WO2011082579A1 - 增强型专用信道传输承载模式的配置方法及系统 - Google Patents

增强型专用信道传输承载模式的配置方法及系统 Download PDF

Info

Publication number
WO2011082579A1
WO2011082579A1 PCT/CN2010/075401 CN2010075401W WO2011082579A1 WO 2011082579 A1 WO2011082579 A1 WO 2011082579A1 CN 2010075401 W CN2010075401 W CN 2010075401W WO 2011082579 A1 WO2011082579 A1 WO 2011082579A1
Authority
WO
WIPO (PCT)
Prior art keywords
dedicated channel
enhanced dedicated
rnc
network element
predetermined network
Prior art date
Application number
PCT/CN2010/075401
Other languages
English (en)
French (fr)
Inventor
程翔
刘霖
柯雅珠
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US13/521,018 priority Critical patent/US8897242B2/en
Priority to EP10841922.7A priority patent/EP2515596B1/en
Priority to BR112012017026A priority patent/BR112012017026A2/pt
Publication of WO2011082579A1 publication Critical patent/WO2011082579A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/12Access point controller devices

Definitions

  • the present invention relates to the field of communications, and in particular to a method and system for configuring an enhanced dedicated channel transmission bearer mode.
  • the goal of high speed uplink packet access technology is to improve capacity and data throughput in the upstream direction and to reduce hysteresis in dedicated channels.
  • a new transport channel is introduced by the high-speed uplink packet access technology:
  • the enhanced dedicated channel improves the implementation of the physical layer and the medium access control layer, and the uplink data rate can theoretically reach up to 5.6 megabits per second.
  • the high-speed uplink packet access technology retains the characteristics of soft handover, and the medium access control protocol data unit received by the air interface is demultiplexed into a medium access control flow, and the above-mentioned enhanced dedicated channel data frame form is from node B to B.
  • Interconnection of type B (IUB) interface or network controller via the radio network controller Interconnection of RNC (IUR) through the media access control flow corresponding to the transport carrier (each media connection
  • the incoming control flow has a corresponding IUB interface and/or IUR interface transport bearer) that is transmitted to the target radio network controller.
  • dual-carrier high-speed uplink packet access technology is expected to be introduced into existing systems, which enables terminals to transmit data on two carriers with high-speed uplink packet access technology, thereby multiplying the uplink data rate.
  • a carrier that includes a high-speed dedicated physical control channel in a dual carrier is called a primary carrier, and another carrier is called a secondary carrier.
  • each layer carrier in the dual carrier has its own independent enhanced dedicated channel activation set.
  • the introduction of dual-carrier high-speed uplink packet access technology requires consideration of the scalability of subsequent multi-carrier (eg, three-carrier, four-carrier).
  • FIG. 1 shows a typical dual-carrier high-speed uplink packet access technology scenario.
  • the terminal uses a dual-carrier high-speed uplink packet access technology to simultaneously transmit data on a primary carrier and a carrier.
  • the primary carrier has its own independent enhanced dedicated channel activation set, including cell 1 under node B1 and cell 3 under node B2.
  • the secondary carrier has its own independent enhanced dedicated channel activation set, including cell 2 under node B1 and cell 4 under node B3.
  • the terminal sends uplink data to the network side through the primary carrier. On the network side, the transmission path of the uplink data is:
  • Cell 1 Node B1 to Radio Network Controller 1;
  • Cell 3 Node B2 to the radio network controller 1.
  • the terminal sends uplink data to the network side through the secondary carrier.
  • the transmission path of the uplink data is:
  • Cell 2 Node B1 to Radio Network Controller 1;
  • an enhanced dedicated channel transmission bearer mode is defined to include "shared mode” or “separated mode".
  • shared mode means that the same Media Access Control (MAC) flow received on all uplink carriers in a multi-carrier is transmitted on one transport bearer;
  • separate mode refers to multi-carrier
  • Each MAC stream received from each of the different uplink carriers is sent on a transport bearer.
  • Uplink multiplexing information may be Empty, or "uplink multiplexing information, ignored by the receiver.
  • the specific manner of transmitting the uplink enhanced dedicated channel data frame carrying the uplink multiplexing information on the selected transport bearer is as shown in FIG. 2.
  • Node B1 receives the same MAC stream -1 on both the primary and secondary carriers, and sends it to the wireless network controller 1 on the same transmission.
  • "uplink multiplexing information" is respectively written as a primary or secondary, indicating that the carrier received for this data frame is a primary carrier or a secondary carrier.
  • the uplink enhanced dedicated channel data frame from the node B3 is received and forwarded to the radio network controller 1, and the uplink enhanced dedicated channel data frame is on the transport bearer-2 and the transport bearer-3.
  • the uplink multiplexing setting in the uplink enhanced dedicated channel data frame is set to indicate that the carrier received by the data frame is the primary carrier.
  • the specific manner of transmitting the uplink enhanced dedicated channel data frame carrying the uplink multiplexing information on the selected transmission bearer is as shown in FIG. Node B1 and wireless network control
  • the IUB interface connected to the device 1 has two different transmission bearers, and the transmission bearer-1 is specifically used to carry the data received on the primary carrier, and the transmission bearer-4 is specifically used to carry the data received on the secondary carrier.
  • the Node B1 transmits an uplink enhanced dedicated channel data frame derived from the primary carrier received data on the transport bearer-1, and transmits an uplink enhanced dedicated channel data frame derived from the secondary carrier received data on the transport bearer-4.
  • the uplink multiplexing information in the uplink enhanced dedicated channel data frame is empty, or the "uplink multiplexing information" is ignored by the receiver.
  • the uplink enhanced dedicated channel data frame from the node B3 is received and forwarded to the radio network controller 1, and the uplink enhanced dedicated channel data frame derived from the main carrier receiving data is used exclusively.
  • the transmission bearer-2 and the transmission bearer-3 that receive data on the bearer carrier are transmitted, and the uplink multiplexing information in the uplink enhanced dedicated channel data frame is set to be empty, or the "uplink multiplexing information" is ignored by the receiver.
  • the radio network controller 1 For the radio network controller 1, it aggregates uplink data sent through all transmission paths, through uplink multiplexing information in the uplink enhanced dedicated channel data frame in "shared mode", or through "separation mode"
  • the following separate transmission bearers can distinguish between the received data from the primary carrier and the received data from the secondary carrier, and are separately reordered and macro-divided based on the individual carriers. Once the received data from different carriers is confused, the reordering and macro diversity cannot be performed normally, resulting in all data errors and actual service being unavailable, and eventually dropped.
  • the enhanced dedicated channel transmission bearer mode information is configured by the radio network controller to the Node B or another radio network controller via the IUB interface or the IUR interface. For example, the radio network controller 1 in FIG.
  • the interface or IUR interface is configured to the node B1, the node B2, and the radio network controller 2, and the radio network controller 2 is configured to the node B3 via the IUB interface.
  • a Node B and/or a radio network controller having only a primary carrier enhanced dedicated channel cell such as Node B2 in FIG. 1
  • only a Node B and/or wireless of a secondary carrier enhanced dedicated channel cell The network controller (such as Node B3 and Radio Network Controller 2 in Figure 1) is not set to transmit the bearer mode information of the enhanced dedicated channel.
  • the Node B and/or the radio network controller performs uplink enhanced dedicated channel data frame transmission in a single carrier manner, that is, selects the same MAC stream to be transmitted on the same transmission bearer, and sets uplink enhanced dedicated channel data.
  • the uplink multiplexing information in the frame is empty, or the uplink multiplexing information in the uplink enhanced dedicated channel data frame is ignored by the receiver, and the uplink enhanced dedicated channel data frame is transmitted to the receiver.
  • the inventors have found that the above method of configuring the enhanced dedicated channel transmission bearer mode information may have problems in the implementation process: "uplink multiplexing information" in the uplink enhanced dedicated channel data frame Set as the primary carrier, and the corresponding code value is 0.
  • the "uplink multiplexing information" in the uplink enhanced dedicated channel data frame is set to null, and the corresponding coded value is also zero. This means that the code value of the "uplink multiplexing information" in the uplink enhanced dedicated channel data frame of the data of the primary carrier in the shared mode, all the data in the split mode, and all the data of the single carrier is 0.
  • radio network controller such as radio network controller 1 in Figure 1
  • the enhanced dedicated channel transmission bearer mode configured by the radio network controller 1 for the node B1 is "shared mode", and the node B2 and the radio network controller 2 are not configured with any enhanced dedicated.
  • the channel transmission bearer mode the situation shown in Figure 5 occurs: Node B1 receives the same MAC stream-1 on both the primary and secondary carriers, and sends it to the radio network controller 1 on the same transport carrier-1.
  • uplink multiplexing information is filled in as the primary or secondary, respectively, to indicate that the carrier identifier received for this data frame is the primary carrier or the secondary carrier.
  • the enhanced dedicated channel data frame is transmitted to the radio network controller 1.
  • the node B2, the radio network controller 2, and the radio network controller 2 are under the control of the node B3, and transmit the uplink enhanced dedicated channel data frame in a single carrier manner. That is, the same MAC stream is selected and sent on the same transport bearer, and the uplink multiplexing information in the uplink enhanced dedicated channel data frame is set to be empty, or the uplink multiplexing information in the uplink enhanced dedicated channel data frame is ignored by the receiver.
  • the uplink enhanced dedicated channel data frame is transmitted to the radio network controller 1.
  • the radio network controller 1 For the radio network controller 1, it converges the uplink data through all the transmission paths.
  • the radio network controller 1 is based on the current recorded "enhancement”.
  • Type dedicated channel transmission bearer mode information "configuration information, that is, "shared mode” information, for unified processing
  • the radio network controller 1 will transmit the "uplink multiplexing information" in the uplink enhanced dedicated channel data frame transmitted from the node B2 and the radio network controller 2 in a single carrier manner - "single carrier"
  • the code is 0, and the error is identified as the meaning of "main carrier” which is also coded as 0.
  • the radio network controller 1 will source the actual air interface from the node B2 and the radio network controller 2 from the uplink enhanced dedicated channel of the secondary carrier.
  • the data frame is erroneously identified as an uplink enhanced dedicated channel data frame whose air interface is derived from the primary carrier, and the uplink enhanced specific information derived from the primary carrier from the actual air interface from the node B1.
  • Road data frames confused together. Once the data received from different carriers is confused, the reordering and macro diversity cannot be performed normally, resulting in all data errors, which in turn leads to the actual service being unavailable and eventually falling out of the network.
  • the enhanced dedicated channel data frame is transmitted according to the configuration mode of the prior art, and the radio network controller is used.
  • Node B1 receives the same MAC stream-1 on the primary and secondary carriers, and sends it to the radio network controller 1 on the same transport carrier-1.
  • uplink multiplexing information is filled in as the primary or secondary, respectively, to indicate that the carrier identifier received by the data frame is the primary carrier or the secondary carrier.
  • the type-specific channel data frame is transmitted to the radio network controller 1.
  • the node B2 and the node B3 perform the transmission of the uplink enhanced dedicated channel data frame in a single carrier manner, that is, select the same MAC stream to be transmitted on the same transmission bearer. Setting the uplink multiplexing information in the uplink enhanced dedicated channel data frame to be empty, or the uplink multiplexing information in the uplink enhanced dedicated channel data frame is ignored by the receiver, and transmitting the uplink enhanced dedicated channel data frame to the radio network controller 2.
  • the radio network controller 2 is in the role of a drift radio network controller and can only transparently forward the uplink enhanced dedicated channel data frame received from the node B2 and the node B3 to the radio network controller 1. The radio network controller 2 cannot The content of the uplink enhanced dedicated channel data frame received by Node B2 and Node B3 is changed.
  • the "uplink multiplexing information" of the uplink enhanced dedicated channel data frame transmitted on the interface is empty and coded to 0.
  • the radio network controller 1 performs unified processing according to the currently recorded "enhanced dedicated channel transmission bearer mode information" configuration information, that is, "shared mode” information.
  • the radio network controller 1 will encode the "one-carrier" of the "uplink multiplexing information" in the uplink enhanced dedicated channel data frame in a single carrier manner from the radio network controller 2 and encode it as 0. ,
  • the error is identified as the "main carrier” meaning that is also encoded as 0.
  • the radio network controller 1 will forward the actual air interface forwarded by the radio network controller 2 from all the uplink enhanced dedicated channel data frames of the primary carrier (Node B2) and the secondary carrier (Node B3), which are all misidentified as Air port from the main load
  • the uplink enhanced dedicated channel data frame of the wave, and the actual air interface from the node B1 are derived from the uplink enhanced dedicated channel data frame of the primary carrier, and are confused.
  • the reordering and macro diversity cannot be performed normally, and all data errors are caused, resulting in the actual service being unavailable and eventually falling off the network. Therefore, in the related art, this configuration method does not carefully consider all possible scenarios, and there may be a problem that the received data from different carriers are confused.
  • a primary object of the present invention is to provide a method and system for configuring an enhanced dedicated channel transmission bearer mode to solve at least one of the above problems.
  • An aspect of the present invention provides a method for configuring an enhanced dedicated channel transmission bearer mode, including: in a case where a first dedicated RNC establishes an enhanced dedicated channel cell on a non-primary carrier frequency layer in a predetermined network element, the first The RNC configures an enhanced dedicated channel transmission bearer mode of the predetermined network element, where the predetermined network element includes at least one of the following: a Node B connected to the first RNC, and a second RNC connected to the first RNC.
  • Another aspect of the present invention provides a configuration system for an enhanced dedicated channel transmission bearer mode, including: a first RNC and a predetermined network element, where the first RNC is configured to establish a non-primary carrier frequency layer in a predetermined network element An enhanced dedicated channel cell, and configured with an enhanced dedicated channel transmission mode of the predetermined network element, wherein the predetermined network element comprises at least one of: a Node B connected to the first RNC, and a second RNC connected to the first RNC .
  • the first RNC when the first RNC establishes an enhanced dedicated channel cell on the non-primary carrier frequency layer in the predetermined network element, the first RNC configures the enhanced dedicated channel transmission bearer mode of the predetermined network element, and solves
  • the radio network controller cannot distinguish between the received data from the primary carrier and the received data from the secondary carrier, resulting in the problem that the reordering and the macro diversity are not performed properly, and the normal transmission of the actual service data of the terminal is ensured.
  • FIG. 1 is a schematic diagram of a scenario of a dual-carrier high-speed uplink packet access technology according to the related art
  • FIG. 2 is a schematic diagram of an uplink enhanced dedicated channel data frame transmission according to a related art
  • FIG. 4 is a schematic diagram of another scenario of a dual-carrier high-speed uplink packet access technology according to the related art
  • FIG. 5 is a schematic diagram of FIG.
  • FIG. 6 is a schematic diagram of still another scenario of a dual-carrier high-speed uplink packet access technology according to the related art
  • FIG. 7 is an uplink enhancement according to the scenario shown in FIG.
  • FIG. 8 is a detailed flowchart of a method for configuring an enhanced dedicated channel transmission bearer mode according to the first embodiment of the present invention
  • FIG. 9 is a schematic diagram of an exemplary scenario of the second embodiment of the present invention
  • FIG. 11 is a schematic diagram of an exemplary scenario according to Embodiment 3 of the present invention
  • FIG. 12 is a flowchart of a process according to Embodiment 3 of the present invention
  • FIG. 13 is a schematic diagram of an exemplary scenario according to Embodiment 4 of the present invention
  • FIG. 14 is a flowchart of a process according to Embodiment 4 of the present invention
  • FIG. 16 is a flowchart of a process according to Embodiment 5 of the present invention
  • FIG. 16 is a flowchart of a process according to Embodiment 5 of the present invention
  • 17 is a schematic diagram of an exemplary scenario according to Embodiment 6 of the present invention
  • FIG. 18 is a flowchart of a process according to Embodiment 6 of the present invention
  • FIG. 19 is a schematic diagram of an exemplary scenario according to Embodiment 7 of the present invention
  • FIG. 21 is a structural block diagram of a configuration system of an enhanced dedicated channel transmission bearer mode according to Embodiment 8 of the present invention.
  • Embodiment 1 provides a method for configuring an enhanced dedicated channel transmission bearer mode, where the method includes: when the first RNC establishes an enhanced dedicated channel cell on a non-primary carrier frequency layer in a predetermined network element.
  • the first RNC configures an enhanced dedicated channel transmission bearer mode of the predetermined network element, where the predetermined network element includes at least one of the following: a Node B connected to the first RNC, and a second RNC connected to the first RNC.
  • the RNC does not perform configuration of enhanced dedicated channel transmission bearer mode information for the Node B and/or the radio network controller of only the primary carrier or the secondary carrier enhanced dedicated channel cell, and the Node B and/or the radio network controller
  • the uplink enhanced dedicated channel data frame transmission is performed in a single carrier manner, which causes a problem that the reordering and the macro diversity collection cannot be performed normally.
  • the method provided in this embodiment is directed to a terminal that uses a multi-carrier high-speed uplink packet access technology, and the radio network controller only sets an enhanced dedicated channel cell on a non-primary carrier frequency layer.
  • FIG. 8 is a detailed flowchart of a method for configuring an enhanced dedicated channel transmission bearer mode according to the first embodiment of the present invention. As shown in FIG.
  • the method specifically includes: Step S802, in the case that the first RNC establishes an enhanced dedicated channel cell on the non-primary carrier frequency layer in the predetermined network element, the first RNC configures an enhanced dedicated channel transmission mode of the predetermined network element, where the predetermined network
  • the element includes at least one of the following: a Node B connected to the first RNC, and a second RNC connected to the first RNC.
  • the enhanced dedicated channel cell on the non-primary carrier frequency layer refers to a cell in the multi-carrier that uses the enhanced dedicated channel in the uplink direction on the carrier frequency layer except the primary carrier frequency layer.
  • the first RNC is in the Node B via the IUB interface, and/or establishes an enhanced dedicated channel cell on the non-primary carrier frequency layer in the second RNC via the IUR interface.
  • the enhanced dedicated channel transmission bearer mode of the first RNC configuring the predetermined network element includes: the first RNC configuring the enhanced dedicated channel transmission bearer mode of the predetermined network element to be a shared mode or a split mode.
  • the shared mode the first RNC may distinguish the transmission data of the primary carrier and the transmission data of the secondary carrier according to the uplink multiplexing information.
  • the split mode the first RNC may distinguish the transmission data and the secondary carrier of the primary carrier according to different transmission bearers. Transfer data.
  • the case where the first RNC establishes the enhanced dedicated channel cell on the non-primary carrier frequency layer in the predetermined network element includes the first case and/or the second case, where: the first case, the first RNC is in the predetermined network element Before the enhanced dedicated channel cell on the non-primary carrier frequency layer is established, the enhanced dedicated channel cell on the primary carrier frequency layer is not established in the predetermined network element, that is, only the auxiliary network element is established in the predetermined network element. Carrier enhanced dedicated channel cell.
  • the first RNC establishes an enhanced dedicated channel cell on the primary carrier frequency layer in the predetermined network element before establishing the enhanced dedicated channel cell on the non-primary carrier frequency layer in the predetermined network element.
  • both the primary carrier enhanced dedicated channel cell and the secondary carrier enhanced dedicated channel cell are established in the predetermined network element, for example, the node B1 in FIG.
  • the process in the first RNC establishing the enhanced dedicated channel cell on the non-primary carrier frequency layer in the predetermined network element belongs to the first case.
  • the method includes the step S804.
  • Step S804 the predetermined network element performs transmission of the enhanced dedicated channel data frame on the enhanced dedicated channel cell on the non-primary carrier frequency layer according to the configuration of the enhanced dedicated channel transmission bearer mode.
  • the Node B and/or the second RNC apply the set enhanced enhanced dedicated channel transmission bearer mode information to the enhanced dedicated channel cell on each frequency layer of the non-primary carrier under its own jurisdiction, and perform enhanced dedicated channel data.
  • the transmission of the frame In the step S802, the process in the first RNC establishing the enhanced dedicated channel cell on the non-primary carrier frequency layer in the predetermined network element belongs to the second case.
  • the method includes the step S806.
  • Step S806 the predetermined network element performs transmission of the enhanced dedicated channel data frame on the enhanced dedicated channel cell on each frequency layer including the primary carrier according to the configuration of the enhanced dedicated channel transmission bearer mode.
  • the Node B and/or the second RNC apply the set enhanced dedicated channel transmission bearer mode information to the enhanced dedicated channel cell on each frequency layer including the primary carrier, and perform enhanced specific use.
  • Transmission of channel data frames the specific manner of performing transmission of the enhanced dedicated channel data frame is: when the transmission bearer mode of the enhanced dedicated channel is using the "shared mode", selecting the reception on all the uplink carriers in the multi-carrier The same MAC stream is sent on one transmission; when the transmission mode of the enhanced dedicated channel is "separation mode", each MAC stream received from each different uplink carrier in the multi-carrier is selected for one transmission. Send on the bearer.
  • the transmission of the enhanced dedicated channel data frame by the predetermined network element according to the configuration of the enhanced dedicated channel transmission mode includes: configuring the predetermined network element according to the enhanced dedicated channel transmission bearer mode
  • the uplink multiplexing information in the enhanced dedicated channel data frame is set, and the enhanced dedicated channel data frame is transmitted.
  • setting the uplink multiplexing information in the enhanced dedicated channel data frame according to the configuration of the enhanced dedicated channel transmission bearer mode means: setting the uplink enhancement when the transmission bearer mode of the enhanced dedicated channel is using the "separation mode"
  • the uplink multiplexing information in the type dedicated channel data frame is empty, or the uplink multiplexing information in the uplink enhanced dedicated channel data frame is ignored by the receiver; when the transmission carrying mode of the enhanced dedicated channel is using the "shared mode",
  • the uplink multiplexing information in the uplink enhanced dedicated channel data frame is set to the carrier identifier received by the data frame.
  • the carrier identifier may be a primary carrier or a carrier; for three carriers, the carrier identifier may be a primary carrier or a second carrier or a third carrier; for four carriers, the carrier identifier may be a primary carrier or a second carrier or a third carrier Or the fourth carrier, dance with ⁇ class 4.
  • the enhanced dedicated channel data frame is a type 2 uplink enhanced dedicated channel data frame, that is, a data frame type used for multi-carrier technology. It should be noted that, as a preferred solution, if the first RNC only establishes or increases an enhanced dedicated channel cell on the primary carrier frequency layer in the predetermined network element, and the first RNC does not establish a non-predetermined cell in the predetermined network element.
  • the first RNC does not configure the predetermined network.
  • the enhanced dedicated channel transmission bearer mode of the element uses the existing single carrier processing mode, and selects the same MAC stream to be sent on one transmission bearer, and sets the uplink multiplexing information in the uplink enhanced dedicated channel data frame to be empty, or the uplink enhanced dedicated channel data frame.
  • the uplink multiplexing information in the middle is ignored by the receiver, and the uplink enhanced dedicated channel data frame is transmitted to the first radio network controller.
  • establishing an enhanced dedicated channel cell on the non-primary carrier frequency layer comprises at least one of: establishing an enhanced dedicated channel cell on the non-primary carrier frequency layer by a radio link setup procedure, establishing a non-radio link addition procedure An enhanced dedicated channel cell on the primary carrier frequency layer.
  • the "wireless link setup request, signaling is used during the establishment of the radio link.
  • the radio link is added during the process of adding a radio link increase request, signaling.
  • the application process of the configuration method of the enhanced dedicated channel transmission mode described above is described in detail below through a specific embodiment.
  • Embodiment 2 The application scenario in this embodiment is shown in FIG. 9.
  • the terminal currently uses the dual-carrier high-speed uplink packet access technology only in the cell 1 (primary carrier) and the cell 2 (secondary carrier) under the node B1.
  • the radio network controller 1 will establish an enhanced dedicated channel cell on the non-primary carrier frequency layer: Cell 3 under the Node B2 (Secondary Carrier). As shown in FIG.
  • the configuration method of the enhanced dedicated channel transmission bearer mode based on the above scenario includes: Step 1001: For a specified terminal using the dual-carrier high-speed uplink packet access technology, the radio network controller 1 is in the node via the IUB interface. An enhanced dedicated channel cell on the non-primary carrier frequency layer is established in the cell 3 under B2, and the radio network controller 1 sends a "radio link setup request" signaling to the node B2 in the radio link establishment process, where the signaling is performed.
  • the enhanced dedicated channel transmission bearer mode information is configured as "shared mode". It should be noted that the radio network controller 1 may also configure the enhanced dedicated channel transmission bearer mode in other manners, and is not limited to being carried in the radio link setup/increment request.
  • Step 1002 The Node B2 applies the set enhanced dedicated channel transmission bearer mode information to the enhanced dedicated channel cell on each frequency layer of the non-primary carrier under its own jurisdiction, that is, the cell 3 (only one cell in this scenario) , transmitting the enhanced dedicated channel data frame.
  • Node B2 selects the same MAC stream received on all uplink carriers in the dual carrier according to the "shared mode" and sends it on a transmission bearer, that is, it is sent on the transmission bearer 1.
  • the Node B2 sets the uplink multiplex information in the uplink enhanced dedicated channel data frame according to the "shared mode" as the carrier identifier received by the data frame, that is, the secondary carrier.
  • Node B2 transmits with Type 2 enhanced dedicated channel data frames.
  • Embodiment 3 The application scenario in this embodiment is shown in FIG. 11. The terminal is currently only in the cell 1 under the node B1.
  • Dual carrier high speed uplink packet access technology is used under (primary carrier) and cell 2 (secondary carrier).
  • the radio network controller 1 will establish an enhanced dedicated channel cell on the non-primary carrier frequency layer: Cell 3 under the Node B2 (Secondary Carrier).
  • the configuration method of the enhanced dedicated channel transmission bearer mode based on the above scenario includes: Step 1201: For a specified terminal using the dual-carrier high-speed uplink packet access technology, the radio network controller 1 is in the node via the IUB interface. An enhanced dedicated channel cell on the non-primary carrier frequency layer is established in the cell 3 under B2, and the radio network controller 1 sends a "radio link setup request" signaling to the node B2 in the radio link establishment process, where the signaling is performed.
  • the enhanced dedicated channel transmission bearer mode information is configured as "separate mode". It should be noted that the radio network controller 1 may also configure the enhanced dedicated channel transmission bearer mode in other manners, and is not limited to being carried in the radio link setup/increment request.
  • Step 1202 The Node B2 applies the set enhanced dedicated channel transmission bearer mode information to the enhanced dedicated channel cell on each frequency layer of the non-primary carrier under its own jurisdiction, that is, the cell 3 (only one cell in this scenario) , transmitting the enhanced dedicated channel data frame. Node B2 selects each MAC stream received from each different uplink carrier in the multi-carrier according to the "separation mode" and transmits it on one transmission carrier, that is, on the transmission carrier 3 corresponding to the carrier.
  • the node ⁇ 2 sets the uplink multiplexing information in the uplink enhanced dedicated channel data frame to be empty according to the "separation mode", or the uplink multiplexing information in the uplink enhanced dedicated channel data frame is ignored by the receiver.
  • Node ⁇ 2 transmits with type 2 enhanced dedicated channel data frames.
  • Embodiment 4 The application scenario in this embodiment is shown in FIG. 13. The terminal is currently under the cell 1 (main carrier) and the cell 2 (secondary carrier) under the node B1, and under the cell 6 (main carrier) under the node B2. , using dual carrier high speed uplink packet access technology.
  • the radio network controller 1 will establish an enhanced dedicated channel cell on the non-primary carrier frequency layer: Cell 3 under the Node B2 (Secondary Carrier).
  • the radio network controller 1 did not set the enhanced dedicated channel transmission bearer mode information since no enhanced dedicated channel cells on the non-primary carrier frequency layer were established under the node B2.
  • the configuration method of the enhanced dedicated channel transmission bearer mode includes: Step 1401: For a specified terminal using the dual-carrier high-speed uplink packet access technology, the radio network controller 1 is in the node via the IUB interface. An enhanced dedicated channel cell on the non-primary carrier frequency layer is established in the cell 3 under B2, and the radio network controller 1 sends a "radio link increase request" signaling to the node B2 during the radio link increase process, where the signaling is performed.
  • the enhanced dedicated channel transmission bearer mode information is configured as "shared mode". It should be noted that the radio network controller 1 may also configure the enhanced dedicated channel transmission bearer mode in other manners, and is not limited to being carried in the radio link setup/increment request.
  • the Node B2 applies the set enhanced dedicated channel transmission bearer mode information to the enhanced dedicated channel cell on each frequency layer including the primary carrier, that is, the cell 6 (main carrier) and the cell. 3 (Secondary carrier), the transmission of the enhanced dedicated channel data frame. Node B2 selects the same MAC stream received on all uplink carriers in the dual carrier according to the "shared mode" and transmits it on a transmission bearer, that is, on the transport bearer 1.
  • the node B2 sets the uplink multiplexing information in the uplink enhanced dedicated channel data frame according to the "shared mode" as the carrier identifier received by the data frame, and the primary carrier receiving data is set as the primary carrier, and the secondary carrier receives the data.
  • the setting is the secondary carrier.
  • Node B2 transmits with Type 2 enhanced dedicated channel data frames.
  • Embodiment 5 The application scenario in this embodiment is shown in FIG. 15. The terminal is currently under the cell 1 (main carrier) and the cell 2 (secondary carrier) under the node B1, and the node B2 belonging to the radio network controller 2 Under cell 6 (primary carrier), dual-carrier high-speed uplink packet access technology is used.
  • the radio network controller 1 will establish an enhanced dedicated channel on the non-primary carrier frequency layer in the radio network controller 2 Area: Cell 3 (secondary carrier) under node B2 of radio network controller 2.
  • the radio network controller 1 in the radio network controller 2 did not set an enhanced dedicated channel transmission bearer since no enhanced dedicated channel cells on the non-primary carrier frequency layer were established under the radio network controller 2.
  • Mode information As shown in FIG. 16, the configuration method of the enhanced dedicated channel transmission bearer mode based on the above scenario includes: Step 1601: For a specified terminal using a dual-carrier high-speed uplink packet access technology, the radio network controller 1 is wirelessly connected via an IUR interface.
  • An enhanced dedicated channel cell on the non-primary carrier frequency layer is established in the cell 3 under the node B2 under the network controller 2, and the radio network controller 1 sends a "radio link increase request, signaling in the radio link increase process".
  • the enhanced dedicated channel transmission bearer mode information is configured as a "shared mode" in this signaling. It should be noted that the radio network controller 1 can also transmit the enhanced dedicated channel transmission by other means. The mode is configured, and is not limited to being carried in the radio link setup/increment request.
  • the radio network controller 2 applies the set enhanced dedicated channel transmission bearer mode information to its own host carrier including the main carrier.
  • Enhanced dedicated channel cells on each frequency layer namely cell 6 (primary carrier) and cell 3 (secondary carrier), Transmission of the enhanced dedicated channel data frame.
  • the radio network controller 2 selects the same MAC stream received on all uplink carriers in the dual carrier to be transmitted on one transmission bearer, that is, on the transmission bearer 1.
  • the radio network controller 2 The forwarding node B2 sets the uplink enhanced dedicated channel data frame according to the "shared mode": the uplink multiplexing information from the primary carrier receiving data is set as the primary carrier, and the uplink multiplexing information from the secondary carrier receiving data is the secondary carrier.
  • the radio network controller 2 transmits the enhanced dedicated channel data frame of type 2.
  • the second embodiment to the fifth embodiment are described by taking a dual carrier as an example, and the foregoing method can also be extended to multiple carriers, for example, three carriers, four carriers.
  • the application scenario in this embodiment is shown in FIG. 17.
  • the terminal is currently only in cell 1 (primary carrier) and cell 2 (second carrier) under cell B1, cell 3 Three-carrier high-speed uplink packet access technology is used under (third carrier).
  • the radio network controller 1 will establish a non-primary carrier frequency layer.
  • the method includes: Step 1801: For a specified terminal using the three-carrier high-speed uplink packet access technology, the radio network controller 1 establishes an enhanced dedicated channel cell on the non-primary carrier frequency layer in the cell 4 under the Node B2 via the IUB interface.
  • the radio network controller 1 transmits a "radio link setup request" signaling to the node B2 during the radio link setup process, in which the enhanced dedicated channel transport bearer mode information is configured as "shared mode". It should be noted that the radio network controller 1 may also configure the enhanced dedicated channel transmission bearer mode in other manners, and is not limited to being carried in the radio link setup/increment request.
  • Step 1802 the Node B2 applies the set enhanced dedicated channel transmission bearer mode information to the enhanced dedicated channel cell on each frequency layer of the non-primary carrier under its own jurisdiction, that is, the cell 4 (only one cell in this scenario) , transmitting the enhanced dedicated channel data frame.
  • Node B2 selects the same MAC stream received on all uplink carriers in the three carriers according to the "shared mode" and sends it on a transport bearer, that is, it is sent on transport bearer 1.
  • the Node B2 sets the uplink multiplex information in the uplink enhanced dedicated channel data frame according to the "shared mode" as the carrier identifier received by the data frame, that is, the second carrier.
  • Node B2 transmits with Type 2 enhanced dedicated channel data frames.
  • Embodiment 7 The application scenario in this embodiment is shown in FIG. 19.
  • the terminal is currently only in cell 1 (primary carrier) and cell 2 (second carrier), cell 3 (third carrier), cell 4 under node B1.
  • a four-carrier high-speed uplink packet access technique is used under the (fourth carrier).
  • the radio network controller 1 will establish an enhanced dedicated channel cell on the non-primary carrier frequency layer: Cell 5 (fourth carrier) under Node B2.
  • the configuration method of the enhanced dedicated channel transmission bearer mode based on the above scenario includes: Step 2001: For a specified terminal using a four-carrier high-speed uplink packet access technology, the radio network controller 1 is in the node via the IUB interface.
  • An enhanced dedicated channel cell on the non-primary carrier frequency layer is established in the cell 5 under B2, and the radio network controller 1 sends a "radio link setup request" signaling to the node B2 in the radio link establishment process, where the signaling is performed.
  • the enhanced dedicated channel transmission bearer mode information is configured as "shared mode". It should be noted that the radio network controller 1 may also configure the enhanced dedicated channel transmission bearer mode in other manners, and is not limited to being carried in the radio link setup/increment request.
  • the Node B2 applies the set enhanced dedicated channel transmission bearer mode information to the enhanced dedicated channel cell on each frequency layer of the non-primary carrier under its own jurisdiction, that is, the cell 5 (only one cell in this scenario) , transmitting the enhanced dedicated channel data frame.
  • Node B2 selects the same MAC stream received on all uplink carriers in the four carriers according to the "shared mode" and transmits it on a transmission bearer, that is, on the transport bearer 1.
  • the Node B2 sets the uplink multiplex information in the uplink enhanced dedicated channel data frame according to the "shared mode" as the carrier identifier received by the data frame, that is, the fourth carrier.
  • Node B2 transmits with Type 2 enhanced dedicated channel data frames.
  • the code value corresponding to the primary carrier in the "uplink multiplexing information” is set to 0, and if the code value corresponding to the primary carrier in the "uplink multiplexing information” is set to 1, the auxiliary If the code value corresponding to the carrier is 0, then in the case of single-carrier transmission, the RNC will correctly identify the data transmitted through the primary carrier as the data transmitted through the secondary carrier.
  • the above method is also applicable, and only the "non-primary carrier” and “main” are required.
  • the expression of the carrier can be interchanged.
  • Embodiment 8 This embodiment provides a configuration system for an enhanced dedicated channel transmission bearer mode, and FIG.
  • FIG. 21 is a configuration of an enhanced dedicated channel transmission bearer mode according to Embodiment 8 of the present invention.
  • the system includes: a first RNC 211 and a predetermined network element 212, wherein the first RNC 211 is configured to establish an enhanced dedicated channel on the non-primary carrier frequency layer in the predetermined network element 212. a cell, and an enhanced dedicated channel transmission mode of the predetermined network element 212, wherein the predetermined network element 212 includes at least one of: a node B connected to the first RNC, and a first connection to the first RNC
  • the predetermined network element 212 is further configured to perform transmission of the enhanced dedicated channel data frame according to the configuration of the enhanced dedicated channel transmission bearer mode.
  • the enhanced dedicated channel transmission bearer mode configuration provided by the present invention.
  • the solution solves the problem that the wireless network controller in the prior art cannot distinguish between the received data from the primary carrier and the received data from the secondary carrier, so that the reordering and the macro diversity are not performed properly, and the actual service is unavailable, and eventually the network is dropped.
  • the wireless network controller of the convergence party can clearly distinguish the situation of receiving data from each carrier, ensure the normal transmission of the actual service data of the terminal, and ensure that the dual-carrier high-speed uplink packet access technology is available.
  • modules or steps of the present invention described above may be Implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of computing devices, optionally, they may be implemented by program code executable by the computing device, such that They may be stored in a storage device by a computing device, and in some cases, the steps shown or described may be performed in an order different than that herein, or separately fabricated into individual integrated circuit modules. Alternatively, multiple modules or steps of them can be implemented as a single integrated circuit module. Thus, the invention is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Description

增强型专用信道传输承载模式的配置方法及系统 技术领域 本发明涉及通信领域, 具体而言, 涉及一种增强型专用信道传输承载模 式的配置方法及系统。 背景技术 高速上行分组接入技术的目标是在上行方向改善容量和数据吞吐量, 降 低专用信道中的迟滞。 由高速上行分组接入技术引入了一条新的传输信道: 增强型专用信道, 对物理层和媒体接入控制层的实现进行改进, 上行数据速 率在理论上最大可以达到 5.6 兆比特每秒。 高速上行分组接入技术保留了软 切换的特性, 空中接口接收的媒体接入控制协议数据单元, 解复用为媒体接 入控制流, 以上行增强型专用信道数据帧的形式从节点 B 经由 B 类互联 ( Interconnection of type B , 简称为 IUB )接口或者网络控制器经由无线网络 控制器之间互联接口 ( Interconnection of RNC, 简称为 IUR ) 通过媒体接入 控制流对应的传输 载 (每一个媒体接入控制流有一个对应的 IUB 接口和 / 或 IUR接口传输承载), 传输到目标无线网络控制器。 随着技术的发展, 双载波高速上行分组接入技术有望被引入现有系统, 其使得终端能够在两个载波上以高速上行分组接入技术发送数据, 从而使得 上行链路数据速率得以倍增。 双载波中包含高速专用物理控制信道的载波称 为主载波, 另外一个载波称为辅载波。 对于一个终端而言, 双载波中的各层 载波均有自己独立的增强型专用信道激活集。 双载波高速上行分组接入技术 的引入, 需要考虑后续多载波 (例如, 三载波, 四载波) 的可扩展性。 多载 波中包含高速专用物理控制信道的载波称为主载波, 其他载波分别称为第二 载波, 第三载波, 第四载波……。 图 1示出了一个典型的双载波高速上行分组接入技术的场景, 如图 1所 示, 终端使用双载波高速上行分组接入技术, 同时在主载波和 载波上发送 数据。 主载波有自己独立的增强型专用信道激活集, 包含节点 B1下的小区 1 和节点 B2下的小区 3。辅载波有自己独立的增强型专用信道激活集, 包含节 点 B1下的小区 2和节点 B3下的小区 4。 终端通过主载波发送上行数据到网络侧, 在网络侧, 此上行数据的传输 路径为:
(小区 1 ) 节点 B1到无线网络控制器 1 ;
(小区 3 ) 节点 B2到无线网络控制器 1。 终端通过辅载波发送上行数据到网络侧, 在网络侧, 此上行数据的传输 路径为:
(小区 2 ) 节点 B1到无线网络控制器 1 ;
(小区 4 ) 节点 B3到无线网络控制器 2到无线网络控制器 1。 相关的双载波高速上行分组接入技术中, 定义增强型专用信道传输承载 模式包括 "共享模式" 或 "分离模式"。 其中: "共享模式" 是指在多载波中 所有上行载波上接收的同一个媒体接入控制 ( Media Access Control , 简称为 MAC ) 流放在一个传输承载上发送; "分离模式" 是指在多载波中从每一个 不同的上行载波上接收的每一个 MAC流放在一个传输承载上发送。 当增强 型专用信道的传输承载模式是使用 "共享模式" 时, 为了区分从不同的载波 接收到的同一个传输承载上的 MAC流, 定义了上行增强型专用信道数据帧 中的 "上行复用信息", 其用于指示数据帧所接收于的载波标识, 例如, 主载 波或者辅载波; 当增强型专用信道的传输承载模式是使用 "分离模式" 时, "上行复用信息,, 可以为空, 或者 "上行复用信息,, 被接收方忽略。
"共享模式" 下, 在选定的传输承载上, 传输携带有上行复用信息的上 行增强型专用信道数据帧的具体方式如图 2所示。 节点 B1接收了主辅两个 载波上的同一个 MAC流 -1 , 放在同一个传输^载 -1上发送给无线网络控制 器 1。 在图示的 2个上行增强型专用信道数据帧中, "上行复用信息" 分别填 写为主或者辅, 来指示为此数据帧所接收于的载波为主载波或者辅载波。 同 样,对于无线网络控制器 2 ,接收到来自节点 B3的上行增强型专用信道数据 帧, 将其转发至无线网络控制器 1 , 上行增强型专用信道数据帧在传输承载 -2和传输承载 -3上传递, 上行增强型专用信道数据帧中上行复用设置为主, 以便指示此数据帧所接收于的载波为主载波。
"分离模式" 下, 在选定的传输承载上, 传输携带有上行复用信息的上 行增强型专用信道数据帧的具体方式如图 3所示。 节点 B1和无线网络控制 器 1相连的 IUB接口, 有 2个不同的传输承载, 传输承载 -1专门用来承载主 载波上接收的数据, 传输承载 -4 专门用来承载辅载波上接收的数据。 节点 B1 在传输承载 -1 上发送来源于主载波接收数据的上行增强型专用信道数据 帧, 在传输承载 -4上发送来源于辅载波接收数据的上行增强型专用信道数据 帧。 由于通过传输承载已经可以区别主辅载波接收数据, 所以上行增强型专 用信道数据帧中 "上行复用信息" 为空, 或者 "上行复用信息" 被接收方忽 略。 同样, 对于无线网络控制器 2 , 接收到来自节点 B3的上行增强型专用信 道数据帧, 将其转发至无线网络控制器 1 , 来源于主载波接收数据的上行增 强型专用信道数据帧在专门用于承载主载波上接收数据的传输承载 -2和传输 承载 -3上传递, 上行增强型专用信道数据帧中上行复用信息设置为空, 或者 "上行复用信息" 被接收方忽略。 对于无线网络控制器 1而言, 其会聚了通过所有的传输途径发来的上行 数据, 通过 "共享模式" 下的上行增强型专用信道数据帧中的上行复用信息, 或者通过 "分离模式" 下的分开的传输承载, 可以区分来源于主载波的接收 数据和来源于辅载波的接收数据, 基于单独载波分别进行重排序以及宏分集 合并。 一旦来源于不同载波的接收数据混淆在一起, 则无法正常进行重排序 以及宏分集合并, 导致所有数据错误和实际业务不可用, 最终掉网。 相关技术中, 增强型专用信道传输承载模式信息是由无线网络控制器经 由 IUB接口或者 IUR接口配置给节点 B或者另外一个无线网络控制器的, 例如, 图 1 中的无线网络控制器 1经由 IUB接口或者 IUR接口配置给节点 B 1、 节点 B2和无线网络控制器 2 , 无线网络控制器 2经由 IUB接口配置给 节点 B3。 相关技术中,对于只有主载波增强型专用信道小区的节点 B和 /或无线网 络控制器 (如图 1 中的节点 B2 ), 以及, 只有辅载波增强型专用信道小区的 节点 B和 /或无线网络控制器 (如图 1中的节点 B3 , 无线网络控制器 2 ), 是 不会被设定增强型专用信道传输承载模式信息的。 随后, 这些节点 B和 /或无 线网络控制器以单载波的方式进行上行增强型专用信道数据帧的传输, 即, 选择同一个 MAC流放在同一个传输承载上发送, 设置上行增强型专用信道 数据帧中的上行复用信息为空, 或者上行增强型专用信道数据帧中的上行复 用信息被接收方忽略, 将上行增强型专用信道数据帧传输到接收方。 然而, 发明人发现以上的配置增强型专用信道传输承载模式信息的方法 在实施过程中会出现问题: 上行增强型专用信道数据帧中 "上行复用信息" 设置为主载波, 对应的编码值为 0。 上行增强型专用信道数据帧中 "上行复 用信息" 设置为空, 对应的编码值也是 0。 这意味着共享模式下的主载波来 源的数据、 分离模式下的所有数据、 单载波的所有数据的上行增强型专用信 道数据帧中 "上行复用信息" 的编码值均为 0。 对于汇聚方的无线网络控制 器 (如图 1 中的无线网络控制器 1 ) 来说, 是无法区别这 3种情况的, 只会 根据当前的记录的 "增强型专用信道传输承载模式信息 " 配置信息进行统一 处理。 那么, 在图 4所示的场景下 (和图 1的典型场景的差别在于节点 B2下 的小区 3 为辅载波频率层上的宏分集小区), 依照现有技术的配置方式, 以 及对应的进行增强型专用信道数据帧的传输的过程中, 无线网络控制器 1为 节点 B1配置的增强型专用信道传输承载模式为 "共享模式", 为节点 B2和 无线网络控制器 2不配置任何增强型专用信道传输承载模式, 会出现如图 5 所示的情况: 节点 B1接收了主辅两个载波上的同一个 MAC流 -1 ,放在同一个传输 载 -1上发送给无线网络控制器 1。 在图示的 2个上行增强型专用信道数据帧 中, "上行复用信息,,分别填写为主或者辅, 来指示为此数据帧所接收于的载 波标识为主载波或者辅载波。 将上行增强型专用信道数据帧传输到无线网络 控制器 1。 节点 B2、 无线网络控制器 2以及无线网络控制器 2下辖节点 B3 , 以单 载波的方式进行上行增强型专用信道数据帧的传输。也就是选择同一个 MAC 流放在同一个传输承载上发送, 设置上行增强型专用信道数据帧中的上行复 用信息为空, 或者上行增强型专用信道数据帧中的上行复用信息被接收方忽 略, 将上行增强型专用信道数据帧传输到无线网络控制器 1。 对于无线网络控制器 1而言, 其会聚了通过所有的传输途径上来的上行 数据。 无线网络控制器 1根据当前的记录的 "增强型专用信道传输承载模式 信息" 配置信息, 也就是 "共享模式" 信息, 进行统一处理。 无线网络控制 器 1将会把从节点 B2和无线网络控制器 2发送过来的以单载波的方式传输 的上行增强型专用信道数据帧中的 "上行复用信息" 的本意—— "单载波" 且编码为 0, 错误识别为同样编码为 0的 "主载波" 含义。 无线网络控制器 1将会把从节点 B2和无线网络控制器 2过来的实际空口来源于辅载波的上行 增强型专用信道数据帧, 错误识别为空口来源于主载波的上行增强型专用信 道数据帧, 和从节点 B1 过来的实际空口来源于主载波的上行增强型专用信 道数据帧, 混淆在一起。 一旦来源于不同载波接收数据混淆在一起, 就无法 正常进行重排序以及宏分集合并, 导致所有数据错误, 进而导致实际业务不 可用, 最终掉网。 在图 6所示的场景下 (和图 1的典型场景的差别在于节点 B2归属于无 线网络控制器 2 ),依照现有技术的配置方式进行增强型专用信道数据帧的传 输, 无线网络控制器 1将节点 B1和无线网络控制器 2增强型专用信道传输 承载模式配置为 "共享模式", 无线网络控制器 2对节点 B2和节点 B3不配 置任何增强型专用信道传输承载模式, 会出现如图 7所示的情况: 节点 B1接收了主辅两个载波上的同一个 MAC流 -1 ,放在同一个传输 载 -1上发送给无线网络控制器 1。 在图示的 2个上行增强型专用信道数据帧 中, "上行复用信息,,分别填写为主或者辅, 来指示此数据帧所接收于的载波 标识为主载波或者辅载波。 将上行增强型专用信道数据帧传输到无线网络控 制器 1。 节点 B2和节点 B3 , 以单载波的方式进行上行增强型专用信道数据帧的 传输。 也就是选择同一个 MAC流放在同一个传输承载上发送, 设置上行增 强型专用信道数据帧中的上行复用信息为空, 或者上行增强型专用信道数据 帧中的上行复用信息被接收方忽略, 将上行增强型专用信道数据帧传输到无 线网络控制器 2。 无线网络控制器 2处于漂移无线网络控制器的角色, 只能够透明转发从 节点 B2和节点 B3接收的上行增强型专用信道数据帧至无线网络控制器 1。 无线网络控制器 2无法对从节点 B2和节点 B3接收的上行增强型专用信道数 据帧的内容进行任何更改。 所以在 IUR接口上传输的上行增强型专用信道数 据帧的 "上行复用信息,, 均为空且编码为 0。 对于无线网络控制器 1而言, 其会聚了通过所有的传输途径上来的上行 数据。 无线网络控制器 1根据当前记录的 "增强型专用信道传输承载模式信 息" 配置信息, 也就是 "共享模式" 信息, 进行统一处理。 无线网络控制器 1将会把从无线网络控制器 2转发过来的以单载波的方式的上行增强型专用 信道数据帧中的 "上行复用信息" 的本意—— "单载波" 且编码为 0, 错误 识别为同样编码为 0的 "主载波" 含义。 也就是无线网络控制器 1将会把无 线网络控制器 2转发过来的实际空口来源于主载波(节点 B2 )和辅载波(节 点 B3 )的所有的上行增强型专用信道数据帧, 均错误识别为空口来源于主载 波的上行增强型专用信道数据帧, 和从节点 B1 过来的实际空口来源于主载 波的上行增强型专用信道数据帧, 混淆在一起。 一旦来源于不同载波接收数 据混淆在一起, 就无法正常进行重排序以及宏分集合并, 所有数据错误, 导 致实际业务不可用, 最终掉网。 因此, 相关技术中这种配置方式没有仔细考虑所有可能出现的场景, 会 出现来源于不同载波的接收数据混淆在一起的问题, 无线网络控制器无法区 别来源于主载波的接收数据还是来源于辅载波的接收数据, 也就无法正常进 行重排序以及宏分集合并, 导致实际业务不可用, 最终掉网。 发明内容 本发明的主要目的在于提供一种增强型专用信道传输承载模式的配置方 法及系统, 以解决上述问题至少之一。 本发明的一个方面提供了一种增强型专用信道传输承载模式的配置方 法, 包括: 在第一 RNC 在预定网元中建立非主载波频率层上的增强型专用 信道小区的情况下, 第一 RNC 配置预定网元的增强型专用信道传输承载模 式, 其中, 预定网元包括以下至少之一: 连接于第一 RNC的节点 B、 连接于 第一 RNC的第二 RNC。 本发明的另一个方面提供了一种增强型专用信道传输承载模式的配置系 统, 包括: 第一 RNC和预定网元, 其中, 第一 RNC用于在预定网元中建立 非主载波频率层上的增强型专用信道小区, 并配置预定网元的增强型专用信 道传输 载模式, 其中, 预定网元包括以下至少之一: 连接于第一 RNC 的 节点 B、 连接于第一 RNC的第二 RNC。 通过本发明, 釆用在第一 RNC 在预定网元中建立非主载波频率层上的 增强型专用信道小区的情况下, 第一 RNC 配置预定网元的增强型专用信道 传输承载模式, 解决了相关技术中无线网络控制器无法区别来源于主载波的 接收数据和来源于辅载波的接收数据, 从而导致无法正常进行重排序以及宏 分集合并的问题, 确保了终端实际业务数据的正常发送。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中: 图 1 是根据相关技术的双载波高速上行分组接入技术的一种场景示意 图; 图 2是根据相关技术的 "共享模式" 的上行增强型专用信道数据帧传输 示意图; 图 3是根据相关技术的 "分离模式" 的上行增强型专用信道数据帧传输 示意图; 图 4是根据相关技术的双载波高速上行分组接入技术的另一种场景示意 图; 图 5 是根据图 4 所示的场景下的上行增强型专用信道数据帧传输示意 图; 图 6是根据相关技术的双载波高速上行分组接入技术的又一种场景示意 图; 图 7 是根据图 6 所示的场景下的上行增强型专用信道数据帧传输示意 图; 图 8是根据本发明实施例一的增强型专用信道传输承载模式的配置方法 的详细流程图; 图 9是 居本发明实施例二的示例场景示意图; 图 10是根据本发明实施例二的处理过程流程图; 图 11是才艮据本发明实施例三的示例场景示意图; 图 12是根据本发明实施例三的处理过程流程图; 图 13是才艮据本发明实施例四的示例场景示意图; 图 14是才艮据本发明实施例四的处理过程流程图; 图 15是根据本发明实施例五的示例场景示意图; 图 16是才艮据本发明实施例五的处理过程流程图; 图 17是根据本发明实施例六的示例场景示意图; 图 18是根据本发明实施例六的处理过程流程图; 图 19是根据本发明实施例七的示例场景示意图; 图 20是根据本发明实施例七的处理过程流程图; 图 21 是根据本发明实施例八的增强型专用信道传输承载模式的配置系 统的结构框图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互组合。 实施例一 本实施例提供了一种增强型专用信道传输承载模式的配置方法, 该方法 包括: 在第一 RNC 在预定网元中建立非主载波频率层上的增强型专用信道 小区的情况下, 第一 RNC 配置预定网元的增强型专用信道传输承载模式, 其中, 预定网元包括以下至少之一: 连接于第一 RNC的节点 B、 连接于第一 RNC的第二 RNC。 现有技术中, RNC不对只有主载波或辅载波增强型专用信道小区的节点 B和 /或无线网络控制器进行增强型专用信道传输承载模式信息的配置, 这些 节点 B 和 /或无线网络控制器会以单载波的方式进行上行增强型专用信道数 据帧的传输, 这会导致无法正常进行重排序以及宏分集合并的问题。 区别于 现有技术, 本实施例提供的方法在针对指定的使用多载波高速上行分组接入 技术的终端, 无线网络控制器仅在建立非主载波频率层上的增强型专用信道 小区时, 设定增强型专用信道传输承载模式信息, 后续预定网元根据配置的 增强型专用信道传输承载模式按照现有技术中的处理方法进行上行复用信息 的设置和数据帧的发送即可, 解决了来源于不同载波接收数据混淆在一起, 导致的实际业务不可用, 现有双载波高速上行分组接入技术不可用的问题。 图 8是根据本发明实施例一的增强型专用信道传输承载模式的配置方法 的详细流程图, 如图 8所示, 该方法具体包括: 步骤 S802, 在第一 RNC在预定网元中建立非主载波频率层上的增强型 专用信道小区的情况下, 第一 RNC 配置预定网元的增强型专用信道传输^ 载模式, 其中, 预定网元包括以下至少之一: 连接于第一 RNC的节点 B、 连 接于第一 RNC的第二 RNC。 其中, 非主载波频率层上的增强型专用信道小区是指多载波中除了主载 波频率层之外的其他载波频率层上的上行方向使用增强型专用信道的小区。 第一 RNC是经由 IUB接口在节点 B中, 和 /或, 经由 IUR接口在第二 RNC 中建立非主载波频率层上的增强型专用信道小区的。 其中, 第一 RNC 配置预定网元的增强型专用信道传输承载模式包括: 第一 RNC 配置预定网元的增强型专用信道传输承载模式为共享模式或分离 模式。 在共享模式下, 第一 RNC 可以根据上行复用信息区分主载波的传输 数据和辅载波的传输数据, 在分离模式下, 第一 RNC 可以根据不同的传输 承载区分主载波的传输数据和辅载波的传输数据。 具体地, 第一 RNC 在预定网元中建立非主载波频率层上的增强型专用 信道小区的情况包括第一情况和 /或第二情况, 其中: 第一情况、 第一 RNC 在预定网元中建立非主载波频率层上的增强型专 用信道小区之前, 在预定网元中未建立过主载波频率层上的增强型专用信道 小区, 也就是说, 此时预定网元中仅建立有辅载波增强型专用信道小区。 第二情况、 第一 RNC 在预定网元中建立非主载波频率层上的增强型专 用信道小区之前, 在预定网元中建立过主载波频率层上的增强型专用信道小 区。 也就是说, 此时预定网元中既建立有主载波增强型专用信道小区, 又建 立有辅载波增强型专用信道小区, 例如, 图 1中的节点 Bl。 步骤 S802中第一 RNC在预定网元中建立非主载波频率层上的增强型专 用信道小区的过程属于第一情况时, 步骤 S802之后, 该方法包括步骤 S804。 步骤 S804,预定网元根据增强型专用信道传输承载模式的配置在非主载 波频率层上的增强型专用信道小区上进行增强型专用信道数据帧的传输。即, 节点 B和 /或第二 RNC , 应用所设定的增强型专用信道传输承载模式信息于 自身下辖的非主载波的各个频率层上的增强型专用信道小区, 进行增强型专 用信道数据帧的传输。 步骤 S802中第一 RNC在预定网元中建立非主载波频率层上的增强型专 用信道小区的过程属于第二情况时, 步骤 S802之后, 该方法包括步骤 S806。 步骤 S806,预定网元根据增强型专用信道传输承载模式的配置在包括主 载波在内的各频率层上的增强型专用信道小区上进行增强型专用信道数据帧 的传输。 即, 节点 B和 /或第二 RNC, 应用所设定的增强型专用信道传输承 载模式信息于自身下辖的包含主载波在内的各个频率层上的增强型专用信道 小区, 进行增强型专用信道数据帧的传输。 在上述步骤 S804和步骤 S806中, 进行增强型专用信道数据帧的传输的 具体方式为: 当增强型专用信道的传输承载模式是使用 "共享模式" 时, 选 择多载波中所有上行载波上接收的同一个 MAC 流放在一个传输^载上发 送; 当增强型专用信道的传输承载模式是使用 "分离模式" 时, 选择多载波 中从每一个不同的上行载波上接收的每一个 MAC流放在一个传输承载上发 送。 在上述步骤 S804和步骤 S806中, 预定网元才艮据增强型专用信道传输^ 载模式的配置进行增强型专用信道数据帧的传输包括: 预定网元根据增强型 专用信道传输承载模式的配置对增强型专用信道数据帧中的上行复用信息进 行设置, 并传输增强型专用信道数据帧。 其中, 根据增强型专用信道传输承 载模式的配置对增强型专用信道数据帧中的上行复用信息进行设置是指: 当 增强型专用信道的传输承载模式是使用 "分离模式" 时, 设置上行增强型专 用信道数据帧中的上行复用信息为空, 或者上行增强型专用信道数据帧中的 上行复用信息被接收方忽略; 当增强型专用信道的传输承载模式是使用 "共 享模式" 时, 设置上行增强型专用信道数据帧中的上行复用信息为此数据帧 所接收于的载波标识。 对于双载波, 载波标识可以是主载波或 载波; 对于 三载波, 载波标识可以是主载波或第二载波或第三载波; 对于四载波, 载波 标识可以是主载波或第二载波或第三载波或第四载波, 以 匕类4舞。 其中, 增强型专用信道数据帧为类型 2的上行增强型专用信道数据帧, 也就是用于多载波技术的数据帧类型。 需要说明的是, 作为一种优选的方案, 如果第一 RNC 在预定网元中仅 建立或增加主载波频率层上的增强型专用信道小区, 且第一 RNC 在预定网 元中未建立过非主载波频率层上的增强型专用信道小区的情况下 (即, 此时 预定网元中仅建立有主载波增强型专用信道小区), 第一 RNC不配置预定网 元的增强型专用信道传输承载模式。 后续预定网元使用现有的单载波处理方 式, 选择同一个 MAC流放在一个传输承载上发送, 设置上行增强型专用信 道数据帧中的上行复用信息为空, 或者上行增强型专用信道数据帧中的上行 复用信息被接收方忽略, 将上行增强型专用信道数据帧传输到第一无线网络 控制器。 因为在预定网元中仅建立有主载波增强型专用信道小区的情况下, 即使第一 RNC错误理解了上行复用信息为 "空白" 的含义, 也 "误打误撞" 地得到了正确的结果, 因此, 在预定网元中仅建立有主载波增强型专用信道 小区的情况下不配置增强型专用信道传输承载模式能够尽量减少系统的操 作, 节省系统的资源。 优选地, 建立非主载波频率层上的增强型专用信道小区包括以下至少之 一: 通过无线链路建立过程建立非主载波频率层上的增强型专用信道小区、 通过无线链路增加过程建立非主载波频率层上的增强型专用信道小区。 无线 链路建立过程中使用 "无线链路建立请求,, 信令。 无线链路增加过程中使用 "无线链路增加请求,, 信令。 以下通过具体实施例详细说明上述增强型专用信道传输^载模式的配置 方法的应用过程。 实施例二 本实施例中的应用场景如图 9所示, 终端目前仅在节点 B1 下的小区 1 (主载波) 和小区 2 (辅载波) 下使用双载波高速上行分组接入技术。 无线 网络控制器 1将建立非主载波频率层上的增强型专用信道小区: 节点 B2下 小区 3 (辅载波)。 如图 10 所示, 基于以上场景的增强型专用信道传输承载模式的配置方 法包括: 步骤 1001 , 针对指定的使用双载波高速上行分组接入技术的终端, 无线 网络控制器 1经由 IUB接口在节点 B2下小区 3中建立非主载波频率层上的 增强型专用信道小区, 无线网络控制器 1在无线链路建立过程中将 "无线链 路建立请求"信令发送给节点 B2, 在此信令中配置增强型专用信道传输承载 模式信息为 "共享模式"。 需要说明的是, 无线网络控制器 1 也可以通过其 他的方式对增强型专用信道传输承载模式进行配置, 而不限于在无线链路建 立 /增加请求中携带。 步骤 1002, 节点 B2应用所设定的增强型专用信道传输承载模式信息于 自身下辖的非主载波的各个频率层上的增强型专用信道小区, 也就是小区 3 (这个场景下只有一个小区), 进行增强型专用信道数据帧的传输。 节点 B2 依照 "共享模式" 选择双载波中所有上行载波上接收的同一个 MAC流放在 一个传输承载上发送, 也就是放在传输承载 1上发送。 节点 B2依照 "共享 模式" 设置上行增强型专用信道数据帧中的上行复用信息为此数据帧所接收 于的载波标识, 也就是辅载波。 节点 B2用类型 2的增强型专用信道数据帧 进行传输。 实施例三 本实施例中的应用场景如图 11所示, 终端目前仅在节点 B1下的小区 1
(主载波) 和小区 2 (辅载波) 下使用双载波高速上行分组接入技术。 无线 网络控制器 1将建立非主载波频率层上的增强型专用信道小区: 节点 B2下 小区 3 (辅载波)。 如图 12 所示, 基于以上场景的增强型专用信道传输承载模式的配置方 法包括: 步骤 1201 , 针对指定的使用双载波高速上行分组接入技术的终端, 无线 网络控制器 1经由 IUB接口在节点 B2下小区 3中建立非主载波频率层上的 增强型专用信道小区, 无线网络控制器 1在无线链路建立过程中将 "无线链 路建立请求"信令发送给节点 B2, 在此信令中配置增强型专用信道传输承载 模式信息为 "分离模式"。 需要说明的是, 无线网络控制器 1 也可以通过其 他的方式对增强型专用信道传输承载模式进行配置, 而不限于在无线链路建 立 /增加请求中携带。 步骤 1202, 节点 B2应用所设定的增强型专用信道传输承载模式信息于 自身下辖的非主载波的各个频率层上的增强型专用信道小区, 也就是小区 3 (这个场景下只有一个小区), 进行增强型专用信道数据帧的传输。 节点 B2 依照 "分离模式" 选择多载波中从每一个不同的上行载波上接收的每一个 MAC流放在一个传输 载上发送, 也就是放在 载波对应的传输 载 3 上 发送。 节点 Β2依照 "分离模式" 设置上行增强型专用信道数据帧中的上行 复用信息为空, 或者上行增强型专用信道数据帧中的上行复用信息被接收方 忽略。 节点 Β2用类型 2的增强型专用信道数据帧进行传输。 实施例四 本实施例中的应用场景如图 13所示,终端目前在节点 B1下的小区 1(主 载波) 和小区 2 (辅载波) 下, 以及节点 B2下的小区 6 (主载波) 下, 使用 双载波高速上行分组接入技术。 无线网络控制器 1将建立非主载波频率层上 的增强型专用信道小区: 节点 B2下小区 3 (辅载波)。 此前, 无线网络控制 器 1在节点 B2中, 由于从未在节点 B2下建立任何非主载波频率层上的增强 型专用信道小区, 所以没有设定增强型专用信道传输承载模式信息。 如图 14 所示, 基于以上场景的增强型专用信道传输承载模式的配置方 法包括: 步骤 1401 , 针对指定的使用双载波高速上行分组接入技术的终端, 无线 网络控制器 1经由 IUB接口在节点 B2下小区 3中建立非主载波频率层上的 增强型专用信道小区, 无线网络控制器 1在无线链路增加过程中将 "无线链 路增加请求"信令发送给节点 B2, 在此信令中配置增强型专用信道传输承载 模式信息为 "共享模式"。 需要说明的是, 无线网络控制器 1 也可以通过其 他的方式对增强型专用信道传输承载模式进行配置, 而不限于在无线链路建 立 /增加请求中携带。 步骤 1402, 节点 B2应用所设定的增强型专用信道传输承载模式信息于 自身下辖的包含主载波在内的各个频率层上的增强型专用信道小区, 也就是 小区 6 (主载波) 和小区 3 (辅载波), 进行增强型专用信道数据帧的传输。 节点 B2依照 "共享模式" 选择双载波中所有上行载波上接收的同一个 MAC 流放在一个传输承载上发送, 也就是放在传输承载 1上发送。 节点 B2依照 "共享模式" 设置上行增强型专用信道数据帧中的上行复用信息为此数据帧 所接收于的载波标识, 来源于主载波接收数据的设置为主载波, 来源于辅载 波接收数据的设置为辅载波。 节点 B2用类型 2的增强型专用信道数据帧进 行传输。 实施例五 本实施例中的应用场景如图 15所示,终端目前在节点 B1下的小区 1(主 载波) 和小区 2 (辅载波) 下, 以及归属于无线网络控制器 2 下的节点 B2 下的小区 6 (主载波) 下, 使用双载波高速上行分组接入技术。 无线网络控 制器 1将在无线网络控制器 2中建立非主载波频率层上的增强型专用信道小 区: 无线网络控制器 2下属的节点 B2下小区 3 (辅载波)。 此前, 无线网络 控制器 1在无线网络控制器 2中, 由于从未在无线网络控制器 2下建立任何 非主载波频率层上的增强型专用信道小区, 所以没有设定增强型专用信道传 输承载模式信息。 如图 16 所示, 基于以上场景的增强型专用信道传输承载模式的配置方 法包括: 步骤 1601 , 针对指定的使用双载波高速上行分组接入技术的终端, 无线 网络控制器 1经由 IUR接口在无线网络控制器 2下的节点 B2下小区 3中建 立非主载波频率层上的增强型专用信道小区, 无线网络控制器 1在无线链路 增加过程中将 "无线链路增加请求,, 信令发送给无线网络控制器 2, 在此信 令中配置增强型专用信道传输承载模式信息为 "共享模式"。 需要说明的是, 无线网络控制器 1也可以通过其他的方式对增强型专用信道传输承载模式进 行配置, 而不限于在无线链路建立 /增加请求中携带。 步骤 1602 , 无线网络控制器 2应用所设定的增强型专用信道传输承载模 式信息于自身下辖的包含主载波在内的各个频率层上的增强型专用信道小 区, 也就是小区 6 (主载波) 和小区 3 (辅载波), 进行增强型专用信道数据 帧的传输。 无线网络控制器 2 选择双载波中所有上行载波上接收的同一个 MAC流放在一个传输承载上发送, 也就是放在传输承载 1 上发送。 无线网 络控制器 2转发节点 B2依照 "共享模式" 设置上行增强型专用信道数据帧: 来源于主载波接收数据的设置上行复用信息为主载波, 来源于辅载波接收数 据的设置上行复用信息为辅载波。 无线网络控制器 2用类型 2的增强型专用 信道数据帧进行传输。 以上实施例二至实施例五是以双载波为例进行说明, 上述方法还可以扩 展到多载波, 例如三载波, 四载波的情况, 以下分别举例说明。 实施例六 本实施例中的应用场景如图 17所示, 终端目前仅在节点 B 1下的小区 1 (主载波) 和小区 2 (第二载波), 小区 3 (第三载波) 下使用三载波高速上 行分组接入技术。 无线网络控制器 1将建立非主载波频率层上的增强型专用 信道小区: 节点 B2下小区 4 (第二载波)。 如图 18 所示, 基于以上场景的增强型专用信道传输承载模式的配置方 法包括: 步骤 1801 , 针对指定的使用三载波高速上行分组接入技术的终端, 无线 网络控制器 1经由 IUB接口在节点 B2下小区 4中建立非主载波频率层上的 增强型专用信道小区, 无线网络控制器 1在无线链路建立过程中将 "无线链 路建立请求"信令发送给节点 B2, 在此信令中配置增强型专用信道传输承载 模式信息为 "共享模式"。 需要说明的是, 无线网络控制器 1 也可以通过其 他的方式对增强型专用信道传输承载模式进行配置, 而不限于在无线链路建 立 /增加请求中携带。 步骤 1802, 节点 B2应用所设定的增强型专用信道传输承载模式信息于 自身下辖的非主载波的各个频率层上的增强型专用信道小区, 也就是小区 4 (这个场景下只有一个小区), 进行增强型专用信道数据帧的传输。 节点 B2 依照 "共享模式" 选择三载波中所有上行载波上接收的同一个 MAC流放在 一个传输承载上发送, 也就是放在传输承载 1上发送。 节点 B2依照 "共享 模式" 设置上行增强型专用信道数据帧中的上行复用信息为此数据帧所接收 于的载波标识, 也就是第二载波。 节点 B2用类型 2的增强型专用信道数据 帧进行传输。 实施例七 本实施例中的应用场景如图 19所示, 终端目前仅在节点 B 1下的小区 1 (主载波) 和小区 2 (第二载波), 小区 3 (第三载波), 小区 4 (第四载波) 下使用四载波高速上行分组接入技术。 无线网络控制器 1将建立非主载波频 率层上的增强型专用信道小区: 节点 B2下小区 5 (第四载波)。 如图 20 所示, 基于以上场景的增强型专用信道传输承载模式的配置方 法包括: 步骤 2001 , 针对指定的使用四载波高速上行分组接入技术的终端, 无线 网络控制器 1经由 IUB接口在节点 B2下小区 5中建立非主载波频率层上的 增强型专用信道小区, 无线网络控制器 1在无线链路建立过程中将 "无线链 路建立请求"信令发送给节点 B2, 在此信令中配置增强型专用信道传输承载 模式信息为 "共享模式"。 需要说明的是, 无线网络控制器 1 也可以通过其 他的方式对增强型专用信道传输承载模式进行配置, 而不限于在无线链路建 立 /增加请求中携带。 步骤 2002, 节点 B2应用所设定的增强型专用信道传输承载模式信息于 自身下辖的非主载波的各个频率层上的增强型专用信道小区, 也就是小区 5 (这个场景下只有一个小区), 进行增强型专用信道数据帧的传输。 节点 B2 依照 "共享模式" 选择四载波中所有上行载波上接收的同一个 MAC流放在 一个传输承载上发送, 也就是放在传输承载 1上发送。 节点 B2依照 "共享 模式" 设置上行增强型专用信道数据帧中的上行复用信息为此数据帧所接收 于的载波标识, 也就是第四载波。 节点 B2用类型 2的增强型专用信道数据 帧进行传输。 需要说明的是, 现有技术中, 一般设定 "上行复用信息" 中主载波对应 的编码值为 0, 而如果设定 "上行复用信息" 中主载波对应的编码值为 1 , 辅载波对应的编码值为 0, 则在单载波传输的情况下, RNC会错将通过主载 波传输数据认定为通过辅载波传输数据, 以上方法同样适用, 只需将 "非主 载波" 和 "主载波,, 的表述互换即可。 实施例八 本实施例提供了一种增强型专用信道传输承载模式的配置系统, 图 21 是根据本发明实施例八的增强型专用信道传输承载模式的配置系统的结构框 图, 如图 21所示, 该系统包括: 第一 RNC 211和预定网元 212, 其中, 第 一 RNC211用于在预定网元 212中建立非主载波频率层上的增强型专用信道 小区, 并配置预定网元 212的增强型专用信道传输^载模式, 其中, 预定网 元 212包括以下至少之一: 连接于第一 RNC的节点 B、 连接于第一 RNC的 第二 RNC。 优选地, 预定网元 212还用于根据增强型专用信道传输承载模式的配置 进行增强型专用信道数据帧的传输。 综上所述, 本发明提供的增强型专用信道传输承载模式的配置方案, 解 决了现有技术的中无线网络控制器无法区别来源于主载波接收数据和来源于 辅载波接收数据从而无法正常进行重排序以及宏分集合并, 导致实际业务不 可用, 最终掉网的问题, 使得汇聚方的无线网络控制器能够清楚区别来源于 各个载波接收数据的情况, 确保终端实际业务数据的正常发送, 确保双载波 高速上行分组接入技术可用。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 并 且在某些情况下, 可以以不同于此处的顺序执行所示出或描述的步骤, 或者 将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制作 成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软件 结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的 ^"神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书
1. 一种增强型专用信道传输承载模式的配置方法, 其特征在于, 包括: 在第一无线网络控制器 RNC 在预定网元中建立非主载波频率层上 的增强型专用信道小区的情况下,所述第一 RNC配置所述预定网元的增 强型专用信道传输承载模式, 其中, 所述预定网元包括以下至少之一: 连接于所述第一 RNC的节点 B、 连接于所述第一 RNC的第二 RNC。
2. 居权利要求 1所述的方法, 其特征在于, 所述第一 RNC配置所述预定 网元的增强型专用信道传输承载模式包括:
所述第一 RNC 配置所述预定网元的所述增强型专用信道传输^载 模式为共享模式或分离模式。
3. 居权利要求 1所述的方法, 其特征在于, 所述第一 RNC在所述预定网 元中建立非主载波频率层上的增强型专用信道小区的情况包括第一情况 和 /或第二情况, 其中, 所述第一情况为所述第一 RNC 在所述预定网元中建立非主载波频 率层上的增强型专用信道小区之前, 在所述预定网元中未建立过主载波 频率层上的增强型专用信道小区的情况;
所述第二情况为所述第一 RNC 在所述预定网元中建立非主载波频 率层上的增强型专用信道小区之前, 在所述预定网元中建立过主载波频 率层上的增强型专用信道小区的情况。
4. 居权利要求 3所述的方法, 其特征在于, 所述第一 RNC配置所述预定 网元的所述增强型专用信道传输承载模式之后, 所述方法还包括: 在所述第一情况下, 所述预定网元根据所述增强型专用信道传输承 载模式的配置在所述非主载波频率层上的增强型专用信道小区上进行增 强型专用信道数据帧的传输;
在所述第二情况下, 所述预定网元根据所述增强型专用信道传输承 载模式的配置在包括主载波在内的各频率层上的增强型专用信道小区上 进行增强型专用信道数据帧的传输。
5. 居权利要求 4所述的方法, 其特征在于, 所述预定网元 -据所述增强 型专用信道传输承载模式的配置进行增强型专用信道数据帧的传输包 括:
所述预定网元根据所述增强型专用信道传输承载模式的配置对增强 型专用信道数据帧中的上行复用信息进行设置, 并传输所述增强型专用 信道数据帧。
6. 根据权利要求 4或 5所述的方法, 其特征在于, 所述增强型专用信道数 据帧为类型 2的上行增强型专用信道数据帧。
7. 居权利要求 1所述的方法, 其特征在于, 在所述第一 RNC在所述预定 网元中仅建立或增加主载波频率层上的增强型专用信道小区, 且所述第 一 RNC 在所述预定网元中未建立过非主载波频率层上的增强型专用信 道小区的情况下 ,所述第一 RNC不配置所述预定网元的增强型专用信道 传输承载模式。
8. 居权利要求 1至 5中任一项所述的方法, 其特征在于, 建立所述非主 载波频率层上的增强型专用信道小区包括以下至少之一: 通过无线链路 建立过程建立所述非主载波频率层上的增强型专用信道小区、 通过无线 链路增加过程建立所述非主载波频率层上的增强型专用信道小区。
9. 一种增强型专用信道传输承载模式的配置系统, 其特征在于, 包括: 第 一 RNC和预定网元, 其中, 所述第一 RNC用于在所述预定网元中建立 非主载波频率层上的增强型专用信道小区, 并配置所述预定网元的增强 型专用信道传输承载模式, 其中, 所述预定网元包括以下至少之一: 连 接于所述第一 RNC的节点 B、 连接于所述第一 RNC的第二 RNC。
10. 根据权利要求 9所述的系统, 其特征在于, 所述预定网元还用于根据所 述增强型专用信道传输承载模式的配置进行增强型专用信道数据帧的传 输。
PCT/CN2010/075401 2010-01-11 2010-07-22 增强型专用信道传输承载模式的配置方法及系统 WO2011082579A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/521,018 US8897242B2 (en) 2010-01-11 2010-07-22 Method and system for configuring enhanced dedicated channel transmission bearer mode
EP10841922.7A EP2515596B1 (en) 2010-01-11 2010-07-22 Configuration method and system for transmission bearer mode with enhanced dedicated channel
BR112012017026A BR112012017026A2 (pt) 2010-01-11 2010-07-22 método e sistema para configurar um modo portador de transmissão de canal dedicado aperfeiçoado

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010100045555A CN102123513A (zh) 2010-01-11 2010-01-11 增强型专用信道传输承载模式的配置方法及系统
CN201010004555.5 2010-01-11

Publications (1)

Publication Number Publication Date
WO2011082579A1 true WO2011082579A1 (zh) 2011-07-14

Family

ID=44251917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/075401 WO2011082579A1 (zh) 2010-01-11 2010-07-22 增强型专用信道传输承载模式的配置方法及系统

Country Status (5)

Country Link
US (1) US8897242B2 (zh)
EP (1) EP2515596B1 (zh)
CN (1) CN102123513A (zh)
BR (1) BR112012017026A2 (zh)
WO (1) WO2011082579A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102123521B (zh) 2010-01-12 2015-01-28 中兴通讯股份有限公司 一种多载波增强型专用信道数据传输方法和系统
US8725101B2 (en) * 2011-07-06 2014-05-13 Broadcom Corporation Wireless device and method of operation
WO2014092626A1 (en) * 2012-12-14 2014-06-19 Telefonaktiebolaget L M Ericsson (Publ) Node apparatus and method for establishing auxiliary bearers
US10271313B2 (en) * 2015-03-10 2019-04-23 Telefonaktiebolaget Lm Ericsson (Publ) System and method for selecting and adapting carrier aggregation configurations

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1968066A (zh) * 2005-11-16 2007-05-23 中兴通讯股份有限公司 适用于多载波高速下行分组接入的信道配置和分配方法
CN101483890A (zh) * 2008-01-11 2009-07-15 中兴通讯股份有限公司 一种td-scdma多载波系统中非cell-dch状态下数据传输的方法
CN101562884A (zh) * 2008-04-16 2009-10-21 中兴通讯股份有限公司 上行同步码配置方法、无线网络控制器及多载波系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100713442B1 (ko) * 2004-02-14 2007-05-02 삼성전자주식회사 이동통신 시스템에서 향상된 역방향 전용채널을 통한 스케쥴링 정보의 전송방법
KR100933156B1 (ko) * 2004-08-12 2009-12-21 삼성전자주식회사 업링크 서비스를 위한 전송 채널들을 이용한 핸드오프 지역에서의 업링크 데이터 송수신 방법 및 장치
EP1953971A4 (en) 2005-11-16 2014-10-01 Zte Corp CHANNEL FOR ACCESS TO PACKETS OF A MULTI-CARRIER HIGH-SPEED DOWNLINK AND METHOD FOR ALLOCATING CARRIER RESOURCES
CN101426254B (zh) * 2007-10-31 2010-12-08 华为技术有限公司 一种实现信息传输的方法、装置及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1968066A (zh) * 2005-11-16 2007-05-23 中兴通讯股份有限公司 适用于多载波高速下行分组接入的信道配置和分配方法
CN101483890A (zh) * 2008-01-11 2009-07-15 中兴通讯股份有限公司 一种td-scdma多载波系统中非cell-dch状态下数据传输的方法
CN101562884A (zh) * 2008-04-16 2009-10-21 中兴通讯股份有限公司 上行同步码配置方法、无线网络控制器及多载波系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2515596A4 *

Also Published As

Publication number Publication date
US20130128827A1 (en) 2013-05-23
US8897242B2 (en) 2014-11-25
EP2515596B1 (en) 2018-12-26
EP2515596A4 (en) 2016-11-16
BR112012017026A2 (pt) 2016-04-05
CN102123513A (zh) 2011-07-13
EP2515596A1 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
US20240129181A1 (en) Apparatus and method for performing dual connectivity in wireless communication system
CN113826364B (zh) 用于侧链路的协作通信的方法和设备
EP3817447B1 (en) Method and apparatus for supporting qos (quality of service) flow to drb (data radio bearer) remapping for sidelink communication in a wireless communication system
US9118456B2 (en) Method and system for transmitting multi-carrier uplink data at network-side
EP2490399B1 (en) Method for data transmission based on relay mobile communication system and equipment thereof
US20230091236A1 (en) Communication control method and user equipment
WO2011020310A1 (zh) 一种无线网络控制器之间通信控制的方法和装置
WO2011082579A1 (zh) 增强型专用信道传输承载模式的配置方法及系统
JP7549077B2 (ja) 通信制御方法、ユーザ装置及びプロセッサ
WO2010102453A1 (zh) 提高中继网络系统性能的方法、通信系统及协议实体
EP3606156B1 (en) Method and apparatus for processing data at high speed
WO2023276985A1 (ja) マスタノード、通信制御方法、及び通信装置
EP2469719B1 (en) Method and system for transmitting multi-carrier enhanced dedicated channel data
CN116266940A (zh) 多路径的传输方法和用户设备
WO2011110002A1 (zh) 一种识别iur接口传输承载能力的方法及系统
WO2011082598A1 (zh) 一种增强型专用信道传输上行数据的方法及系统
CN113615310A (zh) 下一代移动通信系统中恢复网络连接失败的方法和设备
EP4344304A1 (en) Apparatus and method for performing region re-routing in wireless communication system
WO2023002987A1 (ja) 通信制御方法
CN118104265A (zh) 下一代移动通信系统中增强as层安全性的方法及装置
CN118696566A (zh) 用于下一代移动通信系统中的条件pscell改变的方法和装置
CN117643103A (zh) 用于在回程和接入孔组合系统中的宿主之间迁移期间控制选择性准入的方法
WO2011109989A1 (zh) 服务无线网络控制器识别传输承载能力的方法及系统
WO2011109987A1 (zh) 传输承载建立方法、专用媒体接入控制流传输方法和系统
WO2011109990A1 (zh) 一种更改使用e-dch传输承载的方法和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10841922

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010841922

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13521018

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 6159/CHENP/2012

Country of ref document: IN

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012017026

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012017026

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120711