WO2011081244A1 - Fsr 센서를 이용한 근육활성도 측정방법 및 근육활성도 측정시스템 - Google Patents

Fsr 센서를 이용한 근육활성도 측정방법 및 근육활성도 측정시스템 Download PDF

Info

Publication number
WO2011081244A1
WO2011081244A1 PCT/KR2010/000568 KR2010000568W WO2011081244A1 WO 2011081244 A1 WO2011081244 A1 WO 2011081244A1 KR 2010000568 W KR2010000568 W KR 2010000568W WO 2011081244 A1 WO2011081244 A1 WO 2011081244A1
Authority
WO
WIPO (PCT)
Prior art keywords
muscle activity
sensor
fsr
fsr sensor
muscle
Prior art date
Application number
PCT/KR2010/000568
Other languages
English (en)
French (fr)
Inventor
한창수
김완수
서아름
유승남
이영수
이희돈
장혜연
한정수
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Publication of WO2011081244A1 publication Critical patent/WO2011081244A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1121Determining geometric values, e.g. centre of rotation or angular range of movement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1107Measuring contraction of parts of the body, e.g. organ, muscle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/22Ergometry; Measuring muscular strength or the force of a muscular blow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4519Muscles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/04Arrangements of multiple sensors of the same type
    • A61B2562/043Arrangements of multiple sensors of the same type in a linear array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/16Details of sensor housings or probes; Details of structural supports for sensors
    • A61B2562/164Details of sensor housings or probes; Details of structural supports for sensors the sensor is mounted in or on a conformable substrate or carrier
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6828Leg

Definitions

  • the present invention relates to a method for measuring muscle activity using an FSR sensor, and more particularly, to a method for measuring muscle activity using an FSR sensor and a system for measuring muscle activity using a simple signal processing algorithm. It is about.
  • the method using the biosignal measures a muscle activity and a predetermined device according to the active state of the muscle.
  • the way to control is mainly used.
  • the muscle activity sensor that can measure the activity of muscle is generally used the EMG sensor that can detect the electromyogram (EMG, Electromyogram data), the muscle activity measurement method of muscle activity sensor
  • EMG Electromyogram data
  • the potential sensor is attached to a body part such as an arm or a leg of a person and proceeds by detecting an EMG signal generated differently according to the degree of contraction of the muscle.
  • the EMG signal is an electrical signal generated along the muscle fibers from the muscle surface as the body moves, and is widely used because it is relatively easy to detect than other biological signals such as electroencephalogram (EEG) and safety (EOG).
  • the hardness sensor is generally used in the structure of the soft material Hardness was difficult to measure accurately, and there was a problem in that it was not suitable for attachment to body parts.
  • the hardness measuring sensor is a sensor for measuring the hardness of the muscle, there is a problem that causes the pain of the skin when attached to the body due to the presence of a protrusion.
  • the first problem to be solved by the present invention is to provide a method for measuring muscle activity using an FSR sensor that can more easily and accurately measure muscle activity using a force-sensing resistor (FSR) sensor resistant to noise.
  • FSR force-sensing resistor
  • the second problem to be solved by the present invention is to provide a muscle activity measurement system using an FSR sensor that can increase the convenience of sensor attachment and can measure muscle activity simply and accurately using a simple signal processing algorithm.
  • the present invention to achieve the first object,
  • (C) calculating the muscle activity by estimating the angle of movement of the body muscles according to the mapped value; provides a method of measuring muscle activity using the FSR sensor comprising a.
  • step (b) may be performed by mapping the maximum and minimum values of the received signal to the maximum and minimum values of the predetermined angle, respectively.
  • the angle may be estimated from the received signal by connecting the mapped maximum and minimum values in a straight line.
  • the method may further include attaching the FSR sensor to the body.
  • a computer-readable recording medium recording a program for executing the method of measuring muscle activity using the above-described FSR sensor can be provided.
  • the present invention to achieve the second object,
  • a muscle activity sensor comprising at least one FSR sensor and a pad on which the FSR sensor is mounted;
  • It provides a muscle activity measurement system using the FSR sensor comprising a; calculating unit for receiving the signal from the FSR sensor to calculate the angle of movement of the body muscles.
  • the calculation unit has a built-in algorithm for executing the muscle activity measuring method using the above-described FSR sensor.
  • the pad may be provided with attachment means connected to the pad to detachably attach to the body muscles.
  • the pad is preferably made of a compressive elastic material.
  • the muscle activity sensor may further include a protective layer on the FSR sensor.
  • Muscle activity measurement method using the FSR sensor according to the present invention can be more simply and accurately measured muscle activity using the FSR sensor insensitive to noise and using a simple signal processing algorithm.
  • the muscle activity measurement system using the FSR sensor according to the present invention can be easily worn on the body, can use a modular sensor, the wearable robot that can predict the angle and torque of the movement by grasping the human will Application is possible.
  • FIG. 1 is a block diagram of a muscle activity sensor according to an embodiment of the present invention.
  • Figure 2 is a state diagram attached to the muscle activity sensor according to an embodiment of the present invention.
  • FIG. 3 is a flowchart illustrating a method of measuring muscle activity using an FSR sensor according to an embodiment of the present invention.
  • Figure 4 is a graph showing a signal and a predetermined angle value of the muscle activity sensor according to an embodiment of the present invention.
  • FIG. 5 is a block diagram of a muscle activity measurement system using the FSR sensor according to an embodiment of the present invention.
  • the muscle activity sensor 10 equipped with the FSR sensor used in the method for measuring muscle activity using the FSR sensor according to an embodiment of the present invention will be described.
  • FIG. 1 is a view showing a schematic structure of the muscle activity sensor 10 used in the present invention.
  • the muscle activity sensor 10 comprises at least one FSR sensor 1 and a pad 2 on which the FSR sensor is mounted.
  • Force Sensing Resistors are polymer films that reduce resistance when increasing the force on the sensor surface. They have little electrical hysteresis when compared to conductive rubber, and can be compared with piezo films. There is little advantage of vibration and heat when the price is low.
  • the sensors when a plurality of FSR sensors are used, the sensors may be arranged in an inclined direction to avoid interference between the sensors.
  • One or more FSR sensors 1 may be attached to the pad 2 to be used as the muscle activity sensor 10, and the pad 2 may be a compressive elastic material that may be bent to conform to the shape of the body with a small amount of deformation. For example, compressed rubber).
  • the pad 2 may be provided with attachment means (for example, velcro tape) 4 (shown in FIG. 2) to facilitate detachment and attachment to body muscles.
  • the FSR sensor 1 may be further provided with a protective layer 3 made of the above-described compressive elastic material.
  • the protective layer 3 has a shape corresponding to the input portion of the FSR sensor, and serves to protect the FSR sensor from the body when the body muscles move, while simultaneously increasing the reception sensitivity of the FSR sensor.
  • the process of attaching the muscle activity sensor 10 configured as described above to a part of the body (for example, leg or knee joint) and measuring the signal obtained from the muscle activity sensor 10 is shown in FIG. 2.
  • Method for measuring muscle activity using the muscle activity sensor 10 the step of receiving a signal according to the movement of the body muscles using the FSR sensor (S10); Mapping the received signal to a predetermined angle value (S20); And calculating muscle activity by estimating an angle at which the body muscles move according to the mapped value (S30).
  • FIG. 3 is a flowchart of a method for measuring muscle activity using an FSR sensor according to an embodiment of the present invention.
  • the signal receiving step (S10) is a step of receiving a signal according to the movement of the body muscle using the FSR sensor. This step is to obtain an electrical signal from the muscle activity sensor including one or more FSR sensors. As the electrical signal obtained in this step, when there are a plurality of FSR sensors, the arithmetic mean value of the electrical signals obtained from each FSR sensor may be used.
  • the method may further include attaching the FSR sensor to the body to obtain an electrical signal of the FSR sensor from the movement of the body muscle.
  • the angle mapping step S20 is a step of mapping a signal received from the FSR sensor to a predetermined angle value in the step.
  • the angle mapping step S20 is performed by specifically mapping the maximum value and the minimum value of the predetermined angle value to the maximum value and the minimum value of the electrical signal received by the FSR sensor, respectively.
  • the predetermined angle value means a value measured by moving the body muscle when the body muscle is moved using a device such as a goniometer. That is, the measurement of muscle activity according to the present invention, by measuring the angle of the body muscles in advance using another angle measuring device, considering that the angle of movement of the muscles has a constant relationship with the electrical signal value of the FSR sensor By using the electrical signal of the FSR sensor to estimate the angle of movement of the muscles.
  • the upper graph shows the electrical signal over time, obtained from the muscle activity sensor 10 using the FSR sensor according to the present invention
  • the lower graph shows the angle of the actual muscle movement using a goniometer It is the measured value.
  • the above-described angle mapping step S20 will be described with reference to FIG. 4.
  • the muscle activity calculation step (S30) is a step of estimating the angle at which the muscle moves using the electrical signal value of the FSR sensor mapped to the angle value.
  • the angle at which the muscle is moved can be calculated from the electrical signal of the FSR sensor by connecting the mapped maximum and minimum values in a straight line.
  • a value of "100" is received from the FSR sensor when the muscle moves under the same conditions, it can be estimated that the muscle moved about 28.6 degrees.
  • muscle movement measuring devices such as FSR sensors and goniometers and determine their relationship in advance, where muscle movement (or muscle activity) needs to be measured
  • the activity of the muscles can be determined using only the signals received from the future FSR sensor. Can be measured.
  • a method of measuring muscle activity using the FSR sensor according to an embodiment of the present invention described above is a general-purpose digital computer that can be written as a program that can be executed in a computer, and operates the program using a computer-readable recording medium It can be implemented in
  • the computer-readable recording medium may be a magnetic storage medium (for example, a ROM, a floppy disk, a hard disk, etc.), an optical reading medium (for example, a CD-ROM, DVD, etc.) and a carrier wave (for example, the Internet). Storage medium).
  • a magnetic storage medium for example, a ROM, a floppy disk, a hard disk, etc.
  • an optical reading medium for example, a CD-ROM, DVD, etc.
  • carrier wave for example, the Internet.
  • FIG. 5 is a schematic diagram of the muscle activity measurement system 30 using the FSR sensor according to an embodiment of the present invention.
  • the muscle activity sensor 10 including at least one FSR sensor 1 and the pad (2) on which the FSR sensor is mounted; And an arithmetic unit 20 which receives a signal from the FSR sensor and calculates an angle at which body muscles are moved.
  • the calculation unit 20 is a component for executing a method of measuring muscle activity using the FSR sensor according to an embodiment of the present invention, the muscle activity received from the muscle activity sensor using the FSR sensor as described above muscle activity According to the measurement method, the muscle activity including the angle of movement of the muscle is output.
  • the calculation unit 20 may include a receiving unit for receiving data from the muscle activity sensor 10 and an output unit for outputting a calculation result to output means such as an image display device, wherein the muscle activity sensor and the It may be configured to be connected to the output means by wire or wireless to enable data exchange between each other.
  • the muscle activity sensor used in the muscle activity measuring system 30 may be manufactured to be modularized using controller area network (CAN) communication.
  • CAN controller area network
  • the muscle activity value obtained from the muscle activity measurement system may be used together with muscle movements of the human body classified into a predetermined pattern, and may be used to generate an operation signal of a wearable robot.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Physiology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Geometry (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Rheumatology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

본 발명은 FSR 센서를 이용한 근육활성도 측정방법에 관한 것으로서, FSR 센서를 이용하여 신체 근육의 움직임에 따른 신호를 수신하는 단계; 상기 수신된 신호를 미리 결정된 각도값에 매핑하는 단계; 및 매핑된 값에 따라 상기 신체 근육이 움직인 각도를 추정하여 근육활성도를 계산하는 단계;를 포함하며, 이를 통해 보다 정확하고 간편하게 근육활성도를 측정할 수 있다.

Description

FSR 센서를 이용한 근육활성도 측정방법 및 근육활성도 측정시스템
본 발명은 FSR 센서를 이용한 근육활성도 측정방법에 관한 것으로서, 보다 상세하게는 간단한 신호처리 알고리즘을 이용하여 간편하고 정확하게 근육활성도를 측정할 수 있는 FSR 센서를 이용한 근육활성도 측정방법 및 근육활성도 측정시스템에 관한 것이다.
최근에는 컴퓨터 및 제어 기술의 발달에 따라 각종 의료장치 및 로봇의 입력장치 등 각종 제어가 필요한 장치들에 사람을 제어 시스템의 일 구성요소로 적용하여 상기 장치들이 더욱 안정적이고 신뢰성 있는 동작을 가능하게 하는 연구가 활발히 진행되고 있다.
특히, 최근에는 생체신호를 이용하여 사람과 기계간의 상호 정보를 변환하여 송수신 할 수 있는 기술이 개발되고 있는데, 이러한 생체신호를 이용하는 방식은 근육의 활성도를 측정하여 근육의 활성 상태에 따라 소정의 장치를 제어할 수 있는 방식이 주로 이용되고 있다.
근육의 활성상태를 측정할 수 있는 근육활성도 측정센서는 일반적으로 근전도 신호(EMG, Electromyogram data)를 검출할 수 있는 근전위센서가 주로 이용되고 있는데, 근육활성도 측정센서의 근육활성상태 측정방식은 근전위센서를 사람의 팔이나 다리 등의 신체 부위에 부착하고 근육의 수축 정도에 따라 다르게 발생하는 근전도 신호를 검출하는 방식으로 진행된다. 이 때, 근전도 신호란 신체의 움직임에 따라 근육 표면으로부터 근섬유를 따라 일어나는 전기적 신호로서, 뇌전도(EEG)나 안전도(EOG) 등의 다른 생체신호들보다 상대적으로 검출이 용이하여 널리 이용되고 있다.
그러나, 이러한 근전위센서는 전기적 신호가 미약하여 각종 노이즈에 매우 민감하므로, 노이즈에 의한 오류가 발생하기 쉬우며, 또한 실제 장치에 적용하기 위해서는 미약한 전기적 신호를 증폭하기 위한 별도의 증폭장치가 필요하다는 문제점이 있었다. 또한, 인체의 특성상 장시간 운동 시에는 특히 근전도 신호의 발생이 저하되기 때문에 동일한 조건에서 동일한 신호값을 얻기 힘들며, 피부를 통한 전기적 신호의 검출이므로 피부 상태에 따라 신호값이 많은 영향을 받게 되는 문제점이 있었다. 따라서, 근전위센서를 이용한 근육활성도 측정센서는 이와 같은 근전위센서의 문제점에 따라 정확한 근육활성도를 측정할 수 없는 문제점이 있었다.
한편, 이러한 근전위센서에 의한 근육활성도 측정의 문제점을 보완하기 위해 최근에는 근육의 경도를 측정하는 방식으로 근육활성도를 측정하려고 하는 시도가 있으나, 일반적으로 사용되는 경도측정센서는 그 구조상 연질 재료의 경도를 정확하게 측정하기 어려우며 신체부위에 부착하기 적합하지 못한 문제점이 있었다. 특히, 경도측정센서는 근육의 경도를 측정하는 센서이므로 돌출부가 존재해 신체에 부착 시 피부의 통증을 유발하는 문제점이 있었다.
본 발명이 해결하고자 하는 첫 번째 과제는 노이즈에 강한 FSR(Force Sensing Resistors) 센서를 이용하여 보다 간편하고 정확하게 근육활성도를 측정할 수 있는 FSR 센서를 이용한 근육활성도 측정방법을 제공하는 것이다.
본 발명이 해결하고자 하는 두 번째 과제는 센서 부착의 편의성을 높이고 간단한 신호처리 알고리즘을 이용하여 간편하고 정확하게 근육활성도를 측정할 수 있는 FSR 센서를 이용한 근육활성도 측정시스템을 제공하는 것이다.
본 발명은 상기 첫 번째 과제를 달성하기 위하여,
(a) FSR(Force Sensing Resistors) 센서를 이용하여 신체 근육의 움직임에 따른 신호를 수신하는 단계;
(b) 상기 수신된 신호를 미리 결정된 각도값에 매핑하는 단계; 및
(c) 매핑된 값에 따라 상기 신체 근육이 움직인 각도를 추정하여 근육활성도를 계산하는 단계;를 포함하는 FSR 센서를 이용한 근육활성도 측정방법를 제공한다.
여기서, 상기 (b) 단계는, 상기 수신된 신호의 최대값 및 최소값을 상기 미리 결정된 각도의 최대값 및 최소값에 각각 매핑하여 이루어질 수 있다.
또한, 상기 (c) 단계에서, 상기 매핑된 최대값 및 최소값을 직선으로 연결하여 상기 수신된 신호로부터 상기 각도를 추정할 수 있다.
또한, 상기 (a) 단계 이전에, 상기 FSR 센서를 상기 신체에 부착하는 단계를 더 포함할 수 있다.
본 발명의 다른 실시예에 의하면, 상술한 FSR 센서를 이용한 근육활성도 측정방법을 실행시키기 위한 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록매체를 제공할 수 있다.
본 발명은 상기 두 번째 과제를 달성하기 위하여,
하나 이상의 FSR 센서와 상기 FSR 센서가 장착되는 패드를 포함하는 근육활성도 센서; 및
상기 FSR 센서에서 신호를 수신하여 신체 근육이 움직인 각도를 계산하는 연산부;를 포함하는 것을 특징으로 하는 FSR 센서를 이용한 근육활성도 측정시스템를 제공한다.
여기서, 상기 연산부는 상술한 FSR 센서를 이용한 근육활성도 측정방법을 실행하는 알고리즘이 내장된 것이 바람직하다.
또한, 상기 패드에는, 신체 근육에 탈장착 가능하게 부착하도록 상기 패드에 연결된 부착수단이 구비될 수 있다.
또한, 상기 패드는 압축탄성재로 제조된 것이 바람직하다.
또한, 상기 근육활성도 센서는 상기 FSR 센서 상에 보호층을 더 포함할 수 있다.
본 발명에 따른 FSR 센서를 이용한 근육활성도 측정방법은 노이즈에 둔감한 FSR 센서를 사용하고 간단한 신호처리 알고리즘을 이용하므로 보다 간편하고 정확하게 근육활성도를 측정할 수 있다. 또한, 본 발명에 따른 FSR 센서를 이용한 근육활성도 측정시스템은 손쉽게 신체에 착용이 가능하고, 모듈화된 센서를 사용할 수 있으며, 사람의 동작 의지를 파악하여 움직임의 각도 및 토크를 예측할 수 있는 착용형 로봇에 응용이 가능하다.
도 1은 본 발명의 일 실시예에 따른 근육활성도 센서의 구성도이다.
도 2는 본 발명의 일 실시예에 따른 근육활성도 센서를 신체에 부착한 상태도이다.
도 3은 본 발명의 일 실시예에 따른 FSR 센서를 이용한 근육활성도 측정방법의 흐름도이다.
도 4는 본 발명의 일 실시예에 따른 근육활성도 센서의 신호와 미리 결정된 각도값을 도시한 그래프이다.
도 5는 본 발명의 일 실시예에 따른 FSR 센서를 이용한 근육활성도 측정시스템의 구성도이다.
이하, 바람직한 실시예를 들어 본 발명을 더욱 상세하게 설명한다. 그러나 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이에 의하여 제한되지 않는다는 것은 당업계의 통상의 지식을 가진 자에게 자명할 것이다.
먼저, 본 발명의 일 실시예에 따른 FSR 센서를 이용한 근육활성도 측정방법에 사용되는 FSR 센서가 구비된 근육활성도 센서(10)에 대해 설명하기로 한다.
도 1은 본 발명에 사용되는 근육활성도 센서(10)의 개략적인 구조를 나타낸 도면이다.
본 발명에 따른 근육활성도 센서(10)는, 하나 이상의 FSR 센서(1)와 상기 FSR 센서가 장착되는 패드(2)를 포함한다.
FSR(Force Sensing Resistors)는 센서 표면에 힘을 증가시킬 때 감소하는 저항이 발생하는 중합체 필름(polymer film)으로서, 전도성의 고무와 비교할 때 전기적 이력 현상이 거의 없고, 피에조 필름(piezo film)과 비교할 때 진동 및 열의 영향이 거의 없으면서 가격이 저렴한 장점이 있다.
도 1에 도시된 바와 같이, 복수개의 FSR 센서가 사용될 경우, 센서 간의 간섭을 피하기 위해 경사진 방향으로 센서가 배치될 수 있다.
FSR 센서(1)는 패드(2)에 하나 이상이 부착되어 근육활성도 센서(10)로 사용될 수 있으며, 상기 패드(2)는 변형량이 적으면서 신체의 형상에 맞게 휘어질 수 있는 압축탄성재(예를 들면 압축고무 등)로 제조되는 것이 바람직하다. 또한, 상기 패드(2)에는 신체 근육에 탈장착이 용이하도록 부착수단(예를 들면 벨크로 테잎)(4, 도 2에 도시됨)이 구비될 수 있다.
또한, 상기 FSR 센서(1) 상에는 상술한 압축탄성재로 제조된 보호층(3)이 더 구비될 수 있다. 이 보호층(3)은 FSR 센서의 입력부와 대응되는 형상을 가지며, 신체 근육의 움직임 시 신체로부터 FSR 센서를 보호하는 역할을 하면서 동시에 FSR 센서의 수신 감도를 높여준다.
이와 같이 구성되는 근육활성도 센서(10)를 신체의 일부(예를 들면 다리 또는 무릎 관절)에 부착하고, 상기 근육활성도 센서(10)로부터 얻어지는 신호를 측정하는 과정을 도 2에 도시하였다.
본 발명의 일 실시에에 따른 근육활성도 센서(10)를 이용하여 근육활성도를 측정하는 방법은, FSR 센서를 이용하여 신체 근육의 움직임에 따른 신호를 수신하는 단계(S10); 상기 수신된 신호를 미리 결정된 각도값에 매핑하는 단계(S20); 및 매핑된 값에 따라 상기 신체 근육이 움직인 각도를 추정하여 근육활성도를 계산하는 단계(S30)를 포함한다.
도 3에는 본 발명의 일 실시예에 따른 FSR 센서를 이용하여 근육활성도를 측정하는 방법의 흐름도가 도시되어 있다.
먼저, 신호수신단계(S10)는 FSR 센서를 이용하여 신체 근육의 움직임에 따른 신호를 수신하는 단계이다. 이 단계는, 하나 이상의 FSR 센서를 포함하는 근육활성도 센서로부터 전기적 신호를 얻는 단계이다. 이 단계에서 얻어지는 전기적 신호는 상기 FSR 센서가 복수개 일 경우, 각 FSR 센서로부터 얻어지는 전기적 신호의 산술 평균값을 사용할 수 있다.
이 신호수신단계(S10) 이전에, 신체 근육의 움직임으로부터 FSR 센서의 전기적 신호를 얻기 위해, 상기 FSR 센서를 신체에 부착하는 단계를 더 포함할 수 있다.
각도매핑단계(S20)는 상기 단계에서 FSR 센서에서 수신된 신호를 미리 결정된 각도값에 매핑하는 단계이다. 그리고, 이 각도매핑단계(S20)는, 구체적으로 미리 결정된 각도값의 최대값 및 최소값을 FSR 센서에서 수신된 전기적 신호의 최대값 및 최소값에 각각 매핑함으로써 이루어진다.
여기서, 미리 결정된 각도값이란, 예를 들면 고니오미터(goniometer) 등과 같은 장치를 이용하여 신체 근육이 움직였을 때, 그 움직인 각도를 측정한 값을 의미한다. 즉, 본 발명에 따른 근육활성도의 측정은, 신체 근육이 움직인 각도를 미리 다른 각도 측정장치를 활용하여 측정하고, 이 근육이 움직인 각도가 FSR 센서의 전기적 신호값과 일정한 관계가 있음을 고려하여, FSR 센서의 전기적 신호를 이용하여 근육이 움직인 각도를 추정함으로써 이루어진다.
도 4에서, 상부 그래프는 본 발명에 따른 FSR 센서를 이용한 근육활성도 센서(10)로부터 얻어진, 시간에 따른 전기적 신호를 도시한 것이고, 하부 그래프는 고니오미터를 이용하여 실제 근육이 움직인 각도를 측정한 값이다.
도 4에 도시된 바와 같이, 근육이 움직인 각도와 FSR 센서의 전기적 신호와는 비례 관계와 같은 특정한 경향성이 있음을 알 수 있으며, 특히 FSR 센서가 부착된 신체 근육을 움직였을 경우, 그에 따라 FSR 센서의 전기적 신호가 달라짐을 알 수 있다. 이는, 센서의 입력부에 가해지는 압력의 변화를 측정할 수 있는 FSR 센서를 이용하면 복잡한 신호처리 과정을 거치지 않고서도 근육의 활성도를 측정하는 데에 응용될 수 있음을 나타낸다.
상술한 각도매핑단계(S20)를 도 4를 참조하여 설명하면, FSR 센서로부터 수신된 신호의 최대값(약 175) 및 최소값(약 0)을 고니오미터를 통해 측정된 실제 근육이 움직인 각도의 최대값(50도, 여기서 부호는 근육 움직임의 방향성을 나타내는 것이므로 무시될 수 있음) 및 최소값(약 0도)에 각각 매핑시킬 수 있다.
근육활성도계산단계(S30)는, 각도값에 매핑된 상기 FSR 센서의 전기적 신호값을 이용하여 근육이 움직인 각도를 추정하는 단계이다. 근육이 움직인 각도는, 매핑된 최대값과 최소값을 직선으로 연결하여 FSR 센서의 전기적 신호로부터 계산될 수 있다.
도 4에 도시된 값을 예로 들어 설명하면, 상기 각도매핑단계(S20)로부터 FSR 센서로부터 수신된 신호(x)와 실제 근육이 움직인 각도(y) 사이에는 x=3.5y 와 같은 관계식을 얻어낼 수 있다. 따라서, 별도의 근육 움직임 측정장치 없이도, 동일한 조건 하에 근육이 움직일 때 FSR 센서로부터 "100"의 값이 수신되면, 근육이 약 28.6도 움직인 것으로 추정할 수 있다.
이와 같이 FSR 센서의 전기적 신호에 대해 근육이 움직인 각도를 일대일 매핑시킴으로써, FSR 센서의 각 전기적 신호에 대응되는 근육의 움직임 각도를 추정할 수 있으며, 이를 통해 근육의 활성도를 측정할 수 있다.
따라서, 근육 움직임(또는 근육 활성도)의 측정이 필요한 곳에 FSR 센서 및 고니오미터와 같은 근육 움직임 측정장치로부터 신호를 받아 이들의 관계를 미리 결정해 놓으면, 향후 FSR 센서로부터 수신된 신호만으로 근육의 활성도를 측정할 수 있다.
한편, 상술한 본 발명의 일 실시예에 따른 FSR 센서를 이용한 근육활성도 측정방법은 컴퓨터에서 실행될 수 있는 프로그램으로 작성가능하고, 컴퓨터로 읽을 수 있는 기록매체를 이용하여 상기 프로그램을 동작시키는 범용 디지털 컴퓨터에서 구현될 수 있다.
상기 컴퓨터로 읽을 수 있는 기록매체는 마그네틱 저장매체(예를 들면, 롬, 플로피 디스크, 하드 디스크 등), 광학적 판독 매체(예를 들면, 시디롬, 디브이디 등) 및 캐리어 웨이브(예를 들면, 인터넷을 통한 전송)와 같은 저장매체를 포함한다.
도 5는 본 발명의 일 실시예에 따른 FSR 센서를 이용한 근육활성도 측정시스템(30)의 개략도이다.
본 발명의 일 실시예에 따른 FSR 센서를 이용한 근육활성도 측정시스템(30)은, 하나 이상의 FSR 센서(1)와 상기 FSR 센서가 장착되는 패드(2)를 포함하는 근육활성도 센서(10); 및 상기 FSR 센서에서 신호를 수신하여 신체 근육이 움직인 각도를 계산하는 연산부(20)를 포함한다.
여기서, 상기 연산부(20)는, 본 발명의 일 실시예에 따른 FSR 센서를 이용한 근육활성도 측정방법을 실행하는 구성요소로서, 근육의 움직임을 FSR 센서를 이용한 근육활성도 센서로부터 입력받아 상술한 근육활성도 측정방법에 따라 근육이 움직인 각도를 포함하는 근육활성도를 출력한다.
또한, 연산부(20)는 근육활성도 센서(10)로부터 데이터를 수신할 수 있는 수신부 및 화상표시장치와 같은 출력수단에 계산 결과를 출력할 수 있는 출력부를 포함할 수 있으며, 상기 근육활성도 센서 및 상기 출력수단과 유선 또는 무선으로 연결되어 상호 간의 데이터 교환이 가능하도록 구성될 수 있다.
이와 같은 근육활성도 측정시스템(30)에 사용되는 근육활성도 센서는 CAN(controller area network) 통신을 이용하여 모듈화가 가능하도록 제작될 수 있다.
또한, 근육활성도 측정시스템에서 얻어지는 근육활성도 값은 일정한 패턴으로 분류된 인체의 근육 움직임과 함께 사용되어, 착용형 로봇(wearable robot)의 동작신호를 생성하는 데에 활용될 수 있다.
본 발명의 단순한 변형 또는 변경은 모두 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.

Claims (10)

  1. (a) FSR(Force Sensing Resistors) 센서를 이용하여 신체 근육의 움직임에 따른 신호를 수신하는 단계;
    (b) 상기 수신된 신호를 미리 결정된 각도값에 매핑하는 단계; 및
    (c) 매핑된 값에 따라 상기 신체 근육이 움직인 각도를 추정하여 근육활성도를 계산하는 단계;를 포함하는 FSR 센서를 이용한 근육활성도 측정방법.
  2. 제1항에 있어서,
    상기 (b) 단계는,
    상기 수신된 신호의 최대값 및 최소값을 상기 미리 결정된 각도값의 최대값 및 최소값에 각각 매핑하여 이루어지는 것을 특징으로 하는 FSR 센서를 이용한 근육활성도 측정방법.
  3. 제2항에 있어서,
    상기 (c) 단계에서,
    상기 매핑된 최대값 및 최소값을 직선으로 연결하여 상기 수신된 신호로부터 상기 신체 근육이 움직인 각도를 추정하는 것을 특징으로 하는 FSR 센서를 이용한 근육활성도 측정방법.
  4. 제1항에 있어서,
    상기 (a) 단계 이전에, 상기 FSR 센서를 상기 신체에 부착하는 단계를 더 포함하는 것을 특징으로 하는 FSR 센서를 이용한 근육활성도 측정방법.
  5. 제1항 내지 제3항 중 어느 한 항에 따른 방법을 실행시키기 위한 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록매체.
  6. 하나 이상의 FSR 센서와 상기 FSR 센서가 장착되는 패드를 포함하는 근육활성도 센서; 및
    상기 FSR 센서에서 신호를 수신하여 신체 근육이 움직인 각도를 계산하는 연산부;를 포함하는 것을 특징으로 하는 FSR 센서를 이용한 근육활성도 측정시스템.
  7. 제6항에 있어서,
    상기 연산부는 제1항 내지 제3항 중 어느 한 항에 따른 방법을 실행하는 알고리즘이 내장된 것을 특징으로 하는 FSR 센서를 이용한 근육활성도 측정시스템.
  8. 제6항에 있어서,
    상기 근육활성도 센서는, 신체 근육에 탈장착 가능하게 부착하도록 상기 패드에 연결된 부착수단을 더 포함하는 것을 특징으로 하는 FSR 센서를 이용한 근육활성도 측정시스템.
  9. 제6항에 있어서,
    상기 패드는 압축탄성재로 제조된 것을 특징으로 하는 FSR 센서를 이용한 근육활성도 측정시스템.
  10. 제6항에 있어서,
    상기 근육활성도 센서는, 상기 FSR 센서 상에 보호층을 더 포함하는 것을 특징으로 하는 FSR 센서를 이용한 근육활성도 측정시스템.
PCT/KR2010/000568 2009-12-30 2010-01-29 Fsr 센서를 이용한 근육활성도 측정방법 및 근육활성도 측정시스템 WO2011081244A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0134809 2009-12-30
KR1020090134809A KR101086762B1 (ko) 2009-12-30 2009-12-30 Fsr 센서를 이용한 근육활성도 측정방법 및 근육활성도 측정장치

Publications (1)

Publication Number Publication Date
WO2011081244A1 true WO2011081244A1 (ko) 2011-07-07

Family

ID=44226640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/000568 WO2011081244A1 (ko) 2009-12-30 2010-01-29 Fsr 센서를 이용한 근육활성도 측정방법 및 근육활성도 측정시스템

Country Status (2)

Country Link
KR (1) KR101086762B1 (ko)
WO (1) WO2011081244A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101501415B1 (ko) * 2014-09-22 2015-03-19 서울과학기술대학교 산학협력단 광섬유 브래그 격자 센서를 이용한 근육 상태 모니터링 시스템
KR102200017B1 (ko) * 2018-05-30 2021-01-08 (주)아모레퍼시픽 유수분 센서를 구비한 탄력 측정 장치 및 그 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100426309B1 (ko) * 2001-12-27 2004-04-08 한국전자통신연구원 근전도 발생 부위 탐색 및 표시 장치
KR100867078B1 (ko) * 2007-02-27 2008-11-04 영남대학교 산학협력단 경도측정센서 및 이를 이용한 근활성도측정센서
KR20100048052A (ko) * 2008-10-30 2010-05-11 한국기계연구원 인체 균형기능 진단 시스템 및 진단 방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000041964A (ja) 1998-07-24 2000-02-15 Ergonomic Technol Corp 筋骨格ストレス監視用ポータブル電子データ収集装置
JP2007518430A (ja) 2003-10-24 2007-07-12 ヒューマニタス・ミラソーレ・エス.ピー.エー. 運動機能検査システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100426309B1 (ko) * 2001-12-27 2004-04-08 한국전자통신연구원 근전도 발생 부위 탐색 및 표시 장치
KR100867078B1 (ko) * 2007-02-27 2008-11-04 영남대학교 산학협력단 경도측정센서 및 이를 이용한 근활성도측정센서
KR20100048052A (ko) * 2008-10-30 2010-05-11 한국기계연구원 인체 균형기능 진단 시스템 및 진단 방법

Also Published As

Publication number Publication date
KR20110078077A (ko) 2011-07-07
KR101086762B1 (ko) 2011-11-25

Similar Documents

Publication Publication Date Title
WO2009123396A2 (en) Training apparatus and method based on motion content
US9999391B2 (en) Wearable electromyogram sensor system
Li et al. A wearable detector for simultaneous finger joint motion measurement
CN103429148B (zh) 用于使用光学形状感测提供电活动图的系统
JP3409160B2 (ja) 把握データ入力装置
Fujiwara et al. Optical fiber force myography sensor for identification of hand postures
US20070129771A1 (en) Device, method and stimulus unit for testing neuromuscular function
WO2013152094A1 (en) Disposable low-profile conformable biomedical sensor
KR20150112741A (ko) 웨어러블 장치 및 이를 이용한 정보 입력 방법
CN205318387U (zh) 一种多节点帕金森病症状定量评估装置
EP2323549A2 (en) Measurement of bio-signals
WO2008105590A1 (en) Stiffness sensor and muscle activity sensor having the same
Liu et al. Sensor to segment calibration for magnetic and inertial sensor based motion capture systems
WO2011081244A1 (ko) Fsr 센서를 이용한 근육활성도 측정방법 및 근육활성도 측정시스템
CN109561839A (zh) 母体监测换能器和操作方法
Fujiwara et al. Identification of hand gestures using the inertial measurement unit of a smartphone: a proof-of-concept study
KR101554125B1 (ko) 웨어러블 장치 및 이를 이용한 정보 입력 방법
WO2024039131A1 (ko) 심전도 측정 장치
KR20120064921A (ko) 휴대용 무선전송형 근전도 센서 및 모션 센서 시스템
WO2019146839A1 (ko) 인체 감지 매트
CN100353915C (zh) 测量装置
CN210525083U (zh) 一种外骨骼机器人
KR101675577B1 (ko) 근경도 센서 모듈
TWI580404B (zh) 肌肉張力感測方法及系統
WO2010002171A2 (ko) 입력신호의 보정이 가능한 다기능 휴대용 심전도 측정 장치 및 신호의 보정방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10841078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10841078

Country of ref document: EP

Kind code of ref document: A1