WO2011080997A1 - Surface light source apparatus and liquid crystal display device - Google Patents

Surface light source apparatus and liquid crystal display device Download PDF

Info

Publication number
WO2011080997A1
WO2011080997A1 PCT/JP2010/072014 JP2010072014W WO2011080997A1 WO 2011080997 A1 WO2011080997 A1 WO 2011080997A1 JP 2010072014 W JP2010072014 W JP 2010072014W WO 2011080997 A1 WO2011080997 A1 WO 2011080997A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
guide plate
reflecting
light guide
Prior art date
Application number
PCT/JP2010/072014
Other languages
French (fr)
Japanese (ja)
Inventor
亮 葛西
靖典 高橋
宏晃 周
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009298243A external-priority patent/JP2011138699A/en
Priority claimed from JP2010239403A external-priority patent/JP2011154998A/en
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Publication of WO2011080997A1 publication Critical patent/WO2011080997A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0031Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0028Light guide, e.g. taper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements

Definitions

  • the present invention relates to a surface light source device that illuminates an object to be illuminated, and a liquid crystal display device including the surface light source device.
  • a side-ride type backlight in which light from a light source is introduced from a side end surface of a light guide plate and is emitted from an output surface of the light guide plate is known.
  • Sidelight type backlights have the advantage that they can be made thinner than direct type backlights.
  • Patent Document 1 As techniques for meeting such demands, techniques described in Patent Document 1, Patent Document 2, and Patent Document 3 are known.
  • a light guide is disposed between a light source and a light guide plate so that light from the light source is guided to the light guide plate.
  • a diffusion element is provided on the inner wall of the light guide in Patent Document 1.
  • a reflection layer is disposed between the light source and the light guide plate so that light from the light source is guided to the light guide plate.
  • the reflective layer described in Patent Document 2 is white or silver.
  • the light distribution of the light source is an elliptical light distribution in which the thickness direction of the light guide plate is narrow and the direction orthogonal to the thickness direction (the direction along the light incident surface of the light guide plate) is wide.
  • the light is guided to the light incident surface of the light guide plate.
  • the light utilization efficiency refers to the ratio of the total luminous flux entering the light guide plate when the total luminous flux emitted from the light source is 100%.
  • the present invention has been made in view of such a point, and an object thereof is to provide a surface light source device capable of improving light utilization efficiency and a liquid crystal display device including the same.
  • the inventors of the present application have provided a reflecting member that restricts the divergence of the light emitted from the light source and guides it to the side end surface of the light guide plate, and specularly reflects all or part of the reflecting surface of the reflecting member. It has been found that the light utilization efficiency can be improved by using the surface, and the present invention has been completed.
  • the surface light source device is provided with a light guide plate in which a part of its side end surface is an incident surface on which light is incident, along the incident surface, and directed toward the incident surface.
  • a surface light source device including a light source that emits light, and a reflection surface that guides the light to the incident surface so as to limit the divergence of the light emitted from the light source in the thickness direction of the light guide plate.
  • a reflection light source device is provided, and the reflection surface is a surface light source device having a regular reflection surface.
  • the reflectance of the regular reflection surface can be set to be 96% or more.
  • the reflection member includes a first reflection member having a first reflection surface and a second reflection surface that are spaced apart in the thickness direction of the light guide plate.
  • the first reflecting surface and the second reflecting surface are arranged so as to form an angle of 5 to 70 °, preferably 15 ° to 60 °, more preferably 25 ° to 35. Placed at °.
  • the separation distance between the light source and the incident surface can be set within a range of 0 to 20 mm.
  • the reflecting member has a third reflecting member disposed between the first reflecting member and the second reflecting member, and the third reflecting member is
  • the reflective surface may include a third reflective surface facing the first reflective surface and a fourth reflective surface facing the second reflective surface.
  • the light source is configured by arranging a plurality of point light sources along the incident surface, and the light distribution characteristic of each point light source is determined by the thickness of the light guide plate.
  • the half-value angle in the direction can be set to ⁇ ⁇ 120 °, where ⁇ is ⁇ .
  • a half value angle shall mean a half value full angle.
  • a part of the reflection surface on the light source side is a diffuse reflection surface made of a material having a property of diffusing and reflecting light, or an uneven structure for diffusing and reflecting light. It can be set as the diffuse reflection surface which consists of.
  • the inventors of the present application have provided a reflection member that restricts the divergence of light emitted from the light source and guides it to the side end surface of the light guide plate, and in relation to this, the light distribution characteristics of the light source are improved. It has been found that the light utilization efficiency can be improved by the optimization, and the present invention has been completed.
  • the surface light source device includes a light guide plate in which a part of the side end surface is an incident surface on which light is incident, an array along the incident surface, and the light source plate facing the incident surface.
  • a surface light source device including a light source having a plurality of point light sources for emitting light, the light being incident on the light source so as to limit a divergence of light emitted from the light source in a thickness direction of the light guide plate.
  • a reflecting member having a reflecting surface that leads to the surface is provided, and the half-value angle of the light distribution characteristic in the thickness direction of the light guide plate of each point light source constituting the light source is set to ⁇ ⁇ 35 °.
  • a half value angle shall mean a half value full angle.
  • the half-value angle of the light distribution characteristic in the arrangement direction of the respective point light sources constituting the light source can be set to ⁇ / ⁇ > 1.
  • the half-value angle in the arrangement direction of the point light sources constituting the light source is ⁇
  • the arrangement pitch of the point light sources is p
  • the width of the point light sources (in the arrangement direction) Dimension) is a
  • the distance between the point light source and the incident surface is d
  • the thickness of the light guide plate is smaller than the thickness of each point light source constituting the light source (the dimension corresponding to the thickness direction of the light guide plate), It can be particularly preferably used.
  • a liquid crystal display device includes a liquid crystal panel and the surface light source device according to the first aspect or the second aspect of the present invention.
  • the light utilization efficiency can be improved as compared with the conventional case, and the device can be reduced in thickness, cost, and power saving. it can.
  • the liquid crystal display device since the surface light source device according to the first aspect or the second aspect of the present invention is provided, the device is thinned, the cost is reduced, and the power is saved. Can be achieved.
  • FIG. 5 It is a side view which shows the principal part (Example 5-3) of the surface light source device which changed a part of embodiment of this invention. It is a figure which shows the relationship between the reflectance of the reflective surface of a reflection member as a simulation result in embodiment of this invention, and light utilization efficiency. It is a figure which shows the relationship between the half value full angle as a simulation result at the time of making the reflective surface of the reflective member in the Example of this invention into a regular reflective surface, and light utilization efficiency. It is a figure which shows the relationship between the full width at half maximum as a simulation result at the time of making the reflective surface of the reflective member in the Example of this invention into a diffuse reflective surface, and light utilization efficiency.
  • the thickness direction of the rectangular light guide plate in plan view described later is the Z direction
  • the direction along one side of the rectangular light guide plate is the X direction and the X direction in a plane perpendicular to the Z direction.
  • a description will be given using an XYZ orthonormal coordinate system in which the orthogonal direction is the Y direction.
  • This surface light source device is particularly suitable for use in a backlight that illuminates a liquid crystal panel of a liquid crystal display device as an object to be illuminated.
  • the object to be illuminated is not limited to such a liquid crystal panel, and can also be used as illumination for a signboard arranged at a storefront or the like, illumination for a show window, or any other illumination.
  • the case where it uses as a backlight of a liquid crystal display device is demonstrated to an example.
  • a surface light source device 1 of this embodiment includes a light source 2, a light guide plate (film light guide plate) 3 made of a rectangular plate-like film that guides light from the light source 2, and It has.
  • LEDs (Light Emitting Diodes) 2a as a plurality of point light sources are arranged along the Y direction at a predetermined arrangement pitch.
  • each LED 2a is mounted on an elongated rectangular substrate 2b arranged such that its longitudinal direction is along the longitudinal direction (Y direction) of the incident surface 3a.
  • a blue-yellow pseudo white light emitting diode, a three-color (RGB) white light emitting diode, or the like can be used.
  • the point light source is not limited to such an LED 2a, and for example, a semiconductor laser or the like may be used.
  • the light source 2 is not limited to one in which such point light sources are arranged, and a linear light source such as a cold cathode fluorescent lamp (CCFL) may be used.
  • CCFL cold cathode fluorescent lamp
  • Each LED 2a is arranged such that its axis (direction of the principal ray of emitted light) is oriented substantially in the + X direction.
  • the axis of the light source 2 (LED 2a) is preferably arranged so as to pass through the incident surface 3a of the light guide plate 3.
  • the LED 2a a bullet-type LED can be used, and the width (dimension in the Y direction) of the light emitting portion is a and the thickness (dimension in the Z direction) is b.
  • the width a and the thickness b of the LED 2a do not need to be the same, and when the cross section is set to be oval or oval according to the light distribution characteristics imparted to the LED 2a, they have dimensions different from each other. Can be used.
  • a general high dome type LED has a Lambertian light distribution and emits a relatively large divergent light having a half-value angle (full-width at half maximum) of about 120 °.
  • an LED having such a general light distribution can be used.
  • at least the half-value angle ⁇ in the Z direction is set to 120 ° or less.
  • the half-value angle ⁇ is more preferably set to 40 ° or less, and further preferably set to 35 ° or less, and is as close to parallel light as possible (hereinafter simply referred to as parallel light) as much as possible. preferable.
  • the half-value angle ⁇ in the Y direction may be the same as the half-value angle ⁇ in the Z direction, but it is preferable to use a larger value than that.
  • An appropriate number or value is selected as the number or arrangement pitch of each LED 2a in relation to the dimension in the Y direction of the light guide plate 3, the maximum light emission amount of the LED 2a, the half-value angle ⁇ in the Y direction, and the like.
  • the separation distance (dimension in the X direction) d between the light source 2 and the incident surface 3a of the light guide plate 3 is preferably set within a range of 0 to 20 mm. However, when the separation distance d is 0, that is, when the light source 2 is in contact with or close to the incident surface 3a, the influence of the heat generated by the light source 2 on the light guide plate 3 may not be ignored. It is preferable that they are separated to such an extent that there is no influence.
  • an LED in which the half-value angle ⁇ in the Y direction is set to a value larger than the preferable range as described above, or an LED set in the preferable range as described above is used, and is adjacent to the + X direction of the LED.
  • an optical element such as a lens (between the LED 2a and the incident surface 3a of the light guide plate 3)
  • the light may be converted into divergent light or parallel light in a preferable range as described above.
  • a point light source includes an optical element such as a lens adjacent to the LED.
  • the light guide plate 3 is made of a transparent resin.
  • the transparent resin is not particularly limited, but propylene-ethylene copolymer, polystyrene, (meth) acrylic acid ester-aromatic vinyl compound copolymer, polyethylene terephthalate, terephthalic acid-ethylene glycol-cyclohexanedimethanol copolymer. , Polycarbonate, methacrylic resin, and resin having an alicyclic structure.
  • the light guide plate 3 may be made of glass.
  • resins having an alicyclic structure methacrylic resins, and (meth) acrylic acid ester-aromatic vinyl compound copolymer resins can be preferably used, and resins having an alicyclic structure are particularly preferably used.
  • Resin with alicyclic structure has good flowability of molten resin, so in injection molding, mold cavity can be filled with low injection pressure, and weld line is less likely to occur. The thickness unevenness at the time of molding is small, and shape formation after molding is easy. Further, since the hygroscopic property is extremely low, the dimensional stability is excellent, the light guide plate is not warped, and the specific gravity is small, so that the light guide plate can be reduced in weight.
  • the polymer resin which has an alicyclic structure in a principal chain or a side chain can be mentioned.
  • a polymer resin having an alicyclic structure in the main chain can be particularly preferably used because it has good mechanical strength and heat resistance.
  • the alicyclic structure is preferably a saturated cyclic hydrocarbon structure, and the carbon number thereof is preferably 4 to 30, more preferably 5 to 20, and still more preferably 5 to 15. .
  • the ratio of the repeating unit having an alicyclic structure in the polymer resin having an alicyclic structure is preferably 50% by weight or more, more preferably 70% by weight or more, and 90% by weight or more. More preferably.
  • Examples of the resin having an alicyclic structure include a ring-opening polymer or a ring-opening copolymer of a norbornene monomer or a hydrogenated product thereof, an addition polymer or an addition copolymer of a norbornene monomer, or Those hydrogenated products, polymers of monocyclic olefin monomers or their hydrogenated products, polymers of cyclic conjugated diene monomers or their hydrogenated products, vinyl alicyclic hydrocarbon monomers Or a hydrogenated product thereof, a polymer of a vinyl aromatic hydrocarbon monomer, or a hydrogenated product of an unsaturated bond part containing an aromatic ring of the copolymer.
  • hydrogenated products of norbornene-based monomer polymers and hydrogenated products of unsaturated bonds including aromatic rings of vinyl aromatic hydrocarbon-based monomer polymers have mechanical strength and heat resistance. Since it is excellent in property, it can be used especially suitably.
  • the methacrylic resin is excellent in transparency, tough and hardly cracked, so that it can be suitably used.
  • the methacrylic resin include a methacrylic resin molding material containing 80% or more of a methyl methacrylate polymer defined in JIS K6717.
  • methacrylic resins specified in this standard methacrylic resins having a specified classification code of 100 to 120 having a Vicat softening point temperature of 96 to 100 ° C. and a melt flow rate of 8 to 16 have suitable fluidity and strength. Can be used.
  • An antioxidant can be added to the molding material used in the present embodiment in order to prevent oxidative degradation and thermal degradation during molding. Moreover, in order to improve the light resistance etc. of a molded article, a light resistance stabilizer can be added.
  • the antioxidant include a phenolic antioxidant, a phosphorus antioxidant, and a sulfur antioxidant. These antioxidants can be used individually by 1 type, or can be used in combination of 2 or more type. Among these, phenolic antioxidants, particularly alkyl-substituted antioxidants can be suitably used.
  • the addition amount of the antioxidant is preferably 0.01 to 2 parts by weight, and more preferably 0.02 to 1 part by weight with respect to 100 parts by weight of the resin component.
  • the light resistance stabilizer examples include hindered amine light resistance stabilizer (HALS) and benzoate light resistance stabilizer. These light-resistant stabilizers can be used alone or in combination of two or more. Among these, hindered amine light resistance stabilizers can be particularly preferably used.
  • the addition amount of the light-resistant stabilizer is preferably 0.01 to 2 parts by weight, more preferably 0.02 to 1 part by weight, with respect to 100 parts by weight of the resin component. More preferably, it is 5 parts by weight.
  • additives may be added to the molding material as necessary.
  • Other additives include, for example, stabilizers such as heat stabilizers, ultraviolet absorbers and near infrared absorbers; resin modifiers such as lubricants and plasticizers; colorants such as dyes and pigments; antistatic agents, light Examples include a diffusing agent.
  • the water absorption rate of the light guide plate 3 is preferably set to 0.25% or less, more preferably 0.1% or less, and even more preferably 0.05% or less. In this embodiment, the water absorption is set to 0.01%.
  • the water absorption rate in the specification of the present application is in a desiccator after drying a test piece having a disk shape of 50 mm in diameter or a square of 50 mm on a side at 50 ° C. for 24 hours in accordance with JIS K7209 A method. It can be calculated from the weight increase when it is allowed to cool and then immersed in 23 ° C. water for 24 hours.
  • the light guide plate 3 is made of a rectangular plate, and the dimensions in the X direction and the Y direction are set according to the size of the effective surface of the liquid crystal panel of the liquid crystal display device in which the light guide plate 3 is used.
  • the thickness h of the light guide plate 3 can be easily manufactured and handled, it is preferably 0.02 mm or more, more preferably 0.1 mm or more, and reduction in thickness and weight can be realized.
  • the light guide plate 3 it is preferably 5 mm or less, more preferably 1 mm or less, and even more preferably 0.5 mm or less.
  • the light guide plate 3 one having a refractive index of, for example, 1.533 (critical angle 40.7 °) can be used.
  • the light guide plate 3 is opposed to the back surface 3b that reflects light propagating through the light guide plate 3, and emits light that is propagated through the light guide plate 3 without being reflected or reflected by the back surface 3b. And an exit surface 3c.
  • the back surface 3b and the exit surface 3c are substantially parallel to the XY plane.
  • the back surface 3b of the light guide plate 3 is a reflective surface composed of a uniform plane.
  • the back surface 3b can be configured by depositing a reflective metal on the back surface of the resin plate constituting the light guide plate 3 or by closely arranging a white scattering plate (white reflecting plate).
  • the back surface 3b is directed to the XY plane so that the thickness (dimension in the Z direction) with respect to the exit surface 3c gradually decreases from the side closer to the incident surface 3a to the side farther (toward the + X direction). It is good also as an inclined surface inclined.
  • the back surface 3b may be provided with unevenness such as a row in order to emit light propagating through the light guide plate 3 with high efficiency and make the emitted light uniform.
  • a row in this case for example, the longitudinal direction is set along the Y direction of the back surface 3b, and a row (a prism row) formed by arranging a plurality of triangular stripes in the X direction. ) Can be used.
  • the longitudinal direction may be set along the X direction of the back surface 3b, and a strip (prism strip) formed by arranging a plurality of triangular strips in the Y direction may be used.
  • the apex angle of the row, the inclination angle of the pair of slopes constituting the row with respect to the XY plane, the pitch of the row arrangement, the height, etc. may be different from each other.
  • adjacent strips may not have the same shape, and the shape of the strip is not limited to a triangular cross section, and may be another polygonal shape or a curved shape such as a semicircular arc or an elliptical arc. These may be mixed.
  • the row is not limited to those formed uniformly over the Y direction of the back surface 3b, but may be formed in the middle or divided in the middle. Further, it may be slightly oblique with respect to the Y direction.
  • the back surface 3b may be an irregular rough surface (a surface on which minute irregularities are randomly formed). Further, it may be formed in a dot shape, or may be formed by arranging a plurality of projections or depressions having the same or different shapes in an array or discretely. In this case, a spherical shape, a conical shape, a polygonal pyramid shape, or the like can be adopted as the shape of the protrusion or the depression. Alternatively, the shape may be formed by printing with white ink or metal vapor deposition.
  • the height of the protrusion is preferably 1 ⁇ m or more from the same viewpoint, and more preferably 5 ⁇ m or more.
  • the light exit surface 3c of the light guide plate 3 is a surface that emits light propagating through the light guide plate 3, and is a uniform flat surface in this embodiment.
  • unevenness such as a row may be arranged.
  • the longitudinal direction is set along the Y direction of the exit surface 3c, and a row (prism strip) formed by arranging a plurality of triangular cross-sections in the X direction.
  • the longitudinal direction may be set along the X direction of the exit surface 3c, and a strip (prism strip) formed by arranging a plurality of triangular strips in the Y direction may be used. .
  • the apex angle of the row and the inclination angle of the pair of slopes constituting the row with respect to the XY plane, the pitch of the row arrangement, the height, etc. may be different from each other.
  • adjacent strips may not have the same shape, and the shape of the strip is not limited to a triangular cross section, and may be another polygonal shape or a curved shape such as a semicircular arc or an elliptical arc. These may be mixed.
  • the row is not limited to one that is uniformly formed over the Y direction of the exit surface 3c, but may be one that is divided in the middle and formed in an array or discretely. Further, it may be slightly oblique with respect to the Y direction.
  • the emission surface 3c may be an irregular rough surface (a surface on which minute irregularities are randomly formed). Further, it may be formed in a dot shape, or may be formed by arranging a plurality of projections or depressions having the same or different shapes in an array or discretely. In this case, a spherical shape, a conical shape, a polygonal pyramid shape, or the like can be adopted as the shape of the protrusion or the depression. Alternatively, the shape may be formed by printing with white ink (screen printing or ink jet printing), metal deposition, or the like.
  • the height of the protrusion is preferably 1 ⁇ m or more from the same viewpoint, and more preferably 5 ⁇ m or more.
  • the method for forming the specific protrusion shape on the surface there is no particular limitation on the method for forming the specific protrusion shape on the surface.
  • a prism row it can be formed on the surface of a flat light guide plate, or the prism row can be formed simultaneously with the formation of the light guide plate.
  • the method for forming the prism array on the surface of the flat light guide plate is not particularly limited.
  • the method can be performed by cutting using a tool capable of forming a linear prism having a desired shape, or a photo-curing resin. Can be applied and cured in a state where a mold having a desired shape is transferred.
  • the shape of the prism rows can be extrude using a deformed die having a desired prism row shape, or the prism rows can be formed by embossing after extrusion. It can also be formed.
  • a casting mold capable of forming a desired prism row shape can be used.
  • a mold capable of forming a desired prism row shape can be used.
  • the mold used to form the prism row was a tool that can form the desired linear prism It can be obtained by cutting a metal member of a mold or electroforming on a member having a desired shape.
  • a light diffusing sheet is sandwiched between air layers so that illumination light (light emitted from the exit surface 3c) by the surface light source device 1 is uniform and uniform.
  • an optical sheet such as a prism sheet is disposed so as to increase the luminance.
  • a transparent resin, a plate-like body in which a light diffusing agent or other additives are added to a transparent resin, or a plate-like body formed with a pattern such as a plurality of protrusions or rows on one or both surfaces, etc. Can be used.
  • a reflective surface (first reflective surface) ) As a reflecting member that guides the light emitted from the light source 2 to the incident surface 3a of the light guide plate 3 so as to limit the divergence of the light in the thickness direction (Z direction) of the light guide plate 3, a reflective surface (first reflective surface) )
  • a reflecting plate (first reflecting member) 4 having 4a and a reflecting plate (second reflecting member) 5 having a reflecting surface (second reflecting surface) 5a are provided.
  • the pair of reflecting plates 4 and 5 are separated from each other in the thickness direction (Z direction) of the light guide plate 3 so that the reflecting surfaces 4a and 5a face each other, Are arranged symmetrically to each other.
  • the upper reflecting plate 4 has a right edge (+ X direction side edge) on an upper side (+ Z direction side) of the light incident surface 3a of the light guide plate 3 and a left edge ( ⁇ X direction side edge). It can be arranged so that the edge) is connected to or located near the upper side (the side on the + Z direction side) of the substrate 2b on which the LED 2a is mounted.
  • the lower reflector 5 has a right edge (+ X direction side edge) on a lower side ( ⁇ Z direction side) of the light incident surface 3a of the light guide plate 3 and a left edge ( ⁇ X direction side). Can be arranged so as to be connected to or located near the lower side (side on the ⁇ Z direction side) of the substrate 2b on which the LED 2a is mounted.
  • the light guide plate 3 made of resin undergoes a dimensional change (elongation or warpage) due to moisture absorption, and particularly when the size of the light guide plate 3 is large (for example, 40 inches), the light source 2a and the incident surface 3a are caused by the dimensional change. As a result, the light utilization efficiency decreases. Therefore, the water absorption rate of the light guide plate 3 is preferably set to 0.25% or less, more preferably 0.1% or less, and even more preferably 0.05% or less. In this embodiment, the water absorption is set to 0.01%.
  • the water absorption rate in the present specification is a desiccant after drying a test piece having a disk shape of 50 mm in diameter or a square of 50 mm on a side at 50 ° C. for 24 hours in accordance with JIS K7209 A method. It can be determined from the increase in weight when allowed to cool in a plate and immersed in water at 23 ° C. for 24 hours.
  • the angle between the reflecting plates 4 and 5 (reflecting surfaces 4a and 5a) is preferably 90 ° or less, more preferably 70 ° or less, further preferably 60 ° or less, and 40 °. It is particularly preferred that In this embodiment, the angle between the reflecting plates 4 and 5 (reflecting surfaces 4a and 5a) with respect to the XY plane is set to 15 °, so that the angle between them is set to 30 °. However, the angles of the reflecting plates 4 and 5 (reflecting surfaces 4a and 5a) with respect to the XY plane may be different from each other.
  • the angle of the reflecting surface 4a of the reflecting plate 4 with respect to the XY plane may be ⁇
  • the angle of the reflecting surface 5a of the reflecting plate 5 with respect to the XY plane may be ⁇
  • ⁇ ⁇ ⁇ see FIG. 5
  • the angles ⁇ and ⁇ are each preferably 35 ° or less, and more preferably 10 ° or less.
  • 22.5 °
  • 7.5 °.
  • the angle ⁇ or the angle ⁇ may be set to approximately 0 ° (that is, the reflecting surface 4a or the reflecting surface 5a is substantially parallel to the XY plane) (see FIG. 6).
  • the axis of the light source 2 (LED 2a) (the direction of the principal ray of the emitted light) is the direction of the incident surface 3a of the light guide plate 3 as shown in FIG.
  • the reflecting surfaces 4a and 5a of the reflecting plates 4 and 5 are regular reflecting surfaces (mirror surfaces) over the entire surface.
  • the reflecting plates 4 and 5 can be manufactured, for example, by mirror-finishing one surface (surface to be the reflecting surfaces 4a and 5a) of a silver plate (silver sheet).
  • the reflectance can be increased by reducing the surface roughness of the reflecting surface.
  • the reflectivity of the reflecting surfaces 4a and 5a is preferably 96% or more.
  • the portions 4b and 5b on the light source 2 side of the reflection surfaces 4a and 5a can be diffuse reflection surfaces made of a material having a property of diffusing and reflecting light (Lambert scattering).
  • a material having a property of diffusing and reflecting light is barium sulfate.
  • the part which should become a regular reflection surface of the reflectors 4 and 5 is mirror-finished, and the material which diffuses and reflects such light is coated on the remaining part (parts 4b and 5b which should become a diffuse reflection surface). Can be manufactured.
  • the portions 4b and 5b on the light source 2 side of the reflection surfaces 4a and 5a can be diffused reflection surfaces made of a concavo-convex structure that diffusely reflects light.
  • the reflecting plates 4 and 5 are mirror-finished on the portions to be the regular reflection surfaces of the reflection surfaces 4a and 5a, and such light is applied to the remaining portions (portions 4b and 5b to be the diffuse reflection surfaces).
  • An example of the concavo-convex structure is a row formed by arranging a plurality of strips having a triangular cross section.
  • the strips constituting the strip are arranged on the plate surfaces of the reflection plates 4 and 5 such that the longitudinal direction thereof is substantially the Y direction.
  • the cross-sectional shape of each strip is not limited to a triangular shape, and may be a polygonal shape, an arc shape, or other curved shape.
  • the diffuse reflection surface having such a concavo-convex structure may be formed by arranging a plurality of protrusions in an array or discretely instead of in a row.
  • the diffuse reflection surface having the concavo-convex structure may be an irregular rough surface (a surface on which minute undulations are randomly formed).
  • the reflection surface Of all the regions 4a and 5a, 2/3 or more can be regular reflection surfaces, and the remaining 1/3 can be diffuse reflection surfaces.
  • the angle between the reflecting plates is 60 °, it can be within 1/3, and when it is 15 °, it can be within 1/12.
  • a part of the reflection surfaces 4a and 5a on the light guide plate 3 side is a regular reflection surface and the other portions (parts 4b and 5b on the light source 2 side) are diffuse reflection surfaces.
  • Most of the above-mentioned light distribution light is reflected into the light guide plate 3 from the incident surface 3a by being reflected by the reflecting surfaces 4a and 5a at an appropriate angle, for example, once or twice.
  • a part (for example, light reflected about three times or more) returns to the light source 2 side and is considered to be a loss.
  • the reflection surfaces 4a, 5a part 4b, 5b on the light source 2 side as a diffuse reflection surface, the light returning to the light source 2 side is diffusely reflected, so that part of the return light is reflected. It becomes possible to return to the light guide plate 3 side, and the light utilization efficiency can be improved. Further, it is considered that the light incident efficiency is increased because part of the light is directed toward the incident surface 3a side by the diffuse reflection.
  • the reflecting member includes a reflecting plate (third reflecting member) 6 in addition to the reflecting plates 4 and 5 described above.
  • the reflection plate 6 is provided between the reflection plate 4 and the reflection plate 5, and one of the reflection surfaces 6 a faces the reflection surface 4 a of the reflection plate 4 with a predetermined first angle, and the other reflection surface 6 b.
  • the first angle and the second angle coincide with each other, and are set to half of the angle formed by the reflecting surface 4a and the reflecting surface 5a.
  • the first angle and the second angle do not necessarily coincide with each other, and the reflecting plate 6 may be inclined with respect to the XY plane.
  • the reflection surfaces 6a and 6b of the reflection plate 6 are regular reflection surfaces, respectively, as in the case of the reflection surfaces 4a and 5a.
  • the reflection plate 6 can be manufactured, for example, by mirror-finishing both surfaces of a silver plate (silver sheet).
  • the corresponding portions of the reflection plate 6 can be formed as similar diffusion reflection surfaces.
  • the light distribution in the Y direction and the light distribution in the Z direction of each LED 2a is as follows.
  • the half value angle in the Y direction of the LED 2a is ⁇ (see FIG. 3), and the half value angle in the Z direction of the LED 2a is ⁇ (see FIG. 2).
  • ⁇ / ⁇ > 1 This relationship is preferably satisfied, more preferably ⁇ / ⁇ ⁇ 2, and further preferably ⁇ / ⁇ ⁇ 3. From the viewpoint of improving the light utilization efficiency, it is preferable to reduce the half-value angle ⁇ in the Z direction of the LED 2a as described above.
  • ⁇ / ⁇ is a range in which light distribution is not unnecessarily performed, but can be set to 100 or less, for example.
  • the light distribution in the Y direction of each LED 2 a is p, the arrangement pitch in the Y direction of the LEDs 2 a, the width (dimension in the Y direction) of the LEDs 2 a, and the LED 2 a and the light guide plate 3.
  • the distance from the incident surface 3a (space in the X direction) is d, ⁇ > tan ⁇ 1 ((a + p) / 2d) It is preferable to satisfy the relationship. This is because, by setting the relationship as described above, the light emitted from the adjacent LEDs 2a overlap each other in the Y direction, so that uneven brightness on the emission surface 3c of the light guide plate 3 can be suppressed.
  • the minimum value of the array pitch p is limited to a size that does not interfere with each other in relation to the width a of the LEDs 2a.
  • the surface light source device 1 configured as described above can constitute a surface light source device that illuminates the entire area of the liquid crystal panel as the object to be illuminated.
  • the surface light source device 1 configured as described above is configured as a single unit, and a plurality of units are appropriately arranged to configure a surface light source device that illuminates the entire area of the liquid crystal panel as the object to be illuminated. You can also.
  • the surface light source device 1 described above is provided on a back surface side of a liquid crystal panel in which an alignment film, a transparent electrode, a color filter, a glass plate, a polarizing plate, and the like are appropriately stacked with a liquid crystal layer interposed therebetween.
  • Each is configured to be fixed to a housing or the like so as to be arranged in a positional relationship.
  • an optical model is created using a software optical simulator, and light usage efficiency (%) or light is emitted from the light exit surface 3c of the light guide plate 3 while appropriately setting and changing specifications. The intensity distribution of the emitted light is calculated.
  • lighting design analysis software LightTools developer: ORA
  • the performance of the surface light source device 1 is evaluated based on the calculated light use efficiency. Further, based on the calculated light intensity distribution, luminance unevenness on the exit surface 3c is evaluated. The brightness unevenness is assumed to be a defective “x” when a so-called eyeball (locally bright part) is expected to occur when actually viewed from the calculated light intensity distribution, and no eyeball is expected to occur. The case is evaluated as good “ ⁇ ”, and the case that is intermediate between these is evaluated as slightly good “ ⁇ ”.
  • Example 1-1 The configuration shown in FIG. 2 was used.
  • the light distribution (half-value angle ⁇ in the Z direction) of the LED 2a is 30 °
  • the LED height (dimension in the Z direction on the side where the LED 2a is disposed on the reflectors 4 and 5) b is 3 mm
  • the separation distance (the LED 2a and the light guide plate 3 (Dimension in the X direction between the incident surface 3a) and d was 3 mm.
  • the reflection surfaces (reflection surfaces 4a and 5a) were regular reflection surfaces over the entire surface, and the reflectance was 96%.
  • the light guide plate material material of the light guide plate 3
  • norbornene resin ZONOR 1060R (trade name, manufactured by Nippon Zeon Co., Ltd.), refractive index 1.533
  • the thickness of the light guide plate (dimension in the Z direction of the light guide plate 3) h was 0.2 mm.
  • the light utilization efficiency (%) was 75% as shown in Table 1.
  • Example 1-2 The configuration shown in FIG. 2 is the same as Example 1-1 except that a part (one third) of the reflecting surfaces 4a and 5a of the reflecting plates 4 and 5 on the light source 2 side is a diffuse reflecting surface. .
  • the reflectance of the portions (regular reflection surfaces) other than the diffuse reflection surfaces of the reflection surfaces 4a and 5a was 96%.
  • the light utilization efficiency (%) was 77% as shown in Table 1.
  • Example 1-3 Using the configuration of three reflecting plates shown in FIG. 4 (a configuration in which an intermediate reflecting plate 6 is added), the reflecting surfaces 6a and 6b of the reflecting plate 6 are formed as regular reflecting surfaces (reflectance 96%) over the entire surface. Except for this, it was the same as Example 1-1. As a result of the simulation, the light utilization efficiency (%) was 79% as shown in Table 1.
  • Example 1-1 As is clear from the comparison between Example 1-1 and Example 1-2, only a part of the reflection surfaces 4a and 5a on the light source 2 side is used as a diffuse reflection surface, but the light utilization is slight. Efficiency can be further improved.
  • Example 1-1 As is clear from the comparison between Example 1-1 and Example 1-3, the light utilization efficiency is further improved by adding the reflector 6 in the middle of the reflecting surfaces 4a and 5a. be able to.
  • Example 2-1 The configuration shown in FIG. 2 was used.
  • the light distribution (half-value angle ⁇ in the Z direction) of the LED 2a is 40 °
  • the LED height (dimension in the Z direction on the side where the LED 2a of the reflecting plates 4 and 5 is disposed) b is 4 mm
  • the separation distance (the LED 2a and the light guide plate 3 (Dimension in the X direction between the incident surface 3a) and d was set to 9.3 mm.
  • the reflection surfaces (reflection surfaces 4a and 5a) are regular reflection surfaces over the entire surface, and the reflectance is 98%.
  • the light guide plate material material of the light guide plate 3
  • norbornene resin ZONOR 1060R (trade name, manufactured by Nippon Zeon Co., Ltd.), refractive index 1.533
  • the thickness of the light guide plate (dimension in the Z direction of the light guide plate 3) h was 1 mm.
  • the light utilization efficiency (%) was 69% as shown in Table 1.
  • Example 2-2 The same as Example 2-1, except that the reflectivity of the reflecting surfaces 4a and 5a of the reflecting plates 4 and 5 was set to 97%. As a result of the simulation, the light utilization efficiency (%) was 60% as shown in Table 2.
  • Example 2-3 The same as Example 2-1, except that the reflectivity of the reflecting surfaces 4a and 5a of the reflecting plates 4 and 5 was set to 96%. As a result of the simulation, the light utilization efficiency (%) was 55% as shown in Table 2.
  • Example 2-4 The same as Example 2-1, except that the reflectivity of the reflection surfaces 4a and 5a of the reflection plates 4 and 5 was set to 95%. As a result of the simulation, the light utilization efficiency (%) was 50% as shown in Table 2.
  • Example 2-5 The same as Example 2-1, except that the reflectance of the reflecting surfaces 4a and 5a of the reflecting plates 4 and 5 was set to 94%. As a result of the simulation, the light utilization efficiency (%) was 49% as shown in Table 2.
  • Example 2-6 The same as Example 2-1, except that the reflectance of the reflecting surfaces 4a and 5a of the reflecting plates 4 and 5 was set to 93%. As a result of the simulation, the light utilization efficiency (%) was 47% as shown in Table 2.
  • FIG. 8 shows a graph of the results of Examples 2-1 to 2-6, in which the horizontal axis represents the reflectance (regular reflectance) (%) and the vertical axis represents the light utilization efficiency (%). From the figure, as the reflectivity increases from 93%, the light utilization efficiency increases with a relatively small slope, and as the inflection point is around 96%, with a relatively large slope as it increases from 96%. You can see that it is rising. Therefore, by setting the reflectance to a value of 96% or higher, high light utilization efficiency can be realized.
  • Example 3-1 The light guide plate was the same as Example 2-1, except that acrylic resin (PMMA: polymethyl methacrylate resin, refractive index 1.49) was used. As a result of the simulation, the light utilization efficiency (%) was 69% as shown in Table 3.
  • acrylic resin PMMA: polymethyl methacrylate resin, refractive index 1.409
  • Example 3-2 The same as Example 2-2, except that acrylic resin (PMMA: polymethyl methacrylate resin, refractive index 1.49) was used as the light guide plate material. As a result of the simulation, the light utilization efficiency (%) was 60% as shown in Table 3.
  • Example 3-3 Example 3 was the same as Example 2-3 except that acrylic resin (PMMA: polymethyl methacrylate resin, refractive index 1.49) was used as the light guide plate material. As a result of the simulation, the light utilization efficiency (%) was 55% as shown in Table 3.
  • acrylic resin PMMA: polymethyl methacrylate resin, refractive index 1.409
  • Example 2-4 was the same as Example 2-4 except that acrylic resin (PMMA: polymethyl methacrylate resin, refractive index 1.49) was used as the light guide plate material. As a result of the simulation, the light utilization efficiency (%) was 50% as shown in Table 3.
  • acrylic resin PMMA: polymethyl methacrylate resin, refractive index 1.409
  • Example 3-5 The same as Example 2-5, except that acrylic resin (PMMA: polymethyl methacrylate resin, refractive index 1.49) was used as the light guide plate material. As a result of the simulation, the light utilization efficiency (%) was 49% as shown in Table 3.
  • acrylic resin PMMA: polymethyl methacrylate resin, refractive index 1.409
  • Example 4-1 The configuration shown in FIG. 2 was used.
  • the light distribution (half-value angle ⁇ in the Z direction) of the LED 2a is 30 °
  • the LED height (dimension in the Z direction on the side where the LED 2a is disposed on the reflectors 4 and 5) b is 3 mm
  • the separation distance (the LED 2a and the light guide plate 3 (Dimension in the X direction between the incident surface 3a) and d was 14 mm.
  • the reflection surfaces were regular reflection surfaces over the entire surface, and the reflectance was 96%.
  • As the light guide plate material material of the light guide plate 3
  • norbornene resin ZONOR 1060R (trade name, manufactured by Nippon Zeon Co., Ltd.), refractive index 1.533) was used.
  • the thickness of the light guide plate (dimension in the Z direction of the light guide plate 3) h was 1 mm.
  • the light utilization efficiency (%) was 56% as shown in Table 4.
  • the light utilization efficiency (%) was 59% as shown in Table 4.
  • the angle between the reflecting surfaces 4a and 5a is preferably in the range of 15 to 60 °, more preferably in the range of 25 to 35 °, and 30 It can be seen that the degree of ° is most preferable.
  • the separation distance d (see FIG. 7) was 7.4 mm.
  • the light utilization efficiency (%) was 65% as shown in Table 5.
  • Example 5 From the results of Example 4-3, Example 5-1, and Example 5-2, the light equivalent to the case where the inclination angle is large by reducing the inclination angle ( ⁇ ) of the reflecting plate 5a with respect to the XY plane is small. It can be seen that the light guide plate 3 can be bent and misaligned while maintaining the utilization efficiency, and can be easily assembled. Further, from the results of Example 5-2 and Example 5-3, the axis of the light source 2 (LED 2a) is aligned with the direction of the incident surface 3a of the light guide plate 3 according to the angle of the reflecting surfaces 4a and 5a with respect to the XY plane. It can be seen that the light utilization efficiency is increased by changing the inclination with respect to the incident surface 3a (YZ plane) so as to be directed toward.
  • Example 6-1 The configurations shown in FIGS. 1 to 3 were used, and the light distribution (half-value angle ⁇ in the Z direction and half-value angle ⁇ in the Y direction) of the LED 2a was 0 ° (ie, parallel light).
  • the reflection member As the reflection member, the reflection surfaces 4a and 5a of the reflection plates 4 and 5 were used as regular reflection surfaces (reflectance 96%) over the entire surface.
  • the LED height (dimension in the Z direction of the LED 2a) b was 3 mm
  • the height of the substrate 2b was 5.0 mm
  • the thickness of the light guide plate (dimension in the Z direction of the light guide plate 3) h was 1 mm.
  • the distance d (space in the X direction) d between the LED 2a and the incident surface 3a of the light guide plate 3 was 7.4 mm.
  • the pitch in the arrangement direction of the LEDs 2a was 7.5 mm.
  • the angle formed by the reflecting surface 4a of the reflecting plate 4 and the reflecting surface 5a of the reflecting plate 5 is 30 ° (the angles of the reflecting surfaces 4a and 5a with respect to the XY plane are 15 °, respectively).
  • Norbornene resin (ZEONOR 1060R (trade name, manufactured by Nippon Zeon Co., Ltd.)
  • refractive index 1.533, critical angle 40.7 degrees was used.
  • the light utilization efficiency (%) was 97% as shown in Table 6.
  • Example 2 was the same as Example 6-1 except that the light distribution (half-value angle ⁇ in the Z direction and half-value angle ⁇ in the Y direction) of the LED 2a was 15 °. As a result of the simulation, the light utilization efficiency (%) was 77% as shown in Table 6.
  • Example 6-3 The light distribution of the LED 2a (half-value angle ⁇ in the Z direction and half-value angle ⁇ in the Y direction) was set to 30 °, respectively, and was the same as Example 6-1. As a result of the simulation, the light utilization efficiency (%) was 68% as shown in Table 6.
  • Example 6-4 The light distribution of LED 2a (half-value angle ⁇ in the Z direction and half-value angle ⁇ in the Y direction) was set to 15 °.
  • the reflecting member the reflecting surfaces 4a and 5a of the reflecting plates 4 and 5 were used as regular reflecting surfaces (reflectance 96%) over the entire surface.
  • the LED height (dimension in the Z direction of the LED 2a) b was 1 mm
  • the height of the substrate 2b was 1.7 mm
  • the thickness of the light guide plate (dimension in the Z direction of the light guide plate 3) h was 0.2 mm.
  • the distance d (space in the X direction) d between the LED 2a and the incident surface 3a of the light guide plate 3 was 7.4 mm.
  • the pitch in the arrangement direction of the LEDs 2a was 7.5 mm.
  • the angle formed by the reflecting surface 4a of the reflecting plate 4 and the reflecting surface 5a of the reflecting plate 5 is 30 ° (the angles of the reflecting surfaces 4a and 5a with respect to the XY plane are 15 °, respectively).
  • Norbornene resin (ZEONOR 1060R (trade name, manufactured by Nippon Zeon Co., Ltd.), refractive index 1.533, critical angle 40.7 degrees) was used.
  • the light utilization efficiency (%) was 61% as shown in Table 6.
  • Example 6-3 The same as Example 6-1 except that the light distribution (half-value angle ⁇ in the Z direction and half-value angle ⁇ in the Y direction) of the LED 2a was 90 °. As a result of the simulation, the light utilization efficiency (%) was 55% as shown in Table 6.
  • Example 6-4 The same as Example 6-1 except that the light distribution (half-value angle ⁇ in the Z direction and half-value angle ⁇ in the Y direction) of the LED 2a was 120 ° (Lambertian). As a result of the simulation, the light utilization efficiency (%) was 53% as shown in Table 6.
  • Example 7-1 The reflective member was the same as Example 6-1 except that the reflective surfaces 4a and 5a of the reflective plates 4 and 5 were diffused reflective surfaces over the entire surface. As a result of the simulation, the light utilization efficiency (%) was 72% as shown in Table 7.
  • Example 7-2 The reflective member was the same as Example 6-2 except that the reflective surfaces 4a and 5a of the reflective plates 4 and 5 were diffused reflective surfaces over the entire surface. As a result of the simulation, the light utilization efficiency (%) was 63% as shown in Table 7.
  • Example 7-3 The reflective member was the same as Example 6-3 except that the reflective surfaces 4a and 5a of the reflective plates 4 and 5 were diffused reflective surfaces over the entire surface. As a result of the simulation, the light utilization efficiency (%) was 57% as shown in Table 7.
  • Comparative Example 7-1 The reflection member was the same as Comparative Example 6-1, except that the reflection surfaces 4a and 5a of the reflection plates 4 and 5 were diffuse reflection surfaces over the entire surface. As a result of the simulation, the light utilization efficiency (%) was 53% as shown in Table 7.
  • Comparative Example 7-2 The reflection member was the same as Comparative Example 6-2 except that the reflection surfaces 4a and 5a of the reflection plates 4 and 5 were diffuse reflection surfaces over the entire surface. As a result of the simulation, the light utilization efficiency (%) was 52% as shown in Table 7.
  • Comparative Example 7-4 The reflection member was the same as Comparative Example 6-4 except that the reflection surfaces 4a and 5a of the reflection plates 4 and 5 were diffuse reflection surfaces over the entire surface. As a result of the simulation, the light utilization efficiency (%) was 50% as shown in Table 7.
  • the reflection surfaces 4a and 5a of the reflection member have higher light utilization efficiency than the diffuse reflection surface. Therefore, it is preferable to use regular reflection surfaces as the reflection surfaces 4a and 5a.
  • the width (dimension in the Y direction) a of the LED 2a was set to 3.0 mm, and the arrangement pitch p was set to 7.5 mm.
  • the luminance unevenness was good “ ⁇ ”.
  • Example 8-1 From the results of Example 8-1 to Example 8-2 and Comparative Example 8-1, the ratio ( ⁇ / ⁇ ) between the half-value angle ⁇ in the Z direction and the half-value angle ⁇ in the Y direction of the LED 2a is greater than 1.
  • the luminance unevenness is determined to be good and ( ⁇ / ⁇ ) is 3 or more, and it can be seen that more uniform light can be emitted.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)

Abstract

Disclosed is a surface light source apparatus provided with a light guide plate (3) that serves as a plane of incidence (3a) in which light enters a portion of the surface of a side edge thereof, and a light source (2) that is disposed along the plane of incidence (3a) and that emits light toward said plane of incidence (3a). Reflecting members (4, 5), which have reflecting surfaces (4a, 5a) that guide the light emitted from the light source (2) toward the plane of incidence (3a), are provided in a manner so as to control the spread of said light in the direction of thickness of the light guide plate (3) (the Z-direction), and the entire surface of each reflecting surface (4a, 5a) or a portion thereof near the light guide plate (3) is a specular surface. In cases in which a portion of each reflecting surface (4a, 5a) near the light guide plate (3) is a specular surface, the remaining portion (4b, 5b) of each reflecting surface is a diffuse reflecting surface.

Description

面光源装置および液晶表示装置Surface light source device and liquid crystal display device
 本発明は、被照明体を照明する面光源装置、および該面光源装置を備える液晶表示装置に関する。 The present invention relates to a surface light source device that illuminates an object to be illuminated, and a liquid crystal display device including the surface light source device.
 液晶表示装置に用いられるバックライトとして、光源からの光を導光板の側端面から導入して、導光板の出射面から出射させるサイドライド型のバックライトが知られている。サイドライト型のバックライトは、直下型のバックライトと比較して薄型に構成できるという利点を有している。 As a backlight used in a liquid crystal display device, a side-ride type backlight in which light from a light source is introduced from a side end surface of a light guide plate and is emitted from an output surface of the light guide plate is known. Sidelight type backlights have the advantage that they can be made thinner than direct type backlights.
 このようなサイドライト型のバックライトにおいては、装置のさらなる薄型化の要請に応えるため、フィルム導光板のような、より薄い導光板の採用が検討されている。一方、光源についても同様に小型化(薄型化)が図られてはいるものの、フィルム導光板のような薄さには対応できないのが現状である。 In such a sidelight type backlight, the use of a thinner light guide plate such as a film light guide plate is being studied in order to meet the demand for further thinning of the apparatus. On the other hand, although the light source is similarly reduced in size (thinned), it is not possible to cope with the thinness of a film light guide plate.
 このような要請に応える技術としては、特許文献1、特許文献2、特許文献3に記載されているような技術が知られている。特許文献1に記載の技術では、光源と導光板との間にライトガイドを配置して、光源からの光を導光板に導くようにしている。特許文献1におけるライトガイドの内壁には拡散要素が付与されている。特許文献2に記載の技術では、光源と導光板との間に反射層を配置して、光源からの光を導光板に導くようにしている。特許文献2に記載の反射層は白色または銀色とされている。特許文献3に記載の技術では、光源の配光を導光板の厚み方向が狭く、該厚み方向に直交する方向(導光板の光入射面に沿う方向)が広くなるような楕円配光となるように調整して、導光板の光入射面に導くようにしている。 As techniques for meeting such demands, techniques described in Patent Document 1, Patent Document 2, and Patent Document 3 are known. In the technique described in Patent Document 1, a light guide is disposed between a light source and a light guide plate so that light from the light source is guided to the light guide plate. A diffusion element is provided on the inner wall of the light guide in Patent Document 1. In the technique described in Patent Document 2, a reflection layer is disposed between the light source and the light guide plate so that light from the light source is guided to the light guide plate. The reflective layer described in Patent Document 2 is white or silver. In the technique described in Patent Document 3, the light distribution of the light source is an elliptical light distribution in which the thickness direction of the light guide plate is narrow and the direction orthogonal to the thickness direction (the direction along the light incident surface of the light guide plate) is wide. Thus, the light is guided to the light incident surface of the light guide plate.
特開2006-324169号公報JP 2006-324169 A 特開2008-65997号公報JP 2008-65997 A 特開2002-43630号公報JP 2002-43630 A
 しかしながら、上述した特許文献1や特許文献2に記載の技術では、ライトガイドや反射層を設けない構成と比較して、光利用効率を高くすることが可能ではあるが、未だ十分と言うことはできず、改善の余地がある。また、上述した特許文献3に記載の技術では、光源の配光を調整しないものと比較して、光利用効率を高くすることが可能ではあるが、未だ十分と言うことはできず、改善の余地がある。なお、光利用効率とは、本願明細書においては、光源から出射される全光束を100%としたときの導光板内に入射された全光束の割合を言うものとする。 However, in the techniques described in Patent Document 1 and Patent Document 2 described above, it is possible to increase the light use efficiency as compared with a configuration in which a light guide or a reflective layer is not provided, but it is still sufficient. There is room for improvement. Moreover, in the technique described in Patent Document 3 described above, it is possible to increase the light use efficiency as compared with the case where the light distribution of the light source is not adjusted. There is room. In the specification of the present application, the light utilization efficiency refers to the ratio of the total luminous flux entering the light guide plate when the total luminous flux emitted from the light source is 100%.
 本発明はこのような点に鑑みてなされたものであり、光利用効率を向上させることができる面光源装置、およびこれを備える液晶表示装置を提供することを目的とする。 The present invention has been made in view of such a point, and an object thereof is to provide a surface light source device capable of improving light utilization efficiency and a liquid crystal display device including the same.
 本願発明者らは、鋭意研究した結果、光源から出射された光の発散を制限して導光板の側端面に導く反射部材を設けるとともに、該反射部材の反射面の全部または一部を正反射面とすることによって、光利用効率を向上できることを見いだし、本発明を完成するに至った。 As a result of earnest research, the inventors of the present application have provided a reflecting member that restricts the divergence of the light emitted from the light source and guides it to the side end surface of the light guide plate, and specularly reflects all or part of the reflecting surface of the reflecting member. It has been found that the light utilization efficiency can be improved by using the surface, and the present invention has been completed.
 すなわち、本発明の第1の観点に係る面光源装置は、その側端面の一部が光を入射する入射面とされた導光板と、前記入射面に沿って設けられ、該入射面に向けて光を出射する光源とを備える面光源装置であって、前記光源から出射される光の前記導光板の厚み方向への発散を制限するように、該光を前記入射面に導く反射面を有する反射部材を設け、前記反射面は正反射面を有する面光源装置である。 That is, the surface light source device according to the first aspect of the present invention is provided with a light guide plate in which a part of its side end surface is an incident surface on which light is incident, along the incident surface, and directed toward the incident surface. A surface light source device including a light source that emits light, and a reflection surface that guides the light to the incident surface so as to limit the divergence of the light emitted from the light source in the thickness direction of the light guide plate. A reflection light source device is provided, and the reflection surface is a surface light source device having a regular reflection surface.
 本発明の第1の観点に係る面光源装置において、前記正反射面の反射率が96%以上となるように設定することができる。 In the surface light source device according to the first aspect of the present invention, the reflectance of the regular reflection surface can be set to be 96% or more.
 本発明の第1の観点に係る面光源装置において、前記反射部材は、前記導光板の厚み方向に離間して配置された第1反射面を有する第1反射部材および第2反射面を有する第2反射部材を有し、前記第1反射面と前記第2反射面とは、互いに5~70°の角度をなすように配置され、好ましくは15°~60°、より好ましくは25°~35°に配置される。前記光源と前記入射面との離間距離が0~20mmの範囲内で設定することができる。 In the surface light source device according to the first aspect of the present invention, the reflection member includes a first reflection member having a first reflection surface and a second reflection surface that are spaced apart in the thickness direction of the light guide plate. The first reflecting surface and the second reflecting surface are arranged so as to form an angle of 5 to 70 °, preferably 15 ° to 60 °, more preferably 25 ° to 35. Placed at °. The separation distance between the light source and the incident surface can be set within a range of 0 to 20 mm.
 本発明の第1の観点に係る面光源装置において、前記反射部材は、前記第1反射部材および前記第2反射部材の間に配置された第3反射部材を有し、前記第3反射部材は、前記反射面として、前記第1反射面に対向する第3反射面および前記第2反射面に対向する第4反射面を有することができる。 In the surface light source device according to the first aspect of the present invention, the reflecting member has a third reflecting member disposed between the first reflecting member and the second reflecting member, and the third reflecting member is The reflective surface may include a third reflective surface facing the first reflective surface and a fourth reflective surface facing the second reflective surface.
 本発明の第1の観点に係る面光源装置において、前記光源を、複数の点光源を前記入射面に沿うように配列して構成し、各点光源の配光特性を、前記導光板の厚み方向における半値角をθとして、θ≦120°に設定することができる。なお、本願明細書においては、半値角とは半値全角を意味するものとする。 In the surface light source device according to the first aspect of the present invention, the light source is configured by arranging a plurality of point light sources along the incident surface, and the light distribution characteristic of each point light source is determined by the thickness of the light guide plate. The half-value angle in the direction can be set to θ ≦ 120 °, where θ is θ. In addition, in this specification, a half value angle shall mean a half value full angle.
 本発明の第1の観点に係る面光源装置において、前記反射面の前記光源側の一部を、光を拡散反射させる性質を有する材質からなる拡散反射面とし、または光を拡散反射させる凹凸構造からなる拡散反射面とすることができる。 In the surface light source device according to the first aspect of the present invention, a part of the reflection surface on the light source side is a diffuse reflection surface made of a material having a property of diffusing and reflecting light, or an uneven structure for diffusing and reflecting light. It can be set as the diffuse reflection surface which consists of.
 また、本願発明者らは、鋭意研究した結果、光源から出射された光の発散を制限して導光板の側端面に導く反射部材を設けるとともに、これとの関係で、光源の配光特性を最適化することによって、光利用効率を向上できることを見いだし、本発明を完成するに至った。 Further, as a result of earnest research, the inventors of the present application have provided a reflection member that restricts the divergence of light emitted from the light source and guides it to the side end surface of the light guide plate, and in relation to this, the light distribution characteristics of the light source are improved. It has been found that the light utilization efficiency can be improved by the optimization, and the present invention has been completed.
 すなわち、本発明の第2の観点に係る面光源装置は、その側端面の一部が光を入射する入射面とされた導光板と、前記入射面に沿って配列され、該入射面に向けて光を出射する複数の点光源を有する光源とを備える面光源装置であって、前記光源から出射される光の前記導光板の厚み方向への発散を制限するように、該光を前記入射面に導く反射面を有する反射部材を設け、前記光源を構成する各点光源の前記導光板の厚み方向における配光特性の半値角をθとして、θ≦35°に設定して構成される。なお、本願明細書においては、半値角とは、半値全角を意味するものとする。 That is, the surface light source device according to the second aspect of the present invention includes a light guide plate in which a part of the side end surface is an incident surface on which light is incident, an array along the incident surface, and the light source plate facing the incident surface. A surface light source device including a light source having a plurality of point light sources for emitting light, the light being incident on the light source so as to limit a divergence of light emitted from the light source in a thickness direction of the light guide plate. A reflecting member having a reflecting surface that leads to the surface is provided, and the half-value angle of the light distribution characteristic in the thickness direction of the light guide plate of each point light source constituting the light source is set to θ ≦ 35 °. In addition, in this specification, a half value angle shall mean a half value full angle.
 本発明の第2の観点に係る面光源装置において、前記光源を構成する各点光源の配列方向における配光特性の半値角をφとして、φ/θ>1に設定することができる。 In the surface light source device according to the second aspect of the present invention, the half-value angle of the light distribution characteristic in the arrangement direction of the respective point light sources constituting the light source can be set to φ / θ> 1.
 本発明の第2の観点に係る面光源装置において、前記光源を構成する各点光源の配列方向における半値角をφ、該点光源の配列ピッチをp、該点光源の幅(該配列方向における寸法)をa、該点光源と前記入射面との距離をdとして、
 φ>tan-1((a+p)/2d)の関係を満たすようにすることができる。
In the surface light source device according to the second aspect of the present invention, the half-value angle in the arrangement direction of the point light sources constituting the light source is φ, the arrangement pitch of the point light sources is p, the width of the point light sources (in the arrangement direction) Dimension) is a, and the distance between the point light source and the incident surface is d,
The relationship φ> tan −1 ((a + p) / 2d) can be satisfied.
 本発明の第2の観点に係る面光源装置は、前記導光板の厚みが、前記光源を構成する各点光源の厚み(該導光板の厚み方向に対応する寸法)よりも、小さい場合に、特に好適に用いることができる。 In the surface light source device according to the second aspect of the present invention, when the thickness of the light guide plate is smaller than the thickness of each point light source constituting the light source (the dimension corresponding to the thickness direction of the light guide plate), It can be particularly preferably used.
 本発明の第3の観点に係る液晶表示装置は、液晶パネルと、前記本発明の第1の観点または第2の観点に係る面光源装置とを備えて構成される。 A liquid crystal display device according to a third aspect of the present invention includes a liquid crystal panel and the surface light source device according to the first aspect or the second aspect of the present invention.
 本発明の第1の観点または第2の観点に係る面光源装置によれば、従来よりも光利用効率を向上させることができ、装置の薄型化、低コスト化、省電力化を図ることができる。 According to the surface light source device according to the first aspect or the second aspect of the present invention, the light utilization efficiency can be improved as compared with the conventional case, and the device can be reduced in thickness, cost, and power saving. it can.
 本発明の第3の観点に係る液晶表示装置によれば、本発明の第1の観点または第2の観点に係る面光源装置を備えているので、装置の薄型化、低コスト化、省電力化を図ることができる。 According to the liquid crystal display device according to the third aspect of the present invention, since the surface light source device according to the first aspect or the second aspect of the present invention is provided, the device is thinned, the cost is reduced, and the power is saved. Can be achieved.
本発明の実施形態の面光源装置の平面図である。It is a top view of the surface light source device of the embodiment of the present invention. 本発明の実施形態の面光源装置の要部を示す側面図である。It is a side view which shows the principal part of the surface light source device of embodiment of this invention. 本発明の実施形態の面光源装置の要部を示す平面図である。It is a top view which shows the principal part of the surface light source device of embodiment of this invention. 本発明の実施形態の一部を変更した面光源装置の要部を示す平面図である。It is a top view which shows the principal part of the surface light source device which changed a part of embodiment of this invention. 本発明の実施形態の一部を変更した面光源装置の要部(実施例5-1)を示す側面図である。It is a side view which shows the principal part (Example 5-1) of the surface light source device which changed a part of embodiment of this invention. 本発明の実施形態の一部を変更した面光源装置の要部(実施例5-2)を示す側面図である。It is a side view which shows the principal part (Example 5-2) of the surface light source device which changed a part of embodiment of this invention. 本発明の実施形態の一部を変更した面光源装置の要部(実施例5-3)を示す側面図である。It is a side view which shows the principal part (Example 5-3) of the surface light source device which changed a part of embodiment of this invention. 本発明の実施形態におけるシミュレーション結果としての反射部材の反射面の反射率と光利用効率との関係を示す図である。It is a figure which shows the relationship between the reflectance of the reflective surface of a reflection member as a simulation result in embodiment of this invention, and light utilization efficiency. 本発明の実施例における反射部材の反射面を正反射面とした場合のシミュレーション結果としての半値全角と光利用効率との関係を示す図である。It is a figure which shows the relationship between the half value full angle as a simulation result at the time of making the reflective surface of the reflective member in the Example of this invention into a regular reflective surface, and light utilization efficiency. 本発明の実施例における反射部材の反射面を拡散反射面とした場合のシミュレーション結果としての半値全角と光利用効率との関係を示す図である。It is a figure which shows the relationship between the full width at half maximum as a simulation result at the time of making the reflective surface of the reflective member in the Example of this invention into a diffuse reflective surface, and light utilization efficiency.
 以下、本発明の実施形態に係る面光源装置について、図面を参照して説明する。なお、以下では、後述する平面視矩形状の導光板の厚み方向をZ方向、Z方向に直交する面内において、該矩形状の導光板の1辺に沿う方向をX方向、該X方向に直交する方向をY方向としたXYZ正規直交座標系を用いて説明する。 Hereinafter, a surface light source device according to an embodiment of the present invention will be described with reference to the drawings. In the following, the thickness direction of the rectangular light guide plate in plan view described later is the Z direction, and the direction along one side of the rectangular light guide plate is the X direction and the X direction in a plane perpendicular to the Z direction. A description will be given using an XYZ orthonormal coordinate system in which the orthogonal direction is the Y direction.
 この面光源装置は、液晶表示装置の液晶パネルを被照明体として照明するバックライトに用いて特に好適なものである。但し、被照明体としては、そのような液晶パネルに限られず、店頭等に配置される看板の照明として、ショーウィンドウ等の照明として、その他のあらゆる照明として、用いることもできる。以下では、液晶表示装置のバックライトとして用いられる場合を例に説明する。 This surface light source device is particularly suitable for use in a backlight that illuminates a liquid crystal panel of a liquid crystal display device as an object to be illuminated. However, the object to be illuminated is not limited to such a liquid crystal panel, and can also be used as illumination for a signboard arranged at a storefront or the like, illumination for a show window, or any other illumination. Below, the case where it uses as a backlight of a liquid crystal display device is demonstrated to an example.
 この実施形態の面光源装置1は、図1~図3に示されているように、光源2と、光源2からの光を導く矩形板状のフィルムからなる導光板(フィルム導光板)3とを備えている。 As shown in FIGS. 1 to 3, a surface light source device 1 of this embodiment includes a light source 2, a light guide plate (film light guide plate) 3 made of a rectangular plate-like film that guides light from the light source 2, and It has.
 光源2としては、この実施形態では、複数の点光源としてのLED(Light Emitting Diode)2aを所定の配列ピッチでY方向に沿って配列してなるものを用いている。この実施形態では、各LED2aは、その長手方向が入射面3aの長手方向(Y方向)に沿うように配置された細長い矩形状の基板2bに実装されている。LED2aとしては、青黄色系擬似白色発光ダイオードや3色(RGB)方式の白色発光ダイオード等を用いることができる。但し、点光源としては、このようなLED2aに限られず、例えば、半導体レーザー等を用いてもよい。また、光源2としては、このような点光源を配列してなるものにも限られず、冷陰極蛍光ランプ(CCFL)等の線状光源を用いてもよい。 As the light source 2, in this embodiment, LEDs (Light Emitting Diodes) 2a as a plurality of point light sources are arranged along the Y direction at a predetermined arrangement pitch. In this embodiment, each LED 2a is mounted on an elongated rectangular substrate 2b arranged such that its longitudinal direction is along the longitudinal direction (Y direction) of the incident surface 3a. As the LED 2a, a blue-yellow pseudo white light emitting diode, a three-color (RGB) white light emitting diode, or the like can be used. However, the point light source is not limited to such an LED 2a, and for example, a semiconductor laser or the like may be used. In addition, the light source 2 is not limited to one in which such point light sources are arranged, and a linear light source such as a cold cathode fluorescent lamp (CCFL) may be used.
 各LED2aは、その軸線(出射する光の主光線の方向)が概略+X方向を指向するように配置されている。ここで光源2(LED2a)の軸線は前記導光板3の入射面3a内を通過するように配置することが好ましい。LED2aとしては、砲弾型LEDを用いることができ、その発光部の幅(Y方向の寸法)をa、厚み(Z方向の寸法)をbとして、例えばa=b=3mmに設定されたものを用いることができる。但し、LED2aの幅aおよび厚みbは一致している必要はなく、LED2aに付与する配光特性に応じて、その断面を楕円形または長円形等に設定する場合には、互いに異なる寸法のものを用いることができる。 Each LED 2a is arranged such that its axis (direction of the principal ray of emitted light) is oriented substantially in the + X direction. Here, the axis of the light source 2 (LED 2a) is preferably arranged so as to pass through the incident surface 3a of the light guide plate 3. As the LED 2a, a bullet-type LED can be used, and the width (dimension in the Y direction) of the light emitting portion is a and the thickness (dimension in the Z direction) is b. For example, a LED set to a = b = 3 mm Can be used. However, the width a and the thickness b of the LED 2a do not need to be the same, and when the cross section is set to be oval or oval according to the light distribution characteristics imparted to the LED 2a, they have dimensions different from each other. Can be used.
 一般的なハイドーム型のLEDは配光がランバーシアンであり、半値角(半値全角)が120°程度の比較的に大きい発散光を出射する。この実施形態で用いるLED2aとしては、このような一般的な配光のLEDを用いることができる。但し、光利用効率を高くする観点から、少なくともZ方向における半値角θが、120°以下に設定されたものを用いることが好ましい。この半値角θは、40°以下に設定することがより好ましく、35°以下に設定することがさらに好ましく、可能な限り、平行光に近い光(以下、単に平行光という)であることが最も好ましい。Y方向の半値角φについては、Z方向の半値角θと同じでもよいが、それよりも大きいものを用いることが好ましい。各LED2aの数または配列ピッチは、導光板3のY方向の寸法、LED2aの最大発光量、Y方向の半値角φ等との関係において適宜な数または値が選定される。 A general high dome type LED has a Lambertian light distribution and emits a relatively large divergent light having a half-value angle (full-width at half maximum) of about 120 °. As the LED 2a used in this embodiment, an LED having such a general light distribution can be used. However, from the viewpoint of increasing the light utilization efficiency, it is preferable to use one in which at least the half-value angle θ in the Z direction is set to 120 ° or less. The half-value angle θ is more preferably set to 40 ° or less, and further preferably set to 35 ° or less, and is as close to parallel light as possible (hereinafter simply referred to as parallel light) as much as possible. preferable. The half-value angle φ in the Y direction may be the same as the half-value angle θ in the Z direction, but it is preferable to use a larger value than that. An appropriate number or value is selected as the number or arrangement pitch of each LED 2a in relation to the dimension in the Y direction of the light guide plate 3, the maximum light emission amount of the LED 2a, the half-value angle φ in the Y direction, and the like.
 光源2と導光板3の入射面3aとの離間距離(X方向の寸法)dは、0~20mmの範囲内で設定することが好ましい。但し、この離間距離dが0、すなわち光源2が入射面3aに接している場合、または近接している場合には、光源2の発熱による導光板3に対する影響が無視できないことがあるため、その影響がない程度離間させることが好ましい。 The separation distance (dimension in the X direction) d between the light source 2 and the incident surface 3a of the light guide plate 3 is preferably set within a range of 0 to 20 mm. However, when the separation distance d is 0, that is, when the light source 2 is in contact with or close to the incident surface 3a, the influence of the heat generated by the light source 2 on the light guide plate 3 may not be ignored. It is preferable that they are separated to such an extent that there is no influence.
 なお、Y方向の半値角θが上記のような好ましい範囲よりも大きい値に設定されたLED、または上記のような好ましい範囲内に設定されたLEDを用い、当該LEDの+X方向に隣接して(すなわち、LED2aと導光板3の入射面3aとの間に)レンズ等の光学素子を設けることにより、上記のような好ましい範囲の発散光または平行光に変換するようにしてもよい。本願明細書ではLEDに隣接したレンズ等の光学素子まで含めたものを、点光源とする。 It should be noted that an LED in which the half-value angle θ in the Y direction is set to a value larger than the preferable range as described above, or an LED set in the preferable range as described above is used, and is adjacent to the + X direction of the LED. By providing an optical element such as a lens (between the LED 2a and the incident surface 3a of the light guide plate 3), the light may be converted into divergent light or parallel light in a preferable range as described above. In the present specification, a point light source includes an optical element such as a lens adjacent to the LED.
 導光板3は、透明樹脂により構成されている。該透明樹脂としては、特に限定されないが、プロピレン-エチレン共重合体、ポリスチレン、(メタ)アクリル酸エステル-芳香族ビニル化合物共重合体、ポリエチレンテレフタレート、テレフタル酸-エチレングリコール-シクロヘキサンジメタノール共重合体、ポリカーボネート、メタクリル樹脂、脂環式構造を有する樹脂などを挙げることができる。なお、導光板3はガラスで構成してもよい。 The light guide plate 3 is made of a transparent resin. The transparent resin is not particularly limited, but propylene-ethylene copolymer, polystyrene, (meth) acrylic acid ester-aromatic vinyl compound copolymer, polyethylene terephthalate, terephthalic acid-ethylene glycol-cyclohexanedimethanol copolymer. , Polycarbonate, methacrylic resin, and resin having an alicyclic structure. The light guide plate 3 may be made of glass.
 これらの中で、脂環式構造を有する樹脂、メタクリル樹脂および(メタ)アクリル酸エステル-芳香族ビニル化合物共重合体樹脂を好適に用いることができ、脂環式構造を有する樹脂を特に好適に用いることができる。脂環式構造を有する樹脂は、溶融樹脂の流動性が良好なので、射出成形の場合は低い射出圧力で金型のキャビティを充填することができ、またウエルドラインが発生しにくく、押し出し成形の場合、成形時の厚みムラが少なく、成形後の形状付与が容易である。また、吸湿性が極めて低いので、寸法安定性に優れ、導光板に反りを生ずることがなく、比重が小さいので導光板を軽量化することができる。また、脂環式構造を有する樹脂としては、主鎖または側鎖に脂環式構造を有する重合体樹脂を挙げることができる。主鎖に脂環式構造を有する重合体樹脂は、機械的強度と耐熱性が良好なので、特に好適に用いることができる。脂環式構造は、飽和環状炭化水素構造であることが好ましく、その炭素数は、4~30であることが好ましく、5~20であることがより好ましく、5~15であることがさらに好ましい。脂環式構造を有する重合体樹脂中の脂環式構造を有する繰り返し単位の割合は、50重量%以上であることが好ましく、70重量%以上であることがより好ましく、90重量%以上であることがさらに好ましい。 Among these, resins having an alicyclic structure, methacrylic resins, and (meth) acrylic acid ester-aromatic vinyl compound copolymer resins can be preferably used, and resins having an alicyclic structure are particularly preferably used. Can be used. Resin with alicyclic structure has good flowability of molten resin, so in injection molding, mold cavity can be filled with low injection pressure, and weld line is less likely to occur. The thickness unevenness at the time of molding is small, and shape formation after molding is easy. Further, since the hygroscopic property is extremely low, the dimensional stability is excellent, the light guide plate is not warped, and the specific gravity is small, so that the light guide plate can be reduced in weight. Moreover, as resin which has an alicyclic structure, the polymer resin which has an alicyclic structure in a principal chain or a side chain can be mentioned. A polymer resin having an alicyclic structure in the main chain can be particularly preferably used because it has good mechanical strength and heat resistance. The alicyclic structure is preferably a saturated cyclic hydrocarbon structure, and the carbon number thereof is preferably 4 to 30, more preferably 5 to 20, and still more preferably 5 to 15. . The ratio of the repeating unit having an alicyclic structure in the polymer resin having an alicyclic structure is preferably 50% by weight or more, more preferably 70% by weight or more, and 90% by weight or more. More preferably.
 脂環式構造を有する樹脂としては、例えば、ノルボルネン系単量体の開環重合体若しくは開環共重合体またはそれらの水素添加物、ノルボルネン系単量体の付加重合体若しくは付加共重合体またはそれらの水素添加物、単環の環状オレフィン系単量体の重合体またはその水素添加物、環状共役ジエン系単量体の重合体またはその水素添加物、ビニル脂環式炭化水素系単量体の重合体若しくは共重合体またはそれらの水素添加物、ビニル芳香族炭化水素系単量体の重合体または共重合体の芳香環を含む不飽和結合部分の水素添加物などを挙げることができる。これらの中で、ノルボルネン系単量体の重合体の水素添加物およびビニル芳香族炭化水素系単量体の重合体の芳香環を含む不飽和結合部分の水素添加物は、機械的強度と耐熱性に優れるので、特に好適に用いることができる。メタクリル樹脂は、透明性に優れ、強靭でひびが入りにくいので、好適に用いることができる。メタクリル樹脂としては、JISK6717に規定されるメタクリル酸メチル重合物を80%以上含むメタクリル樹脂成形材料を挙げることができる。この規格に規定されるメタクリル樹脂の中で、ビカット軟化点温度96~100℃、メルトフローレート8~16の指定分類コード100-120のメタクリル樹脂は、適度な流動性と強度を有するので、好適に用いることができる。 Examples of the resin having an alicyclic structure include a ring-opening polymer or a ring-opening copolymer of a norbornene monomer or a hydrogenated product thereof, an addition polymer or an addition copolymer of a norbornene monomer, or Those hydrogenated products, polymers of monocyclic olefin monomers or their hydrogenated products, polymers of cyclic conjugated diene monomers or their hydrogenated products, vinyl alicyclic hydrocarbon monomers Or a hydrogenated product thereof, a polymer of a vinyl aromatic hydrocarbon monomer, or a hydrogenated product of an unsaturated bond part containing an aromatic ring of the copolymer. Among these, hydrogenated products of norbornene-based monomer polymers and hydrogenated products of unsaturated bonds including aromatic rings of vinyl aromatic hydrocarbon-based monomer polymers have mechanical strength and heat resistance. Since it is excellent in property, it can be used especially suitably. The methacrylic resin is excellent in transparency, tough and hardly cracked, so that it can be suitably used. Examples of the methacrylic resin include a methacrylic resin molding material containing 80% or more of a methyl methacrylate polymer defined in JIS K6717. Among the methacrylic resins specified in this standard, methacrylic resins having a specified classification code of 100 to 120 having a Vicat softening point temperature of 96 to 100 ° C. and a melt flow rate of 8 to 16 have suitable fluidity and strength. Can be used.
 本実施形態において用いる成形材料には、成形時における酸化劣化や熱劣化を防止するために、酸化防止剤を添加することができる。また、成形品の耐光性などを向上させるために、耐光安定剤を添加することができる。酸化防止剤としては、例えば、フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤などを挙げることができる。これらの酸化防止剤は、1種を単独で用いることができ、あるいは、2種以上を組みあわせて用いることができる。これらの中で、フェノール系酸化防止剤、特にアルキル置換酸化防止剤を好適に用いることができる。酸化防止剤の添加量は、樹脂成分100重量部に対して、0.01~2重量部であることが好ましく、0.02~1重量部であることがより好ましい。 An antioxidant can be added to the molding material used in the present embodiment in order to prevent oxidative degradation and thermal degradation during molding. Moreover, in order to improve the light resistance etc. of a molded article, a light resistance stabilizer can be added. Examples of the antioxidant include a phenolic antioxidant, a phosphorus antioxidant, and a sulfur antioxidant. These antioxidants can be used individually by 1 type, or can be used in combination of 2 or more type. Among these, phenolic antioxidants, particularly alkyl-substituted antioxidants can be suitably used. The addition amount of the antioxidant is preferably 0.01 to 2 parts by weight, and more preferably 0.02 to 1 part by weight with respect to 100 parts by weight of the resin component.
 耐光安定剤としては、例えば、ヒンダードアミン系耐光安定剤(HALS)、ベンゾエート系耐光安定剤などを挙げることができる。これらの耐光安定剤は、1種を単独で用いることができ、あるいは、2種以上を組み合わせて用いることもできる。これらの中で、ヒンダードアミン系耐光安定剤を特に好適に用いることができる。耐光安定剤の添加量は、樹脂成分100重量部に対して、0.01~2重量部であることが好ましく、0.02~1重量部であることがより好ましく、0.05~0.5重量部であることがさらに好ましい。 Examples of the light resistance stabilizer include hindered amine light resistance stabilizer (HALS) and benzoate light resistance stabilizer. These light-resistant stabilizers can be used alone or in combination of two or more. Among these, hindered amine light resistance stabilizers can be particularly preferably used. The addition amount of the light-resistant stabilizer is preferably 0.01 to 2 parts by weight, more preferably 0.02 to 1 part by weight, with respect to 100 parts by weight of the resin component. More preferably, it is 5 parts by weight.
 該成形材料には、必要に応じて、さらに他の添加剤を添加することができる。他の添加剤としては、例えば、熱安定剤、紫外線吸収剤、近赤外線吸収剤などの安定剤;滑剤、可塑剤などの樹脂改質剤;染料、顔料などの着色剤;帯電防止剤、光拡散剤などを挙げることができる。 Further additives may be added to the molding material as necessary. Other additives include, for example, stabilizers such as heat stabilizers, ultraviolet absorbers and near infrared absorbers; resin modifiers such as lubricants and plasticizers; colorants such as dyes and pigments; antistatic agents, light Examples include a diffusing agent.
 ところで、樹脂からなる導光板3は吸湿により寸法変化(伸びや反り)を生じ、特に導光板3の寸法が大きい場合(例えば、40インチ)には、当該寸法変化により光源12と入射端部14との相対位置関係が変化し、光利用効率が低下する。そこで、導光板3の吸水率は、0.25%以下に設定することが好ましく、0.1%以下がより好ましく、0.05%以下がさらに好ましい。この実施形態では、吸水率0.01%に設定している。なお、本願明細書中における吸水率は、JIS K7209 A法に準拠して、厚さ3mmで、直径50mmの円板形または一辺50mmの正方形の試験片を50℃で24時間乾燥したのちデシケーター中で放冷し、23℃の水に24時間浸漬したときの重量増から求めることができる。 By the way, the light guide plate 3 made of resin undergoes dimensional changes (elongation and warpage) due to moisture absorption, and particularly when the size of the light guide plate 3 is large (for example, 40 inches), the light source 12 and the incident end 14 are caused by the dimensional change. The relative positional relationship with the light changes, and the light use efficiency decreases. Therefore, the water absorption rate of the light guide plate 3 is preferably set to 0.25% or less, more preferably 0.1% or less, and even more preferably 0.05% or less. In this embodiment, the water absorption is set to 0.01%. The water absorption rate in the specification of the present application is in a desiccator after drying a test piece having a disk shape of 50 mm in diameter or a square of 50 mm on a side at 50 ° C. for 24 hours in accordance with JIS K7209 A method. It can be calculated from the weight increase when it is allowed to cool and then immersed in 23 ° C. water for 24 hours.
 導光板3は矩形状の板状体からなり、X方向およびY方向の寸法は、これが用いられる液晶表示装置の液晶パネルの有効面のサイズに応じて設定される。導光板3の厚み(Z方向の寸法)hは、光源2の厚み(Z方向の寸法)bよりも小さい値とすることができ、例えば、h=1.0mmに設定することができる。ここで導光板3の厚みhは、製造と取り扱いを容易にできることから、0.02mm以上であることが好ましく、0.1mm以上であることがより好ましく、薄型化と軽量化を実現できることから、5mm以下であることが好ましく、1mm以下であることがより好ましく、0.5mm以下であることがさらに好ましい。導光板3としては、その屈折率が、例えば、1.533(臨界角40.7°)のものを用いることができる。 The light guide plate 3 is made of a rectangular plate, and the dimensions in the X direction and the Y direction are set according to the size of the effective surface of the liquid crystal panel of the liquid crystal display device in which the light guide plate 3 is used. The thickness (dimension in the Z direction) h of the light guide plate 3 can be set to a value smaller than the thickness (dimension in the Z direction) b of the light source 2 and can be set to, for example, h = 1.0 mm. Here, since the thickness h of the light guide plate 3 can be easily manufactured and handled, it is preferably 0.02 mm or more, more preferably 0.1 mm or more, and reduction in thickness and weight can be realized. It is preferably 5 mm or less, more preferably 1 mm or less, and even more preferably 0.5 mm or less. As the light guide plate 3, one having a refractive index of, for example, 1.533 (critical angle 40.7 °) can be used.
 導光板3は、当該導光板3内を伝搬する光を反射する裏面3bと、この裏面3bに対向し、裏面3bで反射されまたは反射されずに導光板3内を伝搬される光を出射する出射面3cとを備えている。この実施形態では、裏面3bおよび出射面3c(裏面3b、出射面3cに凹凸がある場合にはそれぞれの平均面)はX-Y平面に実質的に平行な面となっている。 The light guide plate 3 is opposed to the back surface 3b that reflects light propagating through the light guide plate 3, and emits light that is propagated through the light guide plate 3 without being reflected or reflected by the back surface 3b. And an exit surface 3c. In this embodiment, the back surface 3b and the exit surface 3c (the respective average surfaces when the back surface 3b and the exit surface 3c are uneven) are substantially parallel to the XY plane.
 導光板3の裏面3bは、この実施形態では、一様な平面からなる反射面となっている。裏面3bは導光板3を構成する樹脂板の裏面側表面に反射金属を蒸着し、あるいは白色散乱板(白色反射板)を密着配置して構成することができる。なお、裏面3bを、入射面3aに近い側から遠い側に向かって(+X方向に向かって)、出射面3cに対する厚み(Z方向の寸法)が次第に小さくなるように、X-Y平面に対して傾斜した傾斜面としてもよい。 In this embodiment, the back surface 3b of the light guide plate 3 is a reflective surface composed of a uniform plane. The back surface 3b can be configured by depositing a reflective metal on the back surface of the resin plate constituting the light guide plate 3 or by closely arranging a white scattering plate (white reflecting plate). Note that the back surface 3b is directed to the XY plane so that the thickness (dimension in the Z direction) with respect to the exit surface 3c gradually decreases from the side closer to the incident surface 3a to the side farther (toward the + X direction). It is good also as an inclined surface inclined.
 また、裏面3bには、導光板3内を伝搬する光を高効率的に出射させるとともに、出射光を均一にする等のため、条列等の凹凸が配置されていてもよい。この場合の条列としては、例えば、裏面3bのY方向に沿うようにその長手方向が設定されるとともに、その断面が三角形状の条をX方向に複数配列してなる条列(プリズム条列)を用いることができる。同様に、裏面3bのX方向に沿うようにその長手方向が設定されるとともに、その断面が三角形状の条をY方向に複数配列してなる条列(プリズム条列)を用いてもよい。また条列の頂角や条を構成する一対の斜面のX-Y平面に対する傾斜角、条の配列のピッチ、高さ等が互いに異なるものを用いてもよい。さらに隣接する各条が同一の形状でなくてもよく、条の形状は、その断面が三角形のものに限定されず、その他の多角形または半円弧や楕円弧等の曲線形状であってもよい。これらを混在させたものであってもよい。さらに、条列は、裏面3bのY方向に渡って一様に形成されたもののみならず、その途中で分断し配列的にまたは離散的に形成されたものであってもよい。また、Y方向に対して僅かに斜交していてもよい。裏面3bは、不定形な粗面(ランダムに微小な凹凸を形成した面)にしてもよい。また、点状に形成されたものであってもよく、同一または異なる形状の複数の突起または窪みを配列的にまたは離散的に形成したものであってもよい。この場合の突起または窪みの形状としては、球形、円錐形、多角錐形等を採用することができる。また、白色インクの印刷や金属蒸着等により形状を形成してもよい。 Further, the back surface 3b may be provided with unevenness such as a row in order to emit light propagating through the light guide plate 3 with high efficiency and make the emitted light uniform. As a row in this case, for example, the longitudinal direction is set along the Y direction of the back surface 3b, and a row (a prism row) formed by arranging a plurality of triangular stripes in the X direction. ) Can be used. Similarly, the longitudinal direction may be set along the X direction of the back surface 3b, and a strip (prism strip) formed by arranging a plurality of triangular strips in the Y direction may be used. In addition, the apex angle of the row, the inclination angle of the pair of slopes constituting the row with respect to the XY plane, the pitch of the row arrangement, the height, etc. may be different from each other. Furthermore, adjacent strips may not have the same shape, and the shape of the strip is not limited to a triangular cross section, and may be another polygonal shape or a curved shape such as a semicircular arc or an elliptical arc. These may be mixed. Furthermore, the row is not limited to those formed uniformly over the Y direction of the back surface 3b, but may be formed in the middle or divided in the middle. Further, it may be slightly oblique with respect to the Y direction. The back surface 3b may be an irregular rough surface (a surface on which minute irregularities are randomly formed). Further, it may be formed in a dot shape, or may be formed by arranging a plurality of projections or depressions having the same or different shapes in an array or discretely. In this case, a spherical shape, a conical shape, a polygonal pyramid shape, or the like can be adopted as the shape of the protrusion or the depression. Alternatively, the shape may be formed by printing with white ink or metal vapor deposition.
 また、表面の傷付きを防ぐ観点から、線状か点状かを問わず、凸構造であることが好ましい。この場合、凸の高さは同観点から1μm以上であることが好ましく、5μm以上であることがさらに好ましい。 In addition, from the viewpoint of preventing the surface from being scratched, a convex structure is preferable regardless of whether it is linear or dotted. In this case, the height of the protrusion is preferably 1 μm or more from the same viewpoint, and more preferably 5 μm or more.
 導光板3の出射面3cは、導光板3内を伝搬される光を出射させる面であり、この実施形態では、一様な平坦面となっている。導光板3内を伝搬する光を高効率的に出射させるとともに、出射光を均一にする等のため、条列等の凹凸が配置されていてもよい。この場合の条列としては、例えば、出射面3cのY方向に沿うようにその長手方向が設定されるとともに、その断面が三角形状の条をX方向に複数配列してなる条列(プリズム条列)を用いることができる。同様に、出射面3cのX方向に沿うようにその長手方向が設定されるとともに、その断面が三角形状の条をY方向に複数配列してなる条列(プリズム条列)を用いてもよい。条列の頂角や条を構成する一対の斜面のX-Y平面に対する傾斜角、条の配列のピッチ、高さ等が互いに異なるものを用いてもよい。さらに隣接する各条が同一の形状でなくてもよく、条の形状は、その断面が三角形のものに限定されず、その他の多角形または半円弧や楕円弧等の曲線形状であってもよい。これらを混在させたものであってもよい。さらに、条列は、出射面3cのY方向に渡って一様に形成されたもののみならず、その途中で分断し配列的にまたは離散的に形成されたものであってもよい。また、Y方向に対して僅かに斜交していてもよい。出射面3cは、不定形な粗面(ランダムに微小な凹凸を形成した面)にしてもよい。また、点状に形成されたものであってもよく、同一または異なる形状の複数の突起または窪みを配列的にまたは離散的に形成したものであってもよい。この場合の突起または窪みの形状としては、球形、円錐形、多角錐形等を採用することができる。また、白色インクの印刷(スクリーン印刷やインクジェット印刷)や金属蒸着等により形状を形成してもよい。 The light exit surface 3c of the light guide plate 3 is a surface that emits light propagating through the light guide plate 3, and is a uniform flat surface in this embodiment. In order to emit light propagating through the light guide plate 3 with high efficiency and to make the emitted light uniform, unevenness such as a row may be arranged. As a row in this case, for example, the longitudinal direction is set along the Y direction of the exit surface 3c, and a row (prism strip) formed by arranging a plurality of triangular cross-sections in the X direction. Column). Similarly, the longitudinal direction may be set along the X direction of the exit surface 3c, and a strip (prism strip) formed by arranging a plurality of triangular strips in the Y direction may be used. . The apex angle of the row and the inclination angle of the pair of slopes constituting the row with respect to the XY plane, the pitch of the row arrangement, the height, etc. may be different from each other. Furthermore, adjacent strips may not have the same shape, and the shape of the strip is not limited to a triangular cross section, and may be another polygonal shape or a curved shape such as a semicircular arc or an elliptical arc. These may be mixed. Furthermore, the row is not limited to one that is uniformly formed over the Y direction of the exit surface 3c, but may be one that is divided in the middle and formed in an array or discretely. Further, it may be slightly oblique with respect to the Y direction. The emission surface 3c may be an irregular rough surface (a surface on which minute irregularities are randomly formed). Further, it may be formed in a dot shape, or may be formed by arranging a plurality of projections or depressions having the same or different shapes in an array or discretely. In this case, a spherical shape, a conical shape, a polygonal pyramid shape, or the like can be adopted as the shape of the protrusion or the depression. Alternatively, the shape may be formed by printing with white ink (screen printing or ink jet printing), metal deposition, or the like.
 また、表面の傷付きを防ぐ観点から、線状か点状かを問わず、凸構造であることが好ましい。この場合、凸の高さは同観点から1μm以上であることが好ましく、5μm以上であることがさらに好ましい。 In addition, from the viewpoint of preventing the surface from being scratched, a convex structure is preferable regardless of whether it is linear or dotted. In this case, the height of the protrusion is preferably 1 μm or more from the same viewpoint, and more preferably 5 μm or more.
 本実施形態の導光板3の製造において、その表面に前記特定形状の突起形状を形成する方法に特に制限はない。例えば、プリズム条列を形成する場合、平板状の導光板表面に形成することができ、あるいは、導光板の成形と同時にプリズム条列を形成することもできる。平板状の導光板の表面にプリズム条列を形成する方法としては特に制限はなく、例えば、所望の形状の線状プリズムを形成できる工具を用いた切削加工によることができ、あるいは、光硬化樹脂を塗布し、所望の形状の型を転写した状態で硬化させることもできる。導光板を押出成形で作製し、同時にプリズム条列を形成する場合は、所望のプリズム条列形状を有する異形ダイを用いて異形押出することができ、あるいは、押出後にエンボス加工によりプリズム条列を形成することもできる。導光板をキャスティングにより作製し、同時にプリズム条列を形成する場合は、所望のプリズム条列の形状を形成できるキャスティング型を用いることができる。導光板を射出成形により作製し、同時にプリズム条列を形成する場合は、所望のプリズム条列の形状を形成できる金型を用いることができる。光硬化樹脂への型形状転写、異形ダイによる押出し加工、エンボス加工、キャスティング、もしくは射出成形により、プリズム条列を形成する場合に使用する型は、所望の線状プリズムを形成できる工具を用いた型の金属部材への切削加工、もしくは所望の形状が形成された部材上への電鋳加工により得ることができる。 In the manufacture of the light guide plate 3 of the present embodiment, there is no particular limitation on the method for forming the specific protrusion shape on the surface. For example, when forming a prism row, it can be formed on the surface of a flat light guide plate, or the prism row can be formed simultaneously with the formation of the light guide plate. The method for forming the prism array on the surface of the flat light guide plate is not particularly limited. For example, the method can be performed by cutting using a tool capable of forming a linear prism having a desired shape, or a photo-curing resin. Can be applied and cured in a state where a mold having a desired shape is transferred. When the light guide plate is produced by extrusion molding and the prism rows are formed at the same time, the shape of the prism rows can be extrude using a deformed die having a desired prism row shape, or the prism rows can be formed by embossing after extrusion. It can also be formed. When the light guide plate is produced by casting and the prism rows are formed at the same time, a casting mold capable of forming a desired prism row shape can be used. When the light guide plate is manufactured by injection molding and the prism rows are formed at the same time, a mold capable of forming a desired prism row shape can be used. Die shape transfer to photo-curing resin, extrusion process using odd-shaped die, embossing, casting, or injection molding, the mold used to form the prism row was a tool that can form the desired linear prism It can be obtained by cutting a metal member of a mold or electroforming on a member having a desired shape.
 導光板3の出射面3c側には、この面光源装置1による照明光(出射面3cから出射される光)が一様で均一となるように、空気層を挟んで光拡散シートを、また、輝度を高められるようにプリズムシート等の光学シートが配置されることが好ましい。光学シートとしては、透明樹脂、透明樹脂に光拡散剤その他の添加剤を添加した板状体、板状体の一方または両方の面に複数の突起や条列等のパターンを形成したもの等を用いることができる。 On the exit surface 3c side of the light guide plate 3, a light diffusing sheet is sandwiched between air layers so that illumination light (light emitted from the exit surface 3c) by the surface light source device 1 is uniform and uniform. It is preferable that an optical sheet such as a prism sheet is disposed so as to increase the luminance. As an optical sheet, a transparent resin, a plate-like body in which a light diffusing agent or other additives are added to a transparent resin, or a plate-like body formed with a pattern such as a plurality of protrusions or rows on one or both surfaces, etc. Can be used.
 光源2から出射される光の導光板3の厚み方向(Z方向)への発散を制限するように、該光を導光板3の入射面3aに導く反射部材として、反射面(第1反射面)4aを有する反射板(第1反射部材)4および反射面(第2反射面)5aを有する反射板(第2反射部材)5が設けられている。この実施形態では、一対の反射板4,5は反射面4a,5aが互いに対向するように、導光板3の厚み方向(Z方向)に離間して、X-Y平面に関して八の字状となるように互いに対称に配置されている。 As a reflecting member that guides the light emitted from the light source 2 to the incident surface 3a of the light guide plate 3 so as to limit the divergence of the light in the thickness direction (Z direction) of the light guide plate 3, a reflective surface (first reflective surface) ) A reflecting plate (first reflecting member) 4 having 4a and a reflecting plate (second reflecting member) 5 having a reflecting surface (second reflecting surface) 5a are provided. In this embodiment, the pair of reflecting plates 4 and 5 are separated from each other in the thickness direction (Z direction) of the light guide plate 3 so that the reflecting surfaces 4a and 5a face each other, Are arranged symmetrically to each other.
 図2において、上側の反射板4は、その右端縁(+X方向側の端縁)が導光板3の入射面3aの上辺(+Z方向側の辺)に、その左端縁(-X方向側の端縁)がLED2aが実装された基板2bの上辺(+Z方向側の辺)にそれぞれ接続または近傍に位置するように配置することができる。同様に、下側の反射板5は、その右端縁(+X方向側の端縁)が導光板3の入射面3aの下辺(-Z方向側の辺)に、その左端縁(-X方向側の端縁)がLED2aが実装された基板2bの下辺(-Z方向側の辺)に接続または近傍に位置するように配置することができる。 In FIG. 2, the upper reflecting plate 4 has a right edge (+ X direction side edge) on an upper side (+ Z direction side) of the light incident surface 3a of the light guide plate 3 and a left edge (−X direction side edge). It can be arranged so that the edge) is connected to or located near the upper side (the side on the + Z direction side) of the substrate 2b on which the LED 2a is mounted. Similarly, the lower reflector 5 has a right edge (+ X direction side edge) on a lower side (−Z direction side) of the light incident surface 3a of the light guide plate 3 and a left edge (−X direction side). Can be arranged so as to be connected to or located near the lower side (side on the −Z direction side) of the substrate 2b on which the LED 2a is mounted.
 ところで、樹脂からなる導光板3は吸湿により寸法変化(伸びや反り)を生じ、特に導光板3の寸法が大きい場合(例えば、40インチ)には、当該寸法変化により光源2aと入射面3aとの相対位置関係が変化し、光利用効率が低下する。そこで、導光板3の吸水率は、0.25%以下に設定することが好ましく、0.1%以下がより好ましく、0.05%以下がさらに好ましい。この実施形態では、吸水率0.01%に設定している。なお、本願明細書中における記吸水率は、JIS K7209 A法に準拠して、厚さ3mmで、直径50mmの円板形または一辺50mmの正方形の試験片を50℃で24時間乾燥したのちデシケ一ター中で放冷し、23℃の水に24時間浸漬したときの重量増から求めることができる。 By the way, the light guide plate 3 made of resin undergoes a dimensional change (elongation or warpage) due to moisture absorption, and particularly when the size of the light guide plate 3 is large (for example, 40 inches), the light source 2a and the incident surface 3a are caused by the dimensional change. As a result, the light utilization efficiency decreases. Therefore, the water absorption rate of the light guide plate 3 is preferably set to 0.25% or less, more preferably 0.1% or less, and even more preferably 0.05% or less. In this embodiment, the water absorption is set to 0.01%. In addition, the water absorption rate in the present specification is a desiccant after drying a test piece having a disk shape of 50 mm in diameter or a square of 50 mm on a side at 50 ° C. for 24 hours in accordance with JIS K7209 A method. It can be determined from the increase in weight when allowed to cool in a plate and immersed in water at 23 ° C. for 24 hours.
 反射板4,5(反射面4a,5a)の互いのなす角度は、90°以下であることが好ましく、70°以下であることがより好ましく、60°以下であることがさらに好ましく、40°以下であることが特に好ましい。この実施形態では、反射板4,5(反射面4a,5a)のX-Y平面に対する角度を、それぞれ15°に設定することにより、互いのなす角度を30°に設定している。但し、反射板4,5(反射面4a,5a)のそれぞれのX-Y平面に対する角度は、互いに異なっていてもよい。即ち、反射板4の反射面4aのX-Y平面に対する角度をα、反射板5の反射面5aのX-Y平面に対する角度をβとして、α≠βとしてもよい(図5参照)。角度αまたは角度βはそれぞれ35°以下が好ましく、10°以下がさらに好ましい。一例として、反射板4,5(反射面4a,5a)の互いのなす角度(α+β)を30°とする場合において、α=22.5°、β=7.5°とすることができる。この場合において、角度αまたは角度βを略0°(即ち、反射面4aまたは反射面5aをX-Y平面に略平行)に設定してもよい(図6参照)。なお、図6では、α=30°、β=0°に設定している。反射板4(反射面4a)または反射板5(反射面5a)のX-Y平面に対する傾きを小さくすると(角度αまたは角度βを小さくすると)、バックライトに導光板3を設置した際、導光板3の裏面3bとバックライトフレーム間の間隔が小さくなるため、運搬中や使用中の導光板3の撓み、位置ずれを抑制することができるとともに、組立作業を容易化することができる。このように、角度αと角度βとを異ならせる場合において、図7に示すように、光源2(LED2a)の軸線(出射する光の主光線の方向)が導光板3の入射面3aの方向に向くように、角度αと角度βとの比率に応じて、光源2(LED2a)の軸線の導光板3の入射面3a(Y-Z平面)に対する傾きを変化させてもよい。例えば、図7において、α=30°、β=0°とする場合において、光源2(LED2a)の軸線と入射面3aの法線とのなす角度をγとして、γ=15°に設定することができる。 The angle between the reflecting plates 4 and 5 (reflecting surfaces 4a and 5a) is preferably 90 ° or less, more preferably 70 ° or less, further preferably 60 ° or less, and 40 °. It is particularly preferred that In this embodiment, the angle between the reflecting plates 4 and 5 (reflecting surfaces 4a and 5a) with respect to the XY plane is set to 15 °, so that the angle between them is set to 30 °. However, the angles of the reflecting plates 4 and 5 (reflecting surfaces 4a and 5a) with respect to the XY plane may be different from each other. That is, the angle of the reflecting surface 4a of the reflecting plate 4 with respect to the XY plane may be α, the angle of the reflecting surface 5a of the reflecting plate 5 with respect to the XY plane may be β, and α ≠ β (see FIG. 5). The angles α and β are each preferably 35 ° or less, and more preferably 10 ° or less. As an example, when the angle (α + β) between the reflecting plates 4 and 5 (reflecting surfaces 4a and 5a) is 30 °, α = 22.5 ° and β = 7.5 °. In this case, the angle α or the angle β may be set to approximately 0 ° (that is, the reflecting surface 4a or the reflecting surface 5a is substantially parallel to the XY plane) (see FIG. 6). In FIG. 6, α = 30 ° and β = 0 ° are set. When the inclination of the reflecting plate 4 (reflecting surface 4a) or the reflecting plate 5 (reflecting surface 5a) with respect to the XY plane is reduced (when the angle α or the angle β is reduced), the light guide plate 3 is guided when the light guide plate 3 is installed in the backlight. Since the distance between the back surface 3b of the optical plate 3 and the backlight frame is reduced, it is possible to suppress the deflection and misalignment of the light guide plate 3 during transportation and use, and facilitate assembly work. In this way, when the angle α and the angle β are different, the axis of the light source 2 (LED 2a) (the direction of the principal ray of the emitted light) is the direction of the incident surface 3a of the light guide plate 3 as shown in FIG. The inclination of the axis of the light source 2 (LED 2a) with respect to the incident surface 3a (YZ plane) of the light guide plate 3 may be changed according to the ratio of the angle α and the angle β. For example, in FIG. 7, when α = 30 ° and β = 0 °, the angle between the axis of the light source 2 (LED 2a) and the normal of the incident surface 3a is set as γ, and γ = 15 ° is set. Can do.
 各反射板4,5の反射面4a,5aは、その全面において正反射面(鏡面)となっている。反射板4,5は、例えば、銀板(銀シート)の一方の面(反射面4a,5aとなるべき面)を鏡面仕上げすることにより製造することができる。反射面の面粗度を小さくすることで反射率を上げることが出来る。反射面4a,5aの反射率は、96%以上であることが好ましい。反射面4a,5aの全面を正反射面とすることにより、全面を拡散反射面とした場合と比較して、光利用効率を向上することができる。 The reflecting surfaces 4a and 5a of the reflecting plates 4 and 5 are regular reflecting surfaces (mirror surfaces) over the entire surface. The reflecting plates 4 and 5 can be manufactured, for example, by mirror-finishing one surface (surface to be the reflecting surfaces 4a and 5a) of a silver plate (silver sheet). The reflectance can be increased by reducing the surface roughness of the reflecting surface. The reflectivity of the reflecting surfaces 4a and 5a is preferably 96% or more. By using the entire reflecting surfaces 4a and 5a as regular reflecting surfaces, the light utilization efficiency can be improved as compared with the case where the entire reflecting surfaces are diffuse reflecting surfaces.
 但し、反射面4a,5aの光源2側の一部4b,5bのみを、光を拡散反射(ランバート散乱)させる性質を有する材質からなる拡散反射面とすることができる。このような光を拡散反射させる材料としては、硫酸バリウムを例示することができる。この場合、反射板4,5の正反射面となるべき部分を鏡面仕上げし、その余の部分(拡散反射面となるべき部分4b,5b)に、このような光を拡散反射させる材料をコーティングすることにより製造することができる。 However, only the portions 4b and 5b on the light source 2 side of the reflection surfaces 4a and 5a can be diffuse reflection surfaces made of a material having a property of diffusing and reflecting light (Lambert scattering). An example of such a material that diffusely reflects light is barium sulfate. In this case, the part which should become a regular reflection surface of the reflectors 4 and 5 is mirror-finished, and the material which diffuses and reflects such light is coated on the remaining part ( parts 4b and 5b which should become a diffuse reflection surface). Can be manufactured.
 また、反射面4a,5aの光源2側の一部4b、5bのみを、光を拡散反射させる凹凸構造からなる拡散反射面とすることもできる。この場合、反射板4,5は、反射面4a,5aの正反射面となるべき部分を鏡面仕上げし、その余の部分(拡散反射面となるべき部分4b、5b)に、このような光を拡散反射させる凹凸構造を付与することにより製造することができる。 Alternatively, only the portions 4b and 5b on the light source 2 side of the reflection surfaces 4a and 5a can be diffused reflection surfaces made of a concavo-convex structure that diffusely reflects light. In this case, the reflecting plates 4 and 5 are mirror-finished on the portions to be the regular reflection surfaces of the reflection surfaces 4a and 5a, and such light is applied to the remaining portions ( portions 4b and 5b to be the diffuse reflection surfaces). Can be produced by providing a concavo-convex structure that diffusely reflects the light.
 凹凸構造としては、その断面が三角形状の条を複数配列してなる条列を例示することができる。この場合、条列を構成する各条は、反射板4,5の板面において、その長手方向が概略Y方向となるように配置される。各条の断面形状は、三角形状に限られず、多角形、円弧形状、その他の曲線形状であってもよい。なお、このような凹凸構造からなる拡散反射面は、条列ではなく、複数の突起を配列的にまたは離散的に形成したものであってもよい。この場合の突起の形状としては、球形、円錐形、多角錐形等を採用することができる。凹凸構造からなる拡散反射面は、不定形な粗面(ランダムに微小な凹凸を形成した面)であってもよい。 An example of the concavo-convex structure is a row formed by arranging a plurality of strips having a triangular cross section. In this case, the strips constituting the strip are arranged on the plate surfaces of the reflection plates 4 and 5 such that the longitudinal direction thereof is substantially the Y direction. The cross-sectional shape of each strip is not limited to a triangular shape, and may be a polygonal shape, an arc shape, or other curved shape. Note that the diffuse reflection surface having such a concavo-convex structure may be formed by arranging a plurality of protrusions in an array or discretely instead of in a row. As the shape of the protrusion in this case, a spherical shape, a conical shape, a polygonal pyramid shape or the like can be adopted. The diffuse reflection surface having the concavo-convex structure may be an irregular rough surface (a surface on which minute undulations are randomly formed).
 反射面4a,5aの導光板3側の一部を構成する正反射面と、その余の部分(光源2側の一部4b,5b)を構成する拡散反射面との割合としては、反射面4a,5aの全領域のうち、2/3以上を正反射面、残りの1/3以内を拡散反射面とすることができる。反射板の互いのなす角度が60°のときは1/3以内で、15°のときは1/12以内とすることができる。 As a ratio of the regular reflection surface constituting a part of the reflection surfaces 4a and 5a on the light guide plate 3 side and the diffuse reflection surface constituting the other part ( parts 4b and 5b on the light source 2 side), the reflection surface Of all the regions 4a and 5a, 2/3 or more can be regular reflection surfaces, and the remaining 1/3 can be diffuse reflection surfaces. When the angle between the reflecting plates is 60 °, it can be within 1/3, and when it is 15 °, it can be within 1/12.
 このように反射面4a,5aの導光板3側の一部を正反射面とし、その余の部分(光源2側の一部4b,5b)を拡散反射面としたのは、光源2から出射された上述した配光の光は、その多くは反射面4a,5aにおいて適宜な角度で、例えば1~2回程度反射されることにより、入射面3aから導光板3内へ導かれるが、その一部(例えば、3回程度以上反射された光)は光源2側に戻ってしまい、損失になると考えられる。従って、反射面4a,5aの光源2側の一部4b,5bを拡散反射面とすることにより、このような光源2側に戻ってしまう光を拡散反射させることで、戻り光の一部を導光板3側にさらに戻すことが可能となり、光利用効率を向上させることができる。また、拡散反射することにより、その一部の光が入射面3a側に向かうため、入光効率が上がると考えられる。 In this way, a part of the reflection surfaces 4a and 5a on the light guide plate 3 side is a regular reflection surface and the other portions ( parts 4b and 5b on the light source 2 side) are diffuse reflection surfaces. Most of the above-mentioned light distribution light is reflected into the light guide plate 3 from the incident surface 3a by being reflected by the reflecting surfaces 4a and 5a at an appropriate angle, for example, once or twice. A part (for example, light reflected about three times or more) returns to the light source 2 side and is considered to be a loss. Therefore, by making the reflection surfaces 4a, 5a part 4b, 5b on the light source 2 side as a diffuse reflection surface, the light returning to the light source 2 side is diffusely reflected, so that part of the return light is reflected. It becomes possible to return to the light guide plate 3 side, and the light utilization efficiency can be improved. Further, it is considered that the light incident efficiency is increased because part of the light is directed toward the incident surface 3a side by the diffuse reflection.
 次に、上述した構成の変更例を、図4を参照して説明する。図4の構成においては、反射部材は、上述した反射板4,5に加えて、反射板(第3反射部材)6を備えている。反射板6は、反射板4と反射板5の中間に設けられており、その一方の反射面6aが反射板4の反射面4aに所定の第1角度をもって対向するとともに、他方の反射面6bが反射板5の反射面5aに所定の第2角度をもって対向した状態で、X-Y平面に平行するように配置されている。ここでは、第1角度と第2角度とは互いに一致しており、反射面4aと反射面5aとのなす角度の半分に設定されている。但し、第1角度と第2角度とは、必ずしも一致している必要はなく、また、反射板6はX-Y平面に対して傾斜していてもよい。 Next, a modified example of the configuration described above will be described with reference to FIG. In the configuration of FIG. 4, the reflecting member includes a reflecting plate (third reflecting member) 6 in addition to the reflecting plates 4 and 5 described above. The reflection plate 6 is provided between the reflection plate 4 and the reflection plate 5, and one of the reflection surfaces 6 a faces the reflection surface 4 a of the reflection plate 4 with a predetermined first angle, and the other reflection surface 6 b. Is arranged so as to be parallel to the XY plane in a state of facing the reflecting surface 5a of the reflecting plate 5 at a predetermined second angle. Here, the first angle and the second angle coincide with each other, and are set to half of the angle formed by the reflecting surface 4a and the reflecting surface 5a. However, the first angle and the second angle do not necessarily coincide with each other, and the reflecting plate 6 may be inclined with respect to the XY plane.
 反射板6の反射面6a,6bは、それぞれ正反射面となっているのは、反射面4a,5aの場合と同様である。反射板6は、例えば、銀板(銀シート)の両面を鏡面仕上げすることにより製造することができる。反射板4,5の光源2側の一部に拡散反射面4b,5bを設ける場合には、反射板6のこれらに対応する部分を同様な拡散反射面とすることができる。このような反射板6を追加することにより、光利用効率をさらに向上することが可能である。 The reflection surfaces 6a and 6b of the reflection plate 6 are regular reflection surfaces, respectively, as in the case of the reflection surfaces 4a and 5a. The reflection plate 6 can be manufactured, for example, by mirror-finishing both surfaces of a silver plate (silver sheet). In the case where the diffuse reflection surfaces 4b and 5b are provided on a part of the reflection plates 4 and 5 on the light source 2 side, the corresponding portions of the reflection plate 6 can be formed as similar diffusion reflection surfaces. By adding such a reflector 6, it is possible to further improve the light utilization efficiency.
 各LED2aのY方向の配光とZ方向の配光とは、LED2aのY方向の半値角をφ(図3参照)、LED2aのZ方向の半値角をθ(図2参照)として、
 φ/θ>1
の関係を満たすことが好ましく、より好ましくはφ/θ≧2、さらに好ましくはφ/θ≧3の関係を満たすことが好ましい。光利用効率を向上する観点からは、LED2aのZ方向の半値角θを小さくすることが好ましいのは上述した通りであるが、Y方向の半値角φをも小さくすると、導光板3の出射面3cにおいて、いわゆる目玉(局所的に明るい部分)等が発生し、輝度ムラを生じる場合があるためである。φ/θの上限は、不必要に配光させない範囲となるが、例えば100以下とすることができる。
The light distribution in the Y direction and the light distribution in the Z direction of each LED 2a is as follows. The half value angle in the Y direction of the LED 2a is φ (see FIG. 3), and the half value angle in the Z direction of the LED 2a is θ (see FIG. 2).
φ / θ> 1
This relationship is preferably satisfied, more preferably φ / θ ≧ 2, and further preferably φ / θ ≧ 3. From the viewpoint of improving the light utilization efficiency, it is preferable to reduce the half-value angle θ in the Z direction of the LED 2a as described above. However, if the half-value angle φ in the Y direction is also reduced, the emission surface of the light guide plate 3 This is because in 3c, so-called eyeballs (locally bright portions) or the like may occur, resulting in uneven brightness. The upper limit of φ / θ is a range in which light distribution is not unnecessarily performed, but can be set to 100 or less, for example.
 また、各LED2aのY方向の配光は、図3に示されているように、LED2aのY方向の配列ピッチをp、LED2aの幅(Y方向の寸法)をa、LED2aと導光板3の入射面3aとの距離(X方向の離間寸法)をdとして、
 φ>tan-1((a+p)/2d)
の関係を満たすことが好ましい。このような関係に設定することにより、隣接するLED2aから出射される各光がY方向において互いに重複するので、導光板3の出射面3cにおける輝度ムラを抑制できるからである。なお、配列ピッチpの最小値はLED2aの幅aとの関係で互いに干渉しない程度の寸法に制限される。
Further, as shown in FIG. 3, the light distribution in the Y direction of each LED 2 a is p, the arrangement pitch in the Y direction of the LEDs 2 a, the width (dimension in the Y direction) of the LEDs 2 a, and the LED 2 a and the light guide plate 3. Assuming that the distance from the incident surface 3a (space in the X direction) is d,
φ> tan −1 ((a + p) / 2d)
It is preferable to satisfy the relationship. This is because, by setting the relationship as described above, the light emitted from the adjacent LEDs 2a overlap each other in the Y direction, so that uneven brightness on the emission surface 3c of the light guide plate 3 can be suppressed. Note that the minimum value of the array pitch p is limited to a size that does not interfere with each other in relation to the width a of the LEDs 2a.
 上述したように構成した面光源装置1により、被照明体としての液晶パネルの全領域を照明する面光源装置を構成することができる。また、上述したように構成した面光源装置1を、1つのユニットとして、複数のユニットを適宜に配列することにより、被照明体としての液晶パネルの全領域を照明する面光源装置を構成することもできる。 The surface light source device 1 configured as described above can constitute a surface light source device that illuminates the entire area of the liquid crystal panel as the object to be illuminated. In addition, the surface light source device 1 configured as described above is configured as a single unit, and a plurality of units are appropriately arranged to configure a surface light source device that illuminates the entire area of the liquid crystal panel as the object to be illuminated. You can also.
 液晶表示装置は、液晶層を挟んで、配向膜、透明電極、カラーフィルタ、ガラス板、偏光板等を適宜に積層配置してなる液晶パネルの裏面側に、上述した面光源装置1が所定の位置関係で配置されるように、それぞれを筐体等に固定して構成される。 In the liquid crystal display device, the surface light source device 1 described above is provided on a back surface side of a liquid crystal panel in which an alignment film, a transparent electrode, a color filter, a glass plate, a polarizing plate, and the like are appropriately stacked with a liquid crystal layer interposed therebetween. Each is configured to be fixed to a housing or the like so as to be arranged in a positional relationship.
 次に、本発明の実施例について説明する。上述した面光源装置1について、ソフトウエアによる光学シミュレータを用いて、光学モデルを作成し、適宜に諸元を設定・変更しつつ、光利用効率(%)または導光板3の出射面3cから出射される光の強度分布を算出する。光学シミュレータとしては、照明設計解析ソフトウエアLightTools(開発元:ORA社)を用いた。 Next, examples of the present invention will be described. For the surface light source device 1 described above, an optical model is created using a software optical simulator, and light usage efficiency (%) or light is emitted from the light exit surface 3c of the light guide plate 3 while appropriately setting and changing specifications. The intensity distribution of the emitted light is calculated. As an optical simulator, lighting design analysis software LightTools (developer: ORA) was used.
 面光源装置1の性能は、算出された光利用効率の高低で評価する。また、算出された光の強度分布に基づいて、出射面3cにおける輝度ムラを評価する。輝度ムラは、算出された光の強度分布から、実際に目視した場合に、いわゆる目玉(局所的に明るい部分)が発生すると予想される場合を不良「×」、目玉が発生しないと予想される場合を良好「○」、これらの中間程度である場合をやや良好「△」として評価する。 The performance of the surface light source device 1 is evaluated based on the calculated light use efficiency. Further, based on the calculated light intensity distribution, luminance unevenness on the exit surface 3c is evaluated. The brightness unevenness is assumed to be a defective “x” when a so-called eyeball (locally bright part) is expected to occur when actually viewed from the calculated light intensity distribution, and no eyeball is expected to occur. The case is evaluated as good “◯”, and the case that is intermediate between these is evaluated as slightly good “Δ”.
(実施例1-1)
 図2に示した構成を用いた。LED2aの配光(Z方向の半値角θ)は30°、LED高さ(反射板4,5のLED2aの配置される側のZ方向の寸法)bは3mm、離間距離(LED2aと導光板3の入射面3aとの間のX方向の寸法)dは3mmとした。反射面(反射面4a,5a)は全面に渡って正反射面とし、その反射率は96%とした。導光板材質(導光板3の材質)としては、ノルボルネン樹脂(ZEONOR1060R(商品名、日本ゼオン社製))、屈折率1.533)を用いるものとした。導光板厚み(導光板3のZ方向の寸法)hは0.2mmとした。シミュレーションの結果、光利用効率(%)は、表1に示す通り、75%であった。
Example 1-1
The configuration shown in FIG. 2 was used. The light distribution (half-value angle θ in the Z direction) of the LED 2a is 30 °, the LED height (dimension in the Z direction on the side where the LED 2a is disposed on the reflectors 4 and 5) b is 3 mm, and the separation distance (the LED 2a and the light guide plate 3 (Dimension in the X direction between the incident surface 3a) and d was 3 mm. The reflection surfaces (reflection surfaces 4a and 5a) were regular reflection surfaces over the entire surface, and the reflectance was 96%. As the light guide plate material (material of the light guide plate 3), norbornene resin (ZEONOR 1060R (trade name, manufactured by Nippon Zeon Co., Ltd.), refractive index 1.533) was used. The thickness of the light guide plate (dimension in the Z direction of the light guide plate 3) h was 0.2 mm. As a result of the simulation, the light utilization efficiency (%) was 75% as shown in Table 1.
(実施例1-2)
 図2に示した構成において、反射板4,5の反射面4a,5aの光源2側の一部(3分の1)を拡散反射面とした以外は、実施例1-1と同じとした。なお、反射面4a,5aの拡散反射面とした以外の部分(正反射面)の反射率は96%とした。シミュレーションの結果、光利用効率(%)は、表1に示す通り、77%であった。
Example 1-2
The configuration shown in FIG. 2 is the same as Example 1-1 except that a part (one third) of the reflecting surfaces 4a and 5a of the reflecting plates 4 and 5 on the light source 2 side is a diffuse reflecting surface. . The reflectance of the portions (regular reflection surfaces) other than the diffuse reflection surfaces of the reflection surfaces 4a and 5a was 96%. As a result of the simulation, the light utilization efficiency (%) was 77% as shown in Table 1.
(実施例1-3)
 図4に示した反射板3枚の構成(中間の反射板6を追加した構成)を用い、反射板6の反射面6a,6bを全面に渡って正反射面(反射率96%)とした以外は、実施例1-1と同じとした。シミュレーションの結果、光利用効率(%)は、表1に示す通り、79%であった。
(Example 1-3)
Using the configuration of three reflecting plates shown in FIG. 4 (a configuration in which an intermediate reflecting plate 6 is added), the reflecting surfaces 6a and 6b of the reflecting plate 6 are formed as regular reflecting surfaces (reflectance 96%) over the entire surface. Except for this, it was the same as Example 1-1. As a result of the simulation, the light utilization efficiency (%) was 79% as shown in Table 1.
(結論1)
 上記実施例1-1から明らかなように、反射面4a,5aを正反射面とすることにより、光利用効率を大幅に向上することができる。
(Conclusion 1)
As is clear from Example 1-1, the light utilization efficiency can be greatly improved by making the reflecting surfaces 4a and 5a regular reflection surfaces.
 上記実施例1-1と実施例1-2との対比から明らかなように、反射面4a,5aの光源2側の一部のみを拡散反射面とすることにより、僅かではあるが、光利用効率をさらに向上することができる。 As is clear from the comparison between Example 1-1 and Example 1-2, only a part of the reflection surfaces 4a and 5a on the light source 2 side is used as a diffuse reflection surface, but the light utilization is slight. Efficiency can be further improved.
 上記実施例1-1と実施例1-3との対比から明らかなように、反射面4a,5aの中間に反射板6を追加することにより、僅かではあるが、光利用効率をさらに向上することができる。 As is clear from the comparison between Example 1-1 and Example 1-3, the light utilization efficiency is further improved by adding the reflector 6 in the middle of the reflecting surfaces 4a and 5a. be able to.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(実施例2-1)
 図2に示した構成を用いた。LED2aの配光(Z方向の半値角θ)は40°、LED高さ(反射板4,5のLED2aの配置される側のZ方向の寸法)bは4mm、離間距離(LED2aと導光板3の入射面3aとの間のX方向の寸法)dは9.3mmとした。反射面(反射面4a,5a)は全面に渡って正反射面とし、その反射率は98%とした。導光板材質(導光板3の材質)としては、ノルボルネン樹脂(ZEONOR1060R(商品名、日本ゼオン社製))、屈折率1.533)を用いるものとした。導光板厚み(導光板3のZ方向の寸法)hは1mmとした。シミュレーションの結果、光利用効率(%)は、表1に示す通り、69%であった。
Example 2-1
The configuration shown in FIG. 2 was used. The light distribution (half-value angle θ in the Z direction) of the LED 2a is 40 °, the LED height (dimension in the Z direction on the side where the LED 2a of the reflecting plates 4 and 5 is disposed) b is 4 mm, and the separation distance (the LED 2a and the light guide plate 3 (Dimension in the X direction between the incident surface 3a) and d was set to 9.3 mm. The reflection surfaces (reflection surfaces 4a and 5a) are regular reflection surfaces over the entire surface, and the reflectance is 98%. As the light guide plate material (material of the light guide plate 3), norbornene resin (ZEONOR 1060R (trade name, manufactured by Nippon Zeon Co., Ltd.), refractive index 1.533) was used. The thickness of the light guide plate (dimension in the Z direction of the light guide plate 3) h was 1 mm. As a result of the simulation, the light utilization efficiency (%) was 69% as shown in Table 1.
(実施例2-2)
 反射板4,5の反射面4a,5aの反射率を97%とした以外は、実施例2-1と同じとした。シミュレーションの結果、光利用効率(%)は、表2に示す通り、60%であった。
(Example 2-2)
The same as Example 2-1, except that the reflectivity of the reflecting surfaces 4a and 5a of the reflecting plates 4 and 5 was set to 97%. As a result of the simulation, the light utilization efficiency (%) was 60% as shown in Table 2.
(実施例2-3)
 反射板4,5の反射面4a,5aの反射率を96%とした以外は、実施例2-1と同じとした。シミュレーションの結果、光利用効率(%)は、表2に示す通り、55%であった。
(Example 2-3)
The same as Example 2-1, except that the reflectivity of the reflecting surfaces 4a and 5a of the reflecting plates 4 and 5 was set to 96%. As a result of the simulation, the light utilization efficiency (%) was 55% as shown in Table 2.
(実施例2-4)
 反射板4,5の反射面4a,5aの反射率を95%とした以外は、実施例2-1と同じとした。シミュレーションの結果、光利用効率(%)は、表2に示す通り、50%であった。
(Example 2-4)
The same as Example 2-1, except that the reflectivity of the reflection surfaces 4a and 5a of the reflection plates 4 and 5 was set to 95%. As a result of the simulation, the light utilization efficiency (%) was 50% as shown in Table 2.
(実施例2-5)
 反射板4,5の反射面4a,5aの反射率を94%とした以外は、実施例2-1と同じとした。シミュレーションの結果、光利用効率(%)は、表2に示す通り、49%であった。
(Example 2-5)
The same as Example 2-1, except that the reflectance of the reflecting surfaces 4a and 5a of the reflecting plates 4 and 5 was set to 94%. As a result of the simulation, the light utilization efficiency (%) was 49% as shown in Table 2.
(実施例2-6)
 反射板4,5の反射面4a,5aの反射率を93%とした以外は、実施例2-1と同じとした。シミュレーションの結果、光利用効率(%)は、表2に示す通り、47%であった。
(Example 2-6)
The same as Example 2-1, except that the reflectance of the reflecting surfaces 4a and 5a of the reflecting plates 4 and 5 was set to 93%. As a result of the simulation, the light utilization efficiency (%) was 47% as shown in Table 2.
(結論2)
 上記実施例2-1~実施例2-6の結果について、横軸に反射率(正反射率)(%)を、縦軸に光利用効率(%)をとったグラフを図8に示す。同図から、反射率が93%から大きくなるに従って、光利用効率は比較的に小さい傾斜で上昇し、96%付近を変曲点として、96%からさらに大きくなるに従って、比較的に大きい傾斜で上昇していることがわかる。従って、反射率を96%以上の値に設定することにより、高い光利用効率を実現することができる。
(Conclusion 2)
FIG. 8 shows a graph of the results of Examples 2-1 to 2-6, in which the horizontal axis represents the reflectance (regular reflectance) (%) and the vertical axis represents the light utilization efficiency (%). From the figure, as the reflectivity increases from 93%, the light utilization efficiency increases with a relatively small slope, and as the inflection point is around 96%, with a relatively large slope as it increases from 96%. You can see that it is rising. Therefore, by setting the reflectance to a value of 96% or higher, high light utilization efficiency can be realized.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(実施例3-1)
 導光板材質として、アクリル樹脂(PMMA:ポリメタクリル酸メチル樹脂、屈折率1.49)を用いることとした以外は、実施例2-1と同じとした。シミュレーションの結果、光利用効率(%)は、表3に示す通り、69%であった。
Example 3-1
The light guide plate was the same as Example 2-1, except that acrylic resin (PMMA: polymethyl methacrylate resin, refractive index 1.49) was used. As a result of the simulation, the light utilization efficiency (%) was 69% as shown in Table 3.
(実施例3-2)
 導光板材質として、アクリル樹脂(PMMA:ポリメタクリル酸メチル樹脂、屈折率1.49)を用いることとした以外は、実施例2-2と同じとした。シミュレーションの結果、光利用効率(%)は、表3に示す通り、60%であった。
(Example 3-2)
The same as Example 2-2, except that acrylic resin (PMMA: polymethyl methacrylate resin, refractive index 1.49) was used as the light guide plate material. As a result of the simulation, the light utilization efficiency (%) was 60% as shown in Table 3.
(実施例3-3)
 導光板材質として、アクリル樹脂(PMMA:ポリメタクリル酸メチル樹脂、屈折率1.49)を用いることとした以外は、実施例2-3と同じとした。シミュレーションの結果、光利用効率(%)は、表3に示す通り、55%であった。
Example 3-3
Example 3 was the same as Example 2-3 except that acrylic resin (PMMA: polymethyl methacrylate resin, refractive index 1.49) was used as the light guide plate material. As a result of the simulation, the light utilization efficiency (%) was 55% as shown in Table 3.
(実施例3-4)
 導光板材質として、アクリル樹脂(PMMA:ポリメタクリル酸メチル樹脂、屈折率1.49)を用いることとした以外は、実施例2-4と同じとした。シミュレーションの結果、光利用効率(%)は、表3に示す通り、50%であった。
(Example 3-4)
Example 2-4 was the same as Example 2-4 except that acrylic resin (PMMA: polymethyl methacrylate resin, refractive index 1.49) was used as the light guide plate material. As a result of the simulation, the light utilization efficiency (%) was 50% as shown in Table 3.
(実施例3-5)
 導光板材質として、アクリル樹脂(PMMA:ポリメタクリル酸メチル樹脂、屈折率1.49)を用いることとした以外は、実施例2-5と同じとした。シミュレーションの結果、光利用効率(%)は、表3に示す通り、49%であった。
(Example 3-5)
The same as Example 2-5, except that acrylic resin (PMMA: polymethyl methacrylate resin, refractive index 1.49) was used as the light guide plate material. As a result of the simulation, the light utilization efficiency (%) was 49% as shown in Table 3.
(結論3)
 上記実施例3-1~実施例3-5の結果から、上記結論2と同じ結論が得られた。
(Conclusion 3)
From the results of Example 3-1 to Example 3-5, the same conclusion as the above conclusion 2 was obtained.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(実施例4-1)
 図2に示した構成を用いた。LED2aの配光(Z方向の半値角θ)は30°、LED高さ(反射板4,5のLED2aの配置される側のZ方向の寸法)bは3mm、離間距離(LED2aと導光板3の入射面3aとの間のX方向の寸法)dは14mmとした。反射面角度(反射面4a,5aの互いのなす角度)は15°(反射面4aのX-Y平面に対する角度をα、反射面5aのX-Y平面に対する角度をβとして、α=β=7.5°)とした。反射面(反射面4a,5a)は全面に渡って正反射面とし、その反射率は96%とした。導光板材質(導光板3の材質)としては、ノルボルネン樹脂(ZEONOR1060R(商品名、日本ゼオン社製))、屈折率1.533)を用いるものとした。導光板厚み(導光板3のZ方向の寸法)hは1mmとした。シミュレーションの結果、光利用効率(%)は、表4に示す通り、56%であった。
Example 4-1
The configuration shown in FIG. 2 was used. The light distribution (half-value angle θ in the Z direction) of the LED 2a is 30 °, the LED height (dimension in the Z direction on the side where the LED 2a is disposed on the reflectors 4 and 5) b is 3 mm, and the separation distance (the LED 2a and the light guide plate 3 (Dimension in the X direction between the incident surface 3a) and d was 14 mm. The reflection surface angle (angle formed by the reflection surfaces 4a and 5a) is 15 ° (the angle of the reflection surface 4a with respect to the XY plane is α, the angle of the reflection surface 5a with respect to the XY plane is β, α = β = 7.5 °). The reflection surfaces (reflection surfaces 4a and 5a) were regular reflection surfaces over the entire surface, and the reflectance was 96%. As the light guide plate material (material of the light guide plate 3), norbornene resin (ZEONOR 1060R (trade name, manufactured by Nippon Zeon Co., Ltd.), refractive index 1.533) was used. The thickness of the light guide plate (dimension in the Z direction of the light guide plate 3) h was 1 mm. As a result of the simulation, the light utilization efficiency (%) was 56% as shown in Table 4.
(実施例4-2)
 離間距離(LED2aと導光板3の入射面3aとの間のX方向の寸法)dを9mm、反射面角度(反射面4a,5aの互いのなす角度)を25°(反射面4aのX-Y平面に対する角度をα、反射面5aのX-Y平面に対する角度をβとして、α=β=12.5°)とした以外は、実施例4-1と同じとした。シミュレーションの結果、光利用効率(%)は、表4に示す通り、61%であった。
(Example 4-2)
The separation distance (dimension in the X direction between the LED 2a and the incident surface 3a of the light guide plate 3) d is 9 mm, and the reflection surface angle (angle formed by the reflection surfaces 4a and 5a) is 25 ° (X− of the reflection surface 4a). Except for α = β = 12.5 °, where α is the angle with respect to the Y plane and β is the angle of the reflecting surface 5a with respect to the XY plane, the same as Example 4-1. As a result of the simulation, the light utilization efficiency (%) was 61% as shown in Table 4.
(実施例4-3)
 離間距離(LED2aと導光板3の入射面3aとの間のX方向の寸法)dを7.4mm、反射面角度(反射面4a,5aの互いのなす角度)を30°(反射面4aのX-Y平面に対する角度をα、反射面5aのX-Y平面に対する角度をβとして、α=β=15°)とした以外は、実施例4-1と同じとした。シミュレーションの結果、光利用効率(%)は、表4に示す通り、68%であった。
(Example 4-3)
The separation distance (dimension in the X direction between the LED 2a and the incident surface 3a of the light guide plate 3) d is 7.4 mm, and the reflection surface angle (angle formed by the reflection surfaces 4a and 5a) is 30 ° (of the reflection surface 4a). Except for α = β = 15 °, where α is the angle with respect to the XY plane, and β is the angle of the reflecting surface 5a with respect to the XY plane, the same as Example 4-1. As a result of the simulation, the light utilization efficiency (%) was 68% as shown in Table 4.
(実施例4-4)
 反射面角度(反射面4a,5aの互いのなす角度)を35°(反射面4aのX-Y平面に対する角度をα、反射面5aのX-Y平面に対する角度をβとして、α=β=17.5°)とした以外は、実施例4-3と同じとした。シミュレーションの結果、光利用効率(%)は、表4に示す通り、61%であった。
(Example 4-4)
The reflection surface angle (angle formed between the reflection surfaces 4a and 5a) is 35 ° (the angle of the reflection surface 4a with respect to the XY plane is α, the angle of the reflection surface 5a with respect to the XY plane is β, α = β = 17.5 °), except that it was the same as Example 4-3. As a result of the simulation, the light utilization efficiency (%) was 61% as shown in Table 4.
(実施例4-5)
 反射面角度(反射面4a,5aの互いのなす角度)を40°(反射面4aのX-Y平面に対する角度をα、反射面5aのX-Y平面に対する角度をβとして、α=β=20°)とした以外は、実施例4-3と同じとした。シミュレーションの結果、光利用効率(%)は、表4に示す通り、59%であった。
(Example 4-5)
The reflection surface angle (angle formed by the reflection surfaces 4a and 5a) is 40 ° (the angle of the reflection surface 4a with respect to the XY plane is α, the angle of the reflection surface 5a with respect to the XY plane is β, α = β = 20 °) except that the angle was 20 °. As a result of the simulation, the light utilization efficiency (%) was 59% as shown in Table 4.
(実施例4-6)
 反射面角度(反射面4a,5aの互いのなす角度)を60°(反射面4aのX-Y平面に対する角度をα、反射面5aのX-Y平面に対する角度をβとして、α=β=30°)とした以外は、実施例4-3と同じとした。シミュレーションの結果、光利用効率(%)は、表4に示す通り、58%であった。
(Example 4-6)
The reflection surface angle (angle formed by the reflection surfaces 4a and 5a) is 60 ° (the angle of the reflection surface 4a with respect to the XY plane is α, the angle of the reflection surface 5a with respect to the XY plane is β, α = β = 30 °), but the same as Example 4-3. As a result of the simulation, the light utilization efficiency (%) was 58% as shown in Table 4.
(比較例4-1)
 反射面角度(反射面4a,5aの互いのなす角度)を90°(反射面4aのX-Y平面に対する角度をα、反射面5aのX-Y平面に対する角度をβとして、α=β=45°)とした以外は、実施例4-3と同じとした。シミュレーションの結果、光利用効率(%)は、表4に示す通り、45%であった。
(Comparative Example 4-1)
The reflection surface angle (angle formed by the reflection surfaces 4a and 5a) is 90 ° (the angle of the reflection surface 4a with respect to the XY plane is α, the angle of the reflection surface 5a with respect to the XY plane is β, α = β = 45 °), but the same as Example 4-3. As a result of the simulation, the light utilization efficiency (%) was 45% as shown in Table 4.
(結論4)
 上記実施例4-1~実施例4-3の結果から、LED2aと導光板3の入射面3aとの離間寸法dが、14mm~7.4mmの範囲では、小さくなるにつれて、光利用効率が向上することがわかる。
(Conclusion 4)
From the results of Example 4-1 to Example 4-3, the light utilization efficiency is improved as the separation dimension d between the LED 2a and the incident surface 3a of the light guide plate 3 is reduced in the range of 14 mm to 7.4 mm. I understand that
 また、上記実施例4-1~実施例4-6の結果から、反射面4a,5aの互いのなす角度は、15~60°の範囲が好ましく、25~35°の範囲がより好ましく、30°程度が最も好ましいことがわかる。 Further, from the results of Examples 4-1 to 4-6, the angle between the reflecting surfaces 4a and 5a is preferably in the range of 15 to 60 °, more preferably in the range of 25 to 35 °, and 30 It can be seen that the degree of ° is most preferable.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(実施例5-1)
 図5に示した構成を用い、反射面4aのX-Y平面に対する角度をα=22.5°、反射面5aのX-Y平面に対する角度をβ=7.5°とした以外は、実施例4-3と同じとした。なお、光源2(LED2a)の軸線(出射する光の主光線の方向)と導光板3の入射面3aの法線方向とのなす角度(γ)は、実施例4-3と同様に、0°(即ち、平行)とした。また、離間距離d(図5参照)は7.4mmとした。シミュレーションの結果、光利用効率(%)は、表5に示す通り、66%であった。
Example 5-1
5 except that the angle of the reflecting surface 4a with respect to the XY plane is α = 22.5 ° and the angle of the reflecting surface 5a with respect to the XY plane is β = 7.5 °. Same as Example 4-3. Note that the angle (γ) between the axis of the light source 2 (LED 2a) (the direction of the principal ray of the emitted light) and the normal direction of the incident surface 3a of the light guide plate 3 is 0 as in Example 4-3. ° (ie, parallel). The separation distance d (see FIG. 5) was 7.4 mm. As a result of the simulation, the light utilization efficiency (%) was 66% as shown in Table 5.
(実施例5-2)
 図6に示した構成を用い、反射面4aのX-Y平面に対する角度をα=30°、反射面5aのX-Y平面に対する角度をβ=0°とした以外は、実施例4-3と同じとした。なお、光源2(LED2a)の軸線(出射する光の主光線の方向)と導光板3の入射面3aの法線方向とのなす角度(γ)は、実施例4-3と同様に、0°(即ち、平行)とした。また、離間距離d(図6参照)は7.4mmとした。シミュレーションの結果、光利用効率(%)は、表5に示す通り、63%であった。
(Example 5-2)
Example 4-3, except that the configuration shown in FIG. 6 was used and the angle of the reflecting surface 4a with respect to the XY plane was α = 30 ° and the angle of the reflecting surface 5a with respect to the XY plane was β = 0 °. And the same. Note that the angle (γ) between the axis of the light source 2 (LED 2a) (the direction of the principal ray of the emitted light) and the normal direction of the incident surface 3a of the light guide plate 3 is 0 as in Example 4-3. ° (ie, parallel). The separation distance d (see FIG. 6) was 7.4 mm. As a result of the simulation, the light utilization efficiency (%) was 63% as shown in Table 5.
(実施例5-3)
 図7に示した構成を用い、光源2(LED2a)の軸線(出射する光の主光線の方向)と導光板3の入射面3aの法線方向とのなす角度を、γ=15°とした以外は、実施例5-2と同じとした。なお、離間距離d(図7参照)は7.4mmとした。シミュレーションの結果、光利用効率(%)は、表5に示す通り、65%であった。
(Example 5-3)
Using the configuration shown in FIG. 7, the angle between the axis of the light source 2 (LED 2a) (the direction of the principal ray of the emitted light) and the normal direction of the incident surface 3a of the light guide plate 3 is γ = 15 °. Except for this, it was the same as Example 5-2. The separation distance d (see FIG. 7) was 7.4 mm. As a result of the simulation, the light utilization efficiency (%) was 65% as shown in Table 5.
(結論5)
 上記実施例4-3、実施例5-1、実施例5-2の結果から、反射板5aのX-Y平面に対する傾斜角度(β)を小さくすることで傾斜角度が大きい場合と同等の光利用効率を維持したまま、導光板3の撓み、位置ずれを抑制し、組み立てを容易にできることがわかる。また、実施例5-2、実施例5-3の結果より、反射面4a,5aのX-Y平面に対する角度にあわせて、光源2(LED2a)の軸線を導光板3の入射面3aの方向に向けるように入射面3a(Y-Z平面)に対する傾きを変化させることで、光利用効率が上がっていることがわかる。
(Conclusion 5)
From the results of Example 4-3, Example 5-1, and Example 5-2, the light equivalent to the case where the inclination angle is large by reducing the inclination angle (β) of the reflecting plate 5a with respect to the XY plane is small. It can be seen that the light guide plate 3 can be bent and misaligned while maintaining the utilization efficiency, and can be easily assembled. Further, from the results of Example 5-2 and Example 5-3, the axis of the light source 2 (LED 2a) is aligned with the direction of the incident surface 3a of the light guide plate 3 according to the angle of the reflecting surfaces 4a and 5a with respect to the XY plane. It can be seen that the light utilization efficiency is increased by changing the inclination with respect to the incident surface 3a (YZ plane) so as to be directed toward.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
(実施例6-1)
 図1~3に示した構成を用い、LED2aの配光(Z方向の半値角θおよびY方向の半値角φ)をそれぞれ0°(すなわち平行光)とした。反射部材として、反射板4,5の反射面4a,5aが全面に渡って正反射面(反射率96%)としたものを用いた。LED高さ(LED2aのZ方向の寸法)bは3mm、基板2bの高さは5.0mm、導光板厚み(導光板3のZ方向の寸法)hは1mmとした。LED2aと導光板3の入射面3aとの間隔(X方向の離間寸法)dは、7.4mmとした。LED2aの配列方向のピッチを7.5mmとした。反射板4の反射面4aと反射板5の反射面5aとのなす角度は30°(各反射面4a,5aのX-Y平面に対する角度はそれぞれ15°)とし、導光板3の材質としては、ノルボルネン樹脂(ZEONOR1060R(商品名、日本ゼオン社製))、屈折率1.533、臨界角40.7度)を用いた。シミュレーションの結果、光利用効率(%)は、表6に示す通り、97%であった。
Example 6-1
The configurations shown in FIGS. 1 to 3 were used, and the light distribution (half-value angle θ in the Z direction and half-value angle φ in the Y direction) of the LED 2a was 0 ° (ie, parallel light). As the reflection member, the reflection surfaces 4a and 5a of the reflection plates 4 and 5 were used as regular reflection surfaces (reflectance 96%) over the entire surface. The LED height (dimension in the Z direction of the LED 2a) b was 3 mm, the height of the substrate 2b was 5.0 mm, and the thickness of the light guide plate (dimension in the Z direction of the light guide plate 3) h was 1 mm. The distance d (space in the X direction) d between the LED 2a and the incident surface 3a of the light guide plate 3 was 7.4 mm. The pitch in the arrangement direction of the LEDs 2a was 7.5 mm. The angle formed by the reflecting surface 4a of the reflecting plate 4 and the reflecting surface 5a of the reflecting plate 5 is 30 ° (the angles of the reflecting surfaces 4a and 5a with respect to the XY plane are 15 °, respectively). Norbornene resin (ZEONOR 1060R (trade name, manufactured by Nippon Zeon Co., Ltd.)), refractive index 1.533, critical angle 40.7 degrees) was used. As a result of the simulation, the light utilization efficiency (%) was 97% as shown in Table 6.
(実施例6-2)
 LED2aの配光(Z方向の半値角θおよびY方向の半値角φ)をそれぞれ15°とした以外は、実施例6-1と同じとした。シミュレーションの結果、光利用効率(%)は、表6に示す通り、77%であった。
(Example 6-2)
Example 2 was the same as Example 6-1 except that the light distribution (half-value angle θ in the Z direction and half-value angle φ in the Y direction) of the LED 2a was 15 °. As a result of the simulation, the light utilization efficiency (%) was 77% as shown in Table 6.
(実施例6-3)
 LED2aの配光(Z方向の半値角θおよびY方向の半値角φ)をそれぞれ30°とした以外は、実施例6-1と同じとした。シミュレーションの結果、光利用効率(%)は、表6に示す通り、68%であった。
(Example 6-3)
The light distribution of the LED 2a (half-value angle θ in the Z direction and half-value angle φ in the Y direction) was set to 30 °, respectively, and was the same as Example 6-1. As a result of the simulation, the light utilization efficiency (%) was 68% as shown in Table 6.
(実施例6-4)
 LED2aの配光(Z方向の半値角θおよびY方向の半値角φ)をそれぞれ15°とした。反射部材として、反射板4,5の反射面4a,5aが全面に渡って正反射面(反射率96%)としたものを用いた。LED高さ(LED2aのZ方向の寸法)bは1mm、基板2bの高さは1.7mm、導光板厚み(導光板3のZ方向の寸法)hは0.2mmとした。LED2aと導光板3の入射面3aとの間隔(X方向の離間寸法)dは、7.4mmとした。LED2aの配列方向のピッチを7.5mmとした。反射板4の反射面4aと反射板5の反射面5aとのなす角度は30°(各反射面4a,5aのX-Y平面に対する角度はそれぞれ15°)とし、導光板3の材質としては、ノルボルネン樹脂(ZEONOR1060R(商品名、日本ゼオン社製))、屈折率1.533、臨界角40.7度)を用いた。シミュレーションの結果、光利用効率(%)は、表6に示す通り、61%であった。
(Example 6-4)
The light distribution of LED 2a (half-value angle θ in the Z direction and half-value angle φ in the Y direction) was set to 15 °. As the reflecting member, the reflecting surfaces 4a and 5a of the reflecting plates 4 and 5 were used as regular reflecting surfaces (reflectance 96%) over the entire surface. The LED height (dimension in the Z direction of the LED 2a) b was 1 mm, the height of the substrate 2b was 1.7 mm, and the thickness of the light guide plate (dimension in the Z direction of the light guide plate 3) h was 0.2 mm. The distance d (space in the X direction) d between the LED 2a and the incident surface 3a of the light guide plate 3 was 7.4 mm. The pitch in the arrangement direction of the LEDs 2a was 7.5 mm. The angle formed by the reflecting surface 4a of the reflecting plate 4 and the reflecting surface 5a of the reflecting plate 5 is 30 ° (the angles of the reflecting surfaces 4a and 5a with respect to the XY plane are 15 °, respectively). , Norbornene resin (ZEONOR 1060R (trade name, manufactured by Nippon Zeon Co., Ltd.), refractive index 1.533, critical angle 40.7 degrees) was used. As a result of the simulation, the light utilization efficiency (%) was 61% as shown in Table 6.
(比較例6-1)
 LED2aの配光(Z方向の半値角θおよびY方向の半値角φ)をそれぞれ45°とした以外は、実施例6-1と同じとした。シミュレーションの結果、光利用効率(%)は、表6に示す通り、59%であった。
(Comparative Example 6-1)
The light distribution (the half-value angle θ in the Z direction and the half-value angle φ in the Y direction) of the LED 2a was set to 45 °, respectively, and was the same as Example 6-1. As a result of the simulation, the light utilization efficiency (%) was 59% as shown in Table 6.
(比較例6-2)
 LED2aの配光(Z方向の半値角θおよびY方向の半値角φ)をそれぞれ60°とした以外は、実施例6-1と同じとした。シミュレーションの結果、光利用効率(%)は、表6に示す通り、58%であった。
(Comparative Example 6-2)
The light distribution (the half-value angle θ in the Z direction and the half-value angle φ in the Y direction) of the LED 2a was the same as that in Example 6-1 except that each was set to 60 °. As a result of the simulation, the light utilization efficiency (%) was 58% as shown in Table 6.
(比較例6-3)
 LED2aの配光(Z方向の半値角θおよびY方向の半値角φ)をそれぞれ90°とした以外は、実施例6-1と同じとした。シミュレーションの結果、光利用効率(%)は、表6に示す通り、55%であった。
(Comparative Example 6-3)
The same as Example 6-1 except that the light distribution (half-value angle θ in the Z direction and half-value angle φ in the Y direction) of the LED 2a was 90 °. As a result of the simulation, the light utilization efficiency (%) was 55% as shown in Table 6.
(比較例6-4)
 LED2aの配光(Z方向の半値角θおよびY方向の半値角φ)をそれぞれ120°(ランバーシアン)とした以外は、実施例6-1と同じとした。シミュレーションの結果、光利用効率(%)は、表6に示す通り、53%であった。
(Comparative Example 6-4)
The same as Example 6-1 except that the light distribution (half-value angle θ in the Z direction and half-value angle φ in the Y direction) of the LED 2a was 120 ° (Lambertian). As a result of the simulation, the light utilization efficiency (%) was 53% as shown in Table 6.
(結論6)
 上記実施例6-1~実施例6-3,比較例6-1~比較例6-4の結果について、横軸に半値全角(°)を、縦軸に光利用効率(%)をとったグラフを図9に示す。同図から、半値角が120°から小さくなるに従って、光利用効率は比較的に小さい傾斜で上昇し、35°付近を変曲点として、35°からさらに小さくなるに従って、比較的に大きい傾斜で上昇していることがわかる。従って、半値角を35°以下の値に設定することにより、高い光利用効率を実現することができる。
(Conclusion 6)
Regarding the results of Examples 6-1 to 6-3 and Comparative Examples 6-1 to 6-4, the horizontal axis represents the full width at half maximum (°), and the vertical axis represents the light use efficiency (%). A graph is shown in FIG. From the figure, as the half-value angle decreases from 120 °, the light utilization efficiency increases with a relatively small slope, and around 35 ° as an inflection point, with a relatively large slope as it further decreases from 35 °. You can see that it is rising. Accordingly, high light utilization efficiency can be realized by setting the half-value angle to a value of 35 ° or less.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
(実施例7-1)
 反射部材として、反射板4,5の反射面4a,5aが全面に渡って拡散反射面としたものを用いた以外は、実施例6-1と同じとした。シミュレーションの結果、光利用効率(%)は、表7に示す通り、72%であった。
Example 7-1
The reflective member was the same as Example 6-1 except that the reflective surfaces 4a and 5a of the reflective plates 4 and 5 were diffused reflective surfaces over the entire surface. As a result of the simulation, the light utilization efficiency (%) was 72% as shown in Table 7.
(実施例7-2)
 反射部材として、反射板4,5の反射面4a,5aが全面に渡って拡散反射面としたものを用いた以外は、実施例6-2と同じとした。シミュレーションの結果、光利用効率(%)は、表7に示す通り、63%であった。
(Example 7-2)
The reflective member was the same as Example 6-2 except that the reflective surfaces 4a and 5a of the reflective plates 4 and 5 were diffused reflective surfaces over the entire surface. As a result of the simulation, the light utilization efficiency (%) was 63% as shown in Table 7.
(実施例7-3)
 反射部材として、反射板4,5の反射面4a,5aが全面に渡って拡散反射面としたものを用いた以外は、実施例6-3と同じとした。シミュレーションの結果、光利用効率(%)は、表7に示す通り、57%であった。
(Example 7-3)
The reflective member was the same as Example 6-3 except that the reflective surfaces 4a and 5a of the reflective plates 4 and 5 were diffused reflective surfaces over the entire surface. As a result of the simulation, the light utilization efficiency (%) was 57% as shown in Table 7.
(比較例7-1)
 反射部材として、反射板4,5の反射面4a,5aが全面に渡って拡散反射面としたものを用いた以外は、比較例6-1と同じとした。シミュレーションの結果、光利用効率(%)は、表7に示す通り、53%であった。
(Comparative Example 7-1)
The reflection member was the same as Comparative Example 6-1, except that the reflection surfaces 4a and 5a of the reflection plates 4 and 5 were diffuse reflection surfaces over the entire surface. As a result of the simulation, the light utilization efficiency (%) was 53% as shown in Table 7.
(比較例7-2)
 反射部材として、反射板4,5の反射面4a,5aが全面に渡って拡散反射面としたものを用いた以外は、比較例6-2と同じとした。シミュレーションの結果、光利用効率(%)は、表7に示す通り、52%であった。
(Comparative Example 7-2)
The reflection member was the same as Comparative Example 6-2 except that the reflection surfaces 4a and 5a of the reflection plates 4 and 5 were diffuse reflection surfaces over the entire surface. As a result of the simulation, the light utilization efficiency (%) was 52% as shown in Table 7.
(比較例7-3)
 反射部材として、反射板4,5の反射面4a,5aが全面に渡って拡散反射面としたものを用いた以外は、比較例6-3と同じとした。シミュレーションの結果、光利用効率(%)は、表7に示す通り、51%であった。
(Comparative Example 7-3)
The reflection member was the same as Comparative Example 6-3 except that the reflection surfaces 4a and 5a of the reflection plates 4 and 5 were diffuse reflection surfaces over the entire surface. As a result of the simulation, the light utilization efficiency (%) was 51% as shown in Table 7.
(比較例7-4)
 反射部材として、反射板4,5の反射面4a,5aが全面に渡って拡散反射面としたものを用いた以外は、比較例6-4と同じとした。シミュレーションの結果、光利用効率(%)は、表7に示す通り、50%であった。
(Comparative Example 7-4)
The reflection member was the same as Comparative Example 6-4 except that the reflection surfaces 4a and 5a of the reflection plates 4 and 5 were diffuse reflection surfaces over the entire surface. As a result of the simulation, the light utilization efficiency (%) was 50% as shown in Table 7.
(結論7)
 上記実施例7-1~実施例7-3,比較例7-1~比較例7-4の結果について、横軸に半値全角(°)を、縦軸に光利用効率(%)をとったグラフを図10に示す。同図から、半値角が120°から小さくなるに従って、光利用効率は比較的に小さい傾斜で上昇し、35°付近を変曲点として、35°からさらに小さくなるに従って、比較的に大きい傾斜で上昇していることがわかる。従って、半値角を35°以下の値に設定することにより、高い光利用効率を実現することができる。
(Conclusion 7)
Regarding the results of Examples 7-1 to 7-3 and Comparative Examples 7-1 to 7-4, the horizontal axis represents the full width at half maximum (°), and the vertical axis represents the light use efficiency (%). A graph is shown in FIG. From the figure, as the half-value angle decreases from 120 °, the light utilization efficiency increases with a relatively small slope, and around 35 ° as an inflection point, with a relatively large slope as it further decreases from 35 °. You can see that it is rising. Accordingly, high light utilization efficiency can be realized by setting the half-value angle to a value of 35 ° or less.
 なお、図9と図10の比較から、反射部材の反射面4a,5aは、正反射面の方が、拡散反射面よりも光利用効率が高いことがわかる。従って、反射面4a,5aとしては、正反射面を用いることが好ましい。 9 and 10 that the reflection surfaces 4a and 5a of the reflection member have higher light utilization efficiency than the diffuse reflection surface. Therefore, it is preferable to use regular reflection surfaces as the reflection surfaces 4a and 5a.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
(実施例8-1)
 LED2aの配光について、Z方向の半値角θを15°、Y方向の半値角φを45°(すなわち、φ/θ=3)とした以外は、実施例6-1と同じとした。なお、LED2aの幅(Y方向の寸法)aは3.0mm、配列ピッチpは7.5mmに設定した。シミュレーションの結果、表8に示す通り、輝度ムラは、良好「○」であった。
Example 8-1
The light distribution of the LED 2a was the same as Example 6-1 except that the half-value angle θ in the Z direction was 15 ° and the half-value angle φ in the Y direction was 45 ° (ie, φ / θ = 3). The width (dimension in the Y direction) a of the LED 2a was set to 3.0 mm, and the arrangement pitch p was set to 7.5 mm. As a result of the simulation, as shown in Table 8, the luminance unevenness was good “◯”.
(実施例8-2)
 LED2aの配光について、Z方向の半値角θを15°、Y方向の半値角φを30°(すなわち、φ/θ=2)とした以外は、実施例6-1と同じとした。シミュレーションの結果、表8に示す通り、輝度ムラは、やや良好「△」であった。
(Example 8-2)
The light distribution of the LED 2a was the same as Example 6-1 except that the half-value angle θ in the Z direction was 15 ° and the half-value angle φ in the Y direction was 30 ° (ie, φ / θ = 2). As a result of the simulation, as shown in Table 8, the luminance unevenness was slightly good “Δ”.
(比較例8-1)
 LED2aの配光について、Z方向の半値角θを15°、Y方向の半値角φを15°(すなわち、φ/θ=1)とした以外は、実施例6-1と同じとした。シミュレーションの結果、表8に示す通り、輝度ムラは、不良「×」であった。
(Comparative Example 8-1)
The light distribution of the LED 2a was the same as that in Example 6-1 except that the half-value angle θ in the Z direction was 15 ° and the half-value angle φ in the Y direction was 15 ° (ie, φ / θ = 1). As a result of the simulation, as shown in Table 8, the luminance unevenness was defective “x”.
(結論8)
 上記実施例8-1~実施例8-2,比較例8-1の結果から、LED2aのZ方向の半値角θとY方向の半値角φとの比(φ/θ)が1より大きい場合に、輝度ムラが良好と判定され、さらに(φ/θ)が3以上の場合にさらに好ましく、より均一な光を出射できることがわかる。
(Conclusion 8)
From the results of Example 8-1 to Example 8-2 and Comparative Example 8-1, the ratio (φ / θ) between the half-value angle θ in the Z direction and the half-value angle φ in the Y direction of the LED 2a is greater than 1. In addition, it is further preferable that the luminance unevenness is determined to be good and (φ / θ) is 3 or more, and it can be seen that more uniform light can be emitted.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 なお、以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上述した実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。 The embodiment described above is described for easy understanding of the present invention, and is not described for limiting the present invention. Therefore, each element disclosed in the embodiment described above is intended to include all design changes and equivalents belonging to the technical scope of the present invention.

Claims (12)

  1.  その側端面の一部が光を入射する入射面とされた導光板と、前記入射面に沿って設けられ、該入射面に向けて光を出射する光源とを備える面光源装置であって、
     前記光源から出射される光の前記導光板の厚み方向への発散を制限するように、該光を前記入射面に導く反射面を有する反射部材を設け、
     前記反射面は、前記導光板の厚み方向に離間して配置された第1反射面を有する第1反射部材および第2反射面を有する第2反射部材を有し、
     前記第1反射面と前記第2反射面とは、互いに5°~70°の角度をなすように配置され、正反射面を有する面光源装置。
    A surface light source device comprising: a light guide plate having a part of the side end surface as an incident surface on which light is incident; and a light source that is provided along the incident surface and emits light toward the incident surface.
    In order to limit the divergence of the light emitted from the light source in the thickness direction of the light guide plate, a reflective member having a reflective surface for guiding the light to the incident surface is provided.
    The reflective surface includes a first reflective member having a first reflective surface and a second reflective member having a second reflective surface, which are disposed apart from each other in the thickness direction of the light guide plate.
    The surface light source device, wherein the first reflection surface and the second reflection surface are arranged so as to form an angle of 5 ° to 70 ° with each other and have a regular reflection surface.
  2.  前記正反射面の反射率が96%以上となるように設定された請求項1に記載の面光源装置。 2. The surface light source device according to claim 1, wherein the reflectance of the regular reflection surface is set to be 96% or more.
  3.  前記光源と前記入射面との離間距離が0~20mmの範囲内で設定された請求項1または2に記載の面光源装置。 3. The surface light source device according to claim 1, wherein a separation distance between the light source and the incident surface is set within a range of 0 to 20 mm.
  4.  前記反射部材は、前記第1反射部材および前記第2反射部材の間に配置された第3反射部材を有し、
     前記第3反射部材は、前記反射面として、前記第1反射面に対向する第3反射面および前記第2反射面に対向する第4反射面を有する請求項1~3のいずれか一項に記載の面光源装置。
    The reflective member has a third reflective member disposed between the first reflective member and the second reflective member,
    The third reflecting member according to any one of claims 1 to 3, wherein the third reflecting member has a third reflecting surface facing the first reflecting surface and a fourth reflecting surface facing the second reflecting surface as the reflecting surface. The surface light source device described.
  5.  前記光源は、複数の点光源を前記入射面に沿うように配列して構成され、
     各点光源の配光特性が、前記導光板の厚み方向における半値角をθとして、
     θ≦120°に設定した請求項1~4のいずれか一項に記載の面光源装置。
    The light source is configured by arranging a plurality of point light sources along the incident surface,
    The light distribution characteristic of each point light source is set to θ as the half-value angle in the thickness direction of the light guide plate.
    5. The surface light source device according to claim 1, wherein θ ≦ 120 ° is set.
  6.  前記反射面の前記光源側の一部を、光を拡散反射させる性質を有する材質からなる拡散反射面とした請求項1~5のいずれか一項に記載の面光源装置。 The surface light source device according to any one of claims 1 to 5, wherein a part of the reflection surface on the light source side is a diffuse reflection surface made of a material having a property of diffusing and reflecting light.
  7.  前記反射面の前記光源側の一部を、光を拡散反射させる凹凸構造からなる拡散反射面とした請求項1~5のいずれか一項に記載の面光源装置。 The surface light source device according to any one of claims 1 to 5, wherein a part of the reflection surface on the light source side is a diffuse reflection surface having a concavo-convex structure that diffuses and reflects light.
  8.  その側端面の一部が光を入射する入射面とされた導光板と、前記入射面に沿って配列され、該入射面に向けて光を出射する複数の点光源を有する光源とを備える面光源装置であって、
     前記光源から出射される光の前記導光板の厚み方向への発散を制限するように、該光を前記入射面に導く反射面を有する反射部材を設け、
     前記光源を構成する各点光源の前記導光板の厚み方向における配光特性の半値角をθとして、
     θ≦35°に設定した面光源装置。
    A surface provided with a light guide plate in which a part of the side end surface is an incident surface on which light is incident, and a light source having a plurality of point light sources arranged along the incident surface and emitting light toward the incident surface A light source device,
    In order to limit the divergence of the light emitted from the light source in the thickness direction of the light guide plate, a reflective member having a reflective surface for guiding the light to the incident surface is provided.
    The half-value angle of the light distribution characteristic in the thickness direction of the light guide plate of each point light source constituting the light source is θ,
    A surface light source device set to θ ≦ 35 °.
  9.  前記光源を構成する各点光源の配列方向における配光特性の半値角をφとして、
     φ/θ>1に設定した請求項8に記載の面光源装置。
    The half-value angle of the light distribution characteristic in the arrangement direction of each point light source constituting the light source is φ,
    The surface light source device according to claim 8, wherein φ / θ> 1 is set.
  10.  前記光源を構成する各点光源の配列方向における半値角をφ、該点光源の配列ピッチをp、該点光源の幅をa、該点光源と前記入射面との距離をdとして、
     φ>tan-1((a+p)/2d)の関係を満たす請求項8に記載の面光源装置。
    The half-value angle in the arrangement direction of each point light source constituting the light source is φ, the arrangement pitch of the point light sources is p, the width of the point light source is a, and the distance between the point light source and the incident surface is d,
    The surface light source device according to claim 8, satisfying a relationship of φ> tan −1 ((a + p) / 2d).
  11.  前記導光板の前記入射面の厚みが、前記光源を構成する各点光源の高さよりも小さい請求項8~10のいずれか一項に記載の面光源装置。 11. The surface light source device according to claim 8, wherein a thickness of the incident surface of the light guide plate is smaller than a height of each point light source constituting the light source.
  12.  液晶パネルと、請求項1~11のいずれか一項に記載の面光源装置とを備える液晶表示装置。 A liquid crystal display device comprising a liquid crystal panel and the surface light source device according to any one of claims 1 to 11.
PCT/JP2010/072014 2009-12-28 2010-12-08 Surface light source apparatus and liquid crystal display device WO2011080997A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009-298243 2009-12-28
JP2009-298241 2009-12-28
JP2009298241 2009-12-28
JP2009298243A JP2011138699A (en) 2009-12-28 2009-12-28 Surface light source apparatus and liquid crystal display device
JP2010239403A JP2011154998A (en) 2009-12-28 2010-10-26 Surface light source device and liquid crystal display device
JP2010-239403 2010-10-26

Publications (1)

Publication Number Publication Date
WO2011080997A1 true WO2011080997A1 (en) 2011-07-07

Family

ID=44226416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072014 WO2011080997A1 (en) 2009-12-28 2010-12-08 Surface light source apparatus and liquid crystal display device

Country Status (1)

Country Link
WO (1) WO2011080997A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10247413A (en) * 1997-03-03 1998-09-14 Omron Corp Surface light source device
JPH10255531A (en) * 1997-03-14 1998-09-25 Omron Corp Surface light source device
JP2000036209A (en) * 1998-07-17 2000-02-02 Matsushita Electric Ind Co Ltd Linear light source and liquid crystal display device using the same
JP2003255345A (en) * 2002-03-06 2003-09-10 Seiko Epson Corp Electrooptical device and electronic appliance
JP2007207615A (en) * 2006-02-02 2007-08-16 Mitsubishi Electric Corp Planar light source device, and display device using the same
JP2008108994A (en) * 2006-10-27 2008-05-08 Toyoda Gosei Co Ltd Luminescent device and planar light source using the same
JP2008305713A (en) * 2007-06-08 2008-12-18 Fujifilm Corp Surface illumination device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10247413A (en) * 1997-03-03 1998-09-14 Omron Corp Surface light source device
JPH10255531A (en) * 1997-03-14 1998-09-25 Omron Corp Surface light source device
JP2000036209A (en) * 1998-07-17 2000-02-02 Matsushita Electric Ind Co Ltd Linear light source and liquid crystal display device using the same
JP2003255345A (en) * 2002-03-06 2003-09-10 Seiko Epson Corp Electrooptical device and electronic appliance
JP2007207615A (en) * 2006-02-02 2007-08-16 Mitsubishi Electric Corp Planar light source device, and display device using the same
JP2008108994A (en) * 2006-10-27 2008-05-08 Toyoda Gosei Co Ltd Luminescent device and planar light source using the same
JP2008305713A (en) * 2007-06-08 2008-12-18 Fujifilm Corp Surface illumination device

Similar Documents

Publication Publication Date Title
US7927003B2 (en) Light guide plate with micro-structured reflective film and light-emitting apparatus
TWI457620B (en) Light guide plate and backlight module
US9091408B2 (en) Recycling backlights with semi-specular components
US8353614B2 (en) Backlight unit
US20060268568A1 (en) Back light, light guiding plate, method for manufacturing diffusion plate and light guiding plate, and liquid crystal display device
US20070024994A1 (en) Structured optical film with interspersed pyramidal structures
US8408777B2 (en) Planar illumination device
JP4552563B2 (en) Direct backlight unit
JPWO2007066729A1 (en) Surface light emitting device and liquid crystal display device
TWI448737B (en) Optical strip and backlight module and lcd device having the optical strip
JPWO2007055115A1 (en) Direct backlight unit
JP2009164101A (en) Backlight
US7125141B2 (en) Apparatus for homogeneously distributing lights
JPWO2008050763A1 (en) Direct backlight unit
US7766533B2 (en) Illumination module, and a display and general lighting apparatus using the same
TWI605224B (en) Illumination device
JP2012212612A (en) Light guide member and backlight device
US9116265B2 (en) Planar lighting device
JP2011134650A (en) Light source device and liquid crystal display device
CN1797106A (en) Plate for guiding light and backlight module
JP2008091114A (en) Direct backlight device and display device
JP2011138698A (en) Surface light source device and liquid crystal display device
JP2011216203A (en) Light source device, backlight device, and liquid crystal display device
WO2013001929A1 (en) Light guide plate and planar lighting device
US9075176B2 (en) Light guide plate and planar lighting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10840855

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10840855

Country of ref document: EP

Kind code of ref document: A1