WO2011081254A1 - Method and apparatus for removing carbon dioxide from combustion exhaust gases using alkalized seawater - Google Patents

Method and apparatus for removing carbon dioxide from combustion exhaust gases using alkalized seawater Download PDF

Info

Publication number
WO2011081254A1
WO2011081254A1 PCT/KR2010/001812 KR2010001812W WO2011081254A1 WO 2011081254 A1 WO2011081254 A1 WO 2011081254A1 KR 2010001812 W KR2010001812 W KR 2010001812W WO 2011081254 A1 WO2011081254 A1 WO 2011081254A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
seawater
water
alkaline
membrane
Prior art date
Application number
PCT/KR2010/001812
Other languages
French (fr)
Korean (ko)
Inventor
박원용
박주용
Original Assignee
(주) 오씨아드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 오씨아드 filed Critical (주) 오씨아드
Publication of WO2011081254A1 publication Critical patent/WO2011081254A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/75Multi-step processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/30Alkali metal compounds
    • B01D2251/304Alkali metal compounds of sodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to a method of recovering crystals by reacting carbon dioxide contained in a large amount of combustion exhaust gas with cations contained in a large amount of seawater and crystallizing it through a spray drying process.
  • the present invention relates to a method for recovering carbon dioxide in a combustion exhaust gas, including a separation extraction process by separation, as carbonate crystals without being discharged into the air.
  • the other side combines H + ion with sulfate anion and chlorine ion to make acidic seawater, and then increase the reactivity with carbon dioxide using alkaline seawater. It is to increase the amount drastically. In this case, the amount of carbon dioxide combined with the seawater and the reaction rate increase dramatically, and the target carbon dioxide removal amount is increased, and the input of the seawater and the spray drying amount can be reduced to increase energy and equipment efficiency in the whole process.
  • sea water contains a large amount of material, and new substances are continuously dissolved, and conversely, by repeating the process of releasing substances dissolved in sea water into the air or as crystals, the sea water continues to equilibrate its components. have.
  • Carbon dioxide is an important resource that is absolutely necessary for life on earth. That is, it functions as a key raw material for photosynthesis, which is the basis for most living things. Plants use water (H 2 O) and carbon dioxide (CO 2 ) as basic raw materials to produce various organic materials using solar energy, and these organics are used as the starting point of the food chain to make the food chain of life on this planet function. do. In other words, most life on earth has been using carbon dioxide as an important means of maintaining life.
  • the present invention relates to a method for recovering carbon dioxide from burning fossil fuel by crystallization using alkaline seawater.
  • Current methods for solving the carbon dioxide problem have been devised, such as a solution through complete combustion, a chemical solution using a catalyst, a method of collecting and storing in a permanent storage facility, dissolved in sea water and thrown into the sea. .
  • currently devised methods suffer from large facility or disposal costs, secondary byproducts as sources of pollution, stability problems and environmental degradation from different angles.
  • the capture technology has a problem of permanently storing the captured carbon dioxide somewhere, and the method of dissolving carbon dioxide in seawater has the problem of marine pollution and marine ecosystem destruction, and solves it through complete combustion.
  • the present invention has been made in accordance with the above requirements, and by reacting carbon dioxide with a large amount and properties of the cation contained in the alkaline seawater recovered in crystals economically and effectively solve the problem that carbon dioxide contained in the exhaust gas is released into the air It is an object of the present invention to provide an alkaline seawater production method, a method of reacting carbon dioxide in a large amount with alkaline seawater, and a method for recovering it as crystals at an economic energy cost and an apparatus thereof.
  • the present invention is a seawater alkali through the hydrolysis electrodialysis apparatus using a bipolar membrane (Bipolar Membranes) and ion exchange membrane and the concentration process through the RO membrane (reverse osmosis membrane) in order to promote and massify the reaction with carbon dioxide
  • a bipolar membrane Bipolar Membranes
  • RO membrane reverse osmosis membrane
  • the amount of cations contained in the seawater is increased by using the ignition process, and the seawater is alkalined, and then reacted and dried by spray drying using heat energy contained in the exhaust gas discharged by containing carbon dioxide to react and dry the water contained in the seawater. Removal and recovery in crystallized form, residual water and carbon dioxide are recovered to condensed fresh water using the low temperature of the seawater, and the resulting crystals are separated by type through a particle size separator.
  • FIG. 5 is an overall process diagram showing a carbon dioxide removal process of the present invention.
  • FIG. 6 is a photograph of a device for concentrating and desalting seawater using a RO membrane (reverse osmosis membrane) facility.
  • RO membrane reverse osmosis membrane
  • FIG. 7 is a photograph of an apparatus for alkalizing seawater using a water decomposition electrodialysis apparatus using a bipolar membrane and an ion exchange membrane.
  • the pretreatment of step 1) may be performed through sand filtration, rapid filtration membrane, micro filter (MF), or ultra filter (UF) filtration, but is not limited thereto.
  • the particle size separator of step 4) of the present invention may be a vibration screen of 20 to 500 mesh.
  • Separation extraction of step 4) of the present invention may be performed according to the difference in solubility and specific gravity, not the particle size separator.
  • the present invention also provides a pretreatment apparatus for removing impurities from seawater; A concentrating device for separating and producing concentrated water and demineralized water by passing pretreated seawater through a reverse osmosis membrane; An apparatus for converting the concentrated water into alkaline water by interposing a hydrolysis electrodialysis apparatus using a bipolar membrane and an ion exchange membrane; A blower for spraying the alkaline concentrated water together with hot air containing carbon dioxide; A spray crystallization apparatus which crystallizes through drying while reacting ions contained in the sprayed carbon dioxide and the alkaline concentrated water; A crystal separation extracting device for collecting and separating the crystals produced by dry crystallization; And a condensation apparatus for cooling the air containing moisture discharged through the drying process to liquefy condensation by dehydration by cooling the cold temperature of seawater, and recovering the remaining carbon dioxide in the dissolved state by reacting residual carbon dioxide with water.
  • the present invention relates to a carbon dioxide removal apparatus in combustion exhaust gas using alkaline seawater.
  • the pretreatment device of the present invention may be one or a combination of sand filtration, rapid filtration membrane, micro filter or ultra filter.
  • the crystal separation extracting apparatus of the present invention is preferably a particle size separator, an example of a vibration screen of 20 to 500 mesh.
  • the carbon dioxide reduction and removal process of the present invention is made in the seawater desalination process and the process of crystallizing the various minerals contained in the seawater is possible with low cost and simple equipment, salt and various carbonates (calcium carbonate, Magnesium carbonate, iron carbonate, sodium carbonate, etc.) is also an efficient way to produce a variety of products, such as by-products.
  • Seawater is concentrated and desalted through RO membranes (reverse osmosis membranes) to produce fresh water, while the saltwater of seawater, etc., is concentrated to twice the concentration.
  • the obtained fresh water is utilized for various purposes as fresh water, and the concentrated water is alkalinized by passing through a hydrolysis electrodialysis apparatus using bipolar membranes and ion exchange membranes.
  • the reason why the seawater is alkaline is because the water is decomposed by the bipolar membrane to generate OH - ions and these ions are bonded to the cations in the seawater.
  • the sprayed seawater is not dried at a high temperature and has a large amount of spray, and is dried while floating in the air in a fog state for a certain time.
  • the carbon dioxide reacts with the components in the mist of seawater and crystallizes into carbonate and is accumulated on the floor.
  • carbon dioxide is combined with cations such as calcium, magnesium, iron, and sodium contained in concentrated seawater and crystallized into calcium carbonate, magnesium carbonate, iron carbonate, sodium carbonate, etc. Will fall.
  • the present invention is safe because carbon dioxide is recovered as carbonate crystals in the final process, and does not require extra energy because it uses energy contained in the exhaust gas of fossil fuel.
  • the reaction since the reactivity is increased through the concentration process and alkalinization of seawater, the reaction is fast and the amount of carbon dioxide that is crystallized by bonding with cations in the seawater is greatly increased.
  • carbonates and salts are produced as final products, these carbonates and salts can be used for various purposes.
  • the flow of the whole process of the present invention is pre-treatment (filtered by sand filtration, rapid filtration membrane, micro filter (MF), ultra filter (UF), etc.) and then passed through the RO membrane (reverse osmosis membrane) concentrated water and demineralized water (fresh water) ), And the prepared concentrated water is alkalized by passing through a hydrolysis electrodialysis apparatus using a bipolar membrane and an ion exchange membrane.
  • pre-treatment filtered by sand filtration, rapid filtration membrane, micro filter (MF), ultra filter (UF), etc.
  • RO membrane reverse osmosis membrane
  • demineralized water fresh water
  • Bipolar membranes break down water + And OH - Divide by ions
  • the ion exchange membrane installed together collects ions of concentrated seawater according to electrical characteristics. Na gathered like this + , Ca 2+ , K + , Mg 2+ Such as Cation is OH -
  • sodium hydroxide, calcium hydroxide, potassium hydroxide, magnesium hydroxide and the like become alkaline. Most cations are OH - In combination with alkali to form Cl - Etc Anion is H + It is combined with ions and acidified.
  • the concentrated and alkaline seawater is sprayed in a fine fog state into the combustion exhaust gas hot air containing carbon dioxide.
  • the temperature of the exhaust gas, which is hot air is appropriate if it is 60 ° C. or higher, but if it is too high, sea water may crystallize even before completion of the reaction with carbon dioxide. Of course, some exothermic reactions occur in the course of the reaction, so the temperature may rise above that. If the temperature rises too high, it is necessary to adjust the temperature through cold seawater. As such, the seawater that has risen in temperature during liquefaction of seawater or evaporated seawater used for temperature control helps to increase the efficiency of the RO membrane (reverse osmosis membrane).
  • the carbon dioxide contained in the off-gas reacts with various cations contained in seawater and crystallizes to fall to the bottom.
  • Alkalineization process removes most of the chlorine and sulfate ions contained in the sea water and is alkaline because the reaction proceeds quickly and in large quantities.
  • the salts and carbonates accumulated in the crystals may be separated by a particle size separator, etc., and used according to the purpose, or may be used as it is.
  • the air discharged after the drying process contains both the water contained in the seawater and the water generated during the reaction process. It is liquefied by temperature exchange using cold seawater and recovered as fresh water. In this process, the remaining amount of carbon dioxide is dissolved in the liquefaction process and recovered as fresh water.
  • the energy used in the present invention is the degree necessary to apply pressure for passing seawater through various membranes and the energy used in the electrodialysis apparatus.
  • Water dissociation electrodialysis using bipolar membranes consumes very little energy because water dissociation utilizes the properties of the membrane rather than the power of electricity.
  • the heat required in the drying process uses its own heat of the exhaust gas containing carbon dioxide. Most of the exhaust gases have a high temperature, and this drying process only needs to secure a temperature of 60 ° C or higher, so there is no need to add a separate heating system.
  • the present invention makes it possible to secure various by-products with high economical efficiency such as production of fresh water, production of salt, and production of carbonate, rather than merely to remove or reduce carbon dioxide.
  • the waste gas is put into the exhaust gas without additional pretreatment to remove it and reacted with alkaline seawater, such as carbon dioxide removal, to recover as crystals. It is possible to do
  • the recovered crystals are mixed with carbonate (sodium carbonate, calcium carbonate, potassium carbonate, etc.) crystals, sulfate (sodium sulfate, calcium sulfate, potassium sulfate, etc.) crystals, nitrate (calcium nitrate, potassium nitrate, iron nitrate, sodium nitrate, etc.) crystals.
  • carbonate sodium carbonate, calcium carbonate, potassium carbonate, etc.
  • sulfate sodium sulfate, calcium sulfate, potassium sulfate, etc.
  • nitrate calcium nitrate, potassium nitrate, iron nitrate, sodium nitrate, etc.
  • seawater contains a large amount of material and is dissolved in an ionic state.
  • a number of substances that are not shown in Table 1 are also melted together, and the kinds of the substances are known to be more than 80 kinds. It is a natural phenomenon to keep an eye on the development of resources dissolved in seawater, as materials buried on land are gradually bottoming out due to long mining activities, and mining costs are increasing.
  • researchers around the world are currently working on developing extraction methods for gold, lithium, and tritium dissolved in seawater, and the results are becoming more visible.
  • the present invention also proposes a method for recovering various substances dissolved in seawater at an economic cost.
  • materials dissolved in seawater by evaporation of seawater require a lot of energy and special equipment to crystallize.
  • the present invention produces a variety of economical materials while minimizing this energy.
  • the first material produced is fresh water. That is, clean fresh water is produced in the process of passing RO membrane (reverse osmosis membrane) for economical evaporation.
  • the produced fresh water can be supplied as tap water, deuterium water, or water required for various facilities, and can be used as a raw material for drinking water.
  • Carbonates and salts which are crystallized and recovered during spray drying can be used for various purposes. It can be separated by a particle separator (vibration screen) or the like, or used as a whole carbonate and salt without separation.
  • the carbonate (calcium carbonate, magnesium carbonate, sodium carbonate, iron carbonate, etc.) of a specific component of high purity is separated through a particle size separator, etc., it may be used for a much more expensive use.
  • Separation net size of the particle size separator is present in a variety as shown in Table 2, the material produced in the sea water by the present invention is able to separate and extract most of the material if the size of 20 ⁇ 500Mesh.
  • the membrane of the electrodialysis device ion exchange membrane
  • the component of the alkaline water can be adjusted.
  • the heat source used in the spray drying process uses the heat source of the exhaust gas containing carbon dioxide as it is. Carbon dioxide emitted through the combustion process contains considerable heat energy because it contains heat generated during the combustion process. It is used as a heat source required for spray drying.
  • the heat source used for spray drying is suitable if it is a hot wind having a temperature of 60 to 100 ° C., and no separate energy supply is required except for the heat energy included in the exhaust gas.
  • the pretreatment process to remove various foreign matters contained in the exhaust gas may reduce the temperature slightly, but it is not a problem because the residual heat is enough.
  • bipolar membrane Water decomposition by bipolar membrane was carried out. Recently, water-splitting electrodialysis (WSED) has attracted attention as an efficient process for producing acids / bases.
  • WSED water-splitting electrodialysis
  • the bipolar membrane is a type of membrane combined with a cation exchange layer and an anion exchange layer and plays a key role in the hydrolysis electrodialysis process.
  • Bipolar membranes have unique electrochemical properties that decompose water molecules into hydrogen and hydroxide ions under reverse bias conditions. Thus, chemical and biological processes can produce acids / bases without the generation of by-products.
  • the bipolar film production method can be divided into four types.
  • the first method is to combine a commercially available cation / anion exchange membrane, and the second method is to prepare a bipolar membrane in the form of a single sheet.
  • the third method is casting on the existing commercial film. Finally, it can be divided into manufacturing method by continuous coating method.
  • bipolar membrane manufactured by this method has low physicochemical stability and resistance to water decomposition. It has a high disadvantage and is rarely used at present.
  • polymer catalysts eg, Carboxylic acid, Secondary / tertiary amines
  • inorganic catalysts eg metal hydroxide / oxide
  • the bipolar membrane can decompose water into H + and OH - by applying more than 0.83V, the theoretical decomposition voltage of water.
  • the bipolar membrane is a membrane in which a cation and an anion exchange layer are combined to reverse bias, that is, the water molecules are hydrogen ions (H + ) while the cation exchange layer of the bipolar membrane faces the cathode and the anion exchange layer faces the anode. and hydroxide ions (OH -) is digested with.
  • the water decomposition process using bipolar membrane is more effective than the existing electrolytic water dissociation method used to generate acid / base. Conventional electrolytic processes using water decomposition reactions at the electrodes require very large electrode areas, resulting in low current efficiency and low energy efficiency.
  • the water decomposition process using bipolar membrane is easy to scale up and has much lower energy consumption than electrolytic method.
  • the water decomposition process using a bipolar membrane and the water decomposition process by an electrode were compared.
  • Water splitting processes by the electrode is water-splitting consists in the cathode and the anode, wherein protons (H +) and hydroxyl ions (OH -), which occurs in conjunction with the positive and negative ions that has transmitted through the ion exchange membranes made of materials aiming To me.
  • oxygen and hydrogen are generated by water decomposition at the positive electrode, and hydrogen and hydroxide ions are generated at the negative electrode.
  • Sodium sulfate is melted and the water ions (Na +) is (+) - hydroxyl ions (OH -) produced by the water-splitting in the pole by pole reversal in combination with the ion to produce sodium hydroxide (NaOH).
  • the reaction also occurs in the (+) electrode.
  • Hydrogen ions (H + ) produced by water decomposition at the (+) electrode combine with sulfate ions (SO 4 2- ), which have migrated through an anion exchange membrane, to form sulfuric acid (H 2 SO 4 ). Make it up
  • the major difference is that the decomposition of water is caused by bipolar membranes, not electrodes. Therefore, the contamination problem of the electrode which occurs when water is decomposed by the electrode does not occur, and a large electrode area is not required. In particular, even when a plurality of membranes are stacked, the number of electrodes can be drastically reduced because the electrodes do not need to be installed, but the electrodes can be installed at both ends after installing several membranes.
  • the electrical efficiency is remarkably high because the decomposition of water is made by the bipolar membrane, not the power of electricity.
  • the energy values of the water decomposition process by the electrode and the water decomposition process by the bipolar membrane are compared as follows.
  • Alkalization of seawater was carried out using a hydrolysis electrodialysis apparatus using a bipolar membrane and an ion exchange membrane.
  • the seawater When the seawater is flowed into the hydrolysis electrodialysis apparatus using the bipolar membrane and the ion exchange membrane as shown in FIG. 4, the seawater is divided into alkaline water seawater and acidic seawater.
  • the hydrogen ions and the hydroxyl ions generated by the decomposition of water by the bipolar membrane react with the cations and anions contained in the seawater and are separated into acidic seawater and alkaline seawater.
  • Fresh water is generally used on both sides of the bipolar membrane, but sea water may be used. When seawater is used, there may be some problems in the purity of the material produced, but it may be better to use seawater to increase the amount of reaction in the reaction process or to reduce the amount of fresh water used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The present invention relates to a safe and economical method for removing carbon dioxide (CO2) discharged in combustion gases, and particularly, to a method and apparatus for: condensing carbon dioxide through a reverse osmosis membrane; reacting the condensed CO2 with ingredients in alkalized seawater through water-splitting electrodialysis (WSED) employing a bipolar membrane and ion exchange membrane and drying the reacted components via a spray-drying process; removing moisture for recovery in the form of crystallized carbonate and salt; and using the moisture removed in the drying process and seawater filled with residual carbon dioxide so as to be condensed and recovered as freshwater. The present invention also relates to an apparatus for separating, using a particle size separator or the like, carbon dioxide into crystallized states of calcium carbonate, sodium carbonate, magnesium carbonate, iron carbonate, salt, etc., and to a method for manufacturing the apparatus.

Description

알카리화된 해수를 이용한 연소배출가스 중 이산화탄소 제거 방법 및 장치Method and apparatus for removing carbon dioxide from combustion flue gas using alkaline seawater
본 발명은 연소배출가스에 다량 포함되어 있는 이산화탄소를 해수에 다량으로 포함되어 있는 양이온과 반응시키면서 이를 분무건조과정을 통해 결정화시켜서 결정체로 회수하는 방법에 관한 것으로, 해수의 농축 및 알카리화 공정 그리고 입경분리에 의한 분리추출 공정 등을 포함하여 이루어진 연소배출가스 중 이산화탄소를 공기 중으로 배출시키지 않고 탄산염 결정체로서 회수하는 방법에 관한 것이다.The present invention relates to a method of recovering crystals by reacting carbon dioxide contained in a large amount of combustion exhaust gas with cations contained in a large amount of seawater and crystallizing it through a spray drying process. The present invention relates to a method for recovering carbon dioxide in a combustion exhaust gas, including a separation extraction process by separation, as carbonate crystals without being discharged into the air.
더욱 상세하게는 이산화탄소(CO2)를 해수에 포함되어 있는 칼슘이온, 마그네슘이온, 철이온, 나트륨이온 등의 양이온과 결합시켜서 탄산칼슘, 탄산마그네슘, 탄산철, 탄산나트륨 등의 결정체로 회수하는 것을 말한다. 이때 보다 효율적이고 경제적으로 이산화탄소를 반응시키기 위하여 RO막(역삼투막)을 통한 해수의 농축과정과 바이폴라막(Bipolar Membranes) 및 이온교환막을 이용한 물분해전기투석장치를 통한 알카리화 공정을 거칠 필요가 있다. 이 공정은 이산화탄소가 해수 속의 양이온 성분들과 반응하기 위해서는 해수속의 음이온인 황산이온(SO4 2-), 염소이온(Cl-) 등이 양이온과 결합되어 있는 것을 차단할 필요가 있기 때문이다. 바이폴라막 및 전기투석(이온교환막)의 조합을 통해 해수속의 물을 분해하여 H+와 OH-를 만들고 이를 전기투석(이온교환막)을 통해 해수속의 성분들과 조합하여 한쪽은 OH- 이온과 양이온을 결합시켜서 수산화나트륨(NaOH) 등이 다량 함유된 알카리 해수로 만들고 다른 한쪽은 H+ 이온과 음이온인 황산이온, 염소이온을 결합시켜서 산성해수를 만든 후 알카리 해수를 이용하여 이산화탄소와의 반응성을 높이고 반응량을 획기적으로 증대시키고자 하는 것이다. 이렇게 할 경우 이산화탄소가 해수와 결합하는 양 및 반응하는 속도가 획기적으로 증대하게 되어 목표로 하는 이산화탄소의 제거량이 증가하게 되고 해수의 투입 및 분무건조량을 줄여서 전체공정에서 에너지 및 설비 효율을 높일 수 있다.More specifically, it refers to the recovery of carbon dioxide (CO 2 ) by crystallization such as calcium carbonate, magnesium carbonate, iron carbonate, sodium carbonate by combining with cations such as calcium ions, magnesium ions, iron ions and sodium ions contained in seawater. . In this case, in order to react carbon dioxide more efficiently and economically, it is necessary to go through a concentration process of seawater through RO membrane (reverse osmosis membrane) and an alkalizing process through a hydrolysis electrodialysis apparatus using bipolar membrane and ion exchange membrane. This process is necessary because carbon dioxide reacts with the cation components in seawater, so that the anions in the seawater, such as sulfate ions (SO 4 2- ) and chlorine ions (Cl ), must be blocked with cations. Bipolar membranes and electrodialysis (ion exchange membrane) H + and OH to decompose the water sea water in the through a combination of - making the combine them with sea water in the composition through the electrodialysis (ion exchange membrane), one is OH - ions and cationic Combined to make alkaline seawater containing a large amount of sodium hydroxide (NaOH), etc. The other side combines H + ion with sulfate anion and chlorine ion to make acidic seawater, and then increase the reactivity with carbon dioxide using alkaline seawater. It is to increase the amount drastically. In this case, the amount of carbon dioxide combined with the seawater and the reaction rate increase dramatically, and the target carbon dioxide removal amount is increased, and the input of the seawater and the spray drying amount can be reduced to increase energy and equipment efficiency in the whole process.
이산화탄소의 저감 및 제거에 관한 사항은 개인이나 기업, 한 국가를 넘어서 전 지구적인 관심사가 되고 있으며 그 문제를 해결하기 위하여 전 세계가 노력하고 있다.The reduction and removal of carbon dioxide has become a global concern beyond individuals, companies and countries, and the world is working to solve the problem.
현재 이산화탄소를 제어하는 기술개발은 포집하여 영구 저장하는 기술의 개발에 치중하고 있고, 일부는 해양에 버리는 방법을 연구하는 것으로 모아지고 있다. 일반적으로, 해수에는 다량의 물질이 포함되어 있고 계속해서 새로운 물질이 용존되고 있으며 그 반대로 공기 중으로 혹은 결정체로서 해수에 용존되어 있는 물질을 방출시키는 과정을 반복함으로써 해수는 그 성분의 평형작용을 계속해 가고 있다. At present, the development of technology to control carbon dioxide is focused on the development of technology to capture and store permanently, and part of it is gathered to study how to throw it into the ocean. In general, sea water contains a large amount of material, and new substances are continuously dissolved, and conversely, by repeating the process of releasing substances dissolved in sea water into the air or as crystals, the sea water continues to equilibrate its components. have.
해수는 그 면적에 있어서 지구 표면적의 2/3를 차지하고 있고 그 양 또한 엄청난 규모여서 지구 생태계 유지에 절대적인 영향력을 발휘하고 있다.Sea water accounts for two-thirds of the earth's surface area, and the amount is enormous, which is an absolute influence on the maintenance of the global ecosystem.
이산화탄소는 지구상의 생물이 살아가는데 절대적으로 필요한 중요한 자원이다. 즉 대부분의 생명체들이 살아가는데 기초가 되는 광합성 작용의 핵심원료로서 기능하고 있다. 식물은 물(H2O)과 이산화탄소(CO2)를 기초 원료로 하여 태양에너지를 이용하여 다양한 유기물을 만들어 내고 있으며, 이 유기물을 먹이사슬의 출발로 하여 이 지구상의 생명체의 먹이 사슬이 기능하게 된다. 즉 지구상의 대부분의 생명체는 이산화탄소를 생명유지의 중요한 수단으로 사용해 왔다고 할 수 있다.Carbon dioxide is an important resource that is absolutely necessary for life on earth. That is, it functions as a key raw material for photosynthesis, which is the basis for most living things. Plants use water (H 2 O) and carbon dioxide (CO 2 ) as basic raw materials to produce various organic materials using solar energy, and these organics are used as the starting point of the food chain to make the food chain of life on this planet function. do. In other words, most life on earth has been using carbon dioxide as an important means of maintaining life.
그런데 산업화가 진행되면서 화석연료의 사용이 늘어나서 공기 중으로 대량 방출이 되는 이산화탄소는 그 적정량을 넘어 지구 온난화의 주범이라는 불명예를 안게 되었고 그 배출량을 줄이지 않으면 인류의 생존을 장담할 수 없는 상황에 직면해가고 있다. 따라서 현재 인류의 생존이라는 과제가 이산화탄소의 저감에 달려 있다고 해도 과언이 아닌 상황에 이르렀다. However, as industrialization progressed, the use of fossil fuels increased, and carbon dioxide released into the air in large quantities exceeded the appropriate amount and became infamous as the main culprit of global warming. have. Therefore, it is no exaggeration to say that the survival of mankind now depends on the reduction of carbon dioxide.
본 발명은 화석연료를 태우는 과정에서 나오는 이산화탄소를 알카리화된 해수를 이용 결정화시켜서 회수하는 방법에 관한 것이다. 현재 이산화탄소 문제를 해결하는 방법에는 완전 연소를 통한 해결방법, 촉매를 이용하여 화학반응을 통해 해결하는 방법, 포집하여 영구 저장시설에 저장하는 방법, 해수에 용존시켜 바다에 버리는 방법 등이 고안되고 있다. 그러나 현재 고안된 방법은 대규모의 시설비 혹은 처리비용이 들거나, 2차 부산물이 오염원으로 되는 문제, 안정성 문제 그리고 다른 각도에서 환경파괴로 연결되는 문제점을 안고 있다. 예를 들면 포집하는 기술은 그 포집한 이산화탄소를 어딘가에 영구 저장해야 하는 문제를 안고 있고, 해수에 이산화탄소를 용존시켜 버리는 방법은 해양 오염 및 해양생태계 파괴라는 문제점을 안고 있고, 완전 연소를 통해 해결하는 방법은 완전 연소를 위해 이산화탄소를 발생시키면서 만든 막대한 에너지를 다시 이산화탄소를 줄이기 위해 사용하는 아이러니를 만들고 또 그에 따른 에너지 비용과 장치 비용도 만만치 않은 문제를 안고 있다 The present invention relates to a method for recovering carbon dioxide from burning fossil fuel by crystallization using alkaline seawater. Current methods for solving the carbon dioxide problem have been devised, such as a solution through complete combustion, a chemical solution using a catalyst, a method of collecting and storing in a permanent storage facility, dissolved in sea water and thrown into the sea. . However, currently devised methods suffer from large facility or disposal costs, secondary byproducts as sources of pollution, stability problems and environmental degradation from different angles. For example, the capture technology has a problem of permanently storing the captured carbon dioxide somewhere, and the method of dissolving carbon dioxide in seawater has the problem of marine pollution and marine ecosystem destruction, and solves it through complete combustion. Has created an irony that uses the enormous energy produced by generating carbon dioxide for complete combustion to reduce carbon dioxide, and the energy and equipment costs associated with it are also a serious problem.
이처럼 현재 개발된 방법은 비용 및 부작용 때문에 상당한 문제점을 가지고 있으며 안정성 및 경제성을 확보하기까지에는 향후 상당한 연구와 시일이 필요한 실정이다.As such, the currently developed method has significant problems due to cost and side effects, and requires considerable research and sealing in the future before securing stability and economic feasibility.
본 발명은 상기와 같은 요구에 의해 안출된 것으로서, 이산화탄소를 알카리화된 해수에 포함된 양이온과 다량 및 속성으로 반응시켜 결정체로 회수함으로써 배기가스에 포함된 이산화탄소가 공기 중으로 방출되는 문제를 경제적이고 효과적으로 해결하고자 하는 것으로, 알카리 해수 제조방법, 이산화탄소를 알카리 해수에 다량으로 반응시키는 방법 그리고 이를 경제적인 에너지 비용으로 결정체로서 회수하는 방법 및 그 장치를 제공하는데 목적이 있다.The present invention has been made in accordance with the above requirements, and by reacting carbon dioxide with a large amount and properties of the cation contained in the alkaline seawater recovered in crystals economically and effectively solve the problem that carbon dioxide contained in the exhaust gas is released into the air It is an object of the present invention to provide an alkaline seawater production method, a method of reacting carbon dioxide in a large amount with alkaline seawater, and a method for recovering it as crystals at an economic energy cost and an apparatus thereof.
상기 과제를 해결하기 위해, 본 발명은 이산화탄소와의 반응을 촉진 및 대량화하기 위하여 RO막(역삼투막)을 통한 농축과정과 바이폴라막(Bipolar Membranes) 및 이온교환막을 이용한 물분해전기투석장치를 통해 해수 알카리화 공정을 사용하여 해수에 함유된 양이온의 양은 늘리고 해수를 알카리화한 후 이를 이산화탄소가 함유되어 배출되는 배기가스 등에 함유된 열에너지를 사용한 분무건조공정을 통해 이를 반응 및 건조시켜서 해수에 포함된 수분을 제거하여 결정화된 형태로 회수하는 방법과, 잔여 수분 및 이산화탄소를 해수의 저온을 이용하여 응축 담수로 회수하는 방법 및 생성된 결정체를 입경분리기를 통해 종류별로 분리하는 방법 등을 사용한다.In order to solve the above problems, the present invention is a seawater alkali through the hydrolysis electrodialysis apparatus using a bipolar membrane (Bipolar Membranes) and ion exchange membrane and the concentration process through the RO membrane (reverse osmosis membrane) in order to promote and massify the reaction with carbon dioxide The amount of cations contained in the seawater is increased by using the ignition process, and the seawater is alkalined, and then reacted and dried by spray drying using heat energy contained in the exhaust gas discharged by containing carbon dioxide to react and dry the water contained in the seawater. Removal and recovery in crystallized form, residual water and carbon dioxide are recovered to condensed fresh water using the low temperature of the seawater, and the resulting crystals are separated by type through a particle size separator.
본 발명에 따르면 이산화탄소를 경제적인 비용으로 안전하게 추출 제거하여 배기가스 중의 이산화탄소의 공기 중 방류가 가져올 환경파괴 방지는 물론 다양한 탄산염, 소금 및 담수를 부산물로 얻을 수 있다. According to the present invention, it is possible to safely extract and remove carbon dioxide at an economic cost, thereby preventing environmental destruction that is caused by the discharge of carbon dioxide in the exhaust gas as well as various carbonates, salts, and fresh water as by-products.
도 1은 바이폴라막에 의한 물분해 공정을 나타낸다.1 shows a water decomposition process by bipolar membrane.
도 2는 전극에 의한 물분해 공정을 나타낸다.2 shows a water decomposition process by an electrode.
도 3은 바이폴라막에 의한 물분해 공정을 나타낸다.3 shows a water decomposition process by bipolar membrane.
도 4는 바이폴라막에 의한 해수의 알카리화 공정을 나타낸다.4 shows an alkalizing process of seawater by bipolar membrane.
도 5는 본 발명의 이산화탄소 제거공정을 나타내는 전체 공정도이다.5 is an overall process diagram showing a carbon dioxide removal process of the present invention.
도 6은 RO막(역삼투막) 설비를 이용하여 해수를 농축 및 탈염하는 장치 사진이다6 is a photograph of a device for concentrating and desalting seawater using a RO membrane (reverse osmosis membrane) facility.
도 7은 바이폴라막 및 이온교환막을 이용한 물분해전기투석장치를 이용하여 해수를 알카리화하는 장치의 사진이다.7 is a photograph of an apparatus for alkalizing seawater using a water decomposition electrodialysis apparatus using a bipolar membrane and an ion exchange membrane.
도 8은 실제 분무건조기 사진이다.8 is an actual spray dryer picture.
도 9는 실제 진동스크린 사진이다.9 is an actual vibration screen picture.
상기 목적을 달성하기 위한 본 발명은The present invention for achieving the above object
1) 해수를 전처리 후 1차 RO막(역삼투막)에 통과시켜 농축수와 탈염수(담수)를 제조하는 단계; 1) preparing seawater and demineralized water (fresh water) by passing seawater through a first RO membrane (reverse osmosis membrane) after pretreatment;
2) 상기 농축수를 바이폴라막(Bipolar Membranes) 및 이온교환막을 사용한 물분해전기투석장치에 통과시켜 해수를 알카리수로 전환시키는 단계; 2) converting the seawater into alkaline water by passing the concentrated water through a hydrolysis electrodialysis apparatus using a bipolar membrane and an ion exchange membrane;
3) 알카리화된 농축해수를 이산화탄소가 포함된 열풍과 함께 분무하여 이산화탄소와 농축수에 포함되어 있는 이온들과 반응시키면서 건조과정을 통해 탄산염 및 소금 등을 결정화시키는 단계; 3) crystallizing carbonates and salts through a drying process by spraying the alkaline concentrated seawater with hot air containing carbon dioxide and reacting with ions contained in the carbon dioxide and the concentrated water;
4) 건조 결정화되어 생성된 결정체를 수거하여 입경분리기 등을 통해 분리 하는 단계; 4) collecting the crystals produced by the dry crystallization and separating through a particle size separator;
5) 상기 건조결정화 과정을 거친 후 배출되는 수분을 함유한 청정가스를 해수의 차가운 온도를 이용하여 냉각하여 응축 액화 담수를 확보하는 단계; 5) securing the condensed liquefied fresh water by cooling the clean gas containing moisture discharged after the dry crystallization process using the cold temperature of the sea water;
6) 상기 액화 과정에서 잔류 이산화탄소를 수분과 반응시켜 물에 용존된 상태로 회수하는 단계;를 포함하여 이루어진 알카리화된 해수를 이용한 연소배출가스 중 이산화탄소 제거 방법에 관한 것이다.And 6) reacting residual carbon dioxide with water in the liquefaction process to recover the dissolved carbon dioxide in a dissolved state in water.
본 발명의 이산화탄소 결정화 공정에서, 상기 1) 단계의 전처리는 모래여과, 급속여과막, 마이크로필터(MF), 또는 울트라필터(UF) 여과를 통해 수행될 수 있으나, 이에 제한되지 않는다.In the carbon dioxide crystallization process of the present invention, the pretreatment of step 1) may be performed through sand filtration, rapid filtration membrane, micro filter (MF), or ultra filter (UF) filtration, but is not limited thereto.
본 발명의 상기 분무과정에 있어 분무시 농축수를 미세한 안개상태로 만들어 반응을 촉진하고 건조의 효율을 높이는 것이 바람직하다.In the spraying process of the present invention, it is preferable to promote the reaction and increase the efficiency of drying by making the concentrated water in a fine mist state when spraying.
본 발명의 상기 4) 단계의 입경분리기는 20~500 메쉬의 진동스크린일 수 있다.The particle size separator of step 4) of the present invention may be a vibration screen of 20 to 500 mesh.
본 발명의 상기 4) 단계의 분리 추출은 입경분리기가 아닌 용해도 및 비중의 차이에 따라 수행될 수도 있다.Separation extraction of step 4) of the present invention may be performed according to the difference in solubility and specific gravity, not the particle size separator.
본 발명은 또한 해수로부터 불순물을 제거하는 전처리장치와; 전처리된 해수를 역삼투막에 통과시켜 농축수와 탈염수를 분리 생성하는 농축장치와; 바이폴라막 및 이온교환막을 사용한 물분해전기투석장치가 개재되어 상기 농축수를 알카리수로 변환시키는 장치와; 알카리화된 농축수를 이산화탄소가 포함된 열풍과 함께 분무하는 송풍장치와; 분무된 이산화탄소와 알카리화된 농축수에 포함되어 있는 이온들을 반응시키면서 건조과정을 통해 결정화시키는 분무결정화장치와; 건조 결정화되어 생성된 결정체를 수거하여 분리 추출하는 결정체 분리추출장치와; 건조과정을 통해 배출되는 수분을 함유한 공기를 해수의 차가운 온도를 이용하여 냉각하여 응축 액화시켜 담수화하고 잔류 이산화탄소를 수분과 반응시켜 물에 용존된 상태로 회수하는 응축장치;를 포함하여 이루어진 것을 특징으로 하는 알카리화된 해수를 이용한 연소배출가스 중 이산화탄소 제거 장치에 관한 것이다.The present invention also provides a pretreatment apparatus for removing impurities from seawater; A concentrating device for separating and producing concentrated water and demineralized water by passing pretreated seawater through a reverse osmosis membrane; An apparatus for converting the concentrated water into alkaline water by interposing a hydrolysis electrodialysis apparatus using a bipolar membrane and an ion exchange membrane; A blower for spraying the alkaline concentrated water together with hot air containing carbon dioxide; A spray crystallization apparatus which crystallizes through drying while reacting ions contained in the sprayed carbon dioxide and the alkaline concentrated water; A crystal separation extracting device for collecting and separating the crystals produced by dry crystallization; And a condensation apparatus for cooling the air containing moisture discharged through the drying process to liquefy condensation by dehydration by cooling the cold temperature of seawater, and recovering the remaining carbon dioxide in the dissolved state by reacting residual carbon dioxide with water. The present invention relates to a carbon dioxide removal apparatus in combustion exhaust gas using alkaline seawater.
본 발명의 상기 전처리장치는 모래여과, 급속여과막, 마이크로필터 또는 울트라필터 중에서 선택된 1종 혹은 조합된 것 일 수 있다.The pretreatment device of the present invention may be one or a combination of sand filtration, rapid filtration membrane, micro filter or ultra filter.
또한, 본 발명의 상기 결정체 분리추출장치는 입경분리기인 것이 바람직하며, 일예로서 20~500 메쉬의 진동스크린을 들 수 있다.In addition, the crystal separation extracting apparatus of the present invention is preferably a particle size separator, an example of a vibration screen of 20 to 500 mesh.
본 발명에 따르면, 본 발명의 이산화탄소의 저감 및 제거 공정은 해수담수화 공정 및 해수에 포함된 다양한 미네랄을 결정화시키는 과정 속에서 이루어지기 때문에 저렴한 비용 및 간편한 설비로 가능하며 소금 및 각종 탄산염(탄산칼슘, 탄산마그네슘, 탄산철, 탄산나트륨 등)을 부산물로 얻는 등 다양한 제품의 효율적인 생산 또한 가능한 방법이다.According to the present invention, the carbon dioxide reduction and removal process of the present invention is made in the seawater desalination process and the process of crystallizing the various minerals contained in the seawater is possible with low cost and simple equipment, salt and various carbonates (calcium carbonate, Magnesium carbonate, iron carbonate, sodium carbonate, etc.) is also an efficient way to produce a variety of products, such as by-products.
해수를 RO막(역삼투막)을 통해 농축 및 담수화 과정을 거치면 담수를 생산하는 한편으로 해수의 염분 등이 2배 내외로 농축된 농축수를 얻게 된다. 얻은 담수는 담수로서 다양한 용도로 활용을 하고 농축수를 바이폴라막(Bipolar Membranes) 및 이온교환막을 사용한 물분해전기투석장치를 통과시켜서 알카리화 한다. 해수가 알카리화 되는 것은 바이폴라막에 의해 물의 분해가 일어나 OH- 이온이 발생하고 이들 이온이 해수 속의 양이온과 결합하기 때문이다. Seawater is concentrated and desalted through RO membranes (reverse osmosis membranes) to produce fresh water, while the saltwater of seawater, etc., is concentrated to twice the concentration. The obtained fresh water is utilized for various purposes as fresh water, and the concentrated water is alkalinized by passing through a hydrolysis electrodialysis apparatus using bipolar membranes and ion exchange membranes. The reason why the seawater is alkaline is because the water is decomposed by the bipolar membrane to generate OH - ions and these ions are bonded to the cations in the seawater.
농축되고 알카리화된 해수를 이산화탄소가 함유된 연소배출가스의 열풍 속에 분사시킨다. 이 과정에서 해수속의 이온들은 활발하게 이산화탄소와 반응하면서 건조가 되어 결정으로 추출이 된다. 분무되는 해수는 미세한 안개상태로 분무가 되기 때문에 60℃ 이상의 열풍이 불어주면 증발과정을 통해 결정화되기 시작한다. 통상의 경우 해수의 증발은 고온에서 효과적으로 이루어지지만 바람과 미세한 입자로 인해 분무건조공정에서는 그보다 낮은 60℃ 정도의 열풍에서도 효과적으로 건조가 이루어지게 된다. 물론 그 이상의 온도일 경우에는 더 빠르게 결정화가 될 수 있다. Concentrated and alkaline seawater is injected into the hot air of a flue gas containing carbon dioxide. In this process, ions in seawater are actively reacted with carbon dioxide, dried and extracted as crystals. Since the sprayed seawater is sprayed in a fine mist state, it starts to crystallize through the evaporation process when hot air is blown over 60 ° C. In general, the evaporation of seawater is effective at high temperature, but due to the wind and fine particles, it is effectively dried even in the hot air of about 60 ° C lower than that in the spray drying process. Of course, if the temperature is higher than that can be crystallized faster.
해수를 분무할 경우에는 해수를 미세하게 쪼개어 분무하는 것이 중요한데, 본 발명에서는 회전원반식, 압력 노즐식 등 미세한 입자 상태로 분무 가능하다면 그 종류를 상관하지는 않는다. 다만 대용량의 경우에는 회전원반식이 효율적이다. When spraying seawater, it is important to split the seawater finely and spray, but in the present invention, if it can be sprayed in the state of fine particles such as rotary disk, pressure nozzle type does not matter the type. However, in the case of a large capacity, the rotary disk type is efficient.
분무한 해수는 온도가 고온이 아니고 또한 분무량이 많은 관계로 순간적으로 건조하지 않고 일정시간 동안 공기 중에 안개상태로 부유하면서 건조가 이루어지게 된다. 이 때 이산화탄소가 안개화된 해수 속의 성분들과 반응 결합하면서 탄산염으로 결정화되어 바닥으로 떨어져 쌓이게 된다. 다시 말하면 이산화탄소가 농축해수에 포함된 칼슘, 마그네슘, 철, 나트륨 등의 양이온과 결합하여 탄산칼슘, 탄산마그네슘, 탄산철, 탄산나트륨 등으로 결정화되어 염화나트륨, 염화마그네슘 등의 소금류와 함께 결정으로 바닥에 떨어지게 되는 것이다. The sprayed seawater is not dried at a high temperature and has a large amount of spray, and is dried while floating in the air in a fog state for a certain time. At this time, the carbon dioxide reacts with the components in the mist of seawater and crystallizes into carbonate and is accumulated on the floor. In other words, carbon dioxide is combined with cations such as calcium, magnesium, iron, and sodium contained in concentrated seawater and crystallized into calcium carbonate, magnesium carbonate, iron carbonate, sodium carbonate, etc. Will fall.
본 발명은 이산화탄소가 최종공정에서 탄산염 결정체로서 회수되기 때문에 안전하며 공정에서 필요로 하는 에너지를 화석연료의 배출가스에 함유된 에너지를 활용하기 때문에 별도의 에너지를 필요로 하지 않다. 또한 농축과정과 해수의 알카리화를 통하여 그 반응성을 높였기 때문에 반응이 빠르며 해수속의 양이온과 결합하여 결정화하는 이산화탄소의 양은 대폭적으로 늘어나게 된다. 그리고 최종산물로 탄산염 및 소금이 생산되기 때문에 이 탄산염 및 소금을 다양한 용도로 활용할 수 있다.The present invention is safe because carbon dioxide is recovered as carbonate crystals in the final process, and does not require extra energy because it uses energy contained in the exhaust gas of fossil fuel. In addition, since the reactivity is increased through the concentration process and alkalinization of seawater, the reaction is fast and the amount of carbon dioxide that is crystallized by bonding with cations in the seawater is greatly increased. And since carbonates and salts are produced as final products, these carbonates and salts can be used for various purposes.
분무 건조과정을 통해 대부분의 해수속의 미네랄은 소금 및 탄산염류로 결정화되어 바닥에 떨어지고 물은 수분으로 공기와 함께 배출과정을 거치게 된다. 이 배출되는 공기에는 상당한 양의 수분과 미처 결정화되지 못한 이산화탄소가 일부 존재하는데 이것을 찬 해수와 온도 교환을 통해 액화과정을 거쳐 담수로 회수한다. 이때 잔존 이산화탄소는 물에 녹은 형태로 대부분 제거된다. 이러한 과정을 통해 공기 중으로 배출이 되는 공기는 수분과 이산화탄소 등의 물질들이 대부분 제거된 청정한 상태가 된다. Through spray drying, most of the minerals in seawater crystallize into salts and carbonates and fall to the bottom, and the water is discharged with water as air. The discharged air contains a significant amount of water and some carbon dioxide that has not been crystallized, which is then liquefied through cold water and temperature exchange to recover fresh water. At this time, most of the remaining carbon dioxide is dissolved in water. Through this process, the air discharged into the air becomes a clean state in which most substances such as moisture and carbon dioxide are removed.
이하, 본 발명을 더욱 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail.
본 발명의 전체 공정의 흐름은 해수를 전처리(모래여과, 급속여과막, 마이크로필터(MF), 울트라필터(UF) 등으로 여과)한 후, RO막(역삼투막)을 통과시켜 농축수와 탈염수(담수)를 제조하고, 제조된 농축수를 바이폴라막 (Bipolar Membranes) 및 이온교환막을 이용한 물분해전기투석장치를 통과시켜 알카리화 시킨다. The flow of the whole process of the present invention is pre-treatment (filtered by sand filtration, rapid filtration membrane, micro filter (MF), ultra filter (UF), etc.) and then passed through the RO membrane (reverse osmosis membrane) concentrated water and demineralized water (fresh water) ), And the prepared concentrated water is alkalized by passing through a hydrolysis electrodialysis apparatus using a bipolar membrane and an ion exchange membrane.
바이폴라막은 물을 분해하여 H+ 와 OH- 이온으로 나눈다. 그리고 함께 설치된 이온교환막은 농축해수의 이온들을 전기적 특성에 따라 분리하여 모은다. 이렇게 모인 Na+, Ca2+, K+, Mg2+ 등의 양이온은 OH- 이온과 결합하여 수산화나트륨, 수산화칼슘, 수산화칼륨, 수산화마그네슘 등이 됨으로써 해수는 알카리화 하게 된다. 즉 대부분의 양이온은 OH-과 결합하여 알카리화하고 Cl- 음이온은 H+ 이온과 결합하여 산성화 하게 된다. Bipolar membranes break down water+ And OH- Divide by ions In addition, the ion exchange membrane installed together collects ions of concentrated seawater according to electrical characteristics. Na gathered like this+, Ca2+, K+, Mg2+Such as Cation is OH- By combining with ions, sodium hydroxide, calcium hydroxide, potassium hydroxide, magnesium hydroxide and the like become alkaline. Most cations are OH-In combination with alkali to form Cl-Etc Anion is H+It is combined with ions and acidified.
이렇게 농축되고 알카리화한 해수를 이산화탄소가 포함된 연소배출가스 열풍 속에 미세한 안개 상태로 분사한다. 열풍인 배출가스의 온도는 60℃ 이상이면 적당하나 너무 고온이면 해수가 이산화탄소와 반응을 완료하기도 전에 결정화되어 버리는 경우가 있기 때문에 60℃~100℃ 정도가 적당하다. 물론 반응과정에서 일부 발열반응이 일어나기 때문에 온도가 그 이상으로 올라갈 수도 있는데 너무 높게 올라가면 온도를 찬 해수를 통해 조절해 줄 필요도 있다. 이렇게 온도 조절용으로 사용된 해수 혹은 증발 해수를 액화하는 과정에서 온도가 올라간 해수는 RO막(역삼투압막)의 효율을 높이는 데 도움이 된다.The concentrated and alkaline seawater is sprayed in a fine fog state into the combustion exhaust gas hot air containing carbon dioxide. The temperature of the exhaust gas, which is hot air, is appropriate if it is 60 ° C. or higher, but if it is too high, sea water may crystallize even before completion of the reaction with carbon dioxide. Of course, some exothermic reactions occur in the course of the reaction, so the temperature may rise above that. If the temperature rises too high, it is necessary to adjust the temperature through cold seawater. As such, the seawater that has risen in temperature during liquefaction of seawater or evaporated seawater used for temperature control helps to increase the efficiency of the RO membrane (reverse osmosis membrane).
대부분의 배출가스는 상당한 열량을 확보하고 있고 반응과정에서 발열반응이 일어나기 때문에 투입되는 배기가스의 온도를 높이기 위하여 별도의 에너지를 공급할 필요성은 거의 없다.Most of the exhaust gas has a considerable amount of heat and exothermic reactions occur during the reaction, so it is hardly necessary to supply additional energy to increase the temperature of the exhaust gas.
분무건조과정에서 배출가스에 포함된 이산화탄소는 해수 중에 포함되어 있는 다양한 양이온과 반응하면서 결정화되어 바닥으로 떨어져 쌓이게 된다. 알카리화 공정을 통하여 해수에 포함되어 있는 대부분의 염소이온 및 황산이온이 제거되고 알카리화되어 있기 때문에 반응은 빠르고 대량으로 진행되게 된다. 이렇게 하여 결정으로 쌓인 소금 및 탄산염들은 입경분리기 등을 통해 분리하여 용도에 맞게 사용할 수도 있고 또 그대로도 사용할 수도 있다. During spray drying, the carbon dioxide contained in the off-gas reacts with various cations contained in seawater and crystallizes to fall to the bottom. Alkalineization process removes most of the chlorine and sulfate ions contained in the sea water and is alkaline because the reaction proceeds quickly and in large quantities. In this way, the salts and carbonates accumulated in the crystals may be separated by a particle size separator, etc., and used according to the purpose, or may be used as it is.
건조공정 이후에 배출되는 공기는 해수 중에 포함되어 있는 수분 및 반응과정에서 생성되는 수분을 함께 함유하고 있는데 찬 해수를 이용하여 온도교환을 하면서 액화시켜 담수로서 회수한다. 이 과정에서도 잔량 남아 있는 이산화탄소가 액화하는 과정 속에 녹아 담수로서 회수가 이루어진다.The air discharged after the drying process contains both the water contained in the seawater and the water generated during the reaction process. It is liquefied by temperature exchange using cold seawater and recovered as fresh water. In this process, the remaining amount of carbon dioxide is dissolved in the liquefaction process and recovered as fresh water.
본 발명에 사용되는 에너지는 해수를 각종 막에 통과시키기 위한 압력을 주는데 필요한 정도와 전기투석장치에 사용되는 에너지 정도이다. 바이폴라막을 이용한 물분해전기투석장치는 물분해를 전기의 힘보다는 막의 특성을 활용하기 때문에 에너지 소모량이 극히 적다. 건조과정에서 요구되는 열은 이산화탄소가 포함된 배출가스가 가지고 있는 자체의 열을 그대로 사용하게 된다. 대부분의 배출가스는 상당한 고온을 지니고 있는데, 본 건조과정은 60℃ 이상의 온도만 확보를 하면 되기 때문에 별도의 가온 시스템을 추가할 필요가 없게 된다. The energy used in the present invention is the degree necessary to apply pressure for passing seawater through various membranes and the energy used in the electrodialysis apparatus. Water dissociation electrodialysis using bipolar membranes consumes very little energy because water dissociation utilizes the properties of the membrane rather than the power of electricity. The heat required in the drying process uses its own heat of the exhaust gas containing carbon dioxide. Most of the exhaust gases have a high temperature, and this drying process only needs to secure a temperature of 60 ° C or higher, so there is no need to add a separate heating system.
본 발명은 단지 이산화탄소를 제거하거나 감소시키는데 머무는 것이 아니라 담수의 생산, 소금의 제조, 탄산염의 제조라는 경제성이 높은 다양한 물질을 부산물로 확보할 수 있게 한다. The present invention makes it possible to secure various by-products with high economical efficiency such as production of fresh water, production of salt, and production of carbonate, rather than merely to remove or reduce carbon dioxide.
본 장치를 통해 만들어진 탄산염 및 소금의 품질을 높이고 용도를 확장시키기 위해서는 이산화탄소를 포함한 배출가스의 전처리 과정이 필요하다. 통상적으로 현재 대규모로 배출되는 연소 가스는 공해 방지시설인 집진처리장치, 원심분리기, 세정기, 탈황설비 및 탈질소설비 등을 거치게 된다. 부산물의 품질을 높이고 활용도를 높이기 위해서는 배출가스의 분무건조과정전 전처리 단계에서 이들 설비를 활용하여 배출 가스의 청정성을 확보하여 줄 필요가 있다. In order to improve the quality and expand the use of carbonates and salts produced through this device, pretreatment of exhaust gases including carbon dioxide is required. In general, the combustion gas discharged on a large scale currently goes through a pollution prevention device, a centrifugal separator, a scrubber, a desulfurization facility, and a denitrification facility. In order to improve the quality and utilization of the by-products, it is necessary to secure the cleanliness of the exhaust gases by utilizing these facilities in the pretreatment stage before the spray drying process of the exhaust gases.
표 1 해수의 성분
구분 해수 조건 해수 함유물질의 함유량
용적ml 밀도(비중) 중량g 산화철Fe2O3 탄산칼슘CaCO3 황산칼슘CaSO4 염화나트륨NaCl2 황산마그네슘MgSO4 염화마그네슘MgCl2 브롬화나트륨NaBr 염화칼륨KCl 합계 g
함유량 1000 1.0245 1025 0.0012 0.1143 1.3196 25.8120 2.0826 3.4462 0.1028 0.7121 33.5908
Table 1 Seawater
division Seawater conditions Content of seawater-containing substances
Volume ml Density Weight g Iron oxideFe 2 O 3 Calcium Carbonate CaCO 3 Calcium SulfateCaSO 4 Sodium chlorideNaCl 2 Magnesium Sulfate MgSO 4 Magnesium Chloride MgCl 2 Sodium bromide NaBr Potassium Chloride KCl Total g
content 1000 1.0245 1025 0.0012 0.1143 1.3196 25.8120 2.0826 3.4462 0.1028 0.7121 33.5908
* 출처 : 해수 함유물 분석 실험(해양의 화학, 동해대학 출판부)* Source: Seawater Content Analysis Experiment (Marine Chemistry, Donghae University Press)
물론 이산화탄소만을 제거하는 것이 아니고 배출가스속에 포함되어 있는 질소산화물, 이산화황등을 함께 결정화시켜 제거하고자 한다면 이를 제거하는 별도의 전처리 작업없이 배출가스 그대로 투입하여 이산화탄소 제거와 같이 알카리해수와 반응시켜서 결정체로 회수하는 것이 가능하다.Of course, if you are not only removing carbon dioxide, but also want to crystallize and remove nitrogen oxides, sulfur dioxide, etc. contained in the exhaust gas, the waste gas is put into the exhaust gas without additional pretreatment to remove it and reacted with alkaline seawater, such as carbon dioxide removal, to recover as crystals. It is possible to do
이 경우 회수되는 결정체는 탄산염(탄산나트륨, 탄산 칼슘, 탄산칼륨 등) 결정체, 황산염(황산나트륨, 황산칼슘, 황산칼륨 등) 결정체,질산염(질산칼슘, 질산칼륨, 질산철, 질산나트륨 등) 결정체가 혼합되어 존재하게 되어 분리 및 활용에 다소 어려움을 겪을 수는 있다. 하지만 각각의 물질을 제거하기 위하여 별도의 설비를 해야 하는 번거로움을 피할 수 있고 별도의 설비를 하지 않아도 되기 때문에 많은 시설비를 절약하는 장점이 있다. 나아가 운전비용 또한 절감을 할 수 있다. 그러나 이 방법을 사용할 경우에도 집진 설비 등을 이용하여 그을음 및 먼지류를 제거한 후 투입하여 생산되는 염류의 청정성을 확보하는 것이 좋다.In this case, the recovered crystals are mixed with carbonate (sodium carbonate, calcium carbonate, potassium carbonate, etc.) crystals, sulfate (sodium sulfate, calcium sulfate, potassium sulfate, etc.) crystals, nitrate (calcium nitrate, potassium nitrate, iron nitrate, sodium nitrate, etc.) crystals. It may be difficult to separate and use because it exists. However, it is possible to avoid the hassle of having to install a separate facility in order to remove each material, and there is an advantage of saving a lot of facility costs because there is no need for a separate facility. Furthermore, operating costs can also be reduced. However, even when using this method, it is good to ensure the cleanliness of salts produced by removing soot and dusts using a dust collecting facility.
상기 표 1에서 알 수 있는 것처럼 해수에는 다량의 물질이 함유되어 있으며 이온상태로 녹아 있다. 물론 상기 표 1에서 나타내지 못한 수많은 물질도 함께 녹아 있으며 그 물질의 종류는 80가지가 넘는 것으로 알려져 있기도 하다. 육지에 매장되어 있는 물질들이 오랜 채굴활동으로 인해 점차 바닥을 드러내고 있고, 채굴비용이 점점 증가하고 있는 상황에서 해수에 녹아 있는 자원의 개발에 눈을 돌리는 것은 자연스러운 현상이라고 할 수 있다. 현재 전 세계의 연구자들은 바닷물 속에 녹아 있는 금, 리튬, 삼중수소 등의 추출방법 개발에 매진하고 있으며 점점 그 성과가 가시화되어 가고 있기도 하다.As can be seen in Table 1, seawater contains a large amount of material and is dissolved in an ionic state. Of course, a number of substances that are not shown in Table 1 are also melted together, and the kinds of the substances are known to be more than 80 kinds. It is a natural phenomenon to keep an eye on the development of resources dissolved in seawater, as materials buried on land are gradually bottoming out due to long mining activities, and mining costs are increasing. Researchers around the world are currently working on developing extraction methods for gold, lithium, and tritium dissolved in seawater, and the results are becoming more visible.
본 발명은 해수에 녹아 있는 다양한 물질들을 경제적인 비용으로 회수하는 방법을 제시하고 있기도 하다. 일반적으로 해수를 증발시켜서 해수속에 녹아 있는 물질들은 결정화시키기 위해서는 많은 에너지와 특별한 장치들을 필요로 한다. The present invention also proposes a method for recovering various substances dissolved in seawater at an economic cost. In general, materials dissolved in seawater by evaporation of seawater require a lot of energy and special equipment to crystallize.
그러나 본 발명은 이러한 에너지를 최소화 하면서 다양한 경제적인 물질들을 생산해낸다. 첫 번째 산출되는 물질은 담수이다. 즉 경제적인 증발을 위해 RO막(역삼투막)을 통과시키는 과정에서 청정 담수가 생산이 된다. 생산된 담수는 상수도수, 중수도수 혹은 각종 설비에 필요한 물로서 공급이 될 수 있으며, 음료수의 원료로도 사용이 될 수 있다. 분무건조과정에서 결정화되어 회수되는 탄산염 및 소금은 다양한 용도로 사용이 될 수 있다. 입경분리기(진동 스크린) 등을 통해 분리하여 특성별로 사용하거나 분리없이 전체 탄산염 및 소금으로서 사용이 될 수 있다. However, the present invention produces a variety of economical materials while minimizing this energy. The first material produced is fresh water. That is, clean fresh water is produced in the process of passing RO membrane (reverse osmosis membrane) for economical evaporation. The produced fresh water can be supplied as tap water, deuterium water, or water required for various facilities, and can be used as a raw material for drinking water. Carbonates and salts which are crystallized and recovered during spray drying can be used for various purposes. It can be separated by a particle separator (vibration screen) or the like, or used as a whole carbonate and salt without separation.
현재 연간 250만 톤의 소금이 국내로 수입되고 있다. 전체 필요량 300만톤 중에서 국내 생산분 50만 톤을 제외하고 매년 250만톤을 수입하여 사용하고 있으며 그 대부분을 화학공업용 및 제설제 등으로 사용한다. 따라서 이들의 경우에는 제품에 미량의 다른 물질이 포함되어 있어도 사용에는 별 문제가 없다. 본 발명에 의해 설비가 설치되어 가동이 되면 연간 수입하는 소금의 대부분을 저렴한 이산화탄소의 제거 공정에서 생산되는 것으로 충당할 수가 있으며 수출까지도 가능할 것으로 판단된다. Currently, 2.5 million tons of salt is imported into Korea annually. Of the total 3 million tons, 2.5 million tons are imported every year except 500,000 tons of domestic production, and most of them are used for chemical industry and snow removal agent. Therefore, in these cases, even if the product contains a small amount of other substances, there is no problem in use. When the facility is installed and operated according to the present invention, most of the annually imported salt can be covered by the production of cheap carbon dioxide removal process, and it is considered to be possible to export.
또한 입경분리기 등을 통해 고순도의 특정 성분의 탄산염(탄산칼슘, 탄산마그네슘, 탄산나트륨, 탄산철 등)이 분리 추출이 되면 훨씬 고가의 용도로 사용이 될 수 있다.In addition, if the carbonate (calcium carbonate, magnesium carbonate, sodium carbonate, iron carbonate, etc.) of a specific component of high purity is separated through a particle size separator, etc., it may be used for a much more expensive use.
표 2 입경분리기(진동스크린의 분리망체 크기)의 종류
NO (호칭번호) Mesh Wire Dia(mm) Screen Opening(㎛)
4 4 1.60 4,750
5 5 1.08 4,000
6 6 0.88 3,350
7 7 0.83 2,800
8 8 0.82 2,360
9 9 0.82 2,000
10 10 0.84 1,700
12 12 0.72 1,400
14 14 0.63 1,180
16 16 0.59 1,000
20 20 0.42 850
25 24 0.35 710
30 28 0.31 600
35 32 0.29 500
40 35 0.30 425
45 42 0.25 355
50 48 0.23 300
60 60 0.17 250
70 65 0.18 212
80 80 0.14 180
100 100 0.10 150
120 115 0.10 125
140 150 0.06 106
170 170 0.06 90
200 200 0.05 75
230 250 0.04 63
270 270 0.04 53
325 325 0.03 45
400 400 0.03 38
500 500 0.02 26
635 635 0.02 20
TABLE 2 Type of particle separator (separation net size of vibration screen)
NO (Identification Number) Mesh Wire Dia (mm) Screen Opening (㎛)
4 4 1.60 4,750
5 5 1.08 4,000
6 6 0.88 3,350
7 7 0.83 2,800
8 8 0.82 2,360
9 9 0.82 2,000
10 10 0.84 1,700
12 12 0.72 1,400
14 14 0.63 1,180
16 16 0.59 1,000
20 20 0.42 850
25 24 0.35 710
30 28 0.31 600
35 32 0.29 500
40 35 0.30 425
45 42 0.25 355
50 48 0.23 300
60 60 0.17 250
70 65 0.18 212
80 80 0.14 180
100 100 0.10 150
120 115 0.10 125
140 150 0.06 106
170 170 0.06 90
200 200 0.05 75
230 250 0.04 63
270 270 0.04 53
325 325 0.03 45
400 400 0.03 38
500 500 0.02 26
635 635 0.02 20
입경분리기의 분리망체 크기는 상기 표 2처럼 다양하게 존재하는데, 본 발명에 의해 해수에서 제조되는 물질은 20~500Mesh의 크기면 대부분의 물질들을 분리 추출하는 것이 가능하게 된다. Separation net size of the particle size separator is present in a variety as shown in Table 2, the material produced in the sea water by the present invention is able to separate and extract most of the material if the size of 20 ~ 500Mesh.
또한 알카리화 공정에서 전기투석장치(이온교환막)의 막을 선택적으로 사용하면 알카리수의 성분을 조절할 수가 있게 된다. 이 방법을 사용을 할 경우에는 결정화된 성분이 거의 하나의 성분으로 만들어지는 것이 가능하게 된다. 즉 탄산나트륨, 탄산마그네슘, 탄산칼슘, 탄산칼륨 등이 선택적으로 제조될 수 있게 된다.In addition, when the membrane of the electrodialysis device (ion exchange membrane) is selectively used in the alkaline process, the component of the alkaline water can be adjusted. When using this method, it is possible to make the crystallized component into almost one component. That is, sodium carbonate, magnesium carbonate, calcium carbonate, potassium carbonate and the like can be selectively produced.
분무건조과정에 사용되는 열원은 이산화탄소가 포함된 배출가스의 열원을 그대로 사용한다. 연소과정을 거쳐 배출이 되는 이산화탄소는 연소과정에서 발생하는 열을 포함하고 있기 때문에 상당한 열에너지를 함유하고 있다. 이를 분무건조시 소요되는 열원으로 사용하게 된다. 분무건조시 소요되는 열원은 60~100℃의 온도를 가진 열풍이면 적당하기 때문에 배출가스에 포함되어 있는 열에너지 이외에는 별도의 에너지 공급이 필요하지 않다. 물론 배출가스에 포함되어 있는 다양한 이물질을 제거하는 전처리 과정에서 온도가 다소 저하될 가능성이 있기는 하지만 잔열로도 충분하기 때문에 별 문제가 되지는 않는다.The heat source used in the spray drying process uses the heat source of the exhaust gas containing carbon dioxide as it is. Carbon dioxide emitted through the combustion process contains considerable heat energy because it contains heat generated during the combustion process. It is used as a heat source required for spray drying. The heat source used for spray drying is suitable if it is a hot wind having a temperature of 60 to 100 ° C., and no separate energy supply is required except for the heat energy included in the exhaust gas. Of course, the pretreatment process to remove various foreign matters contained in the exhaust gas may reduce the temperature slightly, but it is not a problem because the residual heat is enough.
이하, 본 발명을 실시예에 의해 보다 구체적으로 설명할 것이나, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the following Examples are merely illustrative of the present invention, and the content of the present invention is not limited by the following Examples.
<실시예 1> 바이폴라막(Bipolar Membranes)을 이용한 물 분해Example 1 Water Degradation Using Bipolar Membranes
바이폴라막에 의한 물분해를 하였다. 최근 물분해전기투석공정(WSED; Water-splitting electrodialysis)은 산/염기를 생산하기 위한 효율적인 공정으로 주목받고 있다. 바이폴라막은 양이온 교환층과 음이온 교환층이 결합된 형태의 막으로 물분해 전기투석 공정에서 핵심적인 역할을 담당한다. 바이폴라막은 역 바이어스(Reverse bias) 조건에서 물분자를 수소이온과 수산화이온으로 분해하는 독특한 전기화학적 특성을 가지고 있다. 따라서 화학 및 생물공정에서 부산물의 발생없이 산/염기를 생산할 수 있다 .Water decomposition by bipolar membrane was carried out. Recently, water-splitting electrodialysis (WSED) has attracted attention as an efficient process for producing acids / bases. The bipolar membrane is a type of membrane combined with a cation exchange layer and an anion exchange layer and plays a key role in the hydrolysis electrodialysis process. Bipolar membranes have unique electrochemical properties that decompose water molecules into hydrogen and hydroxide ions under reverse bias conditions. Thus, chemical and biological processes can produce acids / bases without the generation of by-products.
바이폴라막의 제조방식은 크게 4가지 형태로 나눌 수가 있다. 첫 번째는 상용화된 양이온/음이온 교환막을 결합시키는 방법이며, 두 번째는 Single-sheet 형태의 바이폴라막의 제조이다. 세 번째는 기존의 상용막 위에 Casting을 하는 방법이며, 마지막으로 연속적인 Coating법에 의해 제조하는 방법으로 구분할 수 있다.The bipolar film production method can be divided into four types. The first method is to combine a commercially available cation / anion exchange membrane, and the second method is to prepare a bipolar membrane in the form of a single sheet. The third method is casting on the existing commercial film. Finally, it can be divided into manufacturing method by continuous coating method.
첫 번째 방법은 바이폴라막 개발 초기에 시도되었던 방법으로 느슨하게 겹치는 방법과 Hot pressing 또는 접착고분자를 도입하는 방법 등으로 나눌 수 있으나, 이 방법으로 제조된 바이폴라막은 대체로 물리화학적 안정성이 낮으며 물분해 저항성이 높은 단점을 가지고 있어 현재는 거의 사용이 되고 있지 않다. 최근에는 두 번째, 세 번째인 Single-sheet 바이폴라막과 Casting에 의해 제조된 바이폴라막이 주로 개발이 되고 있으며, 물분해 특성을 향상시키기 위해 계면에 고분자 촉매(예, Carboxylic acid, Secondary/tertiary amines) 및 무기 촉매(예, Metal hydroxide /oxide) 등을 도입하는 연구가 진행 중에 있기도 하다. The first method was attempted early in the development of bipolar membrane, and it can be divided into loose overlapping method and hot pressing or introduction of adhesive polymer.However, bipolar membrane manufactured by this method has low physicochemical stability and resistance to water decomposition. It has a high disadvantage and is rarely used at present. Recently, second and third single-sheet bipolar membranes and bipolar membranes manufactured by casting have been mainly developed, and polymer catalysts (eg, Carboxylic acid, Secondary / tertiary amines) and Research into the introduction of inorganic catalysts (eg metal hydroxide / oxide) is underway.
도 1에서 알 수 있는 것처럼, 바이폴라막은 물의 이론적인 분해전압인 0.83V 이상을 가하면 물을 H+와 OH-로 분해할 수가 있다. 바이폴라막은 양이온과 음이온 교환층이 결합된 형태의 막으로 역 바이어스(Reverse Bias), 즉 바이폴라막의 양이온 교환층이 음극을, 음이온 교환층이 양극을 향하고 있는 상태에서 물분자를 수소이온(H+)와 수산화이온(OH-)으로 분해한다. 바이폴라막을 이용한 물 분해 공정은 산/염기를 생성하기 위해 이용해오던 기존의 전해법(electrolytic water dissociation)보다 매우 효과적인 방법이다. 전극에서의 물분해 반응을 이용하는 기존의 전해 공정은 매우 넓은 전극면적을 요구하여 전류 효율이 낮아 에너지 효율이 떨어진다. 이에 반해 바이폴라막을 이용한 물분해공정은 Scale Up이 용이하며 전해법에 비해 에너지 소비량도 훨씬 낮다. As can be seen in Figure 1, the bipolar membrane can decompose water into H + and OH - by applying more than 0.83V, the theoretical decomposition voltage of water. The bipolar membrane is a membrane in which a cation and an anion exchange layer are combined to reverse bias, that is, the water molecules are hydrogen ions (H + ) while the cation exchange layer of the bipolar membrane faces the cathode and the anion exchange layer faces the anode. and hydroxide ions (OH -) is digested with. The water decomposition process using bipolar membrane is more effective than the existing electrolytic water dissociation method used to generate acid / base. Conventional electrolytic processes using water decomposition reactions at the electrodes require very large electrode areas, resulting in low current efficiency and low energy efficiency. On the other hand, the water decomposition process using bipolar membrane is easy to scale up and has much lower energy consumption than electrolytic method.
<실시예 2> 바이폴라막을 이용한 경우와 전기분해공정을 이용한 경우의 에너지 효율 및 공정 차이 비교 Example 2 Comparison of Energy Efficiency and Process Difference Between Bipolar Membrane and Electrolysis Process
바이폴라막을 이용한 물분해 공정과 전극에 의한 물분해 공정을 비교하였다.The water decomposition process using a bipolar membrane and the water decomposition process by an electrode were compared.
전극에 의해 이루어지는 물분해 공정을 통해 황산 및 수산화나트륨을 제조할 경우에 방식은 도 2와 같다.In the case of producing sulfuric acid and sodium hydroxide through a water decomposition process made by the electrode is as shown in FIG.
전극을 이용한 물분해 공정은 음극 및 양극에서 물 분해가 이루어져, 이때 발생하는 수소이온(H+) 및 수산이온(OH-)이 이온 교환막을 투과해온 양이온 및 음이온과 결합하여 목표로 하는 물질을 만들어 내게 된다. 도 2에서 볼 수 있는 것처럼, (+)극에서는 물 분해에 의해 산소와 수소가 발생하고 (-)극에서는 수소와 수산이온이 발생하게 된다. 황산나트륨은 물에 녹아서 나트륨이온(Na+)은 (-)극으로 이동하여 -극에서 물 분해에 의해 만들어진 수산이온(OH-) 이온과 결합하여 수산화나트륨(NaOH)을 만들어 낸다. (+)극에서도 반응이 일어나는데 (+)극에서 물 분해에 의해 만들어진 수소이온(H+)은 음이온 교환막을 통해 이동해 온 황산이온(SO4 2-)과 결합하여 황산(H2SO4)를 만들어 낸다. 이때 사용되는 에너지 값은 ΔU = 2.056V, ΔG = 0.0551kwh/mol 이다.Water splitting processes by the electrode is water-splitting consists in the cathode and the anode, wherein protons (H +) and hydroxyl ions (OH -), which occurs in conjunction with the positive and negative ions that has transmitted through the ion exchange membranes made of materials aiming To me. As shown in FIG. 2, oxygen and hydrogen are generated by water decomposition at the positive electrode, and hydrogen and hydroxide ions are generated at the negative electrode. Sodium sulfate is melted and the water ions (Na +) is (+) - hydroxyl ions (OH -) produced by the water-splitting in the pole by pole reversal in combination with the ion to produce sodium hydroxide (NaOH). The reaction also occurs in the (+) electrode. Hydrogen ions (H + ) produced by water decomposition at the (+) electrode combine with sulfate ions (SO 4 2- ), which have migrated through an anion exchange membrane, to form sulfuric acid (H 2 SO 4 ). Make it up The energy value used at this time is ΔU = 2.056V, ΔG = 0.0551kwh / mol.
바이폴라막에 의한 물 분해 공정을 통해 같은 물질을 제조한다고 할 경우의 공정은 도 3과 같이 된다.The process of producing the same material through the water decomposition process by the bipolar membrane is as shown in FIG.
물의 분해가 전극이 아닌 바이폴라막에 의해서 일어나는 것이 커다란 차이점이다. 그렇기 때문에 전극에 의해 물을 분해할 경우에 발생하는 전극의 오염문제가 발생하지 않으며, 넓은 전극 면적 또한 필요로 하지 않다. 특히 막을 여러개를 겹쳐 설치할 경우에도 전극을 칸칸이 설치할 필요가 없이 여러 개의 막을 설치한 후 양 끝에 전극을 설치하면 되기 때문에 전극의 수가 획기적으로 감소하게 된다. The major difference is that the decomposition of water is caused by bipolar membranes, not electrodes. Therefore, the contamination problem of the electrode which occurs when water is decomposed by the electrode does not occur, and a large electrode area is not required. In particular, even when a plurality of membranes are stacked, the number of electrodes can be drastically reduced because the electrodes do not need to be installed, but the electrodes can be installed at both ends after installing several membranes.
특히 물의 분해가 전기의 힘이 아닌 바이폴라막에 의해 이루어지기 때문에 전기 효율이 획기적으로 높다. 도 3에서 설명이 된 것처럼 전극에 의한 물 분해와 바이폴라막에 의한 물분해 공정의 에너지값을 비교하면 다음과 같다.In particular, the electrical efficiency is remarkably high because the decomposition of water is made by the bipolar membrane, not the power of electricity. As described in FIG. 3, the energy values of the water decomposition process by the electrode and the water decomposition process by the bipolar membrane are compared as follows.
표 3 전극에 의한 물분해와 바이폴라막에 의한 물분해전기투석장치의 에너지 비교
구분 △U - 전기전압차 △G - 물 분해에 요구되는 가역적인 자유엔탈피
전극에 의한 물 분해 ΔU = 2.056V ΔG = 0.0551kwh/mol
바이폴라막에 의한 물 분해 ΔU = 0.828V ΔG = 0.0221kwh/mol
TABLE 3 Comparison of energy between water decomposition by electrode and water decomposition electrodialysis apparatus by bipolar membrane
division △ U-Electric Voltage Difference ΔG-reversible free enthalpy required for water decomposition
Water decomposition by electrode ΔU = 2.056 V ΔG = 0.0551kwh / mol
Water decomposition by bipolar membrane ΔU = 0.828 V ΔG = 0.0221 kwh / mol
<실시예 3> 바이폴라막에 의한 해수의 알카리화 공정Example 3 Alkalization of Seawater by Bipolar Membrane
바이폴라막과 이온교환막을 이용한 물분해전기투석장치로 해수의 알칼리화를 실시하였다.Alkalization of seawater was carried out using a hydrolysis electrodialysis apparatus using a bipolar membrane and an ion exchange membrane.
해수를 도 4와 같이 바이폴라막과 이온교환막을 이용한 물분해전기투석장치에 흘리게 되면 해수는 알카리수 해수와 산성 해수로 나누어지게 된다. 해수를 흘리게 되면 바이폴라막에 의한 물 분해로 생성이 된 수소이온과 수산이온이 해수 속에 포함되어 있는 양이온 및 음이온과 반응하여 산성 해수와 알카리 해수로 분리가 되게 된다. 이 때 이온교환막과 바이폴라막을 다단으로 설치하면 보다 효율적으로 공정을 진행할 수 있게 된다. 바이폴라막의 양쪽에는 담수를 사용하는 것이 일반적이나 해수를 사용하여도 무방하다. 해수를 사용할 경우에는 생성되는 물질의 순도에 있어 다소 문제가 있을 수 있으나, 향후 반응공정에서 반응량을 증가시키거나 사용되는 담수의 양을 줄이기 위해서는 해수를 사용하는 것이 좋을 수도 있다. When the seawater is flowed into the hydrolysis electrodialysis apparatus using the bipolar membrane and the ion exchange membrane as shown in FIG. 4, the seawater is divided into alkaline water seawater and acidic seawater. When the seawater flows, the hydrogen ions and the hydroxyl ions generated by the decomposition of water by the bipolar membrane react with the cations and anions contained in the seawater and are separated into acidic seawater and alkaline seawater. In this case, if the ion exchange membrane and the bipolar membrane are installed in multiple stages, the process can be performed more efficiently. Fresh water is generally used on both sides of the bipolar membrane, but sea water may be used. When seawater is used, there may be some problems in the purity of the material produced, but it may be better to use seawater to increase the amount of reaction in the reaction process or to reduce the amount of fresh water used.
<실시예 4> 결정화된 탄산염 및 소금을 입경분리기 등을 통해 종류별로 분리Example 4 Separation of Crystallized Carbonate and Salt by Type Using a Particle Size Separator
결정화된 물질을 선택적으로 분리 추출하기 위하여 입자의 크기에 따른 진동스크린을 사용하여 분리하였다. 도 9는 실제 진동스크린 사진이다. 진동스크린을 사용하여 결정염의 입자크기에 따라 탄산염, 소금 등을 분리하였다(표 4). 마그네슘염의 평균 입자 크기는 263㎛이었으며, 염화나트륨염의 평균 입자크기는 175㎛이고, 칼슘염의 평균 입자 크기는 7.73㎛로 각각 석출되는 미네랄염의 평균입자들 사이에는 차이가 존재한다. 이러한 미네랄염의 평균 입자 크기 차이를 이용하여 망체의 pore size 180㎛, 125㎛, 38㎛을 가진 다중 진동스크린을 활용하여 마그네슘염, 염화나트륨염 및 칼슘염을 분리하였다.In order to selectively separate and extract the crystallized material, it was separated using a vibration screen according to the particle size. 9 is an actual vibration screen picture. Using a vibrating screen, carbonates, salts, etc. were separated according to the particle size of the crystal salt (Table 4). The average particle size of magnesium salt was 263 μm, the average particle size of sodium chloride salt was 175 μm, and the average particle size of calcium salt was 7.73 μm. Magnesium salts, sodium chloride salts and calcium salts were separated using multiple vibrating screens having pore sizes of 180 μm, 125 μm, and 38 μm using the average particle size difference of these mineral salts.
표 4 미네랄의 입자크기 및 분리망체 크기
구분 입자크기(㎛) 망체크기(Mesh) 비고(망체)
마그네슘염 263.23 80 180㎛
염화나트륨염 175.08 115 125㎛
칼슘염 7.73 500 26㎛
Table 4 Particle Size and Mesh Size of Minerals
division Particle size (㎛) Mesh size Remarks
Magnesium salt 263.23 80 180 μm
Sodium chloride salt 175.08 115 125 μm
Calcium salt 7.73 500 26 μm
* 칼슘의 경우는 엉기고 결합하는 성질로 인해 개별입자 크기보다 실질덩어리가 크기 때문에 26㎛의 망으로도 추출이 가능함.* In the case of calcium, it is possible to extract with a net of 26㎛ because the mass is larger than the individual particle size due to the tangling and bonding property.

Claims (7)

1) 해수를 전처리 후 1차 역삼투막에 통과시켜 농축수와 탈염수를 제조하는 단계; 1) preparing seawater and demineralized water by passing seawater through a first reverse osmosis membrane after pretreatment;
2) 상기 농축수를 바이폴라막 및 이온교환막을 이용한 물분해전기투석장치에 통과시켜 알카리 농축수로 전환시키는 단계; 2) converting the concentrated water into alkaline concentrated water by passing it through a hydrolysis electrodialysis apparatus using a bipolar membrane and an ion exchange membrane;
3) 알카리화된 농축수를 이산화탄소가 포함된 열풍과 함께 분무하여 이산화탄소와 알카리 농축수에 포함되어 있는 이온들과 반응시키면서 건조과정을 통해 결정화시키는 단계; 3) spraying the alkaline concentrated water with the hot air containing carbon dioxide and reacting with the ions contained in the carbon dioxide and alkaline concentrated water to crystallize through drying;
4) 건조 결정화되어 생성된 결정체를 수거하여 입경분리기를 통하거나, 용해도 또는 비중에 따라 분리 추출하는 단계; 4) collecting the crystals produced by the dry crystallization and separating through a particle size separator, or separated by solubility or specific gravity;
5) 상기 건조과정을 통해 배출되는 수분을 함유한 공기를 해수의 차가운 온도를 이용하여 냉각하여 응축 액화시킴으로써 담수를 확보하는 단계; 5) securing fresh water by cooling the air containing moisture discharged through the drying process using a cold temperature of sea water to liquefy condensation;
6) 상기 액화 과정에서 잔류 이산화탄소를 수분과 반응시켜 물에 용존된 상태로 회수하는 단계;를 포함하여 이루어진 것을 특징으로 하는 알카리화된 해수를 이용한 연소배출가스 중 이산화탄소 제거 방법.6) a method of removing carbon dioxide from combustion exhaust gas using alkaline seawater, characterized in that it comprises a step of recovering the remaining carbon dioxide in the dissolved state in the water by reacting the residual carbon dioxide in the liquefaction process.
제 1항에 있어서, 상기 1) 단계의 전처리는 모래여과, 급속여과막, 마이크로필터 또는 울트라필터 중에서 선택되는 1종 이상으로 여과하는 것을 특징으로 하는 알카리화된 해수를 이용한 연소배출가스 중 이산화탄소 제거 방법.The method of claim 1, wherein the pretreatment of step 1) is carried out using at least one selected from a sand filtration, a rapid filtration membrane, a micro filter, or an ultra filter. .
제 1항에 있어서, 상기 4) 단계의 입경분리기는 20~500 메쉬의 진동스크린인 것을 특징으로 하는 알카리화된 해수를 이용한 연소배출가스 중 이산화탄소 제거 방법.The method of claim 1, wherein the particle size separator of step 4) is a vibration screen of 20 to 500 mesh, and carbon dioxide is removed in combustion exhaust gas using alkaline seawater.
해수로부터 불순물을 제거하는 전처리장치와; 전처리된 해수를 역삼투막에 통과시켜 농축수와 탈염수를 분리 생성하는 농축장치와; 바이폴라막 및 이온교환막을 사용한 물분해전기투석장치가 개재되어 상기 농축수를 알카리화하는 장치와; 알카리화된 농축수를 이산화탄소가 포함된 열풍과 함께 분무하는 송풍장치와; 분무된 이산화탄소와 알카리화된 농축수에 포함되어 있는 이온들을 반응시키면서 건조과정을 통해 결정화시키는 분무결정화장치와; 건조 결정화되어 생성된 결정체를 수거하여 분리 추출하는 결정체 분리추출장치와; 건조과정을 통해 배출되는 수분을 함유한 공기를 해수의 차가운 온도를 이용하여 냉각하여 응축 액화시켜 담수화하고 잔류 이산화탄소를 수분과 반응시켜 물에 용존된 상태로 회수하는 응축장치;를 포함하여 이루어진 것을 특징으로 하는 알카리화된 해수를 이용한 연소배출가스 중 이산화탄소 제거 장치.A pretreatment apparatus for removing impurities from seawater; A concentrating device for separating and producing concentrated water and demineralized water by passing pretreated seawater through a reverse osmosis membrane; An apparatus for alkalizing the concentrated water by interposing a hydrolysis electrodialysis apparatus using a bipolar membrane and an ion exchange membrane; A blower for spraying the alkaline concentrated water together with hot air containing carbon dioxide; A spray crystallization apparatus which crystallizes through drying while reacting ions contained in the sprayed carbon dioxide and the alkaline concentrated water; A crystal separation extracting device for collecting and separating the crystals produced by dry crystallization; And a condensation apparatus for cooling the air containing moisture discharged through the drying process to liquefy condensation by dehydration by cooling the cold temperature of seawater, and recovering the remaining carbon dioxide in the dissolved state by reacting residual carbon dioxide with water. Carbon dioxide removal apparatus in combustion exhaust gas using alkaline seawater.
제 4항에 있어서, 상기 전처리장치는 모래여과, 급속여과막, 마이크로필터 또는 울트라필터 중에서 선택된 1종 이상이 조합 개재되어 있는 것을 특징으로 하는 알카리화된 해수를 이용한 연소배출가스 중 이산화탄소 제거 장치.5. The apparatus for removing carbon dioxide in combustion exhaust gas using alkaline seawater according to claim 4, wherein the pretreatment device is a combination of at least one selected from sand filtration, rapid filtration membrane, micro filter or ultra filter.
제 4항에 있어서, 상기 결정체 분리추출장치는 입경분리기인 것을 특징으로 하는 알카리화된 해수를 이용한 연소배출가스 중 이산화탄소 제거 장치.5. The apparatus for removing carbon dioxide in combustion exhaust gas using alkaline seawater, according to claim 4, wherein the crystal separation extracting device is a particle size separator.
제 6항에 있어서, 상기 입경분리기는 20~500 메쉬의 진동스크린인 것을 특징으로 하는 알카리화된 해수를 이용한 연소배출가스 중 이산화탄소 제거 장치.7. The apparatus for removing carbon dioxide in combustion exhaust gas using alkaline seawater, wherein the particle size separator is a vibration screen of 20 to 500 mesh.
PCT/KR2010/001812 2009-12-30 2010-03-24 Method and apparatus for removing carbon dioxide from combustion exhaust gases using alkalized seawater WO2011081254A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090134545A KR100944539B1 (en) 2009-12-30 2009-12-30 Method and apparatus for removing carbon dioxide from exhaust gas by combustion using alkalinized sea water
KR10-2009-0134545 2009-12-30

Publications (1)

Publication Number Publication Date
WO2011081254A1 true WO2011081254A1 (en) 2011-07-07

Family

ID=42182761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/001812 WO2011081254A1 (en) 2009-12-30 2010-03-24 Method and apparatus for removing carbon dioxide from combustion exhaust gases using alkalized seawater

Country Status (2)

Country Link
KR (1) KR100944539B1 (en)
WO (1) WO2011081254A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117654257A (en) * 2024-02-01 2024-03-08 青岛百发海水淡化有限公司 Equipment for absorbing carbon dioxide by utilizing sea water desalination waste liquid
WO2024077053A1 (en) * 2022-10-04 2024-04-11 Capture6 Corp Systems and methods for integrated direct air carbon dioxide capture and desalination mineral recovery

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011115889A2 (en) * 2010-03-14 2011-09-22 4Thought Technologies Bromine-sensitized solar photolysis of carbon dioxide
US9249508B2 (en) 2010-03-14 2016-02-02 Mark S. Braiman Bromine-sensitized solar photolysis of carbon dioxide
KR101396717B1 (en) 2012-07-13 2014-05-16 한국전력공사 Carbon dioxide concentration reactor using magnesium ion in seawater and carbon dioxide marine isolation method using the same
KR101361651B1 (en) 2012-09-27 2014-02-12 (주) 테크윈 A device using electrolyzer with a bipolar membrane and the method of producing hypochlorite solution and hydrogen gas thereby
KR101710195B1 (en) * 2015-04-30 2017-03-08 한남대학교 산학협력단 Bipolar Membrane for Water-Splitting Electrodialysis Process
KR101672224B1 (en) * 2015-11-02 2016-11-03 한국지질자원연구원 Desalinatation system of sea water for producing carbonate and removing carbon dioxide
KR102595389B1 (en) * 2018-08-28 2023-10-31 서울대학교산학협력단 Eco-friendly biocompatible reverse electrodialysis device using precipitation reaction
WO2020171648A1 (en) * 2019-02-21 2020-08-27 한국화학연구원 Smart bead for removing contaminant and method for manufacturing same
CN110079816B (en) * 2019-04-30 2020-06-19 太原师范学院 Device and method for synthesizing ammonia by photoelectrocatalysis nitrogen fixation
KR102433995B1 (en) * 2020-12-03 2022-08-19 한국에너지기술연구원 Seawater electrolytic apparatus and a system interworiking between the apparatus and fuel cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06254356A (en) * 1993-03-03 1994-09-13 Asahi Glass Co Ltd Ph adjusting method of salt water incorporating hardly soluble salt group
JP2004269288A (en) * 2003-03-06 2004-09-30 Eihei Akieda Method and apparatus for producing microcrystalline salt
KR20090006934A (en) * 2007-07-13 2009-01-16 한국전기연구원 Co2 solidifying method
KR100929190B1 (en) * 2009-10-29 2009-12-01 (주) 오씨아드 Method and apparatus for removing carbon dioxide from exaust gas by combustion using sea water having reduced anion

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06254356A (en) * 1993-03-03 1994-09-13 Asahi Glass Co Ltd Ph adjusting method of salt water incorporating hardly soluble salt group
JP2004269288A (en) * 2003-03-06 2004-09-30 Eihei Akieda Method and apparatus for producing microcrystalline salt
KR20090006934A (en) * 2007-07-13 2009-01-16 한국전기연구원 Co2 solidifying method
KR100929190B1 (en) * 2009-10-29 2009-12-01 (주) 오씨아드 Method and apparatus for removing carbon dioxide from exaust gas by combustion using sea water having reduced anion

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024077053A1 (en) * 2022-10-04 2024-04-11 Capture6 Corp Systems and methods for integrated direct air carbon dioxide capture and desalination mineral recovery
CN117654257A (en) * 2024-02-01 2024-03-08 青岛百发海水淡化有限公司 Equipment for absorbing carbon dioxide by utilizing sea water desalination waste liquid
CN117654257B (en) * 2024-02-01 2024-04-26 青岛百发海水淡化有限公司 Equipment for absorbing carbon dioxide by utilizing sea water desalination waste liquid

Also Published As

Publication number Publication date
KR100944539B1 (en) 2010-03-03

Similar Documents

Publication Publication Date Title
WO2011081254A1 (en) Method and apparatus for removing carbon dioxide from combustion exhaust gases using alkalized seawater
CA3059899A1 (en) Method for preparing lithium concentrate from lithium-bearing natural brines and processing thereof into lithium chloride or lithium carbonate
CA3124281C (en) Li recovery processes and onsite chemical production for li recovery processes
CA2945590C (en) Systems and methods for regeneration of aqueous alkaline solution
CN102016123A (en) Method of making high purity lithium hydroxide and hydrochloric acid
CN107720786A (en) A kind of LITHIUM BATTERY lithium hydroxide preparation method based on UF membrane coupled method
CN101016175B (en) Method of eliminating magnesium sulfate from magnesium sulfate containing waste water solution
CN107720785A (en) A kind of LITHIUM BATTERY lithium hydroxide preparation method based on UF membrane coupled method
CN104743727A (en) System and method for cooperatively removing mercury with desulfurization waste water
An et al. Zero-liquid discharge technologies for desulfurization wastewater: A review
CN205556348U (en) Desulfurization waste water zero release processing apparatus
CN105084651A (en) Purification treatment and pure-salt recovery process for strong-salt wastewater in coal chemical industry
EP2824082A1 (en) Process and apparatus for exploitation of seawater
CN113502485B (en) System and method for producing hydrogen by electrolyzing seawater in thermal power plant
CN113511663A (en) Process for preparing lithium carbonate by extracting lithium from oil field underground brine
CN103787541A (en) Method and device for recycling wet desulfurization wastewater in thermal power plant
CN204550306U (en) A kind of desulfurization wastewater works in coordination with the system of demercuration
KR100929190B1 (en) Method and apparatus for removing carbon dioxide from exaust gas by combustion using sea water having reduced anion
US4486283A (en) Membrane process for converting sodium sulfate into sulfuric acid and sodium carbonate
CN102874958A (en) Method for treating and reusing sodium sulfate containing organic waste water
CN113522934A (en) System and method for waste incineration flue gas purification and fly ash desalination
CN110937728A (en) Desulfurization wastewater treatment method and system
CN107662929B (en) Sodium chloride and sodium sulfate separation concentration elutriation process and system in strong brine zero emission
CN217264980U (en) Deacidification device of pickling spent acid
CN114195233A (en) Deacidification device of pickling spent acid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10841088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10841088

Country of ref document: EP

Kind code of ref document: A1