WO2011083752A1 - Gpr40-positive bone marrow stem cell - Google Patents
Gpr40-positive bone marrow stem cell Download PDFInfo
- Publication number
- WO2011083752A1 WO2011083752A1 PCT/JP2010/073911 JP2010073911W WO2011083752A1 WO 2011083752 A1 WO2011083752 A1 WO 2011083752A1 JP 2010073911 W JP2010073911 W JP 2010073911W WO 2011083752 A1 WO2011083752 A1 WO 2011083752A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bone marrow
- negative
- cells
- positive
- derived mesenchymal
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0652—Cells of skeletal and connective tissues; Mesenchyme
- C12N5/0662—Stem cells
- C12N5/0663—Bone marrow mesenchymal stem cells (BM-MSC)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2500/00—Specific components of cell culture medium
- C12N2500/30—Organic components
- C12N2500/36—Lipids
Definitions
- the present invention relates to a stem cell derived from bone marrow, an isolation method thereof, and use thereof.
- G-protein coupled receptor 40 is a member of a subfamily of G-protein coupled receptor (GPCR), which is a 7-transmembrane receptor, docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), polyunsaturated fatty acids (PUFA) such as arachidonic acid are endogenous ligands of the GPR40 receptor (also called fatty acid receptor, FFAR1).
- DHA docosahexaenoic acid
- EPA eicosapentaenoic acid
- PUFA polyunsaturated fatty acids
- FFAR1 fatty acid receptor
- GPR40 Since the GPR40 gene was identified in the human pancreas and brain in 2003, the role of GPR40 has been mainly studied for its involvement in insulin secretion. However, the role of GPR40 in the brain has not been elucidated at all in the past. For example, there has been a report that GPR40 is not expressed in the rodent brain (see Non-Patent Document 3). According to the analysis at the gene level, GPR40 is expressed in various sites in the primate brain (see Non-Patent Document 4), and is most frequently expressed in the medulla, and is reported to be moderately expressed in the hippocampus. It had been.
- Bone marrow is known to contain bone marrow mesenchymal stem cells, which are tissue stem cells, and these cells differentiate into mesenchymal tissues such as bone and blood vessels, and are expected to be applied to regenerative medicine. .
- bone marrow mesenchymal cells are tissue stem cells and have a limited ability to differentiate.
- An object of the present invention is to provide GPR40-positive bone marrow-derived mesenchymal stem cells that can be differentiated into nerve cells by induction of PUFA, and further to provide a method for using the stem cells.
- the present inventor paid attention to the fact that GPR40 protein is expressed in the brain and that polyunsaturated fatty acids (PUFA) such as docosahexaenoic acid (DHA) function as a ligand for GPR40.
- PUFA polyunsaturated fatty acids
- DHA docosahexaenoic acid
- the present inventor has found that bone marrow-derived mesenchymal stem cells expressing GPR40 exist, and further, the bone marrow-derived mesenchymal stem cells are transferred to nerve cells and others via the PUFA-GPR40 signaling system. It was found that the cells can be differentiated into cells.
- the present inventor isolated a new “GPR40 positive bone marrow-derived mesenchymal stem cell” and completed the present invention. That is, the present invention is as follows. [1] GPR40-positive bone marrow-derived mesenchymal pluripotent stem cells derived from mammals.
- the bone marrow-derived mesenchymal pluripotent stem cell according to any one of [1] to [4], which can be differentiated into a nerve cell by stimulation with a polyunsaturated fatty acid.
- DHA docosahexaenoic acid
- a method for inducing differentiation into a nerve cell by contacting the bone marrow-derived mesenchymal pluripotent stem cell of any one of [1] to [6] with a polyunsaturated fatty acid in vitro.
- a composition for tissue regeneration comprising bone marrow-derived mesenchymal pluripotent stem cells according to any one of [1] to [6].
- the tissue regeneration composition according to [12], wherein the tissue is nerve tissue, adipose tissue, bone tissue, or cartilage tissue.
- the GPR40-positive bone marrow-derived mesenchymal stem cells of the present invention have pluripotency to differentiate into not only neurons but also adipocytes, osteoblasts, chondrocytes and the like.
- the stem cells are differentiated into nerve cells via a GPR40-polyunsaturated fatty acid signal transduction system by stimulation of polyunsaturated fatty acids such as DHA.
- the stem cells of the present invention can be used for nerve regeneration in combination with polyunsaturated fatty acids, and can also be used for regeneration of other tissues.
- FIG. 1 is a view showing the properties of GPR40-positive bone marrow-derived mesenchymal stem cells.
- FIG. 1A shows the formation of calcified pieces that are stained purple by von Kossa staining on the 21st day, and FIG. Due to induction of fat formation, formation of lipid droplets dyed red by oil red 0 staining on day 35, and further, FIG. 1C shows formation of cartilage mass dyed blue by Arshan blue staining on day 35 by induction of ossification. Indicates.
- FIG. 2 is a diagram showing expression of various expression markers in GPR40-positive bone marrow-derived mesenchymal stem cells. Among various markers, CD105, CD29, and CD90 are positive.
- FIG. 1A shows the formation of calcified pieces that are stained purple by von Kossa staining on the 21st day
- FIG. Due to induction of fat formation formation of lipid droplets dyed red by oil red 0 staining on day 35
- FIG. 3 is a diagram showing colony forming ability of GPR40 positive bone marrow-derived mesenchymal stem cells.
- the clonal expand group has a stronger colony-forming ability than the non-clonal group.
- FIG. 4 is a diagram showing neuronal differentiation and GPR40 expression (cultured day 7) of bone marrow-derived mesenchymal stem cells in the clonal expand group.
- the target culture group (C) is slightly positive (green) as shown in FIG. 4A.
- FIG. 4B shows the results of a culture group (bFGF) to which bFGF was added. The culture group showed a strong positive (green), and neurite formation was also observed.
- FIG. 4C shows the results of the DHA-added culture group (DHA), which shows a decrease in the expression of GPR40 (green). This is a phenomenon called “receptor internalization” specific to GPCRs in which, when a receptor binds to a ligand and fulfills its role, its localization is changed and expression is reduced.
- FIG. 4D shows the result of the culture group (bFGF / DHA) to which both bFGF and DHA are added, and cells showing an increase in expression of GPR40 (green) and cells showing a decrease are mixed.
- FIG. 5 is a diagram showing the results of investigating GPR40 gene expression of GPR40-positive bone marrow-derived mesenchymal stem cells by RT-PCR, and GPR40 gene expression shows the same tendency as protein expression by immunostaining.
- FIG. 6 is a view showing the results of examining the expression of GPR40 in GPR40-positive bone marrow-derived mesenchymal stem cells by Western blot, and the protein expression of GPR40 shows the same tendency as in immunostaining and RT-PCR.
- FIG. 7 shows the results of quantitative evaluation of GPR40 gene expression in GPR40-positive bone marrow-derived mesenchymal stem cells.
- FIG. 8 is a diagram showing the expression (day 7 of culture) of the stem cell marker nestin and the young nerve cell marker ⁇ III-tubulin in GPR40-positive bone marrow-derived mesenchymal stem cells differentiated into young nerve cells.
- FIG. 8A shows the result of double immunostaining of nestin and ⁇ III-tubulin (Nestin / ⁇ III-tubulin), and the target culture group (C) shows strong nestin positive (green).
- FIG. 8B shows the results of the culture group (bFGF) to which bFGF was added, in which a decrease in the expression of nestin (green) and an increase in the expression of ⁇ III-tubulin (red) were observed.
- FIG. 8A shows the result of double immunostaining of nestin and ⁇ III-tubulin (Nestin / ⁇ III-tubulin), and the target culture group (C) shows strong nestin positive (green).
- FIG. 8B shows the results of the culture group (bFGF) to
- FIG. 8C shows the results of the DHA-added culture group (DHA), and both nestin (green) and ⁇ III-tubulin (red) are weakly expressed.
- FIG. 8D shows the results of the culture group (bFGF / DHA) to which both DbFGF and DHA were added, while the expression of nestin (green) is hardly observed, whereas the expression of ⁇ III-tubulin (red) is remarkable.
- FIG. 9 is a diagram showing the results of examining the gene expression of nestin and ⁇ III-tubulin in GPR40-positive bone marrow-derived mesenchymal stem cells by RT-PCR, and the gene expression of nestin and ⁇ III-tubulin is related to protein expression by immunostaining. The same tendency is shown.
- FIG. 10 is a diagram showing the results of examining the gene expression of nestin and ⁇ III-tubulin in GPR40-positive bone marrow-derived mesenchymal stem cells by Western blotting. It shows the same tendency as RT-PCR.
- FIG. 11 is a diagram showing quantitative evaluation of nestin and ⁇ III-tubulin gene expression of GPR40 positive bone marrow-derived mesenchymal stem cells.
- FIG. 12 is a diagram showing expression of mature neuronal markers NF-M and Map2 (cultured on the 14th day) by GPR40-positive bone marrow-derived mesenchymal stem cells differentiated into mature neurons, and NF-M and Map2 2 Co-positive cells (yellow) seen by heavy immunostaining (Map2 / NF-M) have extended long neurites (arrows).
- FIG. 13 is a diagram showing the results of RT-PCR examining the expression (day 14 of culture) of mature neuronal markers NF-M and Map2 by GPR40-positive bone marrow-derived mesenchymal stem cells differentiated into mature neurons.
- FIG. 14 is a diagram showing the results of quantitative evaluation of gene expression of NF-M and Map2 in GPR40-positive bone marrow-derived mesenchymal stem cells differentiated into mature neurons.
- FIG. 15 is a diagram showing the results of examining the expression of mature neuronal markers NF-M and Map2 (cultured on day 14) by GPR40-positive bone marrow-derived mesenchymal stem cells differentiated into mature neurons by Western blotting; The gene expression of NF-M and Map2 shows the same tendency as RT-PCR.
- FIG. 16 shows the results of cell cycle analysis of GPR40-positive bone marrow-derived mesenchymal stem cells.
- FIG. 16A shows the results of the DHA-added culture group (DHA), with the majority of BrdU ⁇ / Ki67 + (green) cells and a slight mixture of BrdU + / Ki67 + cells (yellow).
- FIG. 16B shows the results of the bFGF-added culture group (bFGF), BrdU ⁇ / Ki67 + (green) cells decreased, BrdU + / Ki67 + cells (yellow) tended to increase, and BrdU + / Ki67 ⁇ (red) cells. Is starting to appear.
- FIG. 16A shows the results of the DHA-added culture group (DHA), with the majority of BrdU ⁇ / Ki67 + (green) cells and a slight mixture of BrdU + / Ki67 + cells (yellow).
- FIG. 16B shows the results of the bFGF-added culture group (bF
- FIG. 16C shows the results of the culture group (bFGF / DHA) to which both bFGF and DHA were added.
- BrdU + / Ki67 ⁇ (red) cells accounted for the majority, and a small number of BrdU + / Ki67 + cells (yellow) were also observed.
- A1 and C1 are enlarged photographs of A and C, respectively.
- FIG. 17 shows the results of quantitative evaluation of BrdU + / Ki67 ⁇ cells in the cell cycle analysis of GPR40-positive bone marrow-derived mesenchymal stem cells.
- FIG. 18 is a diagram showing an outline of neuronal differentiation of GPR40 positive bone marrow-derived mesenchymal stem cells.
- FIG. 19 is a schematic diagram comparing a process in which GPR40-positive bone marrow-derived mesenchymal stem cells differentiate into neurons (upper half) and a process in which neural stem cells differentiate (lower half).
- the stem cell of the present invention is a stem cell having GPR40 (G-protein coupled receptor 40) -positive pluripotency isolated from bone marrow.
- GPR40 is a member of a subfamily of G-protein coupled receptor (GPCR), a seven-transmembrane receptor (Yamashima T., Progress in Neurobiology 84 (2008) 105-115; Briscoe C P. et al., The Journal of Biological Chemistry, 278 (2003) 11130-13113).
- the “stem cell” refers to a cell having self-renewal ability and multipotency. Stem cells are usually able to regenerate the tissue when the tissue is damaged.
- stem cell refers to a cell population containing at least a certain amount of stem cells, and includes, for example, a cell population containing 90% or more, preferably 95% or more of stem cells.
- the stem cells of the present invention are positive for GPR40, express CD29 (integrin) and CD90 relatively strongly (CD29 positive, CD90 positive), and weakly express CD73 and CD105 (CD73 weakly positive, CD105 weakly positive). .
- lymphocyte markers such as CD3, CD4 and CD8, hematopoietic stem cell markers such as CD14, CD34 and CD45, and CD31 which is an endothelial cell marker are negative (CD3 negative, CD4 negative, CD8 negative, CD14 negative, CD34 negative, CD45 negative, CD31 negative).
- a certain antigen being positive means having an antigen that is a cell surface antigen, that is, expressing the surface antigen on the cell surface. Whether these surface antigens are positive or negative or weakly expressed is whether the cells were stained with a secondary antibody labeled with a chromogenic enzyme or a fluorescent compound after reacting with the primary antibody against these antigens. It can be determined by examining whether or not by microscopic observation or the like.
- cells can be immunostained using these antibodies to determine the presence or absence of surface antigens, or can be determined using magnetic beads to which the antibodies are bound. It can also be determined whether surface antigens are present using a FACS or flow cytometer.
- FACS and flow cytometer for example, FACS vantage (manufactured by Becton Dickinson), FACS Calibur (manufactured by Becton Dickinson) and the like can be used.
- the bone marrow-derived stem cells of the present invention have pluripotency and can differentiate into three germ layers (endoderm, mesodermal, ectoderm). The bone marrow-derived stem cells of the present invention proliferate from one cell to form a clone.
- the bone marrow-derived stem cells of the present invention do not have infinite proliferation and do not become cancerous.
- the stem cells of the present invention can be isolated from bone marrow.
- bone marrows such as humans, non-human primates, mice, rats, guinea pigs, hamsters, rabbits, cats, dogs, sheep, pigs, cows, horses, goats and the like can be used.
- the stem cells of the present invention can be isolated from bone marrow by the following method.
- BM-MSC “Bone marrow-derived mesenchymal stromal cell) is isolated from the bone marrow.
- BM-MSC can be isolated by a known method.
- bone marrow cells are collected from the above animals by bone marrow puncture or the like, and density gradient centrifugation is performed to obtain a mononuclear cell fraction.
- the obtained mononuclear cell fraction was adherently cultured on a plastic dish for culturing, and the cells adhering to the dish were removed by trypsin treatment to obtain BM-MSC (Bone marrow-derived mesenchymal stromal cell). to recover.
- the recovered BM-MSC is cultured by the limiting dilution method, and the proliferated cells are further cultured by the limiting dilution method to obtain a clone as a single cell-derived colony.
- the colony cells thus obtained are cultured in a medium prepared for expansion at low density under low-concentration serum conditions and expanded. Expanded cells are further subcloned to obtain cells as a single clone. About the obtained cells, the expression of GPR40 on the cell surface can be confirmed by flow cytometry or the like, and only those in which GPR40 expression is recognized can be selected and used as the isolated stem cells of the present invention.
- the medium to be used is not limited, and a known medium such as MEM (Minimum Essential Medium) or DMEM (Dulbecco's modified Eagle's medium) medium containing animal serum such as fetal bovine serum (FBS) may be used. it can.
- a known stem cell culture medium can also be used, such as a mesenchymal stem cell basal medium (MSCBM) (Cambrex Bio Science) or a proliferation medium mesenchymal cell cell growth medium (MSCBM). ) (Cambrex Bio Science) or the like can also be used.
- MSCBM mesenchymal stem cell basal medium
- MSCBM proliferation medium mesenchymal cell cell growth medium
- antibiotics such as penicillin and streptomycin, various physiologically active substances, vitamins and the like may be appropriately added.
- the medium (growth medium) used when BM-SMC is first cultured to obtain clones as single cell-derived colonies contains 10 to 15% serum, but the obtained clones are expanded.
- the stem cells of the present invention differ from embryonic stem cells (ES cells) in that they are isolated from bone marrow cells of a subject or a mature individual. Furthermore, the stem cells of the present invention can also be isolated using direct flow cytometry without culturing from bone marrow cells or BM-MSC populations using GPR40 expression as an indicator.
- ES cells embryonic stem cells
- GPR40 positive cells may be isolated from the remaining cell population by removal using beads.
- the stem cell of the present invention can be obtained without introducing a foreign gene or protein into the bone marrow.
- the isolated stem cells of the present invention can be induced to differentiate into specific tissue cells in vitro. That is, since the stem cell of the present invention has pluripotency, it can be induced to differentiate into any tissue cell of 3 germ layer origin.
- NM Neurobasal Media
- inducing differentiation NM
- a bullet kit osteoblast differentiation medium induction medium
- Brett kit adipocyte differentiation medium induction medium
- Brett kit chondrocyte differentiation medium induction medium
- chondrocyte differentiation medium induction medium
- the bone marrow-derived stem cells of the present invention express GPR40 having a fatty acid as a ligand on the surface, and when polyunsaturated fatty acid binds to GPR40, signal transduction that induces differentiation occurs.
- the polyunsaturated fatty acid those of n-3 ( ⁇ 3) line and n-6 ( ⁇ 6) line can be used.
- polyunsaturated fatty acids such as n-3 series include DHA (docosahexaenoic acid; docosahexaenoic acid), EPA (eicosapentaenoic acid; eicosapentaenoic acid), ⁇ -linolenic acid, and the like.
- DHA docosahexaenoic acid; docosahexaenoic acid
- EPA eicosapentaenoic acid
- eicosapentaenoic acid eicosapentaenoic acid
- ⁇ -linolenic acid ⁇ -linolenic acid
- DHA has been confirmed to be able to induce differentiation of the stem cells of the present invention into neurons at a low concentration, and is an ideal ligand.
- bFGF and a polyunsaturated fatty acid may be used in combination because differentiation into nerve cells is induced by using bFGF (basic fibroblast growth factor). Cells differentiated into these tissue cells can be further cultured to regenerate the tissue.
- the GPR40-positive bone marrow stem cells of the present invention are up-regulated and highly expressed when proliferating, but when differentiated into neurons, the expression of GPR40 is down-regulated and the expression is reduced or stopped. This decrease can be explained by a phenomenon called “receptor internalization”, which is characteristic of G-protein coupled receptor (GPCR). Whether or not the stem cells of the present invention have been induced to differentiate into tissue cells can be determined by examining the expression of markers specific to each tissue cell.
- the differentiation into nerve cells is based on the expression of NF-M, NF-H (neurofilament medium or heavy chain; medium, high molecular weight neurofilament), NSE (neuronic specific ⁇ -enolase; nerve specific enolase), etc. You can investigate. Furthermore, production of mature neural microtubules and filaments can be used as an index. Differentiation into osteoblasts can be examined with von Kossa staining, differentiation into chondrocytes with Alshan Blue staining, and differentiation into adipocytes with positive findings for oil red 0 staining as indicators.
- the bone marrow-derived stem cells of the present invention can be applied to regenerative medicine for various cerebrovascular disorders, brain tumors, neurodegenerative diseases, brain trauma and the like.
- the bone marrow-derived stem cells of the present invention can be administered to the brain damaged by cerebral infarction, degeneration or trauma.
- cerebral infarction cerebral hemorrhage, subarachnoid hemorrhage, brain tumor, Alzheimer's disease, Parkinson's disease, Huntington's disease, neurodegenerative diseases such as amyotrophic lateral effect, and cerebral contusion.
- the stem cells reach the brain via the artery. It may also be administered directly into the brain.
- the polyunsaturated fatty acid may be systemically administered by intravenous injection or oral administration after or simultaneously with the administration of stem cells to the brain.
- the stem cells of the present invention may be preliminarily contacted with a polyunsaturated fatty acid in vitro to induce initial differentiation and then administered to the brain.
- the regenerated tissue can be transplanted to a damaged site of the brain. By administering to the brain, stem cells are differentiated into nerve cells, and damaged nerves and brains can be regenerated.
- bone marrow is collected from the patient who has a neurological disease to receive regenerative medicine, and the bone marrow of the present invention is derived from the bone marrow.
- GPR40 positive stem cells can also be isolated and autotransplanted.
- stimulation is performed to differentiate into nerve cells, or further nerve tissue is constructed, and then these nerve cells and tissues are transferred to the patient.
- Brain regeneration treatment can also be performed by transplanting into the cerebral organ.
- a third party bone marrow-derived stem cell of the present invention can be administered or transplanted to a patient and used for treatment.
- adipose tissue, bone tissue or cartilage tissue can be similarly regenerated from the stem cells of the present invention.
- the present invention also includes a composition containing the stem cells of the present invention and used for the purpose of regeneration of nerve tissue such as brain, adipose tissue, bone tissue or cartilage tissue.
- the bone marrow-derived stem cells of the present invention can be differentiated into specific tissues such as nerve tissue, adipose tissue, bone tissue, and cartilage tissue in vitro and used for drug effect determination and screening for specific drugs.
- the stem cells of the present invention are collected from a large number of subjects and then cryopreserved and the tissue needs to be regenerated, subjects who need tissue regeneration from the stored stem cells A cell having genetic characteristics suitable for the cell can be selected, and regenerative treatment can be performed using the cell without causing rejection.
- a cell bank may be constructed for stem cells collected from a large number of subjects.
- the present invention encompasses a regenerative treatment method comprising administering the stem cells of the present invention to a patient in need of treatment for the treatment of a disease.
- the present invention will be specifically described by the following examples, but the present invention is not limited to these examples.
- BM-MSC-derived clones were cultured in serum-free neurobasal medium supplemented with N-2 supplements (R & D Systems).
- the experimental group was a group induced by bFGF or DHA alone (bFGF alone group or DHA alone group) and a group induced by DHA and bFGF (DHA + bFGF group).
- Fresh pipetted bone marrow cells (BMC) were gently overlaid on Density Gradient Media (Axis-Shield) to obtain a single cell suspension, which was centrifuged for 30 minutes at 150 ⁇ 10 rpm, 20 ° C.
- GM growth medium
- MEM Minimum Essential Medium
- Alpha Medium GlutaMAX Invitrogen, GIBCO
- FBS fetal bovine serum
- clonal expands Three clones were established from each of the three Japanese macaques (hereinafter referred to as clonal expands). Clonal expansion was performed under low-concentration serum conditions by seeding cells at low density in an expansion medium (EM).
- EM expansion medium
- Non-cloned strains of BM-MSC were cultured at a high density in GM containing 10% FBS, and used as a control (non-clonal expand) group. Details of the clonal expansion method are described below.
- 0.5-1 ⁇ 10 3 / cm 2 of BM-MSC is cultured in a culture flask containing 5 ml of EM (5% CO 2 , 37 ° C.) every 72 hours until the cells reach 50-60% confluence. The medium was changed. The cells were suspended in 0.25% trypsin containing EDTA, washed twice with DPBS, and resuspended in EM at a density of 0.5-1 ⁇ 10 3 / cm 2 . The obtained cells were designated as passage 1.
- NM FBS-free neuron medium
- NM is Neurobasal Media (Invitrogen, GIBCO, L-alanyl-L-glutamine a dipeptide substate for L-glutamine (Invitrogen, GIBCO, GLUTAMAX, -2505S).
- Anticotic (Invitrogen, GIBCO) was included, and culture was performed under conditions including bFGF (basic fibroblast growth factor) (bFGF alone group) and conditions including bFGF and DHA (DHA + bFGF group).
- bFGF basic fibroblast growth factor
- DHA DHA + bFGF group
- BSA bovine serum albumin
- the stock solution was stored frozen at ⁇ 20 ° C. and used within 2 weeks.
- Differentiation of bone marrow-derived mesenchymal stem cells into adipocytes, osteoblasts and chondrocytes differentiated into adipocytes Bone marrow-derived mesenchymal stem cells from adipocyte induction / maintenance medium (Cambrex Bio Science) ) was used for 3 cycles of incubation. That is, the cells were cultured for 4 days using an adipocyte induction medium, and then cultured for 3 days using an adipocyte maintenance medium. This induction / maintenance was repeated for 3 cycles, and further cultured for 7 days using an adipocyte maintenance medium.
- Bone marrow-derived mesenchymal stem cells that did not reach confluence were cultured for 5 weeks using an osteoblast induction medium (Cambrex Bio Science) until morphological changes were observed. The osteoblast induction medium was changed every 3-4 days.
- Differentiation into chondrocytes Bone marrow-derived mesenchymal stem cells were added to a cartilage medium (Cambrex Bio Science), and the medium was changed every 2-3 days and cultured for 5 weeks.
- FACS analysis of bone marrow-derived mesenchymal stem cells Bone marrow-derived mesenchymal stem cells were washed with DPBS and detached using 0.25% trypsin containing EDTA.
- the collected cells were treated with FITC (fluorescein isothiocyanate) or PE (phycoerythrin) -conjugated anti-human primate CD3, CD4, CD8, CD14, CD29, CD31, CD34, CD45 (BD Biosciences) antibody, anti-human CD90 (Biotrend), CD73 (BD). Pharmingen) and CD105 (Serotec) antibodies and stained using FACScan (Becton Dickinson).
- Immunofluorescence analysis Proliferated bone marrow-derived mesenchymal stem cells were fixed with 4% paraformaldehyde (PFA) in methanol at room temperature or 20 ° C. for 15 minutes, and immunofluorescent staining was performed.
- PFA paraformaldehyde
- mice monoclonal anti-GPR40 antibody 1: 100
- mouse monoclonal anti-GPR40 antibody 1: 250, TransGenic Inc
- mouse monoclonal anti-nestin antibody 1: 200, Chemicon, Millipore
- mouse monoclonal anti-neuron ⁇ III-tubulin antibody (1: 500, Covance, Clone Tuj1, MMS-435P
- mouse monoclonal anti-neurofilament medium chain (NF-M) antibody (1: 1000, Chemicon, Millipore
- rabbit anti-Map2 antibody rabbit polyclonal anti-GPR40 antibody
- mouse monoclonal anti-GPR40 antibody 1: 250, TransGenic Inc
- mouse monoclonal anti-nestin antibody 1: 200, Chemicon, Millipore
- mouse monoclonal anti-neuron 1: 500, Covance, Clone Tuj1, MMS-435P
- mouse monoclonal anti-neurofilament medium chain (NF-M) antibody 1: 1000, Chemic
- Gene-specific primers can be obtained from the NCBI Primer-BLAST software (http://www.ncbi.nlm.nih.gov/tools/primer-blast/) and the NCBI reference sequence ((Macaca multitta Genome5
- the whole genome shotgun sequence http://www.hgsc.bcm.tmc.edu/projects/rmaqueque/) was used to create RT-PCR, which is Platinum Taq DNA Polymerase High Fidelity (Invitrogen) and Thr. This was done using a Cycler (Applied Biosystems).
- the primer sequences are shown in Table 2. 2.
- Bone Marrow-Derived Mesenchymal Stem Cells Obtained by Clonal Expand are pluripotent cell standards (Dominici M et al., Cytotherapy) determined by Donimici et al. 9, 315-7, 2006). That is, it had characteristic surface molecules, differentiated into 3 germ layers, and had self-renewal (self-replication) ability over 50 passages.
- the results of evaluation of bone marrow-derived mesenchymal stem cells using a flow cytometer are shown in FIG.
- lymphocyte markers such as CD3, CD4, CD8, CD31 which is an endothelial cell marker, and CD14, CD34 and CD45 which are hematopoietic cell markers.
- CD29 and CD90 showed strong positive, and CD73 and CD105 showed weak positive. That CD14 and CD31 are negative indicates that macrophages and endothelial cells are not contained in the cells obtained by clonal expansion.
- Bone marrow-derived mesenchymal stem cells obtained by clonal expansion showed the characteristics of pluripotent stromal cells and maintained the differentiation ability into three germ layers for about 50 passages (FIGS. 1A, B, and C). That is, differentiation into chondrocytes was confirmed by Alcian blue staining using paraffin-embedded sections (FIG. 1A). After 4 weeks of adipocyte induction, differentiation into adipocytes was confirmed by oil red 0 staining (FIG. 1B). Furthermore, differentiation into osteoblasts was confirmed by von Kossa staining (FIG. 1C).
- GPR40 receptor in proliferating or differentiated bone marrow-derived mesenchymal stem cells
- GPR40 mRNA and protein in proliferating cells and differentiated cells into neurons was determined by immunohistochemistry (FIGS. 4A, B, C, D), RT- Analysis was by PCR ( Figures 5 and 7) and Western blot ( Figure 6). Stable GPR40 expression was observed in cells growing in EM. On the other hand, when neuron medium was used, GPR40 production was attenuated (FIG. 4A). There was a difference in GPR40 expression between nerve induction by bFGF alone group (FIG. 4B) and bFGF + DHA group (FIG. 4D).
- nestin was weak and up-regulation of immature neuronal marker ⁇ III-tubulin was observed (FIG. 10).
- RT-PCR FIGGS. 9 and 11
- Western blot FIG. 10 results were consistent with the immunofluorescence staining results, indicating significantly different levels of expression of nestin and ⁇ III-tubulin.
- Bone marrow-derived mesenchymal stem cells grown in NM before nerve induction were not significantly different between bFGF alone and bFGF + DHA induction conditions.
- the bFGF alone group and the bFGF + DHA group induced NF-M and Map2 mRNA, and the bFGF alone group did not induce significant Map2 protein expression. Furthermore, the NF-M level was significantly higher than the Map2 level in the DHA + bFGF group (FIG. 14). Bone marrow-derived mesenchymal stem cells grown in EM prior to induction show a unique morphology with longer neurites extending than small cell bodies ( Figure 12), whereas bone marrow-derived mesenchymal stem cells grown in NM Leaf stem cells had a fibroblast-like morphology and short processes.
- GPR40 is upregulated after ischemia, particularly in SGZ neonatal neurons.
- ARA or DHA has been used to transform PC12 cells or rat embryonic neural stem cells transformed with the GPR40 gene through activation of the GPR4-PLC / IP3 (phospholipase C / inositol triphosphate) signaling system.
- GPR4-PLC / IP3 phospholipase C / inositol triphosphate
- the GPR40 receptor receives a PUFA signal typified by DHA, and phosphorylates CREB (cAMP response element-binding protein), which is one of important transcription factors.
- CREB cAMP response element-binding protein
- the production of brain-derived neurotrophic factor (BDNF) indicates that it is highly likely to be involved in the differentiation of new neurons and synaptic plasticity. That is, GPR40 also transmits PUFA signals and differentiates neural stem cells in vivo, and GPR40-positive bone marrow-derived mesenchymal pluripotent stem cells are involved in neurogenesis in vivo. It was.
- the stem cells of the present invention can be used for medical treatment such as regenerative medicine, and can also be used as a tool for developing new medicines such as determination of drug effects. All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Developmental Biology & Embryology (AREA)
- Biotechnology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Cell Biology (AREA)
- Microbiology (AREA)
- Rheumatology (AREA)
- Hematology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Materials For Medical Uses (AREA)
Abstract
Disclosed is a G-protein coupled receptor 40 (GPR40)-positive bone marrow-derived mesenchymal stem cell which can be differentiated into a neural cell when induced with a polyunsaturated fatty acid (PUFA). Specifically disclosed are: a GPR40-positive bone marrow-derived mesenchymal stem cell which is derived from a mammal; and a CD29-positive, CD90-positive, CD73-positive, CD105-positive, CD3-negative, CD4-negative, CD8-negative, CD14-negative, CD34-negative, CD45-negative and CD31-negative bone marrow-derived mesenchymal stem cell.
Description
本発明は、骨髄由来の幹細胞、その単離方法、及びその利用に関する。
The present invention relates to a stem cell derived from bone marrow, an isolation method thereof, and use thereof.
G−protein coupled receptor 40(GPR40)は、7回膜貫通型レセプターであるGタンパク質共役受容体(G−protein coupled receptor;GPCR)のサブファミリーのメンバーであり、ドコサヘキサエン酸(DHA)、エイコサペンタエン酸(EPA)、アラキドン酸等の多価不飽和脂肪酸(PUFA)は、GPR40レセプター(脂肪酸レセプター、FFAR1とも呼ばれる)の内因性リガンドである。
PUFAの中でもDHAは、大脳皮質ニューロンや海馬ニューロンの生存や神経突起形成に関与することが報告されている(非特許文献1及び2を参照)。
2003年にヒトの膵臓及び脳においてGPR40遺伝子が同定されて以来、GPR40の機能に関しては主としてインスリン分泌との関与が研究されてきた。しかしながら、脳におけるGPR40の役割については従来全く解明されておらず、例えば、げっ歯類の脳においてはGPR40が発現していないという報告すらあった(非特許文献3を参照)。遺伝子レベルの解析では、GPR40は霊長類の脳においては種々の部位に発現しており(非特許文献4を参照)、なかんずく延髄に最も多く発現し、海馬では中程度の発現が認められると報告されていた。一方、タンパク質レベルでの発現に関しては種を問わず未確認であったが、最近になって、GPR40タンパク質は霊長類の神経幹細胞で発現していることが報告された(非特許文献5を参照)。しかし、GPR40の脳やニューロン新生ニッチにおける役割に関しては現在なお不明な点が多い。GPR40レセプターは骨髄全体サンプルや骨髄由来ストローマ細胞株の両者においても検出されることが報告されているが(非特許文献6を参照)、特定の細胞がGPR40を発現していることは示されていない。
さらに、DHAが細胞表面のGPR40に結合し、Ca2+の流入を促し、細胞のプロテインキナーゼCを刺激するという報告もある(非特許文献3及び4を参照)。
骨髄には組織幹細胞である骨髄間葉系幹細胞が存在することが知られており、これらの細胞は骨、血管等の間葉系組織に分化するため、再生医療への応用が期待されている。しかしながら、骨髄間葉系細胞は、組織幹細胞であり、その分化能には限界がある。 G-protein coupled receptor 40 (GPR40) is a member of a subfamily of G-protein coupled receptor (GPCR), which is a 7-transmembrane receptor, docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), polyunsaturated fatty acids (PUFA) such as arachidonic acid are endogenous ligands of the GPR40 receptor (also called fatty acid receptor, FFAR1).
Among PUFAs, DHA has been reported to be involved in the survival and neurite formation of cerebral cortical neurons and hippocampal neurons (see Non-Patent Documents 1 and 2).
Since the GPR40 gene was identified in the human pancreas and brain in 2003, the role of GPR40 has been mainly studied for its involvement in insulin secretion. However, the role of GPR40 in the brain has not been elucidated at all in the past. For example, there has been a report that GPR40 is not expressed in the rodent brain (see Non-Patent Document 3). According to the analysis at the gene level, GPR40 is expressed in various sites in the primate brain (see Non-Patent Document 4), and is most frequently expressed in the medulla, and is reported to be moderately expressed in the hippocampus. It had been. On the other hand, the expression at the protein level has not been confirmed regardless of the species, but recently, it has been reported that GPR40 protein is expressed in primate neural stem cells (see Non-Patent Document 5). . However, there are still many unclear points regarding the role of GPR40 in the brain and neurogenesis niche. Although GPR40 receptor has been reported to be detected in both whole bone marrow samples and bone marrow-derived stromal cell lines (see Non-Patent Document 6), it has been shown that specific cells express GPR40. Absent.
Furthermore, there is a report that DHA binds to GPR40 on the cell surface, promotes Ca 2+ influx, and stimulates cell protein kinase C (see Non-Patent Documents 3 and 4).
Bone marrow is known to contain bone marrow mesenchymal stem cells, which are tissue stem cells, and these cells differentiate into mesenchymal tissues such as bone and blood vessels, and are expected to be applied to regenerative medicine. . However, bone marrow mesenchymal cells are tissue stem cells and have a limited ability to differentiate.
PUFAの中でもDHAは、大脳皮質ニューロンや海馬ニューロンの生存や神経突起形成に関与することが報告されている(非特許文献1及び2を参照)。
2003年にヒトの膵臓及び脳においてGPR40遺伝子が同定されて以来、GPR40の機能に関しては主としてインスリン分泌との関与が研究されてきた。しかしながら、脳におけるGPR40の役割については従来全く解明されておらず、例えば、げっ歯類の脳においてはGPR40が発現していないという報告すらあった(非特許文献3を参照)。遺伝子レベルの解析では、GPR40は霊長類の脳においては種々の部位に発現しており(非特許文献4を参照)、なかんずく延髄に最も多く発現し、海馬では中程度の発現が認められると報告されていた。一方、タンパク質レベルでの発現に関しては種を問わず未確認であったが、最近になって、GPR40タンパク質は霊長類の神経幹細胞で発現していることが報告された(非特許文献5を参照)。しかし、GPR40の脳やニューロン新生ニッチにおける役割に関しては現在なお不明な点が多い。GPR40レセプターは骨髄全体サンプルや骨髄由来ストローマ細胞株の両者においても検出されることが報告されているが(非特許文献6を参照)、特定の細胞がGPR40を発現していることは示されていない。
さらに、DHAが細胞表面のGPR40に結合し、Ca2+の流入を促し、細胞のプロテインキナーゼCを刺激するという報告もある(非特許文献3及び4を参照)。
骨髄には組織幹細胞である骨髄間葉系幹細胞が存在することが知られており、これらの細胞は骨、血管等の間葉系組織に分化するため、再生医療への応用が期待されている。しかしながら、骨髄間葉系細胞は、組織幹細胞であり、その分化能には限界がある。 G-protein coupled receptor 40 (GPR40) is a member of a subfamily of G-protein coupled receptor (GPCR), which is a 7-transmembrane receptor, docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), polyunsaturated fatty acids (PUFA) such as arachidonic acid are endogenous ligands of the GPR40 receptor (also called fatty acid receptor, FFAR1).
Among PUFAs, DHA has been reported to be involved in the survival and neurite formation of cerebral cortical neurons and hippocampal neurons (see Non-Patent Documents 1 and 2).
Since the GPR40 gene was identified in the human pancreas and brain in 2003, the role of GPR40 has been mainly studied for its involvement in insulin secretion. However, the role of GPR40 in the brain has not been elucidated at all in the past. For example, there has been a report that GPR40 is not expressed in the rodent brain (see Non-Patent Document 3). According to the analysis at the gene level, GPR40 is expressed in various sites in the primate brain (see Non-Patent Document 4), and is most frequently expressed in the medulla, and is reported to be moderately expressed in the hippocampus. It had been. On the other hand, the expression at the protein level has not been confirmed regardless of the species, but recently, it has been reported that GPR40 protein is expressed in primate neural stem cells (see Non-Patent Document 5). . However, there are still many unclear points regarding the role of GPR40 in the brain and neurogenesis niche. Although GPR40 receptor has been reported to be detected in both whole bone marrow samples and bone marrow-derived stromal cell lines (see Non-Patent Document 6), it has been shown that specific cells express GPR40. Absent.
Furthermore, there is a report that DHA binds to GPR40 on the cell surface, promotes Ca 2+ influx, and stimulates cell protein kinase C (see Non-Patent Documents 3 and 4).
Bone marrow is known to contain bone marrow mesenchymal stem cells, which are tissue stem cells, and these cells differentiate into mesenchymal tissues such as bone and blood vessels, and are expected to be applied to regenerative medicine. . However, bone marrow mesenchymal cells are tissue stem cells and have a limited ability to differentiate.
本発明は、PUFAの誘導により神経細胞に分化し得るGPR40陽性の骨髄由来間葉系幹細胞の提供を目的とし、さらに該幹細胞の利用法の提供を目的とする。
本発明者は、GPR40タンパク質が脳で発現していること、ドコサヘキサエン酸(DHA)等の多価不飽和脂肪酸(PUFA)がGPR40のリガンドとして機能することに着目し、神経の分化・増殖とGPR40との関係について鋭意検討を行った。その結果、本発明者は、GPR40を発現している骨髄由来間葉系幹細胞が存在することを見出し、さらに、この骨髄由来間葉系幹細胞がPUFA−GPR40シグナル伝達系を介して神経細胞や他の細胞に分化し得ることを見出した。このようにして、本発明者は、新規の「GPR40陽性骨髄由来間葉系幹細胞」を単離し、本発明を完成させるに至った。
すなわち、本発明は以下のとおりである。
[1] 哺乳動物由来のGPR40陽性の骨髄由来間葉系多能性幹細胞。
[2] さらに、CD29陽性、CD90陽性、CD73陽性及びCD105陽性である、[1]の骨髄由来間葉系多能性幹細胞。
[3] さらに、CD3陰性、CD4陰性、CD8陰性、CD14陰性、CD34陰性、CD45陰性及びCD31陰性である[1]又は[2]の骨髄由来間葉系多能性幹細胞。
[4] 以下の特性を有する、[1]~[3]のいずれかの骨髄由来間葉系多能性幹細胞:
(i) 癌化しない;
(ii) 3胚葉系へ分化する能力を有する;及び
(iii) セルフリニューアル(自己複製)能を有する。
[5] 多価不飽和脂肪酸の刺激により神経細胞へと分化し得る、[1]~[4]のいずれかの骨髄由来間葉系多能性幹細胞。
[6] 多価不飽和脂肪酸がドコサヘキサエン酸(DHA)である、[5]の骨髄由来間葉系多能性幹細胞。
[7] (i) 骨髄単核細胞を接着培養し、接着した細胞を回収し、
(ii) 回収した細胞から単一細胞由来コロニーを得て、
(iii) 得られたコロニーの細胞をエクスパンド用に調製した培地で低濃度血清条件下で低密度で培養し、エクスパンドし、
(iv) (iii)のエクスパンドした細胞をさらにサブクローン化し、単一クローンとして細胞を得て、
(v) 得られた細胞について、細胞表面のGPR40、CD29、CD90、CD73及びCD105の発現を確認し、GPR40、CD29、CD90、CD73及びCD105の発現が認められるものを幹細胞として得ることを含む、[1]~[6]のいずれかの骨髄由来間葉系幹細胞を単離する方法。
[8] [7]の骨髄由来間葉系多能性幹細胞を単離する方法であって、さらに、細胞表面のCD3、CD4、CD8、CD14、CD34、CD45及びCD31の発現を確認し、CD3陰性、CD4陰性、CD8陰性、CD14陰性、CD34陰性、CD45陰性及びCD31陰性であるものを得ることを含む方法。
[9] 骨髄単核細胞から、GPR40陽性の細胞を単離することを含む、[1]~[6]のいずれかの骨髄由来間葉系多能性幹細胞の単離方法。
[10] さらに、CD29陽性、CD90陽性、CD73陽性及びCD105陽性である細胞を単離することを含む、[9]の骨髄由来間葉系多能性幹細胞の単離方法。
[11] さらに、CD3陰性、CD4陰性、CD8陰性、CD14陰性、CD34陰性、CD45陰性及びCD31陰性の細胞を単離することを含む、[10]の骨髄由来間葉系多能性幹細胞の単離方法。
[12] [1]~[6]のいずれかの骨髄由来間葉系多能性幹細胞をin vitroで多価不飽和脂肪酸と接触させて、神経細胞に分化誘導する方法。
[13] 多価不飽和脂肪酸がドコサヘキサエン酸(DHA)である、[12]の方法。
[14] [1]~[6]のいずれかの骨髄由来間葉系多能性幹細胞を含む組織再生用組成物。
[15] 組織が神経組織、脂肪組織、骨組織又は軟骨組織である、[12]の組織再生用組成物。
本発明のGPR40陽性の骨髄由来間葉系幹細胞は、神経細胞のみならず、脂肪細胞や骨芽細胞、軟骨細胞等に分化する多能性を有する。特に、該幹細胞は、DHA等の多価不飽和脂肪酸の刺激により、GPR40−多価不飽和脂肪酸シグナル伝達系を介して、神経細胞に分化する。本発明の幹細胞は、多価不飽和脂肪酸と組合せることで神経の再生に利用することができ、さらに、他の組織の再生にも利用することができる。
本明細書は本願の優先権の基礎である日本国特許出願2010−000736号の明細書および/または図面に記載される内容を包含する。 An object of the present invention is to provide GPR40-positive bone marrow-derived mesenchymal stem cells that can be differentiated into nerve cells by induction of PUFA, and further to provide a method for using the stem cells.
The present inventor paid attention to the fact that GPR40 protein is expressed in the brain and that polyunsaturated fatty acids (PUFA) such as docosahexaenoic acid (DHA) function as a ligand for GPR40. We have made an extensive study on the relationship. As a result, the present inventor has found that bone marrow-derived mesenchymal stem cells expressing GPR40 exist, and further, the bone marrow-derived mesenchymal stem cells are transferred to nerve cells and others via the PUFA-GPR40 signaling system. It was found that the cells can be differentiated into cells. Thus, the present inventor isolated a new “GPR40 positive bone marrow-derived mesenchymal stem cell” and completed the present invention.
That is, the present invention is as follows.
[1] GPR40-positive bone marrow-derived mesenchymal pluripotent stem cells derived from mammals.
[2] The bone marrow-derived mesenchymal pluripotent stem cell according to [1], which is further CD29 positive, CD90 positive, CD73 positive and CD105 positive.
[3] The bone marrow-derived mesenchymal pluripotent stem cell according to [1] or [2], which is further CD3 negative, CD4 negative, CD8 negative, CD14 negative, CD34 negative, CD45 negative and CD31 negative.
[4] The bone marrow-derived mesenchymal pluripotent stem cell according to any one of [1] to [3] having the following characteristics:
(I) does not become cancerous;
(Ii) has the ability to differentiate into three germ layers; and (iii) has the ability to self-renew (self-replicating).
[5] The bone marrow-derived mesenchymal pluripotent stem cell according to any one of [1] to [4], which can be differentiated into a nerve cell by stimulation with a polyunsaturated fatty acid.
[6] The bone marrow-derived mesenchymal pluripotent stem cell of [5], wherein the polyunsaturated fatty acid is docosahexaenoic acid (DHA).
[7] (i) Adherent culture of bone marrow mononuclear cells, recovering the adhered cells,
(Ii) obtaining a single cell-derived colony from the collected cells;
(Iii) The cells of the obtained colony are cultured at a low density under low-concentration serum conditions in a medium prepared for expansion, expanded,
(Iv) The expanded cell of (iii) is further subcloned to obtain the cell as a single clone,
(V) confirming the expression of GPR40, CD29, CD90, CD73 and CD105 on the cell surface of the obtained cells, and obtaining cells in which expression of GPR40, CD29, CD90, CD73 and CD105 is observed as stem cells, [1] A method for isolating bone marrow-derived mesenchymal stem cells according to any one of [1] to [6].
[8] A method for isolating bone marrow-derived mesenchymal pluripotent stem cells according to [7], further comprising confirming the expression of CD3, CD4, CD8, CD14, CD34, CD45 and CD31 on the cell surface, and CD3 Obtaining a negative, CD4 negative, CD8 negative, CD14 negative, CD34 negative, CD45 negative and CD31 negative.
[9] The method for isolating bone marrow-derived mesenchymal pluripotent stem cells according to any one of [1] to [6], comprising isolating GPR40 positive cells from bone marrow mononuclear cells.
[10] The method for isolating bone marrow-derived mesenchymal pluripotent stem cells according to [9], further comprising isolating cells that are CD29 positive, CD90 positive, CD73 positive and CD105 positive.
[11] The bone marrow-derived mesenchymal pluripotent stem cell of [10] further comprising isolating CD3 negative, CD4 negative, CD8 negative, CD14 negative, CD34 negative, CD45 negative and CD31 negative cells. Separation method.
[12] A method for inducing differentiation into a nerve cell by contacting the bone marrow-derived mesenchymal pluripotent stem cell of any one of [1] to [6] with a polyunsaturated fatty acid in vitro.
[13] The method of [12], wherein the polyunsaturated fatty acid is docosahexaenoic acid (DHA).
[14] A composition for tissue regeneration comprising bone marrow-derived mesenchymal pluripotent stem cells according to any one of [1] to [6].
[15] The tissue regeneration composition according to [12], wherein the tissue is nerve tissue, adipose tissue, bone tissue, or cartilage tissue.
The GPR40-positive bone marrow-derived mesenchymal stem cells of the present invention have pluripotency to differentiate into not only neurons but also adipocytes, osteoblasts, chondrocytes and the like. In particular, the stem cells are differentiated into nerve cells via a GPR40-polyunsaturated fatty acid signal transduction system by stimulation of polyunsaturated fatty acids such as DHA. The stem cells of the present invention can be used for nerve regeneration in combination with polyunsaturated fatty acids, and can also be used for regeneration of other tissues.
This specification includes the contents described in the specification and / or drawings of Japanese Patent Application No. 2010-000736 which is the basis of the priority of the present application.
本発明者は、GPR40タンパク質が脳で発現していること、ドコサヘキサエン酸(DHA)等の多価不飽和脂肪酸(PUFA)がGPR40のリガンドとして機能することに着目し、神経の分化・増殖とGPR40との関係について鋭意検討を行った。その結果、本発明者は、GPR40を発現している骨髄由来間葉系幹細胞が存在することを見出し、さらに、この骨髄由来間葉系幹細胞がPUFA−GPR40シグナル伝達系を介して神経細胞や他の細胞に分化し得ることを見出した。このようにして、本発明者は、新規の「GPR40陽性骨髄由来間葉系幹細胞」を単離し、本発明を完成させるに至った。
すなわち、本発明は以下のとおりである。
[1] 哺乳動物由来のGPR40陽性の骨髄由来間葉系多能性幹細胞。
[2] さらに、CD29陽性、CD90陽性、CD73陽性及びCD105陽性である、[1]の骨髄由来間葉系多能性幹細胞。
[3] さらに、CD3陰性、CD4陰性、CD8陰性、CD14陰性、CD34陰性、CD45陰性及びCD31陰性である[1]又は[2]の骨髄由来間葉系多能性幹細胞。
[4] 以下の特性を有する、[1]~[3]のいずれかの骨髄由来間葉系多能性幹細胞:
(i) 癌化しない;
(ii) 3胚葉系へ分化する能力を有する;及び
(iii) セルフリニューアル(自己複製)能を有する。
[5] 多価不飽和脂肪酸の刺激により神経細胞へと分化し得る、[1]~[4]のいずれかの骨髄由来間葉系多能性幹細胞。
[6] 多価不飽和脂肪酸がドコサヘキサエン酸(DHA)である、[5]の骨髄由来間葉系多能性幹細胞。
[7] (i) 骨髄単核細胞を接着培養し、接着した細胞を回収し、
(ii) 回収した細胞から単一細胞由来コロニーを得て、
(iii) 得られたコロニーの細胞をエクスパンド用に調製した培地で低濃度血清条件下で低密度で培養し、エクスパンドし、
(iv) (iii)のエクスパンドした細胞をさらにサブクローン化し、単一クローンとして細胞を得て、
(v) 得られた細胞について、細胞表面のGPR40、CD29、CD90、CD73及びCD105の発現を確認し、GPR40、CD29、CD90、CD73及びCD105の発現が認められるものを幹細胞として得ることを含む、[1]~[6]のいずれかの骨髄由来間葉系幹細胞を単離する方法。
[8] [7]の骨髄由来間葉系多能性幹細胞を単離する方法であって、さらに、細胞表面のCD3、CD4、CD8、CD14、CD34、CD45及びCD31の発現を確認し、CD3陰性、CD4陰性、CD8陰性、CD14陰性、CD34陰性、CD45陰性及びCD31陰性であるものを得ることを含む方法。
[9] 骨髄単核細胞から、GPR40陽性の細胞を単離することを含む、[1]~[6]のいずれかの骨髄由来間葉系多能性幹細胞の単離方法。
[10] さらに、CD29陽性、CD90陽性、CD73陽性及びCD105陽性である細胞を単離することを含む、[9]の骨髄由来間葉系多能性幹細胞の単離方法。
[11] さらに、CD3陰性、CD4陰性、CD8陰性、CD14陰性、CD34陰性、CD45陰性及びCD31陰性の細胞を単離することを含む、[10]の骨髄由来間葉系多能性幹細胞の単離方法。
[12] [1]~[6]のいずれかの骨髄由来間葉系多能性幹細胞をin vitroで多価不飽和脂肪酸と接触させて、神経細胞に分化誘導する方法。
[13] 多価不飽和脂肪酸がドコサヘキサエン酸(DHA)である、[12]の方法。
[14] [1]~[6]のいずれかの骨髄由来間葉系多能性幹細胞を含む組織再生用組成物。
[15] 組織が神経組織、脂肪組織、骨組織又は軟骨組織である、[12]の組織再生用組成物。
本発明のGPR40陽性の骨髄由来間葉系幹細胞は、神経細胞のみならず、脂肪細胞や骨芽細胞、軟骨細胞等に分化する多能性を有する。特に、該幹細胞は、DHA等の多価不飽和脂肪酸の刺激により、GPR40−多価不飽和脂肪酸シグナル伝達系を介して、神経細胞に分化する。本発明の幹細胞は、多価不飽和脂肪酸と組合せることで神経の再生に利用することができ、さらに、他の組織の再生にも利用することができる。
本明細書は本願の優先権の基礎である日本国特許出願2010−000736号の明細書および/または図面に記載される内容を包含する。 An object of the present invention is to provide GPR40-positive bone marrow-derived mesenchymal stem cells that can be differentiated into nerve cells by induction of PUFA, and further to provide a method for using the stem cells.
The present inventor paid attention to the fact that GPR40 protein is expressed in the brain and that polyunsaturated fatty acids (PUFA) such as docosahexaenoic acid (DHA) function as a ligand for GPR40. We have made an extensive study on the relationship. As a result, the present inventor has found that bone marrow-derived mesenchymal stem cells expressing GPR40 exist, and further, the bone marrow-derived mesenchymal stem cells are transferred to nerve cells and others via the PUFA-GPR40 signaling system. It was found that the cells can be differentiated into cells. Thus, the present inventor isolated a new “GPR40 positive bone marrow-derived mesenchymal stem cell” and completed the present invention.
That is, the present invention is as follows.
[1] GPR40-positive bone marrow-derived mesenchymal pluripotent stem cells derived from mammals.
[2] The bone marrow-derived mesenchymal pluripotent stem cell according to [1], which is further CD29 positive, CD90 positive, CD73 positive and CD105 positive.
[3] The bone marrow-derived mesenchymal pluripotent stem cell according to [1] or [2], which is further CD3 negative, CD4 negative, CD8 negative, CD14 negative, CD34 negative, CD45 negative and CD31 negative.
[4] The bone marrow-derived mesenchymal pluripotent stem cell according to any one of [1] to [3] having the following characteristics:
(I) does not become cancerous;
(Ii) has the ability to differentiate into three germ layers; and (iii) has the ability to self-renew (self-replicating).
[5] The bone marrow-derived mesenchymal pluripotent stem cell according to any one of [1] to [4], which can be differentiated into a nerve cell by stimulation with a polyunsaturated fatty acid.
[6] The bone marrow-derived mesenchymal pluripotent stem cell of [5], wherein the polyunsaturated fatty acid is docosahexaenoic acid (DHA).
[7] (i) Adherent culture of bone marrow mononuclear cells, recovering the adhered cells,
(Ii) obtaining a single cell-derived colony from the collected cells;
(Iii) The cells of the obtained colony are cultured at a low density under low-concentration serum conditions in a medium prepared for expansion, expanded,
(Iv) The expanded cell of (iii) is further subcloned to obtain the cell as a single clone,
(V) confirming the expression of GPR40, CD29, CD90, CD73 and CD105 on the cell surface of the obtained cells, and obtaining cells in which expression of GPR40, CD29, CD90, CD73 and CD105 is observed as stem cells, [1] A method for isolating bone marrow-derived mesenchymal stem cells according to any one of [1] to [6].
[8] A method for isolating bone marrow-derived mesenchymal pluripotent stem cells according to [7], further comprising confirming the expression of CD3, CD4, CD8, CD14, CD34, CD45 and CD31 on the cell surface, and CD3 Obtaining a negative, CD4 negative, CD8 negative, CD14 negative, CD34 negative, CD45 negative and CD31 negative.
[9] The method for isolating bone marrow-derived mesenchymal pluripotent stem cells according to any one of [1] to [6], comprising isolating GPR40 positive cells from bone marrow mononuclear cells.
[10] The method for isolating bone marrow-derived mesenchymal pluripotent stem cells according to [9], further comprising isolating cells that are CD29 positive, CD90 positive, CD73 positive and CD105 positive.
[11] The bone marrow-derived mesenchymal pluripotent stem cell of [10] further comprising isolating CD3 negative, CD4 negative, CD8 negative, CD14 negative, CD34 negative, CD45 negative and CD31 negative cells. Separation method.
[12] A method for inducing differentiation into a nerve cell by contacting the bone marrow-derived mesenchymal pluripotent stem cell of any one of [1] to [6] with a polyunsaturated fatty acid in vitro.
[13] The method of [12], wherein the polyunsaturated fatty acid is docosahexaenoic acid (DHA).
[14] A composition for tissue regeneration comprising bone marrow-derived mesenchymal pluripotent stem cells according to any one of [1] to [6].
[15] The tissue regeneration composition according to [12], wherein the tissue is nerve tissue, adipose tissue, bone tissue, or cartilage tissue.
The GPR40-positive bone marrow-derived mesenchymal stem cells of the present invention have pluripotency to differentiate into not only neurons but also adipocytes, osteoblasts, chondrocytes and the like. In particular, the stem cells are differentiated into nerve cells via a GPR40-polyunsaturated fatty acid signal transduction system by stimulation of polyunsaturated fatty acids such as DHA. The stem cells of the present invention can be used for nerve regeneration in combination with polyunsaturated fatty acids, and can also be used for regeneration of other tissues.
This specification includes the contents described in the specification and / or drawings of Japanese Patent Application No. 2010-000736 which is the basis of the priority of the present application.
図1は、GPR40陽性骨髄由来間葉系幹細胞の性状を示す図であり、図1Aは骨化誘導により、21日目にフォン・コッサ染色で紫色に染まる石灰化小片の形成を、図1Bは脂肪化誘導により、35日目にオイル・レッド0染色で赤色に染まる脂肪滴の形成を、さらに、図1Cは骨化誘導により、35日目にアルシャン・ブルー染色で青色に染まる軟骨塊の形成を示す。
図2は、GPR40陽性骨髄由来間葉系幹細胞における種々の発現マーカーの発現を示す図である。種々のマーカーの中で、CD105やCD29、CD90が陽性を示す。
図3は、GPR40陽性骨髄由来間葉系幹細胞のコロニー形成能を示す図である。クローン性エクスパンド群は非クローン性のものよりもコロニー形成能が強い。
図4は、クローン性エクスパンド群の骨髄由来間葉系幹細胞の神経細胞分化とGPR40発現(培養7日目)を示す図である。GPR40免疫染色では、対象培養群(C)は図4Aのごとくわずかに陽性(緑色)を示す。図4BはbFGFを添加した培養群(bFGF)の結果であり、該培養群は強い陽性(緑色)を示し、神経突起の形成もみられる。図4CはDHA添加培養群(DHA)の結果を示し、GPR40(緑色)の発現低下を示す。これは、レセプターがリガンドと結合しその役目を果たすと、局在を変え発現が低下するというGPCRに特異的な’receptor internalization’という現象である。図4DはbFGFとDHAの両者を添加した培養群(bFGF/DHA)の結果を示し、GPR40(緑色)の発現増加を示す細胞と低下を示す細胞とが混在する。
図5は、GPR40陽性骨髄由来間葉系幹細胞のGPR40の遺伝子発現をRT−PCRで調べた結果を示す図であり、GPR40の遺伝子発現は免疫染色によるタンパク質発現と同様の傾向を示す。
図6は、GPR40陽性骨髄由来間葉系幹細胞のGPR40の発現をウエスタンブロットで調べた結果を示す図であり、GPR40のタンパク質発現は免疫染色やRT−PCRと同様の傾向を示す。
図7は、GPR40陽性骨髄由来間葉系幹細胞のGPR40の遺伝子発現の定量的評価の結果を示す図である。
図8は、幼弱神経細胞に分化したGPR40陽性骨髄由来間葉系幹細胞における幹細胞マーカー・ネスチンと幼弱神経細胞マーカー・βIII−ツブリンの発現(培養7日目)を示す図である。図8AはネスチンとβIII−ツブリンの2重免疫染色(Nestin/βIII−tubulin)の結果を示し、対象培養群(C)は強いネスチン陽性(緑色)を示す。図8Bは、bFGFを添加した培養群(bFGF)の結果を示し、ネスチン(緑色)の発現低下とβIII−ツブリン(赤色)の発現増加がみられる。図8CはDHA添加培養群(DHA)の結果を示し、ネスチン(緑色)およびβIII−ツブリン(赤色)のいずれも発現は弱い。図8DはDbFGFとDHAの両者を添加した培養群(bFGF/DHA)の結果を示し、ネスチン(緑色)の発現はほとんどみられないのに対し、βIII−ツブリン(赤色)の発現は顕著である。
図9は、GPR40陽性骨髄由来間葉系幹細胞のネスチン及びβIII−ツブリンの遺伝子発現をRT−PCRで調べた結果を示す図であり、ネスチン及びβIII−ツブリンの遺伝子発現は免疫染色によるタンパク質発現と同様の傾向を示す。
図10は、GPR40陽性骨髄由来間葉系幹細胞のネスチン及びβIII−ツブリンの遺伝子発現をウエスタンブロットで調べた結果を示す図であり、ウエスタンブロットでも、ネスチン及びβIII−ツブリンのタンパク質発現は免疫染色やRT−PCRと同様の傾向を示す。
図11は、GPR40陽性骨髄由来間葉系幹細胞のネスチン及びβIII−ツブリンの遺伝子発現の定量的評価を示す図である。
図12は、成熟神経細胞に分化したGPR40陽性骨髄由来間葉系幹細胞による成熟神経細胞マーカー・NF−M及びMap2の発現(培養14日目)を示す図であり、NF−MとMap2の2重免疫染色(Map2/NF−M)でみられる共陽性細胞(黄色)は長い神経突起(矢印)を伸ばしている。
図13は、成熟神経細胞に分化したGPR40陽性骨髄由来間葉系幹細胞による成熟神経細胞マーカー・NF−M及びMap2の発現(培養14日目)をRT−PCRで調べた結果を示す図であり、NF−MやMap2の遺伝子発現は対象群(C)ではみられないのに対し、DHA群では軽度、bFGF群では中等度、bFGF/DHA群では強度の発現がみられる。
図14は、成熟神経細胞に分化したGPR40陽性骨髄由来間葉系幹細胞におけるNF−MとMap2の遺伝子発現の定量的評価の結果を示す図である。
図15は、成熟神経細胞に分化したGPR40陽性骨髄由来間葉系幹細胞による成熟神経細胞マーカー・NF−M及びMap2の発現(培養14日目)をウエスタンブロットで調べた結果を示す図であり、NF−MやMap2の遺伝子発現はRT−PCRと同様の傾向を示す。
図16は、GPR40陽性骨髄由来間葉系幹細胞の細胞周期解析の結果を示す図である。図16AはDHA添加培養群(DHA)の結果を示し、BrdU−/Ki67+(緑)の細胞が大部分を占め、BrdU+/Ki67+細胞(黄色)がわずかに混在する。図16BはbFGF添加培養群(bFGF)の結果を示し、BrdU−/Ki67+(緑)の細胞は減少、BrdU+/Ki67+細胞(黄色)は増加の傾向を示し、BrdU+/Ki67−(赤)の細胞が見え始めている。図16CはbFGFとDHAの両者を添加した培養群(bFGF/DHA)の結果を示し、BrdU+/Ki67−(赤)の細胞が大部分を占め、少数のBrdU+/Ki67+細胞(黄色)もみられる。A1及びC1は、それぞれA及びCの写真を拡大したものである。
図17は、GPR40陽性骨髄由来間葉系幹細胞の細胞周期解析におけるBrdU+/Ki67−細胞の定量的評価の結果を示す図である。
図18は、GPR40陽性骨髄由来間葉系幹細胞の神経細胞分化の概要を示す図である。
図19は、GPR40陽性骨髄由来間葉系幹細胞が神経細胞に分化してゆくプロセス(上半分)と神経幹細胞が分化してゆくプロセス(下半分)とを比較した模式図である。 FIG. 1 is a view showing the properties of GPR40-positive bone marrow-derived mesenchymal stem cells. FIG. 1A shows the formation of calcified pieces that are stained purple by von Kossa staining on the 21st day, and FIG. Due to induction of fat formation, formation of lipid droplets dyed red by oil red 0 staining on day 35, and further, FIG. 1C shows formation of cartilage mass dyed blue by Arshan blue staining on day 35 by induction of ossification. Indicates.
FIG. 2 is a diagram showing expression of various expression markers in GPR40-positive bone marrow-derived mesenchymal stem cells. Among various markers, CD105, CD29, and CD90 are positive.
FIG. 3 is a diagram showing colony forming ability of GPR40 positive bone marrow-derived mesenchymal stem cells. The clonal expand group has a stronger colony-forming ability than the non-clonal group.
FIG. 4 is a diagram showing neuronal differentiation and GPR40 expression (cultured day 7) of bone marrow-derived mesenchymal stem cells in the clonal expand group. In GPR40 immunostaining, the target culture group (C) is slightly positive (green) as shown in FIG. 4A. FIG. 4B shows the results of a culture group (bFGF) to which bFGF was added. The culture group showed a strong positive (green), and neurite formation was also observed. FIG. 4C shows the results of the DHA-added culture group (DHA), which shows a decrease in the expression of GPR40 (green). This is a phenomenon called “receptor internalization” specific to GPCRs in which, when a receptor binds to a ligand and fulfills its role, its localization is changed and expression is reduced. FIG. 4D shows the result of the culture group (bFGF / DHA) to which both bFGF and DHA are added, and cells showing an increase in expression of GPR40 (green) and cells showing a decrease are mixed.
FIG. 5 is a diagram showing the results of investigating GPR40 gene expression of GPR40-positive bone marrow-derived mesenchymal stem cells by RT-PCR, and GPR40 gene expression shows the same tendency as protein expression by immunostaining.
FIG. 6 is a view showing the results of examining the expression of GPR40 in GPR40-positive bone marrow-derived mesenchymal stem cells by Western blot, and the protein expression of GPR40 shows the same tendency as in immunostaining and RT-PCR.
FIG. 7 shows the results of quantitative evaluation of GPR40 gene expression in GPR40-positive bone marrow-derived mesenchymal stem cells.
FIG. 8 is a diagram showing the expression (day 7 of culture) of the stem cell marker nestin and the young nerve cell marker βIII-tubulin in GPR40-positive bone marrow-derived mesenchymal stem cells differentiated into young nerve cells. FIG. 8A shows the result of double immunostaining of nestin and βIII-tubulin (Nestin / βIII-tubulin), and the target culture group (C) shows strong nestin positive (green). FIG. 8B shows the results of the culture group (bFGF) to which bFGF was added, in which a decrease in the expression of nestin (green) and an increase in the expression of βIII-tubulin (red) were observed. FIG. 8C shows the results of the DHA-added culture group (DHA), and both nestin (green) and βIII-tubulin (red) are weakly expressed. FIG. 8D shows the results of the culture group (bFGF / DHA) to which both DbFGF and DHA were added, while the expression of nestin (green) is hardly observed, whereas the expression of βIII-tubulin (red) is remarkable. .
FIG. 9 is a diagram showing the results of examining the gene expression of nestin and βIII-tubulin in GPR40-positive bone marrow-derived mesenchymal stem cells by RT-PCR, and the gene expression of nestin and βIII-tubulin is related to protein expression by immunostaining. The same tendency is shown.
FIG. 10 is a diagram showing the results of examining the gene expression of nestin and βIII-tubulin in GPR40-positive bone marrow-derived mesenchymal stem cells by Western blotting. It shows the same tendency as RT-PCR.
FIG. 11 is a diagram showing quantitative evaluation of nestin and βIII-tubulin gene expression of GPR40 positive bone marrow-derived mesenchymal stem cells.
FIG. 12 is a diagram showing expression of mature neuronal markers NF-M and Map2 (cultured on the 14th day) by GPR40-positive bone marrow-derived mesenchymal stem cells differentiated into mature neurons, and NF-M and Map2 2 Co-positive cells (yellow) seen by heavy immunostaining (Map2 / NF-M) have extended long neurites (arrows).
FIG. 13 is a diagram showing the results of RT-PCR examining the expression (day 14 of culture) of mature neuronal markers NF-M and Map2 by GPR40-positive bone marrow-derived mesenchymal stem cells differentiated into mature neurons. NF-M and Map2 gene expression is not observed in the subject group (C), whereas mild expression is observed in the DHA group, moderate expression in the bFGF group, and strong expression in the bFGF / DHA group.
FIG. 14 is a diagram showing the results of quantitative evaluation of gene expression of NF-M and Map2 in GPR40-positive bone marrow-derived mesenchymal stem cells differentiated into mature neurons.
FIG. 15 is a diagram showing the results of examining the expression of mature neuronal markers NF-M and Map2 (cultured on day 14) by GPR40-positive bone marrow-derived mesenchymal stem cells differentiated into mature neurons by Western blotting; The gene expression of NF-M and Map2 shows the same tendency as RT-PCR.
FIG. 16 shows the results of cell cycle analysis of GPR40-positive bone marrow-derived mesenchymal stem cells. FIG. 16A shows the results of the DHA-added culture group (DHA), with the majority of BrdU− / Ki67 + (green) cells and a slight mixture of BrdU + / Ki67 + cells (yellow). FIG. 16B shows the results of the bFGF-added culture group (bFGF), BrdU− / Ki67 + (green) cells decreased, BrdU + / Ki67 + cells (yellow) tended to increase, and BrdU + / Ki67− (red) cells. Is starting to appear. FIG. 16C shows the results of the culture group (bFGF / DHA) to which both bFGF and DHA were added. BrdU + / Ki67− (red) cells accounted for the majority, and a small number of BrdU + / Ki67 + cells (yellow) were also observed. A1 and C1 are enlarged photographs of A and C, respectively.
FIG. 17 shows the results of quantitative evaluation of BrdU + / Ki67− cells in the cell cycle analysis of GPR40-positive bone marrow-derived mesenchymal stem cells.
FIG. 18 is a diagram showing an outline of neuronal differentiation of GPR40 positive bone marrow-derived mesenchymal stem cells.
FIG. 19 is a schematic diagram comparing a process in which GPR40-positive bone marrow-derived mesenchymal stem cells differentiate into neurons (upper half) and a process in which neural stem cells differentiate (lower half).
図2は、GPR40陽性骨髄由来間葉系幹細胞における種々の発現マーカーの発現を示す図である。種々のマーカーの中で、CD105やCD29、CD90が陽性を示す。
図3は、GPR40陽性骨髄由来間葉系幹細胞のコロニー形成能を示す図である。クローン性エクスパンド群は非クローン性のものよりもコロニー形成能が強い。
図4は、クローン性エクスパンド群の骨髄由来間葉系幹細胞の神経細胞分化とGPR40発現(培養7日目)を示す図である。GPR40免疫染色では、対象培養群(C)は図4Aのごとくわずかに陽性(緑色)を示す。図4BはbFGFを添加した培養群(bFGF)の結果であり、該培養群は強い陽性(緑色)を示し、神経突起の形成もみられる。図4CはDHA添加培養群(DHA)の結果を示し、GPR40(緑色)の発現低下を示す。これは、レセプターがリガンドと結合しその役目を果たすと、局在を変え発現が低下するというGPCRに特異的な’receptor internalization’という現象である。図4DはbFGFとDHAの両者を添加した培養群(bFGF/DHA)の結果を示し、GPR40(緑色)の発現増加を示す細胞と低下を示す細胞とが混在する。
図5は、GPR40陽性骨髄由来間葉系幹細胞のGPR40の遺伝子発現をRT−PCRで調べた結果を示す図であり、GPR40の遺伝子発現は免疫染色によるタンパク質発現と同様の傾向を示す。
図6は、GPR40陽性骨髄由来間葉系幹細胞のGPR40の発現をウエスタンブロットで調べた結果を示す図であり、GPR40のタンパク質発現は免疫染色やRT−PCRと同様の傾向を示す。
図7は、GPR40陽性骨髄由来間葉系幹細胞のGPR40の遺伝子発現の定量的評価の結果を示す図である。
図8は、幼弱神経細胞に分化したGPR40陽性骨髄由来間葉系幹細胞における幹細胞マーカー・ネスチンと幼弱神経細胞マーカー・βIII−ツブリンの発現(培養7日目)を示す図である。図8AはネスチンとβIII−ツブリンの2重免疫染色(Nestin/βIII−tubulin)の結果を示し、対象培養群(C)は強いネスチン陽性(緑色)を示す。図8Bは、bFGFを添加した培養群(bFGF)の結果を示し、ネスチン(緑色)の発現低下とβIII−ツブリン(赤色)の発現増加がみられる。図8CはDHA添加培養群(DHA)の結果を示し、ネスチン(緑色)およびβIII−ツブリン(赤色)のいずれも発現は弱い。図8DはDbFGFとDHAの両者を添加した培養群(bFGF/DHA)の結果を示し、ネスチン(緑色)の発現はほとんどみられないのに対し、βIII−ツブリン(赤色)の発現は顕著である。
図9は、GPR40陽性骨髄由来間葉系幹細胞のネスチン及びβIII−ツブリンの遺伝子発現をRT−PCRで調べた結果を示す図であり、ネスチン及びβIII−ツブリンの遺伝子発現は免疫染色によるタンパク質発現と同様の傾向を示す。
図10は、GPR40陽性骨髄由来間葉系幹細胞のネスチン及びβIII−ツブリンの遺伝子発現をウエスタンブロットで調べた結果を示す図であり、ウエスタンブロットでも、ネスチン及びβIII−ツブリンのタンパク質発現は免疫染色やRT−PCRと同様の傾向を示す。
図11は、GPR40陽性骨髄由来間葉系幹細胞のネスチン及びβIII−ツブリンの遺伝子発現の定量的評価を示す図である。
図12は、成熟神経細胞に分化したGPR40陽性骨髄由来間葉系幹細胞による成熟神経細胞マーカー・NF−M及びMap2の発現(培養14日目)を示す図であり、NF−MとMap2の2重免疫染色(Map2/NF−M)でみられる共陽性細胞(黄色)は長い神経突起(矢印)を伸ばしている。
図13は、成熟神経細胞に分化したGPR40陽性骨髄由来間葉系幹細胞による成熟神経細胞マーカー・NF−M及びMap2の発現(培養14日目)をRT−PCRで調べた結果を示す図であり、NF−MやMap2の遺伝子発現は対象群(C)ではみられないのに対し、DHA群では軽度、bFGF群では中等度、bFGF/DHA群では強度の発現がみられる。
図14は、成熟神経細胞に分化したGPR40陽性骨髄由来間葉系幹細胞におけるNF−MとMap2の遺伝子発現の定量的評価の結果を示す図である。
図15は、成熟神経細胞に分化したGPR40陽性骨髄由来間葉系幹細胞による成熟神経細胞マーカー・NF−M及びMap2の発現(培養14日目)をウエスタンブロットで調べた結果を示す図であり、NF−MやMap2の遺伝子発現はRT−PCRと同様の傾向を示す。
図16は、GPR40陽性骨髄由来間葉系幹細胞の細胞周期解析の結果を示す図である。図16AはDHA添加培養群(DHA)の結果を示し、BrdU−/Ki67+(緑)の細胞が大部分を占め、BrdU+/Ki67+細胞(黄色)がわずかに混在する。図16BはbFGF添加培養群(bFGF)の結果を示し、BrdU−/Ki67+(緑)の細胞は減少、BrdU+/Ki67+細胞(黄色)は増加の傾向を示し、BrdU+/Ki67−(赤)の細胞が見え始めている。図16CはbFGFとDHAの両者を添加した培養群(bFGF/DHA)の結果を示し、BrdU+/Ki67−(赤)の細胞が大部分を占め、少数のBrdU+/Ki67+細胞(黄色)もみられる。A1及びC1は、それぞれA及びCの写真を拡大したものである。
図17は、GPR40陽性骨髄由来間葉系幹細胞の細胞周期解析におけるBrdU+/Ki67−細胞の定量的評価の結果を示す図である。
図18は、GPR40陽性骨髄由来間葉系幹細胞の神経細胞分化の概要を示す図である。
図19は、GPR40陽性骨髄由来間葉系幹細胞が神経細胞に分化してゆくプロセス(上半分)と神経幹細胞が分化してゆくプロセス(下半分)とを比較した模式図である。 FIG. 1 is a view showing the properties of GPR40-positive bone marrow-derived mesenchymal stem cells. FIG. 1A shows the formation of calcified pieces that are stained purple by von Kossa staining on the 21st day, and FIG. Due to induction of fat formation, formation of lipid droplets dyed red by oil red 0 staining on day 35, and further, FIG. 1C shows formation of cartilage mass dyed blue by Arshan blue staining on day 35 by induction of ossification. Indicates.
FIG. 2 is a diagram showing expression of various expression markers in GPR40-positive bone marrow-derived mesenchymal stem cells. Among various markers, CD105, CD29, and CD90 are positive.
FIG. 3 is a diagram showing colony forming ability of GPR40 positive bone marrow-derived mesenchymal stem cells. The clonal expand group has a stronger colony-forming ability than the non-clonal group.
FIG. 4 is a diagram showing neuronal differentiation and GPR40 expression (cultured day 7) of bone marrow-derived mesenchymal stem cells in the clonal expand group. In GPR40 immunostaining, the target culture group (C) is slightly positive (green) as shown in FIG. 4A. FIG. 4B shows the results of a culture group (bFGF) to which bFGF was added. The culture group showed a strong positive (green), and neurite formation was also observed. FIG. 4C shows the results of the DHA-added culture group (DHA), which shows a decrease in the expression of GPR40 (green). This is a phenomenon called “receptor internalization” specific to GPCRs in which, when a receptor binds to a ligand and fulfills its role, its localization is changed and expression is reduced. FIG. 4D shows the result of the culture group (bFGF / DHA) to which both bFGF and DHA are added, and cells showing an increase in expression of GPR40 (green) and cells showing a decrease are mixed.
FIG. 5 is a diagram showing the results of investigating GPR40 gene expression of GPR40-positive bone marrow-derived mesenchymal stem cells by RT-PCR, and GPR40 gene expression shows the same tendency as protein expression by immunostaining.
FIG. 6 is a view showing the results of examining the expression of GPR40 in GPR40-positive bone marrow-derived mesenchymal stem cells by Western blot, and the protein expression of GPR40 shows the same tendency as in immunostaining and RT-PCR.
FIG. 7 shows the results of quantitative evaluation of GPR40 gene expression in GPR40-positive bone marrow-derived mesenchymal stem cells.
FIG. 8 is a diagram showing the expression (day 7 of culture) of the stem cell marker nestin and the young nerve cell marker βIII-tubulin in GPR40-positive bone marrow-derived mesenchymal stem cells differentiated into young nerve cells. FIG. 8A shows the result of double immunostaining of nestin and βIII-tubulin (Nestin / βIII-tubulin), and the target culture group (C) shows strong nestin positive (green). FIG. 8B shows the results of the culture group (bFGF) to which bFGF was added, in which a decrease in the expression of nestin (green) and an increase in the expression of βIII-tubulin (red) were observed. FIG. 8C shows the results of the DHA-added culture group (DHA), and both nestin (green) and βIII-tubulin (red) are weakly expressed. FIG. 8D shows the results of the culture group (bFGF / DHA) to which both DbFGF and DHA were added, while the expression of nestin (green) is hardly observed, whereas the expression of βIII-tubulin (red) is remarkable. .
FIG. 9 is a diagram showing the results of examining the gene expression of nestin and βIII-tubulin in GPR40-positive bone marrow-derived mesenchymal stem cells by RT-PCR, and the gene expression of nestin and βIII-tubulin is related to protein expression by immunostaining. The same tendency is shown.
FIG. 10 is a diagram showing the results of examining the gene expression of nestin and βIII-tubulin in GPR40-positive bone marrow-derived mesenchymal stem cells by Western blotting. It shows the same tendency as RT-PCR.
FIG. 11 is a diagram showing quantitative evaluation of nestin and βIII-tubulin gene expression of GPR40 positive bone marrow-derived mesenchymal stem cells.
FIG. 12 is a diagram showing expression of mature neuronal markers NF-M and Map2 (cultured on the 14th day) by GPR40-positive bone marrow-derived mesenchymal stem cells differentiated into mature neurons, and NF-M and Map2 2 Co-positive cells (yellow) seen by heavy immunostaining (Map2 / NF-M) have extended long neurites (arrows).
FIG. 13 is a diagram showing the results of RT-PCR examining the expression (day 14 of culture) of mature neuronal markers NF-M and Map2 by GPR40-positive bone marrow-derived mesenchymal stem cells differentiated into mature neurons. NF-M and Map2 gene expression is not observed in the subject group (C), whereas mild expression is observed in the DHA group, moderate expression in the bFGF group, and strong expression in the bFGF / DHA group.
FIG. 14 is a diagram showing the results of quantitative evaluation of gene expression of NF-M and Map2 in GPR40-positive bone marrow-derived mesenchymal stem cells differentiated into mature neurons.
FIG. 15 is a diagram showing the results of examining the expression of mature neuronal markers NF-M and Map2 (cultured on day 14) by GPR40-positive bone marrow-derived mesenchymal stem cells differentiated into mature neurons by Western blotting; The gene expression of NF-M and Map2 shows the same tendency as RT-PCR.
FIG. 16 shows the results of cell cycle analysis of GPR40-positive bone marrow-derived mesenchymal stem cells. FIG. 16A shows the results of the DHA-added culture group (DHA), with the majority of BrdU− / Ki67 + (green) cells and a slight mixture of BrdU + / Ki67 + cells (yellow). FIG. 16B shows the results of the bFGF-added culture group (bFGF), BrdU− / Ki67 + (green) cells decreased, BrdU + / Ki67 + cells (yellow) tended to increase, and BrdU + / Ki67− (red) cells. Is starting to appear. FIG. 16C shows the results of the culture group (bFGF / DHA) to which both bFGF and DHA were added. BrdU + / Ki67− (red) cells accounted for the majority, and a small number of BrdU + / Ki67 + cells (yellow) were also observed. A1 and C1 are enlarged photographs of A and C, respectively.
FIG. 17 shows the results of quantitative evaluation of BrdU + / Ki67− cells in the cell cycle analysis of GPR40-positive bone marrow-derived mesenchymal stem cells.
FIG. 18 is a diagram showing an outline of neuronal differentiation of GPR40 positive bone marrow-derived mesenchymal stem cells.
FIG. 19 is a schematic diagram comparing a process in which GPR40-positive bone marrow-derived mesenchymal stem cells differentiate into neurons (upper half) and a process in which neural stem cells differentiate (lower half).
以下、本発明を詳細に説明する。
本発明の幹細胞は、骨髄から単離されるGPR40(G−protein coupled receptor 40)陽性の多能性を有する幹細胞である。
GPR40は、7回膜貫通型レセプターであるGタンパク質共役受容体(G−protein coupled receptor;GPCR)のサブファミリーのメンバーである(Yamashima T.,Progress in Neurobiology 84(2008)105−115;Briscoe C.P.et al.,The Journal of Biological Chemistry,278(2003)11303−11311)。
本発明において、「幹細胞」とは、自己複製能を有し、多分化能を有する細胞をいう。幹細胞は通常、組織が傷害を受けたときにその組織を再生することができる。
本発明において、幹細胞というときは、幹細胞を少なくとも一定量含む細胞集団をいい、例えば、幹細胞を90%以上、好ましくは95%以上含む細胞集団が含まれる。
本発明の幹細胞は、GPR40が陽性であり、また、CD29(インテグリン)及びCD90を比較的強く発現し(CD29陽性、CD90陽性)、CD73及びCD105を弱く発現する(CD73弱陽性、CD105弱陽性)。さらに、CD3、CD4、CD8等のリンパ球マーカー、CD14、CD34、CD45等の造血幹細胞マーカー及び内皮細胞マーカーであるCD31は陰性である(CD3陰性、CD4陰性、CD8陰性、CD14陰性、CD34陰性、CD45陰性、CD31陰性)。ここで、ある抗原が陽性であるとは、細胞表面抗原であるその抗原を有していること、すなわち、該表面抗原を細胞表面に発現していることをいう。これらの表面抗原が陽性か陰性か、発現が弱いかどうかは、これらの抗原に対する1次抗体を反応させた後、発色酵素、蛍光化合物等で標識した2次抗体を用いて細胞が染色されたか否かを顕微鏡観察等により調べることにより決定することができる。例えば、これらの抗体を用いて細胞を免疫染色して、表面抗原の有無を決定することができ、また該抗体を結合させた磁気ビーズを用いても決定することができる。また、FACSまたはフローサイトメーターを用いても表面抗原が存在するかどうかを決定することができる。FACS、フローサイトメーターとしては例えばFACS vantage(ベクトン・ディッキンソン社製)、FACS Calibur(ベクトン・ディッキンソン社製)等を用いることができる。
本発明の骨髄由来幹細胞は、多分化能(pluripotency)を有し、3胚葉系(内胚葉系、中胚葉系、外胚葉系)へ分化し得る。また、本発明の骨髄由来幹細胞は、1細胞から増殖しクローンを形成する。さらに、本発明の骨髄由来幹細胞は、無限増殖性を有さず、癌化することはない。
本発明の幹細胞は、骨髄より単離することができる。骨髄としては、ヒト、ヒトを除く霊長類、マウス、ラット、モルモット、ハムスター、ウサギ、ネコ、イヌ、ヒツジ、ブタ、ウシ、ウマ、ヤギ等の骨髄を用いることができる。
本発明の幹細胞は、以下の方法により骨髄から単離することができる。まず、骨髄よりBM−MSC(Bone marrow−derived mesenchymal stroma cell;骨髄由来間葉系ストローマ細胞)を単離する。BM−MSCは公知の方法で単離することが可能であるが、例えば上記の動物から骨髄穿刺等により骨髄細胞(BMC)を採取し、密度勾配遠心分離を行い、単核細胞フラクションを得る。得られた単核細胞フラクションを培養用プラスチックディッシュ上で接着培養し、ディッシュに接着した細胞をトリプシン処理により剥がし、BM−MSC(Bone marrow−derived mesenchymal stroma cell;骨髄由来間葉系ストローマ細胞)として回収する。回収したBM−MSCを限界希釈法により培養し、増殖した細胞をさらに限界希釈法により培養し、単一細胞由来コロニーとしてクローンを得る。このようにして得られたコロニーの細胞をエクスパンド用に調製した培地で低濃度血清条件下で低密度で培養し、エクスパンドする。エクスパンドした細胞をさらにサブクローン化し、単一クローンとして細胞を得る。得られた細胞について、細胞表面のGPR40の発現をフローサイトメトリー等により確認し、GPR40の発現が認められるもののみを選別し、本発明の単離された幹細胞として用いることができる。この際、用いる培地は限定されず、ウシ胎児血清(FBS)等の動物血清を含むMEM(Minimum Essential Medium)、DMEM(Dulbecco’s modified Eagle’s medium)培地等の既知の培地を用いることができる。また、公知の幹細胞培養用培地を用いることもでき、例えば、間葉系幹細胞培養用培地(mesenchymal stem cell basal medium(MSCBM))(Cambrex Bio Science社)や増殖用培地mesenchymal stem cell growth medium(MSCGM)(Cambrex Bio Science社)等も用いることができる。培地には、適宜、ペニシリン、ストレプトマイシン等の抗生物質、種々の生理活性物質、ビタミン等を添加してもよい。なお、BM−SMCを最初に培養し、単一細胞由来のコロニーとしてクローンを得る際に用いる培地(増殖培地)は、10~15%の血清を含ませるが、得られたクローンをエクスパンドしてさらにサブクローニングする際に用いる培地(エクスパンド培地)の血清濃度は低くするが、具体的には1~5%、もし可能なら3%程度の濃度である。このように、本発明の幹細胞は、被験者又は成熟個体の骨髄細胞から単離するという点で胚性幹細胞(ES細胞)とは異なる。
さらに、本発明の幹細胞は、GPR40の発現を指標にして骨髄細胞又はBM−MSC集団から培養することなく、直接フローサイトメトリーを用いて単離することもできる。この際、骨髄細胞からあらかじめCD3、CD4、CD8等のリンパ球マーカー、CD14、CD34、CD45等の造血幹細胞マーカー及び内皮細胞マーカーであるCD31が陽性の細胞をこれらの抗原に対する抗体を結合させた磁気ビーズを用いて除去し、残った細胞集団の中からGPR40陽性細胞を単離してもよい。
上記のように、本発明の幹細胞は骨髄に対して外来遺伝子や外来タンパク質を導入することなく得ることができる。
単離した本発明の幹細胞はin vitroで特定の組織細胞に分化誘導することができる。すなわち、本発明の幹細胞は多能性を有するため、3胚葉起源の任意の組織細胞に分化誘導することができる。分化誘導するための培地が市販されており、これらの市販培地を用いて種々の組織へと分化誘導することができる。例えば、神経細胞へ分化誘導する場合、Neurobasal Media(NM)(Invitrogen)等を用いることができる。また、骨細胞へと分化誘導する場合、ブレットキット骨芽細胞分化培地(誘導培地)(Cambrex Bio Science社)を用いることができる。さらに、脂肪細胞へと分化誘導する場合、ブレットキット脂肪細胞分化培地(誘導培地)(Cambrex Bio Science社)を用いればよく、軟骨細胞へと分化誘導する場合、ブレットキット軟骨細胞分化培地(誘導培地)(Cambrex Bio Science社)を用いて培養を行えばよい。神経細胞に分化誘導する場合は、多価不飽和脂肪酸(PUFA)を培地に添加すると分化の効率が高まる。本発明の骨髄由来幹細胞は、脂肪酸をリガンドとするGPR40を表面に発現しており、多価不飽和脂肪酸がGPR40に結合すると、分化を誘導するシグナル伝達が生じる。多価不飽和脂肪酸としては、n−3(ω3)系統のものも、n−6(ω6)系統のものも用いることができる。n−3系等の多価不飽和脂肪酸としては、DHA(docosahexaenoic acid;ドコサヘキサエン酸)、EPA(eicosapentaenoic acid;エイコサペンタエン酸)、αリノレン酸等が挙げられ、n−6系等のものとしては、アラキドン酸、リノール酸、γ−リノレン酸等が挙げられる。この中でも、DHAは低濃度で本発明の幹細胞を神経細胞に分化誘導できることが確認されており、理想的なリガンドである。また、bFGF(basic fibroblast growth factor)を用いても神経細胞への分化が誘導されるので、bFGFと多価不飽和脂肪酸を併用してもよい。
これらの組織細胞へと分化した細胞をさらに培養し、組織を再生させることができる。なお、本発明のGPR40陽性の骨髄幹細胞は、増殖しているときにはGPR40の発現がアップレギュレーションされ高発現を示すが、神経細胞に分化すると、GPR40の発現はダウンレギュレーションされ発現が低下又は停止する。この減少は、Gタンパク質共役受容体(G−protein coupled receptor;GPCR)に特徴的な’receptor internalization’という現象で説明することができる。
本発明の幹細胞が組織細胞へ分化誘導したか否かは、各組織細胞に特有なマーカーの発現を調べることにより決定することができる。例えば、神経細胞への分化は、NF−M、NF−H(neurofilament medium or heavy chain;中、高分子ニューロフィラメント)、NSE(neuron specific γ−enolase;神経特異的エノラーゼ)等の発現を指標に調べることができる。さらに、成熟神経微小管やフィラメントの産生を指標にすることもできる。骨芽細胞への分化はフォン・コッサ染色、軟骨細胞への分化はアルシャン・ブルー染色、および脂肪細胞への分化はオイルレッド0染色に対する陽性所見を指標に調べることができる。
本発明の骨髄由来幹細胞は種々の脳血管障害や脳腫瘍、神経変性疾患、脳外傷に対する再生医療等に応用することができる。例えば、本発明の骨髄由来幹細胞を脳梗塞や変性、外傷により損傷した脳に投与することができる。具体的には、脳梗塞や脳出血、くも膜下出血、脳腫瘍をはじめ、アルツハイマー病、パーキンソン病、ハンチントン病、筋萎縮性側索効果症などの神経変性疾患、および脳挫傷等が挙げられる。細胞の投与は、例えば頚動脈等の血管内に投与すれば、動脈経由で脳に幹細胞が到達する。また、脳内に直接投与してもよい。いずれの場合も、脳局所に幹細胞を投与した後又は同時に、静脈注射や経口投与により、多価不飽和脂肪酸を全身投与してもよい。あるいは、あらかじめ本発明の幹細胞をin vitroで多価不飽和脂肪酸と接触させて初期分化誘導した後に、脳に投与してもよい。さらに、in vitroで神経組織を再生させた後、該再生組織を脳の損傷部位に移植することもできる。脳に投与することにより、幹細胞が神経細胞に分化し、損傷した神経や脳を再生することができる。
これらの再生医療において、移植した細胞または組織のレシピエントによる拒絶反応を避けるためには、再生医療を受けようとする神経疾患を有する患者自身から骨髄を採取し、該骨髄から本発明の骨髄由来GPR40陽性幹細胞を単離し、自家移植することもできる。さらに、単離し増殖した幹細胞をDHA等の多価不飽和脂肪酸と接触させることで刺激を与え、神経細胞に分化させ、あるいはさらに神経組織を構築させた後、これらの神経細胞や組織を前記患者に移植することで脳再生治療を行うこともできる。また、免疫系による拒絶の問題を免疫抑制剤等により解消することにより、第三者の本発明の骨髄由来幹細胞を患者に投与又は移植し、治療に利用することもできる。
さらに、同様に本発明の幹細胞から脂肪組織、骨組織又は軟骨組織を再生することもできる。
本発明は、本発明の幹細胞を含む、脳等の神経組織、脂肪組織、骨組織又は軟骨組織の再生の目的で用いる組成物も包含する。
さらに、本発明の骨髄由来幹細胞をin vitroで神経組織、脂肪組織、骨組織、軟骨組織等の特定の組織に分化させ、薬剤の効果判定や特定の薬剤のスクリーニングに用いることもできる。
また、本発明の幹細胞を多数の被験体から採取しておいた上で凍結保存し、組織を再生する必要が生じた場合に、保存しておいた幹細胞から、組織再生を必要とする被験体に遺伝的特性が適合した細胞を選択し、該細胞を用いて拒絶反応を起こすことなく再生治療を行うことができる。本発明の幹細胞をこのように利用するために、多数の被験体から採取した幹細胞について細胞バンクを構築すればよい。
さらに、本発明は、疾患の治療のために、本発明の幹細胞を治療を必要としている患者に投与することを含む再生治療方法を包含する。
本発明を以下の実施例によって具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。 Hereinafter, the present invention will be described in detail.
The stem cell of the present invention is a stem cell having GPR40 (G-protein coupled receptor 40) -positive pluripotency isolated from bone marrow.
GPR40 is a member of a subfamily of G-protein coupled receptor (GPCR), a seven-transmembrane receptor (Yamashima T., Progress in Neurobiology 84 (2008) 105-115; Briscoe C P. et al., The Journal of Biological Chemistry, 278 (2003) 11130-13113).
In the present invention, the “stem cell” refers to a cell having self-renewal ability and multipotency. Stem cells are usually able to regenerate the tissue when the tissue is damaged.
In the present invention, the term “stem cell” refers to a cell population containing at least a certain amount of stem cells, and includes, for example, a cell population containing 90% or more, preferably 95% or more of stem cells.
The stem cells of the present invention are positive for GPR40, express CD29 (integrin) and CD90 relatively strongly (CD29 positive, CD90 positive), and weakly express CD73 and CD105 (CD73 weakly positive, CD105 weakly positive). . Furthermore, lymphocyte markers such as CD3, CD4 and CD8, hematopoietic stem cell markers such as CD14, CD34 and CD45, and CD31 which is an endothelial cell marker are negative (CD3 negative, CD4 negative, CD8 negative, CD14 negative, CD34 negative, CD45 negative, CD31 negative). Here, a certain antigen being positive means having an antigen that is a cell surface antigen, that is, expressing the surface antigen on the cell surface. Whether these surface antigens are positive or negative or weakly expressed is whether the cells were stained with a secondary antibody labeled with a chromogenic enzyme or a fluorescent compound after reacting with the primary antibody against these antigens. It can be determined by examining whether or not by microscopic observation or the like. For example, cells can be immunostained using these antibodies to determine the presence or absence of surface antigens, or can be determined using magnetic beads to which the antibodies are bound. It can also be determined whether surface antigens are present using a FACS or flow cytometer. As the FACS and flow cytometer, for example, FACS vantage (manufactured by Becton Dickinson), FACS Calibur (manufactured by Becton Dickinson) and the like can be used.
The bone marrow-derived stem cells of the present invention have pluripotency and can differentiate into three germ layers (endoderm, mesodermal, ectoderm). The bone marrow-derived stem cells of the present invention proliferate from one cell to form a clone. Furthermore, the bone marrow-derived stem cells of the present invention do not have infinite proliferation and do not become cancerous.
The stem cells of the present invention can be isolated from bone marrow. As the bone marrow, bone marrows such as humans, non-human primates, mice, rats, guinea pigs, hamsters, rabbits, cats, dogs, sheep, pigs, cows, horses, goats and the like can be used.
The stem cells of the present invention can be isolated from bone marrow by the following method. First, BM-MSC (Bone marrow-derived mesenchymal stromal cell) is isolated from the bone marrow. BM-MSC can be isolated by a known method. For example, bone marrow cells (BMC) are collected from the above animals by bone marrow puncture or the like, and density gradient centrifugation is performed to obtain a mononuclear cell fraction. The obtained mononuclear cell fraction was adherently cultured on a plastic dish for culturing, and the cells adhering to the dish were removed by trypsin treatment to obtain BM-MSC (Bone marrow-derived mesenchymal stromal cell). to recover. The recovered BM-MSC is cultured by the limiting dilution method, and the proliferated cells are further cultured by the limiting dilution method to obtain a clone as a single cell-derived colony. The colony cells thus obtained are cultured in a medium prepared for expansion at low density under low-concentration serum conditions and expanded. Expanded cells are further subcloned to obtain cells as a single clone. About the obtained cells, the expression of GPR40 on the cell surface can be confirmed by flow cytometry or the like, and only those in which GPR40 expression is recognized can be selected and used as the isolated stem cells of the present invention. At this time, the medium to be used is not limited, and a known medium such as MEM (Minimum Essential Medium) or DMEM (Dulbecco's modified Eagle's medium) medium containing animal serum such as fetal bovine serum (FBS) may be used. it can. A known stem cell culture medium can also be used, such as a mesenchymal stem cell basal medium (MSCBM) (Cambrex Bio Science) or a proliferation medium mesenchymal cell cell growth medium (MSCBM). ) (Cambrex Bio Science) or the like can also be used. To the medium, antibiotics such as penicillin and streptomycin, various physiologically active substances, vitamins and the like may be appropriately added. Note that the medium (growth medium) used when BM-SMC is first cultured to obtain clones as single cell-derived colonies contains 10 to 15% serum, but the obtained clones are expanded. Further, although the serum concentration of the medium (expanded medium) used for subcloning is lowered, it is specifically 1 to 5%, and if possible, about 3%. Thus, the stem cells of the present invention differ from embryonic stem cells (ES cells) in that they are isolated from bone marrow cells of a subject or a mature individual.
Furthermore, the stem cells of the present invention can also be isolated using direct flow cytometry without culturing from bone marrow cells or BM-MSC populations using GPR40 expression as an indicator. At this time, a magnetic field obtained by binding cells positive for lymphocyte markers such as CD3, CD4 and CD8, hematopoietic stem cell markers such as CD14, CD34 and CD45 and CD31 which is an endothelial cell marker from bone marrow cells in advance with antibodies against these antigens. GPR40 positive cells may be isolated from the remaining cell population by removal using beads.
As described above, the stem cell of the present invention can be obtained without introducing a foreign gene or protein into the bone marrow.
The isolated stem cells of the present invention can be induced to differentiate into specific tissue cells in vitro. That is, since the stem cell of the present invention has pluripotency, it can be induced to differentiate into any tissue cell of 3 germ layer origin. Media for inducing differentiation are commercially available, and differentiation can be induced into various tissues using these commercially available media. For example, Neurobasal Media (NM) (Invitrogen) or the like can be used to induce differentiation into nerve cells. In addition, in the case of inducing differentiation into bone cells, a bullet kit osteoblast differentiation medium (induction medium) (Cambrex Bio Science) can be used. Further, when differentiation induction into adipocytes is performed, Brett kit adipocyte differentiation medium (induction medium) (Cambrex Bio Science) may be used. When differentiation induction into chondrocytes is induced, Brett kit chondrocyte differentiation medium (induction medium). ) (Cambrex Bio Science). When differentiation is induced into nerve cells, the efficiency of differentiation is increased by adding polyunsaturated fatty acids (PUFA) to the medium. The bone marrow-derived stem cells of the present invention express GPR40 having a fatty acid as a ligand on the surface, and when polyunsaturated fatty acid binds to GPR40, signal transduction that induces differentiation occurs. As the polyunsaturated fatty acid, those of n-3 (ω3) line and n-6 (ω6) line can be used. Examples of polyunsaturated fatty acids such as n-3 series include DHA (docosahexaenoic acid; docosahexaenoic acid), EPA (eicosapentaenoic acid; eicosapentaenoic acid), α-linolenic acid, and the like. Arachidonic acid, linoleic acid, γ-linolenic acid and the like. Among these, DHA has been confirmed to be able to induce differentiation of the stem cells of the present invention into neurons at a low concentration, and is an ideal ligand. Also, bFGF and a polyunsaturated fatty acid may be used in combination because differentiation into nerve cells is induced by using bFGF (basic fibroblast growth factor).
Cells differentiated into these tissue cells can be further cultured to regenerate the tissue. The GPR40-positive bone marrow stem cells of the present invention are up-regulated and highly expressed when proliferating, but when differentiated into neurons, the expression of GPR40 is down-regulated and the expression is reduced or stopped. This decrease can be explained by a phenomenon called “receptor internalization”, which is characteristic of G-protein coupled receptor (GPCR).
Whether or not the stem cells of the present invention have been induced to differentiate into tissue cells can be determined by examining the expression of markers specific to each tissue cell. For example, the differentiation into nerve cells is based on the expression of NF-M, NF-H (neurofilament medium or heavy chain; medium, high molecular weight neurofilament), NSE (neuronic specific γ-enolase; nerve specific enolase), etc. You can investigate. Furthermore, production of mature neural microtubules and filaments can be used as an index. Differentiation into osteoblasts can be examined with von Kossa staining, differentiation into chondrocytes with Alshan Blue staining, and differentiation into adipocytes with positive findings foroil red 0 staining as indicators.
The bone marrow-derived stem cells of the present invention can be applied to regenerative medicine for various cerebrovascular disorders, brain tumors, neurodegenerative diseases, brain trauma and the like. For example, the bone marrow-derived stem cells of the present invention can be administered to the brain damaged by cerebral infarction, degeneration or trauma. Specific examples include cerebral infarction, cerebral hemorrhage, subarachnoid hemorrhage, brain tumor, Alzheimer's disease, Parkinson's disease, Huntington's disease, neurodegenerative diseases such as amyotrophic lateral effect, and cerebral contusion. For example, if cells are administered into a blood vessel such as the carotid artery, the stem cells reach the brain via the artery. It may also be administered directly into the brain. In any case, the polyunsaturated fatty acid may be systemically administered by intravenous injection or oral administration after or simultaneously with the administration of stem cells to the brain. Alternatively, the stem cells of the present invention may be preliminarily contacted with a polyunsaturated fatty acid in vitro to induce initial differentiation and then administered to the brain. Furthermore, after regenerating nerve tissue in vitro, the regenerated tissue can be transplanted to a damaged site of the brain. By administering to the brain, stem cells are differentiated into nerve cells, and damaged nerves and brains can be regenerated.
In these regenerative medicine, in order to avoid rejection by the recipient of the transplanted cells or tissues, bone marrow is collected from the patient who has a neurological disease to receive regenerative medicine, and the bone marrow of the present invention is derived from the bone marrow. GPR40 positive stem cells can also be isolated and autotransplanted. Furthermore, after the isolated and proliferated stem cells are contacted with a polyunsaturated fatty acid such as DHA, stimulation is performed to differentiate into nerve cells, or further nerve tissue is constructed, and then these nerve cells and tissues are transferred to the patient. Brain regeneration treatment can also be performed by transplanting into the cerebral organ. In addition, by eliminating the problem of rejection by the immune system with an immunosuppressant or the like, a third party bone marrow-derived stem cell of the present invention can be administered or transplanted to a patient and used for treatment.
Further, adipose tissue, bone tissue or cartilage tissue can be similarly regenerated from the stem cells of the present invention.
The present invention also includes a composition containing the stem cells of the present invention and used for the purpose of regeneration of nerve tissue such as brain, adipose tissue, bone tissue or cartilage tissue.
Furthermore, the bone marrow-derived stem cells of the present invention can be differentiated into specific tissues such as nerve tissue, adipose tissue, bone tissue, and cartilage tissue in vitro and used for drug effect determination and screening for specific drugs.
In addition, when the stem cells of the present invention are collected from a large number of subjects and then cryopreserved and the tissue needs to be regenerated, subjects who need tissue regeneration from the stored stem cells A cell having genetic characteristics suitable for the cell can be selected, and regenerative treatment can be performed using the cell without causing rejection. In order to use the stem cells of the present invention in this way, a cell bank may be constructed for stem cells collected from a large number of subjects.
Furthermore, the present invention encompasses a regenerative treatment method comprising administering the stem cells of the present invention to a patient in need of treatment for the treatment of a disease.
The present invention will be specifically described by the following examples, but the present invention is not limited to these examples.
本発明の幹細胞は、骨髄から単離されるGPR40(G−protein coupled receptor 40)陽性の多能性を有する幹細胞である。
GPR40は、7回膜貫通型レセプターであるGタンパク質共役受容体(G−protein coupled receptor;GPCR)のサブファミリーのメンバーである(Yamashima T.,Progress in Neurobiology 84(2008)105−115;Briscoe C.P.et al.,The Journal of Biological Chemistry,278(2003)11303−11311)。
本発明において、「幹細胞」とは、自己複製能を有し、多分化能を有する細胞をいう。幹細胞は通常、組織が傷害を受けたときにその組織を再生することができる。
本発明において、幹細胞というときは、幹細胞を少なくとも一定量含む細胞集団をいい、例えば、幹細胞を90%以上、好ましくは95%以上含む細胞集団が含まれる。
本発明の幹細胞は、GPR40が陽性であり、また、CD29(インテグリン)及びCD90を比較的強く発現し(CD29陽性、CD90陽性)、CD73及びCD105を弱く発現する(CD73弱陽性、CD105弱陽性)。さらに、CD3、CD4、CD8等のリンパ球マーカー、CD14、CD34、CD45等の造血幹細胞マーカー及び内皮細胞マーカーであるCD31は陰性である(CD3陰性、CD4陰性、CD8陰性、CD14陰性、CD34陰性、CD45陰性、CD31陰性)。ここで、ある抗原が陽性であるとは、細胞表面抗原であるその抗原を有していること、すなわち、該表面抗原を細胞表面に発現していることをいう。これらの表面抗原が陽性か陰性か、発現が弱いかどうかは、これらの抗原に対する1次抗体を反応させた後、発色酵素、蛍光化合物等で標識した2次抗体を用いて細胞が染色されたか否かを顕微鏡観察等により調べることにより決定することができる。例えば、これらの抗体を用いて細胞を免疫染色して、表面抗原の有無を決定することができ、また該抗体を結合させた磁気ビーズを用いても決定することができる。また、FACSまたはフローサイトメーターを用いても表面抗原が存在するかどうかを決定することができる。FACS、フローサイトメーターとしては例えばFACS vantage(ベクトン・ディッキンソン社製)、FACS Calibur(ベクトン・ディッキンソン社製)等を用いることができる。
本発明の骨髄由来幹細胞は、多分化能(pluripotency)を有し、3胚葉系(内胚葉系、中胚葉系、外胚葉系)へ分化し得る。また、本発明の骨髄由来幹細胞は、1細胞から増殖しクローンを形成する。さらに、本発明の骨髄由来幹細胞は、無限増殖性を有さず、癌化することはない。
本発明の幹細胞は、骨髄より単離することができる。骨髄としては、ヒト、ヒトを除く霊長類、マウス、ラット、モルモット、ハムスター、ウサギ、ネコ、イヌ、ヒツジ、ブタ、ウシ、ウマ、ヤギ等の骨髄を用いることができる。
本発明の幹細胞は、以下の方法により骨髄から単離することができる。まず、骨髄よりBM−MSC(Bone marrow−derived mesenchymal stroma cell;骨髄由来間葉系ストローマ細胞)を単離する。BM−MSCは公知の方法で単離することが可能であるが、例えば上記の動物から骨髄穿刺等により骨髄細胞(BMC)を採取し、密度勾配遠心分離を行い、単核細胞フラクションを得る。得られた単核細胞フラクションを培養用プラスチックディッシュ上で接着培養し、ディッシュに接着した細胞をトリプシン処理により剥がし、BM−MSC(Bone marrow−derived mesenchymal stroma cell;骨髄由来間葉系ストローマ細胞)として回収する。回収したBM−MSCを限界希釈法により培養し、増殖した細胞をさらに限界希釈法により培養し、単一細胞由来コロニーとしてクローンを得る。このようにして得られたコロニーの細胞をエクスパンド用に調製した培地で低濃度血清条件下で低密度で培養し、エクスパンドする。エクスパンドした細胞をさらにサブクローン化し、単一クローンとして細胞を得る。得られた細胞について、細胞表面のGPR40の発現をフローサイトメトリー等により確認し、GPR40の発現が認められるもののみを選別し、本発明の単離された幹細胞として用いることができる。この際、用いる培地は限定されず、ウシ胎児血清(FBS)等の動物血清を含むMEM(Minimum Essential Medium)、DMEM(Dulbecco’s modified Eagle’s medium)培地等の既知の培地を用いることができる。また、公知の幹細胞培養用培地を用いることもでき、例えば、間葉系幹細胞培養用培地(mesenchymal stem cell basal medium(MSCBM))(Cambrex Bio Science社)や増殖用培地mesenchymal stem cell growth medium(MSCGM)(Cambrex Bio Science社)等も用いることができる。培地には、適宜、ペニシリン、ストレプトマイシン等の抗生物質、種々の生理活性物質、ビタミン等を添加してもよい。なお、BM−SMCを最初に培養し、単一細胞由来のコロニーとしてクローンを得る際に用いる培地(増殖培地)は、10~15%の血清を含ませるが、得られたクローンをエクスパンドしてさらにサブクローニングする際に用いる培地(エクスパンド培地)の血清濃度は低くするが、具体的には1~5%、もし可能なら3%程度の濃度である。このように、本発明の幹細胞は、被験者又は成熟個体の骨髄細胞から単離するという点で胚性幹細胞(ES細胞)とは異なる。
さらに、本発明の幹細胞は、GPR40の発現を指標にして骨髄細胞又はBM−MSC集団から培養することなく、直接フローサイトメトリーを用いて単離することもできる。この際、骨髄細胞からあらかじめCD3、CD4、CD8等のリンパ球マーカー、CD14、CD34、CD45等の造血幹細胞マーカー及び内皮細胞マーカーであるCD31が陽性の細胞をこれらの抗原に対する抗体を結合させた磁気ビーズを用いて除去し、残った細胞集団の中からGPR40陽性細胞を単離してもよい。
上記のように、本発明の幹細胞は骨髄に対して外来遺伝子や外来タンパク質を導入することなく得ることができる。
単離した本発明の幹細胞はin vitroで特定の組織細胞に分化誘導することができる。すなわち、本発明の幹細胞は多能性を有するため、3胚葉起源の任意の組織細胞に分化誘導することができる。分化誘導するための培地が市販されており、これらの市販培地を用いて種々の組織へと分化誘導することができる。例えば、神経細胞へ分化誘導する場合、Neurobasal Media(NM)(Invitrogen)等を用いることができる。また、骨細胞へと分化誘導する場合、ブレットキット骨芽細胞分化培地(誘導培地)(Cambrex Bio Science社)を用いることができる。さらに、脂肪細胞へと分化誘導する場合、ブレットキット脂肪細胞分化培地(誘導培地)(Cambrex Bio Science社)を用いればよく、軟骨細胞へと分化誘導する場合、ブレットキット軟骨細胞分化培地(誘導培地)(Cambrex Bio Science社)を用いて培養を行えばよい。神経細胞に分化誘導する場合は、多価不飽和脂肪酸(PUFA)を培地に添加すると分化の効率が高まる。本発明の骨髄由来幹細胞は、脂肪酸をリガンドとするGPR40を表面に発現しており、多価不飽和脂肪酸がGPR40に結合すると、分化を誘導するシグナル伝達が生じる。多価不飽和脂肪酸としては、n−3(ω3)系統のものも、n−6(ω6)系統のものも用いることができる。n−3系等の多価不飽和脂肪酸としては、DHA(docosahexaenoic acid;ドコサヘキサエン酸)、EPA(eicosapentaenoic acid;エイコサペンタエン酸)、αリノレン酸等が挙げられ、n−6系等のものとしては、アラキドン酸、リノール酸、γ−リノレン酸等が挙げられる。この中でも、DHAは低濃度で本発明の幹細胞を神経細胞に分化誘導できることが確認されており、理想的なリガンドである。また、bFGF(basic fibroblast growth factor)を用いても神経細胞への分化が誘導されるので、bFGFと多価不飽和脂肪酸を併用してもよい。
これらの組織細胞へと分化した細胞をさらに培養し、組織を再生させることができる。なお、本発明のGPR40陽性の骨髄幹細胞は、増殖しているときにはGPR40の発現がアップレギュレーションされ高発現を示すが、神経細胞に分化すると、GPR40の発現はダウンレギュレーションされ発現が低下又は停止する。この減少は、Gタンパク質共役受容体(G−protein coupled receptor;GPCR)に特徴的な’receptor internalization’という現象で説明することができる。
本発明の幹細胞が組織細胞へ分化誘導したか否かは、各組織細胞に特有なマーカーの発現を調べることにより決定することができる。例えば、神経細胞への分化は、NF−M、NF−H(neurofilament medium or heavy chain;中、高分子ニューロフィラメント)、NSE(neuron specific γ−enolase;神経特異的エノラーゼ)等の発現を指標に調べることができる。さらに、成熟神経微小管やフィラメントの産生を指標にすることもできる。骨芽細胞への分化はフォン・コッサ染色、軟骨細胞への分化はアルシャン・ブルー染色、および脂肪細胞への分化はオイルレッド0染色に対する陽性所見を指標に調べることができる。
本発明の骨髄由来幹細胞は種々の脳血管障害や脳腫瘍、神経変性疾患、脳外傷に対する再生医療等に応用することができる。例えば、本発明の骨髄由来幹細胞を脳梗塞や変性、外傷により損傷した脳に投与することができる。具体的には、脳梗塞や脳出血、くも膜下出血、脳腫瘍をはじめ、アルツハイマー病、パーキンソン病、ハンチントン病、筋萎縮性側索効果症などの神経変性疾患、および脳挫傷等が挙げられる。細胞の投与は、例えば頚動脈等の血管内に投与すれば、動脈経由で脳に幹細胞が到達する。また、脳内に直接投与してもよい。いずれの場合も、脳局所に幹細胞を投与した後又は同時に、静脈注射や経口投与により、多価不飽和脂肪酸を全身投与してもよい。あるいは、あらかじめ本発明の幹細胞をin vitroで多価不飽和脂肪酸と接触させて初期分化誘導した後に、脳に投与してもよい。さらに、in vitroで神経組織を再生させた後、該再生組織を脳の損傷部位に移植することもできる。脳に投与することにより、幹細胞が神経細胞に分化し、損傷した神経や脳を再生することができる。
これらの再生医療において、移植した細胞または組織のレシピエントによる拒絶反応を避けるためには、再生医療を受けようとする神経疾患を有する患者自身から骨髄を採取し、該骨髄から本発明の骨髄由来GPR40陽性幹細胞を単離し、自家移植することもできる。さらに、単離し増殖した幹細胞をDHA等の多価不飽和脂肪酸と接触させることで刺激を与え、神経細胞に分化させ、あるいはさらに神経組織を構築させた後、これらの神経細胞や組織を前記患者に移植することで脳再生治療を行うこともできる。また、免疫系による拒絶の問題を免疫抑制剤等により解消することにより、第三者の本発明の骨髄由来幹細胞を患者に投与又は移植し、治療に利用することもできる。
さらに、同様に本発明の幹細胞から脂肪組織、骨組織又は軟骨組織を再生することもできる。
本発明は、本発明の幹細胞を含む、脳等の神経組織、脂肪組織、骨組織又は軟骨組織の再生の目的で用いる組成物も包含する。
さらに、本発明の骨髄由来幹細胞をin vitroで神経組織、脂肪組織、骨組織、軟骨組織等の特定の組織に分化させ、薬剤の効果判定や特定の薬剤のスクリーニングに用いることもできる。
また、本発明の幹細胞を多数の被験体から採取しておいた上で凍結保存し、組織を再生する必要が生じた場合に、保存しておいた幹細胞から、組織再生を必要とする被験体に遺伝的特性が適合した細胞を選択し、該細胞を用いて拒絶反応を起こすことなく再生治療を行うことができる。本発明の幹細胞をこのように利用するために、多数の被験体から採取した幹細胞について細胞バンクを構築すればよい。
さらに、本発明は、疾患の治療のために、本発明の幹細胞を治療を必要としている患者に投与することを含む再生治療方法を包含する。
本発明を以下の実施例によって具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。 Hereinafter, the present invention will be described in detail.
The stem cell of the present invention is a stem cell having GPR40 (G-protein coupled receptor 40) -positive pluripotency isolated from bone marrow.
GPR40 is a member of a subfamily of G-protein coupled receptor (GPCR), a seven-transmembrane receptor (Yamashima T., Progress in Neurobiology 84 (2008) 105-115; Briscoe C P. et al., The Journal of Biological Chemistry, 278 (2003) 11130-13113).
In the present invention, the “stem cell” refers to a cell having self-renewal ability and multipotency. Stem cells are usually able to regenerate the tissue when the tissue is damaged.
In the present invention, the term “stem cell” refers to a cell population containing at least a certain amount of stem cells, and includes, for example, a cell population containing 90% or more, preferably 95% or more of stem cells.
The stem cells of the present invention are positive for GPR40, express CD29 (integrin) and CD90 relatively strongly (CD29 positive, CD90 positive), and weakly express CD73 and CD105 (CD73 weakly positive, CD105 weakly positive). . Furthermore, lymphocyte markers such as CD3, CD4 and CD8, hematopoietic stem cell markers such as CD14, CD34 and CD45, and CD31 which is an endothelial cell marker are negative (CD3 negative, CD4 negative, CD8 negative, CD14 negative, CD34 negative, CD45 negative, CD31 negative). Here, a certain antigen being positive means having an antigen that is a cell surface antigen, that is, expressing the surface antigen on the cell surface. Whether these surface antigens are positive or negative or weakly expressed is whether the cells were stained with a secondary antibody labeled with a chromogenic enzyme or a fluorescent compound after reacting with the primary antibody against these antigens. It can be determined by examining whether or not by microscopic observation or the like. For example, cells can be immunostained using these antibodies to determine the presence or absence of surface antigens, or can be determined using magnetic beads to which the antibodies are bound. It can also be determined whether surface antigens are present using a FACS or flow cytometer. As the FACS and flow cytometer, for example, FACS vantage (manufactured by Becton Dickinson), FACS Calibur (manufactured by Becton Dickinson) and the like can be used.
The bone marrow-derived stem cells of the present invention have pluripotency and can differentiate into three germ layers (endoderm, mesodermal, ectoderm). The bone marrow-derived stem cells of the present invention proliferate from one cell to form a clone. Furthermore, the bone marrow-derived stem cells of the present invention do not have infinite proliferation and do not become cancerous.
The stem cells of the present invention can be isolated from bone marrow. As the bone marrow, bone marrows such as humans, non-human primates, mice, rats, guinea pigs, hamsters, rabbits, cats, dogs, sheep, pigs, cows, horses, goats and the like can be used.
The stem cells of the present invention can be isolated from bone marrow by the following method. First, BM-MSC (Bone marrow-derived mesenchymal stromal cell) is isolated from the bone marrow. BM-MSC can be isolated by a known method. For example, bone marrow cells (BMC) are collected from the above animals by bone marrow puncture or the like, and density gradient centrifugation is performed to obtain a mononuclear cell fraction. The obtained mononuclear cell fraction was adherently cultured on a plastic dish for culturing, and the cells adhering to the dish were removed by trypsin treatment to obtain BM-MSC (Bone marrow-derived mesenchymal stromal cell). to recover. The recovered BM-MSC is cultured by the limiting dilution method, and the proliferated cells are further cultured by the limiting dilution method to obtain a clone as a single cell-derived colony. The colony cells thus obtained are cultured in a medium prepared for expansion at low density under low-concentration serum conditions and expanded. Expanded cells are further subcloned to obtain cells as a single clone. About the obtained cells, the expression of GPR40 on the cell surface can be confirmed by flow cytometry or the like, and only those in which GPR40 expression is recognized can be selected and used as the isolated stem cells of the present invention. At this time, the medium to be used is not limited, and a known medium such as MEM (Minimum Essential Medium) or DMEM (Dulbecco's modified Eagle's medium) medium containing animal serum such as fetal bovine serum (FBS) may be used. it can. A known stem cell culture medium can also be used, such as a mesenchymal stem cell basal medium (MSCBM) (Cambrex Bio Science) or a proliferation medium mesenchymal cell cell growth medium (MSCBM). ) (Cambrex Bio Science) or the like can also be used. To the medium, antibiotics such as penicillin and streptomycin, various physiologically active substances, vitamins and the like may be appropriately added. Note that the medium (growth medium) used when BM-SMC is first cultured to obtain clones as single cell-derived colonies contains 10 to 15% serum, but the obtained clones are expanded. Further, although the serum concentration of the medium (expanded medium) used for subcloning is lowered, it is specifically 1 to 5%, and if possible, about 3%. Thus, the stem cells of the present invention differ from embryonic stem cells (ES cells) in that they are isolated from bone marrow cells of a subject or a mature individual.
Furthermore, the stem cells of the present invention can also be isolated using direct flow cytometry without culturing from bone marrow cells or BM-MSC populations using GPR40 expression as an indicator. At this time, a magnetic field obtained by binding cells positive for lymphocyte markers such as CD3, CD4 and CD8, hematopoietic stem cell markers such as CD14, CD34 and CD45 and CD31 which is an endothelial cell marker from bone marrow cells in advance with antibodies against these antigens. GPR40 positive cells may be isolated from the remaining cell population by removal using beads.
As described above, the stem cell of the present invention can be obtained without introducing a foreign gene or protein into the bone marrow.
The isolated stem cells of the present invention can be induced to differentiate into specific tissue cells in vitro. That is, since the stem cell of the present invention has pluripotency, it can be induced to differentiate into any tissue cell of 3 germ layer origin. Media for inducing differentiation are commercially available, and differentiation can be induced into various tissues using these commercially available media. For example, Neurobasal Media (NM) (Invitrogen) or the like can be used to induce differentiation into nerve cells. In addition, in the case of inducing differentiation into bone cells, a bullet kit osteoblast differentiation medium (induction medium) (Cambrex Bio Science) can be used. Further, when differentiation induction into adipocytes is performed, Brett kit adipocyte differentiation medium (induction medium) (Cambrex Bio Science) may be used. When differentiation induction into chondrocytes is induced, Brett kit chondrocyte differentiation medium (induction medium). ) (Cambrex Bio Science). When differentiation is induced into nerve cells, the efficiency of differentiation is increased by adding polyunsaturated fatty acids (PUFA) to the medium. The bone marrow-derived stem cells of the present invention express GPR40 having a fatty acid as a ligand on the surface, and when polyunsaturated fatty acid binds to GPR40, signal transduction that induces differentiation occurs. As the polyunsaturated fatty acid, those of n-3 (ω3) line and n-6 (ω6) line can be used. Examples of polyunsaturated fatty acids such as n-3 series include DHA (docosahexaenoic acid; docosahexaenoic acid), EPA (eicosapentaenoic acid; eicosapentaenoic acid), α-linolenic acid, and the like. Arachidonic acid, linoleic acid, γ-linolenic acid and the like. Among these, DHA has been confirmed to be able to induce differentiation of the stem cells of the present invention into neurons at a low concentration, and is an ideal ligand. Also, bFGF and a polyunsaturated fatty acid may be used in combination because differentiation into nerve cells is induced by using bFGF (basic fibroblast growth factor).
Cells differentiated into these tissue cells can be further cultured to regenerate the tissue. The GPR40-positive bone marrow stem cells of the present invention are up-regulated and highly expressed when proliferating, but when differentiated into neurons, the expression of GPR40 is down-regulated and the expression is reduced or stopped. This decrease can be explained by a phenomenon called “receptor internalization”, which is characteristic of G-protein coupled receptor (GPCR).
Whether or not the stem cells of the present invention have been induced to differentiate into tissue cells can be determined by examining the expression of markers specific to each tissue cell. For example, the differentiation into nerve cells is based on the expression of NF-M, NF-H (neurofilament medium or heavy chain; medium, high molecular weight neurofilament), NSE (neuronic specific γ-enolase; nerve specific enolase), etc. You can investigate. Furthermore, production of mature neural microtubules and filaments can be used as an index. Differentiation into osteoblasts can be examined with von Kossa staining, differentiation into chondrocytes with Alshan Blue staining, and differentiation into adipocytes with positive findings for
The bone marrow-derived stem cells of the present invention can be applied to regenerative medicine for various cerebrovascular disorders, brain tumors, neurodegenerative diseases, brain trauma and the like. For example, the bone marrow-derived stem cells of the present invention can be administered to the brain damaged by cerebral infarction, degeneration or trauma. Specific examples include cerebral infarction, cerebral hemorrhage, subarachnoid hemorrhage, brain tumor, Alzheimer's disease, Parkinson's disease, Huntington's disease, neurodegenerative diseases such as amyotrophic lateral effect, and cerebral contusion. For example, if cells are administered into a blood vessel such as the carotid artery, the stem cells reach the brain via the artery. It may also be administered directly into the brain. In any case, the polyunsaturated fatty acid may be systemically administered by intravenous injection or oral administration after or simultaneously with the administration of stem cells to the brain. Alternatively, the stem cells of the present invention may be preliminarily contacted with a polyunsaturated fatty acid in vitro to induce initial differentiation and then administered to the brain. Furthermore, after regenerating nerve tissue in vitro, the regenerated tissue can be transplanted to a damaged site of the brain. By administering to the brain, stem cells are differentiated into nerve cells, and damaged nerves and brains can be regenerated.
In these regenerative medicine, in order to avoid rejection by the recipient of the transplanted cells or tissues, bone marrow is collected from the patient who has a neurological disease to receive regenerative medicine, and the bone marrow of the present invention is derived from the bone marrow. GPR40 positive stem cells can also be isolated and autotransplanted. Furthermore, after the isolated and proliferated stem cells are contacted with a polyunsaturated fatty acid such as DHA, stimulation is performed to differentiate into nerve cells, or further nerve tissue is constructed, and then these nerve cells and tissues are transferred to the patient. Brain regeneration treatment can also be performed by transplanting into the cerebral organ. In addition, by eliminating the problem of rejection by the immune system with an immunosuppressant or the like, a third party bone marrow-derived stem cell of the present invention can be administered or transplanted to a patient and used for treatment.
Further, adipose tissue, bone tissue or cartilage tissue can be similarly regenerated from the stem cells of the present invention.
The present invention also includes a composition containing the stem cells of the present invention and used for the purpose of regeneration of nerve tissue such as brain, adipose tissue, bone tissue or cartilage tissue.
Furthermore, the bone marrow-derived stem cells of the present invention can be differentiated into specific tissues such as nerve tissue, adipose tissue, bone tissue, and cartilage tissue in vitro and used for drug effect determination and screening for specific drugs.
In addition, when the stem cells of the present invention are collected from a large number of subjects and then cryopreserved and the tissue needs to be regenerated, subjects who need tissue regeneration from the stored stem cells A cell having genetic characteristics suitable for the cell can be selected, and regenerative treatment can be performed using the cell without causing rejection. In order to use the stem cells of the present invention in this way, a cell bank may be constructed for stem cells collected from a large number of subjects.
Furthermore, the present invention encompasses a regenerative treatment method comprising administering the stem cells of the present invention to a patient in need of treatment for the treatment of a disease.
The present invention will be specifically described by the following examples, but the present invention is not limited to these examples.
GPR40陽性の骨髄由来間葉系多能性幹細胞の検討
1.方法
骨髄細胞の採取
日本バイオリソース(National BioResource Project、岡崎生理研)より供与された、年齢が2~3歳、体重が3~4kgの3頭のニホンザル(Macaca fuscata)よりKushida T.et al,I.Stem Cells.(2002)20:155−162に記載の方法により骨髄細胞を採取した。
サルBM−MSC(Bone marrow−derived mesehchymal stromal cell)からの骨髄由来幹細胞の単離
本実施例における培地の使用法を表1に示す。
BM−MSC由来のクローンは、N−2サプリメント(R&D Systems)を補足した無血清neurobasal培地で培養した。実験群は、bFGF又はDHA単独で誘導する群(bFGF単独群又はDHA単独群)、並びにDHA及びbFGFで誘導する群(DHA+bFGF群)とした。
ピペッティングした新鮮な骨髄細胞(BMC)をDensity Gradient Media(Axis−Shield)上に穏やかに重層して単一細胞懸濁液を得て、30分間、150×10rpm、20℃で遠心分離した。次いで、単核細胞フラクションを遠心分離した全骨髄細胞サンプルの界面より回収した単核骨髄細胞をプラスチックに接着させてBM−MSC(Bone marrow−derived mesehchymal stromal cell)を得た。すなわち、密度勾配遠心分離により回収した骨髄単核細胞を5mlの増殖培地(GM)(Minimum Essential Medium(MEM)、Alpha Medium GlutaMAX(Invitrogen、GIBCO)、10~15%のFBS(ウシ胎児血清)及び1%のAntibiotic−Antimycotic(Invitrogen、GIBCO)を含む増殖培地(GM)に1×104細胞/cm2で再懸濁し、24~48時間培養した。この際、24時間ごとに培地の半分を交換した。その後、線維芽細胞の形態を示す単一接着細胞以外の細胞を捨て、さらにGMを用いて72時間ごとに培地の半分を交換し、9±2日間培養したところ、接着細胞が50~60%のコンフルエント状態に達した。
次いで、細胞をクローニングし、クローンを得た。接着した骨髄単核細胞をEDTAを含む0.25%トリプシンを用いて剥がし、GMを含む48ウェルプレート中に段階希釈した。8時間後、10個以下の接着細胞を含むウェルをさらにエクスパンドした。7±1日でコロニーが形成され、次いでトリプシン処理し、24ウェルプレート及び3cmのディッシュに移した。3頭のニホンザルそれぞれから、3クローンの株を確立した(以下、クローン性エクスパンドと称す)。
クローン性エクスパンドは、エクスパンド用培地(EM)に低密度で細胞を播き、低濃度血清条件で行った。BM−MSCの非クローン化株の培養は、10%のFBSを含むGM中に高密度で播き行い、コントロール(非クローン性エクスパンド)群とした。
クローン性エクスパンドの方法の詳細を以下に記す。
0.5~1×103/cm2のBM−MSCを5mlのEMを含む培養フラスコ中で培養し(5%CO2、37℃)、細胞が50~60%コンフルエントに達するまで72時間ごとに培地を交換した。細胞をEDTAを含む0.25%トリプシンで懸濁し、DPBSで2回洗浄し、0.5~1×103/cm2の密度でEM中に再懸濁した。得られた細胞をpassage 1とした。
非クローン性エクスパンドの詳細を以下に記す。
1×104/cm2のBM−MSCを5mlのGMを含む培養フラスコ中で培養し(5%CO2、37℃)、細胞が50~60%コンフルエントに達するまで72時間ごとに培地を交換した。
細胞生存率は、トリパンブルーを用いて算出した。
エクスパンドの間それぞれのサブクローニング前に少なくとも90%の生存率を有していることを確認した。
クローン性エクスパンドにより得られた細胞については、GPR40の発現が陽性であることを確認した上で、本発明の骨髄由来幹細胞とした。
骨髄由来間葉系幹細胞の神経への分化
0.5~1×105の骨髄由来間葉系幹細胞を5mlのFBSを含まないニューロン培地(NM)を含む細胞培養フラスコ(25cm2)中で培養した(5%CO2、37℃)。NMは、Neurobasal Media(Invitrogen、GIBCO、L−alanyl−L−glutamine a dipeptide substitute for L−glutamine(Invitrogen、GIBCO、GLUTAMAX、35050061)、N−2Plus Media Supplement(R&D Systems、AR003)、1% Antibiotic−Antimycotic(Invitrogen、GIBCO)を含んでいた。この際、bFGF(basic fibroblast growth factor)を含む条件(bFGF単独群)、及びbFGFとDHAを含む条件(DHA+bFGF群)で培養を行った。
bFGF(Sigma−Aldrich)は10ng/mlの濃度で用いた。DHAはBSA(ウシ血清アルブミン)との複合体の形態で最終濃度10μMで用いた(BSA:DHA複合体)。すなわち、25mgの乾燥DHA(分子量328.5)を含む容器に1mlの99%エタノールを添加し、4つの1mlの滅菌エッペンドルフチューブに分注し、真空エバポレータでエバポレーションした(それぞれのチューブに6.25mgのDHAを含む)。0.5gの遊離脂肪酸不含BSAパウダーを3.13mlの滅菌した2回蒸留水で溶解した(2.4mM)。前記の6.25mgのDHAを25μlの0.1M NaOHに溶解し、1.9mlの2.4mM遊離脂肪酸不含BSAを添加し、50℃で5分間インキュベートし、10mM(×1000)のBSA:DHA複合体ストック溶液を得た。該ストック溶液は、−20℃で凍結保存し、2週間以内に使用した。
骨髄由来間葉系幹細胞の脂肪細胞(adipocyte)、骨芽細胞(osteoblast)及び軟骨細胞(chondrocyte)への分化
脂肪細胞への分化
骨髄由来間葉系幹細胞を脂肪細胞誘導/維持培地(Cambrex Bio Science)を用いて3サイクルのインキュベーションを行った。すなわち、脂肪細胞誘導培地を用いて4日間培養し、次いで脂肪細胞維持培地を用いて3日間培養した。この誘導/維持を3サイクル繰り返した後、さらに脂肪細胞維持培地を用いて7日間培養した。
骨芽細胞への分化
コンフルエントに達していない骨髄由来間葉系幹細胞を骨芽誘導培地(Cambrex Bio Science)を用いて形態変化が認められるまで5週間培養した。骨芽誘導培地は3~4日ごとに交換した。
軟骨細胞への分化
骨髄由来間葉系幹細胞を軟骨培地(Cambrex Bio Science)に添加し、2~3日ごとに培地を交換し、5週間培養した。
骨髄由来間葉系幹細胞のFACS分析
骨髄由来間葉系幹細胞をDPBSで洗浄し、EDTAを含む0.25%トリプシンを用いて剥がした。回収した細胞をFITC(fluorescein isothiocyanate)又はPE(phycoerythrin)結合抗ヒト霊長類CD3、CD4、CD8、CD14、CD29、CD31、CD34、CD45(BD Biosciences)抗体、抗ヒトCD90(Biotrend)、CD73(BD Pharmingen)及びCD105(Serotec)抗体を用いて染色し、FACScan(Becton Dickinson)を用いて分析した。
免疫蛍光分析
増殖させた骨髄由来間葉系幹細胞を、4%パラホルムアルデヒド(PFA)で、室温又は20℃のメタノール中で15分間固定し、免疫蛍光染色を行った。
用いた一次抗体は、ウサギポリクローナル抗GPR40抗体(1:100)、マウスモノクローナル抗GPR40抗体(1:250、TransGenic Inc)、マウスモノクローナル抗nestin抗体(1:200、Chemicon、Millipore)、マウスモノクローナル抗ニューロンβIII−ツブリン抗体(1:500、Covance、Clone Tuj1、MMS−435P)、マウスモノクローナル抗神経フィラメント中鎖(NF−M)抗体(1:1000、Chemicon,Millipore)、ウサギ抗Map2抗体であった。二次抗体としては、緑色蛍光の抗マウスAlexaFluor488(Invitrogen)及び抗ウサギAlexa Fluor488(Invitrogen)並びに赤色蛍光の抗ウサギAlexa Flour546(Invitrogen)及び抗マウスAlexa Flour546(Invitrogen)であった。
デジタルイメージは、共焦点レーザ顕微鏡(LSM510;カールツァイス)及びLSM510ソフトウェア(バージョン3.2SP2、カールツァイス)を用いて得た。全視野の陽性細胞をDAPI標識細胞核の総数に対する%として得た。
ウエスタンブロット分析
EDTAを含む0.25%トリプシンを用いて剥がした骨髄由来間葉系幹細胞から遠心分離により細胞ペレットを得て、RIPAバッファー(Sigma−Aldrich)及びProtease Inhibitor Cocktail(Sigma−Aldrich)を用いて懸濁した(GPR40を含む培養の場合は、さらに0.1%のTriton−Xを添加)。次いで遠心分離し、タンパク質を抽出した。タンパク質濃度はBradfordアッセイにより測定した。
各サンプルのタンパク量を合わせて、ウエスタンブロット分析を行った。用いた抗体は、マウスモノクローナル抗GPR40抗体(1:1000、TransGenic Inc.、Clone No.G16)、ウサギポリクローナル抗GPR40抗体(1:1000)、マウスモノクローナル抗nestin抗体(1:1000、Chemicon、Millipore)、マウスモノクローナル抗βIIIツブリン抗体(1:500、Sigma−Aldrich、Clone SDL.3D10、T8660)、ウサギ抗Map2抗体(1:2000、Chemicon、Millipore)、及びマウスモノクローナル抗NF−M抗体(1:1000、Chemicon、Millipore)であった。
細胞周期分析
骨髄由来間葉系幹細胞を10μMのBrdU(Sigma−Aldrich)と共に2時間インキュベートし、DPBSを用いて10分間、2回洗浄し、ラット抗BrdU及びマウス抗Ki67一次抗体を用いて免疫染色した。表現型分布の評価は分化誘導の24及び72時間後にレーザ共焦点顕微鏡を用いて行った。
半定量RT−PCR
1×106個の骨髄由来幹細胞からトータルRNAをTRI Reagent(SIgma−Aldrich)を用いて採取し、First−Strand Synthesis System(Invitrogen,SuperScript III)を用いて1μgのトータルRNAから逆転写を行った。遺伝子特異的プライマーは、NCBI Primer−BLASTソフトウェア(http://www.ncbi.nlm.nih.gov/tools/primer−blast/)及びNCBI参照配列((Macaca mulatta Genome Sequencing Consorium(Mmul_051212、2006年2月、全ゲノムショットガン配列(http://www.hgsc.bcm.tmc.edu/projects/rmacaque/))を用いて作製した。RT−PCRは、Platinum Taq DNA Polymerase High Fidelity(Invitrogen)及びThermal Cycler(Applied Biosystems)を用いて行った。用いた特異的プライマー配列を表2に示す。
2.結果
クローン性エクスパンドにより得られた骨髄由来間葉系幹細胞の特徴
クローン性エクスパンドにより得られた骨髄由来間葉系幹細胞は、Donimiciらが定めた多能性細胞の基準(Dominici M et al.,Cytotherapy,9,315−7,2006)を満たしていた。すなわち、特徴的な表面分子を有しており、3胚葉に分化し、50継代以上にわたってセルフリニューアル(自己複製)能を有していた。
骨髄由来間葉系幹細胞をフローサイトメーターを用いて評価した結果を図2に示す。CD3、CD4、CD8などのリンパ球マーカー、内皮細胞マーカーであるCD31、並びに造血細胞マーカーであるCD14、CD34、及びCD45については陰性であった。一方、CD29及びCD90は強い陽性を示し、CD73及びCD105は弱い陽性を示した。CD14及びCD31が陰性であることは、クローン性エクスパンドにより得られた細胞中にマクロファージや内皮細胞が含まれないことを示す。
10%血清条件で高密度でのエクスパンドにより得られた非クローン性エクスパンドに対して、低血清条件で、低密度でエクスパンドした、ニホンザルの骨髄由来間葉系幹細胞の単一細胞から得られたコロニーは、顕著なコロニー形成を示す上に、3回継代後にはサブカルチャーした後も増殖能が認められた(図3)。クローン性エクスパンドにより得られた骨髄由来間葉系幹細胞は多能性ストローマ細胞の特徴を示し、約50継代にわたって3胚葉への分化能を維持していた(図1A、B、C)。すなわち、軟骨細胞への分化はパラフィン包埋切片を用いたアルシャン・ブルー染色により確認された(図1A)。脂肪細胞誘導の4週間後にオイル・レッド0染色により脂肪細胞への分化が確認された(図1B)。さらに、骨芽細胞への分化はフォン・コッサ染色により確認された(図1C)。
増殖中又は分化した骨髄由来間葉系幹細胞におけるGPR40レセプター発現
増殖中の細胞及び神経細胞へ分化した細胞のGPR40 mRNA及びタンパク質の発現を免疫組織化学(図4A、B、C、D)、RT−PCR(図5及び7)、並びにウエスタンブロット(図6)により分析した。EM中で増殖中の細胞は、安定的なGPR40の発現が認められた。一方、ニューロン培地を用いた場合、GPR40産生は減弱した(図4A)。bFGF単独群(図4B)とbFGF+DHA群(図4D)による神経誘導の間でGPR40発現に差が認められた。すなわち、bFGF単独の場合、GPR40の免疫染色性は最も高く、bFGF+DHAを用いた場合、免疫染色性は低下した。これは、GPR40レセプターにDHAが結合しGPR40レセプターが活性化したために細胞内へと移動(receptor internalization)したためであると解された。サイトカインで誘導される神経分化の過程でのGPR40発現に関して、DHA依存的神経表現型獲得の程度を調べるために、神経誘導の前に幹細胞をEM又はNMで培養し、結果を比較した。
一方、DHA単独の場合、GPR40の発現は有意に低かった(図5~7)。細胞質の分布は少なく、細胞膜上の免疫蛍光シグナルも認められなかった(図2C)。DHA+bFGFの場合でも、GPR40発現のコントロールと比べて有意な変化は認められなかった。DHA+bFGF群と、DHA単独群を比べると、DHA+bFGF群でGPR40発現が有意に低かった(図5~7)。
増殖中又は分化した骨髄由来間葉系幹細胞における未成熟神経細胞マーカーの発現
EMでの増殖中のBM−MSCのnestin及び神経βIII−ツブリン(Tuj1)の発現は弱かった。血清不含NM中で72時間増殖させた骨髄由来間葉系幹細胞において、nestinとβIII−ツブリンの両方の発現が認められた(図8A、B、C、D)。免疫蛍光染色の結果より、2つの条件での神経誘導の結果に差があることがわかった。DHA単独群では調べたマーカー発現の変動は認められなかった(図8C、図9~11)。一方、EM中でbFGFと共に増殖させた骨髄由来間葉系幹細胞はnestinのアップレギュレーションとβIII−ツブリンのわずかな発現が認められ、一方、bFGF+DHAで誘導させた骨髄由来間葉系幹細胞は前駆マーカーのnestinの発現は弱く、未成熟神経マーカーのβIII−ツブリンのアップレギュレーションが認められた(図10)。RT−PCR(図9及び11)及びウエスタンブロット(図10)の結果は免疫蛍光染色の結果と一致し、nestin及びβIII−ツブリンの有意に異なるレベルの発現を示した。神経誘導前にNMで増殖させた骨髄由来間葉系幹細胞はbFGF単独及びbFGF+DHA誘導条件の間で有意の差はなかった。
分化した骨髄由来間葉系幹細胞における成熟神経マーカーの発現
bFGF単独及びbFGF+DHA誘導条件での神経誘導の1週間後に、成熟神経マーカーであるNF−M及びMap2の発現を調べた。通常の培地で培養した骨髄由来間葉系幹細胞もDHA単独で培養した骨髄由来間葉系幹細胞も成熟神経マーカーの発現は、特にタンパク質レベルで認められなかった(図13~15)。しかしながら、bFGF単独群とbFGF+DHA群では、成熟神経マーカーの発現が認められた(図13~15)。bFGF単独群とbFGF+DHA群ではNF−M及びMap2 mRNAを誘導し、bFGF単独群は有意なMap2タンパク質発現を誘導しなかった。さらに、DHA+bFGF群ではNF−Mレベルは、有意にMap2レベルより高かった(図14)。誘導の前にEM中で増殖させた骨髄由来間葉系幹細胞は小さな細胞体より長い神経突起が伸びているという独特な形態を示し(図12)、一方、NM中で増殖させた骨髄由来間葉系幹細胞は線維芽細胞のような形態を呈し、突起は短かった。
分化した骨髄由来間葉系幹細胞の細胞周期分析
BrdUはS期の細胞に取り込まれ、Ki67は増殖にある細胞全てに取り込まれる。免疫2重染色により、細胞周期から外れたKi67−/BrdU+細胞を計測した(図16A、B、C、E)。BrdU取り込みの24時間後では、コントロールとbFGF、DHA及びbFGF/DHAの4群間で有意差は認められなかった。しかし、神経分化を誘導した72時間後には、コントロール群と比べbFGF単独群(図16B)において骨髄由来間葉系幹細胞の増殖率は低下し、この傾向はことにbFGF+DHA群で顕著であった(図16C)。つまり、細胞周期を外れた細胞はコントロール群と比べbFGF+DHA群で激増していた(図17)。
参考例 in vivoにおけるGRP40のニューロン新生への役割
一過性脳虚血負荷により促進される海馬のニューロン新生サルモデルを用いて、GPR40とリン酸化cAMP反応エレメント結合タンパク質(phosphorylated cAMP response element−binding protein;pCREB)との位置関係や成体の神経形成、学習と記憶に関与する転写因子について検討を行った。さらに、脳由来神経栄養因子(BDNF)及びその受容体トロポミオシン受容体キナーゼB(TrkB)(これらのいずれもpCREBの遺伝子トランスクリプトの下流に存在している)についても検討を行った。
pCREBの発現はウエスタンブロットで検索したところ、一過性全脳虚血負荷後に顕著にアップレギュレートしており、海馬におけるニューロン新生の亢進と時期的に相関していた。免疫蛍光顕微鏡観察により、GPR40とpCREBの局在パターンが完全に対応していることがわかった。両者は成熟ニューロンにおいても新生ニューロンにおいても共発現し、下歯状回(SGZ:subgranular zone)に存在する星状膠細胞においても同様であった。GPR40/pCREB共陽性細胞はSGZにおいて、虚血後15日で顕著に増加した。プロBDNFは虚血後9日目で最大になったが、成熟BDNF(mBDNF)及びTrkB受容体はウエスタンブロットで確認したところ大きな変化は認められなかった。免疫蛍光顕微鏡観察により、新生ニューロンにおいてBDNFが発現するが、TrkBは発現しないことがわかった。これらの結果は、PUFA、GPR40、pCREB及びBDNFは同じシグナル伝達系に密接に関与し、霊長類の成体ニューロン新生ニッチにおけるニューロン分化に関与していることを示している。
一過性の虚血負荷後に生じるSGZにおける成体のニューロン新生を促進するシグナルに関し、本発明者は遊離の脂肪酸受容体であるGPR40の関連を示唆した。海馬のニューロン新生ニッチにおいて、GPR40は正常(非虚血)成体ニホンザルのSGZに存在する星状膠細胞におけるのと同様に成熟ニューロンにおいて、(神経の又はニューロンの)前駆細胞として見出された。さらに、虚血促進成体ニューロン新生サルモデルを用いて、GPR40が虚血の後に特にSGZの新生ニューロンにおいてアップレギュレートされることを見出した。これらの知見は、GPR40が成体におけるニューロン新生に関与し、PUFAシグナルを導く主要な因子であることを示唆する。さらに、最近の研究でARA又はDHAは、GPR4−PLC/IP3(フォスフォリパーゼC/イノシトール3リン酸)シグナル伝達系の活性化を通して、GPR40遺伝子で形質転換されたPC12細胞又はラット胎児能神経幹細胞において、細胞内Ca2+を増加させることがわかった。
ニューロン新生ニッチにおけるGPR40の発現は最近になって、成体ニューロン新生の虚血サルモデルを用いて見出された。同様の実験により、pCREBの発現パターンをプロファイリングし、pCREBの細胞内分布はGPR40の海馬ニューロン新生ニッチにおけるそれと同様であることがわかった。GPR40及びpCREBタンパク質は、歯状回(DG)の顆粒細胞層(GCL)の成熟ニューロンのほとんどすべてと新生ニューロンの一部において、そしてSGZの星状膠細胞においても共分布していた。さらに、pCREB及びGPR40のいずれも同様に虚血の2週間後にアップレギュレートされ、そのピークは15日目であった。これらの知見より、GPR40及びpCREBは機能的に関連しており、PUFAの効果を導く同じシグナル伝達系において作用し得ることを示している。
上記の検討は、GPR40レセプターはDHAに代表されるPUFAの信号を受け、重要な転写因子の一つであるCREB(cAMP response element−binding protein)のリン酸化をきたし、最終的に、脳由来神経栄養因子(brain−derived neurotrophic factor:BDNF)を産生することで、新生ニューロンの分化やシナプスの可塑性に関与している可能性が高いことを示している。
すなわち、GPR40はin vivoにおいても、PUFAのシグナルを伝達し、神経幹細胞を分化させること、GPR40陽性の骨髄由来間葉系多能性幹細胞はin vivoでのニューロン新生に関与していることがわかった。 1. Examination of GPR40 positive bone marrow-derived mesenchymal pluripotent stem cells Method Bone Marrow Cell Collection Kusida T. et al. From 3 Japanese macaques (Macaca fuscata), 2 to 3 years old and 3 to 4 kg in weight, provided by Japan BioResource (National BioResource Project, Okazaki Institute of Physiology). et al, I. et al. Stem Cells. (2002) 20: 155-162.
Isolation of Bone Marrow-Derived Stem Cells from Monkey BM-MSC (Bone Marlow-Derived Messychimalal Cell) Table 1 shows how to use the medium in this example.
BM-MSC-derived clones were cultured in serum-free neurobasal medium supplemented with N-2 supplements (R & D Systems). The experimental group was a group induced by bFGF or DHA alone (bFGF alone group or DHA alone group) and a group induced by DHA and bFGF (DHA + bFGF group).
Fresh pipetted bone marrow cells (BMC) were gently overlaid on Density Gradient Media (Axis-Shield) to obtain a single cell suspension, which was centrifuged for 30 minutes at 150 × 10 rpm, 20 ° C. Next, the mononuclear bone marrow cells collected from the interface of the whole bone marrow cell sample obtained by centrifuging the mononuclear cell fraction were adhered to plastic to obtain a BM-MSC (Bone marrow-derived mechanicalmal cell). That is, bone marrow mononuclear cells collected by density gradient centrifugation were treated with 5 ml of growth medium (GM) (Minimum Essential Medium (MEM), Alpha Medium GlutaMAX (Invitrogen, GIBCO), 10-15% FBS (fetal bovine serum) and Resuspended at 1 × 10 4 cells / cm 2 in growth medium (GM) containing 1% Antibiotic-Antilytic (Invitrogen, GIBCO) and cultured for 24-48 hours, half of the medium every 24 hours. Thereafter, cells other than single-adherent cells showing the form of fibroblasts were discarded, and half of the medium was replaced every 72 hours using GM and cultured for 9 ± 2 days. Reached ~ 60% confluence.
The cells were then cloned and clones were obtained. Adhered bone marrow mononuclear cells were detached using 0.25% trypsin containing EDTA and serially diluted into 48 well plates containing GM. After 8 hours, wells containing 10 or fewer adherent cells were further expanded. Colonies formed at 7 ± 1 days, then trypsinized and transferred to 24-well plates and 3 cm dishes. Three clones were established from each of the three Japanese macaques (hereinafter referred to as clonal expands).
Clonal expansion was performed under low-concentration serum conditions by seeding cells at low density in an expansion medium (EM). Non-cloned strains of BM-MSC were cultured at a high density in GM containing 10% FBS, and used as a control (non-clonal expand) group.
Details of the clonal expansion method are described below.
0.5-1 × 10 3 / cm 2 of BM-MSC is cultured in a culture flask containing 5 ml of EM (5% CO 2 , 37 ° C.) every 72 hours until the cells reach 50-60% confluence. The medium was changed. The cells were suspended in 0.25% trypsin containing EDTA, washed twice with DPBS, and resuspended in EM at a density of 0.5-1 × 10 3 / cm 2 . The obtained cells were designated as passage 1.
Details of the non-clonal expand are described below.
1 × 10 4 / cm 2 of BM-MSC is cultured in a culture flask containing 5 ml of GM (5% CO 2 , 37 ° C.), and the medium is changed every 72 hours until cells reach 50-60% confluence. did.
Cell viability was calculated using trypan blue.
It was confirmed to have at least 90% viability prior to each subcloning during expansion.
The cells obtained by clonal expansion were confirmed to be positive for GPR40 expression, and then used as bone marrow-derived stem cells of the present invention.
Differentiation of bone marrow-derived mesenchymal stem cells into neurons 0.5 to 1 × 10 5 bone marrow-derived mesenchymal stem cells are cultured in a cell culture flask (25 cm 2 ) containing 5 ml of FBS-free neuron medium (NM). (5% CO 2 , 37 ° C.). NM is Neurobasal Media (Invitrogen, GIBCO, L-alanyl-L-glutamine a dipeptide substate for L-glutamine (Invitrogen, GIBCO, GLUTAMAX, -2505S). Anticotic (Invitrogen, GIBCO) was included, and culture was performed under conditions including bFGF (basic fibroblast growth factor) (bFGF alone group) and conditions including bFGF and DHA (DHA + bFGF group).
bFGF (Sigma-Aldrich) was used at a concentration of 10 ng / ml. DHA was used at a final concentration of 10 μM in the form of a complex with BSA (bovine serum albumin) (BSA: DHA complex). That is, 1 ml of 99% ethanol was added to a container containing 25 mg of dry DHA (molecular weight 328.5), dispensed into four 1 ml sterile Eppendorf tubes, and evaporated in a vacuum evaporator (6. Including 25 mg DHA). 0.5 g of free fatty acid free BSA powder was dissolved in 3.13 ml of sterile double distilled water (2.4 mM). 6.25 mg of DHA is dissolved in 25 μl of 0.1 M NaOH, 1.9 ml of 2.4 mM free fatty acid free BSA is added, incubated at 50 ° C. for 5 minutes, 10 mM (× 1000) BSA: A DHA complex stock solution was obtained. The stock solution was stored frozen at −20 ° C. and used within 2 weeks.
Differentiation of bone marrow-derived mesenchymal stem cells into adipocytes, osteoblasts and chondrocytes differentiated into adipocytes Bone marrow-derived mesenchymal stem cells from adipocyte induction / maintenance medium (Cambrex Bio Science) ) Was used for 3 cycles of incubation. That is, the cells were cultured for 4 days using an adipocyte induction medium, and then cultured for 3 days using an adipocyte maintenance medium. This induction / maintenance was repeated for 3 cycles, and further cultured for 7 days using an adipocyte maintenance medium.
Differentiation into osteoblasts Bone marrow-derived mesenchymal stem cells that did not reach confluence were cultured for 5 weeks using an osteoblast induction medium (Cambrex Bio Science) until morphological changes were observed. The osteoblast induction medium was changed every 3-4 days.
Differentiation into chondrocytes Bone marrow-derived mesenchymal stem cells were added to a cartilage medium (Cambrex Bio Science), and the medium was changed every 2-3 days and cultured for 5 weeks.
FACS analysis of bone marrow-derived mesenchymal stem cells Bone marrow-derived mesenchymal stem cells were washed with DPBS and detached using 0.25% trypsin containing EDTA. The collected cells were treated with FITC (fluorescein isothiocyanate) or PE (phycoerythrin) -conjugated anti-human primate CD3, CD4, CD8, CD14, CD29, CD31, CD34, CD45 (BD Biosciences) antibody, anti-human CD90 (Biotrend), CD73 (BD). Pharmingen) and CD105 (Serotec) antibodies and stained using FACScan (Becton Dickinson).
Immunofluorescence analysis Proliferated bone marrow-derived mesenchymal stem cells were fixed with 4% paraformaldehyde (PFA) in methanol at room temperature or 20 ° C. for 15 minutes, and immunofluorescent staining was performed.
Primary antibodies used were rabbit polyclonal anti-GPR40 antibody (1: 100), mouse monoclonal anti-GPR40 antibody (1: 250, TransGenic Inc), mouse monoclonal anti-nestin antibody (1: 200, Chemicon, Millipore), mouse monoclonal anti-neuron. βIII-tubulin antibody (1: 500, Covance, Clone Tuj1, MMS-435P), mouse monoclonal anti-neurofilament medium chain (NF-M) antibody (1: 1000, Chemicon, Millipore), and rabbit anti-Map2 antibody. Secondary antibodies were green fluorescent anti-mouse Alexa Fluor 488 (Invitrogen) and anti-rabbit Alexa Fluor 488 (Invitrogen) and red fluorescent anti-rabbit Alexa Fluor 546 (Invitrogen) and anti-mouse Alexa Fluor 546 (Invitrogen).
Digital images were obtained using a confocal laser microscope (LSM510; Carl Zeiss) and LSM510 software (version 3.2SP2, Carl Zeiss). All fields of positive cells were obtained as a percentage of the total number of DAPI-labeled cell nuclei.
Western blot analysis Cell pellets were obtained by centrifugation from bone marrow-derived mesenchymal stem cells peeled using 0.25% trypsin containing EDTA, and then used with RIPA buffer (Sigma-Aldrich) and Protease Inhibitor Cocktail (Sigma-Aldrich) (In the case of culture containing GPR40, 0.1% Triton-X was further added). It was then centrifuged to extract the protein. Protein concentration was measured by Bradford assay.
Western blot analysis was performed with the amount of protein in each sample combined. The antibodies used were mouse monoclonal anti-GPR40 antibody (1: 1000, TransGenic Inc., Clone No. G16), rabbit polyclonal anti-GPR40 antibody (1: 1000), mouse monoclonal anti-nestin antibody (1: 1000, Chemicon, Millipore). Mouse monoclonal anti-βIII tubulin antibody (1: 500, Sigma-Aldrich, Clone SDL.3D10, T8660), rabbit anti-Map2 antibody (1: 2000, Chemicon, Millipore), and mouse monoclonal anti-NF-M antibody (1: 1000). Chemicon, Millipore).
Cell cycle analysis Bone marrow-derived mesenchymal stem cells were incubated with 10 μM BrdU (Sigma-Aldrich) for 2 hours, washed twice with DPBS for 10 minutes, and immunostained with rat anti-BrdU and mouse anti-Ki67 primary antibodies did. Evaluation of phenotypic distribution was performed using a laser confocal microscope 24 and 72 hours after induction of differentiation.
Semi-quantitative RT-PCR
Total RNA was collected from 1 × 10 6 bone marrow-derived stem cells using TRI Reagent (SIgma-Aldrich), and reverse transcription was performed from 1 μg of total RNA using First-Strand Synthesis System (Invitrogen, SuperScript III). . Gene-specific primers can be obtained from the NCBI Primer-BLAST software (http://www.ncbi.nlm.nih.gov/tools/primer-blast/) and the NCBI reference sequence ((Macaca multitta Genome5 The whole genome shotgun sequence (http://www.hgsc.bcm.tmc.edu/projects/rmaqueque/) was used to create RT-PCR, which is Platinum Taq DNA Polymerase High Fidelity (Invitrogen) and Thr. This was done using a Cycler (Applied Biosystems). The primer sequences are shown in Table 2.
2. Results Characteristics of Bone Marrow-Derived Mesenchymal Stem Cells Obtained by Clonal Expand Bone marrow-derived mesenchymal stem cells obtained by clonal expand are pluripotent cell standards (Dominici M et al., Cytotherapy) determined by Donimici et al. 9, 315-7, 2006). That is, it had characteristic surface molecules, differentiated into 3 germ layers, and had self-renewal (self-replication) ability over 50 passages.
The results of evaluation of bone marrow-derived mesenchymal stem cells using a flow cytometer are shown in FIG. It was negative for lymphocyte markers such as CD3, CD4, CD8, CD31 which is an endothelial cell marker, and CD14, CD34 and CD45 which are hematopoietic cell markers. On the other hand, CD29 and CD90 showed strong positive, and CD73 and CD105 showed weak positive. That CD14 and CD31 are negative indicates that macrophages and endothelial cells are not contained in the cells obtained by clonal expansion.
Colonies obtained from single cells of Japanese monkey bone marrow-derived mesenchymal stem cells expanded at low density under low serum conditions versus non-clonal expands obtained at high density at 10% serum conditions In addition to showing remarkable colony formation, proliferation ability was recognized after subculture after 3 passages (FIG. 3). Bone marrow-derived mesenchymal stem cells obtained by clonal expansion showed the characteristics of pluripotent stromal cells and maintained the differentiation ability into three germ layers for about 50 passages (FIGS. 1A, B, and C). That is, differentiation into chondrocytes was confirmed by Alcian blue staining using paraffin-embedded sections (FIG. 1A). After 4 weeks of adipocyte induction, differentiation into adipocytes was confirmed byoil red 0 staining (FIG. 1B). Furthermore, differentiation into osteoblasts was confirmed by von Kossa staining (FIG. 1C).
Expression of GPR40 receptor in proliferating or differentiated bone marrow-derived mesenchymal stem cells Expression of GPR40 mRNA and protein in proliferating cells and differentiated cells into neurons was determined by immunohistochemistry (FIGS. 4A, B, C, D), RT- Analysis was by PCR (Figures 5 and 7) and Western blot (Figure 6). Stable GPR40 expression was observed in cells growing in EM. On the other hand, when neuron medium was used, GPR40 production was attenuated (FIG. 4A). There was a difference in GPR40 expression between nerve induction by bFGF alone group (FIG. 4B) and bFGF + DHA group (FIG. 4D). That is, in the case of bFGF alone, the immunostaining property of GPR40 was the highest, and the immunostaining property was lowered when bFGF + DHA was used. It was understood that this was because DHA was bound to the GPR40 receptor and the GPR40 receptor was activated, so that it was transferred into the cell (receptor internalization). Regarding GPR40 expression during the process of neuronal differentiation induced by cytokines, stem cells were cultured in EM or NM before nerve induction and the results were compared in order to examine the extent of DHA-dependent neuronal phenotype acquisition.
On the other hand, in the case of DHA alone, the expression of GPR40 was significantly low (FIGS. 5 to 7). There was little distribution of cytoplasm, and no immunofluorescent signal was observed on the cell membrane (FIG. 2C). Even in the case of DHA + bFGF, no significant change was observed compared to the control of GPR40 expression. When comparing the DHA + bFGF group and the DHA single group, GPR40 expression was significantly lower in the DHA + bFGF group (FIGS. 5 to 7).
Expression of immature neuronal markers in proliferating or differentiated bone marrow-derived mesenchymal stem cells Expression of BM-MSC nestin and neural βIII-tubulin (Tuj1) during proliferation in EM was weak. Expression of both nestin and βIII-tubulin was observed in bone marrow-derived mesenchymal stem cells grown in serum-free NM for 72 hours (FIGS. 8A, B, C, D). From the results of immunofluorescence staining, it was found that there was a difference in the results of nerve induction under two conditions. No changes in marker expression were observed in the DHA alone group (FIG. 8C, FIGS. 9 to 11). On the other hand, bone marrow-derived mesenchymal stem cells grown with bFGF in EM showed up-regulation of nestin and slight expression of βIII-tubulin, whereas bone marrow-derived mesenchymal stem cells induced with bFGF + DHA are precursor markers. The expression of nestin was weak and up-regulation of immature neuronal marker βIII-tubulin was observed (FIG. 10). RT-PCR (FIGS. 9 and 11) and Western blot (FIG. 10) results were consistent with the immunofluorescence staining results, indicating significantly different levels of expression of nestin and βIII-tubulin. Bone marrow-derived mesenchymal stem cells grown in NM before nerve induction were not significantly different between bFGF alone and bFGF + DHA induction conditions.
Expression of mature nerve markers in differentiated bone marrow-derived mesenchymal stem cells Expression of mature nerve markers NF-M and Map2 was examined one week after nerve induction under bFGF alone and bFGF + DHA induction conditions. In both bone marrow-derived mesenchymal stem cells cultured in a normal medium and bone marrow-derived mesenchymal stem cells cultured in DHA alone, expression of the mature nerve marker was not observed particularly at the protein level (FIGS. 13 to 15). However, expression of mature nerve markers was observed in the bFGF alone group and the bFGF + DHA group (FIGS. 13 to 15). The bFGF alone group and the bFGF + DHA group induced NF-M and Map2 mRNA, and the bFGF alone group did not induce significant Map2 protein expression. Furthermore, the NF-M level was significantly higher than the Map2 level in the DHA + bFGF group (FIG. 14). Bone marrow-derived mesenchymal stem cells grown in EM prior to induction show a unique morphology with longer neurites extending than small cell bodies (Figure 12), whereas bone marrow-derived mesenchymal stem cells grown in NM Leaf stem cells had a fibroblast-like morphology and short processes.
Cell cycle analysis of differentiated bone marrow-derived mesenchymal stem cells BrdU is taken up by cells in S phase, and Ki67 is taken up by all cells in proliferation. Ki67− / BrdU + cells out of the cell cycle were counted by double immunostaining (FIGS. 16A, B, C, E). After 24 hours of BrdU incorporation, no significant difference was observed between the control and the 4 groups of bFGF, DHA and bFGF / DHA. However, 72 hours after induction of neural differentiation, the proliferation rate of bone marrow-derived mesenchymal stem cells decreased in the bFGF alone group (FIG. 16B) compared to the control group, and this tendency was particularly remarkable in the bFGF + DHA group ( FIG. 16C). That is, cells out of the cell cycle increased dramatically in the bFGF + DHA group compared to the control group (FIG. 17).
Reference example Role of GRP40 in neurogenesis in vivo GPR40 and phosphorylated cAMP response element-binding protein using a hippocampal neurogenesis monkey model promoted by transient ischemic stress We investigated the transcriptional factors involved in the positional relationship with pCREB), adult neurogenesis, learning and memory. Furthermore, brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin receptor kinase B (TrkB) (both of which are present downstream of the gene transcript of pCREB) were also examined.
When the expression of pCREB was searched by Western blot, it was remarkably up-regulated after transient global cerebral ischemia and correlated temporally with increased neurogenesis in the hippocampus. It was found by immunofluorescence microscopy that the localization patterns of GPR40 and pCREB correspond completely. Both were co-expressed in mature and newborn neurons, as well as in astrocytes present in the lower dentate gyrus (SGZ). GPR40 / pCREB co-positive cells were markedly increased inSGZ 15 days after ischemia. ProBDNF was maximal on day 9 after ischemia, but mature BDNF (mBDNF) and TrkB receptors were not significantly altered when confirmed by Western blot. Immunofluorescence microscopy revealed that BDNF was expressed in newborn neurons but not TrkB. These results indicate that PUFA, GPR40, pCREB and BDNF are closely involved in the same signal transduction system and are involved in neuronal differentiation in the adult primate neurogenesis niche.
With regard to signals that promote adult neurogenesis in SGZ that occurs after transient ischemic stress, the inventors have suggested an association with GPR40, a free fatty acid receptor. In the hippocampal neurogenesis niche, GPR40 was found as a progenitor (neural or neuronal) in mature neurons as well as in astrocytes present in SGZ of normal (non-ischemic) adult Japanese monkeys. Furthermore, using an ischemia-promoting adult neuronal neonatal monkey model, it was found that GPR40 is upregulated after ischemia, particularly in SGZ neonatal neurons. These findings suggest that GPR40 is involved in neurogenesis in adults and is a major factor leading to PUFA signals. In addition, in recent studies, ARA or DHA has been used to transform PC12 cells or rat embryonic neural stem cells transformed with the GPR40 gene through activation of the GPR4-PLC / IP3 (phospholipase C / inositol triphosphate) signaling system. , It was found to increase intracellular Ca 2+ .
The expression of GPR40 in the neurogenesis niche was recently found using an ischemic monkey model of adult neurogenesis. Similar experiments profiled the expression pattern of pCREB and found that the intracellular distribution of pCREB was similar to that in the hippocampal neurogenesis niche of GPR40. GPR40 and pCREB proteins were co-distributed in almost all mature neurons of the dentate gyrus (DG) granule cell layer (GCL) and some of the newborn neurons, and also in SGZ astrocytes. Furthermore, both pCREB and GPR40 were similarly up-regulated 2 weeks after ischemia, peaking atday 15. These findings indicate that GPR40 and pCREB are functionally related and can act in the same signal transduction system leading to the effects of PUFA.
In the above study, the GPR40 receptor receives a PUFA signal typified by DHA, and phosphorylates CREB (cAMP response element-binding protein), which is one of important transcription factors. The production of brain-derived neurotrophic factor (BDNF) indicates that it is highly likely to be involved in the differentiation of new neurons and synaptic plasticity.
That is, GPR40 also transmits PUFA signals and differentiates neural stem cells in vivo, and GPR40-positive bone marrow-derived mesenchymal pluripotent stem cells are involved in neurogenesis in vivo. It was.
1.方法
骨髄細胞の採取
日本バイオリソース(National BioResource Project、岡崎生理研)より供与された、年齢が2~3歳、体重が3~4kgの3頭のニホンザル(Macaca fuscata)よりKushida T.et al,I.Stem Cells.(2002)20:155−162に記載の方法により骨髄細胞を採取した。
サルBM−MSC(Bone marrow−derived mesehchymal stromal cell)からの骨髄由来幹細胞の単離
本実施例における培地の使用法を表1に示す。
ピペッティングした新鮮な骨髄細胞(BMC)をDensity Gradient Media(Axis−Shield)上に穏やかに重層して単一細胞懸濁液を得て、30分間、150×10rpm、20℃で遠心分離した。次いで、単核細胞フラクションを遠心分離した全骨髄細胞サンプルの界面より回収した単核骨髄細胞をプラスチックに接着させてBM−MSC(Bone marrow−derived mesehchymal stromal cell)を得た。すなわち、密度勾配遠心分離により回収した骨髄単核細胞を5mlの増殖培地(GM)(Minimum Essential Medium(MEM)、Alpha Medium GlutaMAX(Invitrogen、GIBCO)、10~15%のFBS(ウシ胎児血清)及び1%のAntibiotic−Antimycotic(Invitrogen、GIBCO)を含む増殖培地(GM)に1×104細胞/cm2で再懸濁し、24~48時間培養した。この際、24時間ごとに培地の半分を交換した。その後、線維芽細胞の形態を示す単一接着細胞以外の細胞を捨て、さらにGMを用いて72時間ごとに培地の半分を交換し、9±2日間培養したところ、接着細胞が50~60%のコンフルエント状態に達した。
次いで、細胞をクローニングし、クローンを得た。接着した骨髄単核細胞をEDTAを含む0.25%トリプシンを用いて剥がし、GMを含む48ウェルプレート中に段階希釈した。8時間後、10個以下の接着細胞を含むウェルをさらにエクスパンドした。7±1日でコロニーが形成され、次いでトリプシン処理し、24ウェルプレート及び3cmのディッシュに移した。3頭のニホンザルそれぞれから、3クローンの株を確立した(以下、クローン性エクスパンドと称す)。
クローン性エクスパンドは、エクスパンド用培地(EM)に低密度で細胞を播き、低濃度血清条件で行った。BM−MSCの非クローン化株の培養は、10%のFBSを含むGM中に高密度で播き行い、コントロール(非クローン性エクスパンド)群とした。
クローン性エクスパンドの方法の詳細を以下に記す。
0.5~1×103/cm2のBM−MSCを5mlのEMを含む培養フラスコ中で培養し(5%CO2、37℃)、細胞が50~60%コンフルエントに達するまで72時間ごとに培地を交換した。細胞をEDTAを含む0.25%トリプシンで懸濁し、DPBSで2回洗浄し、0.5~1×103/cm2の密度でEM中に再懸濁した。得られた細胞をpassage 1とした。
非クローン性エクスパンドの詳細を以下に記す。
1×104/cm2のBM−MSCを5mlのGMを含む培養フラスコ中で培養し(5%CO2、37℃)、細胞が50~60%コンフルエントに達するまで72時間ごとに培地を交換した。
細胞生存率は、トリパンブルーを用いて算出した。
エクスパンドの間それぞれのサブクローニング前に少なくとも90%の生存率を有していることを確認した。
クローン性エクスパンドにより得られた細胞については、GPR40の発現が陽性であることを確認した上で、本発明の骨髄由来幹細胞とした。
骨髄由来間葉系幹細胞の神経への分化
0.5~1×105の骨髄由来間葉系幹細胞を5mlのFBSを含まないニューロン培地(NM)を含む細胞培養フラスコ(25cm2)中で培養した(5%CO2、37℃)。NMは、Neurobasal Media(Invitrogen、GIBCO、L−alanyl−L−glutamine a dipeptide substitute for L−glutamine(Invitrogen、GIBCO、GLUTAMAX、35050061)、N−2Plus Media Supplement(R&D Systems、AR003)、1% Antibiotic−Antimycotic(Invitrogen、GIBCO)を含んでいた。この際、bFGF(basic fibroblast growth factor)を含む条件(bFGF単独群)、及びbFGFとDHAを含む条件(DHA+bFGF群)で培養を行った。
bFGF(Sigma−Aldrich)は10ng/mlの濃度で用いた。DHAはBSA(ウシ血清アルブミン)との複合体の形態で最終濃度10μMで用いた(BSA:DHA複合体)。すなわち、25mgの乾燥DHA(分子量328.5)を含む容器に1mlの99%エタノールを添加し、4つの1mlの滅菌エッペンドルフチューブに分注し、真空エバポレータでエバポレーションした(それぞれのチューブに6.25mgのDHAを含む)。0.5gの遊離脂肪酸不含BSAパウダーを3.13mlの滅菌した2回蒸留水で溶解した(2.4mM)。前記の6.25mgのDHAを25μlの0.1M NaOHに溶解し、1.9mlの2.4mM遊離脂肪酸不含BSAを添加し、50℃で5分間インキュベートし、10mM(×1000)のBSA:DHA複合体ストック溶液を得た。該ストック溶液は、−20℃で凍結保存し、2週間以内に使用した。
骨髄由来間葉系幹細胞の脂肪細胞(adipocyte)、骨芽細胞(osteoblast)及び軟骨細胞(chondrocyte)への分化
脂肪細胞への分化
骨髄由来間葉系幹細胞を脂肪細胞誘導/維持培地(Cambrex Bio Science)を用いて3サイクルのインキュベーションを行った。すなわち、脂肪細胞誘導培地を用いて4日間培養し、次いで脂肪細胞維持培地を用いて3日間培養した。この誘導/維持を3サイクル繰り返した後、さらに脂肪細胞維持培地を用いて7日間培養した。
骨芽細胞への分化
コンフルエントに達していない骨髄由来間葉系幹細胞を骨芽誘導培地(Cambrex Bio Science)を用いて形態変化が認められるまで5週間培養した。骨芽誘導培地は3~4日ごとに交換した。
軟骨細胞への分化
骨髄由来間葉系幹細胞を軟骨培地(Cambrex Bio Science)に添加し、2~3日ごとに培地を交換し、5週間培養した。
骨髄由来間葉系幹細胞のFACS分析
骨髄由来間葉系幹細胞をDPBSで洗浄し、EDTAを含む0.25%トリプシンを用いて剥がした。回収した細胞をFITC(fluorescein isothiocyanate)又はPE(phycoerythrin)結合抗ヒト霊長類CD3、CD4、CD8、CD14、CD29、CD31、CD34、CD45(BD Biosciences)抗体、抗ヒトCD90(Biotrend)、CD73(BD Pharmingen)及びCD105(Serotec)抗体を用いて染色し、FACScan(Becton Dickinson)を用いて分析した。
免疫蛍光分析
増殖させた骨髄由来間葉系幹細胞を、4%パラホルムアルデヒド(PFA)で、室温又は20℃のメタノール中で15分間固定し、免疫蛍光染色を行った。
用いた一次抗体は、ウサギポリクローナル抗GPR40抗体(1:100)、マウスモノクローナル抗GPR40抗体(1:250、TransGenic Inc)、マウスモノクローナル抗nestin抗体(1:200、Chemicon、Millipore)、マウスモノクローナル抗ニューロンβIII−ツブリン抗体(1:500、Covance、Clone Tuj1、MMS−435P)、マウスモノクローナル抗神経フィラメント中鎖(NF−M)抗体(1:1000、Chemicon,Millipore)、ウサギ抗Map2抗体であった。二次抗体としては、緑色蛍光の抗マウスAlexaFluor488(Invitrogen)及び抗ウサギAlexa Fluor488(Invitrogen)並びに赤色蛍光の抗ウサギAlexa Flour546(Invitrogen)及び抗マウスAlexa Flour546(Invitrogen)であった。
デジタルイメージは、共焦点レーザ顕微鏡(LSM510;カールツァイス)及びLSM510ソフトウェア(バージョン3.2SP2、カールツァイス)を用いて得た。全視野の陽性細胞をDAPI標識細胞核の総数に対する%として得た。
ウエスタンブロット分析
EDTAを含む0.25%トリプシンを用いて剥がした骨髄由来間葉系幹細胞から遠心分離により細胞ペレットを得て、RIPAバッファー(Sigma−Aldrich)及びProtease Inhibitor Cocktail(Sigma−Aldrich)を用いて懸濁した(GPR40を含む培養の場合は、さらに0.1%のTriton−Xを添加)。次いで遠心分離し、タンパク質を抽出した。タンパク質濃度はBradfordアッセイにより測定した。
各サンプルのタンパク量を合わせて、ウエスタンブロット分析を行った。用いた抗体は、マウスモノクローナル抗GPR40抗体(1:1000、TransGenic Inc.、Clone No.G16)、ウサギポリクローナル抗GPR40抗体(1:1000)、マウスモノクローナル抗nestin抗体(1:1000、Chemicon、Millipore)、マウスモノクローナル抗βIIIツブリン抗体(1:500、Sigma−Aldrich、Clone SDL.3D10、T8660)、ウサギ抗Map2抗体(1:2000、Chemicon、Millipore)、及びマウスモノクローナル抗NF−M抗体(1:1000、Chemicon、Millipore)であった。
細胞周期分析
骨髄由来間葉系幹細胞を10μMのBrdU(Sigma−Aldrich)と共に2時間インキュベートし、DPBSを用いて10分間、2回洗浄し、ラット抗BrdU及びマウス抗Ki67一次抗体を用いて免疫染色した。表現型分布の評価は分化誘導の24及び72時間後にレーザ共焦点顕微鏡を用いて行った。
半定量RT−PCR
1×106個の骨髄由来幹細胞からトータルRNAをTRI Reagent(SIgma−Aldrich)を用いて採取し、First−Strand Synthesis System(Invitrogen,SuperScript III)を用いて1μgのトータルRNAから逆転写を行った。遺伝子特異的プライマーは、NCBI Primer−BLASTソフトウェア(http://www.ncbi.nlm.nih.gov/tools/primer−blast/)及びNCBI参照配列((Macaca mulatta Genome Sequencing Consorium(Mmul_051212、2006年2月、全ゲノムショットガン配列(http://www.hgsc.bcm.tmc.edu/projects/rmacaque/))を用いて作製した。RT−PCRは、Platinum Taq DNA Polymerase High Fidelity(Invitrogen)及びThermal Cycler(Applied Biosystems)を用いて行った。用いた特異的プライマー配列を表2に示す。
クローン性エクスパンドにより得られた骨髄由来間葉系幹細胞の特徴
クローン性エクスパンドにより得られた骨髄由来間葉系幹細胞は、Donimiciらが定めた多能性細胞の基準(Dominici M et al.,Cytotherapy,9,315−7,2006)を満たしていた。すなわち、特徴的な表面分子を有しており、3胚葉に分化し、50継代以上にわたってセルフリニューアル(自己複製)能を有していた。
骨髄由来間葉系幹細胞をフローサイトメーターを用いて評価した結果を図2に示す。CD3、CD4、CD8などのリンパ球マーカー、内皮細胞マーカーであるCD31、並びに造血細胞マーカーであるCD14、CD34、及びCD45については陰性であった。一方、CD29及びCD90は強い陽性を示し、CD73及びCD105は弱い陽性を示した。CD14及びCD31が陰性であることは、クローン性エクスパンドにより得られた細胞中にマクロファージや内皮細胞が含まれないことを示す。
10%血清条件で高密度でのエクスパンドにより得られた非クローン性エクスパンドに対して、低血清条件で、低密度でエクスパンドした、ニホンザルの骨髄由来間葉系幹細胞の単一細胞から得られたコロニーは、顕著なコロニー形成を示す上に、3回継代後にはサブカルチャーした後も増殖能が認められた(図3)。クローン性エクスパンドにより得られた骨髄由来間葉系幹細胞は多能性ストローマ細胞の特徴を示し、約50継代にわたって3胚葉への分化能を維持していた(図1A、B、C)。すなわち、軟骨細胞への分化はパラフィン包埋切片を用いたアルシャン・ブルー染色により確認された(図1A)。脂肪細胞誘導の4週間後にオイル・レッド0染色により脂肪細胞への分化が確認された(図1B)。さらに、骨芽細胞への分化はフォン・コッサ染色により確認された(図1C)。
増殖中又は分化した骨髄由来間葉系幹細胞におけるGPR40レセプター発現
増殖中の細胞及び神経細胞へ分化した細胞のGPR40 mRNA及びタンパク質の発現を免疫組織化学(図4A、B、C、D)、RT−PCR(図5及び7)、並びにウエスタンブロット(図6)により分析した。EM中で増殖中の細胞は、安定的なGPR40の発現が認められた。一方、ニューロン培地を用いた場合、GPR40産生は減弱した(図4A)。bFGF単独群(図4B)とbFGF+DHA群(図4D)による神経誘導の間でGPR40発現に差が認められた。すなわち、bFGF単独の場合、GPR40の免疫染色性は最も高く、bFGF+DHAを用いた場合、免疫染色性は低下した。これは、GPR40レセプターにDHAが結合しGPR40レセプターが活性化したために細胞内へと移動(receptor internalization)したためであると解された。サイトカインで誘導される神経分化の過程でのGPR40発現に関して、DHA依存的神経表現型獲得の程度を調べるために、神経誘導の前に幹細胞をEM又はNMで培養し、結果を比較した。
一方、DHA単独の場合、GPR40の発現は有意に低かった(図5~7)。細胞質の分布は少なく、細胞膜上の免疫蛍光シグナルも認められなかった(図2C)。DHA+bFGFの場合でも、GPR40発現のコントロールと比べて有意な変化は認められなかった。DHA+bFGF群と、DHA単独群を比べると、DHA+bFGF群でGPR40発現が有意に低かった(図5~7)。
増殖中又は分化した骨髄由来間葉系幹細胞における未成熟神経細胞マーカーの発現
EMでの増殖中のBM−MSCのnestin及び神経βIII−ツブリン(Tuj1)の発現は弱かった。血清不含NM中で72時間増殖させた骨髄由来間葉系幹細胞において、nestinとβIII−ツブリンの両方の発現が認められた(図8A、B、C、D)。免疫蛍光染色の結果より、2つの条件での神経誘導の結果に差があることがわかった。DHA単独群では調べたマーカー発現の変動は認められなかった(図8C、図9~11)。一方、EM中でbFGFと共に増殖させた骨髄由来間葉系幹細胞はnestinのアップレギュレーションとβIII−ツブリンのわずかな発現が認められ、一方、bFGF+DHAで誘導させた骨髄由来間葉系幹細胞は前駆マーカーのnestinの発現は弱く、未成熟神経マーカーのβIII−ツブリンのアップレギュレーションが認められた(図10)。RT−PCR(図9及び11)及びウエスタンブロット(図10)の結果は免疫蛍光染色の結果と一致し、nestin及びβIII−ツブリンの有意に異なるレベルの発現を示した。神経誘導前にNMで増殖させた骨髄由来間葉系幹細胞はbFGF単独及びbFGF+DHA誘導条件の間で有意の差はなかった。
分化した骨髄由来間葉系幹細胞における成熟神経マーカーの発現
bFGF単独及びbFGF+DHA誘導条件での神経誘導の1週間後に、成熟神経マーカーであるNF−M及びMap2の発現を調べた。通常の培地で培養した骨髄由来間葉系幹細胞もDHA単独で培養した骨髄由来間葉系幹細胞も成熟神経マーカーの発現は、特にタンパク質レベルで認められなかった(図13~15)。しかしながら、bFGF単独群とbFGF+DHA群では、成熟神経マーカーの発現が認められた(図13~15)。bFGF単独群とbFGF+DHA群ではNF−M及びMap2 mRNAを誘導し、bFGF単独群は有意なMap2タンパク質発現を誘導しなかった。さらに、DHA+bFGF群ではNF−Mレベルは、有意にMap2レベルより高かった(図14)。誘導の前にEM中で増殖させた骨髄由来間葉系幹細胞は小さな細胞体より長い神経突起が伸びているという独特な形態を示し(図12)、一方、NM中で増殖させた骨髄由来間葉系幹細胞は線維芽細胞のような形態を呈し、突起は短かった。
分化した骨髄由来間葉系幹細胞の細胞周期分析
BrdUはS期の細胞に取り込まれ、Ki67は増殖にある細胞全てに取り込まれる。免疫2重染色により、細胞周期から外れたKi67−/BrdU+細胞を計測した(図16A、B、C、E)。BrdU取り込みの24時間後では、コントロールとbFGF、DHA及びbFGF/DHAの4群間で有意差は認められなかった。しかし、神経分化を誘導した72時間後には、コントロール群と比べbFGF単独群(図16B)において骨髄由来間葉系幹細胞の増殖率は低下し、この傾向はことにbFGF+DHA群で顕著であった(図16C)。つまり、細胞周期を外れた細胞はコントロール群と比べbFGF+DHA群で激増していた(図17)。
参考例 in vivoにおけるGRP40のニューロン新生への役割
一過性脳虚血負荷により促進される海馬のニューロン新生サルモデルを用いて、GPR40とリン酸化cAMP反応エレメント結合タンパク質(phosphorylated cAMP response element−binding protein;pCREB)との位置関係や成体の神経形成、学習と記憶に関与する転写因子について検討を行った。さらに、脳由来神経栄養因子(BDNF)及びその受容体トロポミオシン受容体キナーゼB(TrkB)(これらのいずれもpCREBの遺伝子トランスクリプトの下流に存在している)についても検討を行った。
pCREBの発現はウエスタンブロットで検索したところ、一過性全脳虚血負荷後に顕著にアップレギュレートしており、海馬におけるニューロン新生の亢進と時期的に相関していた。免疫蛍光顕微鏡観察により、GPR40とpCREBの局在パターンが完全に対応していることがわかった。両者は成熟ニューロンにおいても新生ニューロンにおいても共発現し、下歯状回(SGZ:subgranular zone)に存在する星状膠細胞においても同様であった。GPR40/pCREB共陽性細胞はSGZにおいて、虚血後15日で顕著に増加した。プロBDNFは虚血後9日目で最大になったが、成熟BDNF(mBDNF)及びTrkB受容体はウエスタンブロットで確認したところ大きな変化は認められなかった。免疫蛍光顕微鏡観察により、新生ニューロンにおいてBDNFが発現するが、TrkBは発現しないことがわかった。これらの結果は、PUFA、GPR40、pCREB及びBDNFは同じシグナル伝達系に密接に関与し、霊長類の成体ニューロン新生ニッチにおけるニューロン分化に関与していることを示している。
一過性の虚血負荷後に生じるSGZにおける成体のニューロン新生を促進するシグナルに関し、本発明者は遊離の脂肪酸受容体であるGPR40の関連を示唆した。海馬のニューロン新生ニッチにおいて、GPR40は正常(非虚血)成体ニホンザルのSGZに存在する星状膠細胞におけるのと同様に成熟ニューロンにおいて、(神経の又はニューロンの)前駆細胞として見出された。さらに、虚血促進成体ニューロン新生サルモデルを用いて、GPR40が虚血の後に特にSGZの新生ニューロンにおいてアップレギュレートされることを見出した。これらの知見は、GPR40が成体におけるニューロン新生に関与し、PUFAシグナルを導く主要な因子であることを示唆する。さらに、最近の研究でARA又はDHAは、GPR4−PLC/IP3(フォスフォリパーゼC/イノシトール3リン酸)シグナル伝達系の活性化を通して、GPR40遺伝子で形質転換されたPC12細胞又はラット胎児能神経幹細胞において、細胞内Ca2+を増加させることがわかった。
ニューロン新生ニッチにおけるGPR40の発現は最近になって、成体ニューロン新生の虚血サルモデルを用いて見出された。同様の実験により、pCREBの発現パターンをプロファイリングし、pCREBの細胞内分布はGPR40の海馬ニューロン新生ニッチにおけるそれと同様であることがわかった。GPR40及びpCREBタンパク質は、歯状回(DG)の顆粒細胞層(GCL)の成熟ニューロンのほとんどすべてと新生ニューロンの一部において、そしてSGZの星状膠細胞においても共分布していた。さらに、pCREB及びGPR40のいずれも同様に虚血の2週間後にアップレギュレートされ、そのピークは15日目であった。これらの知見より、GPR40及びpCREBは機能的に関連しており、PUFAの効果を導く同じシグナル伝達系において作用し得ることを示している。
上記の検討は、GPR40レセプターはDHAに代表されるPUFAの信号を受け、重要な転写因子の一つであるCREB(cAMP response element−binding protein)のリン酸化をきたし、最終的に、脳由来神経栄養因子(brain−derived neurotrophic factor:BDNF)を産生することで、新生ニューロンの分化やシナプスの可塑性に関与している可能性が高いことを示している。
すなわち、GPR40はin vivoにおいても、PUFAのシグナルを伝達し、神経幹細胞を分化させること、GPR40陽性の骨髄由来間葉系多能性幹細胞はin vivoでのニューロン新生に関与していることがわかった。 1. Examination of GPR40 positive bone marrow-derived mesenchymal pluripotent stem cells Method Bone Marrow Cell Collection Kusida T. et al. From 3 Japanese macaques (Macaca fuscata), 2 to 3 years old and 3 to 4 kg in weight, provided by Japan BioResource (National BioResource Project, Okazaki Institute of Physiology). et al, I. et al. Stem Cells. (2002) 20: 155-162.
Isolation of Bone Marrow-Derived Stem Cells from Monkey BM-MSC (Bone Marlow-Derived Messychimalal Cell) Table 1 shows how to use the medium in this example.
Fresh pipetted bone marrow cells (BMC) were gently overlaid on Density Gradient Media (Axis-Shield) to obtain a single cell suspension, which was centrifuged for 30 minutes at 150 × 10 rpm, 20 ° C. Next, the mononuclear bone marrow cells collected from the interface of the whole bone marrow cell sample obtained by centrifuging the mononuclear cell fraction were adhered to plastic to obtain a BM-MSC (Bone marrow-derived mechanicalmal cell). That is, bone marrow mononuclear cells collected by density gradient centrifugation were treated with 5 ml of growth medium (GM) (Minimum Essential Medium (MEM), Alpha Medium GlutaMAX (Invitrogen, GIBCO), 10-15% FBS (fetal bovine serum) and Resuspended at 1 × 10 4 cells / cm 2 in growth medium (GM) containing 1% Antibiotic-Antilytic (Invitrogen, GIBCO) and cultured for 24-48 hours, half of the medium every 24 hours. Thereafter, cells other than single-adherent cells showing the form of fibroblasts were discarded, and half of the medium was replaced every 72 hours using GM and cultured for 9 ± 2 days. Reached ~ 60% confluence.
The cells were then cloned and clones were obtained. Adhered bone marrow mononuclear cells were detached using 0.25% trypsin containing EDTA and serially diluted into 48 well plates containing GM. After 8 hours, wells containing 10 or fewer adherent cells were further expanded. Colonies formed at 7 ± 1 days, then trypsinized and transferred to 24-well plates and 3 cm dishes. Three clones were established from each of the three Japanese macaques (hereinafter referred to as clonal expands).
Clonal expansion was performed under low-concentration serum conditions by seeding cells at low density in an expansion medium (EM). Non-cloned strains of BM-MSC were cultured at a high density in GM containing 10% FBS, and used as a control (non-clonal expand) group.
Details of the clonal expansion method are described below.
0.5-1 × 10 3 / cm 2 of BM-MSC is cultured in a culture flask containing 5 ml of EM (5% CO 2 , 37 ° C.) every 72 hours until the cells reach 50-60% confluence. The medium was changed. The cells were suspended in 0.25% trypsin containing EDTA, washed twice with DPBS, and resuspended in EM at a density of 0.5-1 × 10 3 / cm 2 . The obtained cells were designated as passage 1.
Details of the non-clonal expand are described below.
1 × 10 4 / cm 2 of BM-MSC is cultured in a culture flask containing 5 ml of GM (5% CO 2 , 37 ° C.), and the medium is changed every 72 hours until cells reach 50-60% confluence. did.
Cell viability was calculated using trypan blue.
It was confirmed to have at least 90% viability prior to each subcloning during expansion.
The cells obtained by clonal expansion were confirmed to be positive for GPR40 expression, and then used as bone marrow-derived stem cells of the present invention.
Differentiation of bone marrow-derived mesenchymal stem cells into neurons 0.5 to 1 × 10 5 bone marrow-derived mesenchymal stem cells are cultured in a cell culture flask (25 cm 2 ) containing 5 ml of FBS-free neuron medium (NM). (5% CO 2 , 37 ° C.). NM is Neurobasal Media (Invitrogen, GIBCO, L-alanyl-L-glutamine a dipeptide substate for L-glutamine (Invitrogen, GIBCO, GLUTAMAX, -2505S). Anticotic (Invitrogen, GIBCO) was included, and culture was performed under conditions including bFGF (basic fibroblast growth factor) (bFGF alone group) and conditions including bFGF and DHA (DHA + bFGF group).
bFGF (Sigma-Aldrich) was used at a concentration of 10 ng / ml. DHA was used at a final concentration of 10 μM in the form of a complex with BSA (bovine serum albumin) (BSA: DHA complex). That is, 1 ml of 99% ethanol was added to a container containing 25 mg of dry DHA (molecular weight 328.5), dispensed into four 1 ml sterile Eppendorf tubes, and evaporated in a vacuum evaporator (6. Including 25 mg DHA). 0.5 g of free fatty acid free BSA powder was dissolved in 3.13 ml of sterile double distilled water (2.4 mM). 6.25 mg of DHA is dissolved in 25 μl of 0.1 M NaOH, 1.9 ml of 2.4 mM free fatty acid free BSA is added, incubated at 50 ° C. for 5 minutes, 10 mM (× 1000) BSA: A DHA complex stock solution was obtained. The stock solution was stored frozen at −20 ° C. and used within 2 weeks.
Differentiation of bone marrow-derived mesenchymal stem cells into adipocytes, osteoblasts and chondrocytes differentiated into adipocytes Bone marrow-derived mesenchymal stem cells from adipocyte induction / maintenance medium (Cambrex Bio Science) ) Was used for 3 cycles of incubation. That is, the cells were cultured for 4 days using an adipocyte induction medium, and then cultured for 3 days using an adipocyte maintenance medium. This induction / maintenance was repeated for 3 cycles, and further cultured for 7 days using an adipocyte maintenance medium.
Differentiation into osteoblasts Bone marrow-derived mesenchymal stem cells that did not reach confluence were cultured for 5 weeks using an osteoblast induction medium (Cambrex Bio Science) until morphological changes were observed. The osteoblast induction medium was changed every 3-4 days.
Differentiation into chondrocytes Bone marrow-derived mesenchymal stem cells were added to a cartilage medium (Cambrex Bio Science), and the medium was changed every 2-3 days and cultured for 5 weeks.
FACS analysis of bone marrow-derived mesenchymal stem cells Bone marrow-derived mesenchymal stem cells were washed with DPBS and detached using 0.25% trypsin containing EDTA. The collected cells were treated with FITC (fluorescein isothiocyanate) or PE (phycoerythrin) -conjugated anti-human primate CD3, CD4, CD8, CD14, CD29, CD31, CD34, CD45 (BD Biosciences) antibody, anti-human CD90 (Biotrend), CD73 (BD). Pharmingen) and CD105 (Serotec) antibodies and stained using FACScan (Becton Dickinson).
Immunofluorescence analysis Proliferated bone marrow-derived mesenchymal stem cells were fixed with 4% paraformaldehyde (PFA) in methanol at room temperature or 20 ° C. for 15 minutes, and immunofluorescent staining was performed.
Primary antibodies used were rabbit polyclonal anti-GPR40 antibody (1: 100), mouse monoclonal anti-GPR40 antibody (1: 250, TransGenic Inc), mouse monoclonal anti-nestin antibody (1: 200, Chemicon, Millipore), mouse monoclonal anti-neuron. βIII-tubulin antibody (1: 500, Covance, Clone Tuj1, MMS-435P), mouse monoclonal anti-neurofilament medium chain (NF-M) antibody (1: 1000, Chemicon, Millipore), and rabbit anti-Map2 antibody. Secondary antibodies were green fluorescent anti-mouse Alexa Fluor 488 (Invitrogen) and anti-rabbit Alexa Fluor 488 (Invitrogen) and red fluorescent anti-rabbit Alexa Fluor 546 (Invitrogen) and anti-mouse Alexa Fluor 546 (Invitrogen).
Digital images were obtained using a confocal laser microscope (LSM510; Carl Zeiss) and LSM510 software (version 3.2SP2, Carl Zeiss). All fields of positive cells were obtained as a percentage of the total number of DAPI-labeled cell nuclei.
Western blot analysis Cell pellets were obtained by centrifugation from bone marrow-derived mesenchymal stem cells peeled using 0.25% trypsin containing EDTA, and then used with RIPA buffer (Sigma-Aldrich) and Protease Inhibitor Cocktail (Sigma-Aldrich) (In the case of culture containing GPR40, 0.1% Triton-X was further added). It was then centrifuged to extract the protein. Protein concentration was measured by Bradford assay.
Western blot analysis was performed with the amount of protein in each sample combined. The antibodies used were mouse monoclonal anti-GPR40 antibody (1: 1000, TransGenic Inc., Clone No. G16), rabbit polyclonal anti-GPR40 antibody (1: 1000), mouse monoclonal anti-nestin antibody (1: 1000, Chemicon, Millipore). Mouse monoclonal anti-βIII tubulin antibody (1: 500, Sigma-Aldrich, Clone SDL.3D10, T8660), rabbit anti-Map2 antibody (1: 2000, Chemicon, Millipore), and mouse monoclonal anti-NF-M antibody (1: 1000). Chemicon, Millipore).
Cell cycle analysis Bone marrow-derived mesenchymal stem cells were incubated with 10 μM BrdU (Sigma-Aldrich) for 2 hours, washed twice with DPBS for 10 minutes, and immunostained with rat anti-BrdU and mouse anti-Ki67 primary antibodies did. Evaluation of phenotypic distribution was performed using a laser confocal microscope 24 and 72 hours after induction of differentiation.
Semi-quantitative RT-PCR
Total RNA was collected from 1 × 10 6 bone marrow-derived stem cells using TRI Reagent (SIgma-Aldrich), and reverse transcription was performed from 1 μg of total RNA using First-Strand Synthesis System (Invitrogen, SuperScript III). . Gene-specific primers can be obtained from the NCBI Primer-BLAST software (http://www.ncbi.nlm.nih.gov/tools/primer-blast/) and the NCBI reference sequence ((Macaca multitta Genome5 The whole genome shotgun sequence (http://www.hgsc.bcm.tmc.edu/projects/rmaqueque/) was used to create RT-PCR, which is Platinum Taq DNA Polymerase High Fidelity (Invitrogen) and Thr. This was done using a Cycler (Applied Biosystems). The primer sequences are shown in Table 2.
The results of evaluation of bone marrow-derived mesenchymal stem cells using a flow cytometer are shown in FIG. It was negative for lymphocyte markers such as CD3, CD4, CD8, CD31 which is an endothelial cell marker, and CD14, CD34 and CD45 which are hematopoietic cell markers. On the other hand, CD29 and CD90 showed strong positive, and CD73 and CD105 showed weak positive. That CD14 and CD31 are negative indicates that macrophages and endothelial cells are not contained in the cells obtained by clonal expansion.
Colonies obtained from single cells of Japanese monkey bone marrow-derived mesenchymal stem cells expanded at low density under low serum conditions versus non-clonal expands obtained at high density at 10% serum conditions In addition to showing remarkable colony formation, proliferation ability was recognized after subculture after 3 passages (FIG. 3). Bone marrow-derived mesenchymal stem cells obtained by clonal expansion showed the characteristics of pluripotent stromal cells and maintained the differentiation ability into three germ layers for about 50 passages (FIGS. 1A, B, and C). That is, differentiation into chondrocytes was confirmed by Alcian blue staining using paraffin-embedded sections (FIG. 1A). After 4 weeks of adipocyte induction, differentiation into adipocytes was confirmed by
Expression of GPR40 receptor in proliferating or differentiated bone marrow-derived mesenchymal stem cells Expression of GPR40 mRNA and protein in proliferating cells and differentiated cells into neurons was determined by immunohistochemistry (FIGS. 4A, B, C, D), RT- Analysis was by PCR (Figures 5 and 7) and Western blot (Figure 6). Stable GPR40 expression was observed in cells growing in EM. On the other hand, when neuron medium was used, GPR40 production was attenuated (FIG. 4A). There was a difference in GPR40 expression between nerve induction by bFGF alone group (FIG. 4B) and bFGF + DHA group (FIG. 4D). That is, in the case of bFGF alone, the immunostaining property of GPR40 was the highest, and the immunostaining property was lowered when bFGF + DHA was used. It was understood that this was because DHA was bound to the GPR40 receptor and the GPR40 receptor was activated, so that it was transferred into the cell (receptor internalization). Regarding GPR40 expression during the process of neuronal differentiation induced by cytokines, stem cells were cultured in EM or NM before nerve induction and the results were compared in order to examine the extent of DHA-dependent neuronal phenotype acquisition.
On the other hand, in the case of DHA alone, the expression of GPR40 was significantly low (FIGS. 5 to 7). There was little distribution of cytoplasm, and no immunofluorescent signal was observed on the cell membrane (FIG. 2C). Even in the case of DHA + bFGF, no significant change was observed compared to the control of GPR40 expression. When comparing the DHA + bFGF group and the DHA single group, GPR40 expression was significantly lower in the DHA + bFGF group (FIGS. 5 to 7).
Expression of immature neuronal markers in proliferating or differentiated bone marrow-derived mesenchymal stem cells Expression of BM-MSC nestin and neural βIII-tubulin (Tuj1) during proliferation in EM was weak. Expression of both nestin and βIII-tubulin was observed in bone marrow-derived mesenchymal stem cells grown in serum-free NM for 72 hours (FIGS. 8A, B, C, D). From the results of immunofluorescence staining, it was found that there was a difference in the results of nerve induction under two conditions. No changes in marker expression were observed in the DHA alone group (FIG. 8C, FIGS. 9 to 11). On the other hand, bone marrow-derived mesenchymal stem cells grown with bFGF in EM showed up-regulation of nestin and slight expression of βIII-tubulin, whereas bone marrow-derived mesenchymal stem cells induced with bFGF + DHA are precursor markers. The expression of nestin was weak and up-regulation of immature neuronal marker βIII-tubulin was observed (FIG. 10). RT-PCR (FIGS. 9 and 11) and Western blot (FIG. 10) results were consistent with the immunofluorescence staining results, indicating significantly different levels of expression of nestin and βIII-tubulin. Bone marrow-derived mesenchymal stem cells grown in NM before nerve induction were not significantly different between bFGF alone and bFGF + DHA induction conditions.
Expression of mature nerve markers in differentiated bone marrow-derived mesenchymal stem cells Expression of mature nerve markers NF-M and Map2 was examined one week after nerve induction under bFGF alone and bFGF + DHA induction conditions. In both bone marrow-derived mesenchymal stem cells cultured in a normal medium and bone marrow-derived mesenchymal stem cells cultured in DHA alone, expression of the mature nerve marker was not observed particularly at the protein level (FIGS. 13 to 15). However, expression of mature nerve markers was observed in the bFGF alone group and the bFGF + DHA group (FIGS. 13 to 15). The bFGF alone group and the bFGF + DHA group induced NF-M and Map2 mRNA, and the bFGF alone group did not induce significant Map2 protein expression. Furthermore, the NF-M level was significantly higher than the Map2 level in the DHA + bFGF group (FIG. 14). Bone marrow-derived mesenchymal stem cells grown in EM prior to induction show a unique morphology with longer neurites extending than small cell bodies (Figure 12), whereas bone marrow-derived mesenchymal stem cells grown in NM Leaf stem cells had a fibroblast-like morphology and short processes.
Cell cycle analysis of differentiated bone marrow-derived mesenchymal stem cells BrdU is taken up by cells in S phase, and Ki67 is taken up by all cells in proliferation. Ki67− / BrdU + cells out of the cell cycle were counted by double immunostaining (FIGS. 16A, B, C, E). After 24 hours of BrdU incorporation, no significant difference was observed between the control and the 4 groups of bFGF, DHA and bFGF / DHA. However, 72 hours after induction of neural differentiation, the proliferation rate of bone marrow-derived mesenchymal stem cells decreased in the bFGF alone group (FIG. 16B) compared to the control group, and this tendency was particularly remarkable in the bFGF + DHA group ( FIG. 16C). That is, cells out of the cell cycle increased dramatically in the bFGF + DHA group compared to the control group (FIG. 17).
Reference example Role of GRP40 in neurogenesis in vivo GPR40 and phosphorylated cAMP response element-binding protein using a hippocampal neurogenesis monkey model promoted by transient ischemic stress We investigated the transcriptional factors involved in the positional relationship with pCREB), adult neurogenesis, learning and memory. Furthermore, brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin receptor kinase B (TrkB) (both of which are present downstream of the gene transcript of pCREB) were also examined.
When the expression of pCREB was searched by Western blot, it was remarkably up-regulated after transient global cerebral ischemia and correlated temporally with increased neurogenesis in the hippocampus. It was found by immunofluorescence microscopy that the localization patterns of GPR40 and pCREB correspond completely. Both were co-expressed in mature and newborn neurons, as well as in astrocytes present in the lower dentate gyrus (SGZ). GPR40 / pCREB co-positive cells were markedly increased in
With regard to signals that promote adult neurogenesis in SGZ that occurs after transient ischemic stress, the inventors have suggested an association with GPR40, a free fatty acid receptor. In the hippocampal neurogenesis niche, GPR40 was found as a progenitor (neural or neuronal) in mature neurons as well as in astrocytes present in SGZ of normal (non-ischemic) adult Japanese monkeys. Furthermore, using an ischemia-promoting adult neuronal neonatal monkey model, it was found that GPR40 is upregulated after ischemia, particularly in SGZ neonatal neurons. These findings suggest that GPR40 is involved in neurogenesis in adults and is a major factor leading to PUFA signals. In addition, in recent studies, ARA or DHA has been used to transform PC12 cells or rat embryonic neural stem cells transformed with the GPR40 gene through activation of the GPR4-PLC / IP3 (phospholipase C / inositol triphosphate) signaling system. , It was found to increase intracellular Ca 2+ .
The expression of GPR40 in the neurogenesis niche was recently found using an ischemic monkey model of adult neurogenesis. Similar experiments profiled the expression pattern of pCREB and found that the intracellular distribution of pCREB was similar to that in the hippocampal neurogenesis niche of GPR40. GPR40 and pCREB proteins were co-distributed in almost all mature neurons of the dentate gyrus (DG) granule cell layer (GCL) and some of the newborn neurons, and also in SGZ astrocytes. Furthermore, both pCREB and GPR40 were similarly up-regulated 2 weeks after ischemia, peaking at
In the above study, the GPR40 receptor receives a PUFA signal typified by DHA, and phosphorylates CREB (cAMP response element-binding protein), which is one of important transcription factors. The production of brain-derived neurotrophic factor (BDNF) indicates that it is highly likely to be involved in the differentiation of new neurons and synaptic plasticity.
That is, GPR40 also transmits PUFA signals and differentiates neural stem cells in vivo, and GPR40-positive bone marrow-derived mesenchymal pluripotent stem cells are involved in neurogenesis in vivo. It was.
本発明の幹細胞は、再生医療等の医療に利用することができ、さらに薬剤の効果判定等新たな医薬の開発のツールとしても利用することができる。
本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。
The stem cells of the present invention can be used for medical treatment such as regenerative medicine, and can also be used as a tool for developing new medicines such as determination of drug effects.
All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.
本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。
The stem cells of the present invention can be used for medical treatment such as regenerative medicine, and can also be used as a tool for developing new medicines such as determination of drug effects.
All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.
Claims (15)
- 哺乳動物由来のGPR40陽性の骨髄由来間葉系多能性幹細胞。 A mammalian-derived GPR40-positive bone marrow-derived mesenchymal pluripotent stem cell.
- さらに、CD29陽性、CD90陽性、CD73陽性及びCD105陽性である、請求項1記載の骨髄由来間葉系多能性幹細胞。 Furthermore, the bone marrow-derived mesenchymal pluripotent stem cell according to claim 1, which is CD29 positive, CD90 positive, CD73 positive and CD105 positive.
- さらに、CD3陰性、CD4陰性、CD8陰性、CD14陰性、CD34陰性、CD45陰性及びCD31陰性である、請求項1又は2に記載の骨髄由来間葉系多能性幹細胞。 Furthermore, the bone marrow-derived mesenchymal pluripotent stem cells according to claim 1 or 2, which are CD3 negative, CD4 negative, CD8 negative, CD14 negative, CD34 negative, CD45 negative and CD31 negative.
- 以下の特性を有する、請求項1~3のいずれか1項に記載の骨髄由来間葉系多能性幹細胞:
(i) 癌化しない;
(ii) 3胚葉系へ分化する能力を有する;及び
(iii) セルフリニューアル(自己複製)能を有する。 The bone marrow-derived mesenchymal pluripotent stem cell according to any one of claims 1 to 3, which has the following characteristics:
(I) does not become cancerous;
(Ii) has the ability to differentiate into three germ layers; and (iii) has the ability to self-renew (self-replicating). - 多価不飽和脂肪酸の刺激により神経細胞へと分化し得る、請求項1~4のいずれか1項に記載の骨髄由来間葉系多能性幹細胞。 The bone marrow-derived mesenchymal pluripotent stem cell according to any one of claims 1 to 4, which can be differentiated into a nerve cell by stimulation with a polyunsaturated fatty acid.
- 多価不飽和脂肪酸がドコサヘキサエン酸(DHA)である、請求項5記載の骨髄由来間葉系多能性幹細胞。 The bone marrow-derived mesenchymal pluripotent stem cell according to claim 5, wherein the polyunsaturated fatty acid is docosahexaenoic acid (DHA).
- (i) 骨髄単核細胞を接着培養し、接着した細胞を回収し、
(ii) 回収した細胞から単一細胞由来コロニーを得て、
(iii) 得られたコロニーの細胞をエクスパンド用に調製した培地で低濃度血清条件下で低密度で培養し、エクスパンドし、
(iv) (iii)のエクスパンドした細胞をさらにサブクローン化し、単一クローンとして細胞を得て、
(v) 得られた細胞について、細胞表面のGPR40、CD29、CD90、CD73及びCD105の発現を確認し、GPR40、CD29、CD90、CD73及びCD105の発現が認められるものを幹細胞として得る、ことを含む、請求項1~6のいずれか1項に記載の骨髄由来間葉系多能性幹細胞を単離する方法。 (I) Adherent culture of bone marrow mononuclear cells, collecting the adhered cells,
(Ii) obtaining a single cell-derived colony from the collected cells;
(Iii) The cells of the obtained colony are cultured at a low density under low-concentration serum conditions in a medium prepared for expansion, expanded,
(Iv) The expanded cell of (iii) is further subcloned to obtain the cell as a single clone,
(V) confirming the expression of GPR40, CD29, CD90, CD73, and CD105 on the cell surface of the obtained cells, and obtaining stem cells that express GPR40, CD29, CD90, CD73, and CD105. A method for isolating bone marrow-derived mesenchymal pluripotent stem cells according to any one of claims 1 to 6. - 請求項7記載の骨髄由来間葉系多能性幹細胞を単離する方法であって、さらに、細胞表面のCD3、CD4、CD8、CD14、CD34、CD45及びCD31の発現を確認し、CD3陰性、CD4陰性、CD8陰性、CD14陰性、CD34陰性、CD45陰性及びCD31陰性であるものを得ることを含む方法。 A method for isolating bone marrow-derived mesenchymal pluripotent stem cells according to claim 7, further comprising confirming the expression of CD3, CD4, CD8, CD14, CD34, CD45 and CD31 on the cell surface, and negative for CD3, Obtaining a CD4 negative, a CD8 negative, a CD14 negative, a CD34 negative, a CD45 negative and a CD31 negative.
- 骨髄単核細胞から、GPR40陽性の細胞を単離することを含む、請求項1~6のいずれか1項に記載の骨髄由来間葉系多能性幹細胞の単離方法。 The method for isolating bone marrow-derived mesenchymal pluripotent stem cells according to any one of claims 1 to 6, comprising isolating GPR40 positive cells from bone marrow mononuclear cells.
- さらに、CD29陽性、CD90陽性、CD73陽性及びCD105陽性である細胞を単離することを含む、請求項9記載の骨髄由来間葉系多能性幹細胞の単離方法。 The method for isolating bone marrow-derived mesenchymal pluripotent stem cells according to claim 9, further comprising isolating cells that are CD29 positive, CD90 positive, CD73 positive, and CD105 positive.
- さらに、CD3陰性、CD4陰性、CD8陰性、CD14陰性、CD34陰性、CD45陰性及びCD31陰性である細胞を単離することを含む、請求項10記載の骨髄由来間葉系多能性幹細胞の単離方法。 The isolation of bone marrow-derived mesenchymal pluripotent stem cells according to claim 10, further comprising isolating cells that are CD3 negative, CD4 negative, CD8 negative, CD14 negative, CD34 negative, CD45 negative and CD31 negative. Method.
- 請求項1~6のいずれか1項に記載の骨髄由来間葉系多能性幹細胞をin vitroで多価不飽和脂肪酸と接触させて、神経細胞に分化誘導する方法。 A method for inducing differentiation into a nerve cell by contacting the bone marrow-derived mesenchymal pluripotent stem cell according to any one of claims 1 to 6 with a polyunsaturated fatty acid in vitro.
- 多価不飽和脂肪酸がドコサヘキサエン酸(DHA)である、請求項12記載の方法。 The method according to claim 12, wherein the polyunsaturated fatty acid is docosahexaenoic acid (DHA).
- 請求項1~6のいずれか1項に記載の骨髄由来間葉系多能性幹細胞を含む組織再生用組成物。 A composition for tissue regeneration comprising bone marrow-derived mesenchymal pluripotent stem cells according to any one of claims 1 to 6.
- 組織が神経組織、脂肪組織、骨組織又は軟骨組織である、請求項12記載の組織再生用組成物。 The tissue regeneration composition according to claim 12, wherein the tissue is nerve tissue, adipose tissue, bone tissue or cartilage tissue.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011548981A JPWO2011083752A1 (en) | 2010-01-05 | 2010-12-28 | GPR40 positive bone marrow stem cells |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-000736 | 2010-01-05 | ||
JP2010000736 | 2010-01-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011083752A1 true WO2011083752A1 (en) | 2011-07-14 |
Family
ID=44305488
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/073911 WO2011083752A1 (en) | 2010-01-05 | 2010-12-28 | Gpr40-positive bone marrow stem cell |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2011083752A1 (en) |
WO (1) | WO2011083752A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015097713A1 (en) | 2013-11-14 | 2015-07-02 | Cadila Healthcare Limited | Novel heterocyclic compounds |
CN112662622A (en) * | 2021-01-06 | 2021-04-16 | 上海南滨江细胞生物科技有限公司 | Extraction method of bone marrow stromal stem cells for treating decompensated liver cirrhosis |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009145116A (en) * | 2007-12-12 | 2009-07-02 | Kanazawa Univ | Evaluation method of brain function improving medicine utilizing gpr 40 |
-
2010
- 2010-12-28 WO PCT/JP2010/073911 patent/WO2011083752A1/en active Application Filing
- 2010-12-28 JP JP2011548981A patent/JPWO2011083752A1/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009145116A (en) * | 2007-12-12 | 2009-07-02 | Kanazawa Univ | Evaluation method of brain function improving medicine utilizing gpr 40 |
Non-Patent Citations (8)
Title |
---|
BRISCOE, C.P. ET AL.: "The orphan G protein- coupled receptor GPR40 is activated by medium and long chain fatty acids", J.BIOL.CHEM., vol. 278, 2003, pages 11303 - 11311, XP002279348, DOI: doi:10.1074/jbc.M211495200 * |
HANSEN, A. ET AL.: "Sensitive and specific method for detecting G protein-coupled receptor mRNAs", NATURE METHODS, vol. 4, no. 1, 2007, pages 35 - 37 * |
IZADPANAH, R. ET AL.: "Characterization of multipotent mesenchymal stem cells from the bone marrow of rhesus macaques", STEM CELLS DEV., vol. 14, no. 4, 2005, pages 440 - 451, XP009118573, DOI: doi:10.1089/scd.2005.14.440 * |
JIANG, Y. ET AL.: "Pluripotency of mesenchymal stem cells derived from adult marrow", NATURE, vol. 418, 2002, pages 41 - 49, XP002559664, DOI: doi:10.1038/nature00870 * |
KAN, I. ET AL.: "Docosahexaenoic acid and archidonic acid are fundamental supplements for the induction of neuronal differentiation", J.LIPID RES., vol. 48, 2007, pages 513 - 517 * |
LI, H. ET AL.: "Adult bone-marrow-derived mesenchymal stem cells contribute to wound healing of skin appendages", CELL TISSUE RES., vol. 326, 2006, pages 725 - 736, XP019460967, DOI: doi:10.1007/s00441-006-0270-9 * |
LIU, F. ET AL.: "Changes in the expression of CD106, osteogenic genes, and transcription factors involved in the osteogenic differentiation of human bone marrow mesenchymal stem cells", J.BONE MINER. METABO., vol. 26, no. 4, 2008, pages 312 - 320, XP019634834 * |
POH, K-K. ET AL.: "Repeated direct endomyocardial transplantation of allogeneic mesenchymal stem cells: Safety of a high dose, ''off-the-shelf'', cellular cardiomyoplasty strategy", INT.J.CARDIOL., vol. 117, 2007, pages 360 - 364, XP022015228, DOI: doi:10.1016/j.ijcard.2006.04.092 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015097713A1 (en) | 2013-11-14 | 2015-07-02 | Cadila Healthcare Limited | Novel heterocyclic compounds |
US10011609B2 (en) | 2013-11-14 | 2018-07-03 | Cadila Healthcare Limited | Heterocyclic compounds |
US10246470B2 (en) | 2013-11-14 | 2019-04-02 | Cadila Healthcare Limited | Heterocyclic compounds |
CN112662622A (en) * | 2021-01-06 | 2021-04-16 | 上海南滨江细胞生物科技有限公司 | Extraction method of bone marrow stromal stem cells for treating decompensated liver cirrhosis |
Also Published As
Publication number | Publication date |
---|---|
JPWO2011083752A1 (en) | 2013-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Asahina et al. | Mesenchymal origin of hepatic stellate cells, submesothelial cells, and perivascular mesenchymal cells during mouse liver development | |
Cheng et al. | The influence of spheroid formation of human adipose-derived stem cells on chitosan films on stemness and differentiation capabilities | |
Deng et al. | Mesenchymal stem cells spontaneously express neural proteins in culture and are neurogenic after transplantation | |
JP4146802B2 (en) | Dedifferentiated programmable stem cells originating from monocytes and their production and use | |
Arnhold et al. | Human bone marrow stroma cells display certain neural characteristics and integrate in the subventricular compartment after injection into the liquor system | |
JP5649745B2 (en) | A culture method for obtaining and maintaining a pure or enriched population of mammalian neural stem cells and / or neural progenitor cells that are susceptible to differentiation into oligodendrocyte lineage cells in vitro | |
Trivedi et al. | Simultaneous generation of CD34+ primitive hematopoietic cells and CD73+ mesenchymal stem cells from human embryonic stem cells cocultured with murine OP9 stromal cells | |
JP2010042011A (en) | Hematopoietic differentiation of human embryonic stem cell | |
WO2003027281A2 (en) | Pluripotent stem cells originating in skeletal muscle intestinal tissue | |
TW201522636A (en) | Somatic stem cells | |
JP3762975B2 (en) | Monocyte-derived pluripotent cells MOMC | |
Nizzardo et al. | iPSC-derived LewisX+ CXCR4+ β1-integrin+ neural stem cells improve the amyotrophic lateral sclerosis phenotype by preserving motor neurons and muscle innervation in human and rodent models | |
WO2012133942A1 (en) | Pluripotent stem cell capable of being isolated from fat tissue or umbilical cord of biological body | |
KR20050077746A (en) | Method for isolating and culturing multipotent progenitor/stem cells from umbilical cord blood and method for inducing differentiation thereof | |
KR20120006386A (en) | Stem cell derived from first trimester placenta and cellular therapeutic agents comprising the same | |
JP5833126B2 (en) | Amniotic fluid-derived multipotent stem cells and method for producing the same | |
US9139812B2 (en) | CD49F promoting proliferation, multipotency and reprogramming of adult stem cells through PI3K/AKT/GSK3 pathway | |
US11920180B2 (en) | Method for inducing differentiation of pluripotent stem cells in vitro | |
KR20120035801A (en) | Method for expansion and purification of human embryonic stem cell-derived cardiomyocyte | |
JP2022013934A (en) | Method of preparing mesenchymal-like stem cells and mesenchymal-like stem cells prepared thereby | |
WO2011083752A1 (en) | Gpr40-positive bone marrow stem cell | |
Miao et al. | Isolation and characterization of human chorionic membranes mesenchymal stem cells and their neural differentiation | |
Verma et al. | Signal regulatory protein alpha (SIRPA) and kinase domain receptor (KDR) are key expression markers in cardiac specific precursor selection from hADSCs | |
KR100851040B1 (en) | Adult Stem Cells Having an Ability of Differentiation into Pancreas BETA Cells | |
JP3928881B2 (en) | Monocyte-derived pluripotent cells MOMC |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10842262 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2011548981 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10842262 Country of ref document: EP Kind code of ref document: A1 |