal (User Equipment: UE).
  • CSI-RS A reference signal for CSI (Channel state information) observation. Precoding is not applied. It is a cell-specific reference signal.
  • the CSI includes CQI (channel (quality indicator), PMI (precoding matrix indicator), RI (rank indicator), and the like.
  • the DM RS is inserted only in the RB that allocates data to the LTE-A terminal so that the LTE-A terminal can demodulate the downlink signal. Accordingly, the terminal cannot know in advance which RB and which subframe the DM RS is inserted into.
  • CSI-RS is by all LTE-A terminal connected to a base station, have been recognized for whether it is inserted in advance which RB, in which sub-frame. Therefore, the LTE-A terminal can receive the CSI-RS based on the CSI-RS arrangement information, and feeds back the CSI to the base station. That is, the CSI-RS is always inserted regardless of whether data is assigned to the LTE-A terminal in any RB or any subframe.
  • the CSI-RS is transmitted even when no resource is allocated to the transmission data sequence for the LTE-A terminal.
  • the use of CSI-RS is not regarded as an exclusive position. Specifically, the discussion is proceeding on the assumption that CSI-RS may be used for the application (1).
  • Non-Patent Documents 3 and 4 are diagrams illustrating a CSI-RS transmission method corresponding to the LTE-A terminal.
  • CSI-RSs are arranged for OFDM symbols that are not used for any of RSs for LTE, control channels, and DMRSs.
  • CSI-RS is arranged in the 11th OFDM symbol in the resource block shown in FIG. 3, and CSI-RS is arranged in the 10th and 11th OFDM symbols in the resource block shown in FIG. 4.
  • the LTE-A terminal can measure the quality of the channel from the base station to its own device.
  • the CSI-RS is transmitted from the four antennas of the LTE-A base station arranged in different REs (that is, by FDM).
  • CSI-RS is the same from one antenna pair of LTE-A base station (that is, one set in which four antennas of LTE-A base station are divided into two). Placed in RE and transmitted.
  • CSI-RS transmitted from two antennas constituting an antenna pair is transmitted by CDM (that is, code-multiplexed). Between the two antenna pairs, the CSI-RS is frequency-multiplexed (FDM) and transmitted as in the case of FIG. In FIGS. 3 and 4, the difference in hatching representing CSI-RS represents the difference in antenna to be transmitted. The same notation is adopted in the drawings described below.
  • the above-mentioned CSI-RS is also transmitted in an RB to which downlink data for LTE terminals is assigned.
  • the CSI-RS overwrites downlink data for the LTE terminal. That is, significant data for the LTE terminal is overwritten by CSI-RS that does not make sense for the LTE terminal.
  • the LTE terminal cannot know the existence of the CSI-RS. Therefore, the LTE terminal performs the decoding process on the assumption that significant information addressed to the terminal itself is also included in the RE in which the CSI-RS is arranged. Since convolutional coding is applied to downlink data in LTE, even if a part of RE is overwritten by CSI-RS, in general, decoding can be performed without error.
  • FIG. 5 shows a conceptual diagram in which the CSI-RS shown in FIG. 2 overwrites data for the LTE terminal.
  • a part of REs constituting the 11th OFDM symbol is overwritten by CSI-RS.
  • the LTE-A base station sets an MCS that is more resistant to noise to the LTE terminal. Then, control is performed so that the LTE terminal can receive downlink data without error.
  • An object of the present invention is to arrange a reference signal for the second wireless reception device in a resource allocated to data to the first wireless reception device, so that the data to the first wireless reception device is the first.
  • the radio transmission apparatus of the present invention performs spatial frequency block coding (SFBC) on a transmission data sequence for the first type reception apparatus in units of block code processing, and forms an SFBC group that is a code result for each block code processing unit.
  • SFBC spatial frequency block coding
  • the first reference signal and the second reference signal are in a complex conjugate relationship with each other.
  • a transmission data sequence for the first type receiver is subjected to spatial frequency block coding (SFBC) in block code processing units, and an SFBC group as a code result for each block code processing unit is formed.
  • the first reference signal and the second reference signal are in a complex conjugate relationship with each other.
  • the reference signal for the second wireless reception device is arranged in the resource allocated to the data to the first wireless reception device, so that the data to the first wireless reception device is the first.
  • frame of LTE Diagram for explaining examples of arrangement of SFBC result units in SFBC (Space-Frequency Block Coding) and LTE The figure which shows the transmission method of CSI-RS corresponding to a LTE-A terminal. The figure which shows the transmission method of CSI-RS corresponding to a LTE-A terminal The figure explaining the overwriting to the data for LTE terminals by CSI-RS
  • the block diagram which shows the structure of the base station which concerns on one embodiment of this invention
  • positioning of CSI-RS with respect to the SFBC resource group by the base station which concerns on this Embodiment The figure which shows the simulation result at the time of maintaining the relationship of Formula (1) with respect to the pair of CSI-RS which overwrites a SFBC resource group (when a 1st type terminal carries out QPSK demodulation)
  • the figure which shows the simulation result at the time of maintaining the relationship of Formula (1) with respect to the pair of CSI-RS which overwrites a SFBC resource group (when a 1st type terminal carries out 16QAM demodulation)
  • the wireless communication system includes a base station 100, which will be described later, which is a wireless communication device, a first type terminal compatible with the first type system, and a terminal 200 that is a second terminal compatible with the second type system.
  • the base station 100 is an LTE-A base station corresponding to the LTE-A system (and LTE system)
  • the first type terminal is an LTE terminal corresponding to the LTE system
  • the second type terminal is LTE.
  • Base station 100 transmits a signal to a first type terminal or a second type terminal via a plurality of antennas. For this transmission, for example, OFDM is used.
  • Base station 100 transmits an OFDM signal obtained by performing serial-parallel conversion and IFFT on a serial transmission signal in units of OFDM symbols. That is, base station 100 transmits a “spatial multiplexed resource block” to a receiving terminal by transmitting resource blocks defined by a plurality of OFDM symbols and a plurality of subcarriers from a plurality of antennas.
  • the base station 100 can also communicate with the first type terminal.
  • the first type terminal cannot know the existence of the second type system, but can communicate with the base station 100 by performing the same operation as the communication with the base station compatible with the first type system.
  • the type 2 terminal includes a base station classified into the type 1 system (that is, a type 1 base station) and a base station classified into the type 2 system (that is, the base station 100 corresponding to the second type). Seed base stations) and appropriate communication can be performed with each base station.
  • the base station 100 also transmits a second reference signal (for example, CSI-RS) for the LTE-A system in addition to the first reference signal for the first type system.
  • CSI-RS for example, CSI-RS
  • These reference signals are inserted into a predetermined RE in the RB.
  • the second reference signal is mainly used by the type 2 terminal to generate feedback information necessary for frequency scheduling and adaptive MCS control.
  • the base station 100 divides, in the RB, the RE group that can be allocated to the downlink data to the first type terminal into an RE group composed of a predetermined number of REs.
  • This RE group is a resource unit to which the SFBC result unit is mapped, and corresponds to the above-described SFBC resource group.
  • this RE group is composed of two REs that are adjacent on the frequency axis, like the SFBC resource group.
  • the base station 100 is an LTE-A base station
  • the terminal 200 is an LTE-A terminal
  • the first type terminal is an LTE terminal
  • FIG. 6 is a block diagram showing a configuration of base station 100 according to the present embodiment.
  • the base station 100 includes a plurality of terminal signal processing units 101-a and 101b, a plurality of transmission RF units 103-1 to m, a plurality of antennas 104-1 to m, a scheduling unit 105, Second reference signal arrangement setting unit 106, second reference signal generation unit 107, complex conjugate processing unit 114, first reference signal generation unit 108, reception RF unit 109, separation unit 110, demodulation / decoding unit 111, a CRC checker 112, and a feedback information demodulator 113.
  • antennas 104-1 to m are used to transmit transmission data for the LTE terminal, the first reference signal, transmission data for the LTE-A terminal, and CSI-RS.
  • antennas 104-n + 1 to m are not used for transmitting transmission data for the LTE terminal and the first reference signal, but are used for transmission of transmission data for the LTE-A terminal and CSI-RS.
  • the terminal signal processing unit 101-a includes an encoding / modulation unit 121-1, a precoding processing unit 123-1, and a data overwriting unit 124.
  • the terminal signal processing unit 101-b includes an encoding / modulation unit 121-2, a second reference signal mapping unit 122, and a precoding processing unit 123-2.
  • the signal transmitted from the terminal 200 or the first type terminal is input to the reception RF unit 109 via the antenna 104-1.
  • the reception RF unit 109 performs predetermined radio reception processing (down-conversion, A / D conversion, etc.) on the reception signal, and then outputs the reception signal after the radio reception processing to the separation unit 110.
  • predetermined radio reception processing down-conversion, A / D conversion, etc.
  • Separation section 110 separates the received signal received from reception RF section 109 into a feedback signal and a data signal, outputs the feedback signal to feedback information demodulation section 113, and outputs the data signal to demodulation / decoding section 111.
  • the demodulation / decoding unit 111 obtains received data by demodulating and decoding the data signal.
  • the CRC checker 112 performs error detection processing by CRC check on the received data output from the demodulator / decoder 111 to determine whether the received data contains an error. Then, the reception data is output from the CRC inspection unit 112.
  • the feedback information demodulation unit 113 demodulates the feedback signal and outputs the demodulation result to the scheduling unit 105.
  • the feedback signal includes channel quality information (CSI) or Ack / Nack information.
  • CSI channel quality information
  • Ack Ack / Nack information.
  • the channel quality information indicates the channel quality measured by the terminal 200 based on the first type reference signal transmitted from the base station 100.
  • Scheduling section 105 performs transmission signal scheduling based on channel quality information and CSI-RS arrangement information. Specifically, the scheduling unit 105 performs at least one of frequency scheduling and adaptive MCS control based on channel quality information transmitted from a terminal that receives a reference signal. In addition, the scheduling unit 105 refers to the CSI-RS arrangement information, and with respect to the data for the LTE-A terminal, the scheduling unit 105 transmits the transmission data (ie, the downlink) to the RE excluding the RE in which the CSI-RS is arranged. Data). In addition, regarding data for LTE terminals, scheduling section 105 assigns transmission data to REs based on mapping rules recognized by LTE terminals, regardless of whether or not CSI-RS is arranged.
  • the scheduling unit 105 when the transmission data for the LTE terminal is allocated to an arbitrary RB where the CSI-RS is allocated, the scheduling unit 105 overwrites a part of the transmission data for the LTE terminal with the CSI-RS. Considering this, a slightly more robust MCS is set than the MCS in the RB where the CSI-RS is not arranged.
  • the scheduling information determined by the scheduling unit 105 (including at least one of the frequency scheduling result and the determined MCS) is output to the terminal signal processing units 101-a and 101b.
  • the second reference signal arrangement setting unit 106 outputs CSI-RS arrangement information to the scheduling unit 105 and the second reference signal generation unit 107. Further, the arrangement information of CSI-RS is also notified separately to the second type terminal.
  • the second reference signal generation unit 107 includes m / 2 types of CSI-RS (that is, CSI-RS that is half the number of antennas to which CSI-RS is to be transmitted. Part or all may be the same series) and output to the complex conjugate processing unit 114.
  • CSI-RS that is, CSI-RS that is half the number of antennas to which CSI-RS is to be transmitted. Part or all may be the same series
  • the complex conjugate processing unit 114 performs a complex conjugate operation on each of m / 2 types of CSI-RSs input from the second reference signal generation unit 107, and further adds ⁇ rotation on the complex plane (0 ⁇ ⁇ ⁇ 2 ⁇ [rad]) is generated as a CSI-RS that should correspond to the remaining m / 2 antennas.
  • the complex conjugate processing unit 114 generates m / 2 pairs of CSI-RS pairs that are in a complex conjugate (+ rotation) relationship (that is, CSI-RSs corresponding to m antennas).
  • the complex conjugate processing unit 114 generates CSI-RSs transmitted from the transmission antennas 104-1 to m at the timing of forming resource blocks in which transmission data for LTE-A terminals is arranged, and is used for terminals. Output to the signal processing unit 101-b.
  • complex conjugate processing section 114 when transmitting CSI-RS in a resource block in which transmission data for LTE terminals is arranged, complex conjugate processing section 114 generates CSI-RS transmitted from transmitting antennas 104-1 to 104-n, respectively. To the terminal signal processing unit 101-a.
  • the terminal signal processing unit 101-a forms a resource block in which transmission data for LTE terminals is arranged. Specifically, the terminal signal processing unit 101-a performs spatial frequency block coding (SFBC) on a transmission data sequence for LTE terminals in block code processing units, and an SFBC group that is a code result for each block code processing unit. Form. Then, the terminal signal processing unit 101-a arranges the formed SFBC group in an SFBC resource group composed of a plurality of resource elements assigned to the transmission data sequence. Then, the terminal signal processing unit 101-a arranges CSI-RS pairs having a complex conjugate (+ rotation) relationship with each other in a predetermined SFBC resource group.
  • SFBC spatial frequency block coding
  • the CSI-RS is arranged in some SFBC resource groups among the SFBC resource groups included in the RB.
  • terminal signal processing section 101-a is connected to the first resource element and the second resource element included in the same SFBC resource group (here, particularly adjacent in the frequency direction) for LTE-A terminals.
  • “First CSI-RS” and “second CSI-RS in which the complex conjugate of the first CSI-RS is rotated by an angle ⁇ (0 ⁇ ⁇ ⁇ 2 ⁇ [rad])” are arranged.
  • the first CSI-RS and the second CSI-RS constitute a CSI-RS pair.
  • the encoding / modulation unit 121-1 performs spatial frequency block coding (SFBC) on the transmission data sequence for LTE terminals in block code processing units, and performs block code processing units.
  • SFBC spatial frequency block coding
  • An SFBC group which is a code result of each is formed.
  • the encoding / modulation unit 121-1 also performs multiplexing processing of a control signal, rate matching processing, interleaving processing, modulation processing, and the like.
  • the precoding processing unit 123-1 forms n parallel streams corresponding to the antennas 104-1 to 104-n from the SFBC group group received from the encoding / modulation unit 121-1.
  • the precoding processing unit 123-1 forms a plurality of parallel streams by dividing the SFBC group.
  • Each stream obtained by the precoding processing unit 123-1 is serially output in units of OFDM symbols.
  • the data overwriting unit 124 overwrites the configuration data corresponding to the resource element in which the CSI-RS is to be arranged in the configuration data group that configures the plurality of parallel streams with the CSI-RS, and the obtained plurality of parallel streams.
  • Reference signals for LTE terminals generated by the first reference signal generation unit 108 are inserted into the plurality of parallel streams.
  • the data is arranged avoiding the RE in which the reference signal for the LTE terminal is inserted, so that the data is not overwritten by the first reference signal.
  • the terminal signal processing unit 101-b forms a resource block in which transmission data for the LTE-A terminal is arranged.
  • the encoding / modulation unit 121-2 performs spatial frequency block coding (SFBC) on the block data processing unit for the transmission data sequence for the LTE-A terminal, and blocks An SFBC group that is a code result for each code processing unit is formed.
  • SFBC spatial frequency block coding
  • the encoding / modulation unit 121-2 also performs control signal multiplexing processing, rate matching processing, interleaving processing, modulation processing, and the like.
  • Second reference signal mapping section 122 receives CSI-RSs transmitted from transmission antennas 104-1 to m received from second reference signal generation section 107, and divides CSI-RS for each antenna and performs precoding processing in parallel.
  • the encoding / modulation unit 121-2 also performs multiplexing processing of a control signal, rate matching processing, interleaving processing, modulation processing, and the like.
  • the precoding processing unit 123-2 receives m parallels corresponding to the antennas 104-n + 1 to m from the SFBC group group received from the encoding / modulation unit 121-1 and the CSI-RS received from the second reference signal generation unit 107. Form a stream.
  • Each stream obtained by the precoding processing unit 123-2 is serially output in units of OFDM symbols.
  • the SFBC group configuration data and CSI-RS correspond to the SFBC group configuration data and CSI-RS to be allocated in the resource block transmitted from the antenna corresponding to the stream. It is arranged at the position to do.
  • the transmission RF units 103-1 to 103-m receive the OFDM symbol unit stream, perform serial-parallel conversion and IFFT processing, and form an OFDM signal.
  • the OFDM signals formed by the transmission RF units 103-1 to l are transmitted from the antennas 104-1 to l, respectively.
  • FIG. 7 is a block diagram showing a configuration of terminal 200 according to the present embodiment.
  • terminal 200 includes a plurality of antennas 211-1 to 211-1, a plurality of reception RF units 212-1 to 212-1, a CSI-RS sequence generation unit 223, a complex conjugate processing unit 224, and a channel estimation unit 213.
  • terminal 200 is described as an LTE-A terminal.
  • the spatially multiplexed OFDM signal obtained by spatially multiplexing the OFDM signal transmitted from the base station 100 is received by the antennas 211-1 to 211-1.
  • the reception RF units 212-1 to 212-l perform radio reception processing (down-conversion, A / D conversion, etc.) and OFDM demodulation processing (Fourier transform, parallel) on the received OFDM signals received via the antennas 211-1-l. / Serial conversion etc.) to obtain serial received signals.
  • This received signal is output to channel estimation section 213, MIMO demodulation section 215, and control signal demodulation section 222.
  • the CSI-RS sequence generation unit 223 is a type corresponding to half of the number of antennas to which the base station 100 that is the channel quality report target transmits CSI-RS (that is, m / 2 types. However, m / 2 types of CSI- A part or all of the RSs may be the same series), and is output to the complex conjugate processing unit 224.
  • the complex conjugate processing unit 224 performs a complex conjugate operation on the input m / 2 types of CSI-RSs, and further rotates the angle ⁇ (0 ⁇ ⁇ ⁇ 2 ⁇ [rad]) on the complex plane.
  • the complex conjugate processing unit 224 outputs the input m / 2 types of CSI-RS and the m / 2 types of CSI-RS subjected to the complex conjugate arithmetic processing and the rotation processing to the channel estimation unit 213. . That is, complex conjugate processing section 224 generates a total of m types of CSI-RS sequences (that is, m / 2 sets of CSI-RS pairs) and outputs them to channel estimation section 213.
  • the channel estimation unit 213 estimates a channel from a channel quality measurement reference signal included in the received signal based on the CSI-RS sequence input from the complex conjugate processing unit 224, and calculates a channel estimation value.
  • the position of the channel quality measurement reference signal is notified separately from the base station 100.
  • the channel estimation unit 213 receives CSI-RS arrangement information as resource information for the second reference signal and a CSI-RS sequence as inputs.
  • the channel estimation part 213 specifies the frequency position in the resource block to which CSI-RS which is a reference signal for channel quality measurement is allocated based on CSI-RS arrangement information, and the resource block.
  • Channel estimation section 213 performs channel estimation based on the channel quality measurement reference signal included in the frequency position and the CSI-RS sequence received from complex conjugate processing section 224. However, the CSI-RS arrangement information is separately notified from the base station 100. The channel estimation value calculated by channel estimation section 213 is output to CSI measurement section 214 and MIMO demodulation section 215.
  • the control signal demodulator 222 demodulates the control signal transmitted from the base station 100. Then, the control signal demodulator 222 extracts control information such as a transmission parameter including MCS information such as a modulation scheme or a coding rate of the transmission signal from the demodulated control signal. At this time, the control signal demodulator 222 receives and demodulates the CSI-RS arrangement information in advance and holds the CSI-RS arrangement information.
  • control information such as a transmission parameter including MCS information such as a modulation scheme or a coding rate of the transmission signal.
  • the CSI measurement unit 214 uses the channel estimation value calculated by the channel estimation unit 213 to calculate CSI as channel quality (reception quality) and outputs the CSI to the feedback information generation unit 218.
  • the CSI measurement unit 214 receives the CSI-RS arrangement information as in the channel estimation unit 213, and acquires information on the resource element to which the CSI-RS that is a reference signal for channel quality measurement is assigned. Then, the CSI measurement unit 214 calculates channel quality information by averaging the channel estimation values for each resource element indicated by the information regarding the resource element. Furthermore, the CSI measurement unit 214 also calculates channel quality information of resource elements in which no CSI-RS is arranged by performing an interpolation process using the average channel estimation value. As specific channel quality information, CSI corresponding to a combination of a predetermined modulation scheme and coding rate, PMI for selecting a precoding matrix corresponding to the current channel condition from a predetermined codebook, and the desired number of transmission streams And the like.
  • the MIMO demodulator 215 uses the channel estimation value received from the channel estimation unit 213 and a channel estimation value based on a data signal demodulation reference signal (DM RS) (not shown) to perform a MIMO demodulation process (for example, SFBC). Reception processing), and outputs the demodulated signal to the decoding unit 216.
  • DM RS data signal demodulation reference signal
  • the MIMO demodulator 215 also performs deinterleaving processing, rate dematching processing, likelihood combining processing, and the like.
  • the decoding unit 216 obtains received data by performing error correction decoding on the signal after MIMO separation.
  • the CRC checker 217 checks the received data CRC (Cyclic Redundancy Check) obtained by the decoder 216, and outputs data error presence / absence information indicating whether or not the received data includes an error to the feedback information generator 218. . When the CRC checking unit 217 determines that there is no error, the CRC checking unit 217 outputs the received data to the subsequent function unit.
  • CRC Cyclic Redundancy Check
  • the feedback information generation unit 218 generates feedback information including the channel quality information (CQI, PMI, RI, etc.) calculated by the CSI measurement unit 214. Further, the feedback information generation unit 218 generates Ack / Nack information based on the error detection result in the CRC check unit 217. Here, if the error detection result in the CRC checking unit 217 indicates “no error”, the feedback information generation unit 218 generates an ACK (Acknowledgement). If the error detection result indicates “error present”, the Nack ( Generate Negative (Acknowledgement).
  • the encoding unit 219 decodes the transmission data and outputs the decoding result to the multiplexing unit 220.
  • the multiplexing unit 220 multiplexes transmission signals including feedback information and encoded transmission data. Then, multiplexing section 220 performs rate matching (Rate-Maching) processing, interleaving processing, modulation processing, and the like that adaptively sets the modulation multi-level number or coding rate, and outputs the result to transmission RF section 221.
  • rate matching Raster-Maching
  • the transmission RF unit 221 performs OFDM modulation processing (serial / parallel conversion, inverse Fourier transform, etc.) and radio transmission processing (up-conversion, D / A conversion, amplification, etc.) on the multiplexed signal received from the multiplexing unit 220, and the antenna 211- 1 to send.
  • OFDM modulation processing serial / parallel conversion, inverse Fourier transform, etc.
  • radio transmission processing up-conversion, D / A conversion, amplification, etc.
  • the base station 100 generates a CSI-RS sequence based on the cell ID of the own station, and arranges it in each RE. Specifically, as described above, the base station 100 transmits the “first CSI-RS” for the LTE-A terminal to the first resource element and the second resource element included in the SFBC resource group in the LTE system. And “second CSI-RS in which the complex conjugate of the first CSI-RS is rotated by an angle ⁇ (0 ⁇ ⁇ ⁇ 2 ⁇ [rad])”.
  • FIG. 8 shows a certain SFBC. the in and) shows an example in which two CSI-RS is arranged in the resource group is transmitted from always different antennas, respectively when p 1 and p 2, between p 1 and p 2, the following The relationship of the formula (1) is established.
  • the relative relationship between CSI-RSs arranged in different SFBC resource groups may be an arbitrary relationship. That is, for example, in FIG. 8, the relative relationship between the two CSI-RSs (p 1 , p 2 ) arranged in the SFBC resource group 1 is expressed by Expression (1). Similarly, two CSI-RSs (p 3 , p 4 ) arranged in the SFBC resource group 2 are expressed by Expression (2).
  • the relative relationship between p 1 and p 3 is not limited, and for example, an arbitrary independent sequence is set. In this way, m types of CSI-RSs are generated and transmitted.
  • the second type system compatible terminal 200 generates m types of CSI-RS sequences corresponding to m antennas from which the base station 100 transmits CSI-RS. That is, the same m types of CSI-RS sequences generated in base station 100 are generated.
  • the first CSI-RS sequence and the complex conjugate of the first CSI-RS sequence include a second CSI-RS sequence rotated by an angle ⁇ (0 ⁇ ⁇ ⁇ 2 ⁇ [rad]). M / 2 types of CSI-RS pairs are generated.
  • the m types of CSI-RS sequences are used as reference signals in channel estimation.
  • terminal 200 assigns one CSI-RS sequence (p 1 ) based on a predetermined rule (for example, for base station 100 Generate based on Cell ID.
  • Terminal 200 generates the other CSI-RS sequence (p 2 ) arranged in the same SFBC resource group using the relationship of equation (1).
  • Equation (3) When the first type terminal receives a signal subjected to SFBC as shown in FIG. 2 from the base station 100, the signals r 1 and r 2 received by the REs 1 and 2 in the SFBC group are expressed by Equation (3). expressed.
  • h 1 is a channel corresponding to the propagation path from the first transmitting antenna of the base station 100 to the receiving antenna of the first type terminal
  • h 2 is the base It is a channel corresponding to the propagation path from the second transmitting antenna of the station to the receiving antenna of the first type terminal.
  • the first type terminal estimates the channels h 1 and h 2 from the reference signal for the first type system that is separately transmitted. Then, the first type terminal demodulates the signals s 1 and s 2 transmitted from the base station 100 by a process corresponding to Equation (4). Hereinafter, this operation is referred to as “SFBC demodulation”. However, for the sake of convenience, it is assumed that the terminal can perform ideal channel estimation, and the same h 1 , h 2 (and s1, s2) are used for both Equation (3) and Equation (4) (ie, These equations do not take into account demodulation errors due to noise or channel estimation errors, and the same applies to the following equations.)
  • the base station 100 uses the CSI-RS for the second type system for the first type system in the two REs forming the SFBC resource group with respect to a predetermined part of the resource group.
  • the operation of overwriting the significant data is performed. That is, for example, the base station 100 overwrites the data for the first type system with the CSI-RS (p 1 ) for the second type system transmitted from the first transmission antenna in the RE1 configuring the SFBC resource group.
  • the data for the first type system is overwritten with the CSI-RS (p 2 ) for the second type system from the second transmission antenna.
  • the p 1 and p 2 satisfy the relational expression (1) described above.
  • Equation (6) the CSI-RS demodulation result by the first type terminal can be obtained, and is represented by Equation (6).
  • s csi1 and s csi2 are recognized as data for the first type system in the first type terminal, and error correction decoding taking these demodulation results into consideration is performed on the first type terminal side.
  • error correction decoding a demodulation result with high power is more strongly trusted (ie, the likelihood is recognized as high), and a demodulation result with low power is not reliable (ie, the likelihood is recognized as low). Is done).
  • a CSI-RS demodulation result that does not make sense for a type 1 terminal is recognized as having a low likelihood on the type 1 terminal side (that is, a case that is not considered important during error correction decoding).
  • the adverse effect on the error correction decoding operation in the type 1 terminal is small and considered to be preferable.
  • Equation (6) can be transformed as Equation (7).
  • equation (6) can be transformed into equation (8).
  • FIG. 9 and 10 show the results of simulation regarding these.
  • FIG. 9 is a simulation result in the case where the relationship of Expression (1) is maintained for the CSI-RS pair overwriting the SFBC resource group.
  • FIG. 10 shows a simulation result in the case where the complex conjugate processing is not performed for the CSI-RS pair overwriting the SFBC resource group, that is, the relationship of the following formula (10) is maintained.
  • a transmission signal formed by a type 1 terminal is overwritten with transmission data for a type 1 terminal modulated by QPSK and applied with SFBC by a CSI-RS.
  • BLER Block error rate
  • the CSI-RS pair included in the SFBC resource group in the first type system and arranged in the first resource element and the second resource element adjacent in the frequency direction is represented by the formula (1).
  • the CSI-RS pair that overwrites the resource elements that form the SFBC resource group has the relationship of Equation (1), and the angle ⁇ in Equation (1) is set to an appropriate angle. By doing so, it is possible to minimize the reception performance degradation of the first type terminal.
  • the terminal signal processing section 101-a includes the first resource element and the second resource element that are included in the same SFBC resource group and are adjacent in the frequency direction.
  • a first reference signal and a second reference signal for the second type terminal are arranged in the resource element.
  • the first reference signal matches the complex conjugate resulting from rotating the second reference signal on the complex plane by an angle ⁇ (0 ⁇ ⁇ ⁇ 2 ⁇ [rad]).
  • the antenna is described.
  • the present invention can be similarly applied to an antenna port.
  • An antenna port refers to a logical antenna composed of one or more physical antennas. That is, the antenna port does not necessarily indicate one physical antenna, but may indicate an array antenna composed of a plurality of antennas.
  • 3GPP LTE it is not specified how many physical antennas an antenna port is composed of, but it is specified as a minimum unit in which a base station can transmit different reference signals (Reference signal).
  • the antenna port may be defined as a minimum unit for multiplying the weight of a precoding vector (Precoding vector).
  • each functional block used in the above description is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them. Although referred to as LSI here, it may be referred to as IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • the reference signal for the second wireless reception device is arranged in the resource allocated to the data to the first wireless reception device, so that the first wireless Even when the data to the receiving device is overwritten by the reference signal for the second wireless receiving device, it is useful for minimizing the deterioration of the error characteristics of the data to the first wireless receiving device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

Disclosed are a wireless transmission device and a reference signal transmission method that minimize data error characteristic degradation upon a first wireless receiver device even when data sent to the first wireless receiver device is overwritten by a reference signal intended for a second wireless receiver device with the reference signal intended for the second wireless receiver device being positioned upon resources that are allocated to the data sent to the first wireless receiver device. In a base station (100), a signal processing unit for terminals (101-a) positions a first reference signal and a second reference signal for a second terminal (herein referred to as a terminal (200)) upon a first resource element and a second resource element that are included within a common SFBC resource group and that are adjacent in the frequency direction. The first reference signal matches a complex conjugate of the result of rotating the second reference signal upon a complex plane by an angle θ, where 0 ≤ θ < 2π[rad].

Description

無線送信装置及び参照信号送信方法Wireless transmission apparatus and reference signal transmission method
 本発明は、無線送信装置及び参照信号送信方法に関する。 The present invention relates to a wireless transmission device and a reference signal transmission method.
 セルラーシステム等の無線通信システムでは、伝搬路又は伝送信号の各種指標を得るための参照信号が導入されている。例えば、移動体通信の国際的な標準化団体である3GPP(3rd Generation Partnership Project)にて策定された次世代通信システムのLTE(Long Term Evolution)においても、参照信号(Reference Signal:RS)が用いられる。基地局から端末への下り通信において、送信装置(基地局)から受信装置(端末)に送信する参照信号は、主に、(1)復調用の伝搬路推定、(2)周波数スケジューリングや適応MCS(Modulation and Coding Scheme)制御のための品質測定、などに用いられる。LTEでは、MIMO(Multiple Input Multiple Output)を適用するためのマルチアンテナシステムにおいて、所定の無線リソース単位で参照信号が送信される。 In wireless communication systems such as cellular systems, reference signals for obtaining various indicators of propagation paths or transmission signals are introduced. For example, a reference signal (RS) is also used in LTE (Long Term Evolution) of the next generation communication system established by 3GPP (3rd Generation Partnership Project) which is an international standardization organization for mobile communication. . In downlink communication from a base station to a terminal, reference signals transmitted from a transmitting apparatus (base station) to a receiving apparatus (terminal) mainly include (1) channel estimation for demodulation and (2) frequency scheduling and adaptive MCS. (Modulation and Coding 品質 Scheme) Used for quality measurement for control. In LTE, a reference signal is transmitted in units of predetermined radio resources in a multi-antenna system for applying MIMO (Multiple 信号 Input Multiple Output).
 また、LTEのフレームは、例えば、図1のような構成を採る。LTEでは、周波数スケジューリング及び適応MCS制御(つまり、符号化率及び多値変調数の制御)の最小単位は、リソースブロック(Resource Block:RB、以下RBともいう)と呼ばれる。図1に示す構成では、1つのRB内において、時間軸の先頭から制御信号と参照信号RSとが配置され、続いてデータが配置される。ここで、1RBは、周波数方向に12のサブキャリア及び時間方向に14のOFDMシンボルの纏まりである。参照信号RSは、1RB中の特定のOFDMシンボルにおける特定のサブキャリアに配置される。1つのOFDMシンボルと1つのサブキャリアとにより特定される単位は、リソースエレメント(RE:Resource Element、以下REともいう)と呼ばれる。すなわち、1RBには、12サブキャリア及び14OFDMシンボルが含まれるので、168個のREが含まれることになる。 Further, for example, the LTE frame has a configuration as shown in FIG. In LTE, the minimum unit of frequency scheduling and adaptive MCS control (that is, control of coding rate and multi-level modulation number) is called a resource block (RB) (hereinafter also referred to as RB). In the configuration shown in FIG. 1, in one RB, a control signal and a reference signal RS are arranged from the beginning of the time axis, and then data is arranged. Here, 1 RB is a group of 12 subcarriers in the frequency direction and 14 OFDM symbols in the time direction. Reference signal RS is arranged on a specific subcarrier in a specific OFDM symbol in 1 RB. A unit specified by one OFDM symbol and one subcarrier is called a resource element (RE: Resource : Element, hereinafter also referred to as RE). That is, since 1 RB includes 12 subcarriers and 14 OFDM symbols, 168 REs are included.
 ここで、非特許文献1に示すように、LTE基地局のアンテナが複数の場合、下り回線データに対して図2に示すようなSFBC(Space-Frequency Block Coding)が適用される。ただし、図2は、基地局のアンテナ数が2本の場合の概念図を示している。 Here, as shown in Non-Patent Document 1, when there are a plurality of LTE base station antennas, SFBC (Space-Frequency Block Coding) as shown in FIG. 2 is applied to downlink data. However, FIG. 2 shows a conceptual diagram when the number of antennas of the base station is two.
 図2に示すように、LTE基地局では、SFBCのブロック符号処理単位(図2では、S1及びS2の全体)に対してSFBCを行って得られたSFBC結果単位(以下、「SFBCグループ」と呼ばれる。図2では、S1,S2,-S2*,S1*がSFBCグループを構成する。)が、リソースブロック内の1つのリソースグループ(以下、「SFBCリソースグループ」と呼ばれる)にマッピングされる。すなわち、SFBCリソースグループは、SFBC結果単位がマッピングされるリソース単位であり、1つのSFBCリソースグループは、周波数軸上で隣接する2つのREから構成される。例えば、1つのSFBCリソースグループはアンテナ1及びアンテナ2の両方から送信され、アンテナ1から送信されるSFBCリソースグループの第1RE及び第2REには、それぞれS1及びS2が配置される一方、アンテナ2から送信されるSFBCリソースグループの第1RE及び第2REには、それぞれ-S2*及びS1*が配置される。ただし、S2*及びS1*はS2及びS1の複素共役を表す。このように、SFBCグループがSFBCリソースグループにマッピングされたフレームを送信することにより、ダイバーシチゲインが得られる。SFBCによって符号化された下り回線データを受信する際には、LTE端末は、SFBCリソースグループをまとめて受信し、公知の復号方法によってSFBCリソースグループで受信された信号成分を合成することにより、S1,S2を得る。 As shown in FIG. 2, in the LTE base station, an SFBC result unit (hereinafter referred to as “SFBC group”) obtained by performing SFBC on the block code processing unit of SFBC (the whole of S1 and S2 in FIG. 2). 2, S1, S2, -S2 *, S1 * constitute an SFBC group) and are mapped to one resource group (hereinafter referred to as "SFBC resource group") in the resource block. That is, the SFBC resource group is a resource unit to which the SFBC result unit is mapped, and one SFBC resource group is composed of two REs adjacent on the frequency axis. For example, one SFBC resource group is transmitted from both antenna 1 and antenna 2, and S1 and S2 are arranged in the first RE and second RE of the SFBC resource group transmitted from antenna 1, respectively, while antenna 2 -S2 * and S1 * are arranged in the first RE and the second RE of the SFBC resource group to be transmitted, respectively. However, S2 * and S1 * represent the complex conjugate of S2 and S1. As described above, the diversity gain is obtained by transmitting the frame in which the SFBC group is mapped to the SFBC resource group. When receiving downlink data encoded by SFBC, the LTE terminal collectively receives the SFBC resource group, and combines the signal components received by the SFBC resource group by a known decoding method, so that S1 , S2.
 LTEをさらに進めた通信システムであるLTE-Advanced(以下LTE-Aという)では、さらなる高度化を図るために、高次MIMO(例えば送信8アンテナ)及び協調マルチポイント送受信(CoMP)などの導入が検討されている。このため、LTEで検討されていた参照信号(第1の参照信号)に加えて、LTE-A用に追加の参照信号(第2の参照信号)が必要となり、その送信方法が議論されている。 In LTE-Advanced (hereinafter referred to as LTE-A), which is a communication system that further advances LTE, introduction of higher-order MIMO (for example, eight transmission antennas) and coordinated multipoint transmission / reception (CoMP) has been introduced in order to further improve the level of sophistication. It is being considered. For this reason, in addition to the reference signal (first reference signal) studied in LTE, an additional reference signal (second reference signal) is required for LTE-A, and its transmission method is discussed. .
 例えば非特許文献2に示されるように、LTE-Aでは前述の用途別に2種の参照信号が検討されている。 For example, as shown in Non-Patent Document 2, in LTE-A, two types of reference signals are examined for the above-mentioned uses.
 (1)Demodulation RS(DM RS):PDSCH(Physical downlink shared channel)復調用の参照信号である。PDSCHと同一のレイヤ(layer)数が適用されるとともに、プリコーディング(Precoding)も適用される。端末(User Equipment:UE)に特定(UE-specific)の参照信号である。 (1) Demodulation RS (DM RS): A reference signal for demodulating PDSCH (Physical downlink shared channel). The same number of layers as PDSCH is applied, and precoding is also applied. This is a UE-specific reference signal for a terminal (User Equipment: UE).
 (2)CSI-RS:CSI(Channel state information)観測用の参照信号である。プリコーディングは適用されない。セルに特定の(cell-specific)の参照信号である。なお、CSIとしては、CQI(channel quality indicator)、PMI(precoding matrix indicator)、RI(rank indicator)などがある。 (2) CSI-RS: A reference signal for CSI (Channel state information) observation. Precoding is not applied. It is a cell-specific reference signal. The CSI includes CQI (channel (quality indicator), PMI (precoding matrix indicator), RI (rank indicator), and the like.
 基本的に、DM RSは、LTE-A端末へのデータを割り当てるRBにのみ、当該LTE-A端末が下り信号を復調できるように、挿入される。従って、DM RSがどのRB、どのサブフレームに挿入されるかについて、端末側は予め知ることができない。これに対して、CSI-RSは、基地局に繋がる全てのLTE-A端末によって、予めどのRB、どのサブフレームに挿入されているかについて認識されている。従って、LTE-A端末は、CSI-RSの配置情報に基づいてCSI-RSを受信することができ、基地局にCSIをフィードバックする。すなわち、CSI-RSは、任意のRB又は任意のサブフレームでLTE-A端末へのデータが割り当てられているか否かに関わらず、常に挿入される。つまり、LTE-A端末向けの送信データ系列に対してリソースの割り当てが無い場合にも、CSI-RSは送信される。ただし、CSI-RSの用途は、排他的な位置づけとしない。具体的には(1)の用途にCSI-RSを用いても良い、といった想定で議論が進んでいる。 Basically, the DM RS is inserted only in the RB that allocates data to the LTE-A terminal so that the LTE-A terminal can demodulate the downlink signal. Accordingly, the terminal cannot know in advance which RB and which subframe the DM RS is inserted into. In contrast, CSI-RS is by all LTE-A terminal connected to a base station, have been recognized for whether it is inserted in advance which RB, in which sub-frame. Therefore, the LTE-A terminal can receive the CSI-RS based on the CSI-RS arrangement information, and feeds back the CSI to the base station. That is, the CSI-RS is always inserted regardless of whether data is assigned to the LTE-A terminal in any RB or any subframe. That is, the CSI-RS is transmitted even when no resource is allocated to the transmission data sequence for the LTE-A terminal. However, the use of CSI-RS is not regarded as an exclusive position. Specifically, the discussion is proceeding on the assumption that CSI-RS may be used for the application (1).
 LTE-A端末用のCSI-RSの送信方法の例が、例えば、非特許文献3、4に開示されている。図3及び図4は、LTE-A端末に対応するCSI-RSの送信方法を示す図である。図3及び図4に示す例では、LTE向けのRS、制御チャネル、及びDMRSのいずれにも使用されないOFDMシンボルに対して、CSI-RSが配置されている。 Examples of CSI-RS transmission methods for LTE-A terminals are disclosed in Non-Patent Documents 3 and 4, for example. 3 and 4 are diagrams illustrating a CSI-RS transmission method corresponding to the LTE-A terminal. In the example illustrated in FIGS. 3 and 4, CSI-RSs are arranged for OFDM symbols that are not used for any of RSs for LTE, control channels, and DMRSs.
 図3に示すリソースブロックでは、11番目のOFDMシンボルにCSI-RSが配置され、図4に示すリソースブロックでは、10番目及び11番目のOFDMシンボルにCSI-RSが配置されている。これらのCSI-RSを用いて、LTE-A端末が、基地局から自装置までのチャネルの品質を測定できる。ここで、図3の例では、CSI-RSは、LTE-A基地局の4つのアンテナから、異なるREに配置されて(つまり、FDMによって)を送信されている。一方、図4の例では、CSI-RSは、LTE-A基地局の1つのアンテナペア(つまり、LTE-A基地局の4つのアンテナが2つずつに分けられた1つの組)から、同じREに配置されて送信される。ただし、アンテナペアを構成する2つのアンテナから送信されるCSI-RSは、CDMによって(つまり、コード多重されて)送信される。2つのアンテナペア間では、図3の場合と同様に、CSI-RSは、周波数多重(FDM)されて送信される。なお、図3及び図4において、CSI-RSを表すハッチングの違いは、送信されるアンテナの違いを表している。以下で説明する図面においても、同様の表し方が採用されている。 3, CSI-RS is arranged in the 11th OFDM symbol in the resource block shown in FIG. 3, and CSI-RS is arranged in the 10th and 11th OFDM symbols in the resource block shown in FIG. 4. Using these CSI-RSs, the LTE-A terminal can measure the quality of the channel from the base station to its own device. Here, in the example of FIG. 3, the CSI-RS is transmitted from the four antennas of the LTE-A base station arranged in different REs (that is, by FDM). On the other hand, in the example of FIG. 4, CSI-RS is the same from one antenna pair of LTE-A base station (that is, one set in which four antennas of LTE-A base station are divided into two). Placed in RE and transmitted. However, CSI-RS transmitted from two antennas constituting an antenna pair is transmitted by CDM (that is, code-multiplexed). Between the two antenna pairs, the CSI-RS is frequency-multiplexed (FDM) and transmitted as in the case of FIG. In FIGS. 3 and 4, the difference in hatching representing CSI-RS represents the difference in antenna to be transmitted. The same notation is adopted in the drawings described below.
 ところで、前述のCSI-RSは、LTE端末向けの下り回線データが割り当てられるRBにおいても送信される。この場合、CSI-RSは、LTE端末向けの下り回線データを上書きする。すなわち、LTE端末向けの有意なデータが、LTE端末にとっては意味を成さないCSI-RSによって上書きされる。ここで、LTE端末はCSI-RSの存在自体を知りえない。従って、LTE端末はCSI-RSが配置されているREにも自端末宛の有意な情報が載っているとして、復号処理を行う。LTEにおける下り回線データには畳み込み符号化が適用されているため、CSI-RSによって一部のREが上書きされたとしても、一般的には、誤り無く復号が可能である。しかしながら、LTE端末向けの下り回線データがCSI-RSよって上書きされることにより、LTE端末向けの下り回線データに関する「SNR(Signal to Noise Ratio)対BLER(Block Error rate)特性」、つまり、誤り率特性が劣化する。 By the way, the above-mentioned CSI-RS is also transmitted in an RB to which downlink data for LTE terminals is assigned. In this case, the CSI-RS overwrites downlink data for the LTE terminal. That is, significant data for the LTE terminal is overwritten by CSI-RS that does not make sense for the LTE terminal. Here, the LTE terminal cannot know the existence of the CSI-RS. Therefore, the LTE terminal performs the decoding process on the assumption that significant information addressed to the terminal itself is also included in the RE in which the CSI-RS is arranged. Since convolutional coding is applied to downlink data in LTE, even if a part of RE is overwritten by CSI-RS, in general, decoding can be performed without error. However, when downlink data for LTE terminals is overwritten by CSI-RS, “SNR (SignalNRto Noise Ratio) vs. BLER (Block Error rate) characteristics” relating to downlink data for LTE terminals, that is, error rate Characteristics deteriorate.
 例えば、図5では、図2に示すCSI-RSがLTE端末向けのデータを上書きする概念図が示されている。図5では、CSI-RSによって11番目のOFDMシンボルを構成するRE群の内の一部のREが上書きされている。 For example, FIG. 5 shows a conceptual diagram in which the CSI-RS shown in FIG. 2 overwrites data for the LTE terminal. In FIG. 5, a part of REs constituting the 11th OFDM symbol is overwritten by CSI-RS.
 このようにLTE端末に対して下り回線データを割り当てたRBにおいてCSI-RSを送信する必要が生じた場合、LTE-A基地局は、そのLTE端末に対して、よりノイズに強いMCSを設定し、LTE端末が誤り無く下り回線データを受信できるように制御する。 In this way, when it becomes necessary to transmit CSI-RS in the RB to which downlink data is allocated to the LTE terminal, the LTE-A base station sets an MCS that is more resistant to noise to the LTE terminal. Then, control is performed so that the LTE terminal can receive downlink data without error.
 しかしながら、よりノイズに強いMCSを設定すると、同一のサイズの情報をLTE端末に送信する場合に必要となる、時間・周波数リソースの量が増加してしまう。従って、CSI-RSによってLTE端末向けの下り回線データが上書きされた場合にもMCSの設定を高ノイズ耐性側に大きくシフトしなくても良い、すなわち、下り回線データの誤り率特性の劣化が最小限に抑えられるCSI-RS送信方法が望まれている。 However, if an MCS that is more resistant to noise is set, the amount of time / frequency resources required when transmitting information of the same size to the LTE terminal increases. Therefore, even when downlink data for LTE terminals is overwritten by CSI-RS, the MCS setting does not have to be greatly shifted to the high noise tolerance side, that is, the degradation of error rate characteristics of downlink data is minimized. A CSI-RS transmission method that can be suppressed to the limit is desired.
 本発明の目的は、第1の無線受信装置へのデータに割り当てられているリソースに第2の無線受信装置向けの参照信号が配置されることで、第1の無線受信装置へのデータが第2の無線受信装置向けの参照信号によって上書きされる場合にも、その第1の無線受信装置へのデータの誤り特性劣化を最小限に抑える、無線送信装置及び参照信号送信方法を提供することである。 An object of the present invention is to arrange a reference signal for the second wireless reception device in a resource allocated to data to the first wireless reception device, so that the data to the first wireless reception device is the first. By providing a wireless transmission device and a reference signal transmission method that minimize deterioration of error characteristics of data to the first wireless reception device even when overwritten by a reference signal for the second wireless reception device is there.
 本発明の無線送信装置は、第1種受信装置向けの送信データ系列をブロック符号処理単位で空間周波数ブロック符号化(SFBC)し、ブロック符号処理単位ごとの符号結果であるSFBCグループを形成する空間周波数ブロック符号化手段と、前記SFBCグループ、又は、第2種受信装置用の第1の参照信号及び第2の参照信号を、複数のリソースエレメントから構成されるリソースグループに配置する配置手段と、を具備し、前記第1の参照信号及び前記第2の参照信号は、互いに複素共役の関係にある。 The radio transmission apparatus of the present invention performs spatial frequency block coding (SFBC) on a transmission data sequence for the first type reception apparatus in units of block code processing, and forms an SFBC group that is a code result for each block code processing unit. A frequency block encoding unit; and an arrangement unit that arranges the SFBC group or the first reference signal and the second reference signal for the second type receiving apparatus in a resource group including a plurality of resource elements; The first reference signal and the second reference signal are in a complex conjugate relationship with each other.
 本発明の参照信号送信方法は、第1種受信装置向けの送信データ系列をブロック符号処理単位で空間周波数ブロック符号化(SFBC)し、ブロック符号処理単位ごとの符号結果であるSFBCグループを形成する形成ステップと、前記SFBCグループ、又は、第2種受信装置用の第1の参照信号及び第2の参照信号を、複数のリソースエレメントから構成されるリソースグループに配置する配置ステップと、を具備し、前記第1の参照信号及び前記第2の参照信号は、互いに複素共役の関係にある。 In the reference signal transmission method of the present invention, a transmission data sequence for the first type receiver is subjected to spatial frequency block coding (SFBC) in block code processing units, and an SFBC group as a code result for each block code processing unit is formed. A forming step, and an arrangement step of arranging the SFBC group or the first reference signal and the second reference signal for the second type receiving apparatus in a resource group composed of a plurality of resource elements. The first reference signal and the second reference signal are in a complex conjugate relationship with each other.
 本発明によれば、第1の無線受信装置へのデータに割り当てられているリソースに第2の無線受信装置向けの参照信号が配置されることで、第1の無線受信装置へのデータが第2の無線受信装置向けの参照信号によって上書きされる場合にも、その第1の無線受信装置へのデータの誤り特性劣化を最小限に抑える、無線送信装置及び参照信号送信方法を提供することができる。 According to the present invention, the reference signal for the second wireless reception device is arranged in the resource allocated to the data to the first wireless reception device, so that the data to the first wireless reception device is the first. To provide a wireless transmission device and a reference signal transmission method that minimizes deterioration of error characteristics of data to the first wireless reception device even when overwritten by a reference signal for the second wireless reception device. it can.
LTEのフレームの構成を示す図The figure which shows the structure of the flame | frame of LTE SFBC(Space-Frequency Block Coding)及びLTEにおけるSFBC結果単位の配置例の説明に供する図Diagram for explaining examples of arrangement of SFBC result units in SFBC (Space-Frequency Block Coding) and LTE LTE-A端末に対応するCSI-RSの送信方法を示す図The figure which shows the transmission method of CSI-RS corresponding to a LTE-A terminal LTE-A端末に対応するCSI-RSの送信方法を示す図The figure which shows the transmission method of CSI-RS corresponding to a LTE-A terminal CSI-RSによるLTE端末向けのデータへの上書きを説明する図The figure explaining the overwriting to the data for LTE terminals by CSI-RS 本発明の一実施の形態に係る基地局の構成を示すブロック図The block diagram which shows the structure of the base station which concerns on one embodiment of this invention 本発明の一実施の形態に係る端末200の構成を示すブロック図The block diagram which shows the structure of the terminal 200 which concerns on one embodiment of this invention. 本実施の形態に係る基地局によるSFBCリソースグループに対するCSI-RSの配置例の説明に供する図The figure which uses for description of the example of arrangement | positioning of CSI-RS with respect to the SFBC resource group by the base station which concerns on this Embodiment SFBCリソースグループを上書きするCSI-RSのペアに対して式(1)の関係を維持した場合のシミュレーション結果を示す図(第1種端末がQPSK復調する場合)The figure which shows the simulation result at the time of maintaining the relationship of Formula (1) with respect to the pair of CSI-RS which overwrites a SFBC resource group (when a 1st type terminal carries out QPSK demodulation) SFBCリソースグループを上書きするCSI-RSのペアに対して複素共役の処理を伴わない場合のシミュレーション結果を示す図The figure which shows the simulation result in case the process of a complex conjugate is not accompanied with respect to the pair of CSI-RS which overwrites a SFBC resource group SFBCリソースグループを上書きするCSI-RSのペアに対して式(1)の関係を維持した場合のシミュレーション結果を示す図(第1種端末が16QAM復調する場合)The figure which shows the simulation result at the time of maintaining the relationship of Formula (1) with respect to the pair of CSI-RS which overwrites a SFBC resource group (when a 1st type terminal carries out 16QAM demodulation) SFBCリソースグループを上書きするCSI-RSのペアに対して式(1)の関係を維持した場合のシミュレーション結果を示す図(第1種端末が64QAM復調する場合)The figure which shows the simulation result at the time of maintaining the relationship of Formula (1) with respect to the pair of CSI-RS which overwrites a SFBC resource group (when a 1st type terminal carries out 64QAM demodulation)
 以下、本発明の一実施の形態について図面を参照して詳細に説明する。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
 [システムの概要]
 以下の説明では、本発明に係る無線通信装置を携帯電話等の移動体通信用のセルラーシステムに適用した例を示す。
[System Overview]
In the following description, an example is shown in which the wireless communication apparatus according to the present invention is applied to a cellular system for mobile communication such as a mobile phone.
 本実施の形態に係る無線通信システムは、無線通信装置である後述の基地局100と、第1種システム対応の第1種端末と、第2種システム対応の第2端末である端末200とを有する。例えば、基地局100は、LTE-Aシステム(及びLTEシステム)に対応するLTE-A基地局であり、第1種端末は、LTEシステムに対応するLTE端末であり、第2種端末は、LTE-A端末である。基地局100は、複数のアンテナを介して、第1種端末又は第2種端末へ信号を送信する。この送信には、例えば、OFDMが用いられる。基地局100は、シリアルな送信信号をOFDMシンボル単位で直並列変換及びIFFTを行うことにより得られたOFDM信号を送信する。すなわち、基地局100は、複数のOFDMシンボル及び複数のサブキャリアにより定義されるリソースブロックを、複数のアンテナからそれぞれ送信することにより、受信側の端末へ「空間多重リソースブロック」を送信する。 The wireless communication system according to the present embodiment includes a base station 100, which will be described later, which is a wireless communication device, a first type terminal compatible with the first type system, and a terminal 200 that is a second terminal compatible with the second type system. Have. For example, the base station 100 is an LTE-A base station corresponding to the LTE-A system (and LTE system), the first type terminal is an LTE terminal corresponding to the LTE system, and the second type terminal is LTE. -A terminal. Base station 100 transmits a signal to a first type terminal or a second type terminal via a plurality of antennas. For this transmission, for example, OFDM is used. Base station 100 transmits an OFDM signal obtained by performing serial-parallel conversion and IFFT on a serial transmission signal in units of OFDM symbols. That is, base station 100 transmits a “spatial multiplexed resource block” to a receiving terminal by transmitting resource blocks defined by a plurality of OFDM symbols and a plurality of subcarriers from a plurality of antennas.
 第2種システムは第1種システムを踏襲するシステムであるので、基地局100は、第1種端末とも通信することができる。第1種端末は、第2種システムの存在を知り得ないが、第1種システム対応の基地局との間の通信における動作と同じ動作をすることで、基地局100と通信することができる。一方、第2種端末は、第1種システムに分類される基地局(つまり、第1種基地局)と、第2種システムに分類される基地局(つまり、基地局100も該当する第2種基地局)とを見分けることができ、各基地局との間で適切な通信を実行することができる。 Since the second type system follows the first type system, the base station 100 can also communicate with the first type terminal. The first type terminal cannot know the existence of the second type system, but can communicate with the base station 100 by performing the same operation as the communication with the base station compatible with the first type system. . On the other hand, the type 2 terminal includes a base station classified into the type 1 system (that is, a type 1 base station) and a base station classified into the type 2 system (that is, the base station 100 corresponding to the second type). Seed base stations) and appropriate communication can be performed with each base station.
 基地局100は、第1種システム用の第1参照信号に加えて、LTE-Aシステム用の第2参照信号(例えば、CSI-RS)も送信する。これらの参照信号は、RB内の予め決められたREに挿入される。第2参照信号は、主に、周波数スケジューリングや適応MCS制御のために必要なフィードバック情報を第2種端末が生成するために用いられる。 The base station 100 also transmits a second reference signal (for example, CSI-RS) for the LTE-A system in addition to the first reference signal for the first type system. These reference signals are inserted into a predetermined RE in the RB. The second reference signal is mainly used by the type 2 terminal to generate feedback information necessary for frequency scheduling and adaptive MCS control.
 また、基地局100は、RBにおいて、第1種端末への下り回線データに割り当て可能なRE群を、所定数のREから構成されるREグループに分割する。このREグループは、SFBC結果単位がマッピングされるリソース単位であり、上述のSFBCリソースグループに対応する。ここでは、このREグループは、SFBCリソースグループと同様に、周波数軸上で隣接する2つのREから構成される。 In addition, the base station 100 divides, in the RB, the RE group that can be allocated to the downlink data to the first type terminal into an RE group composed of a predetermined number of REs. This RE group is a resource unit to which the SFBC result unit is mapped, and corresponds to the above-described SFBC resource group. Here, this RE group is composed of two REs that are adjacent on the frequency axis, like the SFBC resource group.
 以下では、基地局100は、LTE-A基地局であり、端末200は、LTE-A端末であり、第1種端末は、LTE端末である場合を例にとり説明する。 Hereinafter, a case where the base station 100 is an LTE-A base station, the terminal 200 is an LTE-A terminal, and the first type terminal is an LTE terminal will be described as an example.
 [基地局の構成]
 図6は、本実施の形態に係る基地局100の構成を示すブロック図である。図6において、基地局100は、複数の端末用信号処理部101-a,bと、複数の送信RF部103-1~mと、複数のアンテナ104-1~mと、スケジューリング部105と、第2参照信号配置設定部106と、第2参照信号生成部107と、複素共役処理部114と、第1参照信号生成部108と、受信RF部109と、分離部110と、復調/復号部111と、CRC検査部112と、フィードバック情報復調部113とを有する。なお、アンテナ104-1~mの内、アンテナ104-1~nは、LTE端末向けの送信データ及び第1参照信号並びにLTE-A端末向けの送信データ及びCSI-RSを送信することに用いられる。一方、アンテナ104-n+1~mは、LTE端末向けの送信データ及び第1参照信号を送信することには用いられず、LTE-A端末向けの送信データ及びCSI-RSの送信に用いられる。
[Base station configuration]
FIG. 6 is a block diagram showing a configuration of base station 100 according to the present embodiment. In FIG. 6, the base station 100 includes a plurality of terminal signal processing units 101-a and 101b, a plurality of transmission RF units 103-1 to m, a plurality of antennas 104-1 to m, a scheduling unit 105, Second reference signal arrangement setting unit 106, second reference signal generation unit 107, complex conjugate processing unit 114, first reference signal generation unit 108, reception RF unit 109, separation unit 110, demodulation / decoding unit 111, a CRC checker 112, and a feedback information demodulator 113. Of antennas 104-1 to m, antennas 104-1 to n are used to transmit transmission data for the LTE terminal, the first reference signal, transmission data for the LTE-A terminal, and CSI-RS. . On the other hand, the antennas 104-n + 1 to m are not used for transmitting transmission data for the LTE terminal and the first reference signal, but are used for transmission of transmission data for the LTE-A terminal and CSI-RS.
 端末用信号処理部101-aは、符号化/変調部121-1と、プリコーディング処理部123-1と、データ上書き部124とを有する。また、端末用信号処理部101-bは、符号化/変調部121-2と、第2参照信号マッピング部122と、プリコーディング処理部123-2とを有する。 The terminal signal processing unit 101-a includes an encoding / modulation unit 121-1, a precoding processing unit 123-1, and a data overwriting unit 124. The terminal signal processing unit 101-b includes an encoding / modulation unit 121-2, a second reference signal mapping unit 122, and a precoding processing unit 123-2.
 端末200又は第1種端末から送信された信号は、アンテナ104-1を介して受信RF部109に入力される。 The signal transmitted from the terminal 200 or the first type terminal is input to the reception RF unit 109 via the antenna 104-1.
 受信RF部109は、受信信号に対して、所定の無線受信処理(ダウンコンバート、A/D変換等)を施した後、無線受信処理後の受信信号を分離部110へ出力する。 The reception RF unit 109 performs predetermined radio reception processing (down-conversion, A / D conversion, etc.) on the reception signal, and then outputs the reception signal after the radio reception processing to the separation unit 110.
 分離部110は、受信RF部109から受け取る受信信号をフィードバック信号とデータ信号とに分離し、フィードバック信号をフィードバック情報復調部113へ出力し、データ信号を復調/復号部111へ出力する。 Separation section 110 separates the received signal received from reception RF section 109 into a feedback signal and a data signal, outputs the feedback signal to feedback information demodulation section 113, and outputs the data signal to demodulation / decoding section 111.
 復調/復号部111は、データ信号を復調、復号することにより、受信データを得る。CRC検査部112は、復調/復号部111から出力される受信データに対しCRC検査による誤り検出処理を施し、受信データに誤りが含まれているかどうかを判定する。そして、CRC検査部112より受信データが出力される。 The demodulation / decoding unit 111 obtains received data by demodulating and decoding the data signal. The CRC checker 112 performs error detection processing by CRC check on the received data output from the demodulator / decoder 111 to determine whether the received data contains an error. Then, the reception data is output from the CRC inspection unit 112.
 フィードバック情報復調部113は、フィードバック信号を復調し、復調結果をスケジューリング部105へ出力する。フィードバック信号には、チャネル品質情報(CSI)又はAck/Nack情報等が含まれている。チャネル品質情報は、基地局100から送信された第1種参照信号に基づいて端末200で測定されたチャネル品質を示す。 The feedback information demodulation unit 113 demodulates the feedback signal and outputs the demodulation result to the scheduling unit 105. The feedback signal includes channel quality information (CSI) or Ack / Nack information. The channel quality information indicates the channel quality measured by the terminal 200 based on the first type reference signal transmitted from the base station 100.
 スケジューリング部105は、チャネル品質情報及びCSI-RS配置情報に基づいて、伝送信号に関するスケジューリングを行う。具体的には、スケジューリング部105は、参照信号を受信する端末から送信されたチャネル品質情報に基づいて、周波数スケジューリング及び適応MCS制御の少なくともいずれか一方を実施する。また、スケジューリング部105は、CSI-RS配置情報を参照することにより、LTE-A端末向けのデータに関しては、CSI-RSが配置されるREを除くREに対して、送信データ(すなわち、下り回線データ)の割り当てを行う。また、スケジューリング部105は、LTE端末向けのデータに関しては、CSI-RSが配置されるか否かに関わらず、LTE端末が認識しているマッピングルールに基づいて、送信データをREに割当てる。ただし、CSI-RSが配置される任意のRBに対してLTE端末向けの送信データを配置する場合には、スケジューリング部105は、LTE端末向けの送信データの一部がCSI-RSによって上書きされることを考慮に入れ、CSI-RSが配置されないRBにおけるMCSよりも、少しロバストなMCSを設定する。 Scheduling section 105 performs transmission signal scheduling based on channel quality information and CSI-RS arrangement information. Specifically, the scheduling unit 105 performs at least one of frequency scheduling and adaptive MCS control based on channel quality information transmitted from a terminal that receives a reference signal. In addition, the scheduling unit 105 refers to the CSI-RS arrangement information, and with respect to the data for the LTE-A terminal, the scheduling unit 105 transmits the transmission data (ie, the downlink) to the RE excluding the RE in which the CSI-RS is arranged. Data). In addition, regarding data for LTE terminals, scheduling section 105 assigns transmission data to REs based on mapping rules recognized by LTE terminals, regardless of whether or not CSI-RS is arranged. However, when the transmission data for the LTE terminal is allocated to an arbitrary RB where the CSI-RS is allocated, the scheduling unit 105 overwrites a part of the transmission data for the LTE terminal with the CSI-RS. Considering this, a slightly more robust MCS is set than the MCS in the RB where the CSI-RS is not arranged.
 スケジューリング部105によって決定されたスケジューリング情報(周波数スケジューリングの結果及び決定されたMCSの少なくとも一方を含む)は、端末用信号処理部101-a,bへ出力される。 The scheduling information determined by the scheduling unit 105 (including at least one of the frequency scheduling result and the determined MCS) is output to the terminal signal processing units 101-a and 101b.
 第2参照信号配置設定部106は、CSI-RSの配置情報をスケジューリング部105及び第2参照信号生成部107へ出力する。また、CSI-RSの配置情報は、第2種端末に対しても別途通知される。 The second reference signal arrangement setting unit 106 outputs CSI-RS arrangement information to the scheduling unit 105 and the second reference signal generation unit 107. Further, the arrangement information of CSI-RS is also notified separately to the second type terminal.
 第2参照信号生成部107は、m/2種類のCSI-RS(すなわち、CSI-RSを送信すべきアンテナ数の半数のCSI-RS。ただし、m/2種類のCSI-RSのうち、一部又は全部が同一の系列であっても良い)を生成し、複素共役処理部114へ出力する。 The second reference signal generation unit 107 includes m / 2 types of CSI-RS (that is, CSI-RS that is half the number of antennas to which CSI-RS is to be transmitted. Part or all may be the same series) and output to the complex conjugate processing unit 114.
 複素共役処理部114は、第2参照信号生成部107から入力されたm/2種類のCSI-RSに対して、それぞれ複素共役演算を施し、更に複素平面でθ回転を加えたもの(0≦θ<2π[rad])を残りのm/2本のアンテナに対応すべきCSI-RSとして生成する。すなわち、複素共役処理部114によってm/2組の互いに複素共役(+回転)の関係にあるCSI-RSのペア(すなわちm本のアンテナに対応するCSI-RS)が生成される。 The complex conjugate processing unit 114 performs a complex conjugate operation on each of m / 2 types of CSI-RSs input from the second reference signal generation unit 107, and further adds θ rotation on the complex plane (0 ≦ θ <2π [rad]) is generated as a CSI-RS that should correspond to the remaining m / 2 antennas. In other words, the complex conjugate processing unit 114 generates m / 2 pairs of CSI-RS pairs that are in a complex conjugate (+ rotation) relationship (that is, CSI-RSs corresponding to m antennas).
 更に、複素共役処理部114は、LTE-A端末向けの送信データが配置されるリソースブロックを形成するタイミングでは、送信アンテナ104-1~mから送信されるCSI-RSをそれぞれ生成し、端末用信号処理部101-bへ出力する。 Further, the complex conjugate processing unit 114 generates CSI-RSs transmitted from the transmission antennas 104-1 to m at the timing of forming resource blocks in which transmission data for LTE-A terminals is arranged, and is used for terminals. Output to the signal processing unit 101-b.
 また、複素共役処理部114は、LTE端末向けの送信データが配置されるリソースブロックにおいてCSI-RSを送信する場合には、送信アンテナ104-1~nから送信されるCSI-RSをそれぞれ生成し、端末用信号処理部101-aへ出力する。 Further, when transmitting CSI-RS in a resource block in which transmission data for LTE terminals is arranged, complex conjugate processing section 114 generates CSI-RS transmitted from transmitting antennas 104-1 to 104-n, respectively. To the terminal signal processing unit 101-a.
 端末用信号処理部101-aは、LTE端末向けの送信データが配置されるリソースブロックを形成する。具体的には、端末用信号処理部101-aは、LTE端末向けの送信データ系列をブロック符号処理単位で空間周波数ブロック符号化(SFBC)し、ブロック符号処理単位ごとの符号結果であるSFBCグループを形成する。そして、端末用信号処理部101-aは、形成したSFBCグループを、送信データ系列に割り当てられた、複数のリソースエレメントから構成されるSFBCリソースグループに配置する。そして、端末用信号処理部101-aは、予め決められた一部のSFBCリソースグループに対して、互いに複素共役(+回転)の関係にあるCSI-RSのペアを配置する。そして、そのCSI-RSペアを構成する一方のCSI-RSは、第1のアンテナから送信され、他方のCSI-RSは、第2のアンテナから送信される。つまり、CSI-RSはRB内に含まれるSFBCリソースグループのうち一部のSFBCリソースグループに配置される。 The terminal signal processing unit 101-a forms a resource block in which transmission data for LTE terminals is arranged. Specifically, the terminal signal processing unit 101-a performs spatial frequency block coding (SFBC) on a transmission data sequence for LTE terminals in block code processing units, and an SFBC group that is a code result for each block code processing unit. Form. Then, the terminal signal processing unit 101-a arranges the formed SFBC group in an SFBC resource group composed of a plurality of resource elements assigned to the transmission data sequence. Then, the terminal signal processing unit 101-a arranges CSI-RS pairs having a complex conjugate (+ rotation) relationship with each other in a predetermined SFBC resource group. Then, one CSI-RS constituting the CSI-RS pair is transmitted from the first antenna, and the other CSI-RS is transmitted from the second antenna. That is, the CSI-RS is arranged in some SFBC resource groups among the SFBC resource groups included in the RB.
 すなわち、端末用信号処理部101-aは、同一のSFBCリソースグループに含まれる(ここでは、特に、周波数方向で隣接する)第1のリソースエレメント及び第2のリソースエレメントに、LTE-A端末向けの「第1のCSI-RS」及び「当該第1のCSI-RSの複素共役が角度θ(0≦θ<2π[rad])だけ回転された第2のCSI-RS」をそれぞれ配置する。この第1のCSI-RSと第2のCSI-RSとが、CSI-RSペアを構成する。 That is, terminal signal processing section 101-a is connected to the first resource element and the second resource element included in the same SFBC resource group (here, particularly adjacent in the frequency direction) for LTE-A terminals. “First CSI-RS” and “second CSI-RS in which the complex conjugate of the first CSI-RS is rotated by an angle θ (0 ≦ θ <2π [rad])” are arranged. The first CSI-RS and the second CSI-RS constitute a CSI-RS pair.
 詳細には、端末用信号処理部101-aにおいて符号化/変調部121-1は、LTE端末向けの送信データ系列をブロック符号処理単位で空間周波数ブロック符号化(SFBC)し、ブロック符号処理単位ごとの符号結果であるSFBCグループを形成する。なお、符号化/変調部121-1は、制御信号等の多重処理、レートマッチング処理、インターリーブ処理、変調処理等も行う。 Specifically, in the terminal signal processing unit 101-a, the encoding / modulation unit 121-1 performs spatial frequency block coding (SFBC) on the transmission data sequence for LTE terminals in block code processing units, and performs block code processing units. An SFBC group which is a code result of each is formed. Note that the encoding / modulation unit 121-1 also performs multiplexing processing of a control signal, rate matching processing, interleaving processing, modulation processing, and the like.
 プリコーディング処理部123-1は、符号化/変調部121-1から受け取るSFBCグループ群から、アンテナ104-1~nに対応するn個の並列ストリームを形成する。プリコーディング処理部123-1は、SFBCグループを分割することにより複数の並列ストリームを形成する。プリコーディング処理部123-1で得られた各ストリームは、OFDMシンボル単位でシリアルに出力される。 The precoding processing unit 123-1 forms n parallel streams corresponding to the antennas 104-1 to 104-n from the SFBC group group received from the encoding / modulation unit 121-1. The precoding processing unit 123-1 forms a plurality of parallel streams by dividing the SFBC group. Each stream obtained by the precoding processing unit 123-1 is serially output in units of OFDM symbols.
 データ上書き部124は、複数の並列ストリームを構成する構成データ群の内でCSI-RSを配置する予定のリソースエレメントに対応する構成データをCSI-RSで上書きし、得られた複数の並列ストリームを送信RF部103-1~nへ出力する。この複数の並列ストリームには、第1参照信号生成部108で生成されたLTE端末向けの参照信号が挿入される。ただし、この複数の並列ストリームにおいて、データはLTE端末向けの参照信号が挿入されるREを避けて配置されているため、第1参照信号によるデータの上書きは行われない。 The data overwriting unit 124 overwrites the configuration data corresponding to the resource element in which the CSI-RS is to be arranged in the configuration data group that configures the plurality of parallel streams with the CSI-RS, and the obtained plurality of parallel streams. Output to transmission RF sections 103-1 to n. Reference signals for LTE terminals generated by the first reference signal generation unit 108 are inserted into the plurality of parallel streams. However, in the plurality of parallel streams, the data is arranged avoiding the RE in which the reference signal for the LTE terminal is inserted, so that the data is not overwritten by the first reference signal.
 なお、第2参照信号生成部107、複素共役処理部114、及びSFBCリソースグループに対するCSI-RSの配置については、後に詳述する。 The arrangement of the CSI-RS with respect to the second reference signal generation unit 107, the complex conjugate processing unit 114, and the SFBC resource group will be described in detail later.
 端末用信号処理部101-bは、LTE-A端末向けの送信データが配置されるリソースブロックを形成する。 The terminal signal processing unit 101-b forms a resource block in which transmission data for the LTE-A terminal is arranged.
 具体的には、端末用信号処理部101-bにおいて符号化/変調部121-2は、LTE-A端末向けの送信データ系列をブロック符号処理単位で空間周波数ブロック符号化(SFBC)し、ブロック符号処理単位ごとの符号結果であるSFBCグループを形成する。 Specifically, in the terminal signal processing unit 101-b, the encoding / modulation unit 121-2 performs spatial frequency block coding (SFBC) on the block data processing unit for the transmission data sequence for the LTE-A terminal, and blocks An SFBC group that is a code result for each code processing unit is formed.
 符号化/変調部121-2は、制御信号等の多重処理、レートマッチング処理、インターリーブ処理、変調処理等も行う。第2参照信号マッピング部122は、第2参照信号生成部107から受け取る送信アンテナ104-1~mから送信されるCSI-RSを入力し、CSI-RSをアンテナ毎に分けて並列にプリコーディング処理部123-2へ出力する。なお、符号化/変調部121-2は、制御信号等の多重処理、レートマッチング処理、インターリーブ処理、変調処理等も行う。 The encoding / modulation unit 121-2 also performs control signal multiplexing processing, rate matching processing, interleaving processing, modulation processing, and the like. Second reference signal mapping section 122 receives CSI-RSs transmitted from transmission antennas 104-1 to m received from second reference signal generation section 107, and divides CSI-RS for each antenna and performs precoding processing in parallel. To the unit 123-2. Note that the encoding / modulation unit 121-2 also performs multiplexing processing of a control signal, rate matching processing, interleaving processing, modulation processing, and the like.
 プリコーディング処理部123-2は、符号化/変調部121-1から受け取るSFBCグループ群及び第2参照信号生成部107から受け取るCSI-RSから、アンテナ104-n+1~mに対応するm個の並列ストリームを形成する。プリコーディング処理部123-2で得られた各ストリームは、OFDMシンボル単位でシリアルに出力される。OFDMシンボル単位のストリームにおいて、SFBCグループの構成データ及びCSI-RSは、そのストリームに対応するアンテナから送信されるリソースブロックにおいてSFBCグループの構成データ及びCSI-RSが配置される予定のリソースエレメントに対応する位置に配置される。 The precoding processing unit 123-2 receives m parallels corresponding to the antennas 104-n + 1 to m from the SFBC group group received from the encoding / modulation unit 121-1 and the CSI-RS received from the second reference signal generation unit 107. Form a stream. Each stream obtained by the precoding processing unit 123-2 is serially output in units of OFDM symbols. In the OFDM symbol unit stream, the SFBC group configuration data and CSI-RS correspond to the SFBC group configuration data and CSI-RS to be allocated in the resource block transmitted from the antenna corresponding to the stream. It is arranged at the position to do.
 送信RF部103-1~mは、OFDMシンボル単位のストリームを入力し、直並列変換及びIFFT処理を施してOFDM信号を形成する。送信RF部103-1~lで形成されたOFDM信号は、アンテナ104-1~lからそれぞれ送信される。 The transmission RF units 103-1 to 103-m receive the OFDM symbol unit stream, perform serial-parallel conversion and IFFT processing, and form an OFDM signal. The OFDM signals formed by the transmission RF units 103-1 to l are transmitted from the antennas 104-1 to l, respectively.
 [端末の構成]
 図7は、本実施の形態に係る端末200の構成を示すブロック図である。図7において、端末200は、複数のアンテナ211-1~lと、複数の受信RF部212-1~lと、CSI-RS系列生成部223と、複素共役処理部224と、チャネル推定部213と、CSI測定部214と、MIMO復調部215と、復号部216と、CRC検査部217と、フィードバック情報生成部218と、符号化部219と、多重部220と、送信RF部221と、制御信号復調部222とを有する。ここでは、上述のように、端末200は、LTE-A端末として説明される。
[Terminal configuration]
FIG. 7 is a block diagram showing a configuration of terminal 200 according to the present embodiment. In FIG. 7, terminal 200 includes a plurality of antennas 211-1 to 211-1, a plurality of reception RF units 212-1 to 212-1, a CSI-RS sequence generation unit 223, a complex conjugate processing unit 224, and a channel estimation unit 213. A CSI measuring unit 214, a MIMO demodulating unit 215, a decoding unit 216, a CRC checking unit 217, a feedback information generating unit 218, an encoding unit 219, a multiplexing unit 220, a transmission RF unit 221, and a control A signal demodulator 222. Here, as described above, terminal 200 is described as an LTE-A terminal.
 基地局100から送信されたOFDM信号が空間多重された空間多重OFDM信号が、アンテナ211-1~lで受信される。 The spatially multiplexed OFDM signal obtained by spatially multiplexing the OFDM signal transmitted from the base station 100 is received by the antennas 211-1 to 211-1.
 受信RF部212-1~lは、アンテナ211-1~lを介して受信した受信OFDM信号に対して、無線受信処理(ダウンコンバート、A/D変換等)及びOFDM復調処理(フーリエ変換、パラレル/シリアル変換等)を施すことにより、シリアルの受信信号をそれぞれ得る。この受信信号は、チャネル推定部213、MIMO復調部215、及び制御信号復調部222へ出力される。 The reception RF units 212-1 to 212-l perform radio reception processing (down-conversion, A / D conversion, etc.) and OFDM demodulation processing (Fourier transform, parallel) on the received OFDM signals received via the antennas 211-1-l. / Serial conversion etc.) to obtain serial received signals. This received signal is output to channel estimation section 213, MIMO demodulation section 215, and control signal demodulation section 222.
 CSI-RS系列生成部223は、チャネル品質報告対象である基地局100がCSI-RSを送信するアンテナ本数の半数に対応する種類(すなわち、m/2種類。ただし、m/2種類のCSI-RSのうち、一部又は全部が同一の系列であっても良い。)のCSI-RS系列を生成し、複素共役処理部224に出力する。 The CSI-RS sequence generation unit 223 is a type corresponding to half of the number of antennas to which the base station 100 that is the channel quality report target transmits CSI-RS (that is, m / 2 types. However, m / 2 types of CSI- A part or all of the RSs may be the same series), and is output to the complex conjugate processing unit 224.
 複素共役処理部224は、入力されたm/2種類のCSI-RSに対して複素共役演算を施し、更に複素平面で角度θ(0≦θ<2π[rad])だけ回転する。そして、複素共役処理部224は、入力されたm/2種類のCSI-RSと、複素共役演算処理及び回転処理が施されたm/2種類のCSI-RSとをチャネル推定部213へ出力する。すなわち、複素共役処理部224は、合計でm種類のCSI-RS系列(つまり、m/2組のCSI-RSペア)を生成し、チャネル推定部213へ出力する。 The complex conjugate processing unit 224 performs a complex conjugate operation on the input m / 2 types of CSI-RSs, and further rotates the angle θ (0 ≦ θ <2π [rad]) on the complex plane. The complex conjugate processing unit 224 outputs the input m / 2 types of CSI-RS and the m / 2 types of CSI-RS subjected to the complex conjugate arithmetic processing and the rotation processing to the channel estimation unit 213. . That is, complex conjugate processing section 224 generates a total of m types of CSI-RS sequences (that is, m / 2 sets of CSI-RS pairs) and outputs them to channel estimation section 213.
 チャネル推定部213は、複素共役処理部224から入力されるCSI-RS系列に基づいて、受信信号に含まれるチャネル品質測定用参照信号からチャネルを推定し、チャネル推定値を算出する。チャネル品質測定用参照信号の位置は、基地局100から別途通知されている。具体的には、チャネル推定部213は、第2参照信号用のリソース情報としてのCSI-RS配置情報、及びCSI-RS系列を入力とする。そして、チャネル推定部213は、CSI-RS配置情報に基づいて、チャネル品質測定用の参照信号であるCSI-RSが割り当てられるリソースブロック及びそのリソースブロックにおける周波数位置を特定する。そして、チャネル推定部213は、その周波数位置に含まれるチャネル品質測定用参照信号及び複素共役処理部224から受け取るCSI-RS系列に基づいて、チャネル推定を実施する。ただし、CSI-RS配置情報は、基地局100から別途通知されている。チャネル推定部213で算出されたチャネル推定値は、CSI測定部214及びMIMO復調部215へ出力される。 The channel estimation unit 213 estimates a channel from a channel quality measurement reference signal included in the received signal based on the CSI-RS sequence input from the complex conjugate processing unit 224, and calculates a channel estimation value. The position of the channel quality measurement reference signal is notified separately from the base station 100. Specifically, the channel estimation unit 213 receives CSI-RS arrangement information as resource information for the second reference signal and a CSI-RS sequence as inputs. And the channel estimation part 213 specifies the frequency position in the resource block to which CSI-RS which is a reference signal for channel quality measurement is allocated based on CSI-RS arrangement information, and the resource block. Channel estimation section 213 performs channel estimation based on the channel quality measurement reference signal included in the frequency position and the CSI-RS sequence received from complex conjugate processing section 224. However, the CSI-RS arrangement information is separately notified from the base station 100. The channel estimation value calculated by channel estimation section 213 is output to CSI measurement section 214 and MIMO demodulation section 215.
 制御信号復調部222は、基地局100から送信される制御信号を復調する。そして、制御信号復調部222は、復調後の制御信号から、送信信号の変調方式又は符号化率などのMCS情報を含む送信パラメータなどの制御情報を抽出する。この際、制御信号復調部222は、予めCSI-RS配置情報を受信及び復調し、CSI-RS配置情報を保持している。 The control signal demodulator 222 demodulates the control signal transmitted from the base station 100. Then, the control signal demodulator 222 extracts control information such as a transmission parameter including MCS information such as a modulation scheme or a coding rate of the transmission signal from the demodulated control signal. At this time, the control signal demodulator 222 receives and demodulates the CSI-RS arrangement information in advance and holds the CSI-RS arrangement information.
 CSI測定部214は、チャネル推定部213で算出されたチャネル推定値を用いて、チャネル品質(受信品質)としてCSIを算出し、フィードバック情報生成部218に出力する。この際、CSI測定部214は、チャネル推定部213と同様にCSI-RS配置情報を入力し、チャネル品質測定用の参照信号であるCSI-RSが割り当てられるリソースエレメントに関する情報を取得する。そして、CSI測定部214は、リソースエレメントに関する情報の示すリソースエレメントごとにチャネル推定値を平均化することによりチャネル品質情報を算出する。更に、CSI測定部214は、平均チャネル推定値を用いて補間処理することにより、CSI-RSの配置されていないリソースエレメントのチャネル品質情報も算出する。具体的なチャネル品質情報として、既定の変調方式・符号化率の組み合わせに対応したCSI、既定のコードブックから現在のチャネル状況に即したプリコーディングマトリクスを選択するPMI、希望する送信ストリーム数に対応したRIなどが挙げられる。 The CSI measurement unit 214 uses the channel estimation value calculated by the channel estimation unit 213 to calculate CSI as channel quality (reception quality) and outputs the CSI to the feedback information generation unit 218. At this time, the CSI measurement unit 214 receives the CSI-RS arrangement information as in the channel estimation unit 213, and acquires information on the resource element to which the CSI-RS that is a reference signal for channel quality measurement is assigned. Then, the CSI measurement unit 214 calculates channel quality information by averaging the channel estimation values for each resource element indicated by the information regarding the resource element. Furthermore, the CSI measurement unit 214 also calculates channel quality information of resource elements in which no CSI-RS is arranged by performing an interpolation process using the average channel estimation value. As specific channel quality information, CSI corresponding to a combination of a predetermined modulation scheme and coding rate, PMI for selecting a precoding matrix corresponding to the current channel condition from a predetermined codebook, and the desired number of transmission streams And the like.
 MIMO復調部215は、チャネル推定部213から受け取ったチャネル推定値、及び図示しないデータ信号復調用の参照信号(DM RS)によるチャネル推定値等を用いて、受信信号をMIMO復調処理(例えば、SFBC受信処理)し、復調した信号を復号部216へ出力する。MIMO復調部215は、デインターリーブ処理、レートデマッチング(Rate-Demaching)処理、尤度合成処理等も行う。 The MIMO demodulator 215 uses the channel estimation value received from the channel estimation unit 213 and a channel estimation value based on a data signal demodulation reference signal (DM RS) (not shown) to perform a MIMO demodulation process (for example, SFBC). Reception processing), and outputs the demodulated signal to the decoding unit 216. The MIMO demodulator 215 also performs deinterleaving processing, rate dematching processing, likelihood combining processing, and the like.
 復号部216は、MIMO分離後の信号を誤り訂正復号することにより、受信データを得る。 The decoding unit 216 obtains received data by performing error correction decoding on the signal after MIMO separation.
 CRC検査部217は、復号部216で得られた受信データCRC(Cyclic Redundancy Check)検査し、受信データに誤りが含まれているかどうかを示すデータエラーの有無情報をフィードバック情報生成部218に出力する。CRC検査部217は、誤りが無いと判定したときには、受信データを後段の機能部へ出力する。 The CRC checker 217 checks the received data CRC (Cyclic Redundancy Check) obtained by the decoder 216, and outputs data error presence / absence information indicating whether or not the received data includes an error to the feedback information generator 218. . When the CRC checking unit 217 determines that there is no error, the CRC checking unit 217 outputs the received data to the subsequent function unit.
 フィードバック情報生成部218は、CSI測定部214で算出したチャネル品質情報(CQI、PMI、RIなど)を含むフィードバック情報を生成する。また、フィードバック情報生成部218は、CRC検査部217での誤り検出結果に基づいて、Ack/Nack情報を生成する。ここで、CRC検査部217での誤り検出結果が「誤り無し」を示していれば、フィードバック情報生成部218は、ACK(Acknowledgement)を生成し、「誤り有り」を示していれば、Nack(Negative Acknowledgement)を生成する。 The feedback information generation unit 218 generates feedback information including the channel quality information (CQI, PMI, RI, etc.) calculated by the CSI measurement unit 214. Further, the feedback information generation unit 218 generates Ack / Nack information based on the error detection result in the CRC check unit 217. Here, if the error detection result in the CRC checking unit 217 indicates “no error”, the feedback information generation unit 218 generates an ACK (Acknowledgement). If the error detection result indicates “error present”, the Nack ( Generate Negative (Acknowledgement).
 符号化部219は、送信データを復号し、復号結果を多重部220へ出力する。 The encoding unit 219 decodes the transmission data and outputs the decoding result to the multiplexing unit 220.
 多重部220は、フィードバック情報及び符号化された送信データを含む送信信号等を多重処理する。そして、多重部220は、変調多値数又は符号化率を適応的に設定するレートマッチング(Rate-Maching)処理、インターリーブ処理、変調処理等を行い、送信RF部221に出力する。 The multiplexing unit 220 multiplexes transmission signals including feedback information and encoded transmission data. Then, multiplexing section 220 performs rate matching (Rate-Maching) processing, interleaving processing, modulation processing, and the like that adaptively sets the modulation multi-level number or coding rate, and outputs the result to transmission RF section 221.
 送信RF部221は、多重部220から受け取る多重信号を、OFDM変調処理(シリアル/パラレル変換、逆フーリエ変換等)及び無線送信処理(アップコンバート、D/A変換、増幅等)し、アンテナ211-1を介して送信する。 The transmission RF unit 221 performs OFDM modulation processing (serial / parallel conversion, inverse Fourier transform, etc.) and radio transmission processing (up-conversion, D / A conversion, amplification, etc.) on the multiplexed signal received from the multiplexing unit 220, and the antenna 211- 1 to send.
 [基地局100によるCSI-RS生成及び配置の詳細]
 基地局100は、例えば、自局のセルID等を元にCSI-RS系列を生成し、それぞれのREに配置する。具体的には、上述の通り、基地局100は、LTEシステムにおけるSFBCリソースグループに含まれる第1のリソースエレメント及び第2のリソースエレメントに、LTE-A端末向けの「第1のCSI-RS」及び「当該第1のCSI-RSの複素共役が角度θ(0≦θ<2π[rad])だけ回転された第2のCSI-RS」をそれぞれ配置する。
[Details of CSI-RS generation and arrangement by base station 100]
For example, the base station 100 generates a CSI-RS sequence based on the cell ID of the own station, and arranges it in each RE. Specifically, as described above, the base station 100 transmits the “first CSI-RS” for the LTE-A terminal to the first resource element and the second resource element included in the SFBC resource group in the LTE system. And “second CSI-RS in which the complex conjugate of the first CSI-RS is rotated by an angle θ (0 ≦ θ <2π [rad])”.
 すなわち、或るSFBCリソースグループに配置される2つのCSI-RS(これらは、同一のアンテナから送信されても良いし、又は、異なるアンテナからそれぞれ送信されても良い。図8は、或るSFBCリソースグループに配置される2つのCSI-RSが常に異なるアンテナからそれぞれ送信される場合の例を示している)を、それぞれp1及びp2とすると、p1とp2の間には、次の式(1)の関係が成り立つ。
Figure JPOXMLDOC01-appb-M000001
That is, two CSI-RSs arranged in a certain SFBC resource group (these may be transmitted from the same antenna, or may be transmitted from different antennas respectively. FIG. 8 shows a certain SFBC. the in and) shows an example in which two CSI-RS is arranged in the resource group is transmitted from always different antennas, respectively when p 1 and p 2, between p 1 and p 2, the following The relationship of the formula (1) is established.
Figure JPOXMLDOC01-appb-M000001
 この時、異なるSFBCリソースグループに配置されるCSI-RSの相対関係は、任意の関係であっても良い。すなわち、例えば図8において、SFBCリソースグループ1内に配置される2つのCSI-RS(p1,p2)の相対関係は、式(1)で表される。また、同様に、SFBCリソースグループ2内に配置される2つのCSI-RS(p3,p4)は、式(2)で表される。
Figure JPOXMLDOC01-appb-M000002
At this time, the relative relationship between CSI-RSs arranged in different SFBC resource groups may be an arbitrary relationship. That is, for example, in FIG. 8, the relative relationship between the two CSI-RSs (p 1 , p 2 ) arranged in the SFBC resource group 1 is expressed by Expression (1). Similarly, two CSI-RSs (p 3 , p 4 ) arranged in the SFBC resource group 2 are expressed by Expression (2).
Figure JPOXMLDOC01-appb-M000002
 これに対して、p1とp3の相対関係には、制限はなく、例えば、任意の独立な系列が設定される。こうして、m種類のCSI-RSが生成され、送信される。 On the other hand, the relative relationship between p 1 and p 3 is not limited, and for example, an arbitrary independent sequence is set. In this way, m types of CSI-RSs are generated and transmitted.
 [端末200によるCSI-RSの生成]
 第2種システム対応の端末200は、基地局100がCSI-RSを送信するm本のアンテナに対応するm種類のCSI-RS系列を生成する。すなわち、基地局100で生成されたm種類のCSI-RS系列と同じものが生成される。具体的には、第1のCSI-RS系列及び当該第1のCSI-RS系列の複素共役が角度θ(0≦θ<2π[rad])だけ回転された第2のCSI-RS系列から成るCSI-RSペアを、m/2種類生成する。m種類のCSI-RS系列は、チャネル推定の際に、基準信号として用いられる。
[Generation of CSI-RS by terminal 200]
The second type system compatible terminal 200 generates m types of CSI-RS sequences corresponding to m antennas from which the base station 100 transmits CSI-RS. That is, the same m types of CSI-RS sequences generated in base station 100 are generated. Specifically, the first CSI-RS sequence and the complex conjugate of the first CSI-RS sequence include a second CSI-RS sequence rotated by an angle θ (0 ≦ θ <2π [rad]). M / 2 types of CSI-RS pairs are generated. The m types of CSI-RS sequences are used as reference signals in channel estimation.
 すなわち、或るSFBCリソースグループに配置される2つのCSI-RSに対して、端末200は、1つのCSI-RS系列(p1)を予め決められたルールに基づいて(例えば、基地局100のCell IDに基づいて)生成する。そして、端末200は、同一のSFBCリソースグループに配置されるもう一方のCSI-RS系列(p2)を、式(1)の関係を用いて生成する。 That is, for two CSI-RSs arranged in a certain SFBC resource group, terminal 200 assigns one CSI-RS sequence (p 1 ) based on a predetermined rule (for example, for base station 100 Generate based on Cell ID. Terminal 200 generates the other CSI-RS sequence (p 2 ) arranged in the same SFBC resource group using the relationship of equation (1).
 [CSI-RSが第1種端末の受信に与える影響]
 ここでは、第1種端末が第1種システムにおけるSFBCに対応する受信動作を行う場合について説明する。
[Effects of CSI-RS on type 1 terminal reception]
Here, a case where the first type terminal performs a reception operation corresponding to SFBC in the first type system will be described.
 第1種端末が、図2に示すようなSFBCが施された信号を基地局100から受信する場合、SFBCグループ内のRE1,2において受信する信号r1、r2は、式(3)で表される。
Figure JPOXMLDOC01-appb-M000003
 ただし、ここではノイズの影響は加味されておらず、h1は、基地局100の第1送信アンテナから第1種端末の受信アンテナまでの伝搬路に対応するチャネルであり、h2は、基地局の第2送信アンテナから第1種端末の受信アンテナまでの伝搬路に対応するチャネルである。
When the first type terminal receives a signal subjected to SFBC as shown in FIG. 2 from the base station 100, the signals r 1 and r 2 received by the REs 1 and 2 in the SFBC group are expressed by Equation (3). expressed.
Figure JPOXMLDOC01-appb-M000003
However, the influence of noise is not taken into consideration here, h 1 is a channel corresponding to the propagation path from the first transmitting antenna of the base station 100 to the receiving antenna of the first type terminal, and h 2 is the base It is a channel corresponding to the propagation path from the second transmitting antenna of the station to the receiving antenna of the first type terminal.
 第1種端末は、別途送信されている第1種システム向けの参照信号によって、チャネルh1,h2を推定する。そして、第1種端末は、基地局100が送信した信号s1,s2を、式(4)に相当する処理により、復調する。以下では、この動作を「SFBC復調」と呼ぶ。ただし、便宜上、端末が理想的なチャネル推定を行えると仮定し、式(3)と式(4)のいずれにも同一のh1,h2(及びs1,s2)を用いている(すなわち、これらの式においてノイズやチャネル推定の誤差に起因する復調誤差は加味していない。以降の式においても同様である。)。
Figure JPOXMLDOC01-appb-M000004
The first type terminal estimates the channels h 1 and h 2 from the reference signal for the first type system that is separately transmitted. Then, the first type terminal demodulates the signals s 1 and s 2 transmitted from the base station 100 by a process corresponding to Equation (4). Hereinafter, this operation is referred to as “SFBC demodulation”. However, for the sake of convenience, it is assumed that the terminal can perform ideal channel estimation, and the same h 1 , h 2 (and s1, s2) are used for both Equation (3) and Equation (4) (ie, These equations do not take into account demodulation errors due to noise or channel estimation errors, and the same applies to the following equations.)
Figure JPOXMLDOC01-appb-M000004
 ここで、前述の通り、基地局100は、予め決められた一部のリソースグループに対し、SFBCリソースグループを形成する2つのREにおいて、第2種システム向けのCSI-RSによって第1種システム向けの有意なデータを上書きする動作を行う。すなわち、例えば、基地局100は、SFBCリソースグループを構成するRE1において、第1種システム向けのデータを、第1送信アンテナから送信される第2種システム向けのCSI-RS(p1)で上書きする一方、RE2において、第1種システム向けのデータを、第2送信アンテナからの第2種システム向けのCSI-RS(p2)で上書きする。このp1とp2とは、上記した式(1)の関係式を満たす。 Here, as described above, the base station 100 uses the CSI-RS for the second type system for the first type system in the two REs forming the SFBC resource group with respect to a predetermined part of the resource group. The operation of overwriting the significant data is performed. That is, for example, the base station 100 overwrites the data for the first type system with the CSI-RS (p 1 ) for the second type system transmitted from the first transmission antenna in the RE1 configuring the SFBC resource group. On the other hand, in RE2, the data for the first type system is overwritten with the CSI-RS (p 2 ) for the second type system from the second transmission antenna. The p 1 and p 2 satisfy the relational expression (1) described above.
 この時、第1種端末がRE1,2において受信する信号r1、r2は、式(5)で表される。
Figure JPOXMLDOC01-appb-M000005
At this time, the signals r 1 and r 2 received by the first type terminal at the REs 1 and 2 are expressed by Expression (5).
Figure JPOXMLDOC01-appb-M000005
 この式(5)を式(4)に代入することにより、第1種端末によるCSI-RS復調結果を求めることができ、式(6)で表される。ただし、scsi1,scsi2は第1種端末においては第1種システム向けのデータとして認識されており、第1種端末側ではこれらの復調結果も加味した誤り訂正復号が行われる。一般的に、誤り訂正復号においては、電力が強い復調結果をより強く信頼し(すなわち、尤度が高いと認識し)、電力が低い復調結果をあまり信頼しない(すなわち、尤度が低いと認識する)ということが行われる。すなわち、第1種端末にとって意味を成さないCSI-RS復調結果は、第1種端末側において尤度が低いと認識される方が(すなわち、誤り訂正復号時に重要視されない方が)、第1種端末における誤り訂正復号動作に悪影響が小さく、好ましいと考えられる。
Figure JPOXMLDOC01-appb-M000006
By substituting Equation (5) into Equation (4), the CSI-RS demodulation result by the first type terminal can be obtained, and is represented by Equation (6). However, s csi1 and s csi2 are recognized as data for the first type system in the first type terminal, and error correction decoding taking these demodulation results into consideration is performed on the first type terminal side. In general, in error correction decoding, a demodulation result with high power is more strongly trusted (ie, the likelihood is recognized as high), and a demodulation result with low power is not reliable (ie, the likelihood is recognized as low). Is done). That is, a CSI-RS demodulation result that does not make sense for a type 1 terminal is recognized as having a low likelihood on the type 1 terminal side (that is, a case that is not considered important during error correction decoding). The adverse effect on the error correction decoding operation in the type 1 terminal is small and considered to be preferable.
Figure JPOXMLDOC01-appb-M000006
 ここで、例えばθ=0とすると、式(6)は、式(7)のように変形できる。
Figure JPOXMLDOC01-appb-M000007
For example, if θ = 0, Equation (6) can be transformed as Equation (7).
Figure JPOXMLDOC01-appb-M000007
 また、θ=πとすると、式(6)は、式(8)のように変形できる。
Figure JPOXMLDOC01-appb-M000008
If θ = π, equation (6) can be transformed into equation (8).
Figure JPOXMLDOC01-appb-M000008
 ここで、次の式(9)のような関係が成り立つ。
Figure JPOXMLDOC01-appb-M000009
Here, the following relationship (9) is established.
Figure JPOXMLDOC01-appb-M000009
 従って、式(7)よりも式(8)の方が、第1種端末側で認識されるCSI-RSのSFBC復調結果の電力(及び振幅)が小さくなることが分かる。すなわち、p1とp2の相対関係を、式(1)においてθ=πとして定義する場合に、CSI-RSが配置されたREにおける復調結果の尤度が最も小さく扱われるため、CSI-RSの挿入が第1種端末の誤り訂正復号結果に与える影響も最も小さくなることがわかる。 Therefore, it can be seen that the power (and amplitude) of the SFSI demodulation result of the CSI-RS recognized on the first type terminal side is smaller in the formula (8) than in the formula (7). That is, when the relative relationship between p 1 and p 2 is defined as θ = π in Equation (1), the likelihood of the demodulation result in the RE in which the CSI-RS is arranged is treated as the smallest, so the CSI-RS It can be seen that the effect of the insertion on the error correction decoding result of the first type terminal is also minimized.
 これらに関しシミュレーションを行った結果を図9,10に示す。図9は、SFBCリソースグループを上書きするCSI-RSのペアに対して式(1)の関係を維持した場合のシミュレーション結果である。一方、図10は、SFBCリソースグループを上書きするCSI-RSのペアに対して複素共役の処理を伴わない場合、つまり、下記式(10)の関係を維持した場合のシミュレーション結果である。図9,10のいずれにも、QPSKで変調され、且つSFBCを適用された第1種端末向けの送信データがCSI-RSによって上書きされることにより形成された送信信号を、第1種端末が受信する場合のBLER(Block error rate)が示されている。
Figure JPOXMLDOC01-appb-M000010
9 and 10 show the results of simulation regarding these. FIG. 9 is a simulation result in the case where the relationship of Expression (1) is maintained for the CSI-RS pair overwriting the SFBC resource group. On the other hand, FIG. 10 shows a simulation result in the case where the complex conjugate processing is not performed for the CSI-RS pair overwriting the SFBC resource group, that is, the relationship of the following formula (10) is maintained. In both of FIGS. 9 and 10, a transmission signal formed by a type 1 terminal is overwritten with transmission data for a type 1 terminal modulated by QPSK and applied with SFBC by a CSI-RS. BLER (Block error rate) in the case of reception is shown.
Figure JPOXMLDOC01-appb-M000010
 図9,10からわかるように、第1種システムにおけるSFBCリソースグループに含まれ且つ周波数方向で隣接する第1のリソースエレメント及び第2のリソースエレメントに配置するCSI-RSペアが式(1)の関係を維持し、且つ、θ=πである場合に、最も第1種端末に対する悪影響を小さくできる。 As can be seen from FIGS. 9 and 10, the CSI-RS pair included in the SFBC resource group in the first type system and arranged in the first resource element and the second resource element adjacent in the frequency direction is represented by the formula (1). When the relationship is maintained and θ = π, the most adverse effect on the first type terminal can be reduced.
 換言すれば、SFBCリソースグループにおける第1のリソースエレメント及び第2のリソースエレメントを上書きするCSI-RSペアが式(10)の関係を満たす場合には、QPSKの受信性能(つまり、CSI-RSによる上書きに起因する劣化度合い)は、θの値によらずほぼ一定となる一方、CSI-RSペアが式(1)の関係を満たす場合には、θに依存して第1種端末のQPSKの受信性能が大きく変化することがわかる。 In other words, when the CSI-RS pair that overwrites the first resource element and the second resource element in the SFBC resource group satisfies the relationship of Equation (10), the reception performance of QPSK (that is, according to CSI-RS) The degree of deterioration due to overwriting) is almost constant regardless of the value of θ. On the other hand, when the CSI-RS pair satisfies the relationship of equation (1), the QPSK of the first type terminal depends on θ. It can be seen that the reception performance changes greatly.
 これは次の理由による。すなわち、CSI-RSのペアが式(10)の関係を維持する場合、式(6)は下記式(11)のように変形される。従って、第1のリソースエレメント及び第2のリソースエレメントのそれぞれが受ける干渉成分の影響は、θに依らずほぼ一定となるためである。
Figure JPOXMLDOC01-appb-M000011
This is due to the following reason. That is, when the CSI-RS pair maintains the relationship of the equation (10), the equation (6) is transformed into the following equation (11). Therefore, the influence of the interference component received by each of the first resource element and the second resource element is substantially constant regardless of θ.
Figure JPOXMLDOC01-appb-M000011
 つまり、上記説明のように、SFBCリソースグループを形成するリソースエレメントを上書きするCSI-RSペアに式(1)の関係を持たせ、且つ、式(1)中の角度θを適切な角度に設定することによって、第1種端末の受信性能劣化を最小限に抑えることができる。 In other words, as described above, the CSI-RS pair that overwrites the resource elements that form the SFBC resource group has the relationship of Equation (1), and the angle θ in Equation (1) is set to an appropriate angle. By doing so, it is possible to minimize the reception performance degradation of the first type terminal.
 以上のように本実施の形態によれば、基地局100において、端末用信号処理部101-aは、同一のSFBCリソースグループに含まれ且つ周波数方向で隣接する第1のリソースエレメント及び第2のリソースエレメントに、第2種端末(ここでは、端末200)用の第1の参照信号及び第2の参照信号を配置する。そして、第1の参照信号は、第2の参照信号を角度θ(0≦θ<2π[rad])だけ複素平面上で回転した結果の複素共役と一致する。 As described above, according to the present embodiment, in the base station 100, the terminal signal processing section 101-a includes the first resource element and the second resource element that are included in the same SFBC resource group and are adjacent in the frequency direction. A first reference signal and a second reference signal for the second type terminal (here, the terminal 200) are arranged in the resource element. The first reference signal matches the complex conjugate resulting from rotating the second reference signal on the complex plane by an angle θ (0 ≦ θ <2π [rad]).
 こうすることで、上述のように、第1種端末の受信性能劣化を抑えることができる。 By doing so, it is possible to suppress the reception performance deterioration of the first type terminal as described above.
 なお、上記説明では、式(2)に示されるSFBC処理について最適なθがπとなることを示した。これに対して、SFBC処理が、例えば、下記式(12)で表される場合には、最適なθは0となる。
Figure JPOXMLDOC01-appb-M000012
In the above description, it has been shown that the optimum θ is π for the SFBC process shown in the equation (2). On the other hand, when the SFBC process is expressed by, for example, the following formula (12), the optimum θ is 0.
Figure JPOXMLDOC01-appb-M000012
 これは、式(4)及び式(6)が、下記式(13)、式(14)のように変形されるためである。
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
This is because the equations (4) and (6) are transformed into the following equations (13) and (14).
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
 また、上記説明では、第1種端末のQPSK復調に与える影響について説明した。これに限らず、第1種端末が16QAM又は64QAMの信号を復調する際には、図11及び図12に示す通り、式(1)におけるθが2π/3[rad](120度)付近の場合に、最も性能劣化が小さくなる。 In the above description, the influence on the QPSK demodulation of the first type terminal has been described. Not limited to this, when the first type terminal demodulates the 16QAM or 64QAM signal, as shown in FIGS. 11 and 12, θ in the equation (1) is around 2π / 3 [rad] (120 degrees). In this case, the performance degradation is the smallest.
 また、上記説明ではアンテナとして説明したが、本発明はアンテナポート(antenna port)でも同様に適用できる。 In the above description, the antenna is described. However, the present invention can be similarly applied to an antenna port.
 アンテナポートとは、1本又は複数の物理アンテナから構成される、論理的なアンテナを指す。すなわち、アンテナポートは必ずしも1本の物理アンテナを指すとは限らず、複数のアンテナから構成されるアレイアンテナ等を指すことがある。 An antenna port refers to a logical antenna composed of one or more physical antennas. That is, the antenna port does not necessarily indicate one physical antenna, but may indicate an array antenna composed of a plurality of antennas.
 例えば3GPP LTEにおいては、アンテナポートが何本の物理アンテナから構成されるかは規定されず、基地局が異なる参照信号(Reference signal)を送信できる最小単位として規定されている。 For example, in 3GPP LTE, it is not specified how many physical antennas an antenna port is composed of, but it is specified as a minimum unit in which a base station can transmit different reference signals (Reference signal).
 また、アンテナポートはプリコーディングベクトル(Precoding vector)の重み付けを乗算する最小単位として規定されることもある。 Also, the antenna port may be defined as a minimum unit for multiplying the weight of a precoding vector (Precoding vector).
 また、上記説明では、本発明をハードウェアで構成する場合を例にとって説明したが、本発明はソフトウェアで実現することも可能である。 In the above description, the case where the present invention is configured by hardware has been described as an example, but the present invention can also be realized by software.
 また、上記説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部または全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。 Further, each functional block used in the above description is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them. Although referred to as LSI here, it may be referred to as IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
 また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサーを利用してもよい。 Further, the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible. An FPGA (Field Programmable Gate Array) that can be programmed after manufacturing the LSI or a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。 Furthermore, if integrated circuit technology that replaces LSI emerges as a result of advances in semiconductor technology or other derived technology, it is naturally also possible to integrate functional blocks using this technology. Biotechnology can be applied.
 2010年1月7日出願の特願2010-001812の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。 The disclosure of the specification, drawings and abstract contained in the Japanese application of Japanese Patent Application No. 2010-001812 filed on Jan. 7, 2010 is incorporated herein by reference.
 本発明の無線送信装置及び参照信号送信方法は、第1の無線受信装置へのデータに割り当てられているリソースに第2の無線受信装置向けの参照信号が配置されることで、第1の無線受信装置へのデータが第2の無線受信装置向けの参照信号によって上書きされる場合にも、その第1の無線受信装置へのデータの誤り特性劣化を最小限に抑えるものとして有用である。 According to the wireless transmission device and the reference signal transmission method of the present invention, the reference signal for the second wireless reception device is arranged in the resource allocated to the data to the first wireless reception device, so that the first wireless Even when the data to the receiving device is overwritten by the reference signal for the second wireless receiving device, it is useful for minimizing the deterioration of the error characteristics of the data to the first wireless receiving device.
 100 基地局
 101 端末用信号処理部
 103 送信RF部
 104,211 アンテナ
 105 スケジューリング部
 106 第2参照信号配置設定部
 107 第2参照信号生成部
 108 第1参照信号生成部
 109,212 受信RF部
 110 分離部
 111 復調/復号部
 112,217 CRC検査部
 113 フィードバック情報復調部
 114,224 複素共役処理部
 121 符号化/変調部
 122 第2参照信号マッピング部
 123 プリコーディング処理部
 124 データ上書き部
 200 端末
 213 チャネル推定部
 214 CSI測定部
 215 MIMO復調部
 216 復号部
 218 フィードバック情報生成部
 219 符号化部
 220 多重部
 222 制御信号復調部
 223 CSI-RS系列生成部
DESCRIPTION OF SYMBOLS 100 Base station 101 Signal processing part for terminals 103 Transmission RF part 104, 211 Antenna 105 Scheduling part 106 Second reference signal arrangement setting part 107 Second reference signal generation part 108 First reference signal generation part 109, 212 Reception RF part 110 Separation Unit 111 demodulation / decoding unit 112, 217 CRC checking unit 113 feedback information demodulation unit 114, 224 complex conjugate processing unit 121 encoding / modulation unit 122 second reference signal mapping unit 123 precoding processing unit 124 data overwriting unit 200 terminal 213 channel Estimation unit 214 CSI measurement unit 215 MIMO demodulation unit 216 Decoding unit 218 Feedback information generation unit 219 Encoding unit 220 Multiplexing unit 222 Control signal demodulation unit 223 CSI-RS sequence generation unit

Claims (10)

  1.  第1種受信装置向けの送信データ系列をブロック符号処理単位で空間周波数ブロック符号化(SFBC)し、ブロック符号処理単位ごとの符号結果であるSFBCグループを形成する空間周波数ブロック符号化手段と、
     前記SFBCグループ、又は、第2種受信装置用の第1の参照信号及び第2の参照信号を、複数のリソースエレメントから構成されるリソースグループに配置する配置手段と、
     を具備し、
     前記第1の参照信号及び前記第2の参照信号は、互いに複素共役の関係にある、
     無線送信装置。
    Spatial frequency block coding means for performing a spatial frequency block coding (SFBC) on a block code processing unit for a transmission data sequence for the first type receiver, and forming an SFBC group as a code result for each block code processing unit;
    Arrangement means for arranging the SFBC group or the first reference signal and the second reference signal for the second type receiving apparatus in a resource group composed of a plurality of resource elements;
    Comprising
    The first reference signal and the second reference signal are in a complex conjugate relationship with each other.
    Wireless transmission device.
  2.  前記SFBCグループを構成する複数のリソースエレメントが、互いに周波数方向で隣接する、
     請求項1に記載の無線送信装置。
    A plurality of resource elements constituting the SFBC group are adjacent to each other in the frequency direction.
    The wireless transmission device according to claim 1.
  3.  前記第1の参照信号及び前記第2の参照信号は、それぞれ異なるアンテナから送信される、
     請求項1に記載の無線送信装置。
    The first reference signal and the second reference signal are transmitted from different antennas, respectively.
    The wireless transmission device according to claim 1.
  4.  第1種受信装置向けの送信データ系列をブロック符号処理単位で空間周波数ブロック符号化(SFBC)し、ブロック符号処理単位ごとの符号結果であるSFBCグループを形成する空間周波数ブロック符号化手段と、
     前記SFBCグループ、又は、第2種受信装置用の第1の参照信号及び第2の参照信号を、複数のリソースエレメントから構成されるリソースグループに配置する配置手段と、
     を具備し、
     前記第1の参照信号は、前記第2の参照信号の複素共役を、角度θ(0≦θ<2π[rad])だけ回転したものである、無線送信装置。
    Spatial frequency block coding means for performing a spatial frequency block coding (SFBC) on a block code processing unit for a transmission data sequence for the first type receiver, and forming an SFBC group as a code result for each block code processing unit;
    Arrangement means for arranging the SFBC group or the first reference signal and the second reference signal for the second type receiving apparatus in a resource group composed of a plurality of resource elements;
    Comprising
    The first reference signal is a wireless transmission device obtained by rotating a complex conjugate of the second reference signal by an angle θ (0 ≦ θ <2π [rad]).
  5.  前記SFBCグループを構成する複数のリソースエレメントが、互いに周波数方向で隣接する、
     請求項4に記載の無線送信装置。
    A plurality of resource elements constituting the SFBC group are adjacent to each other in the frequency direction.
    The wireless transmission device according to claim 4.
  6.  前記第1の参照信号及び前記第2の参照信号は、それぞれ異なるアンテナから送信される、
     請求項4に記載の無線送信装置。
    The first reference signal and the second reference signal are transmitted from different antennas, respectively.
    The wireless transmission device according to claim 4.
  7.  前記角度θは、2π/3[rad]又はπ[rad]である、
     請求項4に記載の無線送信装置。
    The angle θ is 2π / 3 [rad] or π [rad].
    The wireless transmission device according to claim 4.
  8.  前記空間周波数ブロック符号化手段の入力側に設けられ、前記空間周波数ブロック符号化手段に入力される前記送信データ系列を変調する変調手段をさらに具備し、
     前記角度θは、前記変調手段の変調方式がQPSKの場合には、π[rad]である、
     請求項4に記載の無線送信装置。
    A modulation unit that is provided on an input side of the spatial frequency block encoding unit and modulates the transmission data sequence input to the spatial frequency block encoding unit;
    The angle θ is π [rad] when the modulation method of the modulation means is QPSK.
    The wireless transmission device according to claim 4.
  9.  前記空間周波数ブロック符号化手段の入力側に設けられ、前記空間周波数ブロック符号化手段に入力される前記送信データ系列を変調する変調手段をさらに具備し、
     前記角度θは、前記変調手段の変調方式が直交振幅変調の場合には、2π/3[rad]である、
     請求項4に記載の無線送信装置。
    A modulation unit that is provided on an input side of the spatial frequency block encoding unit and modulates the transmission data sequence input to the spatial frequency block encoding unit;
    The angle θ is 2π / 3 [rad] when the modulation method of the modulation means is quadrature amplitude modulation.
    The wireless transmission device according to claim 4.
  10.  第1種受信装置向けの送信データ系列をブロック符号処理単位で空間周波数ブロック符号化(SFBC)し、ブロック符号処理単位ごとの符号結果であるSFBCグループを形成する形成ステップと、
     前記SFBCグループ、又は、第2種受信装置用の第1の参照信号及び第2の参照信号を、複数のリソースエレメントから構成されるリソースグループに配置する配置ステップと、
     を具備し、
     前記第1の参照信号及び前記第2の参照信号は、互いに複素共役の関係にある、
     参照信号送信方法。
    A step of forming a SFBC group that is a code result of each block code processing unit by performing spatial frequency block coding (SFBC) on a block code processing unit on a transmission data sequence for the first type receiving device;
    An arrangement step of arranging the first reference signal and the second reference signal for the SFBC group or the second type reception apparatus in a resource group including a plurality of resource elements;
    Comprising
    The first reference signal and the second reference signal are in a complex conjugate relationship with each other.
    Reference signal transmission method.
PCT/JP2011/000020 2010-01-07 2011-01-06 Wireless transmission device and reference signal transmission method WO2011083761A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-001812 2010-01-07
JP2010001812 2010-01-07

Publications (1)

Publication Number Publication Date
WO2011083761A1 true WO2011083761A1 (en) 2011-07-14

Family

ID=44305497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000020 WO2011083761A1 (en) 2010-01-07 2011-01-06 Wireless transmission device and reference signal transmission method

Country Status (1)

Country Link
WO (1) WO2011083761A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015039175A (en) * 2010-02-23 2015-02-26 クゥアルコム・インコーポレイテッドQualcomm Incorporated Channel state information reference signals
WO2018127159A1 (en) * 2017-01-06 2018-07-12 Qualcomm Incorporated Transparent demodulation reference signal design

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009001528A1 (en) * 2007-06-22 2008-12-31 Panasonic Corporation Transmission device, reception device, and ofdm transmission method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009001528A1 (en) * 2007-06-22 2008-12-31 Panasonic Corporation Transmission device, reception device, and ofdm transmission method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CATT: "Further investigations on the configurations of CSI-RS for LTE-A R1-093520", 3GPP, 19 August 2009 (2009-08-19) *
SAMSUNG: "Discussions on CSI-RS for LTE- Advanced R1-092204", 3GPP, 4 May 2009 (2009-05-04) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015039175A (en) * 2010-02-23 2015-02-26 クゥアルコム・インコーポレイテッドQualcomm Incorporated Channel state information reference signals
US9407409B2 (en) 2010-02-23 2016-08-02 Qualcomm Incorporated Channel state information reference signals
US10594452B2 (en) 2010-02-23 2020-03-17 Qualcomm Incorporated Channel state information reference signals
WO2018127159A1 (en) * 2017-01-06 2018-07-12 Qualcomm Incorporated Transparent demodulation reference signal design
US11277243B2 (en) 2017-01-06 2022-03-15 Qualcomm Incorporated Transparent demodulation reference signal design

Similar Documents

Publication Publication Date Title
US10912079B2 (en) Radio reception apparatus, radio transmission apparatus, and radio communication method
US8442569B2 (en) Radio reception apparatus, radio transmission apparatus, and radio communication method
US10903947B2 (en) Communication apparatus and communication method
US9241334B2 (en) Wireless reception device, wireless transmission device, and wireless communication method
WO2011052220A1 (en) Wireless transmission device and reference signal transmission method
SG188115A1 (en) Control and data multiplexing in communication systems
US9386556B2 (en) Method and apparatus for optimizing a limited feedback in a wireless access system supporting a distributed antenna (DA) technique
CN113507343A (en) Method and device used in user equipment and base station for wireless communication
CN111526589B (en) Method and device used in user equipment and base station for wireless communication
WO2011083761A1 (en) Wireless transmission device and reference signal transmission method
CN110839281B (en) Method and device used in user equipment and base station for wireless communication
CN114513289A (en) Method and apparatus in a node used for wireless communication
CN114465699A (en) Method and device used in user equipment and base station for wireless communication
CN113746591B (en) User equipment, method and device in base station for wireless communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11731759

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11731759

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP