WO2011082511A1 - 风力发电机组分段式风轮叶片及其装配方法 - Google Patents

风力发电机组分段式风轮叶片及其装配方法 Download PDF

Info

Publication number
WO2011082511A1
WO2011082511A1 PCT/CN2010/001688 CN2010001688W WO2011082511A1 WO 2011082511 A1 WO2011082511 A1 WO 2011082511A1 CN 2010001688 W CN2010001688 W CN 2010001688W WO 2011082511 A1 WO2011082511 A1 WO 2011082511A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
connecting section
main beam
section
radial
Prior art date
Application number
PCT/CN2010/001688
Other languages
English (en)
French (fr)
Inventor
王伟峰
金宝年
Original Assignee
华锐风电科技(集团)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华锐风电科技(集团)股份有限公司 filed Critical 华锐风电科技(集团)股份有限公司
Priority to CA2779313A priority Critical patent/CA2779313C/en
Priority to BR112012009697A priority patent/BR112012009697A2/pt
Priority to AU2010341386A priority patent/AU2010341386A1/en
Priority to IN3429DEN2012 priority patent/IN2012DN03429A/en
Priority to EP10841855.9A priority patent/EP2525081A4/en
Priority to US13/504,474 priority patent/US20120213642A1/en
Publication of WO2011082511A1 publication Critical patent/WO2011082511A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0675Rotors characterised by their construction elements of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/302Segmented or sectional blades
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49336Blade making
    • Y10T29/49339Hollow blade

Definitions

  • the present invention relates to a wind turbine blade and an assembly method thereof, and more particularly to a segmented wind turbine blade for use in an extra large wind turbine and an assembly method thereof. Background technique
  • the wind turbine blade is the core component of the wind turbine.
  • the windswept area of the wind turbine blade directly determines the output power of the wind turbine.
  • the length of the rotor blades is also increasing.
  • such long rotor blades are inconvenient in production, transportation and lifting. Therefore, the segmented manufacturing method can be used to produce the wind turbine blade to reduce the blade forming die and the blade production workshop, and at the same time, the preparation process in the blade forming process can be improved, and the transportation between the wind turbine blade and the wind farm ground is more convenient.
  • the segmented wind turbine blade needs to be assembled into a complete blade during use.
  • the segmented wind turbine blade is connected with a slot at the blade joint, and the filler is added in the slot. Bonding, and connecting with separate fasteners, and superimposing the reinforcing structure on the inner and outer surfaces to connect the segmented blades together, the convenience of the installation is less, and at the same time, the fasteners and the superposed structure are applied to the actual engineering.
  • the strength of the blade joint is insufficient and the aerodynamic loss is large, and the actual assembly operation is complicated, and the cost and the risk are high.
  • the structure of the segmented wind turbine blade itself directly affects the assembly method, so it is necessary Right now segmentation
  • the main object of the present invention is to provide a segmental wind turbine blade with a stable connection, small aerodynamic loss and simple operation, and an assembly method thereof.
  • the present invention provides a wind turbine component segment wind turbine blade comprising a blade root segment and at least one radial blade, the blade root segment being adjacent to the hub side, the blade root segment and each radial blade The main beam is buried, and the blade root segment and each radial blade are connected end to end through the sequential connection between the main beams.
  • the end of the main beam in the blade root section away from the hub is the connecting section of the main beam, the connecting section is hollow, and the inner wall of the connecting section is formed with the inner groove along the wind vane blade;
  • the main beam in the radial blade is close to the hub
  • One end is a front connecting section, the front connecting section exposes an end surface of the radial blade, and the outer circumference of the front connecting section is formed with external teeth along the wind turbine blade;
  • the end of the main beam in the radial blade is away from the hub a rear connecting section, the end surface of the rear connecting section is flush with the end surface of the radial blade, the rear connecting section is hollow, and the inner wall of the rear connecting section is formed with an inner groove along the direction of the wind turbine blade;
  • the front connecting section of the main beam is inserted into the rear connecting section of the main beam in the adjacent radial blade, and the outer teeth of the front connecting section and the inner groove of the rear connecting section are engaged with each other, and the connecting section of the main beam
  • the cross section of the rear connecting section of the main beam in the radial blade is the same as the cross section of the front connecting section of the main beam in the adjacent radial blade, and the cross section of the connecting section of the main beam in the blade root section is adjacent to
  • the cross-section shape of the front connecting section of the main beam in the radial blade of the blade root section is the same, and the cross section of the front connecting section is "C" shape, "D" shape or " ⁇ " shape, and the cross section of the rear connecting section In the shape of "C", “D” or "O", the cross section of the main beam in the root section is "C", "D” or " ⁇ ".
  • the inner groove of the rear connecting section of the main beam in the radial blade has the same shape as the outer tooth of the front connecting section of the main beam in the adjacent radial blade, and the inner groove of the rear connecting section is an involute groove, a triangular groove, and a rectangle Slot or trapezoidal groove, the outer teeth of the front connecting section are involute teeth, triangular teeth, rectangular teeth or trapezoidal teeth, the inner groove of the connecting section of the main beam in the blade root section and the radial blade adjacent to the blade root section Outside the main beam front connecting section
  • the tooth shape is the same, and the inner groove of the connecting section of the main beam in the blade root section is an involute groove, a triangular groove, a rectangular groove or a trapezoidal groove.
  • the end face of the connecting section of the main beam in the blade root section and the end face of the rear connecting section of the main beam in each radial blade are provided with a guiding metal disk, and the flange fitting metal disk is bolted and provided with a metal disk The main beams are fastened together.
  • the metal disk has a thickness and is provided with internal teeth.
  • the number of internal teeth of the metal disk is smaller than the number of inner grooves of the main beam end face of the metal disk, and the internal teeth of the metal disk and the end face of the main beam provided with the metal disk The convex portions between the adjacent inner grooves are aligned.
  • the main beam is made of a composite material based on a carbon fiber reinforcement and a resin.
  • the invention also provides a method for assembling a wind turbine generator segment type wind wheel blade, the assembly method comprising the following steps:
  • DRAWINGS 1 is a schematic exploded view of a segmented wind turbine blade of a wind power generator according to the present invention
  • Figure 2 is a schematic cross-sectional view of a blade segment or a radial blade in the present invention
  • Figure 3 is a schematic view showing the connecting portion of the main beam in the present invention.
  • Figure 4 is a schematic view showing the state in which the connecting section and the front connecting section or the rear connecting section and the front connecting section are inserted in the present invention
  • FIG. 5 is a schematic view of the assembled wind turbine blade of the wind turbine according to the present invention
  • FIG. 7A is a cross-sectional view of the connecting section or the rear connecting section and the front connecting section of the present invention
  • FIG. 7B is a connection diagram of the present invention
  • FIG. 7C is a schematic cross-sectional view of a section or a rear connecting section and a front connecting section, and is a schematic cross-sectional view of a connecting section or a rear connecting section and a front connecting section in the present invention.
  • the wind turbine blade in the present invention is a multi-stage wind turbine blade. As shown in FIG. 1, the wind turbine blade includes a blade root segment 1 and at least one radial blade 2, and the blade root segment 1 and each radial blade 2 are both inside.
  • the main beam 3 is buried, and the blade root section 1 and the radial blades 2 are connected end to end to form a complete wind wheel blade through the sequential connection between the main beams 3.
  • the blade root section 1 of the wind turbine blade of the present invention is close to the hub side, and the blade root section 1 and its internal main beam 3 are fixed together at the time of manufacture, away from the blade root section 1 on the side of the hub.
  • the end face is flush with the end face of the main beam 3, and the end of the main beam 3 in the root section 1 is away from the hub, and the connecting section 30 of the main beam 3 is a hollow shape, and the connecting section 30 is horizontal.
  • the cross section may be "C" shape, "D" shape or "0" shape ("D" shape as shown in Fig. 2), and the cross section of the connecting portion 30 in the present invention is exemplified by an "O" shape.
  • the inner wall of the connecting section 30 is formed with an inner groove 300 along the direction in which the wind turbine blade is stretched, and the inner groove 300 is an involute groove, a triangular groove, a rectangular groove or a trapezoidal groove (as shown in Figs. 7A to 7C).
  • each of the radial vanes 2 in the present invention and the main beam 3 embedded therein are consolidated at the time of manufacture.
  • the end of the main beam 3 in the radial vane 2 near the hub is a front connection.
  • Section 31 the front connecting section 31 exposes the end face of the radial blade 2, and the cross section of the front connecting section 31 of the main beam 3 in the radial blade 2 has a "C” shape, a "D” shape or an "O” shape ( In the figure, an "O" shape is taken as an example.
  • the outer circumference of the front connecting section 31 is formed with external teeth 310 along the direction of the wind turbine blade.
  • the external teeth 310 are involute, triangular, rectangular or trapezoidal.
  • FIG. 7A to 7C One end of the main beam 3 in the radial vane 2 away from the hub is a rear connecting section 32, the end surface of the rear connecting section 32 is flush with the end surface of the radial vane 2, and the rear connecting section 32 is in a hollow shape,
  • the cross section is the same as the cross-sectional shape of the front connecting section 31 of the main beam 3 in the adjacent radial blade 2, and the cross section of the rear connecting section 32 is also "C" shaped, "D" shaped or “O” shaped. (In the figure, "0,” for example), the inner wall of the rear connecting section 32 is formed along the outer peripheral edge of the front connecting section 31 of the main beam 3 in the adjacent radial blade 2 along the wind turbine blade.
  • the inner groove 320 is the same shape of the tooth 310, and the inner groove 320 is an involute groove, a triangular groove, a rectangular groove or a trapezoidal groove (as shown in FIGS. 7A to 7C).
  • the radial blade 2 adjacent to the blade root segment 1 The cross-section of the front connecting section 31 is the same as the cross-sectional shape of the inner connecting section 30 of the blade root section 1, and the outer teeth 310 of the front connecting section 31 of the radial blade 2 and the inner connecting section 30 of the blade root section 1 are connected.
  • the slots 300 are identical in shape.
  • the front connecting section 31 of the main beam 3 in the radial blade 2 is inserted in the adjacent radial blade 2
  • the outer teeth 310 of the front connecting section 31 and the inner groove 320 of the rear connecting section 32 are engaged with each other, and the phase is inserted into the connecting section 30 of the main beam 3 in the blade section 1
  • Adjacent to the front connecting section 31 of the main beam 3 in the radial blade 2 the inner groove 300 of the inner connecting section 30 of the blade root section 1 and the outer teeth 310 of the front connecting section 31 of the adjacent radial blade 2 are engaged with each other.
  • the blade root segment 1 and each radial blade 2 are inserted into each other through the external teeth and the inner groove of each main beam 3 to form a complete wind wheel blade, and the inner groove and the outer tooth assembly surface are bonded to increase the leaf.
  • the strength of the connection between the root segment 1 and each radial blade 2 is by hand lay-up, dry forming and/or vacuum injection molding.
  • the inner groove of the main beam 3 and the outer groove can be first The surface of the tooth is subjected to roughness treatment, such as grinding, sand blasting, etc., and the surface roughness of the millimeter surface is introduced, and a rectangular or triangular concave groove such as a centimeter surface roughness can be processed on the inner groove and the outer tooth surface, with roughness
  • roughness treatment such as grinding, sand blasting, etc.
  • a rectangular or triangular concave groove such as a centimeter surface roughness
  • the increase of the surface area of the inner groove and the outer teeth of the main beam 3 increases, so that the bonding area between the inner groove and the outer tooth surface of the main beam 3 and the adhesive also increases, and the bonding strength also increases accordingly.
  • the centrifugal vane Since the centrifugal vane has centrifugal force during operation, in order to further increase the joint strength between the blade root section 1 and each of the radial vanes 2, the front connecting section 31 of each radial vane 2 is embedded near the radial vane 2 a flange 33 (shown in FIG. 3), the flange 33 is fixed to the main beam 3 of the radial blade 2, the edge of the flange 33 is formed with a through hole, and the main beam 3 of the blade root section 1 is formed.
  • a plurality of bolts 321 are embedded in the end faces of the connecting section 30 and the end faces of the rear connecting sections 32 of the main beams 3 in each of the radial blades 2, the blade root section 1 and each radial direction
  • the inner groove of the main beam 3 is bonded to the outer tooth surface, and then the flange 33 is fastened to the butt bolt 321 by a nut, and the flange 33 is positioned at the time of assembly. effect.
  • the end faces of the main beams 3 provided with the bolts 321 are further provided with a guiding metal disk (not shown) having a certain thickness.
  • the metal disk is provided with a plurality of internal teeth, and the number of internal teeth of the metal disk Less than the number of inner grooves provided with the end faces of the main beam 3 of the metal disk, and the inner teeth of the metal disk are aligned with the convex portions between the adjacent inner grooves of the end faces of the main beams 3 provided with the metal disk, so that the radial direction
  • the recess between the adjacent outer teeth 310 of the front connecting section 31 of the blade 2 is fitted with the internal teeth of the metal disk, and the front connecting section 31 of the radial blade 2 is easily inserted into the adjacent radial blade. 2 in the rear connecting section 32 or in the connecting section 30 of the blade root section 1.
  • the flange 33 is attached to the metal disk and fastened to the main beam 3 provided with the metal disk by bolts 321 .
  • the gap is covered by the outer skin 12 (as shown in Fig. 6), and the wind turbine blade can be reduced. The aerodynamic losses and further strengthen the joint strength.
  • the gap between the root segment and the joint between the radial blades is covered by the outer skin.
  • the main beam of the present invention is made of a composite material based on a carbon fiber reinforcement and a resin. The above is only the preferred embodiment of the present invention and is not intended to limit the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Description

风力发电机组分段式风轮叶片及其装配方法 技术领域
本发明有关一种风轮叶片及其装配方法, 尤其是指一种用于特大型风力 发电机组中的分段式风轮叶片及其装配方法。 背景技术
目前, 随着人们环保意识的增强, 风能的应用愈来愈广泛, 风力发电机 组实现了风能与电能之间的转换。 风轮叶片是风力发电机组的核心部件, 风 轮叶片的扫风面积直接决定风力发电机组的输出电量。 随着风力发电机组单 机容量不断增大, 风轮叶片的长度也在不断增大, 然而这种长的风轮叶片在 生产、 运输及吊装等过程中非常不便。 因此可采用分段制造方式生产风轮叶 片, 以减小叶片的成型模具及叶片生产车间, 同时可以改进叶片成型过程中 制备工艺, 并使风轮叶片到风电场地之间的运输更为方便。 分段式的风轮叶 片在使用过程中需要装配成完整的叶片, 现有技术对分段式风轮叶片的连接 过程中, 在叶片连接处加工出狭槽, 通过在狭槽内加入填充物进行粘结, 并 以单独紧固件连接, 以及在内外表面叠加加固结构将分段式叶片连接在一起, 装的便利性等方面考虑较少, 同时, 紧固件与叠加结构应用于实际工程中时 会导致叶片连接处强度不足及气动损失大等问题, 并且存在实际装配操作复 杂及费用、 风险高的缺点, 然而分段式风轮叶片本身的结构直接影响着其装 配方法, 因此有必要对现右分段 (.风 发明内容
有鉴于此, 本发明的主要目的在于提供一种连接稳固、 气动损失小及操 作简单的风力发电机组分段式风轮叶片及其装配方法。 为达到上述目的, 本发明提供一种风力发电机组分段式风轮叶片, 其包 括有叶根段及至少一个径向叶片, 叶根段靠近轮毂一侧, 叶根段与各径向叶 片内均埋设有主梁, 叶根段与各径向叶片通过各主梁之间的依次衔接而首尾 连接。
叶根段内的主梁远离轮毂的一端为该主梁的连接段, 该连接段为中空形 态, 连接段的内壁沿风轮叶片展向形成有内槽; 径向叶片内的主梁靠近轮毂 的一端为前置连接段, 该前置连接段露出径向叶片的端面, 前置连接段的外 周缘沿风轮叶片展向形成有外齿; 径向叶片内的主梁远离轮毂的一端为后置 连接段, 该后置连接段的端面与径向叶片的端面平齐, 后置连接段为中空形 态, 后置连接段的内壁沿风轮叶片展向形成有内槽; 径向叶片内主梁的前置 连接段插入相邻的径向叶片内主梁的后置连接段, 前置连接段的外齿与后置 连接段的内槽相互咬合, 叶根段内主梁的连接段内插入相邻于叶根段的径向 叶片内主梁的前置连接段, 该前置连接段的外齿与叶根段内主梁的连接段的 内槽相互咬合; 各径向叶片的前置连接段处埋设有法兰盘, 该法兰盘与径向 叶片的主梁固结在一起, 叶根段内主梁的连接段的端面与各径向叶片内主梁 的后置连接段的端面处均埋设有多数个螺栓, 法兰盘与所对接的螺栓通过螺 母紧固结合; 叶根段及各径向叶片之间的连接处设置有外蒙皮。
径向叶片内主梁的后置连接段的横截面与相邻径向叶片内主梁的前置连 接段的横截面形状相同, 叶根段内主梁的连接段的横截面与相邻于叶根段的 径向叶片内主梁前置连接段的横截面形状相同, 前置连接段的横截面为" C" 形、 "D"形或 "〇"形, 后置连接段的横截面为" C"形、 "D"形或" O"形, 叶根段 内主梁的连接段的横截面为" C"形、 "D"形或 'Ό"形。
径向叶片内主梁的后置连接段的内槽与相邻径向叶片内主梁前置连接段 的外齿形状相同, 后置连接段的内槽为渐开线形槽、 三角形槽、 矩形槽或梯 形槽, 前置连接段的外齿为渐开线形齿、 三角形齿、 矩形齿或梯形齿, 叶根 段内主梁的连接段的内槽与相邻于叶根段的径向叶片内主梁前置连接段的外 齿形状相同, 叶根段内主梁的连接段的内槽为渐开线形槽、 三角形槽、 矩形 槽或梯形槽。
叶根段内主梁的连接段的端面与各径向叶片内主梁的后置连接段的端面 处设置有起导向作用的金属盘, 法兰盘贴合金属盘通过螺栓与设有金属盘的 主梁紧固在一起。
金属盘具有厚并设有内齿, 金属盘的内齿数量少于设有该金属盘的主梁 端面的内槽数量, 且金属盘的内齿与设有该金属盘的主梁端面的相邻两内槽 之间的凸部对齐。
主梁采用以碳纤维增强体与树脂为基体的复合材料制成。
本发明还提供一种风力发电机组分段式风轮叶片的装配方法, 该装配方 法包括有如下步骤:
( 1 )对叶根段及各径向叶片内主梁的外齿与内槽的表面进行粗糙度处 理;
( 2 )叶根段内主梁的连接段内插入相邻径向叶片内主梁的前置连接段, 使叶根段内连接段的内槽与该相邻径向叶片的前置连接段的外齿相互咬合, 并将径向叶片内主梁的前置连接段插接在相邻径向叶片内主梁的后置连接段 内, 使该前置连接段的外齿与该后置连接段的内槽相互咬合;
( 3 )对所述叶 及所述各径向叶片内主梁的外齿与内槽的装配面之间 进行粘合, 粘合方式为手糊成型、 干法成型或真空注塑成型;
( 4 )将法兰盘与所对接的螺栓通过螺母紧固结合;
( 5 )对叶根段及各径向叶片之间连接处的缝隙用外蒙皮进行包合。 接强度大, 气动损失小的效果, 同时本发明的分段式风轮叶片结构简单, 组 装操作方便。 附图说明 图 1为本发明风力发电机组分段式风轮叶片分解示意图;
图 2为本发明中的叶 ^段或径向叶片的截面示意图;
图 3为本发明中的主梁连接部分示意图;
图 4 为本发明中的连接段与前置连接段或者后置连接段与前置连接段插 接状态示意图;
图 5为本发明风力发电机组分段式风轮叶片组装后的示意图; 图 7A 为本发明中的连接段或后置连接段与前置连接段的截面示意图之 图 7B 为本发明中的连接段或后置连接段与前置连接段的截面示意图之 图 7C 为本发明中的连接段或后置连接段与前置连接段的截面示意图之
具体实施方式
为便于理解本发明的结构及达到的效果 , 现配合附图并列举较佳实施例 详细说明^下。
本发明中的风轮叶片为多段式风轮叶片, 如图 1 所示, 该风轮叶片包括 有叶根段 1及至少一个径向叶片 2,叶根段 1与各径向叶片 2内均埋设有主梁 3 , 通过各主梁 3之间的依次衔接, 将叶根段 1与各径向叶片 2首尾连接组成 完整的风轮叶片。
如图 3所示, 本发明的风轮叶片中的叶根段 1 靠近轮毂一侧, 叶根段 1 与其内部的主梁 3在制造时固结在一起, 远离轮毂一侧的叶根段 1 的端面与 主梁 3的端面平齐, 叶根段 1内主梁 3远离轮毂的一端为主梁的连接段 30, 且该主梁 3的连接段 30为中空形态, 该连接段 30的横截面可为 "C"形、 "D" 形或 "0"形(如图 2所示的 "D"形),本发明中连接段 30的横截面以" O"形为例。 连接段 30的内壁沿风轮叶片展向形成有内槽 300,该内槽 300为渐开线形槽、 三角形槽、 矩形槽或梯形槽(如图 7A至图 7C所示)。
本发明中的各径向叶片 2与其内部埋设的主梁 3在制造时固结在一起, 如图 3与图 4所示,径向叶片 2内的主梁 3靠近轮毂的一端为前置连接段 31, 该前置连接段 31露出径向叶片 2的端面, 径向叶片 2内主梁 3的前置连接段 31的横截面为" C"形、 "D"形或" O"形 (图中以" O"形为例), 该前置连接段 31 的外周缘沿风轮叶片展向形成有外齿 310, 该外齿 310为渐开线形齿、三角形 齿、矩形齿或梯形齿(如图 7A至图 7C所示)。径向叶片内 2的主梁 3远离轮 毂的一端为后置连接段 32,该后置连接段 32的端面与径向叶片 2的端面平齐, 且该后置连接段 32为中空形态, 其横截面与相邻径向叶片 2内主梁 3的前置 连接段 31的横截面形状相同, 该后置连接段 32的横截面也为 "C"形、 "D"形 或" O"形 (图中以" 0,,形为例), 该后置连接段 32的内壁沿风轮叶片展向形成 有与相邻径向叶片 2内主梁 3的前置连接段 31外周缘的外齿 310形状相同的 内槽 320, 该内槽 320为渐开线形槽、 三角形槽、 矩形槽或梯形槽(如图 7A 至图 7C所示)。相邻于叶根段 1的径向叶片 2的前置连接段 31的横截面与叶 根段 1 内连接段 30的横截面形状相同, 且该径向叶片 2前置连接段 31的外 齿 310与叶根段 1内连接段 30的内槽 300形状相同。 如图 5与图 6所示, 径 向叶片 2内主梁 3的前置连接段 31插接在相邻径向叶片 2内主梁 3的后置连 接段 32内, 使前置连接段 31的外齿 310与后置连接段 32的内槽 320相互咬 合, 叶才艮段 1内主梁 3的连接段 30内插入相邻径向叶片 2内主梁 3的前置连 接段 31 ,使叶根段 1内连接段 30的内槽 300与相邻径向叶片 2的前置连接段 31的外齿 310相互咬合。
叶根段 1与各径向叶片 2通过各主梁 3上的外齿与内槽插接在一起组成 完整的风轮叶片, 并对内槽和外齿的装配面进行粘合, 以增加叶根段 1 与各 径向叶片 2之间的连接强度, 该粘合方式为手糊成型、 干法成型和 /或真空注 塑成型。 在对分段式风轮叶片进行组装之前, 可以首先对主梁 3 的内槽及外 齿表面进行粗糙度处理, 如研磨、 喷砂等引入毫米级表面粗糙度, 还可以在 内槽及外齿表面上加工出厘米级表面粗糙度的矩形、 三角形等凹凸齿槽, 随 着粗糙度的增加, 主梁 3的内槽及外齿的表面积增大, 因此主梁 3的内槽与 外齿表面与粘结剂之间的粘结面积也增大, 粘结强度也相应增加。 由于风轮 叶片在运行中存在离心力, 为了进一步增加叶根段 1及各径向叶片 2之间的 连接强度, 在各径向叶片 2的前置连接段 31靠近径向叶片 2处埋设有法兰盘 33 (如图 3所示), 该法兰盘 33与径向叶片 2的主梁 3固结在一起, 法兰盘 33的边缘形成有通孔, 叶根段 1内主梁 3的连接段 30的端面与各径向叶片 2 内主梁 3的后置连接段 32的端面处均埋设有多数个螺栓 321 (如图 3与图 4 所示), 叶根段 1与各径向叶片 2插接后, 进行主梁 3的内槽与外齿表面的粘 结, 之后将法兰盘 33与所对接的螺栓 321通过螺母紧固结合, 法兰盘 33在 装配时兼具有定位作用。 设有螺栓 321的各主梁 3的端面还设置有起导向作 用的金属盘(图中未示出 ),金属盘具有一定的厚度,金属盘设有若干个内齿, 金属盘的内齿数量少于设有该金属盘的主梁 3 端面的内槽数量, 且金属盘的 内齿与设有该金属盘的主梁 3 端面的相邻两内槽之间的凸部对齐, 使径向叶 片 2的前置连接段 31的相邻两外齿 310之间的凹部与金属盘的内齿嵌合, 径 向叶片 2的前置连接段 31便很容易的插接在相邻径向叶片 2的后置连接段 32 内或叶根段 1的连接段 30内。 风轮叶片组装后, 法兰盘 33贴合金属盘通过 螺栓 321与设有金属盘的主梁 3紧固在一起。 风轮叶片组装完成后, 由于叶 根段 1与各径向叶片 2之间连接处有缝隙, 通过外蒙皮 12 (如图 6所示)对 该缝隙进行包合, 可以减小风轮叶片的气动损失, 并进一步加强连接强度。
因此, 本发明的分段式风轮叶片的装配步骤如下所述:
( 1 )对叶根段及各径向叶片内主梁的外齿与内槽的表面进行粗糙度处 理;
( 2 )叶根段内主梁的连接段内插入相邻径向叶片内主梁的前置连接段, 使叶根段内连接段的内槽与该相邻径向叶片的前置连接段的外齿相互咬合, 并将径向叶片内主梁的前置连接段插接在相邻径向叶片内主梁的后置连接段 内, 使该前置连接段的外齿与该后置连接段的内槽相互咬合;
( 3 )对所述叶根段及所述各径向叶片内主梁的外齿与内槽的装配面之间 进行粘合, 该粘合方式为手糊成型、 干法成型和 /或真空注塑成型;
( 4 )将法兰盘与所对接的螺栓通过螺母紧固结合;
( 5 )通过外蒙皮对叶根段及各径向叶片之间连接处的缝隙进行包合。 本发明中的主梁采用以碳纤维增强体与树脂为基体的复合材料制成。 以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保护 范围。

Claims

权利要求
1、 一种风力发电机组分段式风轮叶片, 其特征在于, 其包括有叶根段及 至少一个径向叶片, 所述叶根段靠近轮毂一侧, 所述叶根段与所述各径向叶 片内均埋设有主梁, 所述叶根段与所述各径向叶片通过所述各主梁之间的依 次衔接而首尾连接; 所述叶根段内的主梁远离所述轮毂的一端为该主梁的连 接段, 所述连接段为中空形态, 所述连接段的内壁沿所述风轮叶片展向形成 有内槽; 所述径向叶片内的主梁靠近所述轮毂的一端为前置连接段, 该前置 连接段露出所述径向叶片的端面, 所述前置连接段的外周缘沿所述风轮叶片 展向形成有外齿; 所述径向叶片内的主梁远离所述轮毂的一端为后置连接段, 该后置连接段的端面与所述径向叶片的端面平齐, 所述后置连接段为中空形 态, 所述后置连接段的内壁沿所述风轮叶片展向形成有内槽; 所述径向叶片 内主梁的前置连接段插入相邻的所述径向叶片内主梁的后置连接段, 所述前 置连接段的外齿与所述后置连接段的内槽相互咬合, 所述叶根段内主梁的连 接段内插入相邻于所述叶根段的径向叶片内主梁的前置连接段, 该前置连接 段的外齿与所述叶根段内主梁的连接段的内槽相互咬合; 所述各径向叶片的 前置连接段处埋设有法兰盘, 该法兰盘与所述径向叶片的主梁固结在一起, 所述叶根段内主梁的连接段的端面与所述各径向叶片内主梁的后置连接段的 端面处均埋设有多数个螺栓, 所述法兰盘与所对接的所述螺栓通过螺母紧固 结合; 叶根段及所述各径向叶片之间的连接处设置有外蒙皮。
2、 如权利要求 1所述的风力发电机组分段式风轮叶片, 其特征在于, 所 述径向叶片内主梁的后置连接段的横截面与相邻所述径向叶片内主梁的前置 连接段的横截面形状相同, 所述叶根段内主梁的连接段的横截面与相邻于所 述叶根段的径向叶片内主梁前置连接段的横截面形状相同, 所述前置连接段 的横截面为" C"形、 "D"形或" O"形, 所述后置连接段的横截面为 "C"形、 "D" 形或 'Ό"形, 所述叶根段内主梁的连接段的横截面为 "C"形、 "D"形或 "0"形。
3、 如权利要求 2所述的风力发电机组分段式风轮叶片, 其特征在于, 所 述径向叶片内主梁的后置连接段的内槽与相邻径向叶片内主梁前置连接段的 外齿形状相同, 所述后置连接段的内槽为渐开线形槽、 三角形槽、 矩形槽或 梯形槽, 所述前置连接段的外齿为渐开线形齿、 三角形齿、 矩形齿或梯形齿, 所述叶 >段内主梁的连接段的内槽与相邻于所述叶才 段的径向叶片内主梁前 置连接段的外齿形状相同, 所述叶根段内主梁的连接段的内槽为渐开线形槽、 三角形槽、 矩形槽或梯形槽。
4、 如权利要求 1所述的风力发电机组分段式风轮叶片, 其特征在于, 所 ' 述叶根段内主梁的连接段的端面与所述各径向叶片内主梁的后置连接段的端 面处设置有起导向作用的金属盘, 所述法兰盘贴合所述金属盘通过所述螺栓 与设有所述金属盘的主梁紧固在一起。
5、 如权利要求 4所述的风力发电机组分段式风轮叶片, 其特征在于, 所 述金属盘具有厚度并设有内齿, 所述金属盘的内齿数量少于设有该金属盘的 主梁端面的内槽数量, 且所述金属盘的内齿与设有该金属盘的主梁端面的相 邻两内槽之间的凸部对齐。
6、 如权利要求 1所述的风力发电机组分段式风轮叶片, 其特征在于, 所 述主梁采用以碳纤维增强体与树脂为基体的复合材料制成。
7、一种用于权利要求 1所述的风力发电机组分段式风轮叶片的装配方法, 其特征在于, 所述装配方法包括有如下步骤:
( 1 )对所述叶根段及所述各径向叶片内主梁的外齿与内槽的表面进行粗 糙度处理;
( 2 )所述叶根段内主梁的连接段内插入相邻径向叶片内主梁的前置连接 段, 使所述叶根段内连接段的内槽与该相邻径向叶片的前置连接段的外齿相 互咬合, 并将所述径向叶片内主梁的前置连接段插接在相邻径向叶片内主梁 的后置连接段内, 使该前置连接段的外齿与该后置连接段的内槽相互咬合;
( 3 )对所述叶根段及所述各径向叶片内主梁的外齿与内槽的装配面之间 进行粘合, 粘合方式为手糊成型、 干法成型或真空注塑成型; ( 4 )将所述法兰盘与所对接的所述螺栓通过螺母紧固结合;
( 5 )对所述叶根段及所述各径向叶片之间连接处的缝隙用外蒙皮进行包 合。
PCT/CN2010/001688 2010-01-11 2010-10-25 风力发电机组分段式风轮叶片及其装配方法 WO2011082511A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2779313A CA2779313C (en) 2010-01-11 2010-10-25 Segmented wind rotor blade for wind turbine generator system and assemblying method thereof
BR112012009697A BR112012009697A2 (pt) 2010-01-11 2010-10-25 pá para rotor eólico segmentada para sistemas gerador de turbina eólica e metodo de montagem desta
AU2010341386A AU2010341386A1 (en) 2010-01-11 2010-10-25 Segmented wind wheel blade for wind generating set and assemblying method thereof
IN3429DEN2012 IN2012DN03429A (zh) 2010-01-11 2010-10-25
EP10841855.9A EP2525081A4 (en) 2010-01-11 2010-10-25 SEGMENTED WINDRADE BUCKET FOR A WINDER BOX KIT AND ARRANGEMENT METHOD THEREFOR
US13/504,474 US20120213642A1 (en) 2010-01-11 2010-10-25 Segmented wind rotor blade for wind turbine generator system and assemblying method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010033771.2 2010-01-11
CN2010100337712A CN101718250B (zh) 2010-01-11 2010-01-11 风力发电机组分段式风轮叶片及其装配方法

Publications (1)

Publication Number Publication Date
WO2011082511A1 true WO2011082511A1 (zh) 2011-07-14

Family

ID=42432868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/001688 WO2011082511A1 (zh) 2010-01-11 2010-10-25 风力发电机组分段式风轮叶片及其装配方法

Country Status (8)

Country Link
US (1) US20120213642A1 (zh)
EP (1) EP2525081A4 (zh)
CN (1) CN101718250B (zh)
AU (1) AU2010341386A1 (zh)
BR (1) BR112012009697A2 (zh)
CA (1) CA2779313C (zh)
IN (1) IN2012DN03429A (zh)
WO (1) WO2011082511A1 (zh)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101718250B (zh) * 2010-01-11 2011-11-09 华锐风电科技(集团)股份有限公司 风力发电机组分段式风轮叶片及其装配方法
CN102278274A (zh) * 2010-06-11 2011-12-14 大银微系统股份有限公司 垂直风力发电机用的组合式叶片
CN101943138A (zh) * 2010-09-01 2011-01-12 广东明阳风电产业集团有限公司 一种发电机组的风叶叶片
GB2483678B (en) * 2010-09-15 2013-09-18 Vestas Wind Sys As An apparatus for and method of mounting wind turbine blades on a wind turbine tower
CN102011711B (zh) * 2010-12-06 2013-01-16 济南轨道交通装备有限责任公司 一种分段组装式风机叶片及其制造方法
ES2392523B2 (es) * 2011-05-13 2013-05-16 Investigaciones Y Desarrollos Eólicos, S.L. Sistema de unión de tramos componentes de palas de aerogenerador.
CN102305174B (zh) * 2011-07-04 2014-07-16 张向增 带扭角恒定横截面拉挤复合材料叶片及其拉挤成型方法
IN2012DE00572A (zh) * 2012-02-29 2015-06-05 Gen Electric
CN102606419A (zh) * 2012-04-16 2012-07-25 国电联合动力技术有限公司 一种分段式风轮叶片及其连接机构以及安装方法
JP2015531694A (ja) * 2012-05-30 2015-11-05 ユーウィンエナジー・ゲーエムベーハー ブレードセクションを組み立てるための装置
CN103850886A (zh) * 2012-12-05 2014-06-11 上海万德风力发电股份有限公司 一种大功率风力发电机叶片
GB201311008D0 (en) * 2013-06-20 2013-08-07 Lm Wp Patent Holding As A tribrid wind turbine blade
DE102013217180A1 (de) * 2013-08-28 2015-03-05 Voith Patent Gmbh Strömungskraftwerk
WO2015142904A1 (en) * 2014-03-19 2015-09-24 Korecarbon Llc Turbine blade
CN104019001B (zh) * 2014-06-26 2016-08-17 国电联合动力技术有限公司 一种组合式风轮叶片及含有其的风力发电机组
WO2016006008A1 (en) * 2014-07-07 2016-01-14 Micoperi Energia S.R.L. Joint for modular wind blade and modular wind blade comprising said joint
KR101627665B1 (ko) * 2014-07-11 2016-06-07 삼성중공업 주식회사 풍력 발전기용 블레이드 및 이를 포함하는 풍력 발전기
CN104653413B (zh) * 2015-03-19 2017-05-17 无锡风电设计研究院有限公司 一种大型风力机分段风机叶片连接结构
GB201509142D0 (en) 2015-05-28 2015-07-15 Blade Dynamics Ltd A wind turbine blade and a method of moulding a wind turbine blade tip section
GB201509153D0 (en) * 2015-05-28 2015-07-15 Blade Dynamics Ltd A composite member
US11125205B2 (en) * 2015-09-14 2021-09-21 General Electric Company Systems and methods for joining blade components of rotor blades
US9951751B2 (en) 2015-09-30 2018-04-24 General Electric Company Segmented wind turbine rotor blade with rod and tube joint connection
US10451030B2 (en) 2016-05-27 2019-10-22 Blade Dynamics Limited Wind turbine blade and a method of assembling a wind turbine blade and a spar cap connection piece
CN110177933B (zh) * 2016-11-21 2021-11-12 Lm风力发电国际技术有限公司 用于建立分段的或模块化的风力涡轮机叶片的方法和系统、以及用于联结风力涡轮机叶片的段的移动工厂
US10760545B2 (en) * 2017-02-07 2020-09-01 General Electric Company Joint configuration for a segmented wind turbine rotor blade
CN107288813A (zh) * 2017-06-22 2017-10-24 吴德礼 一种风力发电叶片
NL2020132B1 (en) * 2017-12-20 2019-06-26 Viventus Holding B V Sectional blade for a wind turbine, connection beam and end rib for the sectional blade and method for manufacturing the connection beam and the end rib
CN108087191B (zh) * 2017-12-25 2020-01-31 江苏金风科技有限公司 分段叶片、连接分段叶片的方法和风力发电机组
DE102018103344A1 (de) 2018-02-14 2019-08-14 Wobben Properties Gmbh Verfahren zur Herstellung eines geteilten Rotorblatts und Rotorblatt
EP3578807B1 (en) * 2018-06-08 2023-11-29 Siemens Gamesa Renewable Energy A/S Method of manufacturing wind turbine rotor blades
CN108843509A (zh) * 2018-07-17 2018-11-20 芜湖超源力工业设计有限公司 一种新型风力发电机
US10830207B2 (en) 2018-08-28 2020-11-10 General Electric Company Spar configuration for jointed wind turbine rotor blades
EP3870834A1 (en) 2018-10-25 2021-09-01 General Electric Company Spar cap configuration for a jointed wind turbine blade
PL3874155T3 (pl) 2018-10-31 2023-11-20 General Electric Company Złączona łopata wirnika turbiny wiatrowej z kombinacjami różnych materiałów wzdłuż jej rozpiętości dla wzmocnienia sworzniowego
DK3874142T3 (da) 2018-11-01 2024-03-11 General Electric Renovables Espana Sl Segmenteret vindmøllerotorvinge med en hul kordevis udstrakt stift
EP3874141A1 (en) 2018-11-01 2021-09-08 General Electric Company Span-wise extending pin for joining rotor blade segments
WO2020091790A1 (en) 2018-11-01 2020-05-07 General Electric Company Method for installing and retaining a bushing in a bearing block of a rotor blade joint
CN112955646A (zh) 2018-11-01 2021-06-11 通用电气公司 用于风力涡轮转子叶片的嵌接连接部
JP7210723B2 (ja) 2018-11-01 2023-01-23 ゼネラル・エレクトリック・カンパニイ セグメント化されたロータブレードのビーム構造とブレードシェルとの間の結合ギャップを低減するためのスペーサ材料
CN112912617A (zh) 2018-11-01 2021-06-04 通用电气公司 用于接头式转子叶片的顺应性结构
WO2020122865A1 (en) 2018-12-11 2020-06-18 General Electric Company Method for manufacturing a structural component of a blade segment for a rotor blade of a wind turbine
CA3121890A1 (en) 2018-12-11 2020-06-18 Louis Rondeau Method for manufacturing a hollow composite structure, particularly a spar beam for a wind turbine rotor blade, and an associated mandrel
WO2020122867A1 (en) 2018-12-11 2020-06-18 General Electric Company Method for manufacturing a structural component of a blade segment for a rotor blade of a wind turbine
DK3894191T3 (da) 2018-12-11 2023-10-02 Gen Electric Fremgangsmåde til fremstilling af vingekomponenter til vindmøllerotorvinger
EP3894690A1 (en) 2018-12-11 2021-10-20 General Electric Company Beam structure for a segmented rotor blade having a transitioning shape
WO2020122909A1 (en) 2018-12-13 2020-06-18 General Electric Company Jointed rotor blade having a chord-wise extending pin supported via one or more structural members
WO2020131043A1 (en) 2018-12-19 2020-06-25 General Electric Company Jointed rotor blade having internal support structure with varying fiber orientation for pin reinforcement
US11795907B2 (en) 2018-12-20 2023-10-24 General Electric Company Jointed wind turbine rotor blade having spar cap constructed of varying forms of materials along its span
CN111577529B (zh) * 2020-05-25 2021-04-30 湖南翰坤实业有限公司 一种风力发电叶片及其安装方法
CN113094769B (zh) * 2021-04-13 2022-09-23 吉林重通成飞新材料股份公司 一种模块单元化叶片设计方法、装置、设备及存储介质
CN115234433A (zh) * 2022-08-05 2022-10-25 浙江大学 一种以混合连接方式实现连接的分段式复合材料风电叶片
CN116215592B (zh) * 2023-03-24 2023-10-17 新创碳谷集团有限公司 一种连接结构、连接方法及轨道交通车体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1957178A (zh) * 2004-04-07 2007-05-02 歌美飒风电有限公司 风轮机叶片
CN101070816A (zh) * 2006-04-30 2007-11-14 通用电气公司 用于风轮机的组合转子叶片及其装配方法
CN101392720A (zh) * 2007-09-17 2009-03-25 通用电气公司 用于连接涡轮叶片的系统和方法
WO2009090537A2 (en) * 2008-01-14 2009-07-23 Clipper Windpower Technology, Inc. A modular rotor blade for a power-generating turbine and a method for assembling a power-generating turbine with modular rotor blades
CN101718250A (zh) * 2010-01-11 2010-06-02 华锐风电科技(集团)股份有限公司 风力发电机组分段式风轮叶片及其装配方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1187166A (fr) * 1957-11-14 1959-09-08 Perfectionnements apportés aux machines à pales, notamment aux éoliennes
ES2178903B1 (es) * 1999-05-31 2004-03-16 Torres Martinez M Pala para aerogenerador.
DK176564B1 (da) * 2004-12-29 2008-09-01 Lm Glasfiber As Fiberforstærket samling
US8221085B2 (en) * 2007-12-13 2012-07-17 General Electric Company Wind blade joint bonding grid
US7740453B2 (en) * 2007-12-19 2010-06-22 General Electric Company Multi-segment wind turbine blade and method for assembling the same
US8167569B2 (en) * 2007-12-21 2012-05-01 General Electric Company Structure and method for self-aligning rotor blade joints
US8231351B2 (en) * 2007-12-27 2012-07-31 General Electric Company Adaptive rotor blade for a wind turbine
ES2364258B1 (es) * 2008-03-05 2012-06-01 Manuel Torres Martinez Sistema de union de tramos de palas de aerogenerador
WO2009135902A2 (en) * 2008-05-07 2009-11-12 Vestas Wind Systems A/S A sectional blade
WO2010023299A2 (en) * 2008-08-31 2010-03-04 Vestas Wind Systems A/S A sectional blade
JP5249684B2 (ja) * 2008-09-04 2013-07-31 三菱重工業株式会社 風車翼
US8079820B2 (en) * 2008-12-18 2011-12-20 General Electric Company Blade module, a modular rotor blade and a method for assembling a modular rotor blade
EP2357357B1 (en) * 2009-10-01 2016-11-09 Vestas Wind Systems A/S Wind turbine blade
US7922454B1 (en) * 2010-10-29 2011-04-12 General Electric Company Joint design for rotor blade segments of a wind turbine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1957178A (zh) * 2004-04-07 2007-05-02 歌美飒风电有限公司 风轮机叶片
CN101070816A (zh) * 2006-04-30 2007-11-14 通用电气公司 用于风轮机的组合转子叶片及其装配方法
CN101392720A (zh) * 2007-09-17 2009-03-25 通用电气公司 用于连接涡轮叶片的系统和方法
WO2009090537A2 (en) * 2008-01-14 2009-07-23 Clipper Windpower Technology, Inc. A modular rotor blade for a power-generating turbine and a method for assembling a power-generating turbine with modular rotor blades
CN101718250A (zh) * 2010-01-11 2010-06-02 华锐风电科技(集团)股份有限公司 风力发电机组分段式风轮叶片及其装配方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2525081A4 *

Also Published As

Publication number Publication date
AU2010341386A1 (en) 2012-05-03
AU2010341386A8 (en) 2012-07-19
US20120213642A1 (en) 2012-08-23
BR112012009697A2 (pt) 2019-09-24
EP2525081A1 (en) 2012-11-21
IN2012DN03429A (zh) 2015-10-23
CA2779313A1 (en) 2011-07-14
CN101718250A (zh) 2010-06-02
CN101718250B (zh) 2011-11-09
CA2779313C (en) 2013-05-21
EP2525081A4 (en) 2013-07-24

Similar Documents

Publication Publication Date Title
WO2011082511A1 (zh) 风力发电机组分段式风轮叶片及其装配方法
US10190571B2 (en) Ring insert for a wind turbine rotor blade
CN102454539B (zh) 用于风力涡轮机的转子叶片节段的接头设计
US8393871B2 (en) Wind turbine blade shear web connection assembly
US9394881B2 (en) Wind turbine blade and method of fabricating a wind turbine blade
US8043066B2 (en) Trailing edge bonding cap for wind turbine rotor blades
US20110223030A1 (en) Noise reducer for rotor blade in wind turbine
EP3436256A1 (en) Rotor blade tip mold assembly including expandable bladders and method for forming rotor blade tip
TW202115311A (zh) 用於風力渦輪機葉片製造之改良方法
EP3830412B1 (en) Process of assembling wind rotor blade segments by means of structural elements
EP3874156A1 (en) Method to retrofit a wind turbine rotor blade with a replacement blade tip segment
US11305503B2 (en) Method for producing a wind turbine rotor blade, and wind turbine rotor blade
CN105370507B (zh) 一种风电叶片根部延长段构件及其制造方法
EP3436252A1 (en) Rotor blade tip mold assembly including solid core and method for forming rotor blade tip
TW201245573A (en) Vane connecting structure for a wind generator
US9581134B2 (en) Wind turbine blade and manufacturing method thereof
US11927171B2 (en) Wind turbine blade assembly and method for producing a wind turbine blade
CN113738570A (zh) 一种具有组合式叶片的风电机组及其制造系统
US20150147180A1 (en) Aerodynamic root adapters for wind turbine rotor blades
WO2021007068A1 (en) A segmented rotor blade for a wind turbine and methods for joining the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10841855

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010841855

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010341386

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 3429/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13504474

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2779313

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2010341386

Country of ref document: AU

Date of ref document: 20101025

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012009697

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012009697

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120425